1
|
Chen L, Zhong Y, Ouyang X, Wang C, Yin L, Huang J, Li Y, Wang Q, Xie J, Huang P, Yang H, Yin Y. Effects of β-alanine on intestinal development and immune performance of weaned piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:398-408. [PMID: 36788928 PMCID: PMC9918425 DOI: 10.1016/j.aninu.2022.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 12/12/2022]
Abstract
Beta-alanine is an important amino acid involved in several metabolic reactions in the body. The study aimed to investigate the effect of β-alanine supplementation on intestinal development and the immune performance of weaned piglets. Thirty-two 21-day-old healthy weaned piglets (half female and half male; Duroc × Landrace × Yorkshire) with an initial body weight of 8.11 ± 0.21 kg were randomly divided into 4 groups with 8 replicates of 1 pig each. The control group was fed a basal diet and the three experimental treatment groups were fed diets supplemented with 300, 600 and 1,200 mg/kg β-alanine, respectively. The trial lasted 28 days and the diets fed were divided into 2 phases: the late lactation period (day 1 to 14) and the nursery period (day 15 to 28), during which the weaned piglets had free access to food and water. The regulatory effects of β-alanine were further investigated in vitro using organoids obtained from the jejunum of piglets. In vivo, the addition of β-alanine to the diet had no significant effect on the growth performance of weaned piglets (P > 0.05), but significantly reduced serum levels of immunoglobulin G (IgG) (P < 0.01), immunoglobulin M (IgM) (P = 0.005), and complement 3 (C3) (P = 0.017). The serum interleukin- 6 (IL-6) levels (P < 0.01) were significantly reduced in the 1,200 mg/kg treatment group. The addition of β-alanine increased ileal villus height, with the most significant effect at a concentration of 300 mg/kg (P = 0.041). The addition of 600 mg/kg β-alanine significantly up-regulated the expression of superoxide dismutase (SOD) activity (P = 0.020) and the zonula occludens-1 (ZO-1) gene (P = 0.049) in the jejunum. Diets supplemented with 300 mg/kg β-alanine significantly increased the number of Ki67 positive cells in the jejunal crypts (P < 0.01). In vitro, β-alanine increased the organoid budding rates (P = 0.001) and the budding height of the crypt significantly (P = 0.004). In conclusion, β-alanine can improve intestinal morphology and barrier function, reduce inflammatory responses and alleviate the adverse effects of weaning stress on piglet intestinal health.
Collapse
Affiliation(s)
- Linlin Chen
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China,Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yan Zhong
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Xiangqin Ouyang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Chunfeng Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Lanmei Yin
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China,Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Jing Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yali Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Qiye Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Junyan Xie
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Changsha, Hunan, 410125, China
| | - Pengfei Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China,Corresponding authors.
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yulong Yin
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Changsha, Hunan, 410125, China,Corresponding authors.
| |
Collapse
|
2
|
Liu ZH, Xie WW, Zan GX, Gao CQ, Yan HC, Zhou JY, Wang XQ. Lauric acid alleviates deoxynivalenol-induced intestinal stem cell damage by potentiating the Akt/mTORC1/S6K1 signaling axis. Chem Biol Interact 2021; 348:109640. [PMID: 34506767 DOI: 10.1016/j.cbi.2021.109640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/04/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022]
Abstract
Intestinal stem cell (ISC)-driven intestinal homeostasis is subjected to dual regulation by dietary nutrients and toxins. Our study investigated the use of lauric acid (LA) to alleviate deoxynivalenol (DON)-induced intestinal epithelial damage. C57BL/6 mice in the control, LA, DON, and LA + DON groups were orally administered PBS, 10 mg/kg BW LA, 2 mg/kg BW DON, and 10 mg/kg BW LA + 2 mg/kg BW DON for 10 days. The results showed that LA increased the average daily gain and average daily feed intake of the mice exposed to DON. Moreover, the DON-triggered impairment of jejunal morphology and barrier function was significantly improved after LA supplementation. Moreover, LA rescued ISC proliferation, inhibited intestinal cell apoptosis, and promoted ISC differentiation into absorptive cells, goblet cells, and Paneth cells. The jejunum crypt cells from the mice in the LA group expanded into enteroids, resulting in a significantly greater enteroid area than that in the DON group. Furthermore, LA reversed the DON-mediated inhibition of the Akt/mTORC1/S6K1 signaling axis in the jejunum. Our results indicated that LA accelerates ISC regeneration to repair intestinal epithelial damage after DON insult by reactivating the Akt/mTORC1/S6K1 signaling pathway, which provides new implications for the function of LA in ISCs.
Collapse
Affiliation(s)
- Zhen-Hua Liu
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Wen-Wen Xie
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Geng-Xiu Zan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Jia-Yi Zhou
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China.
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Sittipo P, Kim HK, Han J, Lee MR, Lee YK. Vitamin D 3 suppresses intestinal epithelial stemness via ER stress induction in intestinal organoids. Stem Cell Res Ther 2021; 12:285. [PMID: 33985576 PMCID: PMC8117327 DOI: 10.1186/s13287-021-02361-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Vitamin D3 is important for normal function of the intestinal epithelial cells (IECs). In this study, we aimed to investigate the effects of vitamin D3 on the differentiation, stemness, and viability of healthy IECs in intestinal organoids. METHODS Intestinal organoids derived from mouse small intestine were treated with vitamin D3, and the effects on intestinal stemness and differentiation were evaluated using real-time PCR and immunofluorescence staining of the distinct lineage markers. Cell viability was analyzed using viability and apoptosis assays. RESULTS Vitamin D3 enhanced IEC differentiation into the distinct lineages of specialized IECs, including Paneth, goblet, and enteroendocrine cells and absorptive enterocytes. Decreased expression levels of leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) and the presence of several LGR5-green fluorescent protein (GFP)-positive cells were observed in vitamin D3-treated organoids derived from LGR5-GFP mice. The formation of the crypt-villus structure was also inhibited by vitamin D3, suggesting that vitamin D3 suppresses intestinal cell stemness. Furthermore, the expression levels of unfolded protein response genes, C/EBP homologous protein (CHOP), and activating transcription factor 6 (ATF6) were upregulated in vitamin D3-treated organoids. Moreover, vitamin D3 promoted apoptotic cell death in intestinal cells, which may be associated with the decrease in intestinal stemness. LGR5 gene expression, ISC number, and apoptotic cell death were partially recovered in the presence of the ER stress inhibitor tauroursodeoxycholic acid (TUDCA), suggesting that intestinal stemness suppression and intestinal apoptosis occurred via ER stress activation. CONCLUSIONS Our study provides important insights into the effects of vitamin D3 on the induction of IEC differentiation and apoptotic cell death, and inhibition of intestinal stemness accompanied by ER stress augmentation.
Collapse
Affiliation(s)
- Panida Sittipo
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Hyun Kyu Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Jaeseok Han
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Man Ryul Lee
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
| | - Yun Kyung Lee
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
| |
Collapse
|
4
|
Analysis of Gastrointestinal Responses Revealed Both Shared and Specific Targets of Zinc Oxide and Carbadox in Weaned Pigs. Antibiotics (Basel) 2020; 9:antibiotics9080463. [PMID: 32751572 PMCID: PMC7460413 DOI: 10.3390/antibiotics9080463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 12/28/2022] Open
Abstract
Antibiotics and pharmacological zinc supplementation were commonly used as growth promoters for several decades in the swine industry before being limited because of public health and environmental concerns. Further, the physiological and metabolic responses associated with their growth promotion effects are unclear. To characterize these responses induced by pharmacological zinc supplementation (2500 mg/kg) and carbadox (55 mg/kg), 192 post-weaning pigs were fed basal and test diets for 43 days. Compared with basal, pharmacological zinc and carbadox independently improved growth performance. Pharmacological zinc increased gastric mucosa thickness compared with basal zinc, while carbadox increased intestinal villus:crypt ratio compared with non-carbadox. Pharmacological zinc and carbadox independently reduced interleukin (IL)-1β concentration compared with basal zinc and non-carbadox. Pharmacological zinc increased IL-1RA:IL-1 ratio by 42% compared with basal zinc, while carbadox tended to increase the IL-10 and IL10:IL-12 ratio compared with non-carbadox. Carbadox increased fecal concentrations of histidine and lysine compared with non-carbadox. The independent effect of pharmacological zinc and carbadox on morphology and nutrient metabolism, and their shared effect on immunity may contribute to the additive effect on growth promotion. These results further confirmed the concept that growth promotion is multifactorial intervention. Therefore, elucidating growth-promoting effects and searching for alternatives should include wide-spectrum evaluation.
Collapse
|
5
|
Liu Z, Tang M, Zhao J, Chai R, Kang J. Looking into the Future: Toward Advanced 3D Biomaterials for Stem-Cell-Based Regenerative Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705388. [PMID: 29450919 DOI: 10.1002/adma.201705388] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/26/2017] [Indexed: 05/23/2023]
Abstract
Stem-cell-based therapies have the potential to provide novel solutions for the treatment of a variety of diseases, but the main obstacles to such therapies lie in the uncontrolled differentiation and functional engraftment of implanted tissues. The physicochemical microenvironment controls the self-renewal and differentiation of stem cells, and the key step in mimicking the stem cell microenvironment is to construct a more physiologically relevant 3D culture system. Material-based 3D assemblies of stem cells facilitate the cellular interactions that promote morphogenesis and tissue organization in a similar manner to that which occurs during embryogenesis. Both natural and artificial materials can be used to create 3D scaffolds, and synthetic organic and inorganic porous materials are the two main kinds of artificial materials. Nanotechnology provides new opportunities to design novel advanced materials with special physicochemical properties for 3D stem cell culture and transplantation. Herein, the advances and advantages of 3D scaffold materials, especially with respect to stem-cell-based therapies, are first outlined. Second, the stem cell biology in 3D scaffold materials is reviewed. Third, the progress and basic principles of developing 3D scaffold materials for clinical applications in tissue engineering and regenerative medicine are reviewed.
