1
|
Huang WZ, Liu TM, Liu ST, Chen SY, Huang SM, Chen GS. Oxidative Status Determines the Cytotoxicity of Ascorbic Acid in Human Oral Normal and Cancer Cells. Int J Mol Sci 2023; 24:ijms24054851. [PMID: 36902281 PMCID: PMC10002971 DOI: 10.3390/ijms24054851] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) can arise anywhere in the oral cavity. OSCC's molecular pathogenesis is complex, resulting from a wide range of events that involve the interplay between genetic mutations and altered levels of transcripts, proteins, and metabolites. Platinum-based drugs are the first-line treatment for OSCC; however, severe side-effects and resistance are challenging issues. Thus, there is an urgent clinical need to develop novel and/or combinatory therapeutics. In this study, we investigated the cytotoxic effects of pharmacological concentrations of ascorbate on two human oral cell lines, the oral epidermoid carcinoma meng-1 (OECM-1) cell and the Smulow-Glickman (SG) human normal gingival epithelial cell. Our study examined the potential functional impact of pharmacological concentrations of ascorbates on the cell-cycle profiles, mitochondrial-membrane potential, oxidative response, the synergistic effect of cisplatin, and the differential responsiveness between OECM-1 and SG cells. Two forms of ascorbate, free and sodium forms, were applied to examine the cytotoxic effect and it was found that both forms had a similar higher sensitivity to OECM-1 cells than to SG cells. In addition, our study data suggest that the determinant factor of cell density is important for ascorbate-induced cytotoxicity in OECM-1 and SG cells. Our findings further revealed that the cytotoxic effect might be mediated through the induction of mitochondrial reactive oxygen species (ROS) generation and the reduction in cytosolic ROS generation. The combination index supported the agonistic effect between sodium ascorbate and cisplatin in OECM-1 cells, but not in SG cells. In summary, our current findings provide supporting evidence for ascorbate to serve as a sensitizer for platinum-based treatment of OSCC. Hence, our work provides not only repurposing of the drug, ascorbate, but also an opportunity to decrease the side-effects of, and risk of resistance to, platinum-based treatment for OSCC.
Collapse
Affiliation(s)
- Wei-Zhi Huang
- School of Dentistry, Department of Dentistry of Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
- Division of Orthodontics, Pediatric Dentistry and Pediatric for Special Need, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
| | - Ting-Ming Liu
- Department of Cardiovascular Surgery, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei City 114, Taiwan
| | - Ssu-Yu Chen
- Department of Biochemistry, National Defense Medical Center, Taipei City 114, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City 114, Taiwan
| | - Gunng-Shinng Chen
- School of Dentistry, Department of Dentistry of Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
- Division of Orthodontics, Pediatric Dentistry and Pediatric for Special Need, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
- Correspondence: or
| |
Collapse
|
2
|
Qin M, Shao B, Lin L, Zhang ZQ, Sheng ZG, Qin L, Shao J, Zhu BZ. Molecular mechanism of the unusual biphasic effects of the natural compound hinokitiol on iron-induced cellular DNA damage. Free Radic Biol Med 2023; 194:163-171. [PMID: 36476568 DOI: 10.1016/j.freeradbiomed.2022.11.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Hinokitiol is a natural monoterpene compound found in the heartwood of cupressaceous plants that have anticancer and anti-inflammatory properties. However, few studies have focused on its effect on iron-mediated cellular DNA damage. Here we show that hinokitiol exhibited unusual biphasic effects on iron-induced DNA damage in a molar ratio (hinokitiol/iron) dependent manner in HeLa cells. Under low ratios (<3:1), hinokitiol markedly enhanced DNA damage induced by Fe(II) or Fe(II)-H2O2; However, when the ratios increased over 3:1, the DNA damage was progressively inhibited. We found that the total cytoplasmic and nuclear iron concentration increased as the ratios of hinokitiol/iron increased. However, the cellular level of labile iron pool (LIP) only increased at ratios lower than 3, and the ROS generation is consistent with LIP change. Hinokitiol was found to interact with iron to form lipophilic hinokitiol-iron complexes with different stoichiometry and redox-activity by complementary applications of various analytical methods. Taken together, we propose that the enhancement of iron-induced cellular DNA damage by hinokitiol at low ratios (<3:1) was due to formation of lipophilic and redox-active iron complexes which facilitated cellular iron uptake and •OH production, while the inhibition at ratios higher than 3 was due to formation of redox-inactive iron complexes. These new findings will help us to design more effective drugs for the prevention and treatment of a series of iron-related diseases via regulating the two critical physicochemical factors (lipophilicity and redox activity of iron complexes) by simple natural compounds with iron-chelating properties.
Collapse
Affiliation(s)
- Miao Qin
- School of Public Health, Weifang Medical University, Weifang, Shandong, 261053, China; School of Public Health, Jining Medical University, Jining, Shandong, 272013, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Bo Shao
- School of Public Health, Weifang Medical University, Weifang, Shandong, 261053, China; School of Public Health, Jining Medical University, Jining, Shandong, 272013, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Li Lin
- School of Public Health, Weifang Medical University, Weifang, Shandong, 261053, China; School of Public Health, Jining Medical University, Jining, Shandong, 272013, China
| | - Zhao-Qiang Zhang
- School of Public Health, Jining Medical University, Jining, Shandong, 272013, China
| | - Zhi-Guo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Resources and Environment, The University of Chinese Academy of Sciences, Beijing, China
| | - Li Qin
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Resources and Environment, The University of Chinese Academy of Sciences, Beijing, China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Resources and Environment, The University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Mason SA, Parker L, van der Pligt P, Wadley GD. Vitamin C supplementation for diabetes management: A comprehensive narrative review. Free Radic Biol Med 2023; 194:255-283. [PMID: 36526243 DOI: 10.1016/j.freeradbiomed.2022.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Growing evidence suggests that vitamin C supplementation may be an effective adjunct therapy in the management of people with diabetes. This paper critically reviews the current evidence on effects of vitamin C supplementation and its potential mechanisms in diabetes management. Evidence from meta-analyses of randomized controlled trials (RCTs) show favourable effects of vitamin C on glycaemic control and blood pressure that may be clinically meaningful, and mixed effects on blood lipids and endothelial function. However, evidence is mostly of low evidence certainty. Emerging evidence is promising for effects of vitamin C supplementation on some diabetes complications, particularly diabetic foot ulcers. However, there is a notable lack of robust and well-designed studies exploring effects of vitamin C as a single compound supplement on diabetes prevention and patient-important outcomes (i.e. prevention and amelioration of diabetes complications). RCTs are also required to investigate potential preventative or ameliorative effects of vitamin C on gestational diabetes outcomes. Oral vitamin C doses of 500-1000 mg per day are potentially effective, safe, and affordable for many individuals with diabetes. However, personalisation of supplementation regimens that consider factors such as vitamin C status, disease status, current glycaemic control, vitamin C intake, redox status, and genotype is important to optimize vitamin C's therapeutic effects safely. Finally, given a high prevalence of vitamin C deficiency in patients with complications, it is recommended that plasma vitamin C concentration be measured and monitored in the clinic setting.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Paige van der Pligt
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; Department of Nutrition and Dietetics, Western Health, Footscray, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
4
|
Identification of Agents That Ameliorate Hyperphosphatemia-Suppressed Myogenin Expression Involved in the Nrf2/p62 Pathway in C2C12 Skeletal Muscle Cells. Int J Mol Sci 2022; 23:ijms232315324. [PMID: 36499650 PMCID: PMC9736935 DOI: 10.3390/ijms232315324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/06/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Hyperphosphatemia can occur as a result of reduced phosphate (Pi) excretion in cases of kidney dysfunction, which can induce muscle wasting and suppress myogenic differentiation. Higher Pi suppresses myogenic differentiation and promotes muscle atrophy through canonical (oxidative stress-mediated) and noncanonical (p62-mediated) activation of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. However, the crosstalk between myogenin and Nrf2/p62 and potential drug(s) for the regulation of myogenin expression needed to be addressed. In this study, we further identified that myogenin may negatively regulate Nrf2 and p62 protein levels in the mouse C2C12 muscle cell line. In the drug screening analysis, we identified N-acetylcysteine, metformin, phenformin, berberine, 4-chloro-3-ethylphenol, cilostazol, and cilomilast as ameliorating the induction of Nrf2 and p62 expression and reduction in myogenin expression that occur due to high Pi. We further elucidated that doxorubicin and hydrogen peroxide reduced the amount of myogenin protein mediated through the Kelch-like ECH-associated protein 1/Nrf2 pathway, differently from the mechanism of high Pi. The dual functional roles of L-ascorbic acid (L-AA) were found to be dependent on the working concentration, where concentrations below 1 mM L-AA reversed the effect of high Pi on myogenin and those above 1 mM L-AA had a similar effect of high Pi on myogenin when used alone. L-AA exacerbated the effect of hydrogen peroxide on myogenin protein and had no further effect of doxorubicin on myogenin protein. In summary, our results further our understanding of the crosstalk between myogenin and Nrf2, with the identification and verification of several potential drugs that can be applied in rescuing the decline of myogenin due to high Pi in muscle cells.
Collapse
|
5
|
Fan HL, Liu ST, Chang YL, Chiu YL, Huang SM, Chen TW. In Vitro Cell Density Determines the Sensitivity of Hepatocarcinoma Cells to Ascorbate. Front Oncol 2022; 12:843742. [PMID: 35677156 PMCID: PMC9169715 DOI: 10.3389/fonc.2022.843742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/20/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the primary histological subtype of liver cancer, and its incidence rates increase with age. Recently, systemic therapies, such as immune checkpoint inhibitors, monoclonal antibodies, and tyrosine kinase inhibitors (TKIs), have been more beneficial than conventional therapies for treating HCC. Nonetheless, the prognosis of late-stage HCC remains dismal because of its high recurrence rates, even with substantial advances in current therapeutic strategies. A new treatment, such as a combination of current systemic therapies, is urgently required. Therefore, we adopted a repurposing strategy and tried to combine ascorbate with TKIs, including lenvatinib and regorafenib, in HepG2 and Hep3B cells. We investigated the potential functional impact of pharmacological concentrations of ascorbate on the cell-cycle profiles, mitochondrial membrane potential, oxidative response, synergistic effects of lenvatinib or regorafenib, and differential responsiveness between HepG2 and Hep3B cells. Our data suggest that the relative level of cell density is an important determinant for ascorbate cytotoxicity in HCC. Furthermore, the data also revealed that the cytotoxic effect of pharmacological concentrations of ascorbate might not be mediated via our proposed elevation of ROS generation. Ascorbate might be involved in redox homeostasis to enhance the efficacy of TKIs in HepG2 and Hep3B cells. The synergistic effects of ascorbate with TKIs (lenvatinib and regorafenib) support their potential as an adjuvant for HCC targeted TKI therapy. This research provides a cheap and new combinatory therapy for HCC treatment.
Collapse
Affiliation(s)
- Hsiu-Lung Fan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Lung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Teng-Wei Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
6
|
Understanding the Therapeutic Potential of Ascorbic Acid in the Battle to Overcome Cancer. Biomolecules 2021; 11:biom11081130. [PMID: 34439796 PMCID: PMC8392841 DOI: 10.3390/biom11081130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer, a fatal disease, is also one of the main causes of death worldwide. Despite various developments to prevent and treat cancer, the side effects of anticancer drugs remain a major concern. Ascorbic acid is an essential vitamin required by our bodies for normal physiological function and also has antioxidant and anticancer activity. Although the body cannot synthesize ascorbic acid, it is abundant in nature through foods and other natural sources and also exists as a nutritional food supplement. In anticancer drug development, ascorbic acid has played an important role by inhibiting the development of cancer through various mechanisms, including scavenging reactive oxygen species (ROS), selectively producing ROS and encouraging their cytotoxicity against tumour cells, preventing glucose metabolism, serving as an epigenetic regulator, and regulating the expression of HIF in tumour cells. Several ascorbic acid analogues have been produced to date for their anticancer and antioxidant activity. The current review summarizes the mechanisms behind ascorbic acid's antitumor activity, presents a compilation of its derivatives and their biological activity as anticancer agents, and discusses delivery systems such as liposomes, nanoparticles against cancer, and patents on ascorbic acid as anticancer agents.
Collapse
|
7
|
Shao B, Mao L, Tang M, Yan ZY, Shao J, Huang CH, Sheng ZG, Zhu BZ. Caffeic Acid Phenyl Ester (CAPE) Protects against Iron-Mediated Cellular DNA Damage through Its Strong Iron-Binding Ability and High Lipophilicity. Antioxidants (Basel) 2021; 10:antiox10050798. [PMID: 34069954 PMCID: PMC8157578 DOI: 10.3390/antiox10050798] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/25/2022] Open
Abstract
Caffeic acid phenethyl ester (CAPE) and its structurally-related caffeic acid (CA), ferulic acid (FA) and ethyl ferulate (EF) are constituents of honeybee propolis that have important pharmacological activities. This study found that CAPE—but not CA, FA, and EF—could effectively prevent cellular DNA damage induced by overloaded iron through decreasing the labile iron pool (LIP) levels in HeLa cells. Interestingly, CAPE was found to be more effective than CA in protecting against plasmid DNA damage induced by Fe(II)–H2O2 or Fe(III)–citrate–ascorbate-H2O2 via the inhibition of hydroxyl radical (•OH) production. We further provided more direct and unequivocal experimental evidences for the formation of inactive CAPE/CA–iron complexes. CAPE was found to have a stronger iron-binding ability and a much higher lipophilicity than CA. Taken together, we propose that the esterification of the carboxylic moiety with phenethyl significantly enhanced the iron-binding ability and lipophilicity of CAPE, which is also responsible for its potent protection against iron-mediated cellular DNA damage. A study on the iron coordination mechanism of such natural polyphenol antioxidants will help to design more effective antioxidants for the treatment and prevention of diseases caused by metal-induced oxidative stress, as well as help to understand the structure–activity relationships of these compounds.
Collapse
Affiliation(s)
- Bo Shao
- Department of Public Health, Jining Medical University, Jining 272067, China;
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (Z.-Y.Y.); (J.S.); (C.-H.H.); (Z.-G.S.)
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (Z.-Y.Y.); (J.S.); (C.-H.H.); (Z.-G.S.)
- University of Chinese Academy of Sciences, Beijing 100085, China
- Correspondence: (L.M.); (B.-Z.Z.); Tel.: +86-10-62849030 (B.-Z.Z.)
| | - Miao Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (Z.-Y.Y.); (J.S.); (C.-H.H.); (Z.-G.S.)
- University of Chinese Academy of Sciences, Beijing 100085, China
| | - Zhu-Ying Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (Z.-Y.Y.); (J.S.); (C.-H.H.); (Z.-G.S.)
- University of Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (Z.-Y.Y.); (J.S.); (C.-H.H.); (Z.-G.S.)
- University of Chinese Academy of Sciences, Beijing 100085, China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (Z.-Y.Y.); (J.S.); (C.-H.H.); (Z.-G.S.)
- University of Chinese Academy of Sciences, Beijing 100085, China
| | - Zhi-Guo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (Z.-Y.Y.); (J.S.); (C.-H.H.); (Z.-G.S.)
- University of Chinese Academy of Sciences, Beijing 100085, China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (Z.-Y.Y.); (J.S.); (C.-H.H.); (Z.-G.S.)
- University of Chinese Academy of Sciences, Beijing 100085, China
- Joint Institute for Environmental Science, Research Center for Eco-Environmental Sciences and Hong Kong Baptist University, Beijing 100085/Hong Kong 999077, China
- Correspondence: (L.M.); (B.-Z.Z.); Tel.: +86-10-62849030 (B.-Z.Z.)
| |
Collapse
|
8
|
Wu TM, Liu ST, Chen SY, Chen GS, Wu CC, Huang SM. Mechanisms and Applications of the Anti-cancer Effect of Pharmacological Ascorbic Acid in Cervical Cancer Cells. Front Oncol 2020; 10:1483. [PMID: 33014789 PMCID: PMC7507989 DOI: 10.3389/fonc.2020.01483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, L-ascorbic acid (L-AA), or vitamin C, has been attracting attention as a potential anticancer drug that mediates hydrogen peroxide-induced oxidation and ten-eleven translocation 2-catalyzed DNA demethylation. However, the precise mechanism by which L-AA acts remains unclear. We examined the cytotoxic effects of L-AA or sodium ascorbate in human cervical carcinoma cells by assessing cell viability, expression of cell cycle-related mRNAs and proteins, and mitochondrial functions, and by performing flow cytometric analyses of cell cycle profiles, apoptosis, cell proliferation, and production of reactive oxygen species (ROS). We later tested the effects of ascorbates in combination with two first-line chemotherapeutic drugs, cisplatin, and doxorubicin. At pharmacological concentrations (1–10 mM), L-AA increased ROS levels; decreased levels of several cell cycle-related proteins, including p53, p21, cyclin D1, and phosphorylated histone 3 at serine residue 10; induced DNA damage, as indicated by changes in γH2A.x; decreased levels of the anti-oxidative transcription factor Nrf2; and increased levels of catalase, superoxide dismutase 1, and endoplasmic reticulum stress-related indicators, such as the p-eIF2α/eIF2α ratio and CHOP levels. L-AA also promoted cell proliferation and induced apoptosis and mitochondrial dysfunction. Finally, L-AA increased the susceptibility of HeLa cells to cisplatin and doxorubicin. These findings provide insight into how the adjustment of the cellular ROS status through L-ascorbate (L-AA or sodium ascorbate) administration could potentially synergistically enhance the efficacy of cancer therapies.
Collapse
Affiliation(s)
- Tsai-Ming Wu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Ssu-Yu Chen
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Gunng-Shinng Chen
- Department of Dentistry of Tri-service General Hospital, School of Dentistry, National Defense Medical Center, Taipei City, Taiwan
| | - Chia-Chun Wu
- Department of Orthopaedic Surgery, Tri-service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| |
Collapse
|
9
|
Nowak M, Tryniszewski W, Sarniak A, Włodarczyk A, Nowak PJ, Nowak D. Light emission from the Fe2+
-EDTA-ascorbic acid-H2
O2
system strongly enhanced by plant phenolic acids. LUMINESCENCE 2019; 34:183-192. [DOI: 10.1002/bio.3591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Michal Nowak
- Radiation Protection, University Hospital No 2; Medical University of Lodz; Lodz Poland
| | - Wiesław Tryniszewski
- Department of Radiological and Isotopic Diagnostics and Therapy; Medical University of Lodz; Lodz Poland
| | - Agata Sarniak
- Department of General Physiology; Medical University of Lodz; Lodz Poland
| | - Anna Włodarczyk
- Department of Sleep Medicine and Metabolic Disorders; Medical University of Lodz; Lodz Poland
| | - Piotr J. Nowak
- Department of Nephrology, Hypertension and Kidney Transplantation; Medical University of Lodz; Lodz Poland
| | - Dariusz Nowak
- Department of Clinical Physiology; Medical University of Lodz; Lodz Poland
| |
Collapse
|
10
|
Smirnoff N. Ascorbic acid metabolism and functions: A comparison of plants and mammals. Free Radic Biol Med 2018; 122:116-129. [PMID: 29567393 PMCID: PMC6191929 DOI: 10.1016/j.freeradbiomed.2018.03.033] [Citation(s) in RCA: 312] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 02/07/2023]
Abstract
Ascorbic acid is synthesised by eukaryotes, the known exceptions being primates and some other animal groups which have lost functional gulonolactone oxidase. Prokaryotes do not synthesise ascorbate and do not need an ascorbate supply, so the functions that are essential for mammals and plants are not required or are substituted by other compounds. The ability of ascorbate to donate electrons enables it to act as a free radical scavenger and to reduce higher oxidation states of iron to Fe2+. These reactions are the basis of its biological activity along with the relative stability of the resulting resonance stabilised monodehydroascorbate radical. The importance of these properties is emphasised by the evolution of at least three biosynthetic pathways and production of an ascorbate analogue, erythroascorbate, by fungi. The iron reducing activity of ascorbate maintains the reactive centre Fe2+ of 2-oxoglutarate-dependent dioxygenases (2-ODDs) thus preventing inactivation. These enzymes have diverse functions and, recently, the possibility that ascorbate status in mammals could influence 2-ODDs involved in histone and DNA demethylation thereby influencing stem cell differentiation and cancer has been uncovered. Ascorbate is involved in iron uptake and transport in plants and animals. While the above biochemical functions are shared between mammals and plants, ascorbate peroxidase (APX) is an enzyme family limited to plants and photosynthetic protists. It provides these organisms with increased capacity to remove H2O2 produced by photosynthetic electron transport and photorespiration. The Fe reducing activity of ascorbate enables hydroxyl radical production (pro-oxidant effect) and the reactivity of dehydroascorbate (DHA) and reaction of its degradation products with proteins (dehydroascorbylation and glycation) is potentially damaging. Ascorbate status influences gene expression in plants and mammals but at present there is little evidence that it acts as a specific signalling molecule. It most likely acts indirectly by influencing the redox state of thiols and 2-ODD activity. However, the possibility that dehydroascorbylation is a regulatory post-translational protein modification could be explored.
