1
|
Pareek A, Singhal R, Pareek A, Ghazi T, Kapoor DU, Ratan Y, Singh AK, Jain V, Chuturgoon AA. Retinoic acid in Parkinson's disease: Molecular insights, therapeutic advances, and future prospects. Life Sci 2024; 355:123010. [PMID: 39181315 DOI: 10.1016/j.lfs.2024.123010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Parkinson's disease (PD) is a common and progressively worsening neurodegenerative disorder characterized by abnormal protein homeostasis and the degeneration of dopaminergic neurons, particularly in the substantia nigra pars compacta. The prevalence of PD has doubled in the past 25 years, now affecting over 8.5 million individuals worldwide, underscoring the need for effective management strategies. While current pharmacological therapies provide symptom relief, they face challenges in treating advanced PD stages. Recent research highlights the therapeutic benefits of retinoic acid (RA) in PD, demonstrating its potential to mitigate neuroinflammation and oxidative stress, regulate brain aging, promote neuronal plasticity, and influence circadian rhythm gene expression and retinoid X receptor heterodimerization. Additionally, RA helps maintain intestinal homeostasis and modulates the enteric nervous system, presenting significant therapeutic potential for managing PD. This review explores RA as a promising alternative to conventional therapies by summarizing the molecular mechanisms underlying its role in PD pathophysiology and presenting up-to-date insights into both preclinical and clinical studies of RA in PD treatment. It also delves into cutting-edge formulations incorporating RA, highlighting ongoing efforts to refine therapeutic strategies by integrating RA into novel treatments. This comprehensive overview aims to advance progress in the field, contribute to the development of effective, targeted treatments for PD, and enhance patient well-being. Further research is essential to fully explore RA's therapeutic potential and validate its efficacy in PD treatment.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India.
| | - Runjhun Singhal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | | | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Arun Kumar Singh
- Department of Pharmacy, Vivekananda Global University, Jaipur 303012, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.
| |
Collapse
|
2
|
Piazza A, Carlone R, Spencer GE. Non-canonical retinoid signaling in neural development, regeneration and synaptic function. Front Mol Neurosci 2024; 17:1371135. [PMID: 38516042 PMCID: PMC10954794 DOI: 10.3389/fnmol.2024.1371135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Canonical retinoid signaling via nuclear receptors and gene regulation is critical for the initiation of developmental processes such as cellular differentiation, patterning and neurite outgrowth, but also mediates nerve regeneration and synaptic functions in adult nervous systems. In addition to canonical transcriptional regulation, retinoids also exert rapid effects, and there are now multiple lines of evidence supporting non-canonical retinoid actions outside of the nucleus, including in dendrites and axons. Together, canonical and non-canonical retinoid signaling provide the precise temporal and spatial control necessary to achieve the fine cellular coordination required for proper nervous system function. Here, we examine and discuss the evidence supporting non-canonical actions of retinoids in neural development and regeneration as well as synaptic function, including a review of the proposed molecular mechanisms involved.
Collapse
Affiliation(s)
| | | | - Gaynor E. Spencer
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
3
|
Ko BJ, Lee C, Kim J, Rhie A, Yoo DA, Howe K, Wood J, Cho S, Brown S, Formenti G, Jarvis ED, Kim H. Widespread false gene gains caused by duplication errors in genome assemblies. Genome Biol 2022; 23:205. [PMID: 36167596 PMCID: PMC9516828 DOI: 10.1186/s13059-022-02764-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/02/2022] [Indexed: 12/22/2022] Open
Abstract
Background False duplications in genome assemblies lead to false biological conclusions. We quantified false duplications in popularly used previous genome assemblies for platypus, zebra finch, and Anna’s Hummingbird, and their new counterparts of the same species generated by the Vertebrate Genomes Project, of which the Vertebrate Genomes Project pipeline attempted to eliminate false duplications through haplotype phasing and purging. These assemblies are among the first generated by the Vertebrate Genomes Project where there was a prior chromosomal level reference assembly to compare with. Results Whole genome alignments revealed that 4 to 16% of the sequences are falsely duplicated in the previous assemblies, impacting hundreds to thousands of genes. These lead to overestimated gene family expansions. The main source of the false duplications is heterotype duplications, where the haplotype sequences were relatively more divergent than other parts of the genome leading the assembly algorithms to classify them as separate genes or genomic regions. A minor source is sequencing errors. Ancient ATP nucleotide binding gene families have a higher prevalence of false duplications compared to other gene families. Although present in a smaller proportion, we observe false duplications remaining in the Vertebrate Genomes Project assemblies that can be identified and purged. Conclusions This study highlights the need for more advanced assembly methods that better separate haplotypes and sequence errors, and the need for cautious analyses on gene gains. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02764-1.
Collapse
Affiliation(s)
- Byung June Ko
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chul Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Juwan Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Dong Ahn Yoo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | | | | | - Seoae Cho
- eGnome, Inc, Seoul, Republic of Korea
| | - Samara Brown
- Laboratory of the Neurogenetics of Language, The Rockefeller University, New York, NY, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Giulio Formenti
- Laboratory of the Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Erich D Jarvis
- Laboratory of the Neurogenetics of Language, The Rockefeller University, New York, NY, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea. .,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea. .,eGnome, Inc, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Bremner JD. Isotretinoin and neuropsychiatric side effects: Continued vigilance is needed. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2021; 6:100230. [PMID: 37168254 PMCID: PMC10168661 DOI: 10.1016/j.jadr.2021.100230] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Isotretinoin (13-cis-retinoic acid, marketed under the names Accutane, Roaccutane, and others) is an effective treatment for acne that has been on the market for over 30 years, although reports of neuropsychiatric side effects continue to be reported. Isotretinoin is an isomer of the active form of Vitamin A, 13-trans-retinoic acid, which has known psychiatric side effects when given in excessive doses, and is part of the family of compounds called retinoids, which have multiple functions in the central nervous system. Methods The literature was reviewed in pubmed and psychinfo for research related to isotretinoin and neuropsychiatric side effects including depression, suicidal thoughts, suicide, mania, anxiety, impulsivity, emotional lability, violence, aggression, and psychosis. Results Multiple case series have shown that successful treatment of acne with isotretinoin results in improvements in measures of quality of life and self esteem However, studies show individual cases of clinically significant depression and other neuropsychiatric events that, although not common, are persistent in the literature. Since the original cases of depression were reported to the United States Food and Drug Administration, numerous cases have been reported to regulatory agencies in the United Kingdom, France, Ireland, Denmark, Australia, Canada, and other countries, making isotretinoin one of the top five medications in the world associated with depression and other neuropsychiatric side effects. Clinicians are advised to warn patients of the risks of neuropsychiatric side effects with isotretinoin which may arise from the medication itself, and not just as a side effect of acne or youth.
Collapse
Affiliation(s)
- J Douglas Bremner
- Department of Psychiatry & Behavioral Sciences, and Department of Radiology and Imaging Sciences, Emory University School of Medicine, VA Medical Center, Decatur, GA, United States
| |
Collapse
|
5
|
Shi Z, Zhang Z, Schaffer L, Huang Z, Fu L, Head S, Gaasterland T, Wang X, Li X. Dynamic transcriptome landscape in the song nucleus HVC between juvenile and adult zebra finches. ADVANCED GENETICS (HOBOKEN, N.J.) 2021; 2:e10035. [PMID: 36618441 PMCID: PMC9744550 DOI: 10.1002/ggn2.10035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 09/25/2020] [Accepted: 10/15/2020] [Indexed: 01/11/2023]
Abstract
Male juvenile zebra finches learn to sing by imitating songs of adult males early in life. The development of the song control circuit and song learning and maturation are highly intertwined processes, involving gene expression, neurogenesis, circuit formation, synaptic modification, and sensory-motor learning. To better understand the genetic and genomic mechanisms underlying these events, we used RNA-Seq to examine genome-wide transcriptomes in the song control nucleus HVC of male juvenile (45 d) and adult (100 d) zebra finches. We report that gene groups related to axon guidance, RNA processing, lipid metabolism, and mitochondrial functions show enriched expression in juvenile HVC compared to the rest of the brain. As juveniles mature into adulthood, massive gene expression changes occur. Expression of genes related to amino acid metabolism, cell cycle, and mitochondrial function is reduced, accompanied by increased and enriched expression of genes with synaptic functions, including genes related to G-protein signaling, neurotransmitter receptors, transport of small molecules, and potassium channels. Unexpectedly, a group of genes with immune system functions is also developmentally regulated, suggesting potential roles in the development and functions of HVC. These data will serve as a rich resource for investigations into the development and function of a neural circuit that controls vocal behavior.