Collapse
Affiliation(s)
- Zhongmin Liu
- Department of Cardiovascular and Thoracic Surgery, Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
- Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 211189, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jinping Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
- Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 211189, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
6
|
Dosh RH, Jordan-Mahy N, Sammon C, Le Maitre CL. Tissue Engineering Laboratory Models of the Small Intestine. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:98-111. [DOI: 10.1089/ten.teb.2017.0276] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rasha Hatem Dosh
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
- Department of Anatomy and Histology, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Nicola Jordan-Mahy
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Christopher Sammon
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, United Kingdom
| | - Christine Lyn Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| |
Collapse
|
7
|
Zhang YH, Hu Y, Zhang Y, Hu LD, Kong X. Distinguishing three subtypes of hematopoietic cells based on gene expression profiles using a support vector machine. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2255-2265. [PMID: 29241664 DOI: 10.1016/j.bbadis.2017.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/20/2017] [Accepted: 12/01/2017] [Indexed: 02/08/2023]
Abstract
Hematopoiesis is a complicated process involving a series of biological sub-processes that lead to the formation of various blood components. A widely accepted model of early hematopoiesis proceeds from long-term hematopoietic stem cells (LT-HSCs) to multipotent progenitors (MPPs) and then to lineage-committed progenitors. However, the molecular mechanisms of early hematopoiesis have not been fully characterized. In this study, we applied a computational strategy to identify the gene expression signatures distinguishing three types of closely related hematopoietic cells collected in recent studies: (1) hematopoietic stem cell/multipotent progenitor cells; (2) LT-HSCs; and (3) hematopoietic progenitor cells. Each cell in these cell types was represented by its gene expression profile among a total number of 20,475 genes. The expression features were analyzed by a Monte-Carlo Feature Selection (MCFS) method, resulting in a feature list. Then, the incremental feature selection (IFS) and a support vector machine (SVM) optimized with a sequential minimum optimization (SMO) algorithm were employed to access the optimal classifier with the highest Matthews correlation coefficient (MCC) value of 0.889, in which 6698 features were used to represent cells. In addition, through an updated program of MCFS method, seventeen decision rules can be obtained, which can classify the three cell types with an overall accuracy of 0.812. Using a literature review, both the rules and the top features used for building the optimal classifier were confirmed to be commonly used or potential biological markers for distinguishing the three cell types of HSPCs. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Yu Hu
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Yuchao Zhang
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China.
| | - Lan-Dian Hu
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China.
| | - Xiangyin Kong
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China.
| |
Collapse
|
8
|
Hashemi M, Kalalinia F. Application of encapsulation technology in stem cell therapy. Life Sci 2015; 143:139-46. [DOI: 10.1016/j.lfs.2015.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/15/2015] [Accepted: 11/06/2015] [Indexed: 11/26/2022]
|
9
|
Huang CZ, Yu T, Chen QK. DNA Methylation Dynamics During Differentiation, Proliferation, and Tumorigenesis in the Intestinal Tract. Stem Cells Dev 2015; 24:2733-9. [PMID: 26413818 DOI: 10.1089/scd.2015.0235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA methylation, an epigenetic control mechanism in mammals, is widely present in the intestinal tract during the differentiation and proliferation of epithelial cells. Cells in stem cell pools or villi have different patterns of DNA methylation. The process of DNA methylation is dynamic and occurs at many relevant regulatory elements during the rapid transition of stem cells into fully mature, differentiated epithelial cells. Changes in DNA methylation patterns most often take place in enhancer and promoter regions and are associated with transcription factor binding. During differentiation, enhancer regions associated with genes important to enterocyte differentiation are demethylated, activating gene expression. Abnormal patterns of DNA methylation during differentiation and proliferation in the intestinal tract can lead to the formation of aberrant crypt foci and destroy the barrier and absorptive functions of the intestinal epithelium. Accumulation of these epigenetic changes may even result in tumorigenesis. In the current review, we discuss recent findings on the association between DNA methylation and cell differentiation and proliferation in the small intestine and highlight the possible links between dysregulation of this process and tumorigenesis.
Collapse
Affiliation(s)
- Can-Ze Huang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University , Guangzhou, Guangdong, People's Republic of China
| | - Tao Yu
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University , Guangzhou, Guangdong, People's Republic of China
| | - Qi-Kui Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University , Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
10
|
KAT5-mediated SOX4 acetylation orchestrates chromatin remodeling during myoblast differentiation. Cell Death Dis 2015; 6:e1857. [PMID: 26291311 PMCID: PMC4558493 DOI: 10.1038/cddis.2015.190] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/01/2015] [Accepted: 06/08/2015] [Indexed: 01/05/2023]
Abstract
Transcription factor SOX4 has been implicated in skeletal myoblast differentiation through the regulation of Cald1 gene expression; however, the detailed molecular mechanism underlying this process is largely unknown. Here, we demonstrate that SOX4 acetylation at lysine 95 by KAT5 (also known as Tip60) is essential for Cald1 promoter activity at the onset of C2C12 myoblast differentiation. KAT5 chromodomain was found to facilitate SOX4 recruitment to the Cald1 promoter, which is involved in chromatin remodeling at the promoter. Chromatin occupancy analysis of SOX4, KAT5, and HDAC1 indicated that the expression of putative SOX4 target genes during C2C12 myoblast differentiation is specifically regulated by the molecular switching of the co-activator KAT5 and the co-repressor HDAC1 on SOX4 transcriptional activation.
Collapse
|
11
|
Vanhoecke B, Bateman E, Mayo B, Vanlancker E, Stringer A, Thorpe D, Keefe D. Dark Agouti rat model of chemotherapy-induced mucositis: establishment and current state of the art. Exp Biol Med (Maywood) 2015; 240:725-41. [PMID: 25966981 PMCID: PMC4935219 DOI: 10.1177/1535370215581309] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mucositis is a major oncological problem. The entire gastrointestinal and genitourinary tract and also other mucosal surfaces can be affected in recipients of radiotherapy, and/or chemotherapy. Major progress has been made in recent years in understanding the mechanisms of oral and small intestinal mucositis, which appears to be more prominent than colonic damage. This progress is largely due to the development of representative laboratory animal models of mucositis. This review focuses on the development and establishment of the Dark Agouti rat mammary adenocarcinoma model by the Mucositis Research Group of the University of Adelaide over the past 20 years to characterize the mechanisms underlying methotrexate-, 5-fluorouracil-, and irinotecan-induced mucositis. It also aims to summarize the results from studies using different animal model systems to identify new molecular and cellular markers of mucositis.
Collapse
Affiliation(s)
- Barbara Vanhoecke
- Mucositis Research Group, Centre for Personalised Cancer Medicine (CPCM), Centre for Clinical Research Excellence (CCRE) in Oral Health, Faculty of Health Sciences, University of Adelaide, Adelaide, 5005 South Australia, Australia Laboratory of Microbial Ecology and Technology, University of Ghent, 9000 Ghent, Belgium
| | - Emma Bateman
- Mucositis Research Group, Centre for Personalised Cancer Medicine (CPCM), Centre for Clinical Research Excellence (CCRE) in Oral Health, Faculty of Health Sciences, University of Adelaide, Adelaide, 5005 South Australia, Australia
| | - Bronwen Mayo
- Mucositis Research Group, Centre for Personalised Cancer Medicine (CPCM), Centre for Clinical Research Excellence (CCRE) in Oral Health, Faculty of Health Sciences, University of Adelaide, Adelaide, 5005 South Australia, Australia Sansom Institute for Health Research, University of South Australia, Adelaide, 5001 South Australia, Australia
| | - Eline Vanlancker
- Laboratory of Microbial Ecology and Technology, University of Ghent, 9000 Ghent, Belgium
| | - Andrea Stringer
- Sansom Institute for Health Research, University of South Australia, Adelaide, 5001 South Australia, Australia
| | - Daniel Thorpe
- Sansom Institute for Health Research, University of South Australia, Adelaide, 5001 South Australia, Australia
| | - Dorothy Keefe
- Mucositis Research Group, Centre for Personalised Cancer Medicine (CPCM), Centre for Clinical Research Excellence (CCRE) in Oral Health, Faculty of Health Sciences, University of Adelaide, Adelaide, 5005 South Australia, Australia Director, SA Cancer Service, Royal Adelaide Hospital, Adelaide, 5005 South Australia, Australia
| |
Collapse
|
12
|
Guezguez A, Paré F, Benoit YD, Basora N, Beaulieu JF. Modulation of stemness in a human normal intestinal epithelial crypt cell line by activation of the WNT signaling pathway. Exp Cell Res 2014; 322:355-64. [PMID: 24534551 DOI: 10.1016/j.yexcr.2014.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/04/2014] [Accepted: 02/07/2014] [Indexed: 12/21/2022]
Abstract
The small intestine consists of two histological compartments composed of the crypts and the villi. The function of the adult small intestinal epithelium is mediated by four different types of mature cells: enterocytes, goblet, enteroendocrine and Paneth. Undifferentiated cells reside in the crypts and produce these four types of mature cells. The niche-related Wnt and Bmp signaling pathways have been suggested to be involved in the regulation and maintenance of the stem cell microenvironment. In our laboratory, we isolated the first normal human intestinal epithelial crypt (HIEC) cell model from the human fetal intestine and in this study we investigated the expression of a panel of intestinal stem cell markers in HIEC cells under normal culture parameters as well as under conditions that mimic the stem cell microenvironment. The results showed that short term stimulation of HIEC cells with R-spondin 1 and Wnt-3a±SB-216763, a glycogen synthase kinase 3β (GSK3β) inhibitor, induced β-catenin/TCF activity and expression of the WNT target genes, cyclin D2 and LGR5. Treatment of HIEC cells with noggin, an antagonist of BMP signaling, abolished SMAD2/5/8 phosphorylation. Inducing a switch from inactive WNT/active BMP toward active WNT/inactive BMP pathways was sufficient to trigger a robust intestinal primordial stem-like cell signature with predominant LGR5, PHLDA1, PROM1, SMOC2 and OLFM4 expression. These findings demonstrate that even fully established cultures of intestinal cells can be prompted toward a CBC stem cell-like phenotype. This model should be useful for studying the regulation of human intestinal stem cell self-renewal and differentiation.
Collapse
Affiliation(s)
- Amel Guezguez
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4.
| | - Fréderic Paré
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4.
| | - Yannick D Benoit
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4.
| | - Nuria Basora
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4.
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4.
| |
Collapse
|
13
|
Yang J, Su Y, Zhou Y, Besner GE. Heparin-binding EGF-like growth factor (HB-EGF) therapy for intestinal injury: Application and future prospects. ACTA ACUST UNITED AC 2013; 21:95-104. [PMID: 24345808 DOI: 10.1016/j.pathophys.2013.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Throughout the past 20 years, we have been investigating the potential therapeutic roles of heparin-binding EGF-like growth factor (HB-EGF), a member of the epidermal growth factor family, in various models of intestinal injury including necrotizing enterocolitis (NEC), intestinal ischemia/reperfusion (I/R) injury, and hemorrhagic shock and resuscitation (HS/R). Our studies have demonstrated that HB-EGF acts as an effective mitogen, a restitution-inducing reagent, a cellular trophic factor, an anti-apoptotic protein and a vasodilator, via its effects on various cell types in the intestine. In the current paper, we have reviewed the application and therapeutic effects of HB-EGF in three classic animal models of intestinal injury, with particular emphasis on its protection of the intestines from NEC. Additionally, we have summarized the protective functions of HB-EGF on various target cells in the intestine. Lastly, we have provided a brief discussion focusing on the future development of HB-EGF clinical applications for the treatment of various forms of intestinal injury including NEC.
