1
|
Abstract
Brown adipose tissue (BAT) displays the unique capacity to generate heat through uncoupled oxidative phosphorylation that makes it a very attractive therapeutic target for cardiometabolic diseases. Here, we review BAT cellular metabolism, its regulation by the central nervous and endocrine systems and circulating metabolites, the plausible roles of this tissue in human thermoregulation, energy balance, and cardiometabolic disorders, and the current knowledge on its pharmacological stimulation in humans. The current definition and measurement of BAT in human studies relies almost exclusively on BAT glucose uptake from positron emission tomography with 18F-fluorodeoxiglucose, which can be dissociated from BAT thermogenic activity, as for example in insulin-resistant states. The most important energy substrate for BAT thermogenesis is its intracellular fatty acid content mobilized from sympathetic stimulation of intracellular triglyceride lipolysis. This lipolytic BAT response is intertwined with that of white adipose (WAT) and other metabolic tissues, and cannot be independently stimulated with the drugs tested thus far. BAT is an interesting and biologically plausible target that has yet to be fully and selectively activated to increase the body's thermogenic response and shift energy balance. The field of human BAT research is in need of methods able to directly, specifically, and reliably measure BAT thermogenic capacity while also tracking the related thermogenic responses in WAT and other tissues. Until this is achieved, uncertainty will remain about the role played by this fascinating tissue in human cardiometabolic diseases.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | - Denis Richard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, G1V 4G5, Canada
| |
Collapse
|
2
|
Thermogenic Adipose Redox Mechanisms: Potential Targets for Metabolic Disease Therapies. Antioxidants (Basel) 2023; 12:antiox12010196. [PMID: 36671058 PMCID: PMC9854447 DOI: 10.3390/antiox12010196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Metabolic diseases, such as diabetes and non-alcoholic fatty liver disease (NAFLD), have several negative health outcomes on affected humans. Dysregulated energy metabolism is a key component underlying the pathophysiology of these conditions. Adipose tissue is a fundamental regulator of energy homeostasis that utilizes several redox reactions to carry out the metabolism. Brown and beige adipose tissues, in particular, perform highly oxidative reactions during non-shivering thermogenesis to dissipate energy as heat. The appropriate regulation of energy metabolism then requires coordinated antioxidant mechanisms to counterbalance the oxidation reactions. Indeed, non-shivering thermogenesis activation can cause striking changes in concentrations of both oxidants and antioxidants in order to adapt to various oxidative environments. Current therapeutic options for metabolic diseases either translate poorly from rodent models to humans (in part due to the challenges of creating a physiologically relevant rodent model) or tend to have numerous side effects, necessitating novel therapies. As increased brown adipose tissue activity results in enhanced energy expenditure and is associated with beneficial effects on metabolic health, such as decreased obesity, it has gathered great interest as a modulator of metabolic disease. One potential reason for the beneficial health effects may be that although non-shivering thermogenesis is enormously oxidative, it is also associated with decreased oxidant formation after its activation. However, targeting its redox mechanisms specifically to alter metabolic disease remains an underexplored area. Therefore, this review will discuss the role of adipose tissue in energy homeostasis, non-shivering thermogenesis in adults, and redox mechanisms that may serve as novel therapeutic targets of metabolic disease.
Collapse
|
3
|
Medak KD, McKie GL, Shamshoum H, Seguin I, Wright DC. The glucose lowering effects of CL 316,243 dissipate with repeated use and are rescued bycilostamide. Physiol Rep 2022; 10:e15187. [PMID: 35179321 PMCID: PMC8855634 DOI: 10.14814/phy2.15187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
Repeated activation of the beta 3 adrenergic receptor (β3AR) with the agonist CL 316,243 (CL) results in remodeling of white adipose tissue (WAT) characterized by increased mitochondrial enzymes and expression of uncoupling protein 1 (UCP1). β3AR activation also has profound acute metabolic effects including rapidly decreasing blood glucose, secondary to fatty acid-induced increases in insulin, and increasing energy expenditure. The acute (single dose) effects of β3AR activation have largely been examined in treatment naive animals and under room temperature housing conditions. The current study examined if repeated CL treatment would lead to an attenuation of acute metabolic effects of CL treatment under thermoneutral housing conditions and if this could be rescued with cilostamide, a phosphodiesterase inhibitor. We provide evidence demonstrating that the acute effects of CL to increase serum fatty acids and insulin and reduce blood glucose, but not increases in energy expenditure, are attenuated in mice following repeated treatment with CL. This occurs in parallel with reductions in indices of protein kinase A signaling in WAT including the phosphorylation of hormone sensitive lipase. The findings of attenuated serum fatty acid, insulin, and blood glucose responses were confirmed in both high-fat fed and UCP1-/- mice repeatedly treated with CL. Desensitization to CL in mice was rescued by cilostamide. Herein, we provide evidence that the glucose lowering, but not thermogenesis inducing, effects of CL are attenuated with repeated treatment and can be rescued by cilostamide. The findings of this study point toward novel adjunct treatment approaches that could be used to maximize therapeutic, glucose lowering effects of β3AR agonists.
Collapse
Affiliation(s)
- Kyle D. Medak
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - Greg L. McKie
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - Hesham Shamshoum
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - Ian Seguin
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - David C. Wright
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
4
|
Makwana K, Chodavarapu H, Morones N, Chi J, Barr W, Novinbakht E, Wang Y, Nguyen PT, Jovanovic P, Cohen P, Riera CE. Sensory neurons expressing calcitonin gene-related peptide α regulate adaptive thermogenesis and diet-induced obesity. Mol Metab 2021; 45:101161. [PMID: 33412345 PMCID: PMC7820934 DOI: 10.1016/j.molmet.2021.101161] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/21/2020] [Accepted: 01/03/2021] [Indexed: 12/04/2022] Open
Abstract
Objectives Heat-sensory neurons from the dorsal root ganglia (DRG) play a pivotal role in detecting the cutaneous temperature and transmission of external signals to the brain, ensuring the maintenance of thermoregulation. However, whether these thermoreceptor neurons contribute to adaptive thermogenesis remains elusive. It is also unknown whether these neurons play a role in obesity and energy metabolism. Methods We used genetic ablation of heat-sensing neurons expressing calcitonin gene-related peptide α (CGRPα) to assess whole-body energy expenditure, weight gain, glucose tolerance, and insulin sensitivity in normal chow and high-fat diet-fed mice. Exvivo lipolysis and transcriptional characterization were combined with adipose tissue-clearing methods to visualize and probe the role of sensory nerves in adipose tissue. Adaptive thermogenesis was explored using infrared imaging of intrascapular brown adipose tissue (iBAT), tail, and core temperature upon various stimuli including diet, external temperature, and the cooling agent icilin. Results In this report, we show that genetic ablation of heat-sensing CGRPα neurons promotes resistance to weight gain upon high-fat diet (HFD) feeding and increases energy expenditure in mice. Mechanistically, we found that loss of CGRPα-expressing sensory neurons was associated with reduced lipid deposition in adipose tissue, enhanced expression of fatty acid oxidation genes, higher exvivo lipolysis in primary white adipocytes, and increased mitochondrial respiration from iBAT. Remarkably, mice lacking CGRPα sensory neurons manifested increased tail cutaneous vasoconstriction at room temperature. This exacerbated cold perception was not associated with reduced core temperature, suggesting that heat production and heat conservation mechanisms were engaged. Specific denervation of CGRPα neurons in intrascapular BAT did not contribute to the increased metabolic rate observed upon global sensory denervation. Conclusions Taken together, these findings highlight an important role of cutaneous thermoreceptors in regulating energy metabolism by triggering counter-regulatory responses involving energy dissipation processes including lipid fuel utilization and cutaneous vasodilation. Removal of sensory spinal neurons expressing CGRPα mitigates diet-induced obesity. CGRPα afferents antagonize adaptive thermogenesis in brown adipose tissue. Loss of CGRPα afferents leads to enhanced cold perception and vasoconstriction. Specific adipose denervation of CGRPα afferents does not modulate energy metabolism.