Collapse
Affiliation(s)
- Zhimin Shi
- Neuroscience Center of ExcellenceLouisiana State University School of MedicineNew OrleansLouisianaUSA
| | - Zeyu Zhang
- Key Laboratory of Genetic Network BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Zhi Huang
- Neuroscience Center of ExcellenceLouisiana State University School of MedicineNew OrleansLouisianaUSA
| | - Lijuan Fu
- Neuroscience Center of ExcellenceLouisiana State University School of MedicineNew OrleansLouisianaUSA
- Present address:
California Medical Innovations InstituteSan DiegoCaliforniaUSA
| | - Steven Head
- Scripps Research InstituteLa JollaCaliforniaUSA
| | - Terry Gaasterland
- Scripps Research InstituteLa JollaCaliforniaUSA
- University of California at San DiegoLa JollaCaliforniaUSA
| | - Xiu‐Jie Wang
- Key Laboratory of Genetic Network BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - XiaoChing Li
- Neuroscience Center of ExcellenceLouisiana State University School of MedicineNew OrleansLouisianaUSA
| |
Collapse
|
6
|
Colquitt BM, Merullo DP, Konopka G, Roberts TF, Brainard MS. Cellular transcriptomics reveals evolutionary identities of songbird vocal circuits. Science 2021; 371:371/6530/eabd9704. [PMID: 33574185 DOI: 10.1126/science.abd9704] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Birds display advanced behaviors, including vocal learning and problem-solving, yet lack a layered neocortex, a structure associated with complex behavior in mammals. To determine whether these behavioral similarities result from shared or distinct neural circuits, we used single-cell RNA sequencing to characterize the neuronal repertoire of the songbird song motor pathway. Glutamatergic vocal neurons had considerable transcriptional similarity to neocortical projection neurons; however, they displayed regulatory gene expression patterns more closely related to neurons in the ventral pallium. Moreover, while γ-aminobutyric acid-releasing neurons in this pathway appeared homologous to those in mammals and other amniotes, the most abundant avian class is largely absent in the neocortex. These data suggest that songbird vocal circuits and the mammalian neocortex have distinct developmental origins yet contain transcriptionally similar neurons.
Collapse
Affiliation(s)
- Bradley M Colquitt
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Departments of Physiology and Psychiatry, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Devin P Merullo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Todd F Roberts
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Michael S Brainard
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. .,Departments of Physiology and Psychiatry, University of California-San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
7
|
Endres K. Retinoic Acid and the Gut Microbiota in Alzheimer's Disease: Fighting Back-to-Back? Curr Alzheimer Res 2020; 16:405-417. [PMID: 30907321 DOI: 10.2174/1567205016666190321163705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND There is growing evidence that the gut microbiota may play an important role in neurodegenerative diseases such as Alzheimer's disease. However, how these commensals influence disease risk and progression still has to be deciphered. OBJECTIVE The objective of this review was to summarize current knowledge on the interplay between gut microbiota and retinoic acid. The latter one represents one of the important micronutrients, which have been correlated to Alzheimer's disease and are used in initial therapeutic intervention studies. METHODS A selective overview of the literature is given with the focus on the function of retinoic acid in the healthy and diseased brain, its metabolism in the gut, and the potential influence that the bioactive ligand may have on microbiota, gut physiology and, Alzheimer's disease. RESULTS Retinoic acid can influence neuronal functionality by means of plasticity but also by neurogenesis and modulating proteostasis. Impaired retinoid-signaling, therefore, might contribute to the development of diseases in the brain. Despite its rather direct impact, retinoic acid also influences other organ systems such as gut by regulating the residing immune cells but also factors such as permeability or commensal microbiota. These in turn can also interfere with retinoid-metabolism and via the gutbrain- axis furthermore with Alzheimer's disease pathology within the brain. CONCLUSION Potentially, it is yet too early to conclude from the few reports on changed microbiota in Alzheimer's disease to a dysfunctional role in retinoid-signaling. However, there are several routes how microbial commensals might affect and might be affected by vitamin A and its derivatives.
Collapse
Affiliation(s)
- Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
8
|
Corticobasal ganglia projecting neurons are required for juvenile vocal learning but not for adult vocal plasticity in songbirds. Proc Natl Acad Sci U S A 2019; 116:22833-22843. [PMID: 31636217 DOI: 10.1073/pnas.1913575116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Birdsong, like human speech, consists of a sequence of temporally precise movements acquired through vocal learning. The learning of such sequential vocalizations depends on the neural function of the motor cortex and basal ganglia. However, it is unknown how the connections between cortical and basal ganglia components contribute to vocal motor skill learning, as mammalian motor cortices serve multiple types of motor action and most experimentally tractable animals do not exhibit vocal learning. Here, we leveraged the zebra finch, a songbird, as an animal model to explore the function of the connectivity between cortex-like (HVC) and basal ganglia (area X), connected by HVC(X) projection neurons with temporally precise firing during singing. By specifically ablating HVC(X) neurons, juvenile zebra finches failed to copy tutored syllable acoustics and developed temporally unstable songs with less sequence consistency. In contrast, HVC(X)-ablated adults did not alter their learned song structure, but generated acoustic fluctuations and responded to auditory feedback disruption by the introduction of song deterioration, as did normal adults. These results indicate that the corticobasal ganglia input is important for learning the acoustic and temporal aspects of song structure, but not for generating vocal fluctuations that contribute to the maintenance of an already learned vocal pattern.
Collapse
|
9
|
Tehrani MA, Veney SL. Intracranial administration of the G-protein coupled estrogen receptor 1 antagonist, G-15, selectively affects dimorphic characteristics of the song system in zebra finches (Taeniopygia guttata). Dev Neurobiol 2018; 78:775-784. [PMID: 29675990 DOI: 10.1002/dneu.22599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/23/2018] [Accepted: 04/13/2018] [Indexed: 12/18/2022]
Abstract
In zebra finches (Taeniopygia guttata), estradiol contributes to sexual differentiation of the song system but the receptor(s) underlying its action are not exactly known. Whereas mRNA and/or protein for nuclear estrogen receptors ERα and ERβ are minimally expressed, G-protein coupled estrogen receptor 1 (GPER1) has a much greater distribution within neural song regions and the syrinx. At present, however, it is unclear if this receptor contributes to dimorphic development of the song system. To test this, the specific GPER1 antagonist, G-15, was intracranially administered to zebra finches for 25 days beginning on the day of hatching. In males, G-15 significantly decreased nuclear volumes of HVC and Area X. It also decreased the muscle fiber sizes of ventralis and dorsalis in the syrinx. In females, G-15 had no effect on measures within the brain, but did increase fiber sizes of both muscle groups. In sum, these data suggest that GPER1 can have selective and opposing influences on dimorphisms within the song system, but since not all features were affected additional factors are likely involved. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018.
Collapse
Affiliation(s)
| | - Sean L Veney
- Department of Biological Sciences, University Esplanade, Kent, Ohio, 44242
- School of Biomedical Sciences, Kent State University, Kent, Ohio, 44242
| |
Collapse
|
10
|
Li Y, Gao X, Wang Q, Yang Y, Liu H, Zhang B, Li L. Retinoic acid protects from experimental cerebral infarction by upregulating GAP-43 expression. ACTA ACUST UNITED AC 2017; 50:e5561. [PMID: 28380213 PMCID: PMC5423748 DOI: 10.1590/1414-431x20175561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/16/2017] [Indexed: 01/31/2023]
Abstract
The aim of this study was to investigate whether exogenous retinoic acid (RA) can upregulate the mRNA and protein expression of growth-associated protein 43 (GAP-43), thereby promoting brain functional recovery in a rat distal middle cerebral artery occlusion (MCAO) model of ischemia. A total of 216 male Sprague Dawley rats weighing 300–320 g were divided into 3 groups: sham-operated group, MCAO+vehicle group and MCAO+RA group. Focal cortical infarction was induced with a distal MCAO model. The expression of GAP-43 mRNA and protein in the ipsilateral perifocal region was assessed using qPCR and immunocytochemistry at 1, 3, 7, 14, 21, and 28 days after distal MCAO. In addition, an intraperitoneal injection of RA was given 12 h before MCAO and continued every day until the animal was sacrificed. Following ischemia, the expression of GAP-43 first increased considerably and then decreased. Administration of RA reduced infarction volume, promoted neurological functional recovery and upregulated expression of GAP-43. Administration of RA can ameliorate neuronal damage and promote nerve regeneration by upregulating the expression of GAP-43 in the perifocal region after distal MCAO.