Collapse
Affiliation(s)
- Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
11
|
Cadeau C, Fournier A, Mesrine S, Clavel-Chapelon F, Fagherazzi G, Boutron-Ruault MC. Vitamin C supplement intake and postmenopausal breast cancer risk: interaction with dietary vitamin C. Am J Clin Nutr 2016; 104:228-34. [PMID: 27194303 DOI: 10.3945/ajcn.115.126326] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/19/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Experimental and epidemiologic studies have yielded conflicting results on the relation between vitamin C intake and breast cancer risk. OBJECTIVE We investigated the relation between vitamin C supplement intake and breast cancer risk while considering dietary vitamin C intake. DESIGN Between 1995 and 2008, 2482 invasive breast cancer cases occurred in 57,403 postmenopausal women from the Etude Epidémiologique auprès de femmes de la Mutuelle Générale de l'Education Nationale (E3N) prospective cohort during 581,085 person-years. We estimated vitamin C intake from foods with the use of a validated food-frequency questionnaire that was sent to subjects in 1993-1995 and vitamin C supplement use via questionnaires sent in 1995, 2000, 2002, and 2005. Multivariable HRs (95% CIs) for primary invasive breast cancer were estimated with the use of Cox regression models. All statistical tests were 2-sided. RESULTS Vitamin C supplement use (ever compared with never) was not associated with breast cancer risk overall; it was associated with higher breast cancer risk in women in the fourth quartile of vitamin C intake from foods (HR: 1.32; 95% CI: 1.04, 1.67) but not in other quartiles of dietary vitamin C intake (P-interaction = 0.03). CONCLUSIONS We observed that vitamin C supplement use was associated with increased postmenopausal breast cancer risk in women with high vitamin C intake from foods. Our data suggest a potential U- or J-shaped relation between total vitamin C intake and postmenopausal breast cancer risk that deserves further investigation.
Collapse
Affiliation(s)
- Claire Cadeau
- Center for Research in Epidemiology and Population Health (CESP), French Institute of Health and Medical Research (INSERM), University of Paris-Sud, University of Versailles Saint-Quentin-en-Yvelines, University of Paris-Saclay, Villejuif, France; and Gustave Roussy, Villejuif, France
| | - Agnès Fournier
- Center for Research in Epidemiology and Population Health (CESP), French Institute of Health and Medical Research (INSERM), University of Paris-Sud, University of Versailles Saint-Quentin-en-Yvelines, University of Paris-Saclay, Villejuif, France; and Gustave Roussy, Villejuif, France
| | - Sylvie Mesrine
- Center for Research in Epidemiology and Population Health (CESP), French Institute of Health and Medical Research (INSERM), University of Paris-Sud, University of Versailles Saint-Quentin-en-Yvelines, University of Paris-Saclay, Villejuif, France; and Gustave Roussy, Villejuif, France
| | - Françoise Clavel-Chapelon
- Center for Research in Epidemiology and Population Health (CESP), French Institute of Health and Medical Research (INSERM), University of Paris-Sud, University of Versailles Saint-Quentin-en-Yvelines, University of Paris-Saclay, Villejuif, France; and Gustave Roussy, Villejuif, France
| | - Guy Fagherazzi
- Center for Research in Epidemiology and Population Health (CESP), French Institute of Health and Medical Research (INSERM), University of Paris-Sud, University of Versailles Saint-Quentin-en-Yvelines, University of Paris-Saclay, Villejuif, France; and Gustave Roussy, Villejuif, France
| | - Marie-Christine Boutron-Ruault
- Center for Research in Epidemiology and Population Health (CESP), French Institute of Health and Medical Research (INSERM), University of Paris-Sud, University of Versailles Saint-Quentin-en-Yvelines, University of Paris-Saclay, Villejuif, France; and Gustave Roussy, Villejuif, France
| |
Collapse
|
12
|
Abstract
The prognosis for patients diagnosed with pancreatic cancer remains dismal, with less than 3% survival at 5 years. Recent studies have demonstrated that high-dose, intravenous pharmacological ascorbate (ascorbic acid, vitamin C) induces cytotoxicity and oxidative stress selectively in pancreatic cancer cells vs. normal cells, suggesting a promising new role of ascorbate as a therapeutic agent. At physiologic concentrations, ascorbate functions as a reducing agent and antioxidant. However, when pharmacological ascorbate is given intravenously, it is possible to achieve millimolar plasma concentration. At these pharmacological levels, and in the presence of catalytic metal ions, ascorbate can induce oxidative stress through the generation of hydrogen peroxide (H2O2). Recent in vitro and in vivo studies have demonstrated ascorbate oxidation occurs extracellularly, generating H2O2 flux into cells resulting in oxidative stress. Pharmacologic ascorbate also inhibits the growth of pancreatic tumor xenografts and displays synergistic cytotoxic effects when combined with gemcitabine in pancreatic cancer. Phase I trials of pharmacological ascorbate in pancreatic cancer patients have demonstrated safety and potential efficacy. In this chapter, we will review the mechanism of ascorbate-induced cytotoxicity, examine the use of pharmacological ascorbate in treatment and assess the current data supporting its potential as an adjuvant in pancreatic cancer.
Collapse
Affiliation(s)
| | - Joseph J Cullen
- 1528 JCP, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA.
| |
Collapse
|
13
|
Kerr DCR, Zava DT, Piper WT, Saturn SR, Frei B, Gombart AF. Associations between vitamin D levels and depressive symptoms in healthy young adult women. Psychiatry Res 2015; 227:46-51. [PMID: 25791903 PMCID: PMC4420707 DOI: 10.1016/j.psychres.2015.02.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 02/20/2015] [Accepted: 02/25/2015] [Indexed: 12/29/2022]
Abstract
There have been few studies of whether vitamin D insufficiency is linked with depression in healthy young women despite women׳s high rates of both problems. Female undergraduates (n=185) living in the Pacific Northwest during fall, winter, and spring academic terms completed the Center for Epidemiologic Studies Depression (CES-D) scale weekly for 4 weeks (W1-W5). We measured serum levels of vitamin D3 and C (ascorbate; as a control variable) in blood samples collected at W1 and W5. Vitamin D insufficiency (<30ng/mL) was common at W1 (42%) and W5 (46%), and rates of clinically significant depressive symptoms (CES-D≥16) were 34-42% at W1-W5. Lower W1 vitamin D3 predicted clinically significant depressive symptoms across W1-W5 (β=-0.20, p<0.05), controlling for season, BMI, race/ethnicity, diet, exercise, and time outside. There was some evidence that lower levels of depressive symptoms in Fall participants (vs. Winter and Spring) were explained by their higher levels of vitamin D3. W1 depressive symptoms did not predict change in vitamin D3 levels from W1 to W5. Findings are consistent with a temporal association between low levels of vitamin D and clinically meaningful depressive symptoms. The preventive value of supplementation should be tested further.
Collapse
Affiliation(s)
- David C. R. Kerr
- School of Psychological Science, Oregon State University,Corresponding author; ; 213 Reed Lodge, Oregon State University, Corvallis, Oregon 97330, USA; Phone (541) 737-1364
| | | | | | | | - Balz Frei
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University
| | - Adrian F. Gombart
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University
| |
Collapse
|
14
|
Adam FI, Bounds PL, Kissner R, Koppenol WH. Redox Properties and Activity of Iron–Citrate Complexes: Evidence for Redox Cycling. Chem Res Toxicol 2015; 28:604-14. [DOI: 10.1021/tx500377b] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fatima I. Adam
- Institute of Inorganic Chemistry,
Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg
1, CH-8093 Zurich, Switzerland
| | - Patricia L. Bounds
- Institute of Inorganic Chemistry,
Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg
1, CH-8093 Zurich, Switzerland
| | - Reinhard Kissner
- Institute of Inorganic Chemistry,
Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg
1, CH-8093 Zurich, Switzerland
| | - Willem H. Koppenol
- Institute of Inorganic Chemistry,
Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg
1, CH-8093 Zurich, Switzerland
| |
Collapse
|
15
|
Free-radical degradation by Fe2+/Vc/H2O2 and antioxidant activity of polysaccharide from Tremella fuciformis. Carbohydr Polym 2014; 112:578-82. [DOI: 10.1016/j.carbpol.2014.06.030] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/02/2014] [Accepted: 06/11/2014] [Indexed: 11/19/2022]
|
16
|
Ashor AW, Siervo M, Lara J, Oggioni C, Mathers JC. Antioxidant vitamin supplementation reduces arterial stiffness in adults: a systematic review and meta-analysis of randomized controlled trials. J Nutr 2014; 144:1594-602. [PMID: 25098780 DOI: 10.3945/jn.114.195826] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Several studies tested the effects of supplementation with antioxidant vitamins on arterial stiffness, but the results were contradictory. OBJECTIVES The aim of our study was to conduct a systematic review and meta-analysis investigating the effect of antioxidant vitamins on arterial stiffness and to determine whether the effects on arterial stiffness vary according to dose, duration of intervention, and health or nutritional status of the included participants. METHODS We searched 3 databases (Medline, Embase, and Scopus) for articles that potentially met the following eligibility criteria: 1) randomized controlled trials comparing antioxidant vitamins (vitamins C, E, and A and β-carotene) to either placebo or no active control in 2) adult participants aged ≥18 y; 3) antioxidant vitamins administered alone or in combination, irrespective of dose, duration, and route of administration; and 4) changes in arterial stiffness or arterial compliance. Data were pooled as standardized mean differences (SMDs) and analyzed using fixed- and random-effects models. RESULTS Data synthesis showed that antioxidant vitamins reduced arterial stiffness significantly (SMD: -0.17; 95% CI: -0.26, -0.08; P < 0.001). This effect was significant in experimental (SMD: -1.02; 95% CI: -1.54, -0.49; P < 0.001) and primary prevention (SMD: -0.14; 95% CI: -0.24, -0.04; P < 0.01) studies, whereas a trend for reduced arterial stiffness was observed in studies including participants with diseases (SMD: -0.19; 95% CI: -0.40, 0.02; P = 0.08). Vitamin supplementation improved arterial stiffness irrespective of age group and duration of intervention. Antioxidant vitamins were more effective in participants with low baseline plasma concentrations of vitamins C (SMD: -0.35; 95% CI: -0.62, -0.07; P < 0.016) and E (SMD: -0.79; 95% CI: -1.23, -0.33; P < 0.01). CONCLUSIONS Supplementation with antioxidant vitamins has a small, protective effect on arterial stiffness. The effect may be augmented in those with lower baseline plasma vitamin E and C concentrations. This trial was registered at PROSPERO as CRD42014007260.