Collapse
Affiliation(s)
- Kuldeep Makwana
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Board of Governors of the Regenerative Medicine Institute, Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, USA
| | - Harshita Chodavarapu
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Board of Governors of the Regenerative Medicine Institute, Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, USA
| | - Nancy Morones
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Board of Governors of the Regenerative Medicine Institute, Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, USA
| | - Jingyi Chi
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - William Barr
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Edward Novinbakht
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Board of Governors of the Regenerative Medicine Institute, Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, USA
| | - Yidan Wang
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Board of Governors of the Regenerative Medicine Institute, Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, USA
| | - Peter Tuan Nguyen
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Board of Governors of the Regenerative Medicine Institute, Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, USA
| | - Predrag Jovanovic
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Board of Governors of the Regenerative Medicine Institute, Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Celine E Riera
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Board of Governors of the Regenerative Medicine Institute, Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, USA; David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Reilly SM, Hung CW, Ahmadian M, Zhao P, Keinan O, Gomez AV, DeLuca JH, Dadpey B, Lu D, Zaid J, Poirier B, Peng X, Yu RT, Downes M, Liddle C, Evans RM, Murphy AN, Saltiel AR. Catecholamines suppress fatty acid re-esterification and increase oxidation in white adipocytes via STAT3. Nat Metab 2020; 2:620-634. [PMID: 32694788 PMCID: PMC7384260 DOI: 10.1038/s42255-020-0217-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
Catecholamines stimulate the mobilization of stored triglycerides in adipocytes to provide fatty acids (FAs) for other tissues. However, a large proportion is taken back up and either oxidized or re-esterified. What controls the disposition of these FAs in adipocytes remains unknown. Here, we report that catecholamines redirect FAs for oxidation through the phosphorylation of signal transducer and activator of transcription 3 (STAT3). Adipocyte STAT3 is phosphorylated upon activation of β-adrenergic receptors, and in turn suppresses FA re-esterification to promote FA oxidation. Adipocyte-specific Stat3 KO mice exhibit normal rates of lipolysis, but exhibit defective lipolysis-driven oxidative metabolism, resulting in reduced energy expenditure and increased adiposity when they are on a high-fat diet. This previously unappreciated, non-genomic role of STAT3 explains how sympathetic activation can increase both lipolysis and FA oxidation in adipocytes, revealing a new regulatory axis in metabolism.
Collapse
Affiliation(s)
- Shannon M Reilly
- Division of Metabolism and Endocrinology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Chao-Wei Hung
- Division of Metabolism and Endocrinology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Maryam Ahmadian
- Division of Metabolism and Endocrinology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Gene Expression Laboratory, Salk Institute for Biological Sciences, La Jolla, CA, USA
| | - Peng Zhao
- Division of Metabolism and Endocrinology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Omer Keinan
- Division of Metabolism and Endocrinology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Andrew V Gomez
- Division of Metabolism and Endocrinology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Julia H DeLuca
- Division of Metabolism and Endocrinology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Benyamin Dadpey
- Division of Metabolism and Endocrinology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Donald Lu
- Division of Metabolism and Endocrinology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jessica Zaid
- Division of Metabolism and Endocrinology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - BreAnne Poirier
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoling Peng
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute for Biological Sciences, La Jolla, CA, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Sciences, La Jolla, CA, USA
| | - Christopher Liddle
- Gene Expression Laboratory, Salk Institute for Biological Sciences, La Jolla, CA, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Sciences, La Jolla, CA, USA
| | - Anne N Murphy
- Department of Pharmacology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Cytokinetics, South San Francisco, CA, USA
| | - Alan R Saltiel
- Division of Metabolism and Endocrinology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Pharmacology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
He P, Hou B, Li Y, Xu C, Ma P, Lam SM, Gil V, Yang X, Yang X, Zhang L, Shui G, Song J, Qiang G, Liew CW, Du G. Lipid Profiling Reveals Browning Heterogeneity of White Adipose Tissue by Β3-Adrenergic Stimulation. Biomolecules 2019; 9:biom9090444. [PMID: 31484405 PMCID: PMC6770315 DOI: 10.3390/biom9090444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/14/2022] Open
Abstract
Background: White adipose tissue (WAT) browning confers beneficial effects on metabolic diseases. However, visceral adipose tissue (VAT) is not as susceptible to browning as subcutaneous adipose tissue (SAT). Aim: Interpreting the heterogeneity of VAT and SAT in brown remodeling and provide promising lipid targets to promote WAT browning. Methods: We first investigated the effects of β3-adrenergic stimulation by CL316,243 on systemic metabolism. Then, high-coverage targeted lipidomics approach with multiple reaction monitoring (MRM) was utilized to provide extensive detection of lipid metabolites in VAT and SAT. Results: CL316,243 notably ameliorated the systemic metabolism and induced brown remodeling of SAT but browning resistance of VAT. Comprehensive lipidomics analysis revealed browning heterogeneity of VAT and SAT with more dramatic alteration of lipid classes and species in VAT rather than SAT, though VAT is resistant to browning. Adrenergic stimulation differentially affected glycerides content in VAT and SAT and boosted the abundance of more glycerophospholipids species in VAT than in SAT. Besides, CL316,243 increased sphingolipids in VAT without changes in SAT, meanwhile, elevated cardiolipin species more prominently in VAT than in SAT. Conclusions: We demonstrated the browning heterogeneity of WAT and identified potential lipid biomarkers which may provide lipid targets for overcoming VAT browning resistance.