Collapse
Affiliation(s)
- Y Li
- Department of Geriatrics, Southern Medical University Zhu Jiang Hospital, Guangzhou, China
| | - X Gao
- Department of Neurology, Southern Medical University Zhu Jiang Hospital, Guangzhou, China
| | - Q Wang
- Department of Neurology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Y Yang
- Department of Geriatrics, Southern Medical University Zhu Jiang Hospital, Guangzhou, China
| | - H Liu
- Department of Geriatrics, Southern Medical University Zhu Jiang Hospital, Guangzhou, China
| | - B Zhang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - L Li
- Department of Neurology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
11
|
Negwer M, Schubert D. Talking Convergence: Growing Evidence Links FOXP2 and Retinoic Acid in Shaping Speech-Related Motor Circuitry. Front Neurosci 2017; 11:19. [PMID: 28179876 PMCID: PMC5263127 DOI: 10.3389/fnins.2017.00019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/10/2017] [Indexed: 01/30/2023] Open
Affiliation(s)
- Moritz Negwer
- Max Planck Institute for PsycholinguisticsNijmegen, Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and BehaviourNijmegen, Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and BehaviourNijmegen, Netherlands
- *Correspondence: Dirk Schubert
| |
Collapse
|
12
|
Exogenous Modulation of Retinoic Acid Signaling Affects Adult RGC Survival in the Frog Visual System after Optic Nerve Injury. PLoS One 2016; 11:e0162626. [PMID: 27611191 PMCID: PMC5017682 DOI: 10.1371/journal.pone.0162626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/25/2016] [Indexed: 02/04/2023] Open
Abstract
After lesions to the mammalian optic nerve, the great majority of retinal ganglion cells (RGCs) die before their axons have even had a chance to regenerate. Frog RGCs, on the other hand, suffer only an approximately 50% cell loss, and we have previously investigated the mechanisms by which the application of growth factors can increase their survival rate. Retinoic acid (RA) is a vitamin A-derived lipophilic molecule that plays major roles during development of the nervous system. The RA signaling pathway is also present in parts of the adult nervous system, and components of it are upregulated after injury in peripheral nerves but not in the CNS. Here we investigate whether RA signaling affects long-term RGC survival at 6 weeks after axotomy. Intraocular injection of all-trans retinoic acid (ATRA), the retinoic acid receptor (RAR) type-α agonist AM80, the RARβ agonist CD2314, or the RARγ agonist CD1530, returned axotomized RGC numbers to almost normal levels. On the other hand, inhibition of RA synthesis with disulfiram, or of RAR receptors with the pan-RAR antagonist Ro-41-5253, or the RARβ antagonist LE135E, greatly reduced the survival of the axotomized neurons. Axotomy elicited a strong activation of the MAPK, STAT3 and AKT pathways; this activation was prevented by disulfiram or by RAR antagonists. Finally, addition of exogenous ATRA stimulated the activation of the first two of these pathways. Future experiments will investigate whether these strong survival-promoting effects of RA are mediated via the upregulation of neurotrophins.
Collapse
|
13
|
Fisher GL, Bruinen AL, Ogrinc Potočnik N, Hammond JS, Bryan SR, Larson PE, Heeren RM. A New Method and Mass Spectrometer Design for TOF-SIMS Parallel Imaging MS/MS. Anal Chem 2016; 88:6433-40. [DOI: 10.1021/acs.analchem.6b01022] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Gregory L. Fisher
- Physical Electronics,
Inc., Chanhassen, Minnesota 55317, United States
| | - Anne L. Bruinen
- Multi-Modal
Molecular Imaging (M4I) Institute, Maastricht University, 6211 ER Maastricht, Netherlands
| | - Nina Ogrinc Potočnik
- Multi-Modal
Molecular Imaging (M4I) Institute, Maastricht University, 6211 ER Maastricht, Netherlands
| | - John S. Hammond
- Physical Electronics,
Inc., Chanhassen, Minnesota 55317, United States
| | - Scott R. Bryan
- Physical Electronics,
Inc., Chanhassen, Minnesota 55317, United States
| | - Paul E. Larson
- Physical Electronics,
Inc., Chanhassen, Minnesota 55317, United States
| | - Ron M.A. Heeren
- Multi-Modal
Molecular Imaging (M4I) Institute, Maastricht University, 6211 ER Maastricht, Netherlands
| |
Collapse
|
14
|
Ellis SR, Cappell J, Potočnik NO, Balluff B, Hamaide J, Van der Linden A, Heeren RMA. More from less: high-throughput dual polarity lipid imaging of biological tissues. Analyst 2016; 141:3832-41. [DOI: 10.1039/c6an00169f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Here, we reveal the increased biochemical and spatial information acquired using high-speed MALDI-MSI and sequential acquisitions of positive and negative lipid-MSI data from single tissue sections.
Collapse
Affiliation(s)
- Shane R. Ellis
- M4I
- The Maastricht Multimodal Molecular Imaging Institute
- 6229 ER Maastricht
- The Netherlands
| | - Joanna Cappell
- M4I
- The Maastricht Multimodal Molecular Imaging Institute
- 6229 ER Maastricht
- The Netherlands
| | - Nina Ogrinc Potočnik
- M4I
- The Maastricht Multimodal Molecular Imaging Institute
- 6229 ER Maastricht
- The Netherlands
| | - Benjamin Balluff
- M4I
- The Maastricht Multimodal Molecular Imaging Institute
- 6229 ER Maastricht
- The Netherlands
| | - Julie Hamaide
- Bio-Imaging Lab
- University of Antwerp
- 2610 Wilrijk
- Belgium
| | | | - Ron M. A. Heeren
- M4I
- The Maastricht Multimodal Molecular Imaging Institute
- 6229 ER Maastricht
- The Netherlands
| |
Collapse
|
15
|
Balari S, Lorenzo G. It is an organ, it is new, but it is not a new organ. Conceptualizing language from a homological perspective. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Audition-independent vocal crystallization associated with intrinsic developmental gene expression dynamics. J Neurosci 2015; 35:878-89. [PMID: 25609608 DOI: 10.1523/jneurosci.1804-14.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Complex learned behavior is influenced throughout development by both genetic and environmental factors. Birdsong, like human speech, is a complex vocal behavior acquired through sensorimotor learning and is based on coordinated auditory input and vocal output to mimic tutor song. Song is primarily learned during a specific developmental stage called the critical period. Although auditory input is crucial for acquiring complex vocal patterns, its exact role in neural circuit maturation for vocal learning and production is not well understood. Using audition-deprived songbirds, we examined whether auditory experience affects developmental gene expression in the major elements of neural circuits that mediate vocal learning and production. Compared with intact zebra finches, early-deafened zebra finches showed excessively delayed vocal development, but their songs eventually crystallized. In contrast to the different rates of song development between the intact and deafened birds, developmental gene expression in the motor circuit is conserved in an age-dependent manner from the juvenile stage until the older adult stage, even in the deafened birds, which indicates the audition-independent robustness of gene expression dynamics during development. Furthermore, even after adult deafening, which degrades crystallized song, the deteriorated songs ultimately restabilized at the same point when the early-deafened birds stabilized their songs. These results indicate a genetic program-associated inevitable termination of vocal plasticity that results in audition-independent vocal crystallization.
Collapse
|
17
|
Olson CR, Hodges LK, Mello CV. Dynamic gene expression in the song system of zebra finches during the song learning period. Dev Neurobiol 2015; 75:1315-38. [PMID: 25787707 DOI: 10.1002/dneu.22286] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/09/2015] [Indexed: 01/03/2023]
Abstract
The brain circuitry that controls song learning and production undergoes marked changes in morphology and connectivity during the song learning period in juvenile zebra finches, in parallel to the acquisition, practice and refinement of song. Yet, the genetic programs and timing of regulatory change that establish the neuronal connectivity and plasticity during this critical learning period remain largely undetermined. To address this question, we used in situ hybridization to compare the expression patterns of a set of 30 known robust molecular markers of HVC and/or area X, major telencephalic song nuclei, between adult and juvenile male zebra finches at different ages during development (20, 35, 50 days post-hatch, dph). We found that several of the genes examined undergo substantial changes in expression within HVC or its surrounds, and/or in other song nuclei. They fit into broad patterns of regulation, including those whose expression within HVC during this period increases (COL12A1, COL 21A1, MPZL1, PVALB, and CXCR7) or decreases (e.g., KCNT2, SAP30L), as well as some that show decreased expression in the surrounding tissue with little change within song nuclei (e.g. SV2B, TAC1). These results reveal a broad range of molecular changes that occur in the song system in concert with the song learning period. Some of the genes and pathways identified are potential modulators of the developmental changes associated with the emergence of the adult properties of the song control system, and/or the acquisition of learned vocalizations in songbirds.