Collapse
Affiliation(s)
- Jixin Yang
- The Research Institute at Nationwide Children's Hospital, Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA.
| | - Yanwei Su
- The Research Institute at Nationwide Children's Hospital, Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA.
| | - Yu Zhou
- The Research Institute at Nationwide Children's Hospital, Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA.
| | - Gail E Besner
- The Research Institute at Nationwide Children's Hospital, Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA.
| |
Collapse
|
14
|
Cao L, Kuratnik A, Xu W, Gibson JD, Kolling F, Falcone ER, Ammar M, Van Heyst MD, Wright DL, Nelson CE, Giardina C. Development of intestinal organoids as tissue surrogates: cell composition and the epigenetic control of differentiation. Mol Carcinog 2013; 54:189-202. [PMID: 24115167 DOI: 10.1002/mc.22089] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/26/2013] [Accepted: 08/14/2013] [Indexed: 01/14/2023]
Abstract
Intestinal organoids are multicellular crypt-like structures that can be derived from adult intestinal stem cells (ISCs), embryonic stem cells (ESCs) or induced pluripotent stem cells (IPSCs). Here we show that intestinal organoids generated from mouse ESCs were enriched in ISCs and early progenitors. Treatment of these organoids with a γ-secretase inhibitor increased Math1 and decreased Hes1 expression, indicating Notch signaling regulates ISC differentiation in these organoids. Lgr5 and Tert positive ISCs constituted approximately 10% and 20% of the organoids. As found in native tissue, Lgr5 and Tert expressing cells resolved into two discreet populations, which were stable over time. Intestinal organoids derived from cancer-prone Apc(Min/+) mice showed similar numbers of ISCs, but had reduced Math1 expression, indicating a suppressed secretory cell differentiation potential (as found in intestinal tissue). Apc(Min/+) organoids were used to screen epigenetically active compounds for those that increased Math1 expression and organoid differentiation (including HDAC inhibitors, Sirtuin (SIRT) modulators and methyltransferase inhibitors). Broad-spectrum HDAC inhibitors increased both Math1 and Muc2 expression, indicating an ability to promote the suppressed secretory cell differentiation pathway. Other epigenetic compounds had a diverse impact on cell differentiation, with a strong negative correlation between those that activated the secretory marker Muc2 and those that activated the absorptive cell marker Fabp2. These data show that ESC-derived intestinal organoids can be derived in large numbers, contain distinct ISC types and can be used to screen for agents that promote cell differentiation through different lineage pathways.
Collapse
Affiliation(s)
- Li Cao
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, 06269-3125
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Semiz S, Dujic T, Causevic A. Pharmacogenetics and personalized treatment of type 2 diabetes. Biochem Med (Zagreb) 2013; 23:154-71. [PMID: 23894862 PMCID: PMC3900064 DOI: 10.11613/bm.2013.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a worldwide epidemic with considerable health and economic consequences. T2DM patients are often treated with more than one drug, including oral antidiabetic drugs (OAD) and drugs used to treat diabetic complications, such as dyslipidemia and hypertension. If genetic testing could be employed to predict treatment outcome, appropriate measures could be taken to treat T2DM more efficiently. Here we provide a review of pharmacogenetic studies focused on OAD and a role of common drug-metabolizing enzymes (DME) and drug-transporters (DT) variants in therapy outcomes. For example, genetic variations of several membrane transporters, including SLC2A1/2 and SLC47A1/2 genes, are implicated in the highly variable glycemic response to metformin, a first-line drug used to treat newly diagnosed T2DM. Furthermore, cytochrome P450 (CYP) enzymes are implicated in variation of sulphonylurea and meglitinide metabolism. Additional variants related to drug target and diabetes risk genes have been also linked to interindividual differences in the efficacy and toxicity of OAD. Thus, in addition to promoting safe and cost-effective individualized diabetes treatment, pharmacogenomics has a great potential to complement current efforts to optimize treatment of diabetes and lead towards its effective and personalized care.
Collapse
Affiliation(s)
- Sabina Semiz
- Department of Biochemistry and Clinical Analysis, Faculty of Pharmacy, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | | | | |
Collapse
|
16
|
Tönjes A, Kovacs P. SGLT2: a potential target for the pharmacogenetics of Type 2 diabetes? Pharmacogenomics 2013; 14:825-33. [DOI: 10.2217/pgs.13.61] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The kidney has attracted the attention of diabetologists as an organ involved in the regulation of glucose homeostasis not only by gluconeogenesis, but also by renal glucose excretion. Sodium–glucose cotransporters (SGLTs), particularly SGLT2, are responsible for reabsorption of up to 99% of the filtered glucose. SGLT2 is coded by the SLC5A2 gene, which maps on chromosome 16. Pharmacological reduction of tubular glucose reabsorption results in improved glycemic control in Type 2 diabetic patients. Since the SGLTs reabsorb most of the filtered glucose (90%), it is not surprising that mutations in SLC5A2 cause familial renal glucosuria. A recent study pointed out a possible role of common genetic variation in SLC5A2 in the control of glucose homeostasis. SLC5A2 polymorphisms might therefore represent potential candidates for pharmacogenomic studies targeting the impact of these variants on the efficacy of antidiabetic treatment that is based on inhibition of SGLT2 activity.
Collapse
Affiliation(s)
- Anke Tönjes
- University of Leipzig, Medical Department, Liebigstraße 21, 04103 Leipzig, Germany
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany
| | - Peter Kovacs
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany
- University of Leipzig, Medical Department, Liebigstraße 21, 04103 Leipzig, Germany
| |
Collapse
|
17
|
Hammoud SS, Cairns BR, Jones DA. Epigenetic regulation of colon cancer and intestinal stem cells. Curr Opin Cell Biol 2013; 25:177-83. [PMID: 23402869 DOI: 10.1016/j.ceb.2013.01.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/04/2013] [Accepted: 01/21/2013] [Indexed: 12/15/2022]
Abstract
The importance and role of the cellular epigenome in cell fating and development have been studied for decades. The epigenome encompasses a range of attributes including DNA methylation, histone modifications, and chromatin remodelers; together these components define the cellular transcriptome, identity, and function. The cellular epigenome is dynamic in response to environmental signals, modifiable during normal cell differentiation and is heritable in daughter cells. This plasticity, however, poses a risk for misregulation and may underlie a number of hereditary disorders, development defects, and cancer. Although the first epigenetic change described in cancer was gene hypomethylation [Holliday R, Jeggo PA: Mechanisms for changing gene expression and their possible relationship to carcinogenesis.Cancer Surv 1985, 4:557-581; Feinberg AP, Vogelstein B: Hypomethylation distinguishes genes of some human cancers from their normal counterparts.Nature 1983, 301:89-92], we know that cancers not only display global hypomethylation, but also, site-specific gene hypermethylation in addition to changes in chromatin modifications. Mechanisms explaining the sometimes paradoxical epigenetic changes observed in cancer, their contributions to tumor initiation and progression and how epigenetics relate to genetic events are poorly understood. In this review we will briefly discuss recent findings on the epigenomic states observed in colon cancer, in particular, how perturbations to the genome and epigenome together may contribute to initiation and progression of colon cancer.
Collapse
Affiliation(s)
- Saher Sue Hammoud
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
18
|
Jang SM, Kim JW, Kim D, Kim CH, An JH, Choi KH, Rhee S. Sox4-mediated caldesmon expression facilitates skeletal myoblast differentiation. J Cell Sci 2013; 126:5178-88. [DOI: 10.1242/jcs.131581] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Caldesmon (CaD), originally identified as an actin-regulatory protein, is involved in the regulation of diverse actin-related signaling processes, including cell migration and proliferation, in various cells. The cellular function of CaD has been studied primarily in the smooth muscle system; nothing is known about its function in skeletal muscle differentiation. In this study, we found that the expression of CaD gradually increased as C2C12 myoblast differentiation progressed. Silencing of CaD inhibited cell spreading and migration, resulting in a decrease in myoblast differentiation. Promoter analysis of the caldesmon gene (CALD1) and gel mobility shift assays identified Sox4 as a major trans-acting factor for the regulation of CALD1 expression during myoblast differentiation. Silencing of Sox4 decreased not only CaD protein synthesis but also myoblast fusion in C2C12 cells and myofibril formation in mouse embryonic muscle. Overexpression of CaD in Sox4-silenced C2C12 cells rescued the differentiation process. These results clearly demonstrate that CaD, regulated by Sox4 transcriptional activity, contributes to skeletal muscle differentiation.
Collapse
|
19
|
TCF7L2 and therapeutic response to sulfonylureas in patients with type 2 diabetes. BMC MEDICAL GENETICS 2011; 12:30. [PMID: 21349175 PMCID: PMC3051886 DOI: 10.1186/1471-2350-12-30] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 02/24/2011] [Indexed: 12/14/2022]
Abstract
Background Variants in the TCF7L2 have been shown to be associated with an increased risk for type 2 diabetes (T2D). Since the association with diabetes could be explained by effects on insulin secretion, we investigated whether patients with diabetes risk alleles at rs7903146 might have an altered hypoglycaemic response to sulfonylureas (SUs). Methods We recruited 189 patients with T2D being treated with SUs and determined the rs7903146 diabetes risk genotype. We used a logistic regression with secondary SU failure defined as an A1C ≥7.0% after 6 months of SU treatment. Results In univariate regression analyses, TCF7L2 genotype was the only predictor of SU treatment failure. The rs7903146 T allele was significantly more frequent in the group of patients who failed to respond to SU (36%) than in the control group (26%) [P = 0.046; odds ratio (OR): 1.57 (1.01-2.45) in an additive mode of inheritance]. Conclusions Our data suggest that patients with diabetes risk alleles in TCF7L2 have an altered hypoglycaemic response to SUs resulting in earlier secondary failure.
Collapse
|
20
|
Braga Neto MB, Aguiar CV, Maciel JG, Oliveira BMC, Sevilleja JE, Oriá RB, Brito GAC, Warren CA, Guerrant RL, Lima AAM. Evaluation of HIV protease and nucleoside reverse transcriptase inhibitors on proliferation, necrosis, apoptosis in intestinal epithelial cells and electrolyte and water transport and epithelial barrier function in mice. BMC Gastroenterol 2010; 10:90. [PMID: 20701796 PMCID: PMC2931456 DOI: 10.1186/1471-230x-10-90] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 08/11/2010] [Indexed: 12/29/2022] Open
Abstract
Background Protease inhibitors (PI's) and reverse transcriptase drugs are important components of highly active antiretroviral therapy (HAART) for treating human acquired immunodeficiency syndrome (AIDS). Long-term clinical therapeutic efficacy and treatment compliance of these agents have been limited by undesirable side-effects, such as diarrhea. This study aims to investigate the effects of selected antiretroviral agents on intestinal histopathology and function in vivo and on cell proliferation and death in vitro. Methods Selected antiretroviral drugs were given orally over 7 days, to Swiss mice, as follows: 100 mg/kg of nelfinavir (NFV), indinavir (IDV), didanosine (DDI) or 50 mg/kg of zidovudine (AZT). Intestinal permeability measured by lactulose and mannitol assays; net water and electrolyte transport, in perfused intestinal segments; and small intestinal morphology and cell apoptosis were assessed in treated and control mice. In vitro cell proliferation was evaluated using the WST-1 reagent and apoptosis and necrosis by flow cytometry analysis. Results NFV, IDV, AZT and DDI caused significant reductions in duodenal and in jejunal villus length (p < 0.05). IDV and AZT increased crypt depth in the duodenum and AZT increased crypt depth in the jejunum. NFV, AZT and DDI significantly decreased ileal crypt depth. All selected antiretroviral drugs significantly increased net water secretion and electrolyte secretion, except for DDI, which did not alter water or chloride secretion. Additionally, only NFV significantly increased mannitol and lactulose absorption. NFV and IDV caused a significant reduction in cell proliferation in vitro at both 24 h and 48 h. DDI and AZT did not alter cell proliferation. There was a significant increase in apoptosis rates in IEC-6 cells after 24 h with 70 ug/mL of NFV (control: 4.7% vs NFV: 22%) while IDV, AZT and DDI did not show any significant changes in apoptosis compared to the control group. In jejunal sections, IDV and NFV significantly increased the number of TUNEL positive cells. Conclusion The PI's, NFV and IDV, increased cell apoptosis in vivo, water and electrolyte secretion and intestinal permeability and decreased villus length and cell proliferation. NFV was the only drug tested that increased cell apoptosis in vitro. The nucleoside reverse transcriptase inhibitors, AZT and DDI, did not affect cell apoptosis or proliferation. These findings may partly explain the intestinal side-effects associated with PI's.
