1
|
Barany A, Fuentes J, Valderrama V, Broz-Ruiz A, Martínez-Rodríguez G, Mancera JM. Oral cortisol and dexamethasone intake: Differential physiology and transcriptional responses in the marine juvenile Sparus aurata. Gen Comp Endocrinol 2023; 344:114371. [PMID: 37640145 DOI: 10.1016/j.ygcen.2023.114371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/12/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
This study approached the long-term oral administration of cortisol (F) and dexamethasone (DEX), two synthetic glucocorticoids, compared to a control group (CT) in the juveniles of a marine teleost, the gilthead seabream (Sparus aurata). Physiologically, DEX treatment impaired growth, which appears to be linked to carbohydrate allocation in muscle and liver, hepatic triglycerides depletion, and reduced hematocrit. Hypophyseal gh mRNA expression was 2-fold higher in DEX than in CT or F groups. Similarly, hypothalamic trh and hypophyseal pomcb followed this pattern. Plasma cortisol levels were significantly lower in DEX than in CT, while F presented intermediate levels. In the posterior intestine, measured short circuit-current (Isc) was more anion absorptive in CT and F compared to the DEX group, whereas Isc remained unaffected in the anterior intestine. The derived transepithelial electric resistance (TEER) significantly differed between intestinal regions in the DEX group. These results provide new insights to understand better potential targeted biomarkers indicative of the differential glucocorticoid or mineralocorticoid-receptors activation in fish.
Collapse
Affiliation(s)
- A Barany
- Department of Biology, Morrill Science Center, University of Massachusetts, 01003 Amherst, MA, USA; Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, E-11510 Puerto Real, Cádiz, Spain.
| | - J Fuentes
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| | - V Valderrama
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, E-11510 Puerto Real, Cádiz, Spain
| | - A Broz-Ruiz
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, E-11510 Puerto Real, Cádiz, Spain
| | - G Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Spanish National Research Council (ICMAN-CSIC), E-11510 Puerto Real, Cádiz, Spain
| | - J M Mancera
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, E-11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
2
|
Izutsu A, Habara S, Kaneko N, Tadokoro D, Hara A, Shimizu M. Development of a time-resolved fluoroimmunoassay for salmonid insulin-like growth factor binding protein-2b. Gen Comp Endocrinol 2023; 340:114305. [PMID: 37149009 DOI: 10.1016/j.ygcen.2023.114305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/16/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Insulin-like growth factor (IGF)-1 promotes the growth of vertebrates, and its binding proteins (IGFBPs) regulate the activity of circulating IGF-1. Three IGFBPs, IGFBP-2b, -1a, and -1b, were consistently detected in the circulatory system of salmonids. IGFBP-2b is thought to be the main carrier of IGFs and promoter of IGF-1-mediated growth in salmonids. Currently, there are no immunoassays for detecting IGFBP-2b. In this study, we developed a time-resolved fluoroimmunoassay (TR-FIA) for IGFBP-2b detection in salmonid fishes. To establish TR-FIA, we produced two recombinant trout (rt) IGFBP-2bs expressed, one with thioredoxin (Trx) and a histidine (His) tag, and the other with His-tag only. We labeled both recombinant proteins with europium (Eu). Only Eu-Trx.His.rtIGFBP-2b cross-reacted with anti-IGFBP-2b, and the addition of increasing amounts of Trx.His.rtIGFBP-2b replaced the binding, indicating its utility as a tracer and assay standard. The addition of unlabeled salmon IGF-1 did not affect the binding of the standard or sample. Serial dilution curves of sera from rainbow trout, Chinook salmon, and chum salmon were parallel to those of the standard. The assay range (ED80-ED20) of the TR-FIA was 60.4 to 251.3 ng/ml, and its minimum detection limit of this assay was 21 ng/ml. The intra- and inter-assay coefficients of variation were 5.68% and 5.65%, respectively. Circulating IGFBP-2b levels in fed rainbow trout were higher than those in fasted fish and were correlated with individual growth rates. This TR-FIA is useful for further exploring the physiological responses of circulating IGFBP-2b and evaluating the growth status of salmonids.
Collapse
Affiliation(s)
- Ayaka Izutsu
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Shiori Habara
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Nobuto Kaneko
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Daiji Tadokoro
- FRD Japan Co., Ltd, Kazusa Kamatari 3-9-13, Kisarazu, Chiba 292-0818, Japan
| | - Akihiko Hara
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan; Field Science Center for Northern Biosphere, Hokkaido University, 3-1-1, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
3
|
Chivite M, Ceinos RM, Cerdá-Reverter JM, Soengas JL, Aldegunde M, López-Patiño MA, Míguez JM. Unraveling the periprandial changes in brain serotonergic activity and its correlation with food intake-related neuropeptides in rainbow trout Oncorhynchus mykiss. Front Endocrinol (Lausanne) 2023; 14:1241019. [PMID: 37693350 PMCID: PMC10491422 DOI: 10.3389/fendo.2023.1241019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
This study explored changes in brain serotonin content and activity together with hypothalamic neuropeptide mRNA abundance around feeding time in rainbow trout, as well as the effect of one-day fasting. Groups of trout fed at two (ZT2) and six (ZT6) hours after lights on were sampled from 90 minutes before to 240 minutes after feeding, while additional groups of non-fed trout were also included in the study. Changes in brain amine and metabolite contents were measured in hindbrain, diencephalon and telencephalon, while in the diencephalon the mRNA abundance of tryptophan hydroxylase (tph1, tph2), serotonin receptors (5htr1a, 5htr1b and 5htr2c) and several neuropeptides (npy, agrp1, cartpt, pomca1, crfb) involved in the control of food intake were also assessed. The results showed changes in the hypothalamic neuropeptides that were consistent with the expected role for each in the regulation of food intake in rainbow trout. Serotonergic activity increased rapidly at the time of food intake in the diencephalon and hindbrain and remained high for much of the postprandial period. This increase in serotonin abundance was concomitant with elevated levels of pomca1 mRNA in the diencephalon, suggesting that serotonin might act on brain neuropeptides to promote a satiety profile. Furthermore, serotonin synthesis and neuronal activity appear to increase already before the time of feeding, suggesting additional functions for this amine before and during food intake. Exploration of serotonin receptors in the diencephalon revealed only small changes for gene expression of 5htr1b and 5htr2c receptors during the postprandial phase. Therefore, the results suggest that serotonin may play a relevant role in the regulation of feeding behavior in rainbow trout during periprandial time, but a better understanding of its interaction with brain centers involved in receiving and processing food-related signals is still needed.
Collapse
Affiliation(s)
- Mauro Chivite
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Rosa M. Ceinos
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - José M. Cerdá-Reverter
- Departamento de Fisiología de Peces y Biotecnología, Instituto de Acuicultura Torre de la Sal, Instituto de Acuicultura Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| | - Jose L. Soengas
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Manuel Aldegunde
- Departamento de Fisiología, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marcos A. López-Patiño
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Jesús M. Míguez
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
4
|
Bersin TV, Mapes HM, Journey ML, Beckman BR, Lema SC. Insulin-like growth factor-1 (Igf1) signaling responses to food consumption after fasting in the Pacific rockfish Sebastes carnatus. Comp Biochem Physiol A Mol Integr Physiol 2023; 282:111444. [PMID: 37201654 DOI: 10.1016/j.cbpa.2023.111444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/20/2023]
Abstract
Fish adjust rates of somatic growth in the face of changing food consumption. As in other vertebrates, growth in fish is regulated by the growth hormone (Gh)/insulin-like growth factor-1 (Igf1) endocrine axis, and changes in food intake impact growth via alterations to Gh/Igf1 signaling. Understanding the time course by which the Gh/Igf1 axis responds to food consumption is crucial to predict how rapidly changes in food abundance might lead to altered growth dynamics. Here, we looked at the response times of plasma Igf1 and liver Igf1 signaling-associated gene expression to refeeding after food deprivation in juvenile gopher rockfish (Sebastes carnatus), one of several species of northern Pacific Ocean Sebastes rockfishes targeted by fisheries or utilized for aquaculture. Gopher rockfish were fasted for 30 d, after which a subset was fed to satiation for 2 h, while other rockfish continued to be fasted. Refed fish exhibited higher hepatosomatic index (HSI) values and increased Igf1 after food consumption. Gene transcripts for Gh receptor 1 (ghr1), but not ghr2, increased in the liver after eating. Transcripts encoding igf1 also increased in the liver of refed fish 2-4 d after feeding, only to return to levels similar as continually fasted rockfish by 9 d after feeding. Liver mRNA abundances for Igf binding protein (Igfbp) genes igfbp1a, igfbp1b, and igfbp3a declined within 2 d of feeding. These findings provide evidence that circulating Igf1 in rockfish reflects a fish's feeding experience within the previous few days, and suggest that feeding-induced increases in Igf1 are being mediated in part by altered liver sensitivity to Gh due to upregulated Gh receptor 1 expression.
Collapse
Affiliation(s)
- Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Hayley M Mapes
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, USA; Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
5
|
Kaneko N, Ishikawa T, Nomura K. Effects of the short-term fasting and refeeding on growth-related genes in Japanese eel (Anguilla japonica) larvae. Comp Biochem Physiol B Biochem Mol Biol 2023; 265:110826. [PMID: 36608929 DOI: 10.1016/j.cbpb.2023.110826] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
The Japanese eel (Anguilla japonica) spends a long period as the leptocephalus larval form under current rearing conditions. The duration of the larval stage until metamorphosis is influenced by body size and growth; however, little knowledge exists of the regulatory mechanism of growth in eel larvae. The present study focused on growth hormone (GH), insulin-like growth factors (IGFs), and IGF binding protein (IGFBP) as the central regulators of growth in teleost fishes and transforming growth factor-beta 3 (TGF-β3) as a possible key modulator of muscle growth and body component synthesis. Japanese eel IGFBP-1a and TGF-β3, comprising 264 and 411 amino acids, respectively, were cloned. Short-term (5-day) fasting and refeeding experiments were performed to understand changes in growth-related genes affected by nutritional status. The relative expression of gh increased with fasting and subsequently decreased with refeeding to the basal levels of the fed control. Relative igf-1 and igf-2 expression levels were high in the fasted group. Relative igf-1 was reduced after 2-day refeeding, whereas igf-2 decreased to the basal level after 1-day refeeding, suggesting that IGF-1 and IGF-2 might be regulated independently and contribute to postnatal growth in eel larvae. Relative igfbp-1a expression was sharply increased by fasting, whereas tgf-β3 showed high and low values in the fed and fasted groups, respectively. Relative igfbp-1a and tgf-β3 levels were negatively and positively correlated with body size, respectively. These results suggest that igfbp-1a and tgf-β3 are potential indices of growth for exploring optimal rearing conditions to shorten the larval stage in Japanese eels.
Collapse
Affiliation(s)
- Nobuto Kaneko
- Fisheries Technology Institute, Nansei Field Station, Japan Fisheries Research and Education Agency, Minamiise, Mie 516-0193, Japan.
| | - Takashi Ishikawa
- Fisheries Technology Institute, Nansei Field Station, Japan Fisheries Research and Education Agency, Minamiise, Mie 516-0193, Japan
| | - Kazuharu Nomura
- Fisheries Technology Institute, Nansei Field Station, Japan Fisheries Research and Education Agency, Minamiise, Mie 516-0193, Japan
| |
Collapse
|
6
|
Pfalzgraff T, Skov PV. Combined antagonist treatment of glucocorticoid and mineralocorticoid receptor does not affect weight loss of fasting rainbow trout but inhibits a fasting-induced elevation of cortisol secretion. Comp Biochem Physiol A Mol Integr Physiol 2022; 274:111321. [PMID: 36169060 DOI: 10.1016/j.cbpa.2022.111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
The gastrointestinal system of fish reacts rapidly to food deprivation. The relative masses of digestive organs and activities of digestive enzymes decrease within days of fasting. This is believed to be an energy-conserving strategy as the metabolic cost of maintaining digestive capacity is high. Cortisol is known for its role in energy mobilization following stress exposure, and prolonged elevated cortisol levels have been shown to reduce growth rates in fish. Fish experiencing chronic cortisol elevations show structural changes to their digestive tissues and overall reductions in relative digestive tissue masses. In fish fasting for prolonged periods, circulating cortisol levels have been reported to be downregulated, upregulated, or unchanged compared to feeding fish. This study aimed to investigate if RU486 and spironolactone, antagonists of the glucocorticoid receptor (GR), and mineralocorticoid receptor (MR), respectively, alone or in combination affect circulating cortisol levels during prolonged starvation. In addition, we tested the effects of blocking GR and MR, on the down-regulation of relative digestive tissue mass during starvation, and its effects on weight loss. Three treatment groups of rainbow trout were intraperitoneally implanted with either GR, MR, or GR and MR blockers. A fourth group was implanted with cortisol, while a fifth group served as a control. All treatment groups were sampled over a course of four weeks of food deprivation and compared against each other and fed control fish at day 0 of the trial. Starvation for 2 weeks and longer significantly increased circulating cortisol levels in all groups except for the group implanted with GR and MR antagonists. Loss of body mass occurred most rapidly during the first week of starvation. Spironolactone treatment resulted in significantly reduced loss of mass during the first week, however, over the following weeks, no differences in mass loss were observed in the groups implanted with blockers, while cortisol-treated fish showed the highest decrease in body mass over time. Relative digestive tissue mass decreased in all groups but apparently, the fasting-induced elevation in plasma cortisol levels did not affect the relative weight loss of digestive tissues as no differences were observed between control fish and GR + MR antagonist treated fish. Very high cortisol levels caused by cortisol treatment however caused a faster decrease in the relative mass of some digestive organs, particularly the stomach.
Collapse
Affiliation(s)
- Tilo Pfalzgraff
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, 9850 Hirtshals, Denmark.
| | - Peter Vilhelm Skov
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, 9850 Hirtshals, Denmark
| |
Collapse
|
7
|
Cui W, Takahashi E, Morro B, Balseiro P, Albalat A, Pedrosa C, Mackenzie S, Nilsen TO, Sveier H, Ebbesson LO, Handeland SO, Shimizu M. Changes in circulating insulin-like growth factor-1 and its binding proteins in yearling rainbow trout during spring under natural and manipulated photoperiods and their relationships with gill Na +, K +-ATPase and body size. Comp Biochem Physiol A Mol Integr Physiol 2022; 268:111205. [PMID: 35346822 DOI: 10.1016/j.cbpa.2022.111205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Smoltification in salmonids occurs during spring in response to increasing photoperiod to prepare for marine life. Smoltification is associated with increased hypo-osmoregulatory ability and enhanced growth potential, mediated by growth hormone and insulin-like growth factor (IGF)-1. Rainbow trout is uniquely insensitive to the induction of smoltification-associated changes by photoperiod, such as the activation of gill Na+,K+-ATPase (NKA). We measured the circulating IGF-1 and IGF-binding protein (IGFBP)-2b levels in yearling rainbow trout exposed to natural and manipulated photoperiods during spring and correlated these with gill NKA activity and body size. Although the effect of photoperiod manipulation on body size and circulating IGF-1 and IGFBP-2b was negligible, they were positively correlated with gill NKA activity in fish under simulated natural photoperiod. We next pit-tagged yearling rainbow trout and fed them a restricted ration or to satiation under a natural photoperiod. In April, gill NKA activity was higher in the satiation group than in the restricted group and positively correlated with body size and growth rate. In addition, circulating IGFBP-2b was positively correlated with gill NKA, size and growth, whereas circulating IGF-1 was correlated only with size and growth. The relationship between circulating IGF-1 and growth intensified from May to June, suggesting that the IGF-1-growth relationship was disrupted in April when gill NKA was activated. Two additional IGFBPs were related to growth parameters but not to gill NKA activity. The present study suggests that circulating IGFBP-2b and IGF-1 mediate the size-dependent activation of gill NKA in yearling rainbow trout during spring.
Collapse
Affiliation(s)
- Wenda Cui
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Eisuke Takahashi
- Nanae Fresh-Water Station, Field Science Center for Northern Biosphere, Hokkaido University, 2-9-1 Sakura, Nanae, Kameda-gun, Hokkaido 041-1105, Japan
| | - Bernat Morro
- Institute of Aquaculture, University of Stirling, FK9 4LA Stirling, UK
| | - Pablo Balseiro
- NORCE AS, Nygårdsgaten 112, 5008 Bergen, Norway; Department of Biological Sciences, University of Bergen, Thormøhlens gate 53 A/B, 5020 Bergen, Norway
| | - Amaya Albalat
- Institute of Aquaculture, University of Stirling, FK9 4LA Stirling, UK
| | - Cindy Pedrosa
- NORCE AS, Nygårdsgaten 112, 5008 Bergen, Norway; Department of Biological Sciences, University of Bergen, Thormøhlens gate 53 A/B, 5020 Bergen, Norway
| | - Simon Mackenzie
- Institute of Aquaculture, University of Stirling, FK9 4LA Stirling, UK; NORCE AS, Nygårdsgaten 112, 5008 Bergen, Norway
| | - Tom O Nilsen
- NORCE AS, Nygårdsgaten 112, 5008 Bergen, Norway; Department of Biological Sciences, University of Bergen, Thormøhlens gate 53 A/B, 5020 Bergen, Norway
| | - Harald Sveier
- Lerøy Seafood Group ASA, Box 7600, 5020 Bergen, Norway
| | | | - Sigurd O Handeland
- NORCE AS, Nygårdsgaten 112, 5008 Bergen, Norway; Department of Biological Sciences, University of Bergen, Thormøhlens gate 53 A/B, 5020 Bergen, Norway
| | - Munetaka Shimizu
- Section of Aquatic Research, Field Science Center for Northern Biosphere, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
8
|
Izutsu A, Tadokoro D, Habara S, Ugachi Y, Shimizu M. Evaluation of circulating insulin-like growth factor (IGF)-I and IGF-binding proteins as growth indices in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2022; 320:114008. [PMID: 35219685 DOI: 10.1016/j.ygcen.2022.114008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022]
Abstract
Circulating insulin-like growth factor (IGF)-I has been proposed as a growth index in several teleosts, including salmonids, and its level in circulation is stabilized by multiple IGF-binding proteins (IGFBPs). Three IGFBPs, IGFBP-2b, -1a, and -1b, are consistently detected in salmonid blood and are suggested to be indices of positive or negative growth, although their applicability to rainbow trout (Oncorhynchus mykiss) is unclear. The present study examined the usefulness of IGFBPs along with IGF-I as a physiological indicator of growth rate in rainbow trout through a rearing experiment. Two groups of underyearling rainbow trout were pit-tagged and either fed or fasted for 33 days. A third group was fasted for 22 days, followed by refeeding for 11 days. Serum IGF-I levels were reduced after fasting for 22 days, but refeeding did not retore its levels to those of the fed control. Nevertheless, there was a positive relationship between serum IGF-I levels and individual growth rates over 33 days of experimentation, confirming its validity as a growth index. Ligand blotting using labeled human IGF-I revealed two IGFBP bands at 43 and 32 kDa, which corresponded to IGFBP-2b and an unidentified form, respectively. In contrast, bands corresponding to IGFBP-1a and -1b, which usually increase after fasting, were hardly detected, even in the fasted fish. The responses of circulating IGFBP-2b to fasting and refeeding were similar to those of circulating IGF-I and positively correlated with growth rate and IGF-I levels. The intensity of the serum 32-kDa IGFBP band was higher in constantly fed fish than in the fasted fish; however, its correlation with growth rate was weaker than those of IGF-I and IGFBP-2b. The present study shows that IGF-I and IGFBP-2b can be used as growth indices for rainbow trout. In contrast, circulating IGFBP-1a and -1b may not serve as negative growth indices in rainbow trout under regular aquaculture conditions because they are rarely detected by ligand blotting or respond to fasting/refeeding.
Collapse
Affiliation(s)
- Ayaka Izutsu
- School of Fisheries Sciences, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Daiji Tadokoro
- FRD Japan, Co., Kazusa Kamatari 3-9-13, Kisarazu, Chiba 292-0818, Japan
| | - Shiori Habara
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yuki Ugachi
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
9
|
Hayashi M, Maruoka S, Oikawa J, Ugachi Y, Shimizu M. Effects of Acclimation to Diluted Seawater on Metabolic and Growth Parameters of Underyearling Masu Salmon ( Oncorhynchus masou). Zoolog Sci 2021; 38:513-522. [PMID: 34854283 DOI: 10.2108/zs210048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022]
Abstract
We examined the effects of environmental salinity and feeding status on the growth and metabolic parameters of underyearling masu salmon. Fish were first acclimated to salinities of 0 (< 0.1), 11, or 22 psu for 10 days, after which time 50% of the fish in each group were fasted for 5 days followed by refeeding for 5 days. No effects on body length/weight were observed over the 20 days from the beginning of the experiment. Gill Na+, K+-ATPase (NKA) activity increased 20 and 10 days after transfer to water at 11 and 22 psu, respectively. Serum Na+ and Cl- levels were high in fish at 22 psu on day 20 but much lower than those in the environmental water, suggesting that fish at this salinity were able to hypo-osmoregulate. However, acclimation to 22 psu resulted in a reduction in feeding rate on day 20. Serum insulin-like growth factor (IGF)-I levels and liver glycogen content were reduced by fasting and restored after 5 days of refeeding, except in the fish at 22 psu. Intensities of serum IGFBP-1a and -1b bands were increased at higher salinities, whereas fasting/refeeding affected only IGFBP-1b. The present study suggests that acclimating masu salmon parr to 11 psu had no effect on metabolic and growth parameters, while 22 psu presumably suppressed their growth potential due to the possible energy cost or stress for osmoregulation. The disparate responses of circulating IGFBP-1a and -1b to higher salinity and fasting highlight their utility as indices of various catabolic statuses.
Collapse
Affiliation(s)
- Mizuki Hayashi
- School of Fisheries Sciences, Hakodate, Hokkaido 041-8611, Japan
| | - Shu Maruoka
- School of Fisheries Sciences, Hakodate, Hokkaido 041-8611, Japan
| | - Jin Oikawa
- Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yuki Ugachi
- Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan,
| |
Collapse
|
10
|
Breves JP, Springer-Miller RH, Chenoweth DA, Paskavitz AL, Chang AYH, Regish AM, Einarsdottir IE, Björnsson BT, McCormick SD. Cortisol regulates insulin-like growth-factor binding protein (igfbp) gene expression in Atlantic salmon parr. Mol Cell Endocrinol 2020; 518:110989. [PMID: 32835784 DOI: 10.1016/j.mce.2020.110989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 02/08/2023]
Abstract
The growth hormone (Gh)/insulin-like growth-factor (Igf)/Igf binding protein (Igfbp) system regulates growth and osmoregulation in salmonid fishes, but how this system interacts with other endocrine systems is largely unknown. Given the well-documented consequences of mounting a glucocorticoid stress response on growth, we hypothesized that cortisol inhibits anabolic processes by modulating the expression of hepatic igfbp mRNAs. Atlantic salmon (Salmo salar) parr were implanted intraperitoneally with cortisol implants (0, 10, and 40 μg g-1 body weight) and sampled after 3 or 14 days. Cortisol elicited a dose-dependent reduction in specific growth rate (SGR) after 14 days. While plasma Gh and Igf1 levels were unchanged, hepatic igf1 mRNA was diminished and hepatic igfbp1b1 and -1b2 were stimulated by the high cortisol dose. Plasma Igf1 was positively correlated with SGR at 14 days. Hepatic gh receptor (ghr), igfbp1a, -2a, -2b1, and -2b2 levels were not impacted by cortisol. Muscle igf2, but not igf1 or ghr, levels were stimulated at 3 days by the high cortisol dose. As both cortisol and the Gh/Igf axis promote seawater (SW) tolerance, and particular igfbps respond to SW exposure, we also assessed whether cortisol coordinates the expression of branchial igfbps and genes associated with ion transport. Cortisol stimulated branchial igfbp5b2 levels in parallel with Na+/K+-ATPase (NKA) activity and nka-α1b, Na+/K+/2Cl--cotransporter 1 (nkcc1), and cystic fibrosis transmembrane regulator 1 (cftr1) mRNA levels. The collective results indicate that cortisol modulates the growth of juvenile salmon via the regulation of hepatic igfbp1s whereas no clear links between cortisol and branchial igfbps previously shown to be salinity-responsive could be established.
Collapse
Affiliation(s)
- J P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA.
| | - R H Springer-Miller
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - D A Chenoweth
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - A L Paskavitz
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - A Y H Chang
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - A M Regish
- U.S. Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, One Migratory Way, Turners Falls, MA, 01376, USA
| | - I E Einarsdottir
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463 SE, 40530, Göteborg, Sweden
| | - B Th Björnsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463 SE, 40530, Göteborg, Sweden
| | - S D McCormick
- U.S. Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, One Migratory Way, Turners Falls, MA, 01376, USA
| |
Collapse
|
11
|
Yamaguchi G, Habara S, Suzuki S, Ugachi Y, Kawai H, Nakajima T, Shimizu M. Effects of growth hormone and cortisol administration on plasma insulin-like growth factor binding proteins in juveniles of three subspecies of masu salmon (Oncorhynchus masou). Comp Biochem Physiol A Mol Integr Physiol 2020; 251:110821. [PMID: 33053436 DOI: 10.1016/j.cbpa.2020.110821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/26/2022]
Abstract
In this study, we examined the effects of porcine growth hormone (GH) and cortisol on plasma insulin-like growth factor binding proteins (IGFBPs) in juveniles of three subspecies of Oncorhynchus masou (masu, amago, and Biwa salmon). Ligand blotting using digoxigenin-labeled human IGF-I was used to detect and semi-quantify three major circulating IGFBP bands at 41, 28, and 22 kDa, corresponding to IGFBP-2b, -1a, and -1b, respectively. GH increased plasma IGFBP-2b concentration in masu and Biwa salmon but suppressed it in amago salmon. Plasma IGFBP-2b levels were increased by cortisol in the three subspecies. Cortisol induced plasma IGFBP-1a in the three subspecies, whereas GH had a suppressive effect in masu and Biwa salmon. Sham and cortisol injections increased plasma IGFBP-1b levels after 1 day in masu and amago salmon, suggesting that IGFBP-1b is induced following exposure to stressors via cortisol. Increased IGFBP-1b levels were restored to basal levels when co-injected with GH in Biwa salmon, and the same trend was seen in masu and amago salmon. However, the suppressive effect of GH disappeared 2 days after injection in the three subspecies. Despite some differences among subspecies, the findings suggest that cortisol is a primary inducer of plasma IGFBP-1b; however, GH counteracts it in the short term. Therefore, GH has the potential to modulate the degree of increase in circulating IGFBP-1b levels during acute stress.
Collapse
Affiliation(s)
- Ginnosuke Yamaguchi
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Shiori Habara
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Shotaro Suzuki
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yuki Ugachi
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Hisashi Kawai
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Takuro Nakajima
- Department of Fisheries, Shiga Prefecture, 4-1-1 Kyomachi, Otsu, Shiga 520-8577, Japan
| | - Munetaka Shimizu
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan; Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
12
|
Kaneko N, Nilsen TO, Tanaka H, Hara A, Shimizu M. Intact rather than total circulating insulin-like growth factor binding protein-1a is a negative indicator of growth in masu salmon. Am J Physiol Regul Integr Comp Physiol 2020; 318:R329-R337. [PMID: 31850820 DOI: 10.1152/ajpregu.00099.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Insulin-like growth factor binding protein (IGFBP)-1a is one of three major circulating forms in salmon and induced under catabolic conditions. However, there is currently no immunoassay available for this form because of a lack of standard and specific antibodies. We developed a time-resolved fluoroimmunoassay (TR-FIA) for salmon IGFBP-1a using recombinant protein for labeling, an assay standard, and production of antiserum. The TR-FIA had a low cross-reactivity (3.6%) with IGFBP-1b, another major form in the circulation. Fasting for 4 wk had no effect on serum immunoreactive (total) IGFBP-1a levels in yearling masu salmon, whereas 6-wk fasting significantly increased it. There was a significant, but weak, negative relationship between serum total IGFBP-1a level and individual growth rate (r2 = 0.12, P = 0.01). We next developed a ligand immuno-functional assay (LIFA) using europium-labeled IGF-I to quantify intact IGFBP-1a. In contrast to total IGFBP-1a, serum intact IGFBP-1a levels increased after 4 wk of fasting, and refeeding for 2 wk restored it to levels similar to those of the fed control. Serum intact IGFBP-1a levels showed a significant negative correlation with individual growth rate (r2 = 0.52, P < 0.001), which was as good as that of IGFBP-1b. Our findings using newly developed TR-FIA and LIFA suggest that regulation of intact IGFBP-1a levels has an important effect on growth in salmon and that intact IGFBP-1a is a negative index of salmon growth.
Collapse
Affiliation(s)
- Nobuto Kaneko
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan.,Norwegian Research Centre (NORCE) Environment, NORCE Norwegian Research Centre AS, Bergen, Norway
| | - Tom Ole Nilsen
- Norwegian Research Centre (NORCE) Environment, NORCE Norwegian Research Centre AS, Bergen, Norway.,Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Hanae Tanaka
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Akihiko Hara
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| |
Collapse
|
13
|
Strobel JS, Hack NL, Label KT, Cordova KL, Bersin TV, Journey ML, Beckman BR, Lema SC. Effects of food deprivation on plasma insulin-like growth factor-1 (Igf1) and Igf binding protein (Igfbp) gene transcription in juvenile cabezon (Scorpaenichthys marmoratus). Gen Comp Endocrinol 2020; 286:113319. [PMID: 31715138 DOI: 10.1016/j.ygcen.2019.113319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/25/2019] [Accepted: 11/08/2019] [Indexed: 12/25/2022]
Abstract
The growth hormone (GH)/insulin-like growth factor (Igf) endocrine axis regulates somatic growth in the face of changing environmental conditions. In actinopterygian fishes, food availability is a key modulator of the somatotropic axis, with lower food intake generally depressing liver Igf1 release to diminish growth. Igf1 signaling, however, also involves several distinct IGF binding proteins (Igfbps), and the functional roles of many of these Igfbps in affecting growth during shifting food availability remain uncertain. Here, we tested how complete food deprivation (fasting) affected gene transcription for paralogs of all six types of Igfbps in the liver and fast-twitch skeletal muscle of cabezon (Scorpaenichthys marmoratus), a nearshore marine fish important for recreational fisheries in the eastern North Pacific Ocean. Juvenile cabezon were maintained as either fed (6% mass food⋅g fish wet mass-1⋅d-1) or fasted for 14 d. Fasted fish exhibited a lower body condition (K), a depressed mass-specific growth rate (SGR), and reduced plasma concentrations of Igf1. In the liver, fasting reduced the relative abundance of gene transcripts encoding Igfbps igfbp2a and igfbp2b, while significantly elevating mRNA levels for igfbp1a, igfbp1b, igfbp3b, and igfbp4. Fasting also reduced hepatic mRNA levels of GH receptor-1 (ghr1) - but not GH receptor-2 (ghr2) - supporting the idea that changes in liver sensitivity to GH may underlie the decline in plasma Igf1 during food deprivation. In skeletal muscle, fasting downregulated gene transcripts encoding igf1, igfbp2b, igfbp5b, and igfbp6b, while also upregulating mRNAs for igf2 and ghr2. These data demonstrate isoform-specific regulation of Igfbps in liver and skeletal muscle in cabezon experiencing food deprivation and reinforce the idea that the repertoire of duplicated Igfbp genes that evolved in actinopterygian fishes supports a diverse scope of endocrine and paracrine functions.
Collapse
Affiliation(s)
- Jackson S Strobel
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Nicole L Hack
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kevin T Label
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle Washington 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
14
|
Yang G, Chen B, Sun C, Yuan X, Zhang Y, Qin J, Li W. Molecular identification of grouper Igfbp1 and its mRNA expression in primary hepatocytes under Gh and insulin. Gen Comp Endocrinol 2019; 281:137-144. [PMID: 31176753 DOI: 10.1016/j.ygcen.2019.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/29/2019] [Accepted: 06/02/2019] [Indexed: 12/17/2022]
Abstract
The insulin-like growth factor (IGF) system plays a pivotal role in the regulation of growth, and IGF binding proteins (IGFBPs) are important regulatory factors in the IGF system. Generally, IGFBPs inhibit IGF actions by preventing its binding to receptors. Under some conditions, the IGFBPs can also enhance IGF actions. IGFBP1 is generally inhibitory to IGFI. In this study, the grouper (Epinephelus coioides) igfbp1 (MK621003) gene was cloned from the liver. The sequence of igfbp1 cDNA was 1055 bp and contained a 5'UTR of 127 bp and a 3'UTR of 247 bp, and the ORF of grouper igfbp1 was 741 bp, encoding 246 amino acids. The tissue distribution results showed that igfbp1 has a higher expression in the liver. In the nutritional status experiment, igfbp1 expression was significantly increased in the liver after 7 days of fasting and was markedly decreased after refeeding. In in vitro experiments, igfbp1 expression in grouper primary hepatocytes was significantly inhibited by recombinant grouper Gh (growth hormone) in a dose-dependent manner. Additionally, igfbp1 expression decreased in grouper primary hepatocytes upon incubation with insulin. This is the first report describing grouper igfbp1, and these findings contribute to understanding the roles of IGFBP1 in metabolism and growth in grouper.
Collapse
Affiliation(s)
- Guokun Yang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Beichen Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Caiyun Sun
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xi Yuan
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yazhou Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jingkai Qin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
15
|
Zhao W, Qin C, Yang G, Yan X, Meng X, Yang L, Lu R, Deng D, Niu M, Nie G. Expression of glut2 in response to glucose load, insulin and glucagon in grass carp (Ctenophcuyngodon idellus). Comp Biochem Physiol B Biochem Mol Biol 2019; 239:110351. [PMID: 31518684 DOI: 10.1016/j.cbpb.2019.110351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
Generally, fish are thought to have a limited ability to utilize carbohydrate. Postprandial blood glucose is cleared sluggishly in fish, resulting in prolonged hyperglycemia. Facilitative glucose transporters (GLUTs) play an important role in glucose utilization. In the present study, the expression levels of glut2 in different tissues were detected in grass carp. Furthermore, the effects of oral glucose administration on glut2 mRNA expression in the liver, intestine and kidney were investigated, and we also evaluated the response of glut2 mRNA to insulin and glucagon in the primary hepatocytes of grass carp. The expression level of glut2 mRNA was highest in the liver, followed by the intestine and kidney, but lower in other tissues. The result of glucose tolerance test (GTT) showed that serum glucose reached the highest level at 3 h after GTT and recovered to the basic level at 6 h. The glut2 mRNA in the intestine was up-regulated at 1 h after GTT. However, the glut2 mRNA expression in the liver of grass carp was unchanged after GTT for 1, 3, 6 h, and even decreased at 12 h after GTT. In addition, the expression of glut2 mRNA in the primary hepatocytes was enhanced by insulin and glucagon at 3 h post treatment. These results suggested that glut2 expression in the liver of grass carp was sensitive to insulin and glucagon, but not blood glucose. The up-regulation of glut2 by these hormones might be involved in the bi-directional transportation of glucose in the liver.
Collapse
Affiliation(s)
- Wenli Zhao
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Chaobin Qin
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China.
| | - Guokun Yang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Xiao Yan
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Xiaolin Meng
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Liping Yang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Ronghua Lu
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Dapeng Deng
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Mingming Niu
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Guoxing Nie
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China.
| |
Collapse
|
16
|
Hack NL, Cordova KL, Glaser FL, Journey ML, Resner EJ, Hardy KM, Beckman BR, Lema SC. Interactions of long-term food ration variation and short-term fasting on insulin-like growth factor-1 (IGF-1) pathways in copper rockfish (Sebastes caurinus). Gen Comp Endocrinol 2019; 280:168-184. [PMID: 31022390 DOI: 10.1016/j.ygcen.2019.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/13/2019] [Accepted: 04/21/2019] [Indexed: 12/26/2022]
Abstract
Variation in food intake affects somatic growth by altering the expression of hormones in the somatotropic endocrine axis including insulin-like growth factor-1 (IGF-1). Here, we examined IGF-1 pathway responses to long- and short-term variation in food availability in copper rockfish (Sebastes caurinus), a nearshore Pacific rockfish important for commercial and recreational fisheries. Juvenile copper rockfish were raised under differing ration amounts (3% or 9% mass feed·g-1 fish wet mass·day-1) for 140 d to simulate 'long-term' feeding variation, after which some fish from both rations were fasted for 12 d to generate 'short-term' conditions of food deprivation. Rockfish on the 9% ration treatment grew more quickly than those on the 3% ration and were larger in mass, length, and body condition (k) after 152 d. Fish on the 9% ration had higher blood glucose than those on the 3% ration, with fasting decreasing blood glucose in both ration treatments, indicating that both long-term and short-term feed treatments altered energy status. Plasma IGF-1 was higher in rockfish from the 9% ration than those in the 3% ration and was also higher in fed fish than fasted fish. Additionally, plasma IGF-1 related positively to individual variation in specific growth rate (SGR). The positive association between IGF-1 and SGR showed discordance in fish that had experienced different levels of food and growth over the long-term but not short-term, suggesting that long-term nutritional experience can influence the relationship between IGF-1 and growth in this species. Rockfish on the 3% ration showed a lower relative abundance of gene transcripts encoding igf1 in the liver, but higher hepatic mRNAs for IGF binding proteins igfbp1a and igfbp1b. Fasting similarly decreased the abundance of igf1 mRNAs in the liver of fish reared under both the 9% and 3% rations, while concurrently increasing mRNAs encoding the IGF binding proteins igfbp1a, -1b, and -3a. Hepatic mRNAs for igfbp2b, -5a, and -5b were lower with long-term ration variation (3% ration) and fasting. Fish that experienced long-term reduced rations also had higher mRNA levels for igfbp3a, -3b, and IGF receptors isoforms A (igf1rA) and B (igf1rB) in skeletal muscle, but lower mRNA levels for igf1. Fasting increased muscle mRNA abundance for igfbp3a, igf1rA, and igf1rB, and decreased levels for igfbp2a and igf1. These data show that a positive relationship between circulating IGF-1 and individual growth rate is maintained in copper rockfish even when that growth variation relates to differences in food consumption across varying time scales, but that long- and short-term variation in food quantity can shift basal concentrations of circulating IGF-1 in this species.
Collapse
Affiliation(s)
- Nicole L Hack
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Frances L Glaser
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Emily J Resner
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kristin M Hardy
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
17
|
Kaneko N, Torao M, Koshino Y, Fujiwara M, Miyakoshi Y, Shimizu M. Evaluation of growth status using endocrine growth indices, insulin-like growth factor (IGF)-I and IGF-binding protein-1b, in out-migrating juvenile chum salmon. Gen Comp Endocrinol 2019; 274:50-59. [PMID: 30611815 DOI: 10.1016/j.ygcen.2019.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/21/2018] [Accepted: 01/02/2019] [Indexed: 11/29/2022]
Abstract
This study aimed to utilize circulating insulin-like growth factor binding protein (IGFBP)-1b as a negative index of growth to evaluate the growth status of juvenile chum salmon (Oncorhynchus keta) in the ocean. First, rearing experiments using PIT-tagged juveniles were conducted to examine the relationship of circulating IGFBP-1b with growth rate of the fish in May and in June. The serum IGFBP-1b level negatively correlated with fish growth rate in both months, suggesting its utility as a negative index of growth. Next, the growth status of out-migrating juveniles in northeastern Hokkaido, Japan, was monitored for 3 years using the growth indices. Serum levels of IGF-I, a positive index of growth, in fish collected from the nearshore zone were low in May and high in June of all years. Levels of serum IGFBP-1b showed a trend opposite to that of serum IGF-I. However, the IGF-I/IGFBP-1b molar ratios well reflected the seasonal and regional trends. These findings suggest that the juveniles in June left the nearshore area under better growth conditions. The present study also suggests that the use of multiple growth indices would improve the sensitivity and accuracy to evaluate the current growth status of out-migrating juvenile chum salmon.
Collapse
Affiliation(s)
- Nobuto Kaneko
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Mitsuru Torao
- Salmon and Freshwater Fisheries Research Institute, Hokkaido Research Organization, 3-373 Kitakashiwagi, Eniwa, Hokkaido 061-1433, Japan
| | - Yousuke Koshino
- Salmon and Freshwater Fisheries Research Institute, Hokkaido Research Organization, 3-373 Kitakashiwagi, Eniwa, Hokkaido 061-1433, Japan
| | - Makoto Fujiwara
- Salmon and Freshwater Fisheries Research Institute, Hokkaido Research Organization, 3-373 Kitakashiwagi, Eniwa, Hokkaido 061-1433, Japan
| | - Yasuyuki Miyakoshi
- Salmon and Freshwater Fisheries Research Institute, Hokkaido Research Organization, 3-373 Kitakashiwagi, Eniwa, Hokkaido 061-1433, Japan
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
18
|
Balbuena-Pecino S, Riera-Heredia N, Vélez EJ, Gutiérrez J, Navarro I, Riera-Codina M, Capilla E. Temperature Affects Musculoskeletal Development and Muscle Lipid Metabolism of Gilthead Sea Bream ( Sparus aurata). Front Endocrinol (Lausanne) 2019; 10:173. [PMID: 30967839 PMCID: PMC6439310 DOI: 10.3389/fendo.2019.00173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
World population is expected to increase to approximately 9 thousand million people by 2050 with a consequent food security decline. Besides, climate change is a major challenge that humanity is facing, with a predicted rise in mean sea surface temperature of more than 2°C during this century. This study aims to determine whether a rearing temperature of 19, 24, or 28°C may influence musculoskeletal development and muscle lipid metabolism in gilthead sea bream juveniles. The expression of growth hormone (GH)/insulin-like growth factors (IGFs) system-, osteogenic-, myogenic-, and lipid metabolism-related genes in bone and/or white muscle of treated fish, and the in vitro viability, mineralization, and osteogenic genes expression in primary cultured cells derived from bone of the same fish were analyzed. The highest temperature significantly down-regulated igf-1, igf-2, the receptor igf-1ra, and the binding proteins igfbp-4 and igfbp-5b in bone, and in muscle, igf-1 and igf-1ra, suggesting impaired musculoskeletal development. Concerning myogenic factors expression, contrary responses were observed, since the increase to 24°C significantly down-regulated myod1 and mrf4, while at 28°C myod2 and myogenin were significantly up-regulated. Moreover, in the muscle tissue, the expression of the fatty acid transporters cd36 and fabp11, and the lipases lipa and lpl-lk resulted significantly increased at elevated temperatures, whereas β-oxidation markers cpt1a and cpt1b were significantly reduced. Regarding the primary cultured bone-derived cells, a significant up-regulation of the extracellular matrix proteins on, op, and ocn expression was found with increased temperatures, together with a gradual decrease in mineralization along with fish rearing temperature. Overall, these results suggest that increasing water temperature in this species appears to induce unfavorable growth and development of bone and muscle, through modulating the expression of different members of the GH/IGFs axis, myogenic and osteogenic genes, while accelerating the utilization of lipids as an energy source, although less efficiently than at optimal temperatures.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Dar SA, Srivastava PP, Varghese T, Nazir MI, Gupta S, Krishna G. Temporal changes in superoxide dismutase, catalase, and heat shock protein 70 gene expression, cortisol and antioxidant enzymes activity of Labeo rohita fingerlings subjected to starvation and refeeding. Gene 2019; 692:94-101. [PMID: 30633944 DOI: 10.1016/j.gene.2018.12.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/14/2018] [Accepted: 12/27/2018] [Indexed: 11/19/2022]
Abstract
A short term starvation and refeeding experiment was conducted to study the temporal changes in SOD, CAT and HSP70 gene expression of Labeo rohita fingerlings. The study was carried out for 15 days with initial 7 days of starvation and then refeeding up to 15th day of the experimental trial. The expressions of SOD and CAT genes of liver and gills were significantly up-regulated after 7 days of starvation, down-regulated after 3 days of refeeding, and returned to the basal values after 8 days of refeeding. The HSP70 gene expression was significantly (p < 0.05) increased after starvation, with highest mRNA expression found on 7th day and reduced to the levels of control on refeeding. The activities of antioxidant enzymes, SOD and CAT were also studied to correlate with the results of gene expression. The changes in activities of SOD and CAT were found significantly (p < 0.05) higher in the starved group compared to the fed group. The dynamics of AST and ALT in serum revealed a progressive increase till the 7th day and decreased upon refeeding, cortisol level also has shown significant increase up to 7th day of starvation and sharp decline on refeeding. The concentration of blood glucose level start declining on 3rd day onwards with lowest level found on 7th day of starvation and was quickly restored to the levels of control on refeeding. The present study reveals that starvation elicits oxidative stress response as revealed by enhanced expression and activities of antioxidant enzymes, HSP 70 and serum biochemical alterations. However, these alterations were restored upon refeeding of L. rohita within 7 days.
Collapse
Affiliation(s)
- Showkat Ahmad Dar
- Division of Fish Nutrition, Physiology, and Biochemistry, ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| | - Prem Prakash Srivastava
- Division of Fish Nutrition, Physiology, and Biochemistry, ICAR-Central Institute of Fisheries Education, Mumbai 400061, India.
| | - Tincy Varghese
- Division of Fish Nutrition, Physiology, and Biochemistry, ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| | - Mir Ishfaq Nazir
- Division of Fish Nutrition, Physiology, and Biochemistry, ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| | - Subodh Gupta
- Division of Fish Nutrition, Physiology, and Biochemistry, ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| | - Gopal Krishna
- ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| |
Collapse
|
20
|
Xie S, Zhou A, