1
|
Peng L, Liu X, Yang L, Liu L, Bai Z, Chen M, Lu X, Nie L. BINDTI: A Bi-Directional Intention Network for Drug-Target Interaction Identification Based on Attention Mechanisms. IEEE J Biomed Health Inform 2025; 29:1602-1612. [PMID: 38457318 DOI: 10.1109/jbhi.2024.3375025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The identification of drug-target interactions (DTIs) is an essential step in drug discovery. In vitro experimental methods are expensive, laborious, and time-consuming. Deep learning has witnessed promising progress in DTI prediction. However, how to precisely represent drug and protein features is a major challenge for DTI prediction. Here, we developed an end-to-end DTI identification framework called BINDTI based on bi-directional Intention network. First, drug features are encoded with graph convolutional networks based on its 2D molecular graph obtained by its SMILES string. Next, protein features are encoded based on its amino acid sequence through a mixed model called ACmix, which integrates self-attention mechanism and convolution. Third, drug and target features are fused through bi-directional Intention network, which combines Intention and multi-head attention. Finally, unknown drug-target (DT) pairs are classified through multilayer perceptron based on the fused DT features. The results demonstrate that BINDTI greatly outperformed four baseline methods (i.e., CPI-GNN, TransfomerCPI, MolTrans, and IIFDTI) on the BindingDB, BioSNAP, DrugBank, and Human datasets. More importantly, it was more appropriate to predict new DTIs than the four baseline methods on imbalanced datasets. Ablation experimental results elucidated that both bi-directional Intention and ACmix could greatly advance DTI prediction. The fused feature visualization and case studies manifested that the predicted results by BINDTI were basically consistent with the true ones. We anticipate that the proposed BINDTI framework can find new low-cost drug candidates, improve drugs' virtual screening, and further facilitate drug repositioning as well as drug discovery.
Collapse
|
2
|
Luo Y, Zhang Y, Chen F, Zhao Y, Li X, Liu X, Shakir MZ, Shan C, Jiang N. Chronic unpredictable mild stress-induced anxiety is linked to inflammatory responses and disruptions in tryptophan metabolism in male C57BL/6N mice. Behav Brain Res 2025; 484:115506. [PMID: 39999912 DOI: 10.1016/j.bbr.2025.115506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/06/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Chronic stress can affect brain function through various mechanisms, leading to the development of anxiety disorders. The chronic unpredictable mild stress (CUMS) is a classic model of chronic stress. This study evaluated the effects of different durations of CUMS on anxiety-like behavior, inflammation, and tryptophan metabolism in C57BL/6N mice. The results of behavioral assessments showed that after 3 and 4 weeks of CUMS exposure, the mice exhibited significant decreases in open arms ratio and time ratio in the elevated plus maze (EPM), prolonged latency in the novelty-suppressed feeding test (NSFT), and reduced transitions in the light/dark box (LDB), all indicative of anxiety-like behavior. The inflammatory factors expressions were quantified using qPCR, showing that pro-inflammatory and anti-inflammatory markers began to rise following 1-2 weeks of CUMS exposure. After 3 weeks of stress, TNF-α significantly increased, TGF-β levels started to decrease, and by 4 weeks of CUMS, Arg-1 expression also declined. In terms of tryptophan metabolism, 5-HT content in the hippocampus of the mice began to decrease after 3 weeks of CUMS, while the levels of neuroprotective kynurenic acid (KYNA) continued to rise. Concurrently, neurotoxic substances, including 3-hydroxykynurenine (3-HK) and quinolinic acid (QA), accumulated; after 4 weeks of CUMS, the KYNA content also started to decline. In conclusion, CUMS exposure for 3-4 weeks in male C57BL/6 N mice induces anxiety-like behavior alongside the occurrence of inflammatory responses and disturbances in tryptophan metabolism. These findings highlight the complex interplay between stress, inflammation, and metabolic pathways in the etiology of anxiety-related behaviors.
Collapse
Affiliation(s)
- Yanqin Luo
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Chen
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongzhi Zhao
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xueyan Li
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xinmin Liu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | | | - Chunhui Shan
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Lan T, Cai M, Wang S, Lu Y, Tang Z, Tang Q, Gao J, Xu Y, Peng X, Sun Z. Effects of adding niacinamide to diets with normal and low protein levels on the immunity, antioxidant, and intestinal microbiota in growing-finishing pigs. J Nutr Biochem 2025; 136:109809. [PMID: 39549857 DOI: 10.1016/j.jnutbio.2024.109809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
This study aimed to investigate the effects of nicotinamide (NAM) applied to diets with different crude protein levels on immune function, antioxidant capacity, and intestinal flora in growing-finishing pigs. Forty barrows (37.0±1.0 kg) were randomly allocated to one of four dietary treatments (n=10 per group). The diets in the two phases consisted of a basal diet with 30 mg/kg NAM, a basal diet with 360 mg/kg NAM, a low-protein diet with 30 mg/kg NAM, and a low-protein diet with 360 mg/kg NAM. The results showed that dietary addition of 360 mg/kg NAM decreased IL-12, malondialdehyde, IgG and IgM contents in the plasma and increased total superoxide dismutase activity and total antioxidant capacity in the colonic mucosa (P < .05). Supplementing the diet with 360 mg/kg NAM increased mRNA expression of the nucleotide-binding oligomerization domain containing 2 and nuclear factor erythroid 2-related factor 2 and protein expression of nuclear factor kappa-B and toll-like receptor 4 in the colonic mucosa (P < .05). The concentrations of acetic acid and butyric acid in the colonic contents and the abundance of Actinobacteriota in the colon at the phylum level were significantly decreased by feeding low-protein diets (P < .05). Additionally, the addition of 360 mg/kg NAM to diets increased (P < .05) the Sobs, Ace, and Chao indices of colonic microorganisms in pigs. Overall, the rational use of NAM can improve inflammatory status, enhance antioxidant capacity and intestinal barrier function, and increase colonic microbial diversity in growing-finishing pigs.
Collapse
Affiliation(s)
- Tianyi Lan
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Meiya Cai
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Sishen Wang
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yingying Lu
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Zhiru Tang
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Qingsong Tang
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Jingchun Gao
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yetong Xu
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xie Peng
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Zhihong Sun
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China.
| |
Collapse
|
4
|
Pinto J, Balarezo-Cisneros LN, Delneri D. Exploring adaptation routes to cold temperatures in the Saccharomyces genus. PLoS Genet 2025; 21:e1011199. [PMID: 39970180 PMCID: PMC11875353 DOI: 10.1371/journal.pgen.1011199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/03/2025] [Accepted: 02/06/2025] [Indexed: 02/21/2025] Open
Abstract
The identification of traits that affect adaptation of microbial species to external abiotic factors, such as temperature, is key for our understanding of how biodiversity originates and can be maintained in a constantly changing environment. The Saccharomyces genus, which includes eight species with different thermotolerant profiles, represent an ideal experimental platform to study the impact of adaptive alleles in different genetic backgrounds. Previous studies identified a group of adaptive genes for maintenance of growth at lower temperatures. Here, we carried out a genus-wide assessment of the role of genes partially responsible for cold-adaptation in all eight Saccharomyces species for six candidate genes. We showed that the cold tolerance trait of S. kudriavzevii and S. eubayanus is likely to have evolved from different routes, involving genes important for the conservation of redox-balance, and for the long-chain fatty acid metabolism, respectively. For several loci, temperature- and species-dependent epistasis was detected, underscoring the plasticity and complexity of the genetic interactions. The natural isolates of S. kudriavzevii, S. jurei and S. mikatae had a significantly higher expression of the genes involved in the redox balance compared to S. cerevisiae, suggesting a role at transcriptional level. To distinguish the effects of gene expression from allelic variation, we independently replaced either the promoters or the coding sequences (CDS) of two genes in four yeast species with those derived from S. kudriavzevii. Our data consistently showed a significant fitness improvement at cold temperatures in the strains carrying the S. kudriavzevii promoter, while growth was lower upon CDS swapping. These results suggest that transcriptional strength plays a bigger role in growth maintenance at cold temperatures over the CDS and supports a model of adaptation centred on stochastic tuning of the expression network.
Collapse
Affiliation(s)
- Javier Pinto
- Faculty of Biology Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Laura Natalia Balarezo-Cisneros
- Faculty of Biology Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Daniela Delneri
- Faculty of Biology Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Řezníčková E, Bárta O, Milde D, Kryštof V, Štarha P. Anticancer dinuclear Ir(III) complex activates Nrf2 and interferes with NAD(H) in cancer cells. J Inorg Biochem 2025; 262:112704. [PMID: 39255589 DOI: 10.1016/j.jinorgbio.2024.112704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024]
Abstract
Dinuclear complex [Ir2(μ-L1)(η5-Cp*)2Cl2](PF6)2 (1) exhibits low micromolar cytotoxic activity in vitro in various human cancer cells (GI50 = 1.7-3.0 μM) and outperformed its mononuclear analogue [Ir(η5-Cp*)Cl(L2)]PF6 (2; GI50 > 40.0 μM); Cp* = pentamethylcyclopentadienyl, L1 = 4-chloro-2,6-bis[5-(pyridin-2-yl)-1,3,4-thiadiazol-2-yl]pyridine, L2 = 5-(pyridin-2-yl)-1,3,4-thiadiazol-2-amine. Compound 1 upregulated the Keap1/Nrf2 oxidative stress-protective pathway in the treated MV4-11 acute myeloid leukemia cells. In connection with the redox-mediated mode of action of 1, its NADH-oxidizing activity was detected in solution (1H NMR), while NAD+ remained intact (with formate as a hydride source). Surprisingly, only negligible NADH oxidation was detected in the presence of the reduced glutathione and ascorbate. Following the results of in-solution experiments, NAD(H) concentration was assessed in 1-treated MV4-11 cancer cells. Besides the intracellular NADH oxidation in the presence of 1, the induced oxidative stress also led to a decrease of NAD+, resulting in depletion of both NAD+/NADH coenzymes. The discussed findings provide new insight into the biochemical effects of catalytic anticancer compounds that induce cell death via a redox-mediated mode of action.