Collapse
Affiliation(s)
- Christopher R Olson
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, Oregon, 97239-3098
| | - Lisa K Hodges
- Biology Department, Lewis and Clark College, 0615 S.W. Palatine Hill Road, Portland, Oregon 97219
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, Oregon, 97239-3098
| |
Collapse
|
18
|
Roeske TC, Scharff C, Olson CR, Nshdejan A, Mello CV. Long-distance retinoid signaling in the zebra finch brain. PLoS One 2014; 9:e111722. [PMID: 25393898 PMCID: PMC4230966 DOI: 10.1371/journal.pone.0111722] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/02/2014] [Indexed: 11/19/2022] Open
Abstract
All-trans retinoic acid (ATRA), the main active metabolite of vitamin A, is a powerful signaling molecule that regulates large-scale morphogenetic processes during vertebrate embryonic development, but is also involved post-natally in regulating neural plasticity and cognition. In songbirds, it plays an important role in the maturation of learned song. The distribution of the ATRA-synthesizing enzyme, zRalDH, and of ATRA receptors (RARs) have been described, but information on the distribution of other components of the retinoid signaling pathway is still lacking. To address this gap, we have determined the expression patterns of two obligatory RAR co-receptors, the retinoid X receptors (RXR) α and γ, and of the three ATRA-degrading cytochromes CYP26A1, CYP26B1, and CYP26C1. We have also studied the distribution of zRalDH protein using immunohistochemistry, and generated a refined map of ATRA localization, using a modified reporter cell assay to examine entire brain sections. Our results show that (1) ATRA is more broadly distributed in the brain than previously predicted by the spatially restricted distribution of zRalDH transcripts. This could be due to long-range transport of zRalDH enzyme between different nuclei of the song system: Experimental lesions of putative zRalDH peptide source regions diminish ATRA-induced transcription in target regions. (2) Four telencephalic song nuclei express different and specific subsets of retinoid-related receptors and could be targets of retinoid regulation; in the case of the lateral magnocellular nucleus of the anterior nidopallium (lMAN), receptor expression is dynamically regulated in a circadian and age-dependent manner. (3) High-order auditory areas exhibit a complex distribution of transcripts representing ATRA synthesizing and degrading enzymes and could also be a target of retinoid signaling. Together, our survey across multiple connected song nuclei and auditory brain regions underscores the prominent role of retinoid signaling in modulating the circuitry that underlies the acquisition and production of learned vocalizations.
Collapse
Affiliation(s)
- Tina C. Roeske
- Department of Psychology, Hunter College, City University of New York, New York, New York, United States of America
| | - Constance Scharff
- Department of Animal Behavior, Freie Universität Berlin, Berlin, Germany
| | - Christopher R. Olson
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Arpik Nshdejan
- Department of Animal Behavior, Freie Universität Berlin, Berlin, Germany
| | - Claudio V. Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
19
|
Rothwell CM, Spencer GE. Retinoid signaling is necessary for, and promotes long-term memory formation following operant conditioning. Neurobiol Learn Mem 2014; 114:127-40. [PMID: 24925874 DOI: 10.1016/j.nlm.2014.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
Abstract
Retinoic acid, a metabolite of vitamin A, is proposed to play an important role in vertebrate learning and memory, as well as hippocampal-dependent synaptic plasticity. However, it has not yet been determined whether retinoic acid plays a similar role in learning and memory in invertebrates. In this study, we report that retinoid signaling in the mollusc Lymnaea stagnalis, is required for long-term memory formation following operant conditioning of its aerial respiratory behaviour. Animals were exposed to inhibitors of the RALDH enzyme (which synthesizes retinoic acid), or various retinoid receptor antagonists. Following exposure to these inhibitors, neither learning nor intermediate-term memory (lasting 2 h) was affected, but long-term memory formation (tested at either 24 or 72 h) was inhibited. We next demonstrated that various retinoid receptor agonists promoted long-term memory formation. Using a training paradigm shown only to produce intermediate-term memory (lasting 2 h, but not 24 h) we found that exposure of animals to synthetic retinoids promoted memory formation that lasted up to 30 h. These findings suggest that the role of retinoids in memory formation is ancient in origin, and that retinoid signaling is also important for the formation of implicit memories, in addition to its previously demonstrated role in hippocampal-dependent memories.
Collapse
Affiliation(s)
- Cailin M Rothwell
- Department of Biological Sciences, Brock University, 500 Glenridge Ave, St. Catharines, ON L2S 3A1, Canada
| | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, 500 Glenridge Ave, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
20
|
Abstract
Songbirds have unique value as a model for memory and learning. In their natural social life, they communicate through vocalizations that they must learn to produce and recognize. Song communication elicits abrupt changes in gene expression in regions of the forebrain responsible for song perception and production--what is the functional significance of this genomic response? For 20 years, the focus of research was on just a few genes [primarily ZENK, now known as egr1 (early gene response 1)]. Recently, however, DNA microarrays have been developed and applied to songbird behavioral research, and in 2010 the initial draft assembly of the zebra finch genome was published. Together, these new data reveal that the genomic involvement in song processing is far more complex than anticipated. The concepts of neurogenomic computation and biological embedding are introduced as frameworks for future research.
Collapse
Affiliation(s)
- David F Clayton
- Biological and Experimental Psychology Division, School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom;
| |
Collapse
|
21
|
Fragoso YD, Campos NS, Tenrreiro BF, Guillen FJ. Systematic review of the literature on vitamin A and memory. Dement Neuropsychol 2012; 6:219-222. [PMID: 29213801 PMCID: PMC5619333 DOI: 10.1590/s1980-57642012dn06040005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Over the last 30 years, a variety of studies reporting the effects of vitamin
A on memory have been published. Objective To perform a rigorous systematic review of the literature on vitamin A and
memory in order to organize evidence-based data on the subject. Methods Four authors carried out the systematic review in accordance with strict
guidelines. The terms "vitamin A" OR "retinol" OR "retinoic acid" AND
"memory" OR "cognition" OR "Alzheimer" were searched in virtually all
medical research databases. Results From 236 studies containing the key words, 44 were selected for this review,
numbering 10 reviews and 34 original articles. Most studies used animal
models for studying vitamin A and cognition. Birds, mice and rats were more
frequently employed whereas human studies accounted for only two reports on
brain tissue from autopsies and one on the role of isotretinoin in cognition
among individuals taking this medication to treat acne. Conclusion Vitamin A may be an important and viable complement in the treatment and
prevention of Alzheimer's disease. Clinical trials are imperative and, at
present, there is no evidence-based data to recommend vitamin A
supplementation for the prevention or treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yara Dadalti Fragoso
- Head of the Department of Neurology, Universidade Metropolitana de Santos, SP, Brazil
| | | | | | | |
Collapse
|
22
|
Velho TAF, Lu K, Ribeiro S, Pinaud R, Vicario D, Mello CV. Noradrenergic control of gene expression and long-term neuronal adaptation evoked by learned vocalizations in songbirds. PLoS One 2012; 7:e36276. [PMID: 22574146 PMCID: PMC3344865 DOI: 10.1371/journal.pone.0036276] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/02/2012] [Indexed: 11/17/2022] Open
Abstract
Norepinephrine (NE) is thought to play important roles in the consolidation and retrieval of long-term memories, but its role in the processing and memorization of complex acoustic signals used for vocal communication has yet to be determined. We have used a combination of gene expression analysis, electrophysiological recordings and pharmacological manipulations in zebra finches to examine the role of noradrenergic transmission in the brain's response to birdsong, a learned vocal behavior that shares important features with human speech. We show that noradrenergic transmission is required for both the expression of activity-dependent genes and the long-term maintenance of stimulus-specific electrophysiological adaptation that are induced in central auditory neurons by stimulation with birdsong. Specifically, we show that the caudomedial nidopallium (NCM), an area directly involved in the auditory processing and memorization of birdsong, receives strong noradrenergic innervation. Song-responsive neurons in this area express α-adrenergic receptors and are in close proximity to noradrenergic terminals. We further show that local α-adrenergic antagonism interferes with song-induced gene expression, without affecting spontaneous or evoked electrophysiological activity, thus dissociating the molecular and electrophysiological responses to song. Moreover, α-adrenergic antagonism disrupts the maintenance but not the acquisition of the adapted physiological state. We suggest that the noradrenergic system regulates long-term changes in song-responsive neurons by modulating the gene expression response that is associated with the electrophysiological activation triggered by song. We also suggest that this mechanism may be an important contributor to long-term auditory memories of learned vocalizations.
Collapse
Affiliation(s)
- Tarciso A F Velho
- Department of Behavioral Neuroscience and Neurological Sciences Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | | | | | | | | | | |
Collapse
|
23
|
Kizil C, Kaslin J, Kroehne V, Brand M. Adult neurogenesis and brain regeneration in zebrafish. Dev Neurobiol 2012; 72:429-61. [DOI: 10.1002/dneu.20918] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Matsunaga E, Suzuki K, Kobayashi T, Okanoya K. Comparative analysis of mineralocorticoid receptor expression among vocal learners (Bengalese finch and budgerigar) and non-vocal learners (quail and ring dove) has implications for the evolution of avian vocal learning. Dev Growth Differ 2011; 53:961-70. [PMID: 22010640 DOI: 10.1111/j.1440-169x.2011.01302.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mineralocorticoid receptor is the receptor for corticosteroids such as corticosterone or aldosterone. Previously, we found that mineralocorticoid receptor was highly expressed in song nuclei of a songbird, Bengalese finch (Lonchura striata var. domestica). Here, to examine the relationship between mineralocorticoid receptor expression and avian vocal learning, we analyzed mineralocorticoid receptor expression in the developing brain of another vocal learner, budgerigar (Melopsittacus undulatus) and non-vocal learners, quail (Coturnix japonica) and ring dove (Streptopelia capicola). Mineralocorticoid receptor showed vocal control area-related expressions in budgerigars as Bengalese finches, whereas no such mineralocorticoid receptor expressions were seen in the telencephalon of non-vocal learners. Thus, these results suggest the possibility that mineralocorticoid receptor plays a role in vocal development of parrots as songbirds and that the acquisition of mineralocorticoid receptor expression is involved in the evolution of avian vocal learning.