Collapse
Affiliation(s)
- Manuel B Braga Neto
- Institute of Biomedicine and Clinical Research Unit-University Hospital, Federal University of Ceará, Fortaleza, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Barrett's metaplasia is discussed in the context of a general theory for the formation of metaplasias based on developmental biology. The phenotype of a particular tissue type becomes established during embryonic development by the expression of a specific set of transcription factors. If this combination becomes altered, then the tissue type can be altered. Such events may occur by mutation or by environmental effects on gene expression, normally within the stem cell population of the tissue. A macroscopic patch of metaplastic tissue will arise only if the new gene activity state is self-sustaining in the absence of its original causes, and if the new tissue type can outgrow the parent tissue type. An important candidate gene for the causation of Barrett's metaplasia is Cdx2 (Caudal-type homeobox 2). In normal development, this is expressed in the future intestine, but not the future foregut. Mouse knockout studies have shown that it is needed for intestinal development, and that its loss from adult intestine can lead to squamous transformations. It is also expressed in Barrett's metaplasia and can be activated in oesophageal cell cultures by treatment with bile acids. We have investigated the ability of Cdx2 to bring about intestinal transformations in oesophageal epithelium. Our results show that Cdx2 can activate a programme of intestinal gene expression when overexpressed in HET-1A cells, or in fetal epithelium, but not in the adult epithelium. This suggests that Cdx2, although necessary for formation of intestinal tissue, is not sufficient to provoke Barrett's metaplasia in adult life and that overexpression of additional transcription factors is necessary. In terms of diet and nutrition, there is a known association of Barrett's metaplasia with obesity. This may work through an increased risk of gastro-oesophageal reflux. Acid and bile are known to activate Cdx2 expression in oesophageal cells. It may also increase circulating levels of TNFalpha (tumour necrosis factor alpha), which activates Cdx2. In addition, there may be effects of diet on the composition of the bile.
Collapse
|
22
|
Boyd M, Bressendorff S, Møller J, Olsen J, Troelsen JT. Mapping of HNF4alpha target genes in intestinal epithelial cells. BMC Gastroenterol 2009; 9:68. [PMID: 19761587 PMCID: PMC2761415 DOI: 10.1186/1471-230x-9-68] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 09/17/2009] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The role of HNF4alpha has been extensively studied in hepatocytes and pancreatic beta-cells, and HNF4alpha is also regarded as a key regulator of intestinal epithelial cell differentiation. The aim of the present work is to identify novel HNF4alpha target genes in the human intestinal epithelial cells in order to elucidate the role of HNF4alpha in the intestinal differentiation progress. METHODS We have performed a ChIP-chip analysis of the human intestinal cell line Caco-2 in order to make a genome-wide identification of HNF4alpha binding to promoter regions. The HNF4alpha ChIP-chip data was matched with gene expression and histone H3 acetylation status of the promoters in order to identify HNF4alpha binding to actively transcribed genes with an open chromatin structure. RESULTS 1,541 genes were identified as potential HNF4alpha targets, many of which have not previously been described as being regulated by HNF4alpha. The 1,541 genes contributed significantly to gene ontology (GO) pathways categorized by lipid and amino acid transport and metabolism. An analysis of the homeodomain transcription factor Cdx-2 (CDX2), the disaccharidase trehalase (TREH), and the tight junction protein cingulin (CGN) promoters verified that these genes are bound by HNF4alpha in Caco2 cells. For the Cdx-2 and trehalase promoters the HNF4alpha binding was verified in mouse small intestine epithelium. CONCLUSION The HNF4alpha regulation of the Cdx-2 promoter unravels a transcription factor network also including HNF1alpha, all of which are transcription factors involved in intestinal development and gene expression.
Collapse
Affiliation(s)
- Mette Boyd
- Department of Cellular and Molecular Medicine, Panum Institute, Building 6,4, University of Copenhagen, Blegdamsvej 3B 2200 Copenhagen N, Denmark.
| | | | | | | | | |
Collapse
|
23
|
Yoo YA, Kang MH, Kim BS, Kim JS, Seo JH. Sustained co-cultivation with human placenta-derived MSCs enhances ALK5/Smad3 signaling in human breast epithelial cells, leading to EMT and differentiation. Differentiation 2009; 77:450-61. [PMID: 19375841 DOI: 10.1016/j.diff.2009.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/03/2009] [Accepted: 03/09/2009] [Indexed: 12/11/2022]
Abstract
The interaction between mammary epithelial cells and their surrounding microenvironment are important in the development of the mammary gland. Thus, mesenchymal stem cells (MSCs), which retain pluripotency for various mesenchymal lineages, may provide a permissive environment for the morphologic alteration and differentiation of mammary epithelial cells. To this end, we investigated whether the interactions between mammary epithelial cells and human placenta-derived MSCs (hPMSC) affect the morphology, proliferation, and differentiation of epithelial cells in a co-culture system. We show that after co-culture with hPMSCs, human mammary epithelial cell lines (MCF-10F and HEMC) underwent significant morphologic alterations and a dramatic increase in ductal-alveolar branching, which was accompanied by a decrease or loss of the epithelial marker E-cadherin and a gain of the mesenchymal markers, alpha-SMA and vimentin. MCF-10F and HEMC proliferation was also inhibited in the presence of hPMSCs, and this retardation in growth was due to cell cycle arrest. Furthermore, in MCF-10F and HMEC cells, hPMSCs induced the production of lipid droplets, milk fat globule protein, and milk protein lactoferrin, which are markers of functional mammary differentiation. We also noticed an elevation in ALK5 and phosphorylated Smad3 protein levels upon hPMSC co-culture. Strikingly, the changes in morphology, proliferation, and differentiation were reversed by treatment with ALK5 or Smad3 knockdown in MCF-10F/hPMSC co-cultures. Collectively, our findings suggest that co-cultivation with hPMSCs leads to epithelial to mesenchymal transition (EMT) and differentiation of human breast epithelial cells through the ALK5/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Young A Yoo
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul 136-705, South Korea
| | | | | | | | | |
Collapse
|
24
|
Drozdowski L, Iordache C, Clandinin MT, Wild G, Todd Z, Thomson ABR. Dexamethasone and GLP-2 given to lactating rat dams influence glucose uptake in suckling and postweanling offspring. JPEN J Parenter Enteral Nutr 2008; 33:433-9. [PMID: 19103981 DOI: 10.1177/0148607108324874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Glucagon-like peptide-2 (GLP-2) enhances intestinal absorption in adult animals. Glucocorticosteroids accelerate the ontogeny of the intestine and increase sugar uptake in adult animals. Modifying the maternal diet during lactation alters nutrient uptake in the offspring. The authors hypothesized that GLP-2 and dexamethasone, when administrated to lactating rat dams, enhance sugar uptake in the suckling and postweanling offspring. METHODS Rat dams were treated during lactation with GLP-2 (0.1 microg/g/day subcutaneously [SC], twice daily), dexamethasone (0.128 microg/g/day SC, once daily), GLP-2 + dexamethasone (same doses), or placebo. The suckling offspring were sacrificed at 19-21 days of age, and the postweanlings were sacrificed 4 weeks later. Intestinal glucose and fructose uptake was assessed using an in vitro ring technique. RESULTS GLP-2 and dexamethasone resulted in lower body weights, and dexamethasone caused intestinal atrophy in sucklings. The jejunal atrophy in sucklings given dexamethasone was prevented by GLP-2 + dexamethasone. In sucklings, the maximal transport rate and the Michaelis affinity constant for ileal glucose uptake were both increased by GLP-2 and GLP-2 + dexamethasone. In contrast, in postweanlings, the maximal transport rate for jejunal glucose uptake was reduced by dexamethasone and GLP-2, as was ileal fructose uptake. CONCLUSIONS Treating lactating rat dams with GLP-2 or dexamethasone enhances glucose uptake in sucklings, but the late effect is a reduction in glucose and fructose absorption in postweanlings. The nutritional significance of these findings remains to be established.
Collapse
Affiliation(s)
- Laurie Drozdowski
- Division of Gastroenterology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Braga-Neto MB, Warren CA, Oriá RB, Monteiro MS, Maciel AAS, Brito GAC, Lima AAM, Guerrant RL. Alanyl-glutamine and glutamine supplementation improves 5-fluorouracil-induced intestinal epithelium damage in vitro. Dig Dis Sci 2008; 53:2687-96. [PMID: 18320312 PMCID: PMC4003886 DOI: 10.1007/s10620-008-0215-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 02/01/2008] [Indexed: 12/09/2022]
Abstract
In this study, we have examined the role of glutamine derivatives in reducing 5-fluorouracil (5-FU)-induced epithelial damage in an undifferentiated crypt intestinal cell line, IEC-6. In this model, we have investigated proliferation indirectly by detecting the enzyme-derived formazan dye from the tetrazolium salt WST-1 in viable cells at 24 and 48 h after 5-FU treatment. Migration was measured at 12 and 24 h after razor scraping of the cell monolayer. Cell death was measured by quantifying the percentage of apoptotic and necrotic figures by flow cytometry at 12 and 24 h following 5-FU challenge. Neither glutamine nor alanyl-glutamine prevented 5-FU-induced apoptosis and necrosis in IEC-6 cells at 12 and 24 h after 5-FU challenge. However, glutamine and alanyl-glutamine enhanced migration and proliferation when compared with 5-FU-treated controls (P < 0.05). These new findings support our earlier study on the benefit of oral glutamine in enhancing epithelial recovery after 5-FU challenge.
Collapse
Affiliation(s)
- Manuel B. Braga-Neto
- Institute of Biomedicine and Clinical Research Unit-University Hospital, Federal University of Ceará, Fortaleza, Brazil
| | - Cirle A. Warren
- Center for Global Health, School of Medicine, Division of Infectious Diseases and International Health, MR4, Lane Road, Room 3148, Charlottesville, VA 22908, USA
| | - Reinaldo B. Oriá
- Institute of Biomedicine and Clinical Research Unit-University Hospital, Federal University of Ceará, Fortaleza, Brazil. Department of Morphology, Federal University of Ceará, Fortaleza, Brazil
| | - Manuel S. Monteiro
- Institute of Biomedicine and Clinical Research Unit-University Hospital, Federal University of Ceará, Fortaleza, Brazil
| | - Andressa A. S. Maciel
- Institute of Biomedicine and Clinical Research Unit-University Hospital, Federal University of Ceará, Fortaleza, Brazil
| | - Gerly A. C. Brito
- Department of Morphology, Federal University of Ceará, Fortaleza, Brazil. Department of Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Aldo A. M. Lima
- Institute of Biomedicine and Clinical Research Unit-University Hospital, Federal University of Ceará, Fortaleza, Brazil. Department of Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Richard L. Guerrant
- Institute of Biomedicine and Clinical Research Unit-University Hospital, Federal University of Ceará, Fortaleza, Brazil. Center for Global Health, School of Medicine, Division of Infectious Diseases and International Health, MR4, Lane Road, Room 3148, Charlottesville, VA 22908, USA
| |
Collapse
|
26
|
Chang J, Chance MR, Nicholas C, Ahmed N, Guilmeau S, Flandez M, Wang D, Byun DS, Nasser S, Albanese JM, Corner GA, Heerdt BG, Wilson AJ, Augenlicht LH, Mariadason JM. Proteomic changes during intestinal cell maturation in vivo. J Proteomics 2008; 71:530-46. [PMID: 18824147 DOI: 10.1016/j.jprot.2008.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 08/25/2008] [Accepted: 08/28/2008] [Indexed: 12/28/2022]
Abstract
Intestinal epithelial cells undergo progressive cell maturation as they migrate along the crypt-villus axis. To determine molecular signatures that define this process, proteins differentially expressed between the crypt and villus were identified by 2D-DIGE and MALDI-MS. Forty-six differentially expressed proteins were identified, several of which were validated by immunohistochemistry. Proteins upregulated in the villus were enriched for those involved in brush border assembly and lipid uptake, established features of differentiated intestinal epithelial cells. Multiple proteins involved in glycolysis were also upregulated in the villus, suggesting increased glycolysis is a feature of intestinal cell differentiation. Conversely, proteins involved in nucleotide metabolism, and protein processing and folding were increased in the crypt, consistent with functions associated with cell proliferation. Three novel paneth cell markers, AGR2, HSPA5 and RRBP1 were also identified. Notably, significant correlation was observed between overall proteomic changes and corresponding gene expression changes along the crypt-villus axis, indicating intestinal cell maturation is primarily regulated at the transcriptional level. This proteomic profiling analysis identified several novel proteins and functional processes differentially induced during intestinal cell maturation in vivo. Integration of proteomic, immunohistochemical, and parallel gene expression datasets demonstrate the coordinated manner in which intestinal cell maturation is regulated.