Collapse
Affiliation(s)
- Ammar W Ashor
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK; and College of Medicine, University of Al-Mustansiriyah, Baghdad, Iraq
| | - Mario Siervo
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK; and
| | - Jose Lara
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK; and
| | - Clio Oggioni
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK; and
| | - John C Mathers
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK; and
| |
Collapse
|
17
|
Rock E, Fardet A. Les antioxydants des agrumes : action en solitaire ou matricielle? ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s10298-014-0852-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Sadat U, Usman A, Gillard JH, Boyle JR. Does ascorbic acid protect against contrast-induced acute kidney injury in patients undergoing coronary angiography: a systematic review with meta-analysis of randomized, controlled trials. J Am Coll Cardiol 2013; 62:2167-75. [PMID: 23994417 DOI: 10.1016/j.jacc.2013.07.065] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/16/2013] [Accepted: 07/31/2013] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study sought to perform a systematic review with meta-analysis of randomized controlled trials comparing the use of ascorbic acid with placebo or other treatment options for the treatment of contrast induced-acute kidney injury (CI-AKI) in patients undergoing coronary angiography. BACKGROUND CI-AKI remains the most widely discussed and debated topic in cardiovascular medicine, with its incidence increasing due to an increasing number of contrast media-enhanced radiological procedures being performed. METHODS MEDLINE, Embase, and Cochrane central databases were searched from inception to May 2013, without language restrictions. For a study to be selected, it had to report the incidence of CI-AKI as an outcome measure. Studies were excluded if at least 1 study arm did not have ascorbic acid administered alone or with saline solution hydration. Data were extracted by 1 author, and random checks were made by another author. RESULTS Nine randomized, controlled trials reported data on the incidence of CI-AKI in 1,536 patients who had completed the trial and were included in the final analysis. Patients receiving ascorbic acid had 33% less risk of CI-AKI compared with patients receiving placebo or an alternate pharmacological treatment (risk ratio by random-effects model: 0.672; 95% confidence interval, 0.466 to 0.969; p = 0.034). CONCLUSIONS Ascorbic acid provides effective nephroprotection against CI-AKI and may form a part of effective prophylactic pharmacological regimens.
Collapse
Affiliation(s)
- Umar Sadat
- Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom.
| | | | | | | |
Collapse
|
19
|
Du J, Cullen JJ, Buettner GR. Ascorbic acid: chemistry, biology and the treatment of cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1826:443-57. [PMID: 22728050 PMCID: PMC3608474 DOI: 10.1016/j.bbcan.2012.06.003] [Citation(s) in RCA: 486] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/11/2012] [Accepted: 06/13/2012] [Indexed: 12/14/2022]
Abstract
Since the discovery of vitamin C, the number of its known biological functions is continually expanding. Both the names ascorbic acid and vitamin C reflect its antiscorbutic properties due to its role in the synthesis of collagen in connective tissues. Ascorbate acts as an electron-donor keeping iron in the ferrous state thereby maintaining the full activity of collagen hydroxylases; parallel reactions with a variety of dioxygenases affect the expression of a wide array of genes, for example via the HIF system, as well as via the epigenetic landscape of cells and tissues. In fact, all known physiological and biochemical functions of ascorbate are due to its action as an electron donor. The ability to donate one or two electrons makes AscH(-) an excellent reducing agent and antioxidant. Ascorbate readily undergoes pH-dependent autoxidation producing hydrogen peroxide (H(2)O(2)). In the presence of catalytic metals this oxidation is accelerated. In this review, we show that the chemical and biochemical nature of ascorbate contribute to its antioxidant as well as its prooxidant properties. Recent pharmacokinetic data indicate that intravenous (i.v.) administration of ascorbate bypasses the tight control of the gut producing highly elevated plasma levels; ascorbate at very high levels can act as prodrug to deliver a significant flux of H(2)O(2) to tumors. This new knowledge has rekindled interest and spurred new research into the clinical potential of pharmacological ascorbate. Knowledge and understanding of the mechanisms of action of pharmacological ascorbate bring a rationale to its use to treat disease especially the use of i.v. delivery of pharmacological ascorbate as an adjuvant in the treatment of cancer.
Collapse
Affiliation(s)
- Juan Du
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA
| | - Joseph J. Cullen
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA
- Department of Surgery, University of Iowa College of Medicine, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, USA
- Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Garry R. Buettner
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, USA
| |
Collapse
|
20
|
Redox regulation of calcium signaling in cancer cells by ascorbic Acid involving the mitochondrial electron transport chain. JOURNAL OF BIOPHYSICS 2012; 2012:921653. [PMID: 23227042 PMCID: PMC3512304 DOI: 10.1155/2012/921653] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/29/2012] [Accepted: 10/29/2012] [Indexed: 11/17/2022]
Abstract
Previously, we have reported that ascorbic acid regulates calcium signaling in human larynx carcinoma HEp-2 cells. To evaluate the precise mechanism of Ca2+ release by ascorbic acid, the effects of specific inhibitors of the electron transport chain components on mitochondrial reactive oxygen species (ROS) production and Ca2+ mobilization in HEp-2 cells were investigated. It was revealed that the mitochondrial complex III inhibitor (antimycin A) amplifies ascorbate-induced Ca2+ release from intracellular stores. The mitochondrial complex I inhibitor (rotenone) decreases Ca2+ release from intracellular stores in HEp-2 cells caused by ascorbic acid and antimycin A. In the presence of rotenone, antimycin A stimulates ROS production by mitochondria. Ascorbate-induced Ca2+ release in HEp-2 cells is shown to be unaffected by catalase. The results obtained suggest that Ca2+ release in HEp-2 cells caused by ascorbic acid is associated with induced mitochondrial ROS production. The data obtained are in line with the concept of redox signaling that explains oxidant action by compartmentalization of ROS production and oxidant targets.
Collapse
|
21
|
Lönn ME, Dennis JM, Stocker R. Actions of "antioxidants" in the protection against atherosclerosis. Free Radic Biol Med 2012; 53:863-84. [PMID: 22664312 DOI: 10.1016/j.freeradbiomed.2012.05.027] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/05/2012] [Accepted: 05/16/2012] [Indexed: 02/07/2023]
Abstract
This review addresses the role of oxidative processes in atherosclerosis and its resulting cardiovascular disease by focusing on the outcome of antioxidant interventions. Although there is unambiguous evidence for the presence of heightened oxidative stress and resulting damage in atherosclerosis, it remains to be established whether this represents a cause or a consequence of the disease. This critical question is complicated further by the increasing realization that oxidative processes, including those related to signaling, are part of normal cell function. Overall, the results from animal interventions suggest that antioxidants provide benefit neither generally nor consistently. Where benefit is observed, it appears to be achieved at least in part via modulation of biological processes such as increase in nitric oxide bioavailability and induction of protective enzymes such as heme oxygenase-1, rather than via inhibition of oxidative processes and lipid oxidation in the arterial wall. Exceptions to this may be situations of multiple/excessive stress, the relevance of which for humans is not clear. This interpretation is consistent with the overall disappointing outcome of antioxidant interventions in humans and can be rationalized by the spatial compartmentalization of cellular oxidative signaling and/or damage, complex roles of oxidant-producing enzymes, and the multifactorial nature of atherosclerosis.
Collapse
Affiliation(s)
- Maria E Lönn
- Centre for Vascular Research, School of Medical Sciences (Pathology), and Bosch Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
22
|
Lee JC, Son YO, Pratheeshkumar P, Shi X. Oxidative stress and metal carcinogenesis. Free Radic Biol Med 2012; 53:742-57. [PMID: 22705365 DOI: 10.1016/j.freeradbiomed.2012.06.002] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/31/2012] [Accepted: 06/02/2012] [Indexed: 01/18/2023]
Abstract
Occupational and environmental exposures to metals are closely associated with an increased risk of various cancers. Although carcinogenesis caused by metals has been intensively investigated, the exact mechanisms of action are still unclear. Accumulating evidence indicates that reactive oxygen species (ROS) generated by metals play important roles in the etiology of degenerative and chronic diseases. This review covers recent advances in (1) metal-induced generation of ROS and the related mechanisms; (2) the relationship between metal-mediated ROS generation and carcinogenesis; and (3) the signaling proteins involved in metal-induced carcinogenesis, especially intracellular reduction-oxidation-sensitive molecules.
Collapse
Affiliation(s)
- Jeong-Chae Lee
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
23
|
Jomova K, Baros S, Valko M. Redox active metal-induced oxidative stress in biological systems. TRANSIT METAL CHEM 2012. [DOI: 10.1007/s11243-012-9583-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Wootton-Beard PC, Ryan L. Improving public health?: The role of antioxidant-rich fruit and vegetable beverages. Food Res Int 2011. [DOI: 10.1016/j.foodres.2011.09.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Traber MG, Stevens JF. Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic Biol Med 2011; 51:1000-13. [PMID: 21664268 PMCID: PMC3156342 DOI: 10.1016/j.freeradbiomed.2011.05.017] [Citation(s) in RCA: 532] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 05/13/2011] [Accepted: 05/17/2011] [Indexed: 02/07/2023]
Abstract
The mechanistic properties of two dietary antioxidants that are required by humans, vitamins C and E, are discussed relative to their biological effects. Vitamin C (ascorbic acid) is an essential cofactor for α-ketoglutarate-dependent dioxygenases. Examples are prolyl hydroxylases, which play a role in the biosynthesis of collagen and in down-regulation of hypoxia-inducible factor (HIF)-1, a transcription factor that regulates many genes responsible for tumor growth, energy metabolism, and neutrophil function and apoptosis. Vitamin C-dependent inhibition of the HIF pathway may provide alternative or additional approaches for controlling tumor progression, infections, and inflammation. Vitamin E (α-tocopherol) functions as an essential lipid-soluble antioxidant, scavenging hydroperoxyl radicals in a lipid milieu. Human symptoms of vitamin E deficiency suggest that its antioxidant properties play a major role in protecting erythrocyte membranes and nervous tissues. As an antioxidant, vitamin C provides protection against oxidative stress-induced cellular damage by scavenging of reactive oxygen species, by vitamin E-dependent neutralization of lipid hydroperoxyl radicals, and by protecting proteins from alkylation by electrophilic lipid peroxidation products. These bioactivities bear relevance to inflammatory disorders. Vitamin C also plays a role in the function of endothelial nitric oxide synthase (eNOS) by recycling the eNOS cofactor, tetrahydrobiopterin, which is relevant to arterial elasticity and blood pressure regulation. Evidence from plants supports a role for vitamin C in the formation of covalent adducts with electrophilic secondary metabolites. Mechanism-based effects of vitamin C and E supplementation on biomarkers and on clinical outcomes from randomized, placebo-controlled trials are emphasized in this review.
Collapse
Affiliation(s)
- Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | | |
Collapse
|
26
|
Bergstrom T, Bergman J, Moller L. Vitamin A and C compounds permitted in supplements differ in their abilities to affect cell viability, DNA and the DNA nucleoside deoxyguanosine. Mutagenesis 2011; 26:735-44. [DOI: 10.1093/mutage/ger041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
27
|
Suzuki T, Iwahashi Y. Gene expression profiles of yeast Saccharomyces cerevisiae sod1 caused by patulin toxicity and evaluation of recovery potential of ascorbic acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:7145-7154. [PMID: 21648421 DOI: 10.1021/jf104938p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Patulin (PAT) is a fungal secondary metabolite and exhibits various toxicities including DNA damage and oxidative stress. These toxicities are eased by ascorbic acid (AsA). Although a number of studies regarding the mitigating effect of AsA against PAT toxicity have been reported, a comprehensive study about gene expressions is currently underway. Here, we carried out a detailed evaluation of PAT toxicity by co-incubation with AsA using the superoxide dismutase (SOD) mutant. DNA microarray results extracted the alterations in iron transporter and Fe/S cluster assembly genes; some of the genes that constitute the cellular iron transporter systems remained dysfunctional even in the presence of AsA. Meanwhile, AsA treatment reduced the alterations of G1/S phase cell cycle regulation genes. These results suggest that oxidative stress-derived DNA damage still exists, although AsA treatment effectively reduces PAT toxicity. This implies that a combined condition is required for complete blockade of PAT toxicity.
Collapse
Affiliation(s)
- Tadahiro Suzuki
- Applied Microbiology Division, National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| | | |
Collapse
|
28
|
Eyckmans M, Celis N, Horemans N, Blust R, De Boeck G. Exposure to waterborne copper reveals differences in oxidative stress response in three freshwater fish species. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 103:112-120. [PMID: 21419094 DOI: 10.1016/j.aquatox.2011.02.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/31/2011] [Accepted: 02/12/2011] [Indexed: 05/30/2023]
Abstract
Among species, various strategies in metal handling can occur. Moreover, the same metal concentration, or even the same metal dose, does not always seem to exert the same effect in different species. Here, we have investigated differences in a copper induced oxidative stress response between rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio) and gibel carp (Carassius auratus gibelio). Fish were exposed to two sub-lethal Cu concentrations, an identical concentration of 50μg/l for all fish species and an identical toxic dose which was 10% of the concentration lethal to 50% of the fish within 96h of exposure (LC50 96h value) for each of the 3 species (20μg/l for rainbow trout, 65μg/l for carp and 150μg/l for gibel carp). Different anti-oxidative enzyme (superoxide dismutase, glutathione reductase and catalase) activities and anti-oxidant (reduced glutathione and reduced ascorbate) concentrations were determined in gill samples collected after 1h, 12h, 24h, 3 days, 1 week and 1 month of Cu exposure. Changes in the measured parameters were present in all 3 species, yet a clear differentiation between fish species could be made before and during the exposure. The ascorbate levels of gibel carp were twice as high as those in common carp or rainbow trout. In contrast, the level of glutathione in rainbow trout was more than twice of that in the two other species. Also, glutathione reductase activity of rainbow trout was higher than in the other species. In rainbow trout a decrease of reduced ascorbate and reduced glutathione was observed in the beginning of the exposure, indicating that ROS scavenging molecules were under pressure. This was followed by an increase in the activity of superoxide dismutase after 3 days of exposure. In contrast, common carp and especially gibel carp enhanced their anti-oxidant enzyme activities as quickly as in the first day of exposure. Furthermore, our research seems to confirm that some fish rely more on glutathione as a first line of defence against metal exposure, while others rely more on metallothionein in combination with anti-oxidant enzymes.
Collapse
Affiliation(s)
- Marleen Eyckmans
- Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | | | | | | | | |
Collapse
|
29
|
Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011; 283:65-87. [PMID: 21414382 DOI: 10.1016/j.tox.2011.03.001] [Citation(s) in RCA: 2168] [Impact Index Per Article: 166.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 11/30/2022]
Abstract
Detailed studies in the past two decades have shown that redox active metals like iron (Fe), copper (Cu), chromium (Cr), cobalt (Co) and other metals undergo redox cycling reactions and possess the ability to produce reactive radicals such as superoxide anion radical and nitric oxide in biological systems. Disruption of metal ion homeostasis may lead to oxidative stress, a state where increased formation of reactive oxygen species (ROS) overwhelms body antioxidant protection and subsequently induces DNA damage, lipid peroxidation, protein modification and other effects, all symptomatic for numerous diseases, involving cancer, cardiovascular disease, diabetes, atherosclerosis, neurological disorders (Alzheimer's disease, Parkinson's disease), chronic inflammation and others. The underlying mechanism of action for all these metals involves formation of the superoxide radical, hydroxyl radical (mainly via Fenton reaction) and other ROS, finally producing mutagenic and carcinogenic malondialdehyde (MDA), 4-hydroxynonenal (HNE) and other exocyclic DNA adducts. On the other hand, the redox inactive metals, such as cadmium (Cd), arsenic (As) and lead (Pb) show their toxic effects via bonding to sulphydryl groups of proteins and depletion of glutathione. Interestingly, for arsenic an alternative mechanism of action based on the formation of hydrogen peroxide under physiological conditions has been proposed. A special position among metals is occupied by the redox inert metal zinc (Zn). Zn is an essential component of numerous proteins involved in the defense against oxidative stress. It has been shown, that depletion of Zn may enhance DNA damage via impairments of DNA repair mechanisms. In addition, Zn has an impact on the immune system and possesses neuroprotective properties. The mechanism of metal-induced formation of free radicals is tightly influenced by the action of cellular antioxidants. Many low-molecular weight antioxidants (ascorbic acid (vitamin C), alpha-tocopherol (vitamin E), glutathione (GSH), carotenoids, flavonoids, and other antioxidants) are capable of chelating metal ions reducing thus their catalytic activity to form ROS. A novel therapeutic approach to suppress oxidative stress is based on the development of dual function antioxidants comprising not only chelating, but also scavenging components. Parodoxically, two major antioxidant enzymes, superoxide dismutase (SOD) and catalase contain as an integral part of their active sites metal ions to battle against toxic effects of metal-induced free radicals. The aim of this review is to provide an overview of redox and non-redox metal-induced formation of free radicals and the role of oxidative stress in toxic action of metals.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University, SK-949 74 Nitra, Slovakia.
| | | |
Collapse
|
30
|
Asleh R, Levy AP. Divergent effects of alpha-tocopherol and vitamin C on the generation of dysfunctional HDL associated with diabetes and the Hp 2-2 genotype. Antioxid Redox Signal 2010; 12:209-17. [PMID: 19769483 PMCID: PMC2821143 DOI: 10.1089/ars.2009.2829] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 09/08/2009] [Accepted: 09/21/2009] [Indexed: 12/21/2022]
Abstract
The haptoglobin (Hp) 2-2 genotype is associated with increased risk of cardiovascular disease (CVD) in diabetes (DM). We recently proposed this increased risk arises from the tethering of redox active hemoglobin (Hb) to high density lipoprotein (HDL), thereby resulting in oxidative modification of HDL. Clinical trials have demonstrated that vitamin E (alpha-tocopherol) decreases while vitamin C increases CVD in Hp 2-2 DM individuals. We sought to test the hypothesis that the interaction of alpha-tocopherol or vitamin C on CVD in Hp 2-2 DM was due to their divergent effects on HDL oxidation and function. Vitamin C significantly increased while alpha-tocopherol completely blocked oxidation mediated by glycosylated Hb-Hp 2-2. Vitamin C had no benefit while alpha-tocopherol completely restored HDL function in Hp 2-2 DM mice. Co-administration of vitamin C mitigated the protective effects of alpha-tocopherol on HDL. There exists a pharmacogenomic interaction between vitamin C and alpha-tocopherol and the Hp 2-2 genotype on HDL function and structure. Choosing the correct antioxidant in the correct subset of patients may be critical in order to demonstrate benefit from antioxidant therapy.
