1
|
Kim SH, Park MU, Lee C, Yi SG, Kim M, Choi Y, Cho JH, Yoo KH. Rectifying optoelectronic memory based on WSe 2/graphene heterostructures. NANOSCALE ADVANCES 2021; 3:4952-4960. [PMID: 36132353 PMCID: PMC9419859 DOI: 10.1039/d1na00504a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/17/2021] [Indexed: 06/15/2023]
Abstract
van der Waals heterostructures composed of two-dimensional materials vertically stacked have been extensively studied to develop various multifunctional devices. Here, we report WSe2/graphene heterostructure devices with a top floating gate that can serve as multifunctional devices. They exhibit gate-controlled rectification inversion, rectified nonvolatile memory effects, and multilevel optoelectronic memory effects. Depending on the polarity of the gate voltage pulses (V Gp), electrons or holes can be trapped in the floating gate, resulting in rectified nonvolatile memory properties. Furthermore, upon repeated illumination with laser pulses, positive or negative staircase photoconductivity is observed depending on the history of V Gp, which is ascribed to the tunneling of electrons or holes between the WSe2 channel and the floating gate. These multifunctional devices can be used to emulate excitatory and inhibitory synapses that have different neurotransmitters. Various synaptic functions, such as potentiation/depression curves and spike-timing-dependent plasticity, have been also implemented using these devices. In particular, 128 optoelectronic memory states with nonlinearity less than 1 can be achieved by controlling applied laser pulses and V Gp, suggesting that the WSe2/graphene heterostructure devices with a top floating gate can be applied to optoelectronic synapse devices.
Collapse
Affiliation(s)
- Sung Hyun Kim
- Department of Physics, Yonsei University 50 Yonsei-ro Seoul 03722 Republic of Korea
| | - Myung Uk Park
- Department of Physics, Yonsei University 50 Yonsei-ro Seoul 03722 Republic of Korea
| | - ChangJun Lee
- Department of Physics, Yonsei University 50 Yonsei-ro Seoul 03722 Republic of Korea
| | - Sum-Gyun Yi
- Department of Physics, Yonsei University 50 Yonsei-ro Seoul 03722 Republic of Korea
| | - Myeongjin Kim
- Department of Physics, Yonsei University 50 Yonsei-ro Seoul 03722 Republic of Korea
| | - Yongsuk Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University 50 Yonsei-ro Seoul 03722 Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University 50 Yonsei-ro Seoul 03722 Republic of Korea
| | - Kyung-Hwa Yoo
- Department of Physics, Yonsei University 50 Yonsei-ro Seoul 03722 Republic of Korea
| |
Collapse
|
2
|
Long-term potentiation of glycinergic synapses by semi-natural stimulation patterns during tonotopic map refinement. Sci Rep 2020; 10:16899. [PMID: 33037263 PMCID: PMC7547119 DOI: 10.1038/s41598-020-73050-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022] Open
Abstract
Before the onset of hearing, cochlea-generated patterns of spontaneous spike activity drive the maturation of central auditory circuits. In the glycinergic sound localization pathway from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) this spontaneous activity guides the strengthening and silencing of synapses which underlies tonotopic map refinement. However, the mechanisms by which patterned activity regulates synaptic refinement in the MNTB-LSO pathway are still poorly understood. To address this question, we recorded from LSO neurons in slices from prehearing mice while stimulating MNTB afferents with stimulation patterns that mimicked those present in vivo. We found that these semi-natural stimulation patterns reliably elicited a novel form of long-term potentiation (LTP) of MNTB-LSO synapses. Stimulation patterns that lacked the characteristic high-frequency (200 Hz) component of prehearing spike activity failed to elicit potentiation. LTP was calcium dependent, required the activation of both g-protein coupled GABAB and metabotropic glutamate receptors and involved an increase in postsynaptic glycine receptor-mediated currents. Our results provide a possible mechanism linking spontaneous spike bursts to tonotopic map refinement and further highlight the importance of the co-release of GABA and glutamate from immature glycinergic MNTB terminals.
Collapse
|
3
|
Abstract
The inhibitory glycine receptor is a member of the Cys-loop superfamily of ligand-gated ion channels. It is the principal mediator of rapid synaptic inhibition in the spinal cord and brainstem and plays an important role in the modulation of higher brain functions including vision, hearing, and pain signaling. Glycine receptor function is controlled by only a few agonists, while the number of antagonists and positive or biphasic modulators is steadily increasing. These modulators are important for the study of receptor activation and regulation and have found clinical interest as potential analgesics and anticonvulsants. High-resolution structures of the receptor have become available recently, adding to our understanding of structure-function relationships and revealing agonistic, inhibitory, and modulatory sites on the receptor protein. This Review presents an overview of compounds that activate, inhibit, or modulate glycine receptor function in vitro and in vivo.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo 11835, Egypt
| | | |
Collapse
|
4
|
Breitinger U, Bahnassawy LM, Janzen D, Roemer V, Becker CM, Villmann C, Breitinger HG. PKA and PKC Modulators Affect Ion Channel Function and Internalization of Recombinant Alpha1 and Alpha1-Beta Glycine Receptors. Front Mol Neurosci 2018; 11:154. [PMID: 29867346 PMCID: PMC5961436 DOI: 10.3389/fnmol.2018.00154] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/23/2018] [Indexed: 01/04/2023] Open
Abstract
Glycine receptors (GlyRs) are important mediators of fast inhibitory neurotransmission in the mammalian central nervous system. Their function is controlled by multiple cellular mechanisms, including intracellular regulatory processes. Modulation of GlyR function by protein kinases has been reported for many cell types, involving different techniques, and often yielding contradictory results. Here, we studied the effects of protein kinase C (PKC) and cAMP-dependent protein kinase A (PKA) on glycine induced currents in HEK293 cells expressing human homomeric α1 and heteromeric α1-β GlyRs using whole-cell patch clamp techniques as well as internalization assays. In whole-cell patch-clamp measurements, modulators were applied in the intracellular buffer at concentrations between 0.1 μM and 0.5 μM. EC50 of glycine increased upon application of the protein kinase activators Forskolin and phorbol-12-myristate-13-acetate (PMA) but decreased in the presence of the PKC inhibitor Staurosporine aglycon and the PKA inhibitor H-89. Desensitization of recombinant α1 receptors was significantly increased in the presence of Forskolin. Staurosporine aglycon, on the other hand decreased desensitization of heteromeric α1-β GlyRs. The time course of receptor activation was determined for homomeric α1 receptors and revealed two simultaneous effects: cells showed a decrease of EC50 after 3–6 min of establishing whole-cell configuration. This effect was independent of protein kinase modulators. All modulators of PKA and PKC, however, produced an additional shift of EC50, which overlay and eventually exceeded the cells intrinsic variation of EC50. The effect of kinase activators was abolished if the corresponding inhibitors were co-applied, consistent with PKA and PKC directly mediating the modulation of GlyR function. Direct effects of PKA- and PKC-modulators on receptor expression on transfected HEK cells were monitored within 15 min of drug application, showing a significant increase of receptor internalization with PKA and PKC activators, while the corresponding inhibitors had no significant effect on receptor surface expression or internalization. Our results confirm the observation that phosphorylation via PKA and PKC has a direct effect on the GlyR ion channel complex and plays an important role in the fine-tuning of glycinergic signaling.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | | | - Dieter Janzen
- Institute for Clinical Neurobiology, Julius-Maximilians University Würzburg, Würzburg, Germany
| | - Vera Roemer
- Institute for Clinical Neurobiology, Julius-Maximilians University Würzburg, Würzburg, Germany
| | - Cord-Michael Becker
- Department of Biochemistry, Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Carmen Villmann
- Institute for Clinical Neurobiology, Julius-Maximilians University Würzburg, Würzburg, Germany
| | | |
Collapse
|
5
|
Alvarez FJ. Gephyrin and the regulation of synaptic strength and dynamics at glycinergic inhibitory synapses. Brain Res Bull 2016; 129:50-65. [PMID: 27612963 DOI: 10.1016/j.brainresbull.2016.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/23/2016] [Accepted: 09/05/2016] [Indexed: 01/23/2023]
Abstract
Glycinergic synapses predominate in brainstem and spinal cord where they modulate motor and sensory processing. Their postsynaptic mechanisms have been considered rather simple because they lack a large variety of glycine receptor isoforms and have relatively simple postsynaptic densities at the ultrastructural level. However, this simplicity is misleading being their postsynaptic regions regulated by a variety of complex mechanisms controlling the efficacy of synaptic inhibition. Early studies suggested that glycinergic inhibitory strength and dynamics depend largely on structural features rather than on molecular complexity. These include regulation of the number of postsynaptic glycine receptors, their localization and the amount of co-localized GABAA receptors and GABA-glycine co-transmission. These properties we now know are under the control of gephyrin. Gephyrin is the first postsynaptic scaffolding protein ever discovered and it was recently found to display a large degree of variation and regulation by splice variants, posttranslational modifications, intracellular trafficking and interactions with the underlying cytoskeleton. Many of these mechanisms are governed by converging excitatory activity and regulate gephyrin oligomerization and receptor binding, the architecture of the postsynaptic density (and by extension the whole synaptic complex), receptor retention and stability. These newly uncovered molecular mechanisms define the size and number of gephyrin postsynaptic regions and the numbers and proportions of glycine and GABAA receptors contained within. All together, they control the emergence of glycinergic synapses of different strength and temporal properties to best match the excitatory drive received by each individual neuron or local dendritic compartment.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Physiology, Emory University, Atlanta, GA 30322-3110, United States.