Collapse
Affiliation(s)
- Jinsook Chang
- Center for Proteomics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kovacs P, Berndt J, Ruschke K, Klöting N, Schön MR, Körner A, Stumvoll M, Blüher M. TCF7L2 gene expression in human visceral and subcutaneous adipose tissue is differentially regulated but not associated with type 2 diabetes mellitus. Metabolism 2008; 57:1227-31. [PMID: 18702948 DOI: 10.1016/j.metabol.2008.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 04/29/2008] [Indexed: 01/22/2023]
Abstract
Variants in the TCF7L2 gene have been associated with type 2 diabetes mellitus (T2DM), but the causal variant(s) is still unknown. We studied the TCF7L2 messenger RNA (mRNA) expression in paired samples of visceral and subcutaneous adipose tissue from 49 subjects using quantitative real-time polymerase chain reaction and its relation to obesity and T2DM. All subjects were genotyped for the previously described TCF7L2 diabetes risk variants. Independent of age, sex, obesity, and diabetes status, we found >3-fold higher TCF7L2 mRNA expression in subcutaneous compared with visceral adipose tissue. There was no correlation between visceral and subcutaneous TCF7L2 expression. No differences in adipose tissue TCF7L2 mRNA expression levels were found between diabetic and nondiabetic subjects, or between lean and obese subjects (all Ps > .05). In addition, there was no association between TCF7L2 genetic variants and mRNA expression. Based on our data, TCF7L2 mRNA expression is fat-depot specific but does not seem to provide the mechanistic link explaining genetic association with T2DM.
Collapse
Affiliation(s)
- Peter Kovacs
- Junior Research Group N06, Interdisciplinary Centre for Clinical Research Leipzig, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Piscaglia AC, Novi M, Campanale M, Gasbarrini A. Stem cell-based therapy in gastroenterology and hepatology. MINIM INVASIV THER 2008; 17:100-18. [PMID: 18465445 DOI: 10.1080/13645700801969980] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protagonists of a new scientific era, stem cells are promising tools on which regenerative medicine relies for the treatment of human pathologies. Stem cells can be obtained from various sources, including embryos, fetal tissues, umbilical cord blood, and also terminally differentiated organs. Once forced to expand and differentiate into functional progenies, stem cells may become suitable for cell replacement and tissue engineering. The manipulation and/or stimulation of adult stem cells seems to be particularly promising, as it could improve the endogenous regenerative potential without risks of rejection and overcome the ethical and political issues related to embryonic stem cell research. Stem cells are already leaving the bench and reaching the bedside, despite an incomplete knowledge of the genetic control program driving their fate and plasticity. In gastroenterology and hepatology, the first attempts to translate stem cell basic research into novel therapeutic strategies have been made for the treatment of several disorders, such as inflammatory bowel diseases, diabetes mellitus, celiachy and acute or chronic hepatopaties. Nonetheless, critical aspects need to be further addressed, including the long-term safety, tolerability and efficacy of cell-based treatments, as well as their carcinogenic potential. Aim of this review is to summarize the state-of-the-arts on gastrointestinal and hepatic stem cells and on stem cell-based therapies in gastroenterology and hepatology, highlighting both the benefits and the potential risks of these new tools for the treatment and prevention of human diseases.
Collapse
Affiliation(s)
- Anna Chiara Piscaglia
- Gastrointestinal and Hepatic Stem Cell Research Group (G.H.S.C.) , Department of Internal Medicine and Gastroenterology, Gemelli Hospital, Catholic University of Rome, Rome, Italy
| | | | | | | |
Collapse
|
29
|
George MD, Wehkamp J, Kays RJ, Leutenegger CM, Sabir S, Grishina I, Dandekar S, Bevins CL. In vivo gene expression profiling of human intestinal epithelial cells: analysis by laser microdissection of formalin fixed tissues. BMC Genomics 2008; 9:209. [PMID: 18457593 PMCID: PMC2394537 DOI: 10.1186/1471-2164-9-209] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 05/05/2008] [Indexed: 01/20/2023] Open
Abstract
Background The small intestinal epithelium mediates vital functions of nutrient absorption and host defense. The spatial organization of the epithelial cells along the crypt-villus axis segregates them into regions of specialized function. However, the differences in transcriptional programming and the molecular machinery that governs the migration, adhesion, and differentiation of intestinal epithelial cell lineages in humans remain under-explored. To increase our understanding of these mechanisms, we have evaluated gene expression patterns of ileal epithelial cells isolated by laser capture microdissection from either the villus epithelial or crypt cell regions of healthy human small intestinal mucosa. Expression profiles in villus and crypt epithelium were determined by DNA microarray, quantitative real-time PCR, and immunohistochemistry based methods. The expression levels of selected epithelial biomarkers were also compared between gastrointestinal tissues. Results Previously established biomarkers as well as a novel and distinct set of genes believed to be linked to epithelial cell motility, adhesion, and differentiation were found to be enriched in each of the two corresponding cell populations (GEO accession: GSE10629). Additionally, high baseline expression levels of innate antimicrobials, alpha defensin 5 (HD5) and regenerating islet-derived 3 alpha (Reg3A), were detected exclusively within the small bowel crypt, most notably in the ileum in comparison to other sites along the gastrointestinal tract. Conclusion The elucidation of differential gene expression patterns between crypt and villus epithelial cell lineages in human ileal tissue provides novel insights into the molecular machinery that mediates their functions and spatial organization. Moreover, our findings establish an important framework of knowledge for future investigations of human gastrointestinal diseases.
Collapse
Affiliation(s)
- Michael D George
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Allison AS, McIntyre MA, McArdle C, Habib FK. The insulin-like growth factor type 1 receptor and colorectal neoplasia: insights into invasion. Hum Pathol 2007; 38:1590-602. [PMID: 17651787 DOI: 10.1016/j.humpath.2007.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 02/19/2007] [Accepted: 03/08/2007] [Indexed: 11/20/2022]
Abstract
This study examines the expression of the insulin-like growth factor type 1 receptor (IGF-1R) in colorectal neoplasia. Previous studies have shown that the IGF-1R is expressed at high levels in normal embryonic stem cells and in many cancer phenotypes. However, lower IGF-1R levels are expressed in some advanced cancer phenotypes. The timing of and the reasons for these changes in expression during the evolution of a cancer are not understood. Here, we examine IGF-1R expression in the evolution of colorectal cancer by means of Northern blotting and immunohistochemistry validated by tissue and reagent controls and Western blotting. We show for the first time that (1) in normal colorectal crypts, epithelial stem cells in the basal crypt region express high IGF-1R levels, which decrease to low levels when these cells migrate to and differentiate in the mid and upper crypt regions; (2) in tumor initiation in aberrant crypt foci, all of the transformed cells express high levels of the IGF-1R at stem cell levels throughout the crypt axis; (3) in tumor progression in adenomatous and cancerous crypts, tumor cells of an epithelial type morphology express high levels of the IGF-1R; (4) in advanced cancers, low levels of the IGF-1R are expressed in invasive foci where cancer cells dedifferentiate to a mesenchymal-type morphology and show a loss of cell adhesion. Interestingly, these cells can form an alternating pattern with mesenchymal type cells that show cell adhesion and high levels of IGF-1R expression. In summary, this study shows that high-level IGF-1R expression in colorectal neoplasia is initiated by an abnormality of stem cell programmed differentiation in the aberrant crypt focus. However, low-level IGF-1R expression is found in some invasive cancers where it is consequent to cancer cell dedifferentiation to a mesenchymal type morphology with loss of cell adhesion.
Collapse
Affiliation(s)
- Andrew S Allison
- Department of Surgery, Western General Hospital, Edinburgh, Scotland.
| | | | | | | |
Collapse
|
31
|
Halbleib JM, Sääf AM, Brown PO, Nelson WJ. Transcriptional modulation of genes encoding structural characteristics of differentiating enterocytes during development of a polarized epithelium in vitro. Mol Biol Cell 2007; 18:4261-78. [PMID: 17699590 PMCID: PMC2043570 DOI: 10.1091/mbc.e07-04-0308] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although there is considerable evidence implicating posttranslational mechanisms in the development of epithelial cell polarity, little is known about the patterns of gene expression and transcriptional regulation during this process. We characterized the temporal program of gene expression during cell-cell adhesion-initiated polarization of human Caco-2 cells in tissue culture, which develop structural and functional polarity similar to that of enterocytes in vivo. A distinctive switch in gene expression patterns occurred upon formation of cell-cell contacts between neighboring cells. Expression of genes involved in cell proliferation was down-regulated concomitant with induction of genes necessary for functional specialization of polarized epithelial cells. Transcriptional up-regulation of these latter genes correlated with formation of important structural and functional features in enterocyte differentiation and establishment of structural and functional cell polarity; components of the apical microvilli were induced as the brush border formed during polarization; as barrier function was established, expression of tight junction transmembrane proteins peaked; transcripts encoding components of the apical, but not the basal-lateral trafficking machinery were increased during polarization. Coordinated expression of genes encoding components of functional cell structures were often observed indicating temporal control of expression and assembly of multiprotein complexes.