Collapse
Affiliation(s)
- Rabea Asleh
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
31
|
Uchendu EE, Leonard SW, Traber MG, Reed BM. Vitamins C and E improve regrowth and reduce lipid peroxidation of blackberry shoot tips following cryopreservation. PLANT CELL REPORTS 2010; 29:25-35. [PMID: 19898848 DOI: 10.1007/s00299-009-0795-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/14/2009] [Accepted: 10/15/2009] [Indexed: 05/20/2023]
Abstract
Oxidative processes involved in cryopreservation protocols may be responsible for the reduced viability of tissues after liquid nitrogen exposure. Antioxidants that counteract these reactions should improve recovery. This study focused on oxidative lipid injury and the effects of exogenous vitamin E (tocopherol, Vit E) and vitamin C (ascorbic acid, Vit C) treatments on regrowth at four critical steps of the plant vitrification solution number 2 (PVS2) vitrification cryopreservation technique; pretreatment, loading, rinsing, and regrowth. Initial experiments showed that Vit E at 11-15 mM significantly increased regrowth (P < 0.001) when added at any of the four steps. There was significantly more malondialdehyde (MDA), a lipid peroxidation product, at each of the steps than in fresh untreated shoot tips. Vit E uptake was assayed at each step and showed significantly more alpha- and gamma-tocopherols in treated shoots than those without Vit E. Vit E added at each step significantly reduced MDA formation and improved shoot regrowth. Vit C (0.14-0.58 mM) also significantly improved regrowth of shoot tips at each step compared to the controls. Regrowth medium with high iron concentrations and Vit C decreased recovery. However, in iron-free medium, Vit C significantly improved recovery. Treatments with Vit E (11 mM) and Vit C (0.14 mM) combined were not significantly better than Vit C alone. We recommend adding Vit C (0.28 mM) to the pretreatment medium, the loading solution or the rinse solution in the PVS2 vitrification protocol. This is the first report of the application of vitamins for improving cryopreservation of plant tissues by minimizing oxidative damage.
Collapse
Affiliation(s)
- Esther E Uchendu
- Department of Horticulture, Oregon State University, Corvallis, OR 97331-7304, USA
| | | | | | | |
Collapse
|
32
|
Hrabárová E, Valachová K, Rychlý J, Rapta P, Sasinková V, Malíková M, Šoltés L. High-molar-mass hyaluronan degradation by Weissberger's system: Pro- and anti-oxidative effects of some thiol compounds. Polym Degrad Stab 2009. [DOI: 10.1016/j.polymdegradstab.2009.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
33
|
Flora SJS. Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2009; 2:191-206. [PMID: 20716905 PMCID: PMC2763257 DOI: 10.4161/oxim.2.4.9112] [Citation(s) in RCA: 304] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Revised: 05/28/2009] [Accepted: 05/28/2009] [Indexed: 02/08/2023]
Abstract
Oxidative stress contributes to the pathophysiology of exposure to heavy metals/metalloid. Beneficial renal effects of some medications, such as chelation therapy depend at least partially on the ability to alleviate oxidative stress. The administration of various natural or synthetic antioxidants has been shown to be of benefit in the prevention and attenuation of metal induced biochemical alterations. These include vitamins, N-acetylcysteine, alpha-lipoic acid, melatonin, dietary flavonoids and many others. Human studies are limited in this regard. Under certain conditions, surprisingly, the antioxidant supplements may exhibit pro-oxidant properties and even worsen metal induced toxic damage. To date, the evidence is insufficient to recommend antioxidant supplements in subject with exposure to metals. Prospective, controlled clinical trials on safety and effectiveness of different therapeutic antioxidant strategies either individually or in combination with chelating agent are indispensable. The present review focuses on structural, chemical and biological aspects of antioxidants particularly related to their chelating properties.
Collapse
Affiliation(s)
- Swaran J S Flora
- Department of Pharmacology and Toxicology, Defence Research and Development Establishment, Gwalior, India.
| |
Collapse
|
34
|
Martinovich GG, Martinovich IV, Cherenkevich SN. Effects of ascorbic acid on calcium signaling in tumor cells. Bull Exp Biol Med 2009; 147:469-72. [PMID: 19704951 DOI: 10.1007/s10517-009-0555-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Effects of ascorbic acid on calcium homeostasis of human laryngeal carcinoma cells were studied. Intracellular concentration of free calcium and intracellular pH were measured by fluorescent analysis. Ascorbic acid in concentrations of 3-10 mM caused pH drop and sharply increased concentrations of free Ca ions in HEp-2 cells. Intracellular concentration of free Ca ions resulted from Ca ion release from the thapsigargin-sensitive Ca depots.
Collapse
Affiliation(s)
- G G Martinovich
- Department of Biophysics, Byelorussian State University, Minsk, Byelorussia.
| | | | | |
Collapse
|
35
|
Miranda CL, Reed RL, Kuiper HC, Alber S, Stevens JF. Ascorbic acid promotes detoxification and elimination of 4-hydroxy-2(E)-nonenal in human monocytic THP-1 cells. Chem Res Toxicol 2009; 22:863-74. [PMID: 19326901 DOI: 10.1021/tx900042u] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
4-Hydroxy-2(E)-nonenal (HNE), a reactive aldehyde derived from oxidized lipids, has been implicated in the pathogenesis of cardiovascular and neurological diseases, in part by its ability to induce oxidative stress and by protein carbonylation in target cells. The effects of intracellular ascorbic acid (vitamin C) on HNE-induced cytotoxicity and protein carbonylation were investigated in human THP-1 monocytic leukemia cells. HNE treatment of these cells resulted in apoptosis, necrosis, and protein carbonylation. Ascorbic acid accumulated in the cells at concentrations of 6.4 or 8.9 mM after treatment with 0.1 or 1 mM ascorbate in the medium for 18 h. Pretreatment of cells with 1.0 mM ascorbate decreased HNE-induced formation of reactive oxygen species and formation of protein carbonyls. The protective effects of ascorbate were associated with an increase in the formation of GSH-HNE conjugate and its phase 1 metabolites, measured by LC-MS/MS, and with increased transport of GSH conjugates from the cells into the medium. Ascorbate pretreatment enhanced the efflux of the multidrug resistant protein (MRP) substrate, carboxy-2',7'-dichlorofluorescein (CDF), and it prevented the HNE-induced inhibition of CDF export from THP-1 cells, suggesting that the protective effect of ascorbate against HNE cytotoxicity is through modulation of MRP-mediated transport of GSH-HNE conjugate metabolites. The formation of ascorbate adducts of HNE was observed in the cell exposure experiments, but it represented a minor pathway contributing to the elimination of HNE and to the protective effects of ascorbate.
Collapse
Affiliation(s)
- Cristobal L Miranda
- Linus Pauling Institute and the Departments of Pharmaceutical Sciences and Statistics, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | |
Collapse
|
36
|
Bolkent S, Sacan O, Yanardag R, Bolkent S. Effects of vitamin E, vitamin C, and selenium on gastric fundus in cadmium toxicity in male rats. Int J Toxicol 2008; 27:217-22. [PMID: 18404544 DOI: 10.1080/10915810801992384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cadmium (Cd) is a highly toxic metal. It has an indirect role in the generation of various free radicals. Antioxidants such as vitamin E, vitamin C, and selenium are important for preventing the damage caused by reactive oxygen species. This study was undertaken to examine the effect of acute cadmium and/or antioxidants on serum lipid metabolism, tissue glutathione, and lipid peroxidation (LPO) levels, and ghrelin and metallothionein production in the gastric fundus mucosa of rats. Cd (2 mg/kg/day CdCl(2)) was administered to rats for 8 days, intraperitoneally. Vitamin E (250 mg /kg/day) + vitamin C (250 mg/kg/day) + sodium selenate (0.25 mg /kg/day) were administered to rats orally at the same time. The animals were treated by antioxidants 1 h prior to treatment with Cd every day. Gastric tissue homogenates were used for protein and glutathione and LPO levels. Phospholipid and total lipid levels were determined in serum. Gastric fundus sections examined for histopathological changes and by immunohistochemistry for expression of ghrelin and metallothionein. In the group treated with Cd, degenerative changes such as discontinuity in the surface epithelium were observed. The degenerative changes induced by Cd were decreased in the group given vitamin E + vitamin C + selenium. There was no significant change in ghrelin- and metallothionein-immunoreactive cells in fundus mucosa. Stomach glutathione levels insignificantly decreased in the Cd groups, but in the Cd group given antioxidant, stomach glutathione levels were significantly increased. Serum phospholipid and total lipid levels were significantly increased in the Cd groups. On the other hand, treatment with antioxidants reversed these effects. These results indicate that antioxidants partly prevent the toxicity of Cd in rat gastric fundus.
Collapse
Affiliation(s)
- Sema Bolkent
- Department of Medical Biology, Faculty of Cerrahpasa Medicine, Istanbul University, Istanbul, Turkey.
| | | | | | | |
Collapse
|
37
|
Interaction of bracken-fern extract with vitamin C in human submandibular gland and oral epithelium cell lines. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 652:158-63. [DOI: 10.1016/j.mrgentox.2008.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 11/21/2022]
|
38
|
Fernández F, Torres M. Evaluation of Pluchea carolinensis extracts as antioxidants by the epinephrine oxidation method. Fitoterapia 2006; 77:221-6. [PMID: 16564648 DOI: 10.1016/j.fitote.2006.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Accepted: 02/02/2006] [Indexed: 11/30/2022]
Abstract
Many methods have been used to evaluate synthetic and natural products as hydroxyl radical scavengers. In this study a spectrophotometric method to evaluate the scavenger activity of the hydroxyl radical produced in Fenton reaction is proposed. The oxidation of l-epinephrine to adrenochrome permitted the detection of the hydroxyl radical by spectrophotometry and its possible scavenging by hydroquinone, a well known antioxidant. The method was used to evaluate the antioxidant activity of Pluchea carolinensis leaves.