Collapse
Affiliation(s)
- Ping He
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Biyu Hou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Yanliang Li
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Chunyang Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Peng Ma
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Victoria Gil
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xinyu Yang
- College of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Li Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junke Song
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Guifen Qiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China.
| | - Chong Wee Liew
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China.
| |
Collapse
|
7
|
Chai C, Rivkin M, Berkovits L, Simerzin A, Zorde-Khvalevsky E, Rosenberg N, Klein S, Yaish D, Durst R, Shpitzen S, Udi S, Tam J, Heeren J, Worthmann A, Schramm C, Kluwe J, Ravid R, Hornstein E, Giladi H, Galun E. Metabolic Circuit Involving Free Fatty Acids, microRNA 122, and Triglyceride Synthesis in Liver and Muscle Tissues. Gastroenterology 2017; 153:1404-1415. [PMID: 28802563 DOI: 10.1053/j.gastro.2017.08.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Effective treatments are needed for hepatic steatosis characterized by accumulation of triglycerides in hepatocytes, which leads to hepatocellular carcinoma. MicroRNA 122 (MIR122) is expressed only in the liver, where it regulates lipid metabolism. We investigated the mechanism by which free fatty acids (FFAs) regulate MIR122 expression and the effect of MIR122 on triglyceride synthesis. METHODS We analyzed MIR122 promoter activity and validated its target mRNAs by transfection of Luciferase reporter plasmids into Huh7, BNL-1ME, and HEK293 cultured cell lines. We measured levels of microRNAs and mRNAs by quantitative real-time PCR analysis of RNA extracted from plasma, liver, muscle, and adipose tissues of C57BL/6 mice given the FFA-inducer CL316243. MIR122 was inhibited using an inhibitor of MIR122. Metabolic profiles of mice were determined using metabolic chambers and by histologic analyses of liver tissues. We performed RNA sequence analyses to identify metabolic pathways involving MIR122. RESULTS We validated human Agpat1 and Dgat1 mRNAs, involved in triglyceride synthesis, as targets of MIR122. FFAs increased MIR122 expression in livers of mice by activating the retinoic acid-related orphan receptor alpha, and induced secretion of MIR122 from liver to blood. Circulating MIR122 entered muscle and adipose tissues of mice, reducing mRNA levels of genes involved in triglyceride synthesis. Mice injected with an inhibitor of MIR122 and then given CL316243, accumulated triglycerides in liver and muscle tissues, and had reduced rates of β-oxidation. There was a positive correlation between level of FFAs and level of MIR122 in plasma samples from 6 healthy individuals, collected before and during fasting. CONCLUSIONS In biochemical and histologic studies of plasma, liver, muscle, and adipose tissues from mice, we found that FFAs increase hepatic expression and secretion of MIR122, which regulates energy storage vs expenditure in liver and peripheral tissues. Strategies to reduce triglyceride levels, by increasing MIR122, might be developed for treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Chofit Chai
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Mila Rivkin
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Liav Berkovits
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Alina Simerzin
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Elina Zorde-Khvalevsky
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Nofar Rosenberg
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Shiri Klein
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Dayana Yaish
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Ronen Durst
- Department of Cardiology, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Shoshana Shpitzen
- Department of Cardiology, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Shiran Udi
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Kluwe
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Revital Ravid
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Hilla Giladi
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Eithan Galun
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel.
| |
Collapse
|
8
|
Li Y, Tiedemann L, von Frieling J, Nolte S, El-Kholy S, Stephano F, Gelhaus C, Bruchhaus I, Fink C, Roeder T. The Role of Monoaminergic Neurotransmission for Metabolic Control in the Fruit Fly Drosophila Melanogaster. Front Syst Neurosci 2017; 11:60. [PMID: 28878633 PMCID: PMC5572263 DOI: 10.3389/fnsys.2017.00060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/31/2017] [Indexed: 11/13/2022] Open
Abstract
Hormones control various metabolic traits comprising fat deposition or starvation resistance. Here we show that two invertebrate neurohormones, octopamine (OA) and tyramine (TA) as well as their associated receptors, had a major impact on these metabolic traits. Animals devoid of the monoamine OA develop a severe obesity phenotype. Using flies defective in the expression of receptors for OA and TA, we aimed to decipher the contributions of single receptors for these metabolic phenotypes. Whereas those animals impaired in octß1r, octß2r and tar1 share the obesity phenotype of OA-deficient (tβh-deficient) animals, the octß1r, octß2r deficient flies showed reduced insulin release, which is opposed to the situation found in tβh-deficient animals. On the other hand, OAMB deficient flies were leaner than controls, implying that the regulation of this phenotype is more complex than anticipated. Other phenotypes seen in tβh-deficient animals, such as the reduced ability to perform complex movements tasks can mainly be attributed to the octß2r. Tissue-specific RNAi experiments revealed a very complex interorgan communication leading to the different metabolic phenotypes observed in OA or OA and TA-deficient flies.
Collapse
Affiliation(s)
- Yong Li
- Laboratory of Molecular Physiology, Department of Zoology, Kiel UniversityKiel, Germany
| | - Lasse Tiedemann
- Laboratory of Molecular Physiology, Department of Zoology, Kiel UniversityKiel, Germany
| | - Jakob von Frieling
- Laboratory of Molecular Physiology, Department of Zoology, Kiel UniversityKiel, Germany
| | - Stella Nolte
- Laboratory of Molecular Physiology, Department of Zoology, Kiel UniversityKiel, Germany
| | - Samar El-Kholy
- Laboratory of Molecular Physiology, Department of Zoology, Kiel UniversityKiel, Germany
| | - Flora Stephano
- Laboratory of Molecular Physiology, Department of Zoology, Kiel UniversityKiel, Germany
| | - Christoph Gelhaus
- Laboratory of Molecular Physiology, Department of Zoology, Kiel UniversityKiel, Germany
| | - Iris Bruchhaus
- Department of Molecular Parasitology, Bernhard-Nocht-Institute for Tropical MedicineHamburg, Germany
| | - Christine Fink
- Laboratory of Molecular Physiology, Department of Zoology, Kiel UniversityKiel, Germany.,German Center for Lung Research (DZL), Airway Research Center North (ARCN)Kiel, Germany
| | - Thomas Roeder
- Laboratory of Molecular Physiology, Department of Zoology, Kiel UniversityKiel, Germany.,German Center for Lung Research (DZL), Airway Research Center North (ARCN)Kiel, Germany
| |
Collapse
|
9
|
Li Y, Hoffmann J, Li Y, Stephano F, Bruchhaus I, Fink C, Roeder T. Octopamine controls starvation resistance, life span and metabolic traits in Drosophila. Sci Rep 2016; 6:35359. [PMID: 27759117 PMCID: PMC5069482 DOI: 10.1038/srep35359] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/28/2016] [Indexed: 01/05/2023] Open
Abstract
The monoamines octopamine (OA) and tyramine (TA) modulate numerous behaviours and physiological processes in invertebrates. Nevertheless, it is not clear whether these invertebrate counterparts of norepinephrine are important regulators of metabolic and life history traits. We show that flies (Drosophila melanogaster) lacking OA are more resistant to starvation, while their overall life span is substantially reduced compared with control flies. In addition, these animals have increased body fat deposits, reduced physical activity and a reduced metabolic resting rate. Increasing the release of OA from internal stores induced the opposite effects. Flies devoid of both OA and TA had normal body fat and metabolic rates, suggesting that OA and TA act antagonistically. Moreover, OA-deficient flies show increased insulin release rates. We inferred that the OA-mediated control of insulin release accounts for a substantial proportion of the alterations observed in these flies. Apparently, OA levels control the balance between thrifty and expenditure metabolic modes. Thus, changes in OA levels in response to external and internal signals orchestrate behaviour and metabolic processes to meet physiological needs. Moreover, chronic deregulation of the corresponding signalling systems in humans may be associated with metabolic disorders, such as obesity or diabetes.