Collapse
Affiliation(s)
| | | | - Patrick O. Brown
- Biochemistry, and
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| | - W. James Nelson
- Departments of *Molecular and Cellular Physiology
- Biological Sciences and
| |
Collapse
|
32
|
Revoltella RP, Papini S, Rosellini A, Michelini M. Epithelial stem cells of the eye surface. Cell Prolif 2007; 40:445-61. [PMID: 17635514 PMCID: PMC6495997 DOI: 10.1111/j.1365-2184.2007.00450.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 03/03/2007] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Epithelial stem cells of the eye surface, of the cornea and of the conjunctiva, have the ability to give rise to self renewal and progeny production of differentiated cells with no apparent limit. The two epithelia are separated from each other by the transition zone of the limbus. The mechanisms adopted by stem cells of the two epithelia to accomplish their different characteristics, and how their survival, replacement and unequal division that generates differentiated progeny formation are controlled, are complex and still poorly understood. They can be learned only by understanding how stem cells/progenitors are regulated by their neighbouring cells, that may themselves be differently unspecialised, forming particular microenvironments, known as 'niches'. Stem cells operate by signals and a variety of intercellular interactions and extracellular substrates with adjacent cells in the niche. Technical advances are now making it possible to identify zones in the corneal limbus and conjunctiva that can house stem cells, to isolate and expand them ex vivo and to control their behaviour creating optimal niche conditions. With improvements in biotechnology, regenerative cornea and conjunctiva transplantation using adult epithelial stem cells becomes now a reality. RESULTS AND CONCLUSIONS Here we review our current understanding of stem cell niches and illustrate recent significant progress for identification and characterization of adult epithelial stem cells/progenitors at cellular, molecular and mechanistic levels, improvement in cell culture techniques for their selective expansion ex vivo and prospects for a variety of therapeutic applications.
Collapse
Affiliation(s)
- R P Revoltella
- Institute of Biomedical Technologies, National Research Council of Italy, Pisa, Italy.
| | | | | | | |
Collapse
|
33
|
Ezaki T, Guo RJ, Li H, Reynolds AB, Lynch JP. The homeodomain transcription factors Cdx1 and Cdx2 induce E-cadherin adhesion activity by reducing beta- and p120-catenin tyrosine phosphorylation. Am J Physiol Gastrointest Liver Physiol 2007; 293:G54-65. [PMID: 17463179 DOI: 10.1152/ajpgi.00533.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The homeodomain transcription factors Cdx1 and Cdx2 are regulators of intestine-specific gene expression. They also regulate intestinal cell differentiation and proliferation; however, these effects are poorly understood. Previously, we have shown that expression of Cdx1 or Cdx2 in human Colo 205 cells induces a mature colonocyte morphology characterized by the induction of a polarized, columnar shape with apical microvilli and strong cell-cell adhesion. To elucidate the mechanism underlying this phenomenon, we investigated the adherens junction complex. Cdx1 or Cdx2 expression reduced Colo 205 cell migration and invasion in vitro, suggesting a physiologically significant change in cadherin function. However, Cdx expression did not significantly effect E-cadherin, alpha-, beta-, or gamma-catenin, or p120-catenin protein levels. Additionally, no alteration in their intracellular distribution was observed. Cdx expression did not alter the coprecipitation of beta-catenin with E-cadherin; however, it did reduce p120-catenin-E-cadherin coprecipitation. Tyrosine phosphorylation of beta- and p120-catenin is known to disrupt E-cadherin-mediated cell adhesion and is associated with robust p120-catenin/E-cadherin interactions. We specifically investigated beta- and p120-catenin for tyrosine phosphorylation and found that it was significantly diminished by Cdx1 or Cdx2 expression. We restored beta- and p120-catenin tyrosine phosphorylation in Cdx2-expressing cells by knocking down the expression of protein tyrosine phosphatase 1B and noted a significant decline in cell-cell adhesion. We conclude that Cdx expression in Colo 205 cells induces E-cadherin-dependent cell-cell adhesion by reducing beta- and p120-catenin tyrosine phosphorylation. Ascertaining the mechanism for this novel Cdx effect may improve our understanding of the regulation of cell-cell adhesion in the colonic epithelium.
Collapse
Affiliation(s)
- Toshihiko Ezaki
- Division of Gastroenterology/650 CRB, Department of Medicine, University of Pennsylvania, 415 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
34
|
Liu YJ, Wang Q, Li W, Huang XH, Zhen MC, Huang SH, Chen LZ, Xue L, Zhang HW. Rab23 is a potential biological target for treating hepatocellular carcinoma. World J Gastroenterol 2007; 13:1010-7. [PMID: 17373734 PMCID: PMC4146862 DOI: 10.3748/wjg.v13.i7.1010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To elucidate the role of Rab23 in hepatocellular carcinoma (HCC) by assessing the expression of Rab23 in HCC tissue and in HCC cell lines.
METHODS: Primary tumors (n = 100) were stained with Rab23 antibodies using immunohistochemistry and in situ hybridization in tissue microarrays. Relationships between gene expression and pathology parameters were analysed. The biological significance of Rab23 in Hep-3B cells was examined by knocking down Rab23 gene expression. We designed a pair of double-stranded RNAs against human rab23 and transfected siRNA into Hep-3B cells. Rab23 expression in these cells was examined using RT-PCR and Western blots. We investigated cell growth by MTT assays and fluorescence-activated cell sorting.
RESULTS: High cytoplasmic and nuclear expression of Rab23 was found in 38 of 71 (53.5%) and in 49 of 68 HCC patients (72%) respectively, which correlated with tumor size. HCC cell lines expressed Rab23. In Hep3B cells, siRNA for Rab23 decreased Rab23 mRNA by 4.5-fold and protein expression by 2-fold. Survival rates at 24 and 48 h for Hep-3B cells transfected with siRNA were lower and about 30% Hep-3B cells were apoptotic. Knocking down rab23 suppressed Hep3B cell growth, suggesting that rab23 could play an important role in Hep3B cell growth.
CONCLUSION: Rab23 is overexpressed and/or activated in HCC. Rab23 may be both a HCC predictor and a target for treating HCC.
Collapse
Affiliation(s)
- Yun-Jian Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Furuya S, Furuya K. Subepithelial fibroblasts in intestinal villi: roles in intercellular communication. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 264:165-223. [PMID: 17964923 DOI: 10.1016/s0074-7696(07)64004-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ingestion of food and water induces chemical and mechanical signals that trigger peristaltic reflexes in the gut. Intestinal villi are motile, equipped with chemosensors and mechanosensors, and transduce signaling to sensory neurons, but the exact mechanisms have not yet been elucidated. Subepithelial fibroblasts located under the villous epithelium form contractile cellular networks via gap junctions. The networks ensheathe lamina propria and are in close contact with epithelium, neural and capillary networks, smooth muscles, and immune cells. Unique characteristics of subepithelial fibroblasts have been revealed by primary cultures isolated from rat duodenal villi. They include rapid reversal changes in cell shape by cAMP reagents and endothelins, cell shape-dependent mechanosensitivity that induces ATP release as a paracrine mediator, contractile ability, and expression of various receptors for vasoactive and neuroactive substances. Herein, we review these characteristics that play a key role in the villi. They serve as a barrier/sieve, flexible mechanical frame, mechanosensor, and signal transduction machinery in the intestinal villi, which are regulated locally and dynamically by rapid cell shape conversion.
Collapse
Affiliation(s)
- Sonoko Furuya
- Section of Brain Structure, Center for Brain Experiment, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | | |
Collapse
|
36
|
Sicklick JK, Choi SS, Bustamante M, McCall SJ, Pérez EH, Huang J, Li YX, Rojkind M, Diehl AM. Evidence for epithelial-mesenchymal transitions in adult liver cells. Am J Physiol Gastrointest Liver Physiol 2006; 291:G575-83. [PMID: 16710052 DOI: 10.1152/ajpgi.00102.2006] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Both myofibroblastic hepatic stellate cells (HSC) and hepatic epithelial progenitors accumulate in damaged livers. In some injured organs, the ability to distinguish between fibroblastic and epithelial cells is sometimes difficult because cells undergo epithelial-mesenchymal transitions (EMT). During EMT, cells coexpress epithelial and mesenchymal cell markers. To determine whether EMT occurs in adult liver cells, we analyzed the expression profile of primary HSC, two HSC lines, and hepatic epithelial progenitors. As expected, all HSC expressed HSC markers. Surprisingly, these markers were also expressed by epithelial progenitors. In addition, one HSC line expressed typical epithelial progenitor mRNAs, and these epithelial markers were inducible in the second HSC line. In normal and damaged livers, small ductular-type cells stained positive for an HSC marker. In conclusion, HSC and hepatic epithelial progenitors both coexpress epithelial and mesenchymal markers, providing evidence that EMT occurs in adult liver cells.
Collapse
Affiliation(s)
- Jason K Sicklick
- Duke Univ. Medical Center, Division of Gastroenterology, Snyderman-GSRB I Suite 1073, 595 LaSalle St., Box 3256, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abgueguen E, Toutain B, Bédrine H, Chicault C, Orhant M, Aubry M, Monnier A, Mottier S, Jouan H, Bahram S, Mosser J, Fergelot P. Differential expression of genes related to HFE and iron status in mouse duodenal epithelium. Mamm Genome 2006; 17:430-50. [PMID: 16688533 DOI: 10.1007/s00335-005-0122-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 02/01/2006] [Indexed: 11/29/2022]
Abstract
Iron absorption, distribution, use, and storage are thought to be tightly regulated since altered iron stores may lead to cellular damage and disease. HFE, the hereditary hemochromatosis gene product, is expressed in the crypts of the duodenum, but the molecular mechanism by which it contributes to the inhibition of iron absorption is still unknown. In this study we aimed to identify transcriptional profiles in the duodenal epithelium of Hfe(-/-) mice. We used dedicated microarrays to compare gene expression among the duodenum of Hfe(-/-) mice, induced iron overload mice, and control mice. We found 151 differentially expressed genes and unknown sequences between Hfe(-/-) mice and normal littermates. Gene profiling revealed a gene subset more specific for Hfe inactivation. The functional annotation of upregulated genes highlighted that mucus production and cell maintenance may account for the influence of Hfe on epithelium integrity and luminal iron uptake.
Collapse
Affiliation(s)
- Emmanuelle Abgueguen
- CNRS UMR 6061, Université de Rennes1, IFR 140, Faculté de Médecine, CS 34317, 35043 Rennes, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wiese C, Rolletschek A, Kania G, Navarrete-Santos A, Anisimov SV, Steinfarz B, Tarasov KV, Brugh SA, Zahanich I, Rüschenschmidt C, Beck H, Blyszczuk P, Czyz J, Heubach JF, Ravens U, Horstmann O, St-Onge L, Braun T, Brüstle O, Boheler KR, Wobus AM. Signals from embryonic fibroblasts induce adult intestinal epithelial cells to form nestin-positive cells with proliferation and multilineage differentiation capacity in vitro. Stem Cells 2006; 24:2085-97. [PMID: 16741226 DOI: 10.1634/stemcells.2006-0008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The intestinal epithelium has one of the greatest regenerative capacities in the body; however, neither stem nor progenitor cells have been successfully cultivated from the intestine. In this study, we applied an "artificial niche" of mouse embryonic fibroblasts to derive multipotent cells from the intestinal epithelium. Cocultivation of adult mouse and human intestinal epithelium with fibroblast feeder cells led to the generation of a novel type of nestin-positive cells (intestinal epithelium-derived nestin-positive cells [INPs]). Transcriptome analyses demonstrated that mouse embryonic fibroblasts expressed relatively high levels of Wnt/bone morphogenetic protein (BMP) transcripts, and the formation of INPs was specifically associated with an increase in Lef1, Wnt4, Wnt5a, and Wnt/BMP-responsive factors, but a decrease of BMP4 transcript abundance. In vitro, INPs showed a high but finite proliferative capacity and readily differentiated into cells expressing neural, pancreatic, and hepatic transcripts and proteins; however, these derivatives did not show functional properties. In vivo, INPs failed to form chimeras following injection into mouse blastocysts but integrated into hippocampal brain slice cultures in situ. We conclude that the use of embryonic fibroblasts seems to reprogram adult intestinal epithelial cells by modulation of Wnt/BMP signaling to a cell type with a more primitive embryonic-like stage of development that has a high degree of flexibility and plasticity.