| |
Collapse
|
6
|
Cho CH, Lee YS, Kim E, Hwang EM, Park JY. Physiological functions of the TRPM4 channels via protein interactions. BMB Rep 2015; 48:1-5. [PMID: 25441424 PMCID: PMC4345635 DOI: 10.5483/bmbrep.2015.48.1.252] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Indexed: 11/23/2022] Open
Abstract
Transient Receptor Potential, Melastatin-related, member 4 (TRPM4) channels are Ca2+-activated Ca2+-impermeable cation channels. These channels are expressed in various types of mammalian tissues including the brain and are implicated in many diverse physiological and pathophysiological conditions. In the past several years, the trafficking processes and regulatory mechanism of these channels and their interacting proteins have been uncovered. Here in this minireview, we summarize the current understanding of the trafficking mechanism of TRPM4 channels on the plasma membrane as well as heteromeric complex formation via protein interactions. We also describe physiological implications of protein-TRPM4 interactions and suggest TRPM4 channels as therapeutic targets in many related diseases. [BMB Reports 2015; 48(1): 1-5]
Collapse
Affiliation(s)
- Chang-Hoon Cho
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 136-703, Korea
| | - Young-Sun Lee
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 136-791; Department of Physiology, Institute of Health Science and Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Jinju 660-751, Korea
| | - Eunju Kim
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 136-703; Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 136-791, Korea
| | - Eun Mi Hwang
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 136-791; Neuroscience Program, University of Science and Technology (UST), Daejeon 305-350, Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 136-703, Korea
| |
Collapse
|
7
|
Lu W, Fang W, Li J, Zhang B, Yang Q, Yan X, Peng L, Ai H, Wang JJ, Liu X, Luo J, Yang W. Phosphorylation of Tyrosine 1070 at the GluN2B Subunit Is Regulated by Synaptic Activity and Critical for Surface Expression of N-Methyl-D-aspartate (NMDA) Receptors. J Biol Chem 2015; 290:22945-54. [PMID: 26229100 DOI: 10.1074/jbc.m115.663450] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 01/13/2023] Open
Abstract
The number and subunit composition of synaptic N-methyl-d-aspartate receptors (NMDARs) play critical roles in synaptic plasticity, learning, and memory and are implicated in neurological disorders. Tyrosine phosphorylation provides a powerful means of regulating NMDAR function, but the underling mechanism remains elusive. In this study we identified a tyrosine site on the GluN2B subunit, Tyr-1070, which was phosphorylated by a proto-oncogene tyrosine-protein (Fyn) kinase and critical for the surface expression of GluN2B-containing NMDARs. The phosphorylation of GluN2B at Tyr-1070 was required for binding of Fyn kinase to GluN2B, which up-regulated the phosphorylation of GluN2B at Tyr-1472. Moreover, our results revealed that the phosphorylation change of GluN2B at Tyr-1070 accompanied the Tyr-1472 phosphorylation and Fyn associated with GluN2B in synaptic plasticity induced by both chemical and contextual fear learning. Taken together, our findings provide a new mechanism for regulating the surface expression of NMDARs with implications for synaptic plasticity.
Collapse
Affiliation(s)
- Wen Lu
- From the Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Weiqing Fang
- From the Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jian Li
- From the Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China, and
| | - Bin Zhang
- From the Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qian Yang
- From the Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xunyi Yan
- From the Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Lin Peng
- From the Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Heng Ai
- Department of Physiology, Zhejiang Medical College, Hangzhou, Zhejiang 310053, China
| | - Jie-jie Wang
- From the Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiao Liu
- From the Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jianhong Luo
- From the Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China,
| | - Wei Yang
- From the Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China,
| |
Collapse
|
8
|
Sánchez A, Yévenes GE, San Martin L, Burgos CF, Moraga-Cid G, Harvey RJ, Aguayo LG. Control of ethanol sensitivity of the glycine receptor α3 subunit by transmembrane 2, the intracellular splice cassette and C-terminal domains. J Pharmacol Exp Ther 2015; 353:80-90. [PMID: 25589412 DOI: 10.1124/jpet.114.221143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Previous studies have shown that the effect of ethanol onglycine receptors (GlyRs) containing the a1 subunit is affected by interaction with heterotrimeric G proteins (Gβγ). GlyRs containing the α3 subunit are involved in inflammatory pain sensitization and rhythmic breathing and have received much recent attention. For example, it is unknown whether ethanol affects the function of this important GlyR subtype. Electrophysiologic experiments showed that GlyR α3 subunits were not potentiated by pharmacologic concentrations of ethanol or by Gβγ. Thus, we studied GlyR α1–α3 chimeras and mutants to determine the molecular properties that confer ethanol insensitivity. Mutation of corresponding glycine 254 in transmembrane domain 2 (TM2) found in a1 in the α3(A254G) –α1 chimera induced a glycine-evoked current that displayed potentiation during application of ethanol (46 ± 5%, 100 mM) and Gβγ activation (80 ± 17%). Interestingly,insertion of the intracellular α3L splice cassette into GlyR α1 abolished the enhancement of the glycine-activated current by ethanol (5 ± 6%) and activation by Gβγ (21 6 7%). In corporation of the GlyR α1 C terminus into the ethanol-resistant α3S(A254G) mutant produced a construct that displayed potentiation of the glycine-activated current with 100 mM ethanol (40 ± 6%)together with a current enhancement after G protein activation (68 ± 25%). Taken together, these data demonstrate that GlyRα3 subunits are not modulated by ethanol. Residue A254 in TM2, the α3L splice cassette, and the C-terminal domain of α3GlyRs are determinants for low ethanol sensitivity and form the molecular basis of subtype-selective modulation of GlyRs by alcohol.
Collapse
Affiliation(s)
- Andrea Sánchez
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Concepción, Chile
| | | | | | | | | | | | | |
Collapse
|
9
|
Maccarrone G, Filiou MD. Protein profiling and phosphoprotein analysis by isoelectric focusing. Methods Mol Biol 2015; 1295:293-303. [PMID: 25820730 DOI: 10.1007/978-1-4939-2550-6_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein profiling enables the qualitative characterization of a proteome of interest. Phosphorylation is a post-translational modification with regulatory functions in a plethora of cell processes. We present an experimental workflow for simultaneous analysis of the proteome and phosphoproteome with no additional enrichment for phosphoproteins/phosphopeptides. Our approach is based on isoelectric focusing (IEF) which allows the separation of peptide mixtures on an immobilized pH gradient (IPG) according to their isoelectric point. Due to the negative charge of the phosphogroup, most of the phosphopeptides migrate toward acidic pH values. Peptides and phosphopeptides are then identified by mass spectrometry (MS) and phosphopeptide spectra are manually checked for the assignment of phosphorylation sites. Here, we apply this methodology to investigate synaptosome extracts from whole mouse brain. IEF-based peptide separation is an efficient method for peptide and phosphopeptide identification.
Collapse
|
10
|
Cochet-Bissuel M, Lory P, Monteil A. The sodium leak channel, NALCN, in health and disease. Front Cell Neurosci 2014; 8:132. [PMID: 24904279 PMCID: PMC4033012 DOI: 10.3389/fncel.2014.00132] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/28/2014] [Indexed: 12/12/2022] Open
Abstract
Ion channels are crucial components of cellular excitability and are involved in many neurological diseases. This review focuses on the sodium leak, G protein-coupled receptors (GPCRs)-activated NALCN channel that is predominantly expressed in neurons where it regulates the resting membrane potential and neuronal excitability. NALCN is part of a complex that includes not only GPCRs, but also UNC-79, UNC-80, NLF-1 and src family of Tyrosine kinases (SFKs). There is growing evidence that the NALCN channelosome critically regulates its ion conduction. Both in mammals and invertebrates, animal models revealed an involvement in many processes such as locomotor behaviors, sensitivity to volatile anesthetics, and respiratory rhythms. There is also evidence that alteration in this NALCN channelosome can cause a wide variety of diseases. Indeed, mutations in the NALCN gene were identified in Infantile Neuroaxonal Dystrophy (INAD) patients, as well as in patients with an Autosomal Recessive Syndrome with severe hypotonia, speech impairment, and cognitive delay. Deletions in NALCN gene were also reported in diseases such as 13q syndrome. In addition, genes encoding NALCN, NLF- 1, UNC-79, and UNC-80 proteins may be susceptibility loci for several diseases including bipolar disorder, schizophrenia, Alzheimer's disease, autism, epilepsy, alcoholism, cardiac diseases and cancer. Although the physiological role of the NALCN channelosome is poorly understood, its involvement in human diseases should foster interest for drug development in the near future. Toward this goal, we review here the current knowledge on the NALCN channelosome in physiology and diseases.
Collapse
Affiliation(s)
- Maud Cochet-Bissuel
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Universités Montpellier 1&2 Montpellier, France ; INSERM, U 661 Montpellier, France ; LabEx 'Ion Channel Science and Therapeutics' Montpellier, France
| | - Philippe Lory
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Universités Montpellier 1&2 Montpellier, France ; INSERM, U 661 Montpellier, France ; LabEx 'Ion Channel Science and Therapeutics' Montpellier, France
| | - Arnaud Monteil
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Universités Montpellier 1&2 Montpellier, France ; INSERM, U 661 Montpellier, France ; LabEx 'Ion Channel Science and Therapeutics' Montpellier, France
| |
Collapse
|
11
|
Carland JE, Cooper MA, Livesey MR, Hales TG, Peters JA, Lambert JJ. Mutagenic analysis of the intracellular portals of the human 5-HT3A receptor. J Biol Chem 2013; 288:31592-601. [PMID: 24030822 PMCID: PMC3814755 DOI: 10.1074/jbc.m113.503300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/11/2013] [Indexed: 11/15/2022] Open
Abstract
Structural models of Cys-loop receptors based on homology with the Torpedo marmorata nicotinic acetylcholine receptor infer the existence of cytoplasmic portals within the conduction pathway framed by helical amphipathic regions (termed membrane-associated (MA) helices) of adjacent intracellular M3-M4 loops. Consistent with these models, two arginine residues (Arg(436) and Arg(440)) within the MA helix of 5-hydroxytryptamine type 3A (5-HT3A) receptors act singularly as rate-limiting determinants of single-channel conductance (γ). However, there is little conservation in primary amino acid sequences across the cytoplasmic loops of Cys-loop receptors, limiting confidence in the fidelity of this particular aspect of the 5-HT3A receptor model. We probed the majority of residues within the MA helix of the human 5-HT3A subunit using alanine- and arginine-scanning mutagenesis and the substituted cysteine accessibility method to determine their relative influences upon γ. Numerous residues, prominently those at the 435, 436, 439, and 440 positions, were found to markedly influence γ. This approach yielded a functional map of the 5-HT3A receptor portals, which agrees well with the homology model.
Collapse
MESH Headings
- Animals
- Cell Line
- Humans
- Models, Molecular
- Mutagenesis, Site-Directed
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Serotonin, 5-HT3/chemistry
- Receptors, Serotonin, 5-HT3/genetics
- Receptors, Serotonin, 5-HT3/metabolism
- Structural Homology, Protein
- Torpedo
Collapse
Affiliation(s)
- Jane E. Carland
- From the Division of Neuroscience, Medical Research and Medical Education Institutes, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Michelle A. Cooper
- From the Division of Neuroscience, Medical Research and Medical Education Institutes, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Matthew R. Livesey
- From the Division of Neuroscience, Medical Research and Medical Education Institutes, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Tim G. Hales
- From the Division of Neuroscience, Medical Research and Medical Education Institutes, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - John A. Peters
- From the Division of Neuroscience, Medical Research and Medical Education Institutes, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Jeremy J. Lambert
- From the Division of Neuroscience, Medical Research and Medical Education Institutes, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| |
Collapse
|
12
|
Igwe OJ. Prooxidant-induced c-Src/nuclear factor kappa B-coupled signalling in sensory ganglia mediates cutaneous hyperalgesia. Eur J Pain 2012; 17:1027-38. [PMID: 23280824 DOI: 10.1002/j.1532-2149.2012.00273.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2012] [Indexed: 11/09/2022]
Abstract
BACKGROUND Persistent pain resulting from peripheral injury/inflammation is associated with altered sensitivity to cutaneous stimuli, which can manifest as hyperalgesia. The role of oxidant stress in the development, progression and maintenance of hyperalgesia is still not understood. Furthermore, there appears to be a relationship between c-Src kinase in the pain pathway and oxidative stress. METHODS We have used a novel prooxidant inflammatory pain model that involves potassium peroxychromate (PPC), a unique prooxidant that produces the same reactants as activated phagocytes. This model was used to investigate the role of oxidant-activated c-Src in mediating hyperalgesia. We compared the effects of PP2 (a Src family kinase inhibitor) and c-Src siRNA on behavioural hyperalgesia with sodium stibogluconate (SSG) (a non-receptor tyrosine phosphatase inhibitor) and AG 1478 (a receptor tyrosine kinase inhibitor). RESULTS PP2 and c-Src siRNA attenuated PPC-induced thermal hyperalgesia, while SSG enhanced it. AG 1478 had no effect. PP2 decreased the levels of IL-1β, c-Src/inhibitory kappa B kinase complex formed and prostaglandin E2 produced in the dorsal root ganglia (DRG) ipsilateral to the inflamed paw, while SSG increased the levels of these parameters. c-Src siRNA decreased Src expression and activity in the DRG ipsilateral to the inflamed paw. CONCLUSIONS These results confirm that prooxidant-activated c-Src plays a role in initiating and maintaining hyperalgesia by regulating a stimulus-response coupling between the inflamed tissue and the DRG in the pain pathway. Our data also suggest that oxidant-induced dysregulation of c-Src/nuclear factor kappa B coupling may contribute to our understanding of the transition from acute to chronic dysfunctional pain state seen in many human diseases.
Collapse
Affiliation(s)
- O J Igwe
- Division of Pharmacology & Toxicology, School of Pharmacy, University of Missouri-Kansas City, USA.
| |
Collapse
|
13
|
Jung S, Yang H, Kim BS, Chu K, Lee SK, Jeon D. The immunosuppressant cyclosporin A inhibits recurrent seizures in an experimental model of temporal lobe epilepsy. Neurosci Lett 2012; 529:133-8. [DOI: 10.1016/j.neulet.2012.08.087] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 08/17/2012] [Accepted: 08/30/2012] [Indexed: 12/11/2022]
|
14
|
Li S, Li Z, Pei L, Le AD, Liu F. The α7nACh-NMDA receptor complex is involved in cue-induced reinstatement of nicotine seeking. ACTA ACUST UNITED AC 2012; 209:2141-7. [PMID: 23091164 PMCID: PMC3501362 DOI: 10.1084/jem.20121270] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Smoking is the leading preventable cause of disease, disability, and premature death. Nicotine, the main psychoactive drug in tobacco, is one of the most heavily used addictive substances, and its continued use is driven through activation of nicotinic acetylcholine receptors (nAChRs). Despite harmful consequences, it is difficult to quit smoking because of its positive effects on mood and cognition that are strong reinforcers contributing to addiction. Furthermore, a formidable challenge for the treatment of nicotine addiction is the high vulnerability to relapse after abstinence. There is no currently available smoking cessation product able to achieve a >20% smoking cessation rate after 52 wk, and there are no medications that directly target the relapse process. We report here that the α7nAChR forms a protein complex with the NMDA glutamate receptor (NMDAR) through a direct protein-protein interaction. Chronic nicotine exposure promotes α7nAChR-NMDAR complex formation. Interestingly, administration of an interfering peptide that disrupts the α7nAChR-NMDAR complex decreased extracellular signal-regulated kinase (ERK) activity and blocked cue-induced reinstatement of nicotine seeking in rat models of relapse, without affecting nicotine self-administration or locomotor activity. Our results may provide a novel therapeutic target for the development of medications for preventing nicotine relapse.
Collapse
Affiliation(s)
- Shupeng Li
- Department of Neuroscience, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario M5T 1R8, Canada
| | | | | | | | | |
Collapse
|
15
|
Bian JM, Wu N, Su RB, Li J. Opioid receptor trafficking and signaling: what happens after opioid receptor activation? Cell Mol Neurobiol 2012; 32:167-84. [PMID: 21947865 DOI: 10.1007/s10571-011-9755-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/04/2011] [Indexed: 01/14/2023]
Abstract
Prolonged opioid treatment leads to a comprehensive cellular adaptation mediated by opioid receptors, a basis to understand the development of opioid tolerance and dependence. However, the molecular mechanisms underlying opioid-induced cellular adaptation remain obscure. Recent advances in opioid receptor trafficking and signaling in cells have extensively increased our insight into the network of intracellular signal integration. This review focuses on those important intracellular biochemical processes that play critical roles in the development of opioid tolerance and dependence after opioid receptor activation, and tries to explain what happens after opioid receptor activation, and how the cellular adaptation develops from cell membrane to nucleus. Decades of research have delineated a network on opioid receptor trafficking and signaling, but the challenge remains to explain opioid tolerance and dependence from a single cellular signal network.
Collapse
Affiliation(s)
- Jia-Ming Bian
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | | | | | | |
Collapse
|
16
|
Mathew J, Balakrishnan S, Antony S, Abraham PM, Paulose CS. Decreased GABA receptor in the cerebral cortex of epileptic rats: effect of Bacopa monnieri and Bacoside-A. J Biomed Sci 2012; 19:25. [PMID: 22364254 PMCID: PMC3306740 DOI: 10.1186/1423-0127-19-25] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 02/24/2012] [Indexed: 11/17/2022] Open
Abstract
Abstact
Collapse
Affiliation(s)
- Jobin Mathew
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin-682 022, Kerala, India
| | | | | | | | | |
Collapse
|
17
|
Bigford GE, Chaudhry NS, Keane RW, Holohean AM. 5-Hydroxytryptamine 5HT2C receptors form a protein complex with N-methyl-D-aspartate GluN2A subunits and activate phosphorylation of Src protein to modulate motoneuronal depolarization. J Biol Chem 2012; 287:11049-59. [PMID: 22291020 DOI: 10.1074/jbc.m111.277806] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
N-Methyl-D-aspartate (NMDA)-gated ion channels are known to play a critical role in motoneuron depolarization, but the molecular mechanisms modulating NMDA activation in the spinal cord are not well understood. This study demonstrates that activated 5HT2C receptors enhance NMDA depolarizations recorded electrophysiologically from motoneurons. Pharmacological studies indicate involvement of Src tyrosine kinase mediates 5HT2C facilitation of NMDA. RT-PCR analysis revealed edited forms of 5HT2C were present in mammalian spinal cord, indicating the availability of G-protein-independent isoforms. Spinal cord neurons treated with the 5HT2C agonist MK 212 showed increased Src(Tyr-416) phosphorylation in a dose-dependent manner thus verifying that Src is activated after treatment. In addition, 5HT2C antagonists and tyrosine kinase inhibitors blocked 5HT2C-mediated Src(Tyr-416) phosphorylation and also enhanced NMDA-induced motoneuron depolarization. Co-immunoprecipitation of synaptosomal fractions showed that GluN2A, 5HT2C receptors, and Src tyrosine kinase form protein associations in synaptosomes. Moreover, immunohistochemical analysis demonstrated GluN2A and 5HT2C receptors co-localize on the processes of spinal neurons. These findings reveal that a distinct multiprotein complex links 5-hydroxytryptamine-activated intracellular signaling events with NMDA-mediated functional activity.
Collapse
Affiliation(s)
- Gregory E Bigford
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida 33101, USA
| | | | | | | |
Collapse
|
18
|
O'Toole KK, Jenkins A. Discrete M3-M4 intracellular loop subdomains control specific aspects of γ-aminobutyric acid type A receptor function. J Biol Chem 2011; 286:37990-37999. [PMID: 21903587 DOI: 10.1074/jbc.m111.258012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The GABA type A receptor (GABA(A)R) is a member of the pentameric ligand gated ion channel (pLGIC) family that mediates ionotropic neurotransmission. Residues in the intracellular loop domain (ILD) have recently been shown to define part of the ion permeation pathway in several closely related members of the pentameric ligand gated ion channel family. In this study, we investigated the role the ILD of the GABA(A)R α1 subunit plays in channel function. Deletion of the α1 ILD resulted in a significant increase in GABA EC(50) and maximal current amplitude, suggesting that the ILD must be intact for proper receptor function. To test this hypothesis, we conducted a mutagenic screen of all amino acids harboring ionizable side chains within this domain to investigate the contribution of individual charged residues to ion permeation. Using macroscopic and single channel voltage-clamp recording techniques, we found that mutations within a subdomain of the α1 ILD near M3 altered GABA apparent affinity; interestingly, α1(K312E) exhibited reduced partial agonist efficacy. We introduced point mutations near M4, including α1(K383E) and α1(K384E), that enhanced receptor desensitization. Mutation of 5 charged residues within a 39-residue span contiguous with M4 reduced relative anion permeability of the channel and may represent a weak intracellular selectivity filter. Within this subdomain, the α1(K378E) mutation induced a significant reduction in single channel conductance, consistent with our hypothesis that the GABA(A)R α1 ILD contributes directly to the permeation pathway.
Collapse
Affiliation(s)
- Kate K O'Toole
- Departments of Anesthesiology and Pharmacology, Emory University, Atlanta, Georgia 30322
| | - Andrew Jenkins
- Departments of Anesthesiology and Pharmacology, Emory University, Atlanta, Georgia 30322.
| |
Collapse
|
19
|
Filiou MD, Turck CW. General overview: biomarkers in neuroscience research. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 101:1-17. [PMID: 22050846 DOI: 10.1016/b978-0-12-387718-5.00001-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Biomarkers are in demand for disease diagnosis, treatment response monitoring, and development of novel therapeutics. Biomarker discovery in neuroscience is challenging due to absence of robust molecular correlates and the interpatient heterogeneity that characterizes neuropsychiatric disorders. Because of the complexity of these disorders, a panel of biomarkers derived from different platforms will be required to precisely reflect disease-related alterations. Animal models of psychiatric phenotypes as well as -omics and imaging methodologies are important tools for biomarker discovery. However, the limitations of current research concerning sample handling and collection, candidate biomarker validation, and a lack of interdisciplinary approaches need to be addressed. Ultimately, the coordinated effort of relevant stakeholders including researchers, physicians, and funding organizations together with standardization initiatives will be vital to overcome the present challenges and to advance personalized health care using sensitive and specific biomarkers.
Collapse
Affiliation(s)
- Michaela D Filiou
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | | |
Collapse
|
20
|
Filiou MD, Bisle B, Reckow S, Teplytska L, Maccarrone G, Turck CW. Profiling of mouse synaptosome proteome and phosphoproteome by IEF. Electrophoresis 2010; 31:1294-301. [DOI: 10.1002/elps.200900647] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Guzman L, Moraga-Cid G, Avila A, Figueroa M, Yevenes GE, Fuentealba J, Aguayo LG. Blockade of ethanol-induced potentiation of glycine receptors by a peptide that interferes with Gbetagamma binding. J Pharmacol Exp Ther 2009; 331:933-9. [PMID: 19773530 PMCID: PMC2784719 DOI: 10.1124/jpet.109.160440] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 09/21/2009] [Indexed: 01/09/2023] Open
Abstract
The large intracellular loop (IL) of the glycine receptor (GlyR) interacts with various signaling proteins and plays a fundamental role in trafficking and regulation of several receptor properties, including a direct interaction with Gbetagamma. In the present study, we found that mutation of basic residues in the N-terminal region of the IL reduced the binding of Gbetagamma to 21 +/- 10% of control. Two basic residues in the C-terminal region, on the other hand, contributed to a smaller extent to Gbetagamma binding. Using docking analysis, we found that both basic regions of the IL bind in nearby regions to the Gbetagamma dimer, within an area of high density of amino acids having an electronegative character. Thereafter, we generated a 17-amino acid peptide with the N-terminal sequence of the wild-type IL (RQH) that was able to inhibit the in vitro binding of Gbetagamma to GlyRs to 57 +/- 5% of control in glutathione S-transferase pull-down assays using purified proteins. More interestingly, when the peptide was intracellularly applied to human embryonic kidney 293 cells, it inhibited the Gbetagamma-mediated modulations of G protein-coupled inwardly rectifying potassium channel by baclofen (24 +/- 14% of control) and attenuated the GlyR potentiation by ethanol (51 +/- 10% versus 10 +/- 3%).
Collapse
Affiliation(s)
- Leonardo Guzman
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Concepción, Chile
| | | | | | | | | | | | | |
Collapse
|
22
|
Tyrosine phosphorylation of the 2B subunit of the NMDA receptor is necessary for taste memory formation. J Neurosci 2009; 29:9219-26. [PMID: 19625512 DOI: 10.1523/jneurosci.5667-08.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We aimed to test whether tyrosine phosphorylation of the NMDA receptor (NMDAR) in the insular cortex is necessary for novel taste learning. We found that in rats, novel taste learning leads to elevated phosphorylation of tyrosine 1472 of the NR2B subunit of the NMDAR and increases the interaction of phosphorylated NR2B with the major postsynaptic scaffold protein PSD-95. Injection of the tyrosine kinase inhibitor genistein directly into the insular cortex of rats before novel taste exposure prevented the increase in NR2B tyrosine phosphorylation and behaviorally attenuated taste-memory formation. Functionally, tyrosine phosphorylation of NR2B after learning was found to determine the synaptic distribution of the NMDAR, since microinjection of genistein to the insular cortex altered the distribution pattern of NMDAR caused by novel taste learning.
Collapse
|
23
|
Nguyen KT, Luethi E, Syed S, Urwyler S, Bertrand S, Bertrand D, Reymond JL. 3-(Aminomethyl)piperazine-2,5-dione as a novel NMDA glycine site inhibitor from the chemical universe database GDB. Bioorg Med Chem Lett 2009; 19:3832-5. [DOI: 10.1016/j.bmcl.2009.04.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/01/2009] [Accepted: 04/03/2009] [Indexed: 12/01/2022]
|
24
|
D'Arco M, Giniatullin R, Leone V, Carloni P, Birsa N, Nair A, Nistri A, Fabbretti E. The C-terminal Src inhibitory kinase (Csk)-mediated tyrosine phosphorylation is a novel molecular mechanism to limit P2X3 receptor function in mouse sensory neurons. J Biol Chem 2009; 284:21393-401. [PMID: 19509283 DOI: 10.1074/jbc.m109.023051] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
On sensory neurons, sensitization of P2X(3) receptors gated by extracellular ATP contributes to chronic pain. We explored the possibility that receptor sensitization may arise from down-regulation of an intracellular signal negatively controlling receptor function. In view of the structural modeling between the Src region phosphorylated by the C-terminal Src inhibitory kinase (Csk) and the intracellular C terminus domain of the P2X(3) receptor, we investigated how Csk might regulate receptor activity. Using HEK cells and the in vitro kinase assay, we observed that Csk directly phosphorylated the tyrosine 393 residue of the P2X(3) receptor and strongly inhibited receptor currents. On mouse trigeminal sensory neurons, the role of Csk was tightly controlled by the extracellular level of nerve growth factor, a known algogen. Furthermore, silencing endogenous Csk in HEK or trigeminal cells potentiated P2X(3) receptor responses, confirming constitutive Csk-mediated inhibition. The present study provides the first demonstration of an original molecular mechanism responsible for negative control over P2X(3) receptor function and outlines a potential new target for trigeminal pain suppression.
Collapse
Affiliation(s)
- Marianna D'Arco
- Neurobiology Sector and Italian Institute of Technology Unit, International School for Advanced Studies (SISSA), 34014 Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Houston CM, He Q, Smart TG. CaMKII phosphorylation of the GABA(A) receptor: receptor subtype- and synapse-specific modulation. J Physiol 2009; 587:2115-25. [PMID: 19332484 PMCID: PMC2697286 DOI: 10.1113/jphysiol.2009.171603] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 03/25/2009] [Indexed: 01/05/2023] Open
Abstract
As a major inhibitory neurotransmitter, GABA plays a vital role in the brain by controlling the extent of neuronal excitation. This widespread role is reflected by the ubiquitous distribution of GABA(A) receptors throughout the central nervous system. To regulate the level of neuronal inhibition requires some endogenous control over the release of GABA and/or its postsynaptic response. In this context, Ca(2+) ions are often used as primary or secondary messengers frequently resulting in the activation of protein kinases and phosphatases. One such kinase, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), can target the GABA(A) receptor to cause its phosphorylation. Evidence is now emerging, which is reviewed here, that GABA(A) receptors are indeed substrates for CaMKII and that this covalent modification alters the expression of cell surface receptors and their function. This type of regulation can also feature at inhibitory synapses leading to long-term inhibitory synaptic plasticity. Most recently, CaMKII has now been proposed to differentially phosphorylate particular isoforms of GABA(A) receptors in a synapse-specific context.
Collapse
Affiliation(s)
- Catriona M Houston
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
26
|
Cui B, Wu M, She X. Effects of Chronic Noise Exposure on Spatial Learning and Memory of Rats in Relation to Neurotransmitters and NMDAR2B Alteration in the Hippocampus. J Occup Health 2009; 51:152-8. [DOI: 10.1539/joh.l8084] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Bo Cui
- Department of Occupational HygieneInstitute of Health and Environmental MedicinePR China
| | - Mingquan Wu
- Department of Occupational HygieneInstitute of Health and Environmental MedicinePR China
| | - Xiaojun She
- Department of Occupational HygieneInstitute of Health and Environmental MedicinePR China
| |
Collapse
|
27
|
González-Flores O, Etgen AM, Komisaruk BK, Gómora-Arrati P, Macias-Jimenez A, Lima-Hernández FJ, Garcia-Juárez M, Beyer C. Antagonists of the protein kinase A and mitogen-activated protein kinase systems and of the progestin receptor block the ability of vaginocervical/flank-perineal stimulation to induce female rat sexual behaviour. J Neuroendocrinol 2008; 20:1361-7. [PMID: 19094083 DOI: 10.1111/j.1365-2826.2008.01794.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brief vaginocervical stimulation using a glass rod (VCS) combined with manual flank-perineal stimulation (FS) rapidly (within 5 min) induced both receptive and proceptive behavioural responses to males in ovariectomised, oestrogen-primed rats. This receptive-proceptive response to males, resulting from a single brief (5-s duration) instance of manual VCS + FS, declined markedly within 4 h. However, the decline was prevented if the females were mounted by males immediately after the manual VCS + FS and 2 h later. We tested the participation of the cAMP-dependent protein kinase A system and the mitogen-activated protein kinase (MAPK) system in the response to VCS + FS by infusing either 100 ng of Rp-adenosine 3',5'-cyclic monophosphorothiate triethylamonium salt (a protein kinase A blocker) or 3.3 microg of PD98059 (a MAPK blocker) i.c.v. 15 min prior to VCS + FS. Both inhibitors blocked the ability of VCS + FS to induce the proceptive-receptive responses to males at all testing intervals. In experiment 2, systemic administration of 5 mg of RU486 1 h before VCS + FS also blocked the ability of VCS + FS to induce the proceptive-receptive responses to males. The present findings suggest that both VCS + FS and mating stimuli provided by males release neurotransmitters and neuromodulators that trigger the protein kinase A and the MAPK signalling systems, which interact with the progestin receptor to rapidly (within 5 min) induce proceptive-receptive behaviour in females.
Collapse
Affiliation(s)
- O González-Flores
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Nguyen K, Syed S, Urwyler S, Bertrand S, Bertrand D, Reymond JL. Discovery of NMDA Glycine Site Inhibitors from the Chemical Universe Database GDB. ChemMedChem 2008; 3:1520-4. [DOI: 10.1002/cmdc.200800198] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Tartaglione C, Ritta M. On the presence of 3H-GABA uptake mechanism in bovine spermatozoa. Anim Reprod Sci 2008; 108:247-58. [DOI: 10.1016/j.anireprosci.2007.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
|
30
|
Xiang K, Tietz EI. Chronic benzodiazepine-induced reduction in GABA(A) receptor-mediated synaptic currents in hippocampal CA1 pyramidal neurons prevented by prior nimodipine injection. Neuroscience 2008; 157:153-63. [PMID: 18805463 DOI: 10.1016/j.neuroscience.2008.08.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 08/21/2008] [Accepted: 08/23/2008] [Indexed: 01/13/2023]
Abstract
One week oral flurazepam (FZP) administration in rats results in reduced GABA(A) receptor-mediated synaptic transmission in CA1 pyramidal neurons associated with benzodiazepine tolerance in vivo and in vitro. Since voltage-gated calcium channel (VGCC) current density is enhanced twofold during chronic FZP treatment, the role of L-type VGCCs in regulating benzodiazepine-induced changes in CA1 neuron GABA(A) receptor-mediated function was evaluated. Nimodipine (10 mg/kg, i.p.) or vehicle (0.5% Tween 80, 2 ml/kg) was injected 1 day after ending FZP treatment and 24 h prior to hippocampal slice preparation for measurement of mIPSC characteristics and in vitro tolerance to zolpidem. The reduction in GABA(A) receptor-mediated mIPSC amplitude and estimated unitary channel conductance measured 2 days after drug removal was no longer observed following prior nimodipine injection. However, the single nimodipine injection failed to prevent in vitro tolerance to zolpidem's ability to prolong mIPSC decay in FZP-treated neurons, suggesting multiple mechanisms may be involved in regulating GABA(A) receptor-mediated synaptic transmission following chronic FZP administration. As reported previously in recombinant receptors, nimodipine inhibited synaptic GABA(A) receptor currents only at high concentrations (>30 muM), significantly greater than attained in vivo (1 muM) 45 min after a single antagonist injection. Thus, the effects of nimodipine were unlikely to be related to direct effects on GABA(A) receptors. As with nimodipine injection, buffering intracellular free [Ca(2+)] with BAPTA similarly prevented the effects on GABA(A) receptor-mediated synaptic transmission, suggesting intracellular Ca(2+) homeostasis is important to maintain GABA(A) receptor function. The findings further support a role for activation of L-type VGCCs, and perhaps other Ca(2+)-mediated signaling pathways, in the modulation of GABA(A) receptor synaptic function following chronic benzodiazepine administration, independent of modulation of the allosteric interactions between benzodiazepine and GABA binding sites.
Collapse
Affiliation(s)
- K Xiang
- Department of Physiology and Pharmacology, and the Cellular and Molecular Neurobiology Program, University of Toledo College of Medicine, Health Science Campus, 3000 Arlington Avenue, Mailstop 1008, Toledo, OH 43614, USA
| | | |
Collapse
|
31
|
Takata T, Hood AY, Yu SP. Voltage-dependent and Src-mediated regulation of NMDA receptor single channel outward currents in cortical neurons. Cell Biochem Biophys 2007; 47:257-70. [PMID: 17652774 DOI: 10.1007/s12013-007-0009-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
Abstract
A voltage-dependent but Ca2+-independent regulation of N-methyl-D-aspartate (NMDA) receptor outward activity was studied at the single channel level using outside-out patches of cultured mouse cortical neurons. Unlike the inward activity associated with Ca2+ and Na+ influx, the NMDA receptor outward K+ conductance was unaffected by changes in Ca2+ concentration. Following a depolarizing pre-pulse, the single channel open probability (NP o), amplitude, and open duration of the NMDA inward current decreased, whereas the same pre-depolarization increased those parameters of the NMDA outward current (pre-pulse facilitation). The outward NP o was increased by the pre-pulse facilitation, disregarding Ca2+ changes. The voltage-current relationships of the inward and outward currents were shifted by the pre-depolarization toward opposite directions. The Src family kinase inhibitor, PP1, and the Src kinase antibody, but not the anti-Fyn antibody, blocked the pre-pulse facilitation of the NMDA outward activity. On the other hand, a hyperpolarizing pre-pulse showed no effect on NMDA inward currents but inhibited outward currents (pre-pulse depression). Application of Src kinase, but not Fyn kinase, prevented the pre-pulse depression. We additionally showed that a depolarization pre-pulse potentiated miniature excitatory synaptic currents (mEPSCs). The effect was blocked by application of the NMDA receptor antagonist AP-5 during depolarization. These data suggest a voltage-sensitive regulation of NMDA receptor channels mediated by Src kinase. The selective changes in the NMDA receptor-mediated K+ efflux may represent a physiological and pathophysiological plasticity at the receptor level in response to dynamic changes in the membrane potential of central neurons.
Collapse
Affiliation(s)
- Toshihiro Takata
- Department of Pharmaceutical Sciences, Medical University of South Carolina, 280 Calhoun Street, Charleston, SC 29425, USA
| | | | | |
Collapse
|
32
|
Zha DJ, Wang ZM, Lin Y, Liu T, Qiao L, Lu LJ, Li YQ, Qiu JH. Effects of noradrenaline on the GABA response in rat isolated spiral ganglion neurons in culture. J Neurochem 2007; 103:57-66. [PMID: 17645455 DOI: 10.1111/j.1471-4159.2007.04776.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present study, the modulatory effects of noradrenaline (NA) on the GABA response were investigated in the isolated cultured spiral ganglion neurons of rat by using nystatin perforated patch recording configuration under voltage-clamp conditions. NA reversibly depressed GABA response in a concentration-dependent manner and neither changed the reversal potential of the GABA response nor affected the apparent affinity of GABA to its receptor. alpha2-adrenoceptor agonist and antagonist, clonidine and yohimbine mimicked and blocked the NA action on the GABA response, respectively. N-[2(methylamino)ethyl]-5-isoquinoline sulfonamide dihydrochloride (H-89), a protein kinase A inhibitor, mimicked the effect of NA on the GABA response. NA failed to affect the GABA response in the presence of both cAMP and protein kinase A modulator. However, NA still depressed the GABA response even in the presence of both phorbol-12-myristate-13-acetate, a protein kinase C activator and chelerythrine, a protein kinase C inhibitor. These results suggest that the NA suppression of the GABA response is mediated by alpha2-adrenoceptor which reduces intracellular cAMP formation through the inhibition of adenylyl cyclase. Therefore, NA input to the spiral ganglion neurons may modulate the auditory transmission by affecting the GABA response.
Collapse
Affiliation(s)
- Ding-Jun Zha
- Department of Otorhinolaryngology, Affiliated Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Houston CM, Lee HHC, Hosie AM, Moss SJ, Smart TG. Identification of the sites for CaMK-II-dependent phosphorylation of GABA(A) receptors. J Biol Chem 2007; 282:17855-65. [PMID: 17442679 DOI: 10.1074/jbc.m611533200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation can affect both the function and trafficking of GABA(A) receptors with significant consequences for neuronal excitability. Serine/threonine kinases can phosphorylate the intracellular loops between M3-4 of GABA(A) receptor beta and gamma subunits thereby modulating receptor function in heterologous expression systems and in neurons (1, 2). Specifically, CaMK-II has been demonstrated to phosphorylate the M3-4 loop of GABA(A) receptor subunits expressed as GST fusion proteins (3, 4). It also increases the amplitude of GABA(A) receptor-mediated currents in a number of neuronal cell types (5-7). To identify which substrate sites CaMK-II might phosphorylate and the consequent functional effects, we expressed recombinant GABA(A) receptors in NG108-15 cells, which have previously been shown to support CaMK-II modulation of GABA(A) receptors containing the beta3 subunit (8). We now demonstrate that CaMK-II mediates its effects on alpha1beta3 receptors via phosphorylation of Ser(383) within the M3-4 domain of the beta subunit. Ablation of beta3 subunit phosphorylation sites for CaMK-II revealed that for alphabetagamma receptors, CaMK-II has a residual effect on GABA currents that is not mediated by previously identified sites of CaMK-II phosphorylation. This residual effect is abolished by mutation of tyrosine phosphorylation sites, Tyr(365) and Tyr(367), on the gamma2S subunit, and by the tyrosine kinase inhibitor genistein. These results suggested that CaMK-II is capable of directly phosphorylating GABA(A) receptors and activating endogenous tyrosine kinases to phosphorylate the gamma2 subunit in NG108-15 cells. These findings were confirmed in a neuronal environment by expressing recombinant GABA(A) receptors in cerebellar granule neurons.