Collapse
Affiliation(s)
- Yong Li
- Christian-Albrechts University Kiel, Zoology, Molecular Physiology, 24098 Kiel, Germany
| | - Julia Hoffmann
- Christian-Albrechts University Kiel, Zoology, Molecular Physiology, 24098 Kiel, Germany
| | - Yang Li
- Christian-Albrechts University Kiel, Zoology, Molecular Physiology, 24098 Kiel, Germany
| | - Flora Stephano
- Christian-Albrechts University Kiel, Zoology, Molecular Physiology, 24098 Kiel, Germany
| | - Iris Bruchhaus
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Christine Fink
- Christian-Albrechts University Kiel, Zoology, Molecular Physiology, 24098 Kiel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Thomas Roeder
- Christian-Albrechts University Kiel, Zoology, Molecular Physiology, 24098 Kiel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| |
Collapse
|
10
|
Lipolysis sensation by white fat afferent nerves triggers brown fat thermogenesis. Mol Metab 2016; 5:626-634. [PMID: 27656400 PMCID: PMC5021673 DOI: 10.1016/j.molmet.2016.06.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 06/24/2016] [Accepted: 06/26/2016] [Indexed: 01/31/2023] Open
Abstract
Objective Metabolic challenges, such as a cold environment, stimulate sympathetic neural efferent activity to white adipose tissue (WAT) to drive lipolysis, thereby increasing the availability of free fatty acids as one source of fuel for brown adipose tissue (BAT) thermogenesis. WAT is also innervated by sensory nerve fibers that network to metabolic brain areas; moreover, activation of these afferents is reported to increase sympathetic nervous system outflow. However, the endogenous stimuli sufficient to drive WAT afferents during metabolic challenges as well as their functional relation to BAT thermogenesis remain unknown. Method We tested if local WAT lipolysis directly activates WAT afferent nerves, and then assessed whether this WAT sensory signal affected BAT thermogenesis in Siberian hamsters (Phodopus sungorus). Results 2-deoxyglucose, a sympathetic nervous system stimulant, caused β-adrenergic receptor dependent increases in inguinal WAT (IWAT) afferent neurophysiological activity. In addition, direct IWAT injections of the β3-AR agonist CL316,243 dose-dependently increased: 1) phosphorylation of IWAT hormone sensitive lipase, an indicator of SNS-stimulated lipolysis, 2) expression of the neuronal activation marker c-Fos in dorsal root ganglion neurons receiving sensory input from IWAT, and 3) IWAT afferent neurophysiological activity, an increase blocked by antilipolytic agent 3,5-dimethylpyrazole. Finally, we demonstrated that IWAT afferent activation by lipolysis triggers interscapular BAT thermogenesis through a neural link between these two tissues. Conclusions These data suggest IWAT lipolysis activates local IWAT afferents triggering a neural circuit from WAT to BAT that acutely induces BAT thermogenesis. Glucoprivation-induced lipolysis activates sensory nerves from white fat via β-adrenoreceptors. Lipolysis sensation by local afferent nerves innervating white fat is proposed. Lipid products of lipolysis are sufficient to activate sensory nerves from white fat. Stimulation of white fat afferents by lipolysis increases brown fat temperature. Findings illustrate functional neural connectivity between white and brown fat.
Collapse
|
11
|
AHNAK deficiency promotes browning and lipolysis in mice via increased responsiveness to β-adrenergic signalling. Sci Rep 2016; 6:23426. [PMID: 26987950 PMCID: PMC4796812 DOI: 10.1038/srep23426] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 03/04/2016] [Indexed: 01/27/2023] Open
Abstract
In adipose tissue, agonists of the β3-adrenergic receptor (ADRB3) regulate lipolysis, lipid oxidation, and thermogenesis. The deficiency in the thermogenesis induced by neuroblast differentiation-associated protein AHNAK in white adipose tissue (WAT) of mice fed a high-fat diet suggests that AHNAK may stimulate energy expenditure via development of beige fat. Here, we report that AHNAK deficiency promoted browning and thermogenic gene expression in WAT but not in brown adipose tissue of mice stimulated with the ADRB3 agonist CL-316243. Consistent with the increased thermogenesis, Ahnak(-/-) mice exhibited an increase in energy expenditure, accompanied by elevated mitochondrial biogenesis in WAT depots in response to CL-316243. Additionally, AHNAK-deficient WAT contained more eosinophils and higher levels of type 2 cytokines (IL-4/IL-13) to promote browning of WAT in response to CL-316243. This was associated with enhanced sympathetic tone in the WAT via upregulation of adrb3 and tyrosine hydroxylase (TH) in response to β-adrenergic activation. CL-316243 activated PKA signalling and enhanced lipolysis, as evidenced by increased phosphorylation of hormone-sensitive lipase and release of free glycerol in Ahnak(-/-) mice compared to wild-type mice. Overall, these findings suggest an important role of AHNAK in the regulation of thermogenesis and lipolysis in WAT via β-adrenergic signalling.
Collapse
|
12
|
Abstract
Brown adipose tissue (BAT) is an important source of thermogenesis which is nearly exclusively dependent on its sympathetic nervous system (SNS) innervation. We previously demonstrated the SNS outflow from brain to BAT using the retrograde SNS-specific transneuronal viral tract tracer, pseudorabies virus (PRV152) and demonstrated the sensory system (SS) inflow from BAT to brain using the anterograde SS-specific transneuronal viral tract tracer, H129 strain of herpes simplex virus-1. Several brain areas were part of both the SNS outflow to, and receive SS inflow from, interscapular BAT (IBAT) in these separate studies suggesting SNS-SS feedback loops. Therefore, we tested whether individual neurons participated in SNS-SS crosstalk by injecting both PRV152 and H129 into IBAT of Siberian hamsters. To define which dorsal root ganglia (DRG) are activated by BAT SNS stimulation, indicated by c-Fos immunoreactivity (IR), we prelabeled IBAT DRG innervating neurons by injecting the retrograde tracer Fast Blue (FB) followed 1 week later by intra-BAT injections of the specific β3-adrenoceptor agonist CL316,243 in one pad and the vehicle in the contralateral pad. There were PRV152+H129 dually infected neurons across the neuroaxis with highest densities in the raphe pallidus nucleus, nucleus of the solitary tract, periaqueductal gray, hypothalamic paraventricular nucleus, and medial preoptic area, sites strongly implicated in the control of BAT thermogenesis. CL316,243 significantly increased IBAT temperature, afferent nerve activity, and c-Fos-IR in C2-C4 DRG neurons ipsilateral to the CL316,243 injections versus the contralateral side. The neuroanatomical reality of the SNS-SS feedback loops suggests coordinated and/or multiple redundant control of BAT thermogenesis.
Collapse
|
13
|
Li H, Fong C, Chen Y, Cai G, Yang M. Beta-adrenergic signals regulate adipogenesis of mouse mesenchymal stem cells via cAMP/PKA pathway. Mol Cell Endocrinol 2010; 323:201-7. [PMID: 20363288 DOI: 10.1016/j.mce.2010.03.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/08/2010] [Accepted: 03/25/2010] [Indexed: 01/22/2023]
Abstract
The adipogenic capacity of mesenchymal stem cells (MSCs) and the involvement of beta-adrenergic signals in lipolysis and thermogenesis have been well established. However, little is known about the development of beta-adrenergic receptor (beta-AR) systems and the role of beta-adrenergic signals in adipogenic differentiation of MSCs. In this study, we demonstrated that both the mRNA and protein levels of beta2- and beta3-AR were up-regulated following adipogenesis of mouse bone marrow derived MSCs. We also established that beta-AR agonists negatively while antagonists positively affected MSC adipogenesis. Both the beta2- and beta3-AR were involved in MSC adipogenesis, with beta3-AR being the predominant subtype. The effect of beta-ARs on MSC adipogenesis was at least partly mediated via the cAMP/PKA signaling pathway. These findings suggested that MSC is also a target for beta-adrenergic regulation, and beta-adrenergic signaling (major beta3-signaling) plays a role in MSC adipogenesis.
Collapse
MESH Headings
- Adipocytes/cytology
- Adipocytes/drug effects
- Adipocytes/physiology
- Adipogenesis/drug effects
- Adipogenesis/physiology
- Adrenergic beta-Agonists/pharmacology
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cells, Cultured
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Dose-Response Relationship, Drug
- Female
- Isoproterenol/pharmacology
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/physiology
- Mice
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-3/genetics
- Receptors, Adrenergic, beta-3/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Haifang Li
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, PR China
| | | | | | | | | |
Collapse
|
14
|
Ferrer-Lorente R, Cabot C, Fernández-López JA, Alemany M. Comparative effects of oleoyl-estrone and a specific beta3-adrenergic agonist (CL316, 243) on the expression of genes involved in energy metabolism of rat white adipose tissue. Nutr Metab (Lond) 2010; 7:15. [PMID: 20184727 PMCID: PMC2841192 DOI: 10.1186/1743-7075-7-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 02/25/2010] [Indexed: 11/29/2022] Open
Abstract
Background The combination of oleoyl-estrone (OE) and a selective β3-adrenergic agonist (B3A; CL316,243) treatment in rats results in a profound and rapid wasting of body reserves (lipid). Methods In the present study we investigated the effect of OE (oral gavage) and/or B3A (subcutaneous constant infusion) administration for 10 days to overweight male rats, compared with controls, on three distinct white adipose tissue (WAT) sites: subcutaneous inguinal, retroperitoneal and epididymal. Tissue weight, DNA (and, from these values cellularity), cAMP content and the expression of several key energy handling metabolism and control genes were analyzed and computed in relation to the whole site mass. Results Both OE and B3A significantly decreased WAT mass, with no loss of DNA (cell numbers). OE decreased and B3A increased cAMP. Gene expression patterns were markedly different for OE and B3A. OE tended to decrease expression of most genes studied, with no changes (versus controls) of lipolytic but decrease of lipogenic enzyme genes. The effects of B3A were widely different, with a generalized increase in the expression of most genes, including the adrenergic receptors, and, especially the uncoupling protein UCP1. Discussion OE and B3A, elicit widely different responses in WAT gene expression, end producing similar effects, such as shrinking of WAT, loss of fat, maintenance of cell numbers. OE acted essentially on the balance of lipolysis-lipogenesis and the blocking of the uptake of substrates; its decrease of synthesis favouring lipolysis. B3A induced a shotgun increase in the expression of most regulatory systems in the adipocyte, an effect that in the end favoured again the loss of lipid; this barely selective increase probably produces inefficiency, which coupled with the increase in UCP1 expression may help WAT to waste energy through thermogenesis. Conclusions There were considerable differences in the responses of the three WAT sites. OE in general lowered gene expression and stealthily induced a substrate imbalance. B3A increasing the expression of most genes enhanced energy waste through inefficiency rather than through specific pathway activation. There was not a synergistic effect between OE and B3A in WAT, but their combined action increased WAT energy waste.
Collapse
Affiliation(s)
- Raquel Ferrer-Lorente
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona, and CIBER Obesity and Nutrition, Institute of Health Carlos III, Barcelona, Spain.