Collapse
Affiliation(s)
- Cornelia Wiese
- In Vitro Differentiation Group, Institute of Plant Genetics and Crop Plant Research, IPK, Corrensstrasse 3, D-06466 Gatersleben, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sicklick JK, Li YX, Melhem A, Schmelzer E, Zdanowicz M, Huang J, Caballero M, Fair JH, Ludlow JW, McClelland RE, Reid LM, Diehl AM. Hedgehog signaling maintains resident hepatic progenitors throughout life. Am J Physiol Gastrointest Liver Physiol 2006; 290:G859-70. [PMID: 16322088 DOI: 10.1152/ajpgi.00456.2005] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hedgehog signaling through its receptor, Patched, activates transcription of genes, including Patched, that regulate the fate of various progenitors. Although Hedgehog signaling is required for endodermal commitment and hepatogenesis, the possibility that it regulates liver turnover in adults had not been considered because mature liver epithelial cells lack Hedgehog signaling. Herein, we show that this pathway is essential throughout life for maintaining hepatic progenitors. Patched-expressing cells have been identified among endodermally lineage-restricted, murine embryonic stem cells as well as in livers of fetal and adult Ptc-lacZ mice. An adult-derived, murine hepatic progenitor cell line expresses Patched, and Hedgehog-responsive cells exist in stem cell compartments of fetal and adult human livers. In both species, manipulation of Hedgehog activity influences hepatic progenitor cell survival. Therefore, Hedgehog signaling is conserved in hepatic progenitors from fetal development through adulthood and may be a new therapeutic target in patients with liver damage.
Collapse
Affiliation(s)
- Jason K Sicklick
- Division of Gastroenterology, Duke University Medical Center, Snyderman-GSRB I, Suite 1073, 595 LaSalle St., Box 3256, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lardy H, Thomas M, Noordine ML, Bruneau A, Cherbuy C, Vaugelade P, Philippe C, Colomb V, Duee PH. Changes induced in colonocytes by extensive intestinal resection in rats. Dig Dis Sci 2006; 51:326-32. [PMID: 16534676 DOI: 10.1007/s10620-006-3133-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 06/15/2005] [Indexed: 12/23/2022]
Abstract
After massive intestinal resection, physiological compensatory events occur in the remnant small bowel and in the colon. The aim of our work was to study the propensity of the colon to evolve after a massive small bowel resection in rats. The resected group, where 80% of the small bowel length was removed, was compared with sham-operated rats (transected). During the 7 postoperative days, rats were fed orally or they received an elemental nutrition through a gastric catheter. PepT1 and NHE3 mRNAs encoding apical membrane transporters were not modified in the present experiment. However, two unexpected genes (I-FABP and UroR) were up-regulated in the colon following intestinal resection. These modifications occurred without an imbalance of cell cycle protein content and in a context of low short-chain fatty acid production.
Collapse
Affiliation(s)
- Hubert Lardy
- Laboratoire de Nutrition et de sécurité alimentaire, INRA, Doaine de Vilvert, 78350, Jouy en Josas, France
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Vascotto SG, Griffith M. Localization of candidate stem and progenitor cell markers within the human cornea, limbus, and bulbar conjunctiva in vivo and in cell culture. ACTA ACUST UNITED AC 2006; 288:921-31. [PMID: 16779811 DOI: 10.1002/ar.a.20346] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Corneal diseases are some of the most prevalent causes of blindness worldwide. While the most common treatment for corneal blindness is the transplantation of cadaver corneas, expanded limbal stem cells are finding recent application. Unknown, however, is the identity of the actual repopulating stem cell fraction utilized in both treatments and the critical factors governing successful engraftment and repopulation. In order to localize potential stem cell populations in vivo, we have immunohistochemically mapped a battery of candidate stem and progenitor cell markers including c-Kit and other growth factor receptors, nuclear markers including DeltaNp63, as well as adhesion factors across the cornea and distal sclera. Cell populations that differentially and specifically stained for some of these markers include the basal and superficial limbal/conjunctival epithelium and scattered cells within the substantia propria of the bulbar conjunctiva. We have also determined that the culture of differentiated cornea epithelial cells as dissociated and explant cultures induces the expression of several markers previously characterized as candidate limbal stem cell markers. This study provides a foundation to explore candidate corneal stem cell populations. As well, we show that expression of traditional stem cell markers may not be reliable indicator of stem cell content during limbal stem cell expansion in vitro and could contribute to the variable success rates of corneal stem cell transplantation.
Collapse
|
42
|
Sicklick JK, Li YX, Jayaraman A, Kannangai R, Qi Y, Vivekanandan P, Ludlow JW, Owzar K, Chen W, Torbenson MS, Diehl AM. Dysregulation of the Hedgehog pathway in human hepatocarcinogenesis. Carcinogenesis 2005; 27:748-57. [PMID: 16339184 DOI: 10.1093/carcin/bgi292] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hedgehog (Hh) pathway activation promotes tumors in several endodermally derived tissues, but its role in the pathogenesis of hepatocellular carcinoma (HCC) is unknown. Although normal hepatocytes lack Hh signaling, activation of the Hh pathway in endodermal progenitors is required for liver development. Thus, we hypothesized that hepatocarcinogenesis may involve regulation of Hh signaling. This pathway is activated when Hh ligand binds to its receptor, Patched (PTC). In an unoccupied state, PTC normally functions as a tumor suppressor that inhibits Smoothened (SMO), a proto-oncoprotein, from activating downstream components and transcription of target genes. Here we show that in HCCs, overexpression of the Smo proto-oncogene, as well as an increase in the stoichiometric ratio of Smo to Ptc mRNA levels, correlated with tumor size, a prognostic indicator in HCC biology. In one tumor we identified a novel Smo mutation in an evolutionarily conserved residue. We also demonstrated that HCC cell lines (HepG2 and Hep3B) expressed Hh pathway components and activated Hh transcriptional targets. In Hep3B cells, cyclopamine, an inhibitor of wild-type SMO, had no effect, but KAAD-cyclopamine, a blocker of oncogenic SMO, inhibited Hh signaling activity by 50%, decreased expression of the hepatocarcinogenic oncogene, c-myc, by 8-fold, and inhibited the growth rate of Hep3B cells by 94%. These data support our hypothesis that Hh signaling is dysregulated in human hepatocarcinogenesis. We demonstrate that overexpression and/or tumorigenic activation of the Smo proto-oncogene mediates c-myc overexpression which plays a critical role in hepatocarcinogenesis and suggests that Smo is a prognostic factor in HCC tumorigenesis.
Collapse
Affiliation(s)
- Jason K Sicklick
- Department of Surgery and Division of Surgical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rusu D, Loret S, Peulen O, Mainil J, Dandrifosse G. Immunochemical, biomolecular and biochemical characterization of bovine epithelial intestinal primocultures. BMC Cell Biol 2005; 6:42. [PMID: 16321165 PMCID: PMC1315322 DOI: 10.1186/1471-2121-6-42] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 12/01/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cultures of enterocytes and colonocytes represent valuable tools to study growth and differentiation of epithelial cells. In vitro models may be used to evaluate passage or toxicity of drugs, interactions of enteropathogenes bacteria strains with intestinal epithelium and other physiologic or pathologic phenomenon involving the digestive tract. RESULTS Cultures of bovine colonocytes and jejunocytes were obtained from organoid-enriched preparations, using a combination of enzymatic and mechanical disruption of the intestine epithelium, followed by an isopicnic centrifugation discarding most single cells. Confluent cell monolayers arising from plated organoids exhibited epithelium typical features, such as the pavement-like structure, the presence of apical microvilli and tight junctions. Accordingly, cells expressed several markers of enterocyte brush border (i.e. maltase, alkaline phosphatase and fatty acid binding protein) as well as an epithelial cytoskeleton component (cytokeratin 18). However, enterocyte primocultures were also positive for the vimentin immunostaining (mesenchyme marker). Vimentin expression studies showed that this gene is constitutively expressed in bovine enterocytes. Comparison of the vimentin expression profile with the pattern of brush border enzymes activities, suggested that the decrease of cell differentiation level observed during the enterocyte isolation procedure and early passages of the primoculture could result from a post-transcriptional de-repression of vimentin synthesis. The low differentiation level of bovine enterocytes in vitro could partly be counteracted adding butyrate (1-2 mM) or using a glucose-deprived culture medium. CONCLUSION The present study describes several complementary approaches to characterize bovine primary cultures of intestinal cells. Cultured cells kept their morphologic and functional characteristics during several generations.
Collapse
Affiliation(s)
- Dorina Rusu
- Department of Biochemistry and General Physiology, University of Liege, Institute of Chemistry B6C, B-4000 Liege (Sart-Tilman), Belgium
| | - Suzanne Loret
- Department of Biochemistry and General Physiology, University of Liege, Institute of Chemistry B6C, B-4000 Liege (Sart-Tilman), Belgium
- Department of Biology, University of Namur (FUNDP), Rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Olivier Peulen
- Department of Biochemistry and General Physiology, University of Liege, Institute of Chemistry B6C, B-4000 Liege (Sart-Tilman), Belgium
| | - Jacques Mainil
- Department of Infectious and Parasitic Diseases/Bacteriology, Faculty of Veterinary Medicine, University of Liege, Boulevard de Colonster B43, B-4000 Liege (Sart-Tilman), Belgium
| | - Guy Dandrifosse
- Department of Biochemistry and General Physiology, University of Liege, Institute of Chemistry B6C, B-4000 Liege (Sart-Tilman), Belgium
| |
Collapse
|
44
|
de Koning BAE, Lindenbergh-Kortleve DJ, Pieters R, Rings EHHM, Büller HA, Renes IB, Einerhand AWC. The effect of cytostatic drug treatment on intestine-specific transcription factors Cdx2, GATA-4 and HNF-1α in mice. Cancer Chemother Pharmacol 2005; 57:801-10. [PMID: 16163540 DOI: 10.1007/s00280-005-0119-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 08/16/2005] [Indexed: 11/30/2022]
Abstract
Chemotherapy-induced intestinal damage is a very important dose-limiting side effect for which there is no definitive prophylaxis or treatment. This is in part due to the lack of understanding of its pathophysiology and impact on intestinal differentiation. The objective of this study was to investigate the gene expression of the small intestinal transcription factors HNF-1alpha, Cdx2, GATA-4 in an experimental model of methotrexate (MTX)-induced intestinal damage, and to correlate these alterations with histological damage, epithelial proliferation and differentiation. HNF-1alpha, Cdx2 and GATA-4 are critical transcription factors in epithelial differentiation, and in combination they act as promoting factors of the sucrase-isomaltase (SI) gene, an enterocyte-specific differentiation marker which is distinctly downregulated after MTX treatment. Mice received two doses of MTX i.v. on two consecutive days and were sacrificed 1, 3 and 7 or 9 days after final injection. Segments of the jejunum were taken for morphological, immunohistochemical and quantitative analyses. Intestinal damage was most severe at day 3 and was associated with decreased expression of the transcriptional factors HNF-1alpha, Cdx2 and GATA-4, which correlated well with decreased expression of SI, and seemed inversely correlated with enhanced proliferation of epithelial crypt cells. During severe damage, the epithelium was preferentially concerned with proliferation rather than differentiation, most likely in order to restore the small intestinal barrier function rather than maintaining its absorptive function. Since HNF-1alpha, Cdx2 and GATA-4 are critical for intestine-specific gene expression and therefore crucial in epithelial differentiation, these results may explain, at least in part, why intestinal differentiation is compromised during MTX treatment.