Collapse
Affiliation(s)
- Eva Řezníčková
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| | - Ondřej Bárta
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - David Milde
- Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Vladimír Kryštof
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| | - Pavel Štarha
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic.
| |
Collapse
|
6
|
Vo QV, Hoa NT, Mechler A. The radical scavenging activity of 1-methyl-1,4-dihydronicotinamide: theoretical insights into the mechanism, kinetics and solvent effects. RSC Adv 2024; 14:37196-37201. [PMID: 39569110 PMCID: PMC11578042 DOI: 10.1039/d4ra07184k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024] Open
Abstract
1,4-Dihydronicotinamide derivatives, including 1-methyl-1,4-dihydronicotinamide (MNAH), are derivatives of the active center of nicotinamide coenzyme (NADH) and are therefore potent radical scavengers. MNAH serves as a useful model of NADH that allows for modeling studies to address the activity of this important biomolecule. In this work, MNAH activity was evaluated against typical free radicals using quantum chemical calculations in physiological environments, with a secondary aim of comparing activity against two physiologically relevant radicals of markedly different stability, HO˙, and HOO˙, to establish which of these is a better model for assessing antioxidant capacity in physiological environments. The HO˙ + MNAH reaction exhibited diffusion-limited overall rate constants in all media, including the gas phase. The HOO˙ antiradical activity of MNAH was also good, with overall rate constants of 2.00 × 104 and 2.44 × 106 M-1 s-1, in lipid and aqueous media, respectively. The calculated rate constant in water (k overall(MNAH + HOO˙) = 3.84 × 105 M-1 s-1, pH = 5.6) is in good agreement with the experimental data (k exp(NADH + HOO˙) = (1.8 ± 0.2)×105 M-1 s-1). In terms of mechanism, the H-abstraction of the C4-H bond characterized the HOO˙ radical scavenging activity of MNAH, whereas HO˙ could react with MNAH at several sites and following either of SET (in polar media), RAF, and FHT reactions, which could be ascribed to the high reactivity of HO˙. For this reason the results suggest that activity against HOO˙ is a better basis for comparison of anti-radical potential. In the broader context, the HOO˙ scavanging activity of MNAH is better than that of reference antioxidants such as trans-resveratrol and ascorbic acid in the nonpolar environment, and Trolox in the aqueous physiological environment. Therefore, in the physiological environment, MNAH functions as a highly effective radical scavenger.
Collapse
Affiliation(s)
- Quan V Vo
- The University of Danang - University of Technology and Education Danang 550000 Vietnam
| | - Nguyen Thi Hoa
- The University of Danang - University of Technology and Education Danang 550000 Vietnam
| | - Adam Mechler
- Department of Biochemistry and Chemistry, La Trobe University Victoria 3086 Australia
| |
Collapse
|
7
|
Chen F, Zhou D, Kong APS, Yim NT, Dai S, Chen YN, Hui LL. Effects of Nicotinamide Mononucleotide on Glucose and Lipid Metabolism in Adults: A Systematic Review and Meta-analysis of Randomised Controlled Trials. Curr Diab Rep 2024; 25:4. [PMID: 39531138 PMCID: PMC11557618 DOI: 10.1007/s11892-024-01557-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE OF REVIEW Supplementation of nicotinamide mononucleotides (NMN) has been claimed to improve metabolic function. We reviewed human randomised controlled trials (RCTs) of NMN to evaluate its effect on markers of glucose and lipid metabolism. RECENT FINDINGS Eight RCTs on NMN (dosage ranged 250-2000 mg/d for a duration of 14 days to 12 weeks) involving a total of 342 middle-age/older adults (49% females, mainly non-diabetic) reporting at least one outcome on glucose control or lipid profile published in 2021-2023 were reviewed. The random-effects meta-analyses indicated no significant benefit of NMN on fasting glucose, fasting insulin, glycated hemoglobin, homeostatic model assessment for insulin resistance and lipid profile. Based on the small number of RCTs involving mainly relatively healthy adults, short-term supplementation of NMN of 250-2000 mg/d did not show significantly positive impacts on glucose control and lipid profile.
Collapse
Affiliation(s)
- Feng Chen
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Disheng Zhou
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Alice Pik-Shan Kong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nga Ting Yim
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Siyu Dai
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, China.
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| | - Yu Nan Chen
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Lai Ling Hui
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
8
|
Li Z, Chen L, Qu L, Yu W, Liu T, Ning F, Li J, Guo X, Sun F, Sun B, Luo L. Potential implications of natural compounds on aging and metabolic regulation. Ageing Res Rev 2024; 101:102475. [PMID: 39222665 DOI: 10.1016/j.arr.2024.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Aging is generally accompanied by a progressive loss of metabolic homeostasis. Targeting metabolic processes is an attractive strategy for healthy-aging. Numerous natural compounds have demonstrated strong anti-aging effects. This review summarizes recent findings on metabolic pathways involved in aging and explores the anti-aging effects of natural compounds by modulating these pathways. The potential anti-aging effects of natural extracts rich in biologically active compounds are also discussed. Regulating the metabolism of carbohydrates, proteins, lipids, and nicotinamide adenine dinucleotide is an important strategy for delaying aging. Furthermore, phenolic compounds, terpenoids, alkaloids, and nucleotide compounds have shown particularly promising effects on aging, especially with respect to metabolism regulation. Moreover, metabolomics is a valuable tool for uncovering potential targets against aging. Future research should focus on identifying novel natural compounds that regulate human metabolism and should delve deeper into the mechanisms of metabolic regulation using metabolomics methods, aiming to delay aging and extend lifespan.
Collapse
Affiliation(s)
- Zhuozhen Li
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lili Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Liangliang Qu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Wenjie Yu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tao Liu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Fangjian Ning
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinwang Li
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiali Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Liping Luo
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
9
|
Kranrod J, Konkel A, Valencia R, Darwesh AM, Fischer R, Schunck WH, Seubert JM. Cardioprotective properties of OMT-28, a synthetic analog of omega-3 epoxyeicosanoids. J Biol Chem 2024; 300:107372. [PMID: 38754781 PMCID: PMC11214398 DOI: 10.1016/j.jbc.2024.107372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
OMT-28 is a metabolically robust small molecule developed to mimic the structure and function of omega-3 epoxyeicosanoids. However, it remained unknown to what extent OMT-28 also shares the cardioprotective and anti-inflammatory properties of its natural counterparts. To address this question, we analyzed the ability of OMT-28 to ameliorate hypoxia/reoxygenation (HR)-injury and lipopolysaccharide (LPS)-induced endotoxemia in cultured cardiomyocytes. Moreover, we investigated the potential of OMT-28 to limit functional damage and inflammasome activation in isolated perfused mouse hearts subjected to ischemia/reperfusion (IR) injury. In the HR model, OMT-28 (1 μM) treatment largely preserved cell viability (about 75 versus 40% with the vehicle) and mitochondrial function as indicated by the maintenance of NAD+/NADH-, ADP/ATP-, and respiratory control ratios. Moreover, OMT-28 blocked the HR-induced production of mitochondrial reactive oxygen species. Pharmacological inhibition experiments suggested that Gαi, PI3K, PPARα, and Sirt1 are essential components of the OMT-28-mediated pro-survival pathway. Counteracting inflammatory injury of cardiomyocytes, OMT-28 (1 μM) reduced LPS-induced increases in TNFα protein (by about 85% versus vehicle) and NF-κB DNA binding (by about 70% versus vehicle). In the ex vivo model, OMT-28 improved post-IR myocardial function recovery to reach about 40% of the baseline value compared to less than 20% with the vehicle. Furthermore, OMT-28 (1 μM) limited IR-induced NLRP3 inflammasome activation similarly to a direct NLRP3 inhibitor (MCC950). Overall, this study demonstrates that OMT-28 possesses potent cardio-protective and anti-inflammatory properties supporting the hypothesis that extending the bioavailability of omega-3 epoxyeicosanoids may improve their prospects as therapeutic agents.
Collapse
Affiliation(s)
- Joshua Kranrod
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | - Robert Valencia
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada; Faculty of Medicine and Dentistry, Department of Pharmacology, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ahmed M Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada; Faculty of Medicine and Dentistry, Department of Pharmacology, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
10
|
Hong S, Lee HG, Huh WK. ARV1 deficiency induces lipid bilayer stress and enhances rDNA stability by activating the unfolded protein response in Saccharomyces cerevisiae. J Biol Chem 2024; 300:107273. [PMID: 38588806 PMCID: PMC11089378 DOI: 10.1016/j.jbc.2024.107273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
The stability of ribosomal DNA (rDNA) is maintained through transcriptional silencing by the NAD+-dependent histone deacetylase Sir2 in Saccharomyces cerevisiae. Alongside proteostasis, rDNA stability is a crucial factor regulating the replicative lifespan of S. cerevisiae. The unfolded protein response (UPR) is induced by misfolding of proteins or an imbalance of membrane lipid composition and is responsible for degrading misfolded proteins and restoring endoplasmic reticulum (ER) membrane homeostasis. Recent investigations have suggested that the UPR can extend the replicative lifespan of yeast by enhancing protein quality control mechanisms, but the relationship between the UPR and rDNA stability remains unknown. In this study, we found that the deletion of ARV1, which encodes an ER protein of unknown molecular function, activates the UPR by inducing lipid bilayer stress. In arv1Δ cells, the UPR and the cell wall integrity pathway are activated independently of each other, and the high osmolarity glycerol (HOG) pathway is activated in a manner dependent on Ire1, which mediates the UPR. Activated Hog1 translocates the stress response transcription factor Msn2 to the nucleus, where it promotes the expression of nicotinamidase Pnc1, a well-known Sir2 activator. Following Sir2 activation, rDNA silencing and rDNA stability are promoted. Furthermore, the loss of other ER proteins, such as Pmt1 or Bst1, and ER stress induced by tunicamycin or inositol depletion also enhance rDNA stability in a Hog1-dependent manner. Collectively, these findings suggest that the induction of the UPR enhances rDNA stability in S. cerevisiae by promoting the Msn2-Pnc1-Sir2 pathway in a Hog1-dependent manner.
Collapse
Affiliation(s)
- Sujin Hong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyeon-Geun Lee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Microbiology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Ishima T, Kimura N, Kobayashi M, Nagai R, Osaka H, Aizawa K. A Simple, Fast, Sensitive LC-MS/MS Method to Quantify NAD(H) in Biological Samples: Plasma NAD(H) Measurement to Monitor Brain Pathophysiology. Int J Mol Sci 2024; 25:2325. [PMID: 38397001 PMCID: PMC10888655 DOI: 10.3390/ijms25042325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a cofactor in redox reactions and an essential mediator of energy metabolism. The redox balance between NAD+ and NADH affects various diseases, cell differentiation, and aging, and in recent years there has been a growing need for measurement techniques with improved accuracy. However, NAD(H) measurements, representing both NAD+ and NADH, have been limited by the compound's properties. We achieved highly sensitive simultaneous measurement of NAD+ and NADH under non-ion pairing, mobile phase conditions of water, or methanol containing 5 mM ammonium acetate. These were achieved using a simple pre-treatment and 7-min analysis time. Use of the stable isotope 13C5-NAD+ as an internal standard enabled validation close to BMV criteria and demonstrated the robustness of NAD(H) determination. Measurements using this method showed that brain NAD(H) levels correlate strongly with plasma NAD(H) levels in the same mouse, indicating that NAD(H) concentrations in brain tissue are reflected in plasma. As NAD(H) is involved in various neurodegenerative diseases and cerebral ischemia, as well as brain diseases such as mitochondrial myopathies, monitoring changes in NADH levels in plasma after drug administration will be useful for development of future diagnostics and therapeutics.