Collapse
Affiliation(s)
- Eiji Matsunaga
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako 351-0198 Japan.
| | | | | | | |
Collapse
|
25
|
Amaya KR, Sweedler JV, Clayton DF. Small molecule analysis and imaging of fatty acids in the zebra finch song system using time-of-flight-secondary ion mass spectrometry. J Neurochem 2011; 118:499-511. [PMID: 21496023 PMCID: PMC3137756 DOI: 10.1111/j.1471-4159.2011.07274.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fatty acids are central to brain metabolism and signaling, but their distributions within complex brain circuits have been difficult to study. Here we applied an emerging technique, time-of-flight secondary ion mass spectrometry (ToF-SIMS), to image specific fatty acids in a favorable model system for chemical analyses of brain circuits, the zebra finch (Taeniopygia guttata). The zebra finch, a songbird, produces complex learned vocalizations under the control of an interconnected set of discrete, dedicated brain nuclei 'song nuclei'. Using ToF-SIMS, the major song nuclei were visualized by virtue of differences in their content of essential and non-essential fatty acids. Essential fatty acids (arachidonic acid and docosahexaenoic acid) showed distinctive distributions across the song nuclei, and the 18-carbon fatty acids stearate and oleate discriminated the different core and shell subregions of the lateral magnocellular nucleus of the anterior nidopallium. Principal component analysis of the spectral data set provided further evidence of chemical distinctions between the song nuclei. By analyzing the robust nucleus of the arcopallium at three different ages during juvenile song learning, we obtain the first direct evidence of changes in lipid content that correlate with progression of song learning. The results demonstrate the value of ToF-SIMS to study lipids in a favorable model system for probing the function of lipids in brain organization, development and function.
Collapse
Affiliation(s)
- Kensey R Amaya
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
26
|
Lovell PV, Olson CR, Mello CV. Singing under the influence: examining the effects of nutrition and addiction on a learned vocal behavior. Mol Neurobiol 2011; 44:175-84. [PMID: 21340665 DOI: 10.1007/s12035-011-8169-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 02/03/2011] [Indexed: 02/04/2023]
Abstract
The songbird model is widely established in a number of laboratories for the investigation of the neurobiology and development of vocal learning. While vocal learning is rare in the animal kingdom, it is a trait that songbirds share with humans. The neuroanatomical and physiological organization of the brain circuitry that controls learned vocalizations has been extensively characterized, particularly in zebra finches (Taeniopygia guttata). Recently, several powerful molecular and genomic tools have become available in this organism, making it an attractive choice for neurobiologists interested in the neural and genetic basis of a complex learned behavior. Here, we briefly review some of the main features of vocal learning and associated brain structures in zebra finches and comment on some examples that illustrate how themes related to nutrition and addiction can be explored using this model organism.
Collapse
Affiliation(s)
- Peter V Lovell
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 Sam Jackson Park Rd L470, Portland, OR 97239, USA
| | | | | |
Collapse
|
27
|
Olson CR, Rodrigues PV, Jeong JK, Prahl DJ, Mello CV. Organization and development of zebra finch HVC and paraHVC based on expression of zRalDH, an enzyme associated with retinoic acid production. J Comp Neurol 2011; 519:148-61. [PMID: 21120932 PMCID: PMC3064427 DOI: 10.1002/cne.22510] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The zRalDH gene encodes an aldehyde dehydrogenase associated with the conversion of retinaldehyde (the main vitamin A metabolite) into retinoic acid and its expression is highly enriched in the song control system of adult zebra finches (Taeniopygia guttata). Within song control nucleus HVC, zRalDH is specifically expressed in the neurons that project to area X of the striatum. It is also expressed in paraHVC, commonly considered a medial extension of HVC that is closely associated with auditory areas in the caudomedial telencephalon. Here we used in situ hybridization to generate a detailed analysis of HVC and paraHVC based on expression of zRalDH for adult zebra finches of both sexes and for males during the song-learning period. We demonstrate that the distribution of zRalDH-positive cells can be used for accurate assessments of HVC and paraHVC in adult and juvenile males. We describe marked developmental changes in the numbers of zRalDH-expressing cells in HVC and paraHVC, reaching a peak at day 50 posthatch, an effect potentially due to dynamic changes in the population of X-projecting cells in HVC. We also show that zRalDH-expressing cells in adult females, although much less numerous than in males, have a surprisingly broad distribution along the medial-to-lateral extent of HVC, but are lacking where paraHVC is found in adult males. Our study thus contributes to our understanding of the nuclear organization of the song system and the dynamics of its developmental changes during the song-learning period.
Collapse
Affiliation(s)
- Christopher R Olson
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
28
|
Olveczky BP, Gardner TJ. A bird's eye view of neural circuit formation. Curr Opin Neurobiol 2010; 21:124-31. [PMID: 20943369 DOI: 10.1016/j.conb.2010.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 11/29/2022]
Abstract
Neural circuits underlying complex learned behaviors, such as speech in humans, develop under genetic constraints and in response to environmental influences. Little is known about the rules and mechanisms through which such circuits form. We argue that songbirds, with their discrete and well studied neural pathways underlying a complex and naturally learned behavior, provide a powerful model for addressing these questions. We briefly review current knowledge of how the song circuit develops during learning and discuss new possibilities for advancing the field given recent technological advances.
Collapse
Affiliation(s)
- Bence P Olveczky
- Harvard University, Department of Organismic and Evolutionary Biology and Center for Brain Science, 52 Oxford Street, Cambridge, MA 02138, USA.
| | | |
Collapse
|
29
|
White SA. Genes and vocal learning. BRAIN AND LANGUAGE 2010; 115:21-28. [PMID: 19913899 PMCID: PMC2888939 DOI: 10.1016/j.bandl.2009.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 09/25/2009] [Accepted: 10/12/2009] [Indexed: 05/28/2023]
Abstract
Could a mutation in a single gene be the evolutionary lynchpin supporting the development of human language? A rare mutation in the molecule known as FOXP2 discovered in a human family seemed to suggest so, and its sequence phylogeny reinforced a Chomskian view that language emerged wholesale in humans. Spurred by this discovery, research in primates, rodents and birds suggests that FoxP2 and other language-related genes are interactors in the neuromolecular networks that underlie subsystems of language, such symbolic understanding, vocal learning and theory of mind. The whole picture will only come together through comparative and integrative study into how the human language singularity evolved.
Collapse
Affiliation(s)
- Stephanie A White
- Department of Physiological Science, University of California, Los Angeles, 90095, USA.
| |
Collapse
|
30
|
|
31
|
Abstract
Retinoid acid, the bioactive metabolite of vitamin A, is a potent signaling molecule in the brains of growing and adult animals, regulates numerous gene products, and modulates neurogenesis, neuronal survival and synaptic plasticity. Vitamin A deficiency (VAD) is a global health problem, yet our knowledge of its effects on behavior and learning is still emerging. Here we review studies that have implicated retinoids in learning and memory deficits of post-embryonic and adult rodent and songbird models. Dietary vitamin A supplementation improves learning and memory in VAD rodents and can ameliorate cognitive declines associated with normal aging. Songbird studies examine the effects of retinoid signaling on vocal/auditory learning and are uniquely suited to study the behavioral effects of VAD because the neural circuitry of the song system is discrete and well understood. Similar to human speech acquisition, avian vocal learning proceeds in well-defined stages of template acquisition, rendition and maturation. Local blockade of retinoic acid production in the brain or excess dietary retinoic acid results in the failure of song maturation, yet does not affect prior song acquisition. Together these results yield significant insights into the role of vitamin A in maintaining neuronal plasticity and cognitive function in adulthood.