Collapse
Affiliation(s)
- Catriona M Houston
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | | | |
Collapse
|
34
|
Koss DJ, Hindley KP, Riedel G, Platt B. Modulation of hippocampal calcium signalling and plasticity by serine/threonine protein phosphatases. J Neurochem 2007; 102:1009-23. [PMID: 17442047 DOI: 10.1111/j.1471-4159.2007.04579.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kinases and phosphatases act antagonistically to maintain physiological phosphorylation/dephosphorylation at numerous intracellular sites critical for neuronal signalling. In this study, it was found that inhibition of serine/threonine phosphatases by exposure of hippocampal slices to okadaic acid (OA) or cantharidin (CA; 100 nmol/L) for 2 h resulted in reduced basal synaptic transmission and blocked the induction of synaptic plasticity in the form of long-term potentiation as determined by electrophysiological analysis. Fura-2 Ca(2+) imaging revealed a bidirectional modulation of N-methyl-D-aspartate (NMDA) -mediated Ca(2+) responses and reduced KCl-mediated Ca(2+) responses in neonatal cultured hippocampal neurons after phosphatase inhibition. While OA inhibited NMDA-induced Ca(2+) influx both acutely and after incubation, CA-enhanced receptor-mediated Ca(2+) signalling at low concentrations (1 nmol/L) but reduced NMDA and KCl-mediated Ca(2+) responses at higher concentrations (100 nmol/L). Changes in Ca(2+) signalling were accompanied by increased phosphorylation of cytoskeletal proteins tau and neurofilament and the NMDA receptor subunit NR1 in selective treatments. Incubation with OA (100 nmol/L) also led to the disruption of the microtubule network. This study highlights novel signalling effects of prolonged inhibition of protein phosphatases and suggests reduced post-synaptic signalling as a major mechanism for basal synaptic transmission and long-term potentiation impairments.
Collapse
Affiliation(s)
- David J Koss
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, UK
| | | | | | | |
Collapse
|
35
|
Tolstykh G, de Paula PM, Mifflin S. Voltage-dependent calcium currents are enhanced in nucleus of the solitary tract neurons isolated from renal wrap hypertensive rats. Hypertension 2007; 49:1163-9. [PMID: 17372037 DOI: 10.1161/hypertensionaha.106.084004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The nucleus of the solitary tract (NTS) is the central site of termination of baroreceptor afferents. We hypothesize that changes occur in voltage-gated calcium channels (VGCCs) within NTS neurons as a consequence of hypertension. Whole-cell patch-clamp recordings were obtained from adult normotensive (109+/-2 mm Hg; n=6 from 6 sham-operated and 31 nonsurgically treated) and hypertensive (158+/-6 mm Hg; n=24) rats. In some experiments, 4-(4-[dihexadecylamino]styryl)-N-methylpyridinium iodide was applied to the aortic nerve to visualize NTS neurons receiving baroreceptor synaptic contacts. Ba(2+) currents (500 ms; -80 mV prepotential; 500 ms voltage steps in 5-mV increments to +15mV) peaked between -20 and -10 mV and were blocked by 100 mum of Cd(2+). Peak VGCCs were not different comparing non-4-(4-[dihexadecylamino]styryl)-N-methylpyridinium iodide-labeled and 4-(4- [dihexadecylamino]styryl)-N-methylpyridinium iodide-labeled NTS neurons in hypertensive and normotensive rats. The peak VGCC was significantly greater in cells from hypertensive compared with normotensive rats for both non-DiA-labeled (P=0.02) and DiA-labeled (P=0.04) neurons. To separate high-voltage activated (HVA) and low-voltage activated (LVA) components of VGCCs, voltage ramps (-110 mV to +30 mV over 50 ms) were applied from a holding potential of -60 mV (LVA channels inactivated) and a holding potential of -100 mV (both LVA and HVA currents activated). HVA currents were subtracted from HVA+LVA currents to yield the LVA current. Peak LVA currents were not different between hypertensive (8.9+/-0.8 pA/pF) and normotensive (7.8+/-0.6 pA/pF) groups of NTS neurons (P=0.27). These results demonstrate that 4 weeks of renal wrap hypertension induce an increase in Ca(2+) influx through HVA VGCCs in NTS neurons receiving arterial baroreceptor inputs.
Collapse
Affiliation(s)
- Gleb Tolstykh
- University of Texas Health Science Center at San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
36
|
Yan L, Suneja SK, Potashner SJ. Protein kinases regulate glycine receptor binding in brain stem auditory nuclei after unilateral cochlear ablation. Brain Res 2007; 1135:102-6. [PMID: 17196941 PMCID: PMC1839859 DOI: 10.1016/j.brainres.2006.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 11/28/2006] [Accepted: 12/07/2006] [Indexed: 11/28/2022]
Abstract
Glycinergic synaptic inhibition is part of acoustic information processing in brain stem auditory pathways and contributes to the regulation of neuronal excitation. We found previously that unilateral cochlear ablation (UCA) in young adult guinea pigs decreased [3H]strychnine binding activity in several brain stem auditory nuclei. This study determined if the UCA-induced deficit could be regulated by protein kinase C (PKC), protein kinase A (PKA) or Ca2+/calmodulin-dependent protein kinase II (CaMKII). The specific binding of [3H]strychnine was measured in slices of the dorsal (DCN), posteroventral (PVCN) and anteroventral (AVCN) cochlear nucleus (CN), the lateral (LSO) and medial (MSO) superior olive, and the inferior colliculus (IC) 145 days after UCA. Tissues from age-matched unlesioned animals served as controls. UCA induced deficits in specific binding in the AVCN, PVCN, and LSO on the ablated side and in the MSO bilaterally. These deficits were reversed by 3 microM phorbol 1,2-dibutyrate, a PKC activator, or 0.2 mM dibutyryl-cAMP, a PKA activator. However, 50 nM Ro31-8220, a PKC inhibitor, and 2 microM H-89, a PKA inhibitor, had no effect in unlesioned controls and after UCA. In contrast, 4 microM KN-93, a CaMKII inhibitor, relieved or reversed the UCA-induced binding deficits and elevated binding in the IC. These findings suggest that a UCA-induced down-regulation of glycine receptor synthesis may have occurred via reduced phosphorylation of proteins that control receptor synthesis; this effect was reversed by diminishing CaMKII activity or increasing PKC and PKA activity.
Collapse
Affiliation(s)
- Leqin Yan
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| | | | | |
Collapse
|
37
|
de Paula PM, Tolstykh G, Mifflin S. Chronic intermittent hypoxia alters NMDA and AMPA-evoked currents in NTS neurons receiving carotid body chemoreceptor inputs. Am J Physiol Regul Integr Comp Physiol 2007; 292:R2259-65. [PMID: 17332161 DOI: 10.1152/ajpregu.00760.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic exposure to intermittent hypoxia (CIH) has been used in animals to mimic the arterial hypoxemia that accompanies sleep apnea. Humans with sleep apnea and animals exposed to CIH have elevated blood pressures and augmented sympathetic nervous system responses to acute exposures to hypoxia. To test the hypothesis that exposure to CIH alters neurons within the nucleus of the solitary tract (NTS) that integrate arterial chemoreceptor afferent inputs, we measured whole cell currents induced by activation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in enzymatically dispersed NTS neurons from normoxic (NORM) and CIH-exposed rats (alternating cycles of 3 min at 10% O2 followed by 3 min at 21% O2 between 8 AM and 4 PM for 7 days). To identify NTS neurons receiving carotid body afferent inputs the anterograde tracer 4- (4-(dihexadecylamino)styryl-N-methylpyridinum iodide (DiA) was placed onto the carotid body 1 wk before exposure to CIH. AMPA dose-response curves had similar EC50 but maximal responses increased in neurons isolated from DiA-labeled CIH (20.1 +/- 0.8 microM, n = 9) compared with NORM (6.0 +/- 0.3 microM, n = 8) rats. NMDA dose-response curves also had similar EC50 but maximal responses decreased in CIH (8.4 +/- 0.4 microM, n = 8) compared with NORM (19.4 +/- 0.6 microM, n = 9) rats. These results suggest reciprocal changes in the number and/or conductance characteristics of AMPA and NMDA receptors. Enhanced responses to AMPA receptor activation could contribute to enhanced chemoreflex responses observed in animals exposed to CIH and humans with sleep apnea.
Collapse
Affiliation(s)
- Patricia M de Paula
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA.
| | | | | |
Collapse
|
38
|
Zhang X, Lee TH, Davidson C, Lazarus C, Wetsel WC, Ellinwood EH. Reversal of cocaine-induced behavioral sensitization and associated phosphorylation of the NR2B and GluR1 subunits of the NMDA and AMPA receptors. Neuropsychopharmacology 2007; 32:377-87. [PMID: 16794574 DOI: 10.1038/sj.npp.1301101] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cocaine abusers remain vulnerable to drug craving and relapse for many years after abstinence is achieved. We have recently shown that ondansetron (a 5-HT3 receptor antagonist) given 3.5 h after each daily cocaine injection reverses previously established behavioral sensitization. The purpose of the present investigation was two-fold. First, as cocaine cannot be used as therapy, we examined whether pergolide (a D1/D2 receptor agonist with reduced abuse potential) and ondansetron could reverse behavioral sensitization. Second, we investigated whether these behavioral changes were associated with parallel alterations in expression levels and/or phosphorylation changes in the NR2B and GluR1 subunits of the respective NMDA and AMPA receptors. Rats were injected for 5 consecutive days with cocaine or saline followed by 9 days of withdrawal. Starting on withdrawal day 10, animals were given vehicle, pergolide/saline, or pergolide/ondansetron for 5 consecutive days. Following a second 9-day period of withdrawal, all animals were challenged with cocaine for assessment of behavioral sensitization and tissues were collected on the following day for Western blot. Sensitization was associated with increased NR2B expression in the accumbens (NAc) shell and decreased Tyr1472 phosphorylation in the NAc core, as well as increased Ser845 phosphorylation of the GluR1 subunit in prefrontal cortex, NAc core, and shell. Pergolide/ondansetron treatment, but not pergolide alone, consistently reversed both the behavioral sensitization and the associated changes in the NMDA and AMPA receptor subunits. To the extent that sensitization plays a role in chronic cocaine abuse, a combination of these clinically available drugs may be useful in treatment of the disorder.
Collapse
Affiliation(s)
- Xiuwu Zhang
- Department of Psychiatry and Behavioral Science, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
39
|
Samadi P, Rouillard C, Bédard PJ, Di Paolo T. Functional neurochemistry of the basal ganglia. HANDBOOK OF CLINICAL NEUROLOGY 2007; 83:19-66. [DOI: 10.1016/s0072-9752(07)83002-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Dahmani S, Rouelle D, Gressens P, Mantz J. The Effects of Lidocaine and Bupivacaine on Protein Expression of Cleaved Caspase 3 and Tyrosine Phosphorylation in the Rat Hippocampal Slice. Anesth Analg 2007; 104:119-23. [PMID: 17179255 DOI: 10.1213/01.ane.0000249048.56863.08] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Severe neurologic sequelae have been reported with the use of lidocaine after spinal anesthesia. This is considered a consequence of the high concentrations reached in the cerebrospinal fluid. We have previously shown that lidocaine increases the phosphorylation of focal adhesion kinase (FAK, a nonreceptor tyrosine kinase playing a role in neuronal plasticity and cell death). Here, we compared the effects of lidocaine and bupivacaine on FAK phosphorylation and cleaved caspase 3 expression in rat hippocampal slices. Slices were treated with increasing concentrations of lidocaine (4.3 nM to 4.3 mM) or bupivacaine (3.4 nM to 3.4 mM) in the presence or absence of the specific inhibitor of the FAK tyrosine kinase PP2 (10 microM). Caspase 3 expression and FAK phosphorylation were examined by immunoblotting. Lidocaine induced a concentration-related increase in FAK phosphorylation while the bupivacaine effect was biphasic. The maximal effect observed with millimolar lidocaine concentrations was significantly more than with clinically equipotent bupivacaine concentrations (4.3 x 10(-3) M lidocaine: 168% +/- 20%, mean value +/- sd; 10(-3) M bupivacaine: 145% +/- 19% P < 0.001). The expression of cleaved caspase 3 was increased by lidocaine, but not bupivacaine, at millimolar concentrations and was blocked by PP2. Our results indicate that millimolar concentrations of lidocaine, but not bupivacaine, increase cleaved caspase 3 expression. The role of FAK phosphorylation in this effect remains to be clarified.
Collapse
Affiliation(s)
- Souhayl Dahmani
- Department of Anesthesia, Beaujon University Hospital, Assistance Publique des Hôpitaux de Paris and Paris 7 University, Clichy, France.
| | | | | | | |
Collapse
|
41
|
Houston CM, Smart TG. CaMK-II modulation of GABAA receptors expressed in HEK293, NG108-15 and rat cerebellar granule neurons. Eur J Neurosci 2006; 24:2504-14. [PMID: 17100839 DOI: 10.1111/j.1460-9568.2006.05145.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The gamma-aminobutyric acid type A (GABA(A)) receptor is a pentameric ligand-gated ion channel responsible for fast synaptic inhibition in the brain. Phosphorylation of the GABA(A) receptor by serine/threonine protein kinases, at residues located in the intracellular loop between the third and fourth transmembrane domains of each subunit, can dynamically modulate receptor trafficking and function. In this study, we have assessed the effect that Ca(2+)-calmodulin-dependent protein kinase-II (CaMK-II) has on GABA(A) receptors. The intracellular application of preactivated CaMK-II failed to modulate the function of alphabeta and alphabetagamma subunit GABA(A) receptors heterologously expressed in human embryonic kidney (HEK)293 cells. However, application of similarly preactivated alpha-CaMK-II significantly potentiated the amplitudes of whole-cell GABA currents recorded from rat cultured cerebellar granule neurons and from recombinant GABA(A) receptors expressed in neuroblastoma, NG108-15, cells. The modulation by alpha-CaMK-II of current amplitude depended upon the subunit composition of GABA(A) receptors. alpha-CaMK-II potentiated GABA currents recorded from alpha1beta3 and alpha1beta3gamma2 GABA(A) receptors, but was unable to functionally modulate beta2 subunit-containing receptors. Similar results were obtained from beta2 -/- mouse cerebellar granule cell cultures and from rat granule cell cultures overexpressing recombinant alpha1beta2 or alpha1beta3 GABA(A) receptors. alpha-CaMK-II had a greater effect on the modulation of GABA responses mediated by alpha1beta3gamma2 compared with alpha1beta3 receptors, indicating a possible role for the gamma2 subunit in CaMK-II-mediated phosphorylation. In conclusion, CaMK-II can upregulate the function of GABA(A) receptors expressed in neurons or a neuronal cell line that is dependent on the beta subunit co-assembled into the receptor complex.
Collapse
Affiliation(s)
- C M Houston
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
42
|
Yevenes GE, Moraga-Cid G, Guzmán L, Haeger S, Oliveira L, Olate J, Schmalzing G, Aguayo LG. Molecular determinants for G protein betagamma modulation of ionotropic glycine receptors. J Biol Chem 2006; 281:39300-7. [PMID: 17040914 DOI: 10.1074/jbc.m608272200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ligand-gated ion channel superfamily plays a critical role in neuronal excitability. The functions of glycine receptor (GlyR) and nicotinic acetylcholine receptor are modulated by G protein betagamma subunits. The molecular determinants for this functional modulation, however, are still unknown. Studying mutant receptors, we identified two basic amino acid motifs within the large intracellular loop of the GlyR alpha(1) subunit that are critical for binding and functional modulation by Gbetagamma. Mutations within these sequences demonstrated that all of the residues detected are important for Gbetagamma modulation, although both motifs are necessary for full binding. Molecular modeling predicts that these sites are alpha-helixes near transmembrane domains 3 and 4, near to the lipid bilayer and highly electropositive. Our results demonstrate for the first time the sites for G protein betagamma subunit modulation on GlyRs and provide a new framework regarding the ligand-gated ion channel superfamily regulation by intracellular signaling.
Collapse
Affiliation(s)
- Gonzalo E Yevenes
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Concepción, Chile
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Jones AK, Sattelle DB. The cys-loop ligand-gated ion channel superfamily of the honeybee, Apis mellifera. INVERTEBRATE NEUROSCIENCE 2006; 6:123-32. [PMID: 16902773 DOI: 10.1007/s10158-006-0026-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 07/10/2006] [Indexed: 10/24/2022]
Abstract
Members of the cys-loop ligand-gated ion channel (cys-loop LGIC) superfamily mediate neurotransmission in insects and are targets of successful insecticides. We have described the cys-loop LGIC superfamily of the honeybee, Apis mellifera, which is an important crop pollinator and a key model for social interaction. The honeybee superfamily consists of 21 genes, which is slightly smaller than that of Drosophila melanogaster comprising 23 genes. As with Drosophila, the honeybee possesses ion channels gated by acetylcholine, gamma-amino butyric acid, glutamate and histamine as well as orthologs of the Drosophila pH-sensitive chloride channel (pHCl), CG8916, CG12344 and CG6927. Similar to Drosophila, honeybee cys-loop LGIC diversity is broadened by differential splicing which may also serve to generate species-specific receptor isoforms. These findings on Apis mellifera enhance our understanding of cys-loop LGIC functional genomics and provide a useful basis for the development of improved insecticides that spare a major beneficial insect species.
Collapse
Affiliation(s)
- Andrew K Jones
- MRC Functional Genetics Unit, Department of Physiology Anatomy and Genetics, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| | | |
Collapse
|
44
|
Abstract
This paper reviews a theory on the physiological conditions of consciousness. The theory consists of four hypotheses: (1) The occurrence of states of consciousness depends on the formation of higher-order representations that represent the internal state of the brain itself. (2) Higher-order representations are instantiated by the spatio-temporal activity pattern of large-scale neuronal assemblies. (3) The N-methyl-D-aspartate (NMDA) synapse plays a crucial role in the generation of conscious states by implementing the binding mechanism that the brain uses to produce large-scale assemblies. (4) The activation state of the NMDA receptor determines the rate at which representational structures can be built up. Unconsciousness or altered states of consciousness occur if, and only if, NMDA-dependent binding processes are inhibited.
Collapse
Affiliation(s)
- Hans Flohr
- Brain Research Institute, University of Bremen, P.O. Box 33 04 40, D 28334 Bremen, Germany.
| |
Collapse
|
45
|
Martucci L, Wong AHC, De Luca V, Likhodi O, Wong GWH, King N, Kennedy JL. N-methyl-D-aspartate receptor NR2B subunit gene GRIN2B in schizophrenia and bipolar disorder: Polymorphisms and mRNA levels. Schizophr Res 2006; 84:214-21. [PMID: 16549338 DOI: 10.1016/j.schres.2006.02.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 01/31/2006] [Accepted: 02/02/2006] [Indexed: 02/08/2023]
Abstract
The NR2B protein is a critical structural and functional subunit of the NMDA glutamate receptor. The glutamate neurotransmitter system has been implicated in psychosis and schizophrenia, and so we looked for genetic association and measured gene expression in human DNA and brain samples, respectively, of the GRIN2B gene that codes for the NR2B protein. We tested three genetic polymorphisms: G-200T (5'UTR), A5806C and T5988C (both 3'UTR) in 180 matched schizophrenia case-control pairs, 86 schizophrenia nuclear family trios, and 318 bipolar disorder trios (of which 158 probands had psychotic symptoms). We measured brain GRIN2B mRNA levels in schizophrenia, bipolar disorder and unaffected controls (n = 35 each). We detected genetic association between the G-200T marker and schizophrenia (p = 0.002), between T5988C and bipolar disorder (p = 0.02), and between A5806C and bipolar disorder with psychotic symptoms (p = 0.0038). The T-C-C haplotype was transmitted more frequently with bipolar disorder, but less often with schizophrenia, while the G-C-T haplotype was transmitted more often in schizophrenia. Significant differences were found in overall haplotype frequencies between schizophrenia cases and controls (p = 0.005). GRIN2B expression levels in schizophrenia, bipolar disorder and controls were not significantly different. The genetic findings suggest a role for GRIN2B in schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Livia Martucci
- Neurogenetics Section, CAMH, Clarke Division, University of Toronto, R-31, 250 College Street, Toronto (ON), Canada M5T 1R8
| | | | | | | | | | | | | |
Collapse
|
46
|
Hemby SE, Tang W, Muly EC, Kuhar MJ, Howell L, Mash DC. Cocaine-induced alterations in nucleus accumbens ionotropic glutamate receptor subunits in human and non-human primates. J Neurochem 2006; 95:1785-93. [PMID: 16363995 PMCID: PMC3843355 DOI: 10.1111/j.1471-4159.2005.03517.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chronic cocaine and withdrawal induce significant alterations in nucleus accumbens (NAc) glutamatergic function in humans and rodent models of cocaine addiction. Dysregulation of glutamatergic function of the prefrontal cortical-NAc pathway has been proposed as a critical substrate for unmanageable drug seeking. Previously, we demonstrated significant up-regulation of NMDA, (+/-)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptor subunit mRNAs and protein levels in the ventral tegmental area (VTA), but not the substantia nigra, of cocaine overdose victims (COD). The present study was undertaken to examine the extent of altered ionotropic glutamate receptor (iGluR) subunit expression in the NAc and the putamen in cocaine overdose victims. Results revealed statistically significant increases in the NAc, but not in the putamen, of NMDA receptor subunit (NR)1 and glutamate receptor subunit (GluR)2/3 wit trends in GluR1 and GluR5 in COD. These results extend our previous finding and indicate pathway-specific alterations in iGluRs in COD. In order to determine that changes were related to cocaine intake and not to other factors in the COD victims, we examined the effects of cocaine intravenous self-administration in rhesus monkeys for 18 months (unit dose of 0.1 mg/kg/injection and daily drug intake of 0.5 mg/kg/session). Total drug intake for the group of four monkeys was 37.9 +/- 4.6 mg/kg. Statistically significant elevations were observed for NR1, GluR1, GluR2/3 and GluR5 (p < 0.05) and a trend towards increased NR1 phosphorylated at serine 896 (p = 0.07) in the NAc but not putamen of monkeys self-administering cocaine compared with controls. These results extend previous results by demonstrating an up-regulation of NR1, GluR2/3 and GluR5 in the NAc and suggest these alterations are pathway specific. Furthermore, these changes may mediate persistent drug intake and craving in the human cocaine abuser.
Collapse
Affiliation(s)
- Scott E Hemby
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Butt SJB, Pitman RM. Indirect phosphorylation-dependent modulation of postsynaptic nicotinic acetylcholine responses by 5-hydroxytryptamine. Eur J Neurosci 2005; 21:1181-8. [PMID: 15813927 DOI: 10.1111/j.1460-9568.2005.03947.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ionotropic nicotinic acetylcholine (ACh) receptors have been shown to be modulated by protein kinase-mediated phosphorylation in vitro. Here we demonstrate that 5-hydroxytryptamine (5-HT) can downregulate postsynaptic nicotinic ACh responses, elicited in an identified arthropod motoneuron in situ, by a mechanism dependent on protein kinase activity. Serotonergic modulation can be mimicked by perfusion with membrane-permeable analogues of either adenine (cAMP) or guanine (cGMP) cyclic nucleotides, and is prolonged in the presence of phosphodiesterase inhibitors. Furthermore, suppression of the ACh response by 5-HT is blocked by specific competitive inhibitors of protein kinase A and G, as well as the broad specificity protein kinase inhibitor staurosporine. The protein phosphatase inhibitor cantharidin similarly blocks recovery of the ACh response from suppression mediated by 5-HT. Thus, it appears that the nicotinic ACh response is modulated by a cAMP-mediated phosphorylation-dependent intracellular signalling pathway that is distinct from the direct block of mammalian nicotinic ACh receptors by 5-HT previously reported in vitro.
Collapse
Affiliation(s)
- S J B Butt
- New York University Medical Center, Developmental Genetics Program, Skirball Institute, 4th Fl 540 First Ave, New York, NY 10016, USA
| | | |
Collapse
|
48
|
Ferrani-Kile K, Leslie SW. Modulation of Protein Tyrosine Phosphatase Activity Alters the Subunit Assembly in Native N-Methyl-d-aspartate Receptor Complex. J Pharmacol Exp Ther 2005; 314:86-93. [PMID: 15837820 DOI: 10.1124/jpet.105.083535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The N-methyl-D-aspartate (NMDA) receptor is crucial for development and neuroplasticity as well as excitotoxicity. The biochemical basis of the disassembly and reassembly of NMDA receptor has never been reported. Using coimmunoprecipitation, Western blotting, and mass spectrometry, we show that inhibition of tyrosine phosphatases triggers disassembly of NR1, NR2A, and NR2B in cortical NMDA receptor complexes. Furthermore, the disassembly of the NMDA receptor subunits is immediate, dose-dependent, and reversible and seems to occur through mechanisms linked to Src kinases. Together, these results define a novel role for tyrosine phosphatases in the complex mechanism of NMDA receptor regulation.
Collapse
Affiliation(s)
- Karima Ferrani-Kile
- Division of Pharmacology and Toxicology, College of Pharmacy and the Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 1 University Station, A1915, Austin, TX 78712, USA.
| | | |
Collapse
|
49
|
Igwe OJ. Modulation of peripheral inflammation in sensory ganglia by nuclear factor (kappa)B decoy oligodeoxynucleotide: involvement of SRC kinase pathway. Neurosci Lett 2005; 381:114-9. [PMID: 15882800 DOI: 10.1016/j.neulet.2005.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 02/03/2005] [Accepted: 02/04/2005] [Indexed: 10/25/2022]
Abstract
Nuclear factor kappa B (NF(kappa)B) transcription factor plays a key role in the expression of many genes involved in the inflammatory process. We used the Freund's Complete Adjuvant (FCA)-induced model of peripheral inflammation to investigate the anti-inflammatory effects of double stranded oligodeoxynucleotides (ODN) with consensus NF(kappa)B sequence as transcription factor decoys to inhibit NF(kappa)kappaB activation in the dorsal root ganglia (DRG). Local administration of the wild-type-, but not mutant-ODN decoy, dose-dependently inhibited edema formation and paw withdrawal latency as a measure of hyperalgesic response induced by FCA in rat paw. Biochemical assays performed in ipsilateral L4/L5 dorsal root ganglia obtained following FCA/wild-type ODN treatment showed: (1) an inhibition of the activity of c-Src kinase, a member of the non-receptor tyrosine kinase super family, (2) a decreased level of p65 NF(kappa)B subunit, and (3) an inhibition of cyclooxygenase-2 (COX-2) protein expression, a major pro-inflammatory enzyme transcriptionally controlled by NF(kappa)B. The present results indicate that the wild-type ODN decoy may act as a competitor for NF(kappa)B binding to its cognate recognition sequence as well as a modulator of c-Src activity in the DRG. The NF(kappa)B/c-Src interaction may represent a novel pathway for further exploring the molecular mechanism of inflammatory pain.
Collapse
Affiliation(s)
- Orisa J Igwe
- M3-104, Division of Pharmacology, 2411 Holmes Street, UMKC School of Pharmacy and Medicine, University of Missouri-Kansas City, Kansas City, MO 64108-2792, USA.
| |
Collapse
|
50
|
Ziegler DR, Cullinan WE, Herman JP. Organization and regulation of paraventricular nucleus glutamate signaling systems: N-methyl-D-aspartate receptors. J Comp Neurol 2005; 484:43-56. [PMID: 15717303 DOI: 10.1002/cne.20445] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Stress activation of the hypothalamo-pituitary-adrenocortical (HPA) axis is mediated in part by glutamatergic neurotransmission. The precise nature of glutamate effects on stress-integrative hypothalamic paraventricular nucleus (PVN) neurons remains to be determined. Therefore, the current study was designed to delineate the organization of glutamate/NMDA receptor systems in the PVN and to assess regulation of PVN glutamate receptor subunit expression by chronic intermittent stress and glucocorticoids. Immunohistochemical studies verified that N-methyl-D-aspartate (NMDA) receptor subunit proteins NR1 and NR2A/2B are expressed in the medial parvocellular PVN, indicating the potential for NMDA receptor regulation of corticotropin-releasing hormone (CRH) release. Dual-label confocal analysis revealed that CRH neurons are apposed by vesicular glutamate transporter 2 (VGLUT2)-containing terminals, consistent with glutamatergic innervation from hypothalamus and/or brainstem. In situ hybridization analysis revealed a significant and selective stress-induced decrease (37%) in NR2B subunit mRNA expression in the CRH-containing region of the PVN. No changes were observed for NR1 or NR2A mRNAs. In contrast, none of the subunits investigated showed altered expression following adrenalectomy with or without low/high-dose corticosterone replacement. Thus, the observed stress regulation is likely mediated by neurogenic mechanisms in the PVN and upstream stress-transducing neurocircuitry. Because a loss of NR2B subunit inclusion in NR receptors would likely confer increased Ca(++) conductance and faster deactivation kinetics, the stress-induced decrease in NR2B mRNA is consistent with enhanced glutamate signaling in the PVN following chronic stress and, perhaps, increased basal HPA activity and more rapid and/or more robust HPA responses to stress.
Collapse
Affiliation(s)
- Dana R Ziegler
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio 45267-0559, USA.
| | | | | |
Collapse
|