Collapse
Affiliation(s)
- F Fernández
- Department of Applied Science, Matanzas University, Zaragoza 8506 entre Río y Medio, Matanzas, Cuba.
| | | |
Collapse
|
39
|
Bailey DM, Raman S, McEneny J, Young IS, Parham KL, Hullin DA, Davies B, McKeeman G, McCord JM, Lewis MH. Vitamin C prophylaxis promotes oxidative lipid damage during surgical ischemia-reperfusion. Free Radic Biol Med 2006; 40:591-600. [PMID: 16458189 DOI: 10.1016/j.freeradbiomed.2005.09.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 08/31/2005] [Accepted: 09/09/2005] [Indexed: 11/17/2022]
Abstract
Reactive oxygen species (ROS) have been implicated in the cellular membrane damage and postoperative morbidity associated with obligatory ischemia-reperfusion (I-R) during vascular surgery. Thus, a clinical study was undertaken to evaluate the effects of ascorbate prophylaxis on ROS exchange kinetics in 22 patients scheduled for elective abdominal aortic aneurysm (AAA) or infra-inguinal bypass (IIB) repair. Patients were assigned double-blind to receive intravenous sodium ascorbate (2 g vitamin C, n=10) or placebo (0.9% saline, n=12) administered 2 h prior to surgery. Blood samples were obtained from the arterial and venous circulation proximal to the respective sites of surgical repair (local) and from an antecubital vein (peripheral) during cross-clamping (ischemia) and within 60 s of clamp release (reperfusion). Ascorbate supplementation increased the venoarterial concentration difference (v-adiff) of lipid hydroperoxides (LH), interleukin (IL)-6 and vascular endothelial growth factor (VEGF) protein during ischemia. This increased the peripheral concentration of LH, total creatine phosphokinase (CPK), and VEGF protein during reperfusion (P<0.05 vs placebo). Electron paramagnetic resonance (EPR) spectroscopy confirmed that free iron was available for oxidative catalysis in the local ischemic venous blood of supplemented patients. An increased concentration of the ascorbate radical (A.-) and alpha-phenyl-tert-butylnitrone (PBN) adducts assigned as lipid-derived alkoxyl (LO.) and alkyl (LC.) species were also detected in the peripheral blood of supplemented patients during reperfusion (P<0.05 vs ischemia). In conclusion, these findings suggest that ascorbate prophylaxis may have promoted iron-induced oxidative lipid damage via a Fenton-type reaction initiated during the ischemic phase of surgery. The subsequent release of LH into the systemic circulation may have catalyzed formation of second-generation radicals implicated in the regulation of vascular permeability and angiogenesis.
Collapse
Affiliation(s)
- Damian M Bailey
- Department of Physiology, University of Glamorgan, Pontypridd CF37 1DL, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006; 160:1-40. [PMID: 16430879 DOI: 10.1016/j.cbi.2005.12.009] [Citation(s) in RCA: 3934] [Impact Index Per Article: 218.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Revised: 12/15/2005] [Accepted: 12/20/2005] [Indexed: 02/07/2023]
Abstract
Oxygen-free radicals, more generally known as reactive oxygen species (ROS) along with reactive nitrogen species (RNS) are well recognised for playing a dual role as both deleterious and beneficial species. The "two-faced" character of ROS is substantiated by growing body of evidence that ROS within cells act as secondary messengers in intracellular signalling cascades, which induce and maintain the oncogenic phenotype of cancer cells, however, ROS can also induce cellular senescence and apoptosis and can therefore function as anti-tumourigenic species. The cumulative production of ROS/RNS through either endogenous or exogenous insults is termed oxidative stress and is common for many types of cancer cell that are linked with altered redox regulation of cellular signalling pathways. Oxidative stress induces a cellular redox imbalance which has been found to be present in various cancer cells compared with normal cells; the redox imbalance thus may be related to oncogenic stimulation. DNA mutation is a critical step in carcinogenesis and elevated levels of oxidative DNA lesions (8-OH-G) have been noted in various tumours, strongly implicating such damage in the etiology of cancer. It appears that the DNA damage is predominantly linked with the initiation process. This review examines the evidence for involvement of the oxidative stress in the carcinogenesis process. Attention is focused on structural, chemical and biochemical aspects of free radicals, the endogenous and exogenous sources of their generation, the metal (iron, copper, chromium, cobalt, vanadium, cadmium, arsenic, nickel)-mediated formation of free radicals (e.g. Fenton chemistry), the DNA damage (both mitochondrial and nuclear), the damage to lipids and proteins by free radicals, the phenomenon of oxidative stress, cancer and the redox environment of a cell, the mechanisms of carcinogenesis and the role of signalling cascades by ROS; in particular, ROS activation of AP-1 (activator protein) and NF-kappaB (nuclear factor kappa B) signal transduction pathways, which in turn lead to the transcription of genes involved in cell growth regulatory pathways. The role of enzymatic (superoxide dismutase (Cu, Zn-SOD, Mn-SOD), catalase, glutathione peroxidase) and non-enzymatic antioxidants (Vitamin C, Vitamin E, carotenoids, thiol antioxidants (glutathione, thioredoxin and lipoic acid), flavonoids, selenium and others) in the process of carcinogenesis as well as the antioxidant interactions with various regulatory factors, including Ref-1, NF-kappaB, AP-1 are also reviewed.
Collapse
Affiliation(s)
- M Valko
- Faculty of Chemical and Food Technology, Slovak Technical University, SK-812 37 Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
41
|
Huang R, Rajapakse N, Kim SK. Structural factors affecting radical scavenging activity of chitooligosaccharides (COS) and its derivatives. Carbohydr Polym 2006. [DOI: 10.1016/j.carbpol.2005.08.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Serbecic N, Beutelspacher SC. Vitamins inhibit oxidant-induced apoptosis of corneal endothelial cells. Jpn J Ophthalmol 2005; 49:355-62. [PMID: 16187034 DOI: 10.1007/s10384-005-0209-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 03/14/2005] [Indexed: 02/08/2023]
Abstract
PURPOSE To determine the effects of vitamins A, C, and E supplementation on lipid peroxidation and apoptosis in corneal endothelial cells. METHODS Murine corneal endothelial cells were maintained in tissue culture medium supplemented with free iron ions, known to lead to increased lipid peroxidation. The concentration of antioxidative vitamins (ascorbic acid, tocopherol, and retinoic acid) in the cells and supernatant was determined using reversed-phase high-performance liquid chromatography. Apoptosis was assessed by quantification of caspase-3-like activity, using annexin-V/propidium iodide stains for flow cytometry. Lipid peroxidation was assessed using the malondialdehyde method. Supplementation of antioxidative vitamins was tested in the setting of apoptosis. RESULTS Increasing levels of free iron led to a rapid loss of antioxidative vitamins in the supernatant and corneal endothelial cells. This was correlated with rising levels of malondialdehyde and increased apoptosis. Supplementation with ascorbic acid or alpha-tocopherol alone was not sufficient to prevent lipid peroxidation in the cells, whereas a combination of vitamins C and E was able to do so. In contrast, supplementation with vitamin A alone significantly reduced oxidative stress and apoptosis. CONCLUSIONS We present an in vitro model to test the direct influence of vitamin supplementation on corneal endothelial cells with regard to lipid peroxidation and apoptosis. We show that supplementation with antioxidative vitamins of corneal endothelial cells significantly prevents the generation of free-radical injury, lipid peroxidation, and consequent apoptosis.
Collapse
Affiliation(s)
- Nermin Serbecic
- Department of Ophthalmology, SMZ-Ost, Donauspital, Vienna, Austria
| | | |
Collapse
|
43
|
Jia X, Ebine N, Wang Y, Awad AB, Jones PJH. Effects of different phytosterol analogs on colonic mucosal cell proliferation in hamsters. J Nutr Biochem 2005; 17:396-401. [PMID: 16243508 DOI: 10.1016/j.jnutbio.2005.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 07/15/2005] [Accepted: 08/21/2005] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the effects of different phytosterols and their analogs on colonic mucosal cell proliferation in hamsters. METHOD Hamsters (n=70) were randomly assigned to seven groups after a 2-week acclimation and fed the experimental diet for 5 weeks. Diets included (i) the semipurified diet with no cholesterol (Con), (ii) the Con diet plus 0.25% cholesterol (Ch-con), or the Ch-con diet with (iii) 1% phytosterols (Ste), (iv) 1% phytostanols (Sta), (v) 1.76% sterol esters (esterified to fish oil, SteF), (vi) 0.71% stanol esters (esterified to ascorbic acid [disodium ascorbyl phytostanol phosphate, FM-VP4], 0.7% StaA) and (vii) 1.43% stanol esters (1.4% StaA), respectively. After 5 weeks on experimental diet, hamsters were sacrificed, and colons were collected. Colonic mucosal cell proliferation was measured by immunohistochemistry using monoclonal antibodies against antigen Ki-67. RESULTS Colonic mucosal cell proliferation was 21.4% (P<.01) lower in the 0.7%, but not 1.4%, StaA relative to the Ch-con group. In addition, a lower (-13.9%) cell proliferation was observed in the SteF group in comparison to the Ch-con group; however, this difference achieved only a borderline level of statistical significance (P=.069). No differences were observed between Con and Ch-con, as well as among Ste, Sta, 1.4% StaA and Ch-con treatments. CONCLUSION Plant stanols esterified to ascorbic acid may possess anticarcinogenic properties in the colon by suppressing colonic mucosa cell proliferation; however, this effect was not observed with free plant sterols or stanols.
Collapse
Affiliation(s)
- Xiaoming Jia
- School of Dietetics and Human Nutrition, McGill University, Macdonald Campus, QC, Canada H9X 3V9
| | | | | | | | | |
Collapse
|
44
|
Trommer H, Böttcher R, Huschka C, Wohlrab W, Neubert RHH. Further investigations on the role of ascorbic acid in stratum corneum lipid models after UV exposure. J Pharm Pharmacol 2005; 57:963-72. [PMID: 16102251 DOI: 10.1211/0022357056703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
This study is the continuation of our research into vitamin C and its possible effects on human skin after topical administration. The effects of ascorbic acid, iron ions and UV irradiation on stratum corneum lipid models were investigated. The lipid models used were: a simple system (linolenic acid dispersion), a complex system (liposomes consisting of dipalmitoylphosphatidylcholine, cholesterol and linolenic acid) and complex systems with additionally incorporated ceramides (types III and IV). The lipid peroxidation was quantified by the thiobarbituric acid assay. A human adult low-calcium high-temperature (HaCaT) keratinocytes cell culture was used as a second in-vitro model. The amount of intracellular peroxides was determined by measuring the fluorescence intensity using the dihydrorhodamine 123 assay. Electron paramagnetic resonance spectroscopy was used to study the influence of ascorbic acid and iron ions on the signal intensity of 5-doxylstearic acid during UV exposure. Ascorbic acid showed prooxidative properties in the thiobarbituric acid assay whereas cell protection was measured in the HaCaT keratinocytes experiments. Electron paramagnetic resonance investigations revealed different extents of free radical production generated by iron ions, ascorbic acid and UV irradiation. In evaluating the results from this study new aspects of the mechanism of lipid damage caused by these three factors were suggested, transcending the simple redox behaviour of ascorbic acid.
Collapse
Affiliation(s)
- Hagen Trommer
- Martin-Luther-University Halle-Wittenberg, School of Pharmacy, Institute of Pharmaceutics and Biopharmaceutics, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle (Saale), Germany.
| | | | | | | | | |
Collapse
|
45
|
Karasavvas N, Cárcamo JM, Stratis G, Golde DW. Vitamin C protects HL60 and U266 cells from arsenic toxicity. Blood 2005; 105:4004-12. [PMID: 15677571 PMCID: PMC1895087 DOI: 10.1182/blood-2003-03-0772] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although there is no compelling evidence that vitamin C has antitumor activity in humans, clinical trials are testing the hypothesis that ascorbic acid (AA) will enhance the efficacy of arsenic trioxide (As2O3) in myeloma. In vitro, AA cytotoxicity depends on its interaction with free transition metal ions in culture media leading to the generation of H2O2 and other reactive oxygen species (ROSs). Therefore, to circumvent the extracellular in vitro pro-oxidant effects of AA, we loaded HL60, U266, and RPMI-8226 cells with vitamin C by incubation with dehydroascorbic acid (DHA). Loading cells in this manner resulted in prominent, dose-dependent protection of As2O3-treated cells as measured by viability, colony formation, and apoptosis assays. Glutathione depletion enhanced cell sensitivity to the cytotoxic effects of As2O3 and vitamin C loading provided protection. AA was found to generate cytotoxic concentrations of H2O2 in culture medium without cells and copper/iron chelators inhibited this reaction. However, AA did not generate H2O2 in simple buffer or human plasma. Direct incubation with AA resulted in increased intracellular ROSs, whereas DHA incubation decreased it. These results clarify an apparent paradox and indicate that vitamin C loading in HL60, U266, and RPMI-8226 cells ameliorates As2O3 cytotoxicity.
Collapse
Affiliation(s)
- Nicos Karasavvas
- Memorial Sloan-Kettering Cancer Center, Box 451, 1275 York Ave, New York, NY 10021, USA
| | | | | | | |
Collapse
|
46
|
Polyakov NE, Leshina TV, Konovalova TA, Hand EO, Kispert LD. Inclusion complexes of carotenoids with cyclodextrins: 1H NMR, EPR, and optical studies. Free Radic Biol Med 2004; 36:872-80. [PMID: 15019972 DOI: 10.1016/j.freeradbiomed.2003.12.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Revised: 12/22/2003] [Accepted: 12/29/2003] [Indexed: 11/26/2022]
Abstract
Direct evidence of carotenoid/cyclodextrin inclusion complex formation was obtained for the water-soluble sodium salt of beta-caroten-8'-oic acid (IV) by using 1H NMR and UV-Vis absorption spectroscopy. It was shown that this carotenoid forms a stable 1:1 inclusion complex with beta-cyclodextrin (stability constant K11 approximately 1500 M(-1)). All other carotenoids under study in the presence of cyclodextrins (CDs) form large aggregates in aqueous solution as demonstrated by very broad absorption spectra and considerable change in color. By using the EPR spin trapping technique, the scavenging ability of IV toward OOH radicals was compared in DMSO and in the aqueous CD solution. A considerable decrease in PBN/OOH spin adduct yield was detected in the presence of uncomplexed IV because of a competing reaction of the carotenoid with OOH radical. No such decrease occurred in the presence of the IV/CD complex. Moreover, a small increase in spin adduct yield (pro-oxidant effect) is most likely due to the reaction of the carotenoid with Fe3+ to regenerate Fe2+, which in turn regenerates the OOH radical. Our data show that CD protects the carotenoid from reactive oxygen species. On the other hand, complexation with CD results in considerable decrease in antioxidant ability of the carotenoid.
Collapse
Affiliation(s)
- Nikolai E Polyakov
- Institute of Chemical Kinetics and Combustion, Novosibirsk 630090, Russia
| | | | | | | | | |
Collapse
|
47
|
Abudu N, Miller JJ, Attaelmannan M, Levinson SS. Vitamins in human arteriosclerosis with emphasis on vitamin C and vitamin E. Clin Chim Acta 2004; 339:11-25. [PMID: 14687889 DOI: 10.1016/j.cccn.2003.09.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION This review focuses on the process of arteriosclerosis arising from oxidative stress on lipoproteins and the general failure of randomized human trials using vitamins to retard this process. REVIEW As well as clinical trials, the paper reviews the mechanisms by which a variety of oxidants act. Antioxidants are discussed, emphasizing interactions of vitamins C and E with transition metals that can lead to prooxidation. There is a focus on interactions between supplemental or co-antioxidants that counterbalance prooxidant effects of one another. CONCLUSIONS It is concluded that normal cellular supplementation mechanisms are poorly accessible in the arteriosclerotic plaque leading to a prooxidant environment in which the haphazard introduction of vitamins could potentially be hazardous. Continued investigations into basic and clinical redox interactions of the kind discussed in this review using new measuring techniques may lead to approaches whereby antioxidants can be introduced into tissue in controlled ways for reducing arteriosclerosis.
Collapse
Affiliation(s)
- Ntei Abudu
- Department of Pathology and Laboratory Medicine, University of Louisville, 40292, Louisville, KY, USA
| | | | | | | |
Collapse
|
48
|
Polidori MC, Mecocci P, Levine M, Frei B. Short-term and long-term vitamin C supplementation in humans dose-dependently increases the resistance of plasma to ex vivo lipid peroxidation. Arch Biochem Biophys 2004; 423:109-15. [PMID: 14871474 DOI: 10.1016/j.abb.2003.12.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 11/18/2003] [Indexed: 10/26/2022]
Abstract
To assess the effects of short-term and long-term vitamin C supplementation in humans on plasma antioxidant status and resistance to oxidative stress, plasma was obtained from 20 individuals before and 2h after oral administration of 2g of vitamin C, or from eight subjects enrolled in a vitamin C depletion-repletion study using increasing daily doses of vitamin C from 30 to 2500 mg. Plasma concentrations of ascorbate, but not other physiological antioxidants, increased significantly after short-term supplementation, and increased progressively in the long-term study with increasing vitamin C doses of up to 1000 mg/day. Upon incubation of plasma with a free radical initiator, ascorbate concentrations were positively correlated with the lag phase preceding detectable lipid peroxidation. We conclude that vitamin C supplementation in humans dose-dependently increases plasma ascorbate concentrations and, thus, the resistance of plasma to lipid peroxidation ex vivo. Plasma and body saturation with vitamin C in humans appears desirable to maximize antioxidant protection and lower risk of oxidative damage.
Collapse
Affiliation(s)
- M Cristina Polidori
- Institute of Biochemistry and Molecular Biology I, Heinrich-Heine University, Duesseldorf, Germany
| | | | | | | |
Collapse
|
49
|
Mak S, Newton GE. Redox modulation of the inotropic response to dobutamine is impaired in patients with heart failure. Am J Physiol Heart Circ Physiol 2003; 286:H789-95. [PMID: 14551049 DOI: 10.1152/ajpheart.00633.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been suggested that oxidative stress contributes to impaired left ventricular (LV) contractility in the setting of heart failure (HF). To test this hypothesis, we studied the effect of an antioxidant on contractility at rest and in response to dobutamine in 10 HF patients. We hypothesized that vitamin C would augment contractility in HF and that this effect would be of a greater magnitude in HF patients compared with patients with normal LV (NLV) function. Data from 10 patients with NLV function who participated in this study are included in this report and have been published elsewhere. A micromanometer-tipped catheter was introduced into the LV. In the experimental protocol, an infusion catheter was positioned in the left main coronary artery. The peak positive rate of change of LV pressure (LV +dP/dt) was measured in response to the intravenous infusion of dobutamine before and during the intracoronary infusion of vitamin C (96 mg/min). Vitamin C had no effect on basal LV +dP/dt in either HF or NLV groups. The infusion of vitamin C augmented the LV +dP/dt response to dobutamine by 22 +/- 4% in the NLV function group. In contrast, vitamin C had no effect on the inotropic response to dobutamine in the HF group. In the control protocol, without vitamin C, no differences were observed between responses to two sequential dobutamine infusions in either group (HF, n = 11; NLV, n = 9). Therefore, a positive effect of vitamin C on contractility was limited to patients with NLV function. The absence of this effect in HF patients may suggest that normal redox responsiveness is lost in this disease state.
Collapse
Affiliation(s)
- Susanna Mak
- Bayer Cardiovascular Clinical Research Laboratory, Division of Cardiology, Mount Sinai Hospital, University of Toronto, Ontario, Canada
| | | |
Collapse
|