Collapse
Affiliation(s)
- Tamaki Ishima
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Japan; (T.I.); (N.K.)
| | - Natsuka Kimura
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Japan; (T.I.); (N.K.)
| | - Mizuki Kobayashi
- Department of Pediatrics, Jichi Medical University, Shimotsuke 329-0498, Japan; (M.K.); (H.O.)
| | - Ryozo Nagai
- Jichi Medical University, Shimotsuke 329-0498, Japan;
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Shimotsuke 329-0498, Japan; (M.K.); (H.O.)
| | - Kenichi Aizawa
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Japan; (T.I.); (N.K.)
- Clinical Pharmacology Center, Jichi Medical University Hospital, Shimotsuke 329-0498, Japan
- Division of Translational Research, Clinical Research Center, Jichi Medical University Hospital, Shimotsuke 329-0498, Japan
| |
Collapse
|
12
|
Yosief RHS, Lone IM, Nachshon A, Himmelbauer H, Gat‐Viks I, Iraqi FA. Identifying genetic susceptibility to Aspergillus fumigatus infection using collaborative cross mice and RNA-Seq approach. Animal Model Exp Med 2024; 7:36-47. [PMID: 38356021 PMCID: PMC10961901 DOI: 10.1002/ame2.12386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/15/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Aspergillus fumigatus (Af) is one of the most ubiquitous fungi and its infection potency is suggested to be strongly controlled by the host genetic background. The aim of this study was to search for candidate genes associated with host susceptibility to Aspergillus fumigatus (Af) using an RNAseq approach in CC lines and hepatic gene expression. METHODS We studied 31 male mice from 25 CC lines at 8 weeks old; the mice were infected with Af. Liver tissues were extracted from these mice 5 days post-infection, and next-generation RNA-sequencing (RNAseq) was performed. The GENE-E analysis platform was used to generate a clustered heat map matrix. RESULTS Significant variation in body weight changes between CC lines was observed. Hepatic gene expression revealed 12 top prioritized candidate genes differentially expressed in resistant versus susceptible mice based on body weight changes. Interestingly, three candidate genes are located within genomic intervals of the previously mapped quantitative trait loci (QTL), including Gm16270 and Stox1 on chromosome 10 and Gm11033 on chromosome 8. CONCLUSIONS Our findings emphasize the CC mouse model's power in fine mapping the genetic components underlying susceptibility towards Af. As a next step, eQTL analysis will be performed for our RNA-Seq data. Suggested candidate genes from our study will be further assessed with a human cohort with aspergillosis.
Collapse
Affiliation(s)
- Roa'a H. S. Yosief
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Aharon Nachshon
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Heinz Himmelbauer
- Institute of Computational Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 181190 ViennaAustria
| | - Irit Gat‐Viks
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| |
Collapse
|
13
|
Okoye CN, Koren SA, Wojtovich AP. Mitochondrial complex I ROS production and redox signaling in hypoxia. Redox Biol 2023; 67:102926. [PMID: 37871533 PMCID: PMC10598411 DOI: 10.1016/j.redox.2023.102926] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023] Open
Abstract
Mitochondria are a main source of cellular energy. Oxidative phosphorylation (OXPHOS) is the major process of aerobic respiration. Enzyme complexes of the electron transport chain (ETC) pump protons to generate a protonmotive force (Δp) that drives OXPHOS. Complex I is an electron entry point into the ETC. Complex I oxidizes nicotinamide adenine dinucleotide (NADH) and transfers electrons to ubiquinone in a reaction coupled with proton pumping. Complex I also produces reactive oxygen species (ROS) under various conditions. The enzymatic activities of complex I can be regulated by metabolic conditions and serves as a regulatory node of the ETC. Complex I ROS plays diverse roles in cell metabolism ranging from physiologic to pathologic conditions. Progress in our understanding indicates that ROS release from complex I serves important signaling functions. Increasing evidence suggests that complex I ROS is important in signaling a mismatch in energy production and demand. In this article, we review the role of ROS from complex I in sensing acute hypoxia.
Collapse
Affiliation(s)
- Chidozie N Okoye
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Shon A Koren
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
14
|
Szerlauth A, Varga S, Szilagyi I. Molecular Antioxidants Maintain Synergistic Radical Scavenging Activity upon Co-Immobilization on Clay Nanoplatelets. ACS Biomater Sci Eng 2023; 9:5622-5631. [PMID: 37738637 PMCID: PMC10565722 DOI: 10.1021/acsbiomaterials.3c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
Unbalanced levels of reactive oxygen species (ROS) result in oxidative stress, affecting both biomedical and industrial processes. Antioxidants can prevent ROS overproduction and thus delay or inhibit their harmful effects. Herein, activities of two molecular antioxidants (gallic acid (GA), a well-known phenolic compound, and nicotinamide adenine dinucleotide (NADH), a vital biological cofactor) were tested individually and in combination to assess possible synergistic, additive, or antagonistic effects in free radical scavenging and in redox capacity assays. GA was a remarkable radical scavenger, and NADH exhibited moderate antioxidant activity, while their combination at different molar ratios led to a synergistic effect since the resulting activity was superior to the sum of the individual GA and NADH activities. Their coimmobilization was performed on the surface of delaminated layered double hydroxide clay nanoplatelets by electrostatic interactions, and the synergistic effect was maintained upon such a heterogenization of these molecular antioxidants. The coimmobilization of GA and NADH expands the range of their potential applications, in which separation of antioxidant additives is important during treatments or manufacturing processes.
Collapse
Affiliation(s)
- Adel Szerlauth
- MTA-SZTE Lendület
Biocolloids Research Group, Department of Physical Chemistry and Materials
Science, Interdisciplinary Excellence Centre, University of Szeged, Szeged H-6720, Hungary
| | - Szilárd Varga
- MTA-SZTE Lendület
Biocolloids Research Group, Department of Physical Chemistry and Materials
Science, Interdisciplinary Excellence Centre, University of Szeged, Szeged H-6720, Hungary
| | - Istvan Szilagyi
- MTA-SZTE Lendület
Biocolloids Research Group, Department of Physical Chemistry and Materials
Science, Interdisciplinary Excellence Centre, University of Szeged, Szeged H-6720, Hungary
| |
Collapse
|
15
|
Pencina KM, Valderrabano R, Wipper B, Orkaby AR, Reid KF, Storer T, Lin AP, Merugumala S, Wilson L, Latham N, Ghattas-Puylara C, Ozimek NE, Cheng M, Bhargava A, Memish-Beleva Y, Lawney B, Lavu S, Swain PM, Apte RS, Sinclair DA, Livingston D, Bhasin S. Nicotinamide Adenine Dinucleotide Augmentation in Overweight or Obese Middle-Aged and Older Adults: A Physiologic Study. J Clin Endocrinol Metab 2023; 108:1968-1980. [PMID: 36740954 PMCID: PMC11491622 DOI: 10.1210/clinem/dgad027] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Indexed: 02/07/2023]
Abstract
CONTEXT Nicotinamide adenine dinucleotide (NAD) levels decline with aging and age-related decline in NAD has been postulated to contribute to age-related diseases. OBJECTIVE We evaluated the safety and physiologic effects of NAD augmentation by administering its precursor, β-nicotinamide mononucleotide (MIB-626, Metro International Biotech, Worcester, MA), in adults at risk for age-related conditions. METHODS Thirty overweight or obese adults, ≥ 45 years, were randomized in a 2:1 ratio to 2 MIB-626 tablets each containing 500 mg of microcrystalline β-nicotinamide mononucleotide or placebo twice daily for 28 days. Study outcomes included safety; NAD and its metabolome; body weight; liver, muscle, and intra-abdominal fat; insulin sensitivity; blood pressure; lipids; physical performance, and muscle bioenergetics. RESULTS Adverse events were similar between groups. MIB-626 treatment substantially increased circulating concentrations of NAD and its metabolites. Body weight (difference -1.9 [-3.3, -0.5] kg, P = .008); diastolic blood pressure (difference -7.01 [-13.44, -0.59] mmHg, P = .034); total cholesterol (difference -26.89 [-44.34, -9.44] mg/dL, P = .004), low-density lipoprotein (LDL) cholesterol (-18.73 [-31.85, -5.60] mg/dL, P = .007), and nonhigh-density lipoprotein cholesterol decreased significantly more in the MIB-626 group than placebo. Changes in muscle strength, muscle fatigability, aerobic capacity, and stair-climbing power did not differ significantly between groups. Insulin sensitivity and hepatic and intra-abdominal fat did not change in either group. CONCLUSIONS MIB-626 administration in overweight or obese, middle-aged and older adults safely increased circulating NAD levels, and significantly reduced total LDL and non-HDL cholesterol, body weight, and diastolic blood pressure. These data provide the rationale for larger trials to assess the efficacy of NAD augmentation in improving cardiometabolic outcomes in older adults.