Collapse
Affiliation(s)
- Barbara A E de Koning
- Laboratory of Pediatrics, Division of Pediatric Gastro-enterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
45
|
Dusing MR, Wiginton DA. Epithelial lineages of the small intestine have unique patterns of GATA expression. J Mol Histol 2005; 36:15-24. [PMID: 15703995 DOI: 10.1007/s10735-004-2908-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 09/02/2004] [Indexed: 01/08/2023]
Abstract
The ability of the GATA family of factors to interact with numerous other factors, co-factors, and repressors suggests that they may play key roles in tissues and cells where they are expressed. Adult mouse small intestine has been shown to express GATA-4, GATA-5, and GATA-6, where they have been implicated in the activation of a number of intestinal genes. Determination of which GATA factor(s) are involved in a specific function in tissues expressing multiple family members has proven difficult. The immunohistochemical analysis presented here demonstrate that within the mouse small intestine GATA-4/-5/-6 are found to be uniquely distributed among the various differentiated lineages of the intestinal epithelium. Among differentiated cells GATA-4 is found only in the villous enterocytes. GATA-5 is absent from enterocytes, but was found in the remaining lineages: goblet, Paneth and enteroendocrine. Additionally, high levels of GATA-6 are found in only one of these differentiated cell types, the enteroendocrine lineage. The observed distribution suggests that the GATA factors may have distinct roles in lineage allocation, lineage maintenance, and/or terminal differentiation events in small intestine.
Collapse
Affiliation(s)
- Mary R Dusing
- Department of Pediatrics, Division of Developmental Biology, College of Medicine and Cincinnati Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | | |
Collapse
|
46
|
Kodama S, Faustman DL. Routes to regenerating islet cells: stem cells and other biological therapies for type 1 diabetes. Pediatr Diabetes 2005; 5 Suppl 2:38-44. [PMID: 15601373 DOI: 10.1111/j.1399-543x.2004.00078.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
New biological therapies for type 1 diabetes are emerging from the forefront of stem cell and islet cell biology. Basic research in animal models has uncovered a variety of mechanisms by which natural regeneration of pancreatic islet cells occurs, despite the underlying autoimmune defect. Two mechanisms - in particular, beta-islet cell proliferation and stem cell differentiation - can be harnessed in innovative ways in order to regenerate islets lost to disease. This review provides a background on stem cells and describes a range of potential biological therapies for type 1 diabetes, including the use of adult stem cells from the spleen, an organ not previously considered a source of pancreatic stem cells. Stem cells of the spleen have been demonstrated to home to the pancreas, where they mature into fully functional islet cells responsible for restoring normoglycemia. If the underlying autoimmune defect can be eradicated, stem cells of the spleen, as well as related strategies, can be used in order to regrow islets destroyed by type 1 diabetes.
Collapse
Affiliation(s)
- Shohta Kodama
- Harvard Medical School and Massachusetts General Hospital-East, Boston, 13th Street, MA 02192, USA
| | | |
Collapse
|
47
|
Mariadason JM, Nicholas C, L'Italien KE, Zhuang M, Smartt HJM, Heerdt BG, Yang W, Corner GA, Wilson AJ, Klampfer L, Arango D, Augenlicht LH. Gene expression profiling of intestinal epithelial cell maturation along the crypt-villus axis. Gastroenterology 2005; 128:1081-8. [PMID: 15825089 DOI: 10.1053/j.gastro.2005.01.054] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND & AIMS To define the genetic reprogramming that drives intestinal epithelial cell maturation along the crypt-villus axis, enterocytes were sequentially isolated from the villus tip to the crypts of mouse small intestine. METHODS Changes in gene expression were assessed using 27,405-element complementary DNA microarrays (14,685 unique genes) and specific changes validated by Western blotting. RESULTS A total of 1113 genes differentially expressed between the crypt and villus were identified. Among these, established markers of absorptive and goblet cell differentiation were up-regulated in villus cells, whereas Paneth cell markers were maximally expressed in crypt cells. The 1113 differentially expressed genes were significantly enriched for genes involved in cell cycle progression, RNA processing, and translation (all predominantly down-regulated during maturation) and genes involved in cytoskeleton assembly and lipid uptake (predominantly up-regulated during maturation). No enrichment for apoptosis-regulating genes was observed. We confirmed that Wnt signaling was maximal in the proliferative compartment and observed a decrease in MYC and an increase in MAD and MAX expression during the maturation program. Consistent with these changes, the 1113 genes were enriched for MYC targets, establishing the importance of this network in intestinal cell maturation. CONCLUSIONS This database serves as a resource for understanding the molecular mechanisms of intestinal cell maturation and for dissection of how perturbations in the maturation process can lead to changes in gastrointestinal physiology and pathology, particularly intestinal tumorigenesis.
Collapse
Affiliation(s)
- John M Mariadason
- Montefiore Medical Cente, Albert Einstein Cancer Center, Bronx, New Yorrk 10467, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Escaffit F, Perreault N, Jean D, Francoeur C, Herring E, Rancourt C, Rivard N, Vachon PH, Paré F, Boucher MP, Auclair J, Beaulieu JF. Repressed E-cadherin expression in the lower crypt of human small intestine: a cell marker of functional relevance. Exp Cell Res 2005; 302:206-20. [PMID: 15561102 DOI: 10.1016/j.yexcr.2004.08.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 08/27/2004] [Indexed: 11/28/2022]
Abstract
In epithelia, abnormal expression of E-cadherin is related to pathologies involving a loss of cell polarization and/or differentiation. However, recent observations suggest that E-cadherin could also be repressed under physiological conditions, such as in some epithelial stem cell lineages. In the present work, we have analyzed E-cadherin expression in human intestinal epithelial cell progenitors and investigated its potential role. E-cadherin expression was analyzed along the crypt-villus axis by immunofluorescence on cryosections of small intestine. E-cadherin was found to be differentially expressed, being significantly weaker in the cells located at the bottom of the crypts. Surprisingly, neither the E-cadherin protein nor transcript were detected in a normal human intestinal epithelial (HIEC) crypt cell model isolated in our laboratory, whereas other E-cadherin-related components such as catenins and APC were present. Forced expression of E-cadherin in HIEC cells increased membrane-associated beta-catenin and was accompanied by the appearance of junction-like structures at the cell-cell interface. Functionally, cell kinetics and p21Cip levels were found to be altered in the E-cadherin expressing HIEC cells as compared to controls. Furthermore, a significant reduction of the migration abilities and an increase in sensitivity to anoikis were also observed. These results suggest that down-regulated expression of E-cadherin is a human intestinal crypt base cell-related feature that appears to be of functional relevance for the maintenance of the progenitor cell population.
Collapse
Affiliation(s)
- Fabrice Escaffit
- Département d'anatomie et de Biologie Cellulaire, Faculté de médecine, Université de Sherbrooke, CIHR Group in Functional Development and Physiopathology of the Digestive Tract, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Metzger M, Conrad S, Alvarez-Bolado G, Skutella T, Just L. Gene expression of the repulsive guidance molecules during development of the mouse intestine. Dev Dyn 2005; 234:169-75. [PMID: 16032658 DOI: 10.1002/dvdy.20506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Repulsive guidance molecules (RGMs) are recently identified proteins implicated in neuronal differentiation, migration, and apoptosis. However, in non-neural tissues a specific biological function of RGM is still unknown. In this study, we describe the expression patterns of the RGM members (a, b, and c) during embryonic and postnatal development of the small and large murine intestine. We demonstrated by RT-PCR, in situ hybridization, Western blot, and immunocytochemistry that subtypes RGMa and RGMb but not RGMc were strongly expressed in enteric ganglia cells of the fetal and adult gut. In contrast to the enteric nervous system, RGMa and RGMb expression in the intestinal epithelium started during postnatal gut development. Interestingly, both subtypes were predominantly expressed in the proliferative crypt compartment of the gut epithelium and in paneth cells of small intestine. The development-dependent expression in enteric ganglia and intestinal epithelial cells suggests that RGM may be involved in cell migration, differentiation, and apoptosis with similar cellular mechanisms as described in the central nervous system.
Collapse
Affiliation(s)
- Marco Metzger
- Institute of Anatomy, Department of Experimental Embryology, Division of Tissue Engineering, University of Tübingen, Germany
| | | | | | | | | |
Collapse
|
50
|
Iordache C, Drozdowski L, Clandinin MT, Wild G, Todd Z, Thomson ABR. Treatment of suckling rats with GLP-2 plus dexamethasone increases the ileal uptake of fatty acids in later life. Am J Physiol Gastrointest Liver Physiol 2005; 288:G54-9. [PMID: 15591587 DOI: 10.1152/ajpgi.00047.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucocorticosteroids such as dexamethasone (Dex) increase sugar and lipid uptake in adult animals and accelerate the development of the immature intestine. The effect of Dex on the ontogeny of lipid absorption is unknown. In adult rats, glucagon-like peptide-2 (GLP-2) has a trophic effect on the intestine and enhances nutrient absorption. This study was undertaken to determine the effect of GLP-2 and Dex on the intestine uptake of lipids in suckling rats and to determine whether any such effect persists into the postweanling period. Sixty-four suckling rats were randomized into four groups. They were treated from days 11 to 21 with GLP-2 (0.1 microg.g(-1).day(-1) sc), Dex (0.128 microg.g(-1).day(-1) sc), GLP-2 plus Dex (GLP-2 0.1 microg.g(-1).day(-1) sc + Dex 0.128 microg.g(-1).day(-1) sc), or placebo. One-half the pups were killed at days 19-21 ("sucklings"), and one-half were killed 4 wk later ("weanlings"). The rate of intestinal uptake of six fatty acids (12:0, lauric; 16:0, palmitic; 18:0, stearic; 18:1, oleic; 18:2, linoleic; and 18:3, linolenic) and cholesterol was assessed using an in vitro ring technique. GLP-2 had no effect on lipid uptake. Dex increased the uptake of 18:3 in sucklings, and the ileal uptake of 18:0 was increased in weanlings. The combination of GLP-2 plus Dex had no effect in sucklings and increased the ileal uptake of 12:0, 18:0, 18:1, 18:2, and 18:3 in weanlings. The enhanced uptake of fatty acids with GLP-2 plus Dex was not explained by alterations in the animals' body or intestinal weights, intestinal morphology, or intestinal- or liver-fatty acid binding proteins. Unlike adults, GLP-2 does not enhance lipid uptake in sucklings. Dex has a modest enhancing effect on selected fatty acid uptake both in sucklings as well as weanlings. GLP-2 plus Dex has an enhancing effect on the ileal uptake of fatty acids in weanlings 4 wk after their previous injection with GLP-2 plus Dex. It remains to be established what is the nutritional importance of this late effect of prior exposure to Dex or GLP-2 plus Dex on the intestinal uptake of lipids.
Collapse
Affiliation(s)
- Claudiu Iordache
- Nutrition and Metabolism Group, University of Alberta, Edmonton AB T6G 2C8, Canada
| | | | | | | | | | | |
Collapse
|