Collapse
Affiliation(s)
- Christopher R Olson
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
32
|
Kane M, Chen N, Sparks S, Napoli J. Quantification of endogenous retinoic acid in limited biological samples by LC/MS/MS. Biochem J 2009; 388:363-9. [PMID: 15628969 PMCID: PMC1186726 DOI: 10.1042/bj20041867] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report a sensitive LC (liquid chromatography)/MS/MS assay using selected reaction monitoring to quantify RA (retinoic acid), which is applicable to biological samples of limited size (10-20 mg of tissue wet weight), requires no sample derivatization, provides mass identification and resolves atRA (all-trans-RA) from its geometric isomers. The assay quantifies over a linear range of 20 fmol to 10 pmol, and has a 10 fmol limit of detection at a signal/noise ratio of 3. Coefficients of variation are: instrumental, 0.5-2.9%; intra-assay, 5.4+/-0.4%; inter-assay 8.9+/-1.0%. An internal standard (all-trans-4,4-dimethyl-RA) improves accuracy by confirming extraction efficiency and revealing handling-induced isomerization. Tissues of 2-4-month-old C57BL/6 male mice had atRA concentrations of 7-9.6 pmol/g and serum atRA of 1.9+/-0.6 pmol/ml (+/-S.E.M.). Tissue 13-cis-RA ranged from 2.9 to 4.2 pmol/g, and serum 13-cis-RA was 1.2+/-0.3 pmol/ml. CRBP (cellular retinol-binding protein)-null mouse liver had atRA approximately 30% lower than wild-type (P<0.05), but kidney, testis, brain and serum atRA were similar to wild-type. atRA in brain areas of 12-month-old female C57BL/6 mice were (+/-S.E.M.): whole brain, 5.4+/-0.4 pmol/g; cerebellum, 10.7+/-0.3 pmol/g; cortex, 2.6+/-0.4 pmol/g; hippocampus, 8.4+/-1.2 pmol/g; striatum, 15.3+/-4.7 pmol/g. These data provide the first analytically robust quantification of atRA in animal brain and in CRBP-null mice. Direct measurements of endogenous RA should have a substantial impact on investigating target tissues of RA, mechanisms of RA action, and the relationship between RA and chronic disease.
Collapse
Affiliation(s)
- Maureen A. Kane
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720-3104, U.S.A
| | - Na Chen
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720-3104, U.S.A
| | - Susan Sparks
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720-3104, U.S.A
| | - Joseph L. Napoli
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720-3104, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
33
|
Clayton DF, George JM, Mello CV, Siepka SM. Conservation and expression of IQ-domain-containing calpacitin gene products (neuromodulin/GAP-43, neurogranin/RC3) in the adult and developing oscine song control system. Dev Neurobiol 2009; 69:124-40. [PMID: 19023859 DOI: 10.1002/dneu.20686] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Songbirds are appreciated for the insights they provide into regulated neural plasticity. Here, we describe the comparative analysis and brain expression of two gene sequences encoding probable regulators of synaptic plasticity in songbirds: neuromodulin (GAP-43) and neurogranin (RC3). Both are members of the calpacitin family and share a distinctive conserved core domain that mediates interactions between calcium, calmodulin, and protein kinase C signaling pathways. Comparative sequence analysis is consistent with known phylogenetic relationships, with songbirds most closely related to chicken and progressively more distant from mammals and fish. The C-terminus of neurogranin is different in birds and mammals, and antibodies to the protein reveal high expression in adult zebra finches in cerebellar Purkinje cells, which has not been observed in other species. RNAs for both proteins are generally abundant in the telencephalon yet markedly reduced in certain nuclei of the song control system in adult canaries and zebra finches: neuromodulin RNA is very low in RA and HVC (relative to the surrounding pallial areas), whereas neurogranin RNA is conspicuously low in Area X (relative to surrounding striatum). In both cases, this selective downregulation develops in the zebra finch during the juvenile song learning period, 25-45 days after hatching. These results suggest molecular parallels to the robust stability of the adult avian song control circuit.
Collapse
Affiliation(s)
- David F Clayton
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Illinois 61801, USA.
| | | | | | | |
Collapse
|
34
|
Le-Niculescu H, Patel SD, Bhat M, Kuczenski R, Faraone SV, Tsuang MT, McMahon FJ, Schork NJ, Nurnberger JI, Niculescu AB. Convergent functional genomics of genome-wide association data for bipolar disorder: comprehensive identification of candidate genes, pathways and mechanisms. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:155-81. [PMID: 19025758 DOI: 10.1002/ajmg.b.30887] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Given the mounting convergent evidence implicating many more genes in complex disorders such as bipolar disorder than the small number identified unambiguously by the first-generation Genome-Wide Association studies (GWAS) to date, there is a strong need for improvements in methodology. One strategy is to include in the next generation GWAS larger numbers of subjects, and/or to pool independent studies into meta-analyses. We propose and provide proof of principle for the use of a complementary approach, convergent functional genomics (CFG), as a way of mining the existing GWAS datasets for signals that are there already, but did not reach significance using a genetics-only approach. With the CFG approach, the integration of genetics with genomics, of human and animal model data, and of multiple independent lines of evidence converging on the same genes offers a way of extracting signal from noise and prioritizing candidates. In essence our analysis is the most comprehensive integration of genetics and functional genomics to date in the field of bipolar disorder, yielding a series of novel (such as Klf12, Aldh1a1, A2bp1, Ak3l1, Rorb, Rora) and previously known (such as Bdnf, Arntl, Gsk3b, Disc1, Nrg1, Htr2a) candidate genes, blood biomarkers, as well as a comprehensive identification of pathways and mechanisms. These become prime targets for hypothesis driven follow-up studies, new drug development and personalized medicine approaches.
Collapse
Affiliation(s)
- H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Matsunaga E, Okanoya K. Evolution and diversity in avian vocal system: An Evo-Devo model from the morphological and behavioral perspectives. Dev Growth Differ 2009; 51:355-67. [DOI: 10.1111/j.1440-169x.2009.01091.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Abstract
The consolidation of long-lasting sensory memories requires the activation of gene expression programs in the brain. Despite considerable knowledge about the early components of this response, little is known about late components (i.e., genes regulated 2-6 h after stimulation) and the relationship between early and late genes. Birdsong represents one of the best natural behaviors to study sensory-induced gene expression in awake, freely behaving animals. Here we show that the expression of several isoforms of synapsins, a group of phosphoproteins thought to regulate the dynamics of synaptic vesicle storage and release, is induced by auditory stimulation with birdsong in the caudomedial nidopallium (NCM) of the zebra finch (Taeniopygia guttata) brain. This induction occurs mainly in excitatory (non-GABAergic) neurons and is modulated (suppressed) by early song-inducible proteins. We also show that ZENK, an early song-inducible transcription factor, interacts with the syn3 promoter in vivo, consistent with a direct regulatory effect and an emerging novel view of ZENK action. These results demonstrate that synapsins are a late component of the genomic response to neuronal activation and that their expression depends on a complex set of regulatory interactions between early and late regulated genes.
Collapse
|
37
|
Wood WE, Olson CR, Lovell PV, Mello CV. Dietary retinoic acid affects song maturation and gene expression in the song system of the zebra finch. Dev Neurobiol 2008; 68:1213-24. [PMID: 18548487 DOI: 10.1002/dneu.20642] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Vitamin A, an essential nutrient, is required in its acidic form (retinoic acid) for normal embryogenesis and neuronal development, typically within well-defined concentration ranges. In zebra finches, a songbird species, localized retinoic acid synthesis in the brain is important for the development of song, a learned behavior sharing significant commonalities with speech acquisition in humans. We tested how dietary retinoic acid affects the development of song behavior and the brain's system for song control. Supplemental doses of retinoic acid given to juveniles during the critical period for song learning resulted in more variable or plastic-like songs when the birds reached adulthood, compared to the normal songs of vehicle-fed controls. We also observed that several genes (brinp1, nrgn, rxr-alpha, and sdr2/scdr9) had altered levels of expression in specific nuclei of the song system when comparing the experimental and control diet groups. Interestingly, we found significant correlations between gene expression levels in nuclei of the anterior forebrain pathway (lMAN and area X) and the degree of variability in the recorded songs. We observed, however, no major morphological effects such as changes in the volumes of song nuclei. Overall, our results lend further support to a fundamental role of retinoic acid in song maturation and point to possible molecular pathways associated with this action. The data also demonstrate that dietary content of Vitamin A can affect the maturation of a naturally learned complex behavior.
Collapse
Affiliation(s)
- William E Wood
- Neurological Sciences Institute, Oregon Health and Science University, Beaverton, Oregon 97006, USA
| | | | | | | |
Collapse
|
38
|
Lovell PV, Clayton DF, Replogle KL, Mello CV. Birdsong "transcriptomics": neurochemical specializations of the oscine song system. PLoS One 2008; 3:e3440. [PMID: 18941504 PMCID: PMC2563692 DOI: 10.1371/journal.pone.0003440] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 09/22/2008] [Indexed: 11/18/2022] Open
Abstract
Background Vocal learning is a rare and complex behavioral trait that serves as a basis for the acquisition of human spoken language. In songbirds, vocal learning and production depend on a set of specialized brain nuclei known as the song system. Methodology/Principal Findings Using high-throughput functional genomics we have identified ∼200 novel molecular markers of adult zebra finch HVC, a key node of the song system. These markers clearly differentiate HVC from the general pallial region to which HVC belongs, and thus represent molecular specializations of this song nucleus. Bioinformatics analysis reveals that several major neuronal cell functions and specific biochemical pathways are the targets of transcriptional regulation in HVC, including: 1) cell-cell and cell-substrate interactions (e.g., cadherin/catenin-mediated adherens junctions, collagen-mediated focal adhesions, and semaphorin-neuropilin/plexin axon guidance pathways); 2) cell excitability (e.g., potassium channel subfamilies, cholinergic and serotonergic receptors, neuropeptides and neuropeptide receptors); 3) signal transduction (e.g., calcium regulatory proteins, regulators of G-protein-related signaling); 4) cell proliferation/death, migration and differentiation (e.g., TGF-beta/BMP and p53 pathways); and 5) regulation of gene expression (candidate retinoid and steroid targets, modulators of chromatin/nucleolar organization). The overall direction of regulation suggest that processes related to cell stability are enhanced, whereas proliferation, growth and plasticity are largely suppressed in adult HVC, consistent with the observation that song in this songbird species is mostly stable in adulthood. Conclusions/Significance Our study represents one of the most comprehensive molecular genetic characterizations of a brain nucleus involved in a complex learned behavior in a vertebrate. The data indicate numerous targets for pharmacological and genetic manipulations of the song system, and provide novel insights into mechanisms that might play a role in the regulation of song behavior and/or vocal learning.
Collapse
Affiliation(s)
- Peter V. Lovell
- Neurological Sciences Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - David F. Clayton
- Cell & Developmental Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Kirstin L. Replogle
- Cell & Developmental Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Claudio V. Mello
- Neurological Sciences Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- * E-mail:
| |
Collapse
|
39
|
Thode C, Güttinger HR, Darlison MG. Expression of the GABA(A) receptor gamma4-subunit gene in discrete nuclei within the zebra finch song system. Neuroscience 2008; 157:143-52. [PMID: 18824085 DOI: 10.1016/j.neuroscience.2008.08.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/29/2008] [Accepted: 08/29/2008] [Indexed: 11/26/2022]
Abstract
The acquisition, production and maintenance of song by oscine birds is a form of audition-dependent learning that, in many ways, resembles the process by which humans learn to speak. In songbirds, the generation of structured song is determined by the activity of two interconnected neuronal pathways (the anterior forebrain pathway and the vocal motor pathway), each of which contains a number of discrete nuclei that together form the song system. It is becoming increasingly evident that inhibitory GABAergic mechanisms are indispensable in counterbalancing the excitatory actions of glutamate and, thus, likely shape the neuronal firing patterns of neurons within this network. Furthermore, there is compelling evidence for the involvement of GABA(A) receptors, although the molecular composition of these has, to date, remained elusive. Here we describe the isolation of a complementary DNA for the zebra finch GABA(A) receptor gamma4 subunit, and map the expression pattern of the corresponding gene within the zebra finch (Taeniopygia guttata) brain. Our findings show, remarkably, that the gamma4-subunit transcript is highly enriched in the major nuclei of the song system, including the lateral magnocellular nucleus of the anterior nidopallium (LMAN), the medial magnocellular nucleus of the anterior nidopallium (MMAN), Area X, the robust nucleus of the arcopallium (RA) and the HVC (used as the proper name), as well as Field L, which innervates the area surrounding HVC. In summary, we have demonstrated the presence of the mRNA for the gamma4 subunit of the GABA(A) receptor, the major inhibitory receptor in brain, in most of the nuclei of the two neural circuits that mediate song production in the zebra finch. This not only marks the beginning of the characterization of the GABA(A) receptor subtype(s) that mediates the actions of GABA in the song system but it also provides a robust molecular marker with which to distinguish song system-specific brain structures.
Collapse
Affiliation(s)
- C Thode
- Neuroscience and Signal Transduction Laboratory, School of Science and Technology, College of Science, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| | | | | |
Collapse
|
40
|
Li L, Li Y, Ji X, Zhang B, Wei H, Luo Y. The effects of retinoic acid on the expression of neurogranin after experimental cerebral ischemia. Brain Res 2008; 1226:234-40. [DOI: 10.1016/j.brainres.2008.06.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 06/06/2008] [Accepted: 06/06/2008] [Indexed: 11/27/2022]
|
41
|
Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 2007; 8:755-65. [PMID: 17882253 DOI: 10.1038/nrn2212] [Citation(s) in RCA: 619] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA) is involved in the induction of neural differentiation, motor axon outgrowth and neural patterning. Like other developmental molecules, RA continues to play a role after development has been completed. Elevated RA signalling in the adult triggers axon outgrowth and, consequently, nerve regeneration. RA is also involved in the maintenance of the differentiated state of adult neurons, and disruption of RA signalling in the adult leads to the degeneration of motor neurons (motor neuron disease), the development of Alzheimer's disease and, possibly, the development of Parkinson's disease. The data described here strongly suggest that RA could be used as a therapeutic molecule for the induction of axon regeneration and the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Malcolm Maden
- MRC Centre for Developmental Neurobiology, fourth floor New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
42
|
Környei Z, Gócza E, Rühl R, Orsolits B, Vörös E, Szabó B, Vágovits B, Madarász E. Astroglia‐derived retinoic acid is a key factor in glia‐induced neurogenesis. FASEB J 2007; 21:2496-509. [PMID: 17438145 DOI: 10.1096/fj.06-7756com] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Astroglial cells are essential components of the neurogenic niches within the central nervous system. Emerging evidence suggests that they are among the key regulators of postnatal neurogenesis. Although astrocytes have been demonstrated to possess the potential to instruct stem cells to adopt a neuronal fate, little is known about the nature of the glia-derived instructive signals. Here we propose that all-trans retinoic acid, one of the most powerful morphogenic molecules regulating neuronal cell fate commitment, may be one of the glia-derived factors directing astroglia-induced neurogenesis. According to data obtained from several complementary approaches, we show that cultured astrocytes express the key enzyme mRNAs of retinoic acid biosynthesis and actively produce all-trans retinoic acid. We show that blockage of retinoic acid signaling by the pan-RAR antagonist AGN193109 prevents glia-induced neuron formation by noncommitted stem cells. Therefore, we provide strong in vitro evidence for retinoic acid action in astroglia-induced neuronal differentiation.
Collapse
Affiliation(s)
- Z Környei
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Laboratory of Cellular and Developmental Neurobiology, H-1083 43 Szigony U., Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
VELHO TARCISOA, LOVELL PETER, MELLO CLAUDIOV. Enriched expression and developmental regulation of the middle-weight neurofilament (NF-M) gene in song control nuclei of the zebra finch. J Comp Neurol 2007; 500:477-97. [PMID: 17120287 PMCID: PMC4032091 DOI: 10.1002/cne.21180] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Songbirds evolved a complex set of dimorphic telencephalic nuclei that are essential for the learning and production of song. These nuclei, which together make up the oscine song control system, present several neurochemical properties that distinguish them from the rest of the telencephalon. Here we show that the expression of the gene encoding the middle-weight neurofilament (NF-M), an important component of the neuronal cytoskeleton and a useful tool for studying the cytarchitectonic organization of mammalian cortical areas, is highly enriched in large neurons within pallial song control nuclei (nucleus HVC, robustus nucleus of the arcopallium, and lateral magnocellular nucleus of the nidopallium) of male zebra finches (Taeniopygia guttata). We also show that this transcript is highly expressed in large neurons in the medulla, pons, midbrain, and thalamus. Moreover, we demonstrate that NF-M expression in song control nuclei changes during postembryonic development, peaking during an early phase of the song-learning period that coincides with the maturation of the song system. We did not observe changes in NF-M expression in auditory areas or in song control nuclei in the contexts of hearing song or singing, although these contexts result in marked induction of the transcription factor ZENK. This observation suggests that NF-M might not be under the regulatory control of ZENK in auditory areas or in song control nuclei. Overall, our data indicate that NF-M is a neurochemical marker for pallial song control nuclei and provide suggestive evidence of an involvement of NF-M in the development and/or maturation of the oscine song control system.
Collapse
Affiliation(s)
| | | | - CLAUDIO V. MELLO
- Correspondence to: Claudio V. Mello, MD, PhD, Neurological Sciences Institute, Oregon Health and Science University, 505 NW 185th Ave., Beaverton, OR 97006.
| |
Collapse
|
44
|
Lindsey BW, Tropepe V. A comparative framework for understanding the biological principles of adult neurogenesis. Prog Neurobiol 2006; 80:281-307. [PMID: 17218052 DOI: 10.1016/j.pneurobio.2006.11.007] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 11/03/2006] [Accepted: 11/09/2006] [Indexed: 01/18/2023]
Abstract
Adult neurogenesis has been identified in all vertebrate species examined thus far. However, an evolutionary trend towards a reduction in both the number of proliferation zones and the overall number of newborn cells has been revealed in more recent lineages of vertebrates, such as mammals. Adult neurogenesis, and in particular the characterization of adult neural stem cells in mammals has been the focus of intense research with the goal of developing new cell-based regenerative treatments for neurodegenerative diseases, spinal cord injury, and acute damage due to stroke. Conversely, most other vertebrate classes, which display widespread production of adult neurons, are not typically used as model systems in this context. A more profound understanding of the structural composition and the mechanisms that support proliferation zones in the mature brain have become critical for revealing how adult neural stem cells are maintained in these regions and how they regulate neurogenesis. In this review we argue that comprehensive analyses of adult neurogenesis in various vertebrate and invertebrate species will lead to a more complete understanding of the fundamental biology and evolution of adult neurogenesis and provide a better framework for testing hypotheses regarding the functional significance of this trait.
Collapse
Affiliation(s)
- Benjamin W Lindsey
- Department of Anatomy and Neurobiology, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, NS, Canada.
| | | |
Collapse
|
45
|
Abstract
Retinoids (vitamin A) are crucial for most forms of life. In chordates, they have important roles in the developing nervous system and notochord and many other embryonic structures, as well as in maintenance of epithelial surfaces, immune competence, and reproduction. The ability of all-trans retinoic acid to regulate expression of several hundred genes through binding to nuclear transcription factors is believed to mediate most of these functions. The role of all-trans retinoic may extend beyond the regulation of gene transcription because a large number of noncoding RNAs also are regulated by retinoic acid. Additionally, extra-nuclear mechanisms of action of retinoids are also being identified. In organisms ranging from prokaryotes to humans, retinal is covalently linked to G protein-coupled transmembrane receptors called opsins. These receptors function as light-driven ion pumps, mediators of phototaxis, or photosensory pigments. In vertebrates phototransduction is initiated by a photochemical reaction where opsin-bound 11-cis-retinal is isomerized to all-trans-retinal. The photosensitive receptor is restored via the retinoid visual cycle. Multiple genes encoding components of this cycle have been identified and linked to many human retinal diseases. Central aspects of vitamin A absorption, enzymatic oxidation of all-trans retinol to all-trans retinal and all-trans retinoic acid, and esterification of all-trans retinol have been clarified. Furthermore, specific binding proteins are involved in several of these enzymatic processes as well as in delivery of all-trans retinoic acid to nuclear receptors. Thus, substantial progress has been made in our understanding of retinoid metabolism and function. This insight has improved our view of retinoids as critical molecules in vision, normal embryonic development, and in control of cellular growth, differentiation, and death throughout life.
Collapse
Affiliation(s)
- Rune Blomhoff
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | | |
Collapse
|
46
|
Haskell GT, LaMantia AS. Retinoic acid signaling identifies a distinct precursor population in the developing and adult forebrain. J Neurosci 2006; 25:7636-47. [PMID: 16107650 PMCID: PMC6725412 DOI: 10.1523/jneurosci.0485-05.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We asked whether retinoic acid (RA), an established transcriptional regulator in regenerating and developing tissues, acts directly on distinct cell classes in the mature or embryonic forebrain. We identified a subset of slowly dividing precursors in the adult subventricular zone (SVZ) that is transcriptionally activated by RA. Most of these cells express glial fibrillary acidic protein, a smaller subset expresses the epidermal growth factor receptor, a few are terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling positive, and they can be mitotically labeled by sustained rather than acute bromodeoxyuridine exposure. RA activation in similar cells in SVZ-derived neurospheres depends on retinoid synthesis from the premetabolite retinol. The apparent influence of RA on precursors in vitro is consistent with key properties of RA activation in the SVZ; in neurospheres, altered retinoid signaling elicits neither cell death nor an acute increase in cell proliferation. There is apparent continuity of RA signaling in the forebrain throughout life. RA-activated, proliferative precursors with radial glial characteristics are found in the dorsal lateral ganglionic eminence and ventrolateral palliumembryonic rudiments of the SVZ. Thus, endogenous RA signaling distinguishes subsets of neural precursors with glial characteristics in a consistent region of the adult and developing forebrain.
Collapse
Affiliation(s)
- Gloria Thompson Haskell
- Department of Cell and Molecular Physiology, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
47
|
Jeong JK, Velho TAF, Mello CV. Cloning and expression analysis of retinoic acid receptors in the zebra finch brain. J Comp Neurol 2005; 489:23-41. [PMID: 15977168 DOI: 10.1002/cne.20605] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vitamin A derivative retinoic acid is produced postembryonically in discrete portions of the songbird brain, including some of the nuclei involved in song production and song learning, and its synthesis is required for the normal maturation of song behavior. To identify the brain targets for retinoic acid action, we cloned the zebra finch homologs of the alpha, beta, and gamma classes of retinoic acid receptors (RARs). In situ hybridization analysis revealed that the mRNAs for all three RARs are expressed at different levels in several brain areas, with a broader distribution than the mRNA for retinaldehyde-specific aldehyde dehydrogenase (zRalDH), a retinoic acid-synthesizing enzyme. Detectable RAR expression was found in all nuclei of the song control system, with the most marked expression occurring within the striatal song nucleus area X. These observations are consistent with a persistent action of retinoic acid in the postembryonic and adult songbird brain and provide further evidence for an involvement of retinoic acid signaling in the control of learned vocal behavior in a songbird species. They also suggest that the striatum is a major target of retinoic acid in songbirds.
Collapse
Affiliation(s)
- Jin K Jeong
- Neurological Sciences Institute, Oregon Health and Science University, West Campus, Beaverton, Oregon 97221, USA
| | | | | |
Collapse
|
48
|
Chen X, Agate RJ, Itoh Y, Arnold AP. Sexually dimorphic expression of trkB, a Z-linked gene, in early posthatch zebra finch brain. Proc Natl Acad Sci U S A 2005; 102:7730-5. [PMID: 15894627 PMCID: PMC1140405 DOI: 10.1073/pnas.0408350102] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Indexed: 12/23/2022] Open
Abstract
Sexual differentiation of the zebra finch (Taeniopygia guttata) neural song circuit is thought to be initiated by sex differences in sex chromosome gene expression in brain cells. One theory is that Z-linked genes, present in the male's ZZ genome at double the dose of females' (ZW), are expressed at higher levels and trigger masculine patterns of development. We report here that trkB (tyrosine kinase receptor B) is Z-linked in zebra finches. trkB is the receptor for neurotrophic factors BDNF and neurotrophin 4, and mediates their influence on neuronal survival, migration, and specification. trkB mRNA is expressed at a higher level in the male telencephalon or whole brain than in corresponding regions of the female in adulthood, and at posthatch day (P) 6, when the song circuit is undergoing sexual differentiation. Moreover, this expression is higher in the song nucleus high vocal center (HVC) than in the surrounding telencephalon at P6, and in males relative to females. In addition, trkB protein is expressed more highly in male than female whole brain at P6. These results establish trkB as a candidate factor that contributes to masculine differentiation of HVC because of its Z-linkage, which leads to sex differences in expression. BDNF is known to be stimulated by estrogen and to be expressed at higher levels in males than females at later ages in HVC. Thus, the trkB-BDNF system may be a focal point for convergent masculinizing influences of Z-linked factors and hormones.
Collapse
Affiliation(s)
- Xuqi Chen
- Department of Physiological Science, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
49
|
Mey J, McCaffery P. Retinoic acid signaling in the nervous system of adult vertebrates. Neuroscientist 2005; 10:409-21. [PMID: 15359008 DOI: 10.1177/1073858404263520] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The majority of the functions of vitamin A are carried out by its metabolite, retinoic acid (RA), a potent transcriptional activator acting through members of the nuclear receptor family of transcription factors. In the CNS, RA was first recognized to be essential for the control of patterning and differentiation in the developing embryo. It has recently come to light, however, that many of the same functions that RA directs in the embryo are involved in the regulation of plasticity and regeneration in the adult brain. The same intricate metabolic control system of synthetic and catabolic enzymes, combined with cytoplasmic binding proteins, is used in both embryo and adult to create regions of high and low RA to modulate gene transcription. This review summarizes some of the discoveries in the new field of retinoid neurobiology including its functions in neural plasticity and LTP in the hippocampus; its possible role in motor disorders such as Parkinson's disease, motoneuron disease, and Huntington's disease; its role in regeneration after sciatic nerve and spinal cord injury; and its possible involvement in psychiatric diseases such as depression.
Collapse
Affiliation(s)
- Jörg Mey
- Institut für Biologie II, Aachen, Germany.
| | | |
Collapse
|
50
|
Vergara MN, Arsenijevic Y, Del Rio-Tsonis K. CNS regeneration: A morphogen's tale. ACTA ACUST UNITED AC 2005; 64:491-507. [PMID: 16041757 DOI: 10.1002/neu.20158] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tissue regeneration will soon become an avenue for repair of damaged or diseased tissues as stem cell niches have been found in almost every organ of the vertebrate body including the CNS. In addition, different animals display an array of regenerative capabilities that are currently being researched to dissect the molecular mechanisms involved. This review concentrates on the different ways in which CNS tissues such as brain, spinal cord and retina can regenerate or display neurogenic potential and how these abilities are modulated by morphogens.
Collapse
|