Collapse
Affiliation(s)
- Karol Mateusz Pencina
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rodrigo Valderrabano
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin Wipper
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ariela R Orkaby
- Division of Aging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Kieran F Reid
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Storer
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander P Lin
- Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Sai Merugumala
- Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lauren Wilson
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nancy Latham
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Catherine Ghattas-Puylara
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Noelle E Ozimek
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ming Cheng
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Avantika Bhargava
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yusnie Memish-Beleva
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Siva Lavu
- Metro International Biotech, Worcester, MA 01606, USA
| | | | - Rajendra S Apte
- Metro International Biotech, Worcester, MA 01606, USA
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David A Sinclair
- Metro International Biotech, Worcester, MA 01606, USA
- Department of Genetics, and The Paul F. Glenn Center for Biology of Aging Research, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Shalender Bhasin
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
16
|
Talukdar D, Bandopadhyay P, Ray Y, Paul SR, Sarif J, D'Rozario R, Lahiri A, Das S, Bhowmick D, Chatterjee S, Das B, Ganguly D. Association of gut microbial dysbiosis with disease severity, response to therapy and disease outcomes in Indian patients with COVID-19. Gut Pathog 2023; 15:22. [PMID: 37161621 PMCID: PMC10170741 DOI: 10.1186/s13099-023-00546-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/13/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Severe coronavirus disease 2019 (COVID-19) is associated with systemic hyper-inflammation. An adaptive interaction between gut microbiota and host immune systems is important for intestinal homeostasis and systemic immune regulation. The association of gut microbial composition and functions with COVID-19 disease severity is sparse, especially in India. We analysed faecal microbial diversity and abundances in a cohort of Indian COVID-19 patients to identify key signatures in the gut microbial ecology in patients with severe COVID-19 disease as well as in response to different therapies. The composition of the gut microbiome was characterized using 16Sr RNA gene sequences of genomic DNA extracted from faecal samples of 52 COVID-19 patients. Metabolic pathways across the groups were predicted using PICRUSt2. All statistical analyses were done using Vegan in the R environment. Plasma cytokine abundance at recruitment was measured in a multiplex assay. RESULTS The gut microbiome composition of mild and severe patients was found to be significantly different. Immunomodulatory commensals, viz. Lachnospiraceae family members and Bifidobacteria producing butyrate and short-chain fatty acids (SCFAs), were under represented in patients with severe COVID-19, with an increased abundance of opportunistic pathogens like Eggerthella. The higher abundance of Lachnoclostridium in severe disease was reduced in response to convalescent plasma therapy. Specific microbial genera showed distinctive trends in enriched metabolic pathways, strong correlations with blood plasma cytokine levels, and associative link to disease outcomes. CONCLUSION Our study indicates that, along with SARS-CoV-2, a dysbiotic gut microbial community may also play an important role in COVID-19 severity through modulation of host immune responses.
Collapse
Affiliation(s)
- Daizee Talukdar
- Functional Genomics Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Purbita Bandopadhyay
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Yogiraj Ray
- Department of Medicine, Infectious Diseases and Beleghata General Hospital, Kolkata, India
- Department of Infectious Disease, SSKM Hospital, Kolkata, India
| | - Shekhar Ranjan Paul
- Department of Medicine, Infectious Diseases and Beleghata General Hospital, Kolkata, India
| | - Jafar Sarif
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ranit D'Rozario
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Abhishake Lahiri
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Santanu Das
- Functional Genomics Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Debaleena Bhowmick
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Shilpak Chatterjee
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Bhabatosh Das
- Functional Genomics Laboratory, Translational Health Science and Technology Institute, Faridabad, India.
| | - Dipyaman Ganguly
- CSIR-Indian Institute of Chemical Biology, Kolkata, India.
- Academy of Scientific and Innovative Research, Ghaziabad, India.
| |
Collapse
|
17
|
Varma A, Storey KB. Hepatic citrate synthase suppression in the freeze-tolerant wood frog (Rana sylvatica). Int J Biol Macromol 2023; 242:124718. [PMID: 37148930 DOI: 10.1016/j.ijbiomac.2023.124718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
The wood frog, Rana sylvatica endures whole body freezing for weeks/months while overwintering at subzero temperatures. Survival of long-term freezing requires not only cryoprotectants but also strong metabolic rate depression (MRD) and reorganization of essential processes in order to maintain a balance between ATP-producing and ATP-consuming processes. Citrate synthase (CS) (E.C. 2.3.3.1) is an important irreversible enzyme of the tricarboxylic acid (TCA) cycle and forms a crucial checkpoint for many metabolic processes. Present study investigated the regulation of CS from wood frog liver during freezing. CS was purified to homogeneity by a two-step chromatographic process. Kinetic and regulatory parameters of the enzyme were investigated and, notably, demonstrated a significant decrease in the Vmax of the purified form of CS from frozen frogs as compared to controls when assayed at both 22 °C and 5 °C. This was further supported by a decrease in the maximum activity of CS from liver of frozen frogs. Immunoblotting also showed changes in posttranslational modifications with a significant decrease in threonine phosphorylation (by 49 %) for CS from frozen frogs. Taken together, these results suggest that CS is suppressed and TCA flux is inhibited during freezing, likely to support MRD survival of harsh winters.
Collapse
Affiliation(s)
- Anchal Varma
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel by Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel by Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
18
|
Abstract
BACKGROUND Autoimmune hepatitis has an unknown cause and genetic associations that are not disease-specific or always present. Clarification of its missing causality and heritability could improve prevention and management strategies. AIMS Describe the key epigenetic and genetic mechanisms that could account for missing causality and heritability in autoimmune hepatitis; indicate the prospects of these mechanisms as pivotal factors; and encourage investigations of their pathogenic role and therapeutic potential. METHODS English abstracts were identified in PubMed using multiple key search phases. Several hundred abstracts and 210 full-length articles were reviewed. RESULTS Environmental induction of epigenetic changes is the prime candidate for explaining the missing causality of autoimmune hepatitis. Environmental factors (diet, toxic exposures) can alter chromatin structure and the production of micro-ribonucleic acids that affect gene expression. Epistatic interaction between unsuspected genes is the prime candidate for explaining the missing heritability. The non-additive, interactive effects of multiple genes could enhance their impact on the propensity and phenotype of autoimmune hepatitis. Transgenerational inheritance of acquired epigenetic marks constitutes another mechanism of transmitting parental adaptations that could affect susceptibility. Management strategies could range from lifestyle adjustments and nutritional supplements to precision editing of the epigenetic landscape. CONCLUSIONS Autoimmune hepatitis has a missing causality that might be explained by epigenetic changes induced by environmental factors and a missing heritability that might reflect epistatic gene interactions or transgenerational transmission of acquired epigenetic marks. These unassessed or under-evaluated areas warrant investigation.
Collapse
Affiliation(s)
- Albert J Czaja
- Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
- Professor Emeritus of Medicine, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
19
|
Nielsen JR, Weusthuis RA, Huang WE. Growth-coupled enzyme engineering through manipulation of redox cofactor regeneration. Biotechnol Adv 2023; 63:108102. [PMID: 36681133 DOI: 10.1016/j.biotechadv.2023.108102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Enzymes need to be efficient, robust, and highly specific for their effective use in commercial bioproduction. These properties can be introduced using various enzyme engineering techniques, with random mutagenesis and directed evolution (DE) often being chosen when there is a lack of structural information -or mechanistic understanding- of the enzyme. The screening or selection step of DE is the limiting part of this process, since it must ideally be (ultra)-high throughput, specifically target the catalytic activity of the enzyme and have an accurately quantifiable metric for said activity. Growth-coupling selection strategies involve coupling a desired enzyme activity to cellular metabolism and therefore growth, where growth (rate) becomes the output metric. Redox cofactors (NAD+/NADH and NADP+/NADPH) have recently been identified as promising target molecules for growth coupling, owing to their essentiality for cellular metabolism and ubiquitous nature. Redox cofactor oxidation or reduction can be disrupted through metabolic engineering and the use of specific culturing conditions, rendering the cell inviable unless a 'rescue' reaction complements the imposed metabolic deficiency. Using this principle, enzyme variants displaying improved cofactor oxidation or reduction rates can be selected for through an increased growth rate of the cell. In recent years, several E. coli strains have been developed that are deficient in the oxidation or reduction of NAD+/NADH and NADP+/NADPH pairs, and of non-canonical redox cofactor pairs NMN+/NMNH and NCD+/NCDH, which provides researchers with a versatile toolbox of enzyme engineering platforms. A range of redox cofactor dependent enzymes have since been engineered using a variety of these strains, demonstrating the power of using this growth-coupling technique for enzyme engineering. This review aims to summarize the metabolic engineering involved in creating strains auxotrophic for the reduced or oxidized state of redox cofactors, and the resulting successes in using them for enzyme engineering. Perspectives on the unique features and potential future applications of this technique are also presented.
Collapse
Affiliation(s)
- Jochem R Nielsen
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom.
| | - Ruud A Weusthuis
- Department of Bioprocess Engineering, Wageningen University & Research, Wageningen 6700AA, the Netherlands.
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom.
| |
Collapse
|
20
|
Zhang M, Ma D, Ying J, Zhao Y. Development of an acetate ion-assisted P O P bond formations to access tetraalkyl pyrophosphates. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
21
|
Yang B, Li S, Mu W, Wang Z, Han X. Light-Harvesting Artificial Cells Containing Cyanobacteria for CO 2 Fixation and Further Metabolism Mimicking. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2201305. [PMID: 35905491 DOI: 10.1002/smll.202201305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The bottom-up constructed artificial cells help to understand the cell working mechanism and provide the evolution clues for organisms. The energy supply and metabolism mimicry are the key issues in the field of artificial cells. Herein, an artificial cell containing cyanobacteria capable of light harvesting and carbon dioxide fixation is demonstrated to produce glucose molecules by converting light energy into chemical energy. Two downstream "metabolic" pathways starting from glucose molecules are investigated. One involves enzyme cascade reaction to produce H2 O2 (assisted by glucose oxidase) first, followed by converting Amplex red to resorufin (assisted by horseradish peroxidase). The other pathway is more biologically relevant. Glucose molecules are dehydrogenated to transfer hydrogens to nicotinamide adenine dinucleotide (NAD+ ) for the production of nicotinamide adenine dinucleotide hydride (NADH) molecules in the presence of glucose dehydrogenase. Further, NADH molecules are oxidized into NAD+ by pyruvate catalyzed by lactate dehydrogenase, meanwhile, lactate is obtained. Therefore, the cascade cycling of NADH/NAD+ is built. The artificial cells built here pave the way for investigating more complicated energy-supplied metabolism inside artificial cells.
Collapse
Affiliation(s)
- Boyu Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Shubin Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Wei Mu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| |
Collapse
|
22
|
Drug Screening for Hepatitis A Virus (HAV): Nicotinamide Inhibits c-Jun Expression and HAV Replication. J Virol 2023; 97:e0198722. [PMID: 36728416 PMCID: PMC9973044 DOI: 10.1128/jvi.01987-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Hepatitis A virus (HAV) infection often causes acute hepatitis, which results in a case fatality rate of 0.2% and fulminant hepatitis in 0.5% of cases. However, no specific potent anti-HAV drug is available on the market to date. In the present study, we focused on inhibition of HAV internal ribosomal entry site (IRES)-mediated translation and investigated novel therapeutic drugs through drug repurposing by screening for inhibitors of HAV IRES-mediated translation and cell viability using a reporter assay and cell viability assay, respectively. The initial screening of 1,158 drugs resulted in 77 candidate drugs. Among them, nicotinamide significantly inhibited HAV HA11-1299 genotype IIIA replication in Huh7 cells. This promising drug also inhibited HAV HM175 genotype IB subgenomic replicon and HAV HA11-1299 genotype IIIA replication in a dose-dependent manner. In the present study, we found that nicotinamide inhibited the activation of activator protein 1 (AP-1) and that knockdown of c-Jun, which is one of the components of AP-1, inhibited HAV HM175 genotype IB IRES-mediated translation and HAV HA11-1299 genotype IIIA and HAV HM175 genotype IB replication. Taken together, the results showed that nicotinamide inhibited c-Jun, resulting in the suppression of HAV IRES-mediated translation and HAV replication, and therefore, it could be useful for the treatment of HAV infection. IMPORTANCE Drug screening methods targeting HAV IRES-mediated translation with reporter assays are attractive and useful for drug repurposing. Nicotinamide (vitamin B3, niacin) has been shown to effectively inhibit HAV replication. Transcription complex activator protein 1 (AP-1) plays an important role in the transcriptional regulation of cellular immunity or viral replication. The results of this study provide evidence that AP-1 is involved in HAV replication and plays a role in the HAV life cycle. In addition, nicotinamide was shown to suppress HAV replication partly by inhibiting AP-1 activity and HAV IRES-mediated translation. Nicotinamide may be useful for the control of acute HAV infection by inhibiting cellular AP-1 activity during HAV infection processes.
Collapse
|
23
|
Abstract
The genetically encoded fluorescent sensors convert chemical and physical signals into light. They are powerful tools for the visualisation of physiological processes in living cells and freely moving animals. The fluorescent protein is the reporter module of a genetically encoded biosensor. In this study, we first review the history of the fluorescent protein in full emission spectra on a structural basis. Then, we discuss the design of the genetically encoded biosensor. Finally, we briefly review several major types of genetically encoded biosensors that are currently widely used based on their design and molecular targets, which may be useful for the future design of fluorescent biosensors.
Collapse
Affiliation(s)
- Minji Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| |
Collapse
|
24
|
Franczak M, Toenshoff I, Jansen G, Smolenski RT, Giovannetti E, Peters GJ. The Influence of Mitochondrial Energy and 1C Metabolism on the Efficacy of Anticancer Drugs: Exploring Potential Mechanisms of Resistance. Curr Med Chem 2023; 30:1209-1231. [PMID: 35366764 DOI: 10.2174/0929867329666220401110418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/06/2022] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
Mitochondria are the main energy factory in living cells. To rapidly proliferate and metastasize, neoplastic cells increase their energy requirements. Thus, mitochondria become one of the most important organelles for them. Indeed, much research shows the interplay between cancer chemoresistance and altered mitochondrial function. In this review, we focus on the differences in energy metabolism between cancer and normal cells to better understand their resistance and how to develop drugs targeting energy metabolism and nucleotide synthesis. One of the differences between cancer and normal cells is the higher nicotinamide adenine dinucleotide (NAD+) level, a cofactor for the tricarboxylic acid cycle (TCA), which enhances their proliferation and helps cancer cells survive under hypoxic conditions. An important change is a metabolic switch called the Warburg effect. This effect is based on the change of energy harvesting from oxygen-dependent transformation to oxidative phosphorylation (OXPHOS), adapting them to the tumor environment. Another mechanism is the high expression of one-carbon (1C) metabolism enzymes. Again, this allows cancer cells to increase proliferation by producing precursors for the synthesis of nucleotides and amino acids. We reviewed drugs in clinical practice and development targeting NAD+, OXPHOS, and 1C metabolism. Combining novel drugs with conventional antineoplastic agents may prove to be a promising new way of anticancer treatment.
Collapse
Affiliation(s)
- Marika Franczak
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Isabel Toenshoff
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Vrije Universiteit Amsterdam, The Netherlands.,Amsterdam University College, Amsterdam, The Netherlands
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands
| | | | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Vrije Universiteit Amsterdam, The Netherlands.,Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Godefridus J Peters
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
25
|
POLLARD CL, GIBB Z, SWEGEN A, GRUPEN CG. NAD +, Sirtuins and PARPs: enhancing oocyte developmental competence. J Reprod Dev 2022; 68:345-354. [PMID: 36171094 PMCID: PMC9792654 DOI: 10.1262/jrd.2022-052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oocyte quality is the limiting factor in female fertility. It is well known that maternal nutrition plays a role in reproductive function, and manipulating nutrition to improve fertility in livestock has been common practice in the past, particularly with respect to negative energy balance in cattle. A deficiency in nicotinamide adenine dinucleotide (NAD+) production has been associated with increased incidences of miscarriage and congenital defects in humans and mice, while elevating NAD+ through dietary supplements in aged subjects improved oocyte quality and embryo development. NAD+ is consumed by Sirtuins and poly-ADP-ribose polymerases (PARPs) within the cell and thus need constant replenishment in order to maintain various cellular functions. Sirtuins and PARPs play important roles in oocyte maturation and embryo development, and their activation may prove beneficial to in vitro embryo production and livestock breeding programs. This review examines the roles of NAD+, Sirtuins and PARPs in aspects of fertility, providing insights into the potential use of NAD+-elevating treatments in livestock breeding and embryo production programs.
Collapse
Affiliation(s)
- Charley-Lea POLLARD
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, 2570, Australia
| | - Zamira GIBB
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Aleona SWEGEN
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Christopher G. GRUPEN
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, 2570, Australia
| |
Collapse
|
26
|
Zhang L, Zhang W, Li Z, Lin S, Zheng T, Hao B, Hou Y, Zhang Y, Wang K, Qin C, Yue L, Jin J, Li M, Fan L. Mitochondria dysfunction in CD8+ T cells as an important contributing factor for cancer development and a potential target for cancer treatment: a review. J Exp Clin Cancer Res 2022; 41:227. [PMID: 35864520 PMCID: PMC9306053 DOI: 10.1186/s13046-022-02439-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022] Open
Abstract
CD8+ T cells play a central role in anti-tumor immunity. Naïve CD8+ T cells are active upon tumor antigen stimulation, and then differentiate into functional cells and migrate towards the tumor sites. Activated CD8+ T cells can directly destroy tumor cells by releasing perforin and granzymes and inducing apoptosis mediated by the death ligand/death receptor. They also secrete cytokines to regulate the immune system against tumor cells. Mitochondria are the central hub of metabolism and signaling, required for polarization, and migration of CD8+ T cells. Many studies have demonstrated that mitochondrial dysfunction impairs the anti-tumor activity of CD8+ T cells through various pathways. Mitochondrial energy metabolism maladjustment will cause a cellular energy crisis in CD8+ T cells. Abnormally high levels of mitochondrial reactive oxygen species will damage the integrity and architecture of biofilms of CD8+ T cells. Disordered mitochondrial dynamics will affect the mitochondrial number and localization within cells, further affecting the function of CD8+ T cells. Increased mitochondria-mediated intrinsic apoptosis will decrease the lifespan and quantity of CD8+ T cells. Excessively low mitochondrial membrane potential will cause the release of cytochrome c and apoptosis of CD8+ T cells, while excessively high will exacerbate oxidative stress. Dysregulation of mitochondrial Ca2+ signaling will affect various physiological pathways in CD8+ T cells. To some extent, mitochondrial abnormality in CD8+ T cells contributes to cancer development. So far, targeting mitochondrial energy metabolism, mitochondrial dynamics, mitochondria-mediated cell apoptosis, and other mitochondrial physiological processes to rebuild the anti-tumor function of CD8+ T cells has proved effective in some cancer models. Thus, mitochondria in CD8+ T cells may be a potential and powerful target for cancer treatment in the future.
Collapse
|
27
|
Romeo I, Ambrosio FA, Costa G, Corona A, Alkhatib M, Salpini R, Lemme S, Vergni D, Svicher V, Santoro MM, Tramontano E, Ceccherini-Silberstein F, Artese A, Alcaro S. Targeting SARS-CoV-2 nsp13 Helicase and Assessment of Druggability Pockets: Identification of Two Potent Inhibitors by a Multi-Site In Silico Drug Repurposing Approach. Molecules 2022; 27:7522. [PMID: 36364347 PMCID: PMC9654784 DOI: 10.3390/molecules27217522] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 06/14/2024] Open
Abstract
The SARS-CoV-2 non-structural protein 13 (nsp13) helicase is an essential enzyme for viral replication and has been identified as an attractive target for the development of new antiviral drugs. In detail, the helicase catalyzes the unwinding of double-stranded DNA or RNA in a 5' to 3' direction and acts in concert with the replication-transcription complex (nsp7/nsp8/nsp12). In this work, bioinformatics and computational tools allowed us to perform a detailed conservation analysis of the SARS-CoV-2 helicase genome and to further predict the druggable enzyme's binding pockets. Thus, a structure-based virtual screening was used to identify valuable compounds that are capable of recognizing multiple nsp13 pockets. Starting from a database of around 4000 drugs already approved by the Food and Drug Administration (FDA), we chose 14 shared compounds capable of recognizing three out of four sites. Finally, by means of visual inspection analysis and based on their commercial availability, five promising compounds were submitted to in vitro assays. Among them, PF-03715455 was able to block both the unwinding and NTPase activities of nsp13 in a micromolar range.
Collapse
Affiliation(s)
- Isabella Romeo
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09124 Cagliari, Italy
| | - Mohammad Alkhatib
- Dipartimento di Medicina Sperimentale, Università Tor Vergata di Roma, Via Montpellier, 1, 00133 Roma, Italy
| | - Romina Salpini
- Dipartimento di Medicina Sperimentale, Università Tor Vergata di Roma, Via Montpellier, 1, 00133 Roma, Italy
| | - Saverio Lemme
- Dipartimento di Medicina Sperimentale, Università Tor Vergata di Roma, Via Montpellier, 1, 00133 Roma, Italy
| | - Davide Vergni
- Istituto per le Applicazioni del Calcolo “Mauro Picone”-CNR, 00185 Rome, Italy
| | - Valentina Svicher
- Dipartimento di Medicina Sperimentale, Università Tor Vergata di Roma, Via Montpellier, 1, 00133 Roma, Italy
| | - Maria Mercedes Santoro
- Dipartimento di Medicina Sperimentale, Università Tor Vergata di Roma, Via Montpellier, 1, 00133 Roma, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09124 Cagliari, Italy
| | | | - Anna Artese
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
28
|
Fan Z, Jia W, Du A, Shi L. Pseudo-targeted metabolomics analysis of the therapeutic effect of phenolics-rich extract from Se-enriched green tea (Camellia sinensis) on LPS-stimulated murine macrophage (RAW264.7). Food Res Int 2022; 159:111666. [DOI: 10.1016/j.foodres.2022.111666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022]
|
29
|
The development of NAD+-dependent dehydrogenase screen-printed biosensor based on enzyme and nanoporous gold co-catalytic strategy. Biosens Bioelectron 2022; 211:114376. [DOI: 10.1016/j.bios.2022.114376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/20/2023]
|
30
|
Chen C, Li J, Li Z. Sustained injection of miR-499-5p alters the gastrocnemius muscle metabolome in broiler chickens. Arch Anim Breed 2022; 65:275-284. [PMID: 36035876 PMCID: PMC9399912 DOI: 10.5194/aab-65-275-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/08/2022] [Indexed: 11/12/2022] Open
Abstract
To investigate the effects of miR-499-5p on muscle
metabolism in broiler chickens, eight broiler chicks were assigned to the
control group and eight to the treatment group, and then we monitored the effects
using metabolomics. Chicks were fed basal diets without or with miR-499-5p
delivery. Gastrocnemius muscle samples were collected and analyzed by
ultrahigh-performance liquid chromatography–tandem mass spectrometry. The
results showed that miR-499-5p injection altered the concentrations of a
variety of metabolites in the gastrocnemius muscle. Thereby, a total of 46
metabolites were identified at higher (P<0.05) concentrations and
30 metabolites were identified at lower (P<0.05) concentrations in
the treatment group compared with the control group. These metabolites
were primarily involved with the regulation of lipid and carbohydrate
metabolism. Further metabolic pathway analysis revealed that fructose and
mannose metabolism, galactose metabolism, inositol phosphate metabolism, and
terpenoid backbone biosynthesis were the most critical pathway which may
partially interpret the effects of miR-499-5p. To our knowledge, this
research is the first report of metabolic signatures and related metabolic
pathways in the skeletal muscle for miR-499-5p injection and provides new
insight into the effect of miRNA on growth performance.
Collapse
Affiliation(s)
- Chuwen Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource
Reservation and Utilization, Ministry of Education, Southwest Minzu
University, Chengdu, 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu
University, Chengdu, 610041, China
| | - Jie Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource
Reservation and Utilization, Ministry of Education, Southwest Minzu
University, Chengdu, 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu
University, Chengdu, 610041, China
| | - Zhixiong Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource
Reservation and Utilization, Ministry of Education, Southwest Minzu
University, Chengdu, 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu
University, Chengdu, 610041, China
| |
Collapse
|
31
|
GAO R, FU Q, LUO D, LIU B. Multi-signal information increment sensing system for point-of-care testing of NADH based on cobalt oxyhydroxide nanoflakes. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Quque M, Villette C, Criscuolo F, Sueur C, Bertile F, Heintz D. Eusociality is linked to caste-specific differences in metabolism, immune system, and somatic maintenance-related processes in an ant species. Cell Mol Life Sci 2021; 79:29. [PMID: 34971425 PMCID: PMC11073003 DOI: 10.1007/s00018-021-04024-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/08/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023]
Abstract
The social organization of many primate, bird and rodent species and the role of individuals within that organization are associated with specific individual physiological traits. However, this association is perhaps most pronounced in eusocial insects (e.g., termites, ants). In such species, genetically close individuals show significant differences in behavior, physiology, and life expectancy. Studies addressing the metabolic changes according to the social role are still lacking. We aimed at understanding how sociality could influence essential molecular processes in a eusocial insect, the black garden ant (Lasius niger) where queens can live up to ten times longer than workers. Using mass spectrometry-based analysis, we explored the whole metabolome of queens, nest-workers and foraging workers. A former proteomics study done in the same species allowed us to compare the findings of both approaches. Confirming the former results at the proteome level, we showed that queens had fewer metabolites related to immunity. Contrary to our predictions, we did not find any metabolite linked to reproduction in queens. Among the workers, foragers had a metabolic signature reflecting a more stressful environment and a more highly stimulated immune system. We also found that nest-workers had more digestion-related metabolites. Hence, we showed that specific metabolic signatures match specific social roles. Besides, we identified metabolites differently expressed among behavioral castes and involved in nutrient sensing and longevity pathways (e.g., sirtuins, FOXO). The links between such molecular pathways and aging being found in an increasing number of taxa, our results confirm and strengthen their potential universality.
Collapse
Affiliation(s)
- Martin Quque
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000, Strasbourg, France.
| | - Claire Villette
- Plant Imaging and Mass Spectrometry (PIMS), Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67000, Strasbourg, France
| | - François Criscuolo
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000, Strasbourg, France
| | - Cédric Sueur
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000, Strasbourg, France
- Institut Universitaire de France, 75005, Paris, France
| | - Fabrice Bertile
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI, FR2048, Strasbourg, France
| | - Dimitri Heintz
- Plant Imaging and Mass Spectrometry (PIMS), Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67000, Strasbourg, France
| |
Collapse
|
33
|
Comprehensive analysis of protein acetylation and glucose metabolism inmouse brains infected with rabies virus. J Virol 2021; 96:e0194221. [PMID: 34878915 DOI: 10.1128/jvi.01942-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rabies, caused by rabies virus (RABV), is a widespread zoonosis that is nearly 100% fatal. Alteration of the metabolic environment affects viral replication and the immune response during viral infection. In this study, glucose uptake was increased in mouse brains at the late stage of infection with different RABV strains (lab-attenuated CVS strain and wild-type DRV strain). To illustrate the mechanism underlying glucose metabolism alteration, comprehensive analysis of lysine acetylation and target analysis of energy metabolites in mouse brains infected with CVS and DRV strains were performed. A total of 156 acetylated sites and 115 acetylated proteins were identified as significantly different during RABV infection. Compared to CVS- and mock-infected mice, the lysine acetylation levels of glycolysis and tricarboxylic acid (TCA) cycle enzymes were decreased, and enzyme activity was upregulated in DRV-infected mouse brains. Metabolomic analysis revealed that high levels of oxaloacetate (OAA) in RABV-infected mouse brains. Specifically, the OAA level in CVS-infected mouse brains was higher than that in DRV-infected mouse brains, which contributed to the enhancement of the metabolic rate at the substrate level. Finally, we confirmed that OAA could reduce excessive neuroinflammation in CVS-infected mouse brains by inhibiting JNK and P38 phosphorylation. Taken together, this study provides fresh insight into the different strategies the host adapts to regulate glucose metabolism for energy requirements after different RABV strain infection and suggest that OAA treatment could be a potential strategy to prevent neural damage during RABV infection. IMPORTANCE Both viral replication and the host immune response are highly energy-dependent. It is important to understand how the rabies virus affects energy metabolism in the brain. Glucose is the direct energy source for cell metabolism. Previous studies have revealed that there is some association between acetylation and metabolic processes. In this study, comprehensive protein acetylation and glucose metabolism analysis were conducted to compare glucose metabolism in mouse brains infected with different RABV strains. Our study demonstrates that the regulation of enzyme activity by acetylation and OAA accumulation at the substrate level are two strategies for the host to respond to the energy requirements after RABV infection. Our study also indicates the potential role OAA could play in neuronal protection by suppressing excessive neuroinflammation.
Collapse
|
34
|
Boehi F, Manetsch P, Hottiger MO. Interplay between ADP-ribosyltransferases and essential cell signaling pathways controls cellular responses. Cell Discov 2021; 7:104. [PMID: 34725336 PMCID: PMC8560908 DOI: 10.1038/s41421-021-00323-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Signaling cascades provide integrative and interactive frameworks that allow the cell to respond to signals from its environment and/or from within the cell itself. The dynamic regulation of mammalian cell signaling pathways is often modulated by cascades of protein post-translational modifications (PTMs). ADP-ribosylation is a PTM that is catalyzed by ADP-ribosyltransferases and manifests as mono- (MARylation) or poly- (PARylation) ADP-ribosylation depending on the addition of one or multiple ADP-ribose units to protein substrates. ADP-ribosylation has recently emerged as an important cell regulator that impacts a plethora of cellular processes, including many intracellular signaling events. Here, we provide an overview of the interplay between the intracellular diphtheria toxin-like ADP-ribosyltransferase (ARTD) family members and five selected signaling pathways (including NF-κB, JAK/STAT, Wnt-β-catenin, MAPK, PI3K/AKT), which are frequently described to control or to be controlled by ADP-ribosyltransferases and how these interactions impact the cellular responses.
Collapse
Affiliation(s)
- Flurina Boehi
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Cancer Biology PhD Program of the Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Patrick Manetsch
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Molecular Life Science PhD Program of the Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
35
|
Song Z, Zhong X, Li M, Gao P, Ning Z, Sun Z, Song X. 1-MNA Ameliorates High Fat Diet-Induced Heart Injury by Upregulating Nrf2 Expression and Inhibiting NF-κB in vivo and in vitro. Front Cardiovasc Med 2021; 8:721814. [PMID: 34712707 PMCID: PMC8545986 DOI: 10.3389/fcvm.2021.721814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/17/2021] [Indexed: 12/05/2022] Open
Abstract
High levels of free fatty acids (FFA) are closely associated with obesity and the development of cardiovascular diseases. Recently, nicotinamide adenine dinucleotide (NAD) metabolism has emerged as a potential target for several modern diseases including diabetes. Herein, we explored the underlying mechanisms of NAD metabolism associated with the risk of cardiovascular disease. Our study found that nicotinamide N-methyltransferase (NNMT) mRNA levels were significantly increased in the hearts of FFA-bound-albumin-overloaded mice and in H9C2 cells treated with palmitic acid (PA). We studied the mechanisms underlining the anti-inflammatory and anti-oxidant activities of 1-methylnicotinamide (1-MNA), a metabolite of NNMT. We found a significantly higher level of reactive oxygen species, inflammation, apoptosis, and cell hypertrophy in PA-treated H9C2 cells and this effect was inhibited by 1-MNA treatment. in vivo, 1-MNA improved inflammation, apoptosis, and fibrosis damage in mice and this inhibition was associated with inhibited NF-κB activity. In conclusion, our study revealed that 1-MNA may prevent high fatty diet and PA-induced heart injury by regulating Nrf2 and NF-κB pathways.
Collapse
Affiliation(s)
- Ziguang Song
- Cardiovascular Center, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiao Zhong
- Cardiovascular Center, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Mingyang Li
- Cardiovascular Center, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Pingping Gao
- Cardiovascular Center, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhongping Ning
- Department of Cardiovascular Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Zhiqi Sun
- Department of Cardiovascular Medicine, DaQing Oilfield General Hospital, Daqing, China
| | - Xiang Song
- Cardiovascular Center, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
36
|
Liu Y, Mathis C, Bajczyk MD, Marshall SM, Wilbraham L, Cronin L. Exploring and mapping chemical space with molecular assembly trees. SCIENCE ADVANCES 2021; 7:eabj2465. [PMID: 34559562 PMCID: PMC8462901 DOI: 10.1126/sciadv.abj2465] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/03/2021] [Indexed: 06/01/2023]
Abstract
The rule-based search of chemical space can generate an almost infinite number of molecules, but exploration of known molecules as a function of the minimum number of steps needed to build up the target graphs promises to uncover new motifs and transformations. Assembly theory is an approach to compare the intrinsic complexity and properties of molecules by the minimum number of steps needed to build up the target graphs. Here, we apply this approach to prebiotic chemistry, gene sequences, plasticizers, and opiates. This allows us to explore molecules connected to the assembly tree, rather than the entire space of molecules possible. Last, by developing a reassembly method, based on assembly trees, we found that in the case of the opiates, a new set of drug candidates could be generated that would not be accessible via conventional fragment-based drug design, thereby demonstrating how this approach might find application in drug discovery.
Collapse
Affiliation(s)
- Yu Liu
- School of Chemistry, University of Glasgow, University Avenue,
Glasgow G12 8QQ, UK
| | - Cole Mathis
- School of Chemistry, University of Glasgow, University Avenue,
Glasgow G12 8QQ, UK
| | | | - Stuart M. Marshall
- School of Chemistry, University of Glasgow, University Avenue,
Glasgow G12 8QQ, UK
| | - Liam Wilbraham
- School of Chemistry, University of Glasgow, University Avenue,
Glasgow G12 8QQ, UK
| | - Leroy Cronin
- School of Chemistry, University of Glasgow, University Avenue,
Glasgow G12 8QQ, UK
| |
Collapse
|
37
|
Pîrvu AS, Andrei AM, Stănciulescu EC, Baniță IM, Pisoschi CG, Jurja S, Ciuluvica R. NAD + metabolism and retinal degeneration (Review). Exp Ther Med 2021; 22:670. [PMID: 33986835 PMCID: PMC8111861 DOI: 10.3892/etm.2021.10102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022] Open
Abstract
The recent years has revealed an intense interest in the study of nicotinamide adenine dinucleotide (NAD+), particularly in regards to its intermediates, such as nicotinamide and nicotinic acid known as niacin, and also nicotinamide riboside. Besides its participation as a coenzyme in the redox transformations of nutrients during catabolism, NAD+ is also involved in DNA repair and epigenetic modification of gene expression and also plays an essential role in calcium homeostasis. Clinical and experimental data emphasize the age-dependent decline in NAD+ levels and its relation with the onset and progression of various age-related diseases. Maintaining optimal levels of NAD+ has aroused a therapeutic interest in such pathological conditions; NAD+ being currently regarded as an important target to extend health and lifespan. Based on a systematic exploration of the experimental data and literature surrounding the topic, this paper reviews some of the recent research studies related to the roles of the pyridine nucleotide family focusing on biosynthesis, NAD+ deficiency-associated diseases, pathobiochemistry related to retinal degeneration and potential therapeutic effects on human vision as well.
Collapse
Affiliation(s)
- Andreea Silvia Pîrvu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ana Marina Andrei
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Elena Camelia Stănciulescu
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ileana Monica Baniță
- Department of Histology, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Cătălina Gabriela Pisoschi
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Sanda Jurja
- Department of Ophthalmology, Faculty of Medicine, ‘Ovidius’ University of Constanta, 900527 Constanta, Romania
| | - Radu Ciuluvica
- Faculty of Dentistry, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
38
|
Mithaiwala MN, Santana-Coelho D, Porter GA, O’Connor JC. Neuroinflammation and the Kynurenine Pathway in CNS Disease: Molecular Mechanisms and Therapeutic Implications. Cells 2021; 10:1548. [PMID: 34205235 PMCID: PMC8235708 DOI: 10.3390/cells10061548] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
Diseases of the central nervous system (CNS) remain a significant health, social and economic problem around the globe. The development of therapeutic strategies for CNS conditions has suffered due to a poor understanding of the underlying pathologies that manifest them. Understanding common etiological origins at the cellular and molecular level is essential to enhance the development of efficacious and targeted treatment options. Over the years, neuroinflammation has been posited as a common link between multiple neurological, neurodegenerative and neuropsychiatric disorders. Processes that precipitate neuroinflammatory conditions including genetics, infections, physical injury and psychosocial factors, like stress and trauma, closely link dysregulation in kynurenine pathway (KP) of tryptophan metabolism as a possible pathophysiological factor that 'fuel the fire' in CNS diseases. In this study, we aim to review emerging evidence that provide mechanistic insights between different CNS disorders, neuroinflammation and the KP. We provide a thorough overview of the different branches of the KP pertinent to CNS disease pathology that have therapeutic implications for the development of selected and efficacious treatment strategies.
Collapse
Affiliation(s)
- Mustafa N. Mithaiwala
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Danielle Santana-Coelho
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Grace A. Porter
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Jason C. O’Connor
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
- Department of Research, Audie L. Murphy VA Hospital, South Texas Veterans Heath System, San Antonio, TX 78229, USA
| |
Collapse
|
39
|
Wang QH, Li Y, Dou DY, Wang R, Jiang TT, Wang L, Li MQ, Joshua Olatunji O, Zuo J. Nicotinamide mononucleotide-elicited NAMPT signaling activation aggravated adjuvant-induced arthritis in rats by affecting peripheral immune cells differentiation. Int Immunopharmacol 2021; 98:107856. [PMID: 34130151 DOI: 10.1016/j.intimp.2021.107856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/20/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
Supplement of nicotinamide mononucleotide (NMN), the direct precursor of nicotinamide adenine dinucleotide (NAD+) has gained prominence due to the significant anti-aging potentials of nicotinamide phosphoribosyltransferas (NAMPT)/NAD+ signaling. Because over-expression of NAMPT is deeply implicated in inflammatory arthritis, we investigated the effects of NMN supplement on rats with adjuvant-induced arthritis (AIA). Tested rats were given oral treatment of NMN at 200 mg/kg/day for 25 days. Arthritis score and body weight were periodically recorded. Clinical outcomes were evaluated based on arthritic manifestations, ELISA analysis and histological examination. T cells subsets were analyzed by flow cytometry. Expressions of protein and mRNA were assessed by immunoblotting and PCR methods, respectively. Levels of CD172a, CD43, and NAMPT in peripheral blood mononuclear cells (PBMCs) were investigated by immunofluorescence approach. Obtained results were further validated by experiments in vitro. Generally, NMN exacerbated AIA severity in rats. It deteriorated MMP3-controlled tissues damages, and altered immune profile by increasing Th17/Treg cells ratio. The up-regulation of NAMPT in PBMCs from NMN-treated rats was confirmed by both immunofluorescence and PCR experiments, which was synchronized with significant increase in iNOS, MCP-1, IL-1β expression. NMN-primed AIA PBMCs were potent in up-regulating MCP-1, IL-1β, MMP3 and p-JNK expression in synovioblast. NMN stimulus barely affected Th17 cells count in in vitro cultured splenocytes, but it greatly potentiated the capability of AIA monocytes in inducing IL-17α secretion and Th17 cells differentiation in the co-cultured splenocytes. It suggested that long-term NMN supplement could exacerbate inflammatory arthritis by reshaping the immune milieu through the up-regulation of NAMPT.
Collapse
Affiliation(s)
- Qi-Hai Wang
- School of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu 241000, Anhui, China
| | - Yan Li
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241000, China; Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu 241000, China
| | - De-Yu Dou
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu 241000, China
| | - Rui Wang
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241000, China
| | - Tian-Tian Jiang
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241000, China
| | - Lin Wang
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241000, China
| | - Ming-Qiang Li
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241000, China
| | | | - Jian Zuo
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241000, China; Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu 241000, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241000, China.
| |
Collapse
|
40
|
Neuroprotection in Glaucoma: NAD +/NADH Redox State as a Potential Biomarker and Therapeutic Target. Cells 2021; 10:cells10061402. [PMID: 34198948 PMCID: PMC8226607 DOI: 10.3390/cells10061402] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide. Its prevalence and incidence increase exponentially with age and the level of intraocular pressure (IOP). IOP reduction is currently the only therapeutic modality shown to slow glaucoma progression. However, patients still lose vision despite best treatment, suggesting that other factors confer susceptibility. Several studies indicate that mitochondrial function may underlie both susceptibility and resistance to developing glaucoma. Mitochondria meet high energy demand, in the form of ATP, that is required for the maintenance of optimum retinal ganglion cell (RGC) function. Reduced nicotinamide adenine dinucleotide (NAD+) levels have been closely correlated to mitochondrial dysfunction and have been implicated in several neurodegenerative diseases including glaucoma. NAD+ is at the centre of various metabolic reactions culminating in ATP production—essential for RGC function. In this review we present various pathways that influence the NAD+(H) redox state, affecting mitochondrial function and making RGCs susceptible to degeneration. Such disruptions of the NAD+(H) redox state are generalised and not solely induced in RGCs because of high IOP. This places the NAD+(H) redox state as a potential systemic biomarker for glaucoma susceptibility and progression; a hypothesis which may be tested in clinical trials and then translated to clinical practice.
Collapse
|
41
|
Chen H, Yu J, Men X, Zhang J, Ding Z, Jiang Y, Wu C, Chiu DT. Reversible Ratiometric NADH Sensing Using Semiconducting Polymer Dots. Angew Chem Int Ed Engl 2021; 60:12007-12012. [PMID: 33730372 PMCID: PMC8119375 DOI: 10.1002/anie.202100774] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 11/10/2022]
Abstract
Reduced nicotinamide adenine dinucleotide (NADH) is a key coenzyme in living cells due to its role as an electron carrier in redox reactions, and its concentration is an important indicator of cell metabolic state. Abnormal NADH levels are associated with age-related metabolic diseases and neurodegenerative disorders, creating a demand for a simple, rapid analytical method for point-of-care NADH sensing. Here we develop a series of NADH-sensitive semiconducting polymer dots (Pdots) as nanoprobes for NADH measurement, and test their performance in vitro and in vivo. NADH sensing is based on electron transfer from semiconducting polymer chains in the Pdot to NADH upon UV excitation, quenching Pdot fluorescence emission. In polyfluorene-based Pdots, this mechanism resulted in an on-off NADH sensor; in DPA-CNPPV Pdots, UV excitation resulted in NADH-sensitive emission at two wavelengths, enabling ratiometric detection. Ratiometric NADH detection using DPA-CNPPV Pdots exhibits high sensitivity (3.1 μM limit of detection), excellent selectivity versus other analytes, reversibility, and a fast response (less than 5 s). We demonstrate applications of the ratiometric NADH-sensing Pdots including smartphone-based NADH imaging for point-of-care use.
Collapse
Affiliation(s)
- Haobin Chen
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jiangbo Yu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Xiaoxiao Men
- Department of Biomedical Engineering, Southern University Science and Technology, Shenzhen, Guangdong, 510855, China
| | - Jicheng Zhang
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Zhaoyang Ding
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Yifei Jiang
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University Science and Technology, Shenzhen, Guangdong, 510855, China
| | - Daniel T. Chiu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
42
|
Wiśniewski M, Czarnecka J, Bolibok P, Świdziński M, Roszek K. New Insight into the Fluorescence Quenching of Nitrogen-Containing Carbonaceous Quantum Dots-From Surface Chemistry to Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:ma14092454. [PMID: 34065161 PMCID: PMC8125974 DOI: 10.3390/ma14092454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022]
Abstract
Carbon-based quantum dots are widely suggested as fluorescent carriers of drugs, genes or other bioactive molecules. In this work, we thoroughly examine the easy-to-obtain, biocompatible, nitrogen-containing carbonaceous quantum dots (N-CQDs) with stable fluorescent properties that are resistant to wide-range pH changes. Moreover, we explain the mechanism of fluorescence quenching at extreme pH conditions. Our in vitro results indicate that N-CQDs penetrate the cell membrane; however, fluorescence intensity measured inside the cells was lower than expected from carbonaceous dots extracellular concentration decrease. We studied the mechanism of quenching and identified reduced form of β-nicotinamide adenine dinucleotide (NADH) as one of the intracellular quenchers. We proved it experimentally that the elucidated redox process triggers the efficient reduction of amide functionalities to non-fluorescent amines on carbonaceous dots surface. We determined the 5 nm-wide reactive redox zone around the N-CQD surface. The better understanding of fluorescence quenching will help to accurately quantify and dose the internalized carbonaceous quantum dots for biomedical applications.
Collapse
Affiliation(s)
- Marek Wiśniewski
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
- Correspondence: (M.W.); (K.R.)
| | - Joanna Czarnecka
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Paulina Bolibok
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Michał Świdziński
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
- Correspondence: (M.W.); (K.R.)
| |
Collapse
|
43
|
Reply to Krupenko et al. Comment on "Lee et al. The Combination of Loss of ALDH1L1 Function and Phenformin Treatment Decreases Tumor Growth in KRAS-Driven Lung Cancer Cancers 2020, 12, 1382". Cancers (Basel) 2021; 13:cancers13092238. [PMID: 34066916 PMCID: PMC8124425 DOI: 10.3390/cancers13092238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 11/26/2022] Open
|
44
|
BiFC Method Based on Intraorganellar Protein Crowding Detects Oleate-Dependent Peroxisomal Targeting of Pichia pastoris Malate Dehydrogenase. Int J Mol Sci 2021; 22:ijms22094890. [PMID: 34063066 PMCID: PMC8124512 DOI: 10.3390/ijms22094890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/24/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
The maintenance of intracellular NAD+/NADH homeostasis across multiple, subcellular compartments requires the presence of NADH-shuttling proteins, which circumvent the lack of permeability of organelle membranes to these cofactors. Very little is known regarding these proteins in the methylotrophic yeast, Pichia pastoris. During the study of the subcellular locations of these shuttling proteins, which often have dual subcellular locations, it became necessary to develop new ways to detect the weak peroxisomal locations of some of these proteins. We have developed a novel variation of the traditional Bimolecular Fluorescence Complementation (BiFC), called divergent BiFC, to detect intraorganellar colocalization of two noninteracting proteins based on their proximity-based protein crowding within a small subcellular compartment, rather than on the traditional protein–protein interactions expected for BiFC. This method is used to demonstrate the partially peroxisomal location of one such P. pastoris NADH-shuttling protein, malate dehydrogenase B, only when cells are grown in oleate, but not when grown in methanol or glucose. We discuss the mode of NADH shuttling in P. pastoris and the physiological basis of the medium-dependent compartmentalization of PpMdhB.
Collapse
|
45
|
Evers MS, Roullier-Gall C, Morge C, Sparrow C, Gobert A, Alexandre H. Vitamins in wine: Which, what for, and how much? Compr Rev Food Sci Food Saf 2021; 20:2991-3035. [PMID: 33884746 DOI: 10.1111/1541-4337.12743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/01/2022]
Abstract
Vitamins are essential compounds to yeasts, and notably in winemaking contexts. Vitamins are involved in numerous yeast metabolic pathways, including those of amino acids, fatty acids, and alcohols, which suggests their notable implication in fermentation courses, as well as in the development of aromatic compounds in wines. Although they are major components in the course of those microbial processes, their significance and impact have not been extensively studied in the context of winemaking and wine products, as most of the studies focusing on the subject in the past decades have relied on relatively insensitive and imprecise analytical methods. Therefore, this review provides an extensive overview of the current knowledge regarding the impacts of vitamins on grape must fermentations, wine-related yeast metabolisms, and requirements, as well as on the profile of wine sensory characteristics. We also highlight the methodologies and techniques developed over time to perform vitamin analysis in wines, and assess the importance of precisely defining the role played by vitamins in winemaking processes, to ensure finer control of the fermentation courses and product characteristics in a highly complex matrix.
Collapse
Affiliation(s)
- Marie Sarah Evers
- Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France.,SAS Sofralab, Magenta, France
| | - Chloé Roullier-Gall
- Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France
| | | | | | | | - Hervé Alexandre
- Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France
| |
Collapse
|
46
|
Chen H, Yu J, Men X, Zhang J, Ding Z, Jiang Y, Wu C, Chiu DT. Reversible Ratiometric NADH Sensing Using Semiconducting Polymer Dots. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Haobin Chen
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Jiangbo Yu
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Xiaoxiao Men
- Department of Biomedical Engineering Southern University Science and Technology Shenzhen Guangdong 510855 China
| | - Jicheng Zhang
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Zhaoyang Ding
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Yifei Jiang
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Changfeng Wu
- Department of Biomedical Engineering Southern University Science and Technology Shenzhen Guangdong 510855 China
| | - Daniel T. Chiu
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| |
Collapse
|
47
|
Gorduk O. Sensitive Electrochemical Determination of NADH Using an Electrode Fabricated by Intercalation of Tetrabutylammonium Ions Into Graphite Electrode. ELECTROANAL 2021. [DOI: 10.1002/elan.202100101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ozge Gorduk
- Department of Chemistry Faculty of Arts and Science Yildiz Technical University TR34220 Istanbul Turkey
| |
Collapse
|
48
|
Gaur P, Prasad S, Kumar B, Sharma SK, Vats P. High-altitude hypoxia induced reactive oxygen species generation, signaling, and mitigation approaches. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:601-615. [PMID: 33156424 DOI: 10.1007/s00484-020-02037-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Homeostasis between pro-oxidants and anti-oxidants is necessary for aerobic life, which if perturbed and shifted towards pro-oxidants results in oxidative stress. It is generally agreed that reactive oxygen species (ROS) production is accelerated with mountainous elevation, which may play a role in spawning serious health crisis. Exposure to increasing terrestrial altitude leads to a reduction in ambient O2 availability in cells producing a series of hypoxic oxidative stress reactions and altering the redox balance in humans. Enormous literature on redox signaling drove research activity towards understanding the role of oxidative stress under normal and challenging conditions like high-altitude hypoxia which grounds for disturbed redox signaling. Excessive ROS production and accumulation of free radicals in cells and tissues can cause various pulmonary, cardiovascular, and metabolic pathophysiological conditions. In order to counteract this oxidative stress and maintain the balance of pro-oxidants and anti-oxidants, an anti-oxidant system exists in the human body, which, however, gets surpassed by elevated ROS levels, but can be strengthened through the use of anti-oxidant supplements. Such cumulative studies of fundamentals on a global concept like oxidative stress and role of anti-oxidants can act as a foundation to further smoothen for researchers to study over health, disease, and other pathophysiological conditions. This review highlights the interconnection between high altitude and oxidative stress and the role of anti-oxidants to protect cells from oxidative damages and to lower the risk of altitude-associated sickness.
Collapse
Affiliation(s)
- Priya Gaur
- Endocrinology & Metabolism Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Lucknow Road, Timarpur, Delhi, 110054,, India
| | - Suchita Prasad
- Department of Chemistry, University of Delhi, Delhi, 110007,, India
| | - Bhuvnesh Kumar
- Endocrinology & Metabolism Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Lucknow Road, Timarpur, Delhi, 110054,, India
| | - Sunil K Sharma
- Department of Chemistry, University of Delhi, Delhi, 110007,, India.
| | - Praveen Vats
- Endocrinology & Metabolism Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Lucknow Road, Timarpur, Delhi, 110054,, India.
| |
Collapse
|
49
|
Lee IG, Lee BJ. How Bacterial Redox Sensors Transmit Redox Signals via Structural Changes. Antioxidants (Basel) 2021; 10:antiox10040502. [PMID: 33804871 PMCID: PMC8063818 DOI: 10.3390/antiox10040502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/04/2021] [Accepted: 03/17/2021] [Indexed: 01/17/2023] Open
Abstract
Bacteria, like humans, face diverse kinds of stress during life. Oxidative stress, which is produced by cellular metabolism and environmental factors, can significantly damage cellular macromolecules, ultimately negatively affecting the normal growth of the cell. Therefore, bacteria have evolved a number of protective strategies to defend themselves and respond to imposed stress by changing the expression pattern of genes whose products are required to convert harmful oxidants into harmless products. Structural biology combined with biochemical studies has revealed the mechanisms by which various bacterial redox sensor proteins recognize the cellular redox state and transform chemical information into structural signals to regulate downstream signaling pathways.
Collapse
Affiliation(s)
- In-Gyun Lee
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Korea;
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
- Correspondence:
| |
Collapse
|
50
|
Hopp AK, Hottiger MO. Uncovering the Invisible: Mono-ADP-ribosylation Moved into the Spotlight. Cells 2021; 10:680. [PMID: 33808662 PMCID: PMC8003356 DOI: 10.3390/cells10030680] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine diphosphate (ADP)-ribosylation is a nicotinamide adenine dinucleotide (NAD+)-dependent post-translational modification that is found on proteins as well as on nucleic acids. While ARTD1/PARP1-mediated poly-ADP-ribosylation has extensively been studied in the past 60 years, comparably little is known about the physiological function of mono-ADP-ribosylation and the enzymes involved in its turnover. Promising technological advances have enabled the development of innovative tools to detect NAD+ and NAD+/NADH (H for hydrogen) ratios as well as ADP-ribosylation. These tools have significantly enhanced our current understanding of how intracellular NAD dynamics contribute to the regulation of ADP-ribosylation as well as to how mono-ADP-ribosylation integrates into various cellular processes. Here, we discuss the recent technological advances, as well as associated new biological findings and concepts.
Collapse
Affiliation(s)
| | - Michael O. Hottiger
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|