| | | | | | | |
Collapse
|
15
|
Mori S, Satou M, Kanazawa S, Yoshizuka N, Hase T, Tokimitsu I, Takema Y, Nishizawa Y, Yada T. Body fat mass reduction and up-regulation of uncoupling protein by novel lipolysis-promoting plant extract. Int J Biol Sci 2009; 5:311-8. [PMID: 19421341 PMCID: PMC2677732 DOI: 10.7150/ijbs.5.311] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 04/25/2009] [Indexed: 11/27/2022] Open
Abstract
We have found natural products exhibiting lipolysis-promoting activity in subcutaneous adipocytes, which are less sensitive to hormones than visceral adipocytes. The activities and a action mechanisms of a novel plant extract of Cirsium oligophyllum (CE) were investigated in isolated adipocytes from rat subcutaneous fat, and its fat-reducing effects by peroral administration and topical application were evaluated in vivo. CE-induced lipolysis was synergistically enhanced by caffeine, a phosphodiesterase inhibitor, and was reduced by propranolol, a β adrenergic antagonist. The peroral administration of 10% CE solution to Wistar rats for 32 days reduced body weight gain, subcutaneous, and visceral fat weights by 6.6, 26.2, and 3.0%, respectively, as compared to the control group. By the topical application of 2% of this extract to rats for 7 days, weight of subcutaneous fat in the treated skin was reduced by 23.2%. This fat mass reduction was accompanied by the up-regulation of uncoupling protein 1 (UCP), a principal thermogenic mitochondrial molecule related to energy dissipating, in subcutaneous fat and UCP3 in skin except for the fat layer. These results indicate that CE promotes lipolysis via a mechanism involving the β adrenergic receptor, and affects the body fat mass. This fat reduction may be partially due to UCP up-regulation in the skin including subcutaneous fat. This is the first report showing that repeated lipolysis promotion through CE administration may be beneficial for the systematic suppression of body fat accumulation or the control of fat distribution in obesity.
Collapse
Affiliation(s)
- Shinobu Mori
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-gun, Tochigi 321-3497, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Stevens FC, Bloomquist WE, Borel AG, Cohen ML, Droste CA, Heiman ML, Kriauciunas A, Sall DJ, Tinsley FC, Jesudason CD. Potent oxindole based human β3 adrenergic receptor agonists. Bioorg Med Chem Lett 2007; 17:6270-3. [PMID: 17911024 DOI: 10.1016/j.bmcl.2007.09.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 08/30/2007] [Accepted: 09/04/2007] [Indexed: 11/29/2022]
Abstract
The synthesis and biological evaluation of a series of oxindole beta(3) adrenergic receptor agonists is described. A modulation of rat atrial tachycardia was observed with substitution at the 3-position of the oxindole moiety.
Collapse
Affiliation(s)
- F Craig Stevens
- Lilly Research Laboratories, Eli Lilly & Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mori S, Nojiri H, Yoshizuka N, Takema Y. Rapid Desensitization of Lipolysis in the Visceral and Subcutaneous Adipocytes of Rats. Lipids 2007; 42:307-14. [PMID: 17406925 DOI: 10.1007/s11745-007-3034-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 02/03/2007] [Indexed: 11/26/2022]
Abstract
In adipocytes, short and long term stimulation of beta adrenergic receptors (beta AR) induces the desensitization to catecholamines, leading to a decrease in the intracellular accumulation of cAMP, but the roles played by this in lipolysis is not clear. In this study, we assessed the catecholamine-induced desensitization of lipolysis and compared this in adipocytes isolated from visceral and subcutaneous fat tissues of rats. When adipocytes were pretreated with isoproterenol (ISO), the norepinephrine (NE)-induced lipolysis was significantly reduced dose- and time-dependently. A similar reduction of the lipolytic response was also found in NE-, dobutamine-, terbutaline- or BRL37344-induced lipolysis. The ISO- and each beta AR agonist-induced lipolysis in the visceral fat was not only higher than in the subcutaneous fat, but also markedly reduced by ISO- or NE-pretreatment. These results showed that short-term treatment of three subtypes of beta AR by each agonist induces a rapid reduction in the lipolytic response to beta AR stimulation. This suggests some common mechanism for the rapid desensitization of beta AR-agonist-induced lipolysis, in contrast with previous reports on the characteristics of beta AR subtypes. In addition, the regional difference of adipose tissue not only in inducing lipolysis but also in rapid desensitization was also apparent.
Collapse
Affiliation(s)
- Shinobu Mori
- Biological Science Laboratories, Kao Corporation, Tochigi, 321-3497, Japan.
| | | | | | | |
Collapse
|
18
|
Ferrand C, Redonnet A, Prévot D, Carpéné C, Atgié C. Prolonged treatment with the beta3-adrenergic agonist CL 316243 induces adipose tissue remodeling in rat but not in guinea pig: 1) fat store depletion and desensitization of beta-adrenergic responses. J Physiol Biochem 2007; 62:89-99. [PMID: 17217163 DOI: 10.1007/bf03174070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Beta3-adrenergic agonists have been considered as potent antiobesity and antidiabetic agents mainly on the basis of their beneficial actions discovered twenty years ago in obese and diabetic rodents. The aim of this work was to verify whether prolonged treatment with a beta3-adrenergic agonist known to stimulate lipid mobilisation, could promote desensitization of beta-adrenergic responses. Wistar rats and guinea pigs were treated during one week with CL 316243 (CL, 1 mg/kg/d) by implanted osmotic minipumps. In control animals, beta3-adrenergic agonists were lipolytic in rat but not in guinea pig adipocytes. CL-treatment did not alter body weight gain in both species, but reduced fat stores in rats. Lipolysis stimulation by forskolin was unmodified but responses to beta1-, beta2- and beta3-agonists were reduced in visceral or subcutaneous white adipose tissues of CL-treated rats. Similarly, the beta3-adrenergic-dependent impairment of insulin action on glucose transport and lipogenesis in rat adipocytes was diminished after CL-treatment. In rat adipocytes, [125I]ICYP binding and beta3-adrenoceptor mRNA levels were reduced after sustained CL administration. These findings show that CL 316243 exerts (beta3-adrenergic lipolytic and antilipogenic effects in rat adipocytes. These actions, which are likely involved in the fat depletion observed in rat, also lead to the desensitization of all beta-adrenergic responses. Therefore this desensitization, together with the lack of slimming action in guinea pig, seriously attenuates the usefulness of beta3-agonists as antiobesity agents, and may explain why such agonists have not been conducted to a widespread clinical use.
Collapse
Affiliation(s)
- C Ferrand
- DUSA, Université Bordeaux 1, Ave Michel Serres, 47 000 Agen, France
| | | | | | | | | |
Collapse
|
19
|
Finley DR, Bell MG, Borel AG, Bloomquist WE, Cohen ML, Heiman ML, Kriauciunas A, Matthews DP, Miles T, Neel DA, Rito CJ, Sall DJ, Shuker AJ, Stephens TW, Tinsley FC, Winter MA, Jesudason CD. Potent benzimidazolone based human β3-adrenergic receptor agonists. Bioorg Med Chem Lett 2006; 16:5691-4. [PMID: 16931005 DOI: 10.1016/j.bmcl.2006.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 07/25/2006] [Accepted: 08/01/2006] [Indexed: 10/24/2022]
Abstract
The synthesis and biological evaluation of a series of benzimidazolone beta(3) adrenergic receptor agonists are described. A trend toward the reduction of rat atrial tachycardia upon increasing steric bulk at the 3-position of the benzimidazolone moiety was observed.
Collapse
Affiliation(s)
- Don R Finley
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sugimoto T, Ogawa W, Kasuga M, Yokoyama Y. Chronic effects of AJ-9677 on energy expenditure and energy source utilization in rats. Eur J Pharmacol 2005; 519:135-45. [PMID: 16111677 DOI: 10.1016/j.ejphar.2005.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 07/05/2005] [Indexed: 10/25/2022]
Abstract
The effects of AJ-9677 on metabolic parameters were examined in rats that had or had not been chronically treated with this beta3-adrenoceptor agonist. A challenge administration of AJ-9677 increased both the temperature of brown adipose tissue and energy expenditure in both groups of rats. However, whereas the former effect was subject to desensitization, the latter effect was augmented by prior chronic administration of AJ-9677. Whereas a challenge administration of AJ-9677 induced a decrease in the respiratory quotient that persisted for at least 15 h in rats pretreated with vehicle, the initial decrease in this parameter lasted for only 4 h in rats pretreated with AJ-9677. These results suggest that, in rats subjected to chronic treatment with AJ-9677, a challenge administration of this drug increased energy expenditure by stimulation not only of fat oxidation but also of glucose oxidation.
Collapse
Affiliation(s)
- Tadanori Sugimoto
- Biostatistics, Drug Development Division, Dainippon Pharmaceutical Co. Ltd., Suita, Osaka 564-0053, Japan.
| | | | | | | |
Collapse
|
21
|
Ferrer-Lorente R, Cabot C, Fernández-López JA, Alemany M. Combined effects of oleoyl-estrone and a beta3-adrenergic agonist (CL316,243) on lipid stores of diet-induced overweight male Wistar rats. Life Sci 2005; 77:2051-8. [PMID: 15935402 DOI: 10.1016/j.lfs.2005.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Accepted: 04/25/2005] [Indexed: 01/30/2023]
Abstract
Oleoyl-estrone (OE) decreases appetite, induces adipose tissue wasting and resets the ponderostat setting, sparing glucose and protein. The beta3-adrenergic agonists increase energy expenditure and lipolysis. We studied the combination of both treatments to enhance fat mobilization. Overweight male rats received oral OE for 10 days; they were compared with controls and rats receiving a beta3-adrenergic agonist, CL316,243 (B3A); another group received both OE and B3A. Serum 3-hydroxybutyrate, NEFA, triacylglycerols and glucose showed only slight changes in all groups vs. controls; OE-treated rats showed lower cholesterol. OE decreased food intake and B3A increased energy expenditure. OE rats lost about 15%, B3A 24%, and those receiving both compounds lost 39% of their initial total body energy. In all cases, most of this energy imbalance was accounted for by the loss of body lipid. The combined treatment of OE and B3A reduced food intake, nevertheless maintaining a high energy expenditure. The combination of a beta3-adrenergic agonist with OE may help compensate the short-lived effects of the agonist and enhance the lipid mobilization action of OE. The eventual combination of both compounds should be explored as a way to obtain faster and more effective ways to treat obesity.
Collapse
Affiliation(s)
- Raquel Ferrer-Lorente
- Department of Nutrition and Food Science; Faculty of Biology, University of Barcelona, Av. Diagonal, 645, E-08028 Barcelona, Spain.
| | | | | | | |
Collapse
|
22
|
Hatakeyama Y, Sakata Y, Takakura S, Manda T, Mutoh S. Acute and chronic effects of FR-149175, a beta 3-adrenergic receptor agonist, on energy expenditure in Zucker fatty rats. Am J Physiol Regul Integr Comp Physiol 2004; 287:R336-41. [PMID: 15271680 DOI: 10.1152/ajpregu.00131.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clinical therapies for both obesity and obese non-insulin-dependent diabetes mellitus require maintenance of reduced body weight after the initial successful reduction resulting from calorie control, exercise, or medication. Although beta(3)-adrenergic receptor (beta(3)-AR) agonists have been shown to stimulate whole body energy expenditure and lipid mobilization, whether stimulatory effects on oxygen consumption and lipolysis are influenced by chronic exposure to agonists has not been fully characterized. We therefore examined the acute and chronic effects of FR-149175, a selective beta(3)-AR agonist, on whole body oxygen consumption in genetically obese Zucker fatty rats. Chronic treatment with FR-149175 caused a decrease in both body weight gain and white fat pad weight at doses that induced lipolysis in acute treatment (1 and 3.2 mg/kg p.o.). Single administration of FR-149175 (0.1, 1, and 3.2 mg/kg p.o.) dose dependently increased whole body oxygen consumption. Repetitive administration did not cause attenuation of the thermogenic response at lower doses (0.1 and 1 mg/kg 2 times daily), whereas the highest dose (3.2 mg/kg 2 times daily) induced a progressive increase in oxygen consumption. PCR analyses of retroperitoneal white adipose tissue indicated little or no change in beta(3)-AR mRNA levels. Uncoupling protein 1 gene expression increased at 1 mg/kg, and drastic upregulation was detected at 3.2 mg/kg. FR-149175 also increased HSL mRNA levels in a dose-related manner, whereas there was no effect on genes involved in beta-oxidation. These results support that the thermogenic effect of beta(3)-AR agonists is not attenuated by chronic exposure to agonists.
Collapse
Affiliation(s)
- Yoshifumi Hatakeyama
- Department of Diabetes Research, Medicinal Biology Research Laboratories, Fujisawa PharmaceuticalCo. Ltd., Osaka 532-8514, Japan.
| | | | | | | | | |
Collapse
|
23
|
Dewasmes G, Loos N, Delanaud S, Dewasmes D, Géloën A. Activation of brown adipose tissue thermogenesis increases slow wave sleep in rat. Neurosci Lett 2003; 339:207-10. [PMID: 12633889 DOI: 10.1016/s0304-3940(03)00018-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Considering the thermoregulatory role of slow wave sleep (SWS), we wondered whether the sole increase of brown adipose tissue (BAT) thermogenesis could enhance this sleep state. We tested this hypothesis by administering to rats an agonist (BRL 37,344) of the beta-3 adrenoceptor subtype that is massively localized in BAT cell membrane and that is known to activate BAT thermogenesis. Sleep was electrographically characterized. The temperature of interscapular BAT (Tibat) and cortex (Tco) were also assessed. Tibat significantly increased 2-3 h after BRL injection (but not Tco), concomitantly with SWS (+56-57%). At the maximum of Tibat, a significant positive correlation was found between their changes and those of SWS. We demonstrated for the first time that sleep (and especially SWS) can be affected by the specific activation of BAT.
Collapse
Affiliation(s)
- G Dewasmes
- Faculty of Medicine of Amiens, ETPAPC, 3 rue des louvels, 80036 Amiens Cedex, France.
| | | | | | | | | |
Collapse
|
24
|
Blanc S, Géloën A, Normand S, Gharib C, Somody L. Simulated weightlessness alters the nycthemeral distribution of energy expenditure in rats. J Exp Biol 2001; 204:4107-13. [PMID: 11809785 DOI: 10.1242/jeb.204.23.4107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The energy metabolism adaptations to simulated weightlessness in rats by hindlimb tail suspension are unknown. 12 male rats were assigned to 7 days of isolation, 7 days of habituation to the suspension device, 10 days of simulated weightlessness, and 3 days of recovery. The 24-hour energy expenditure was measured by continuous indirect calorimetry. We calculated the 12-hour energy expenditure during the active (night) and inactive (day) periods, the minimal observed metabolic rates with the day values taken as an index of the basal metabolic rate, and the non-basal energy expenditure representing the cost of physical activity plus the diet-induced thermogenesis. Suspension did not change the mean 24-hour energy expenditure (360.8±15.3 J min–1 kg–0.67), but reduced the night/day difference by 64 % (P<0.05) through a concomitant drop in night-energy expenditure and increase in day values. The difference between night and day minimal metabolic rates was reduced by 81 % (P<0.05), and the transient rise in day values suggests an early and moderate basal metabolic rate increase (9 %). An overall 19 % reduction in non-basal energy expenditure was observed during simulated weightlessness (P<0.05), which was mainly attributable to a reduction in the cost of physical activity. 3 days of recovery restored the night/day differences but increased the 24-hour energy expenditure by 10 % (P<0.05). In conclusion, hindlimb tail suspension in rats did not alter the 24-hour energy expenditure, but it transiently increased the basal metabolic rate, and altered both the energy expended on physical activity and the nycthemeral distribution of motor activity. These data suggest that the circadian rhythms of energy expenditure are affected during simulated weightlessness.
Collapse
Affiliation(s)
- S Blanc
- Laboratoire de Physiologie de l'Environnement, Faculté de Médecine Lyon Grange-Blanche, 8 Avenue Rockefeller, 69373 Lyon Cedex 08, France
| | | | | | | | | |
Collapse
|
25
|
Scheeren TW, Arndt JO. Different response of oxygen consumption and cardiac output to various endogenous and synthetic catecholamines in awake dogs. Crit Care Med 2000; 28:3861-8. [PMID: 11153627 DOI: 10.1097/00003246-200012000-00021] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine whether catecholamines with different adrenergic receptor affinities are characterized by individual relationships between cardiac output (Q) and oxygen consumption (VO2). DESIGN Comparison of the dose-effect relationships and Q/VO2 relationships of four different catecholamines in the same awake dogs. SETTING University research department of experimental anesthesiology. SUBJECTS Ten trained, healthy dogs in the basal metabolic state with chronically implanted ultrasonic flow transducers around the pulmonary artery for the continuous measurement of cardiac output. INTERVENTIONS Increasing doses of norepinephrine, epinephrine, dobutamine, or dopexamine were infused in a randomly varied sequence on separate days until VO2 and Q reached a maximum. MEASUREMENTS AND MAIN RESULTS VO2 was measured by indirect calorimetry, and Q was measured via the pulmonary artery by ultrasonic flowmetry. In healthy dogs, catecholamines increased both VO2 and Q in a dose-dependent manner until a plateau was reached when VO2 had doubled and Q had quadrupled compared with baseline conditions. Regardless of the catecholamine, the resulting Q/VO2 relationships were linear up to the maximal effects, but their slopes (s) differed significantly between agents (p < .05, paired sign test) and increased approximately three-fold in the order norepinephrine (s = 34), epinephrine (s = 54), dobutamine (s = 86), and dopexamine (s = 105). Except for norepinephrine, the catecholamines also increased oxygen delivery more than VO2, so that O2 extraction decreased to 40% below baseline. CONCLUSIONS Catecholamines are characterized by linear Q/VO2 relationships with drug-specific slopes. All agents (except norepinephrine) increased oxygen delivery more than oxygen demand. For the practice of catecholamine therapy, our experiments imply that synthetic agents such as dobutamine and particularly dopexamine may be preferred in the treatment of low cardiac output states because they increase Q with the least metabolic effects.
Collapse
Affiliation(s)
- T W Scheeren
- Department of Experimental Anesthesiology, Heinrich-Heine University of Düsseldorf, Germany
| | | |
Collapse
|
26
|
Blanc S, Géloën A, Pachiaudi C, Gharib C, Normand S. Validation of the doubly labeled water method in rats during isolation and simulated weightlessness. Am J Physiol Regul Integr Comp Physiol 2000; 279:R1964-79. [PMID: 11080059 DOI: 10.1152/ajpregu.2000.279.6.r1964] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Total energy expenditure (TEE) of rats during simulated microgravity is unknown. The doubly labeled water method (DLW) reliably measures TEE, but the results depend on the methods of calculation. These methods were validated and appraised by indirect calorimetry in eight rats during isolation (7 days) and simulated microgravity (10 days). There were no effects on CO(2) production in the method used to derive constant flux rates as in the regression models. r(CO(2)) estimates were dependent on the assumed fractionation processes, the derivation of constant flux rate methods, and the selected pool models. Use of respiratory or food quotients did not influence TEE estimations, which were similar during isolation and simulation. During either isolation with growth or simulation with a stabilized mass, the one-pool model of Speakman (Speakman JR. Doubly Labelled Water. Theory and Practice. London: Chapman and Hall, 1997) resulted in the more reliable validation (0.8 +/- 2.2 and 2.2 +/- 3.4% vs. calorimetry, respectively). However, during simulation, agreement was also observed with the single pool model of Lifson (Lifson N, Gordon GB, and McClintock R. J Appl Physiol 7: 704-710, 1955) (-2.5 +/- 2.5%), and two two-pool models [Schoeller (Schoeller DA. J Nutr 118: 1278-1289, 1988) (0.5 +/- 3.1%) and Speakman (Speakman, JR. Doubly Labelled Water. Theory and Practice. London: Chapman and Hall, 1997) (-1.9 +/- 2.7%)]. This latter finding seems linked to the stable body mass and to fractionation consideration close to the single-pool model of Speakman. During isolation or simulated microgravity, the other equations underestimated TEE by 10-20%.
Collapse
Affiliation(s)
- S Blanc
- Laboratoire de Physiologie de l'Environnement, Faculté de Médecine Lyon Grange-Blanche, 69373 Lyon Cedex 08, France
| | | | | | | | | |
Collapse
|
27
|
Stress-induced alteration in the lipolytic response to β-adrenoceptor agonists in rat white adipocytes. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33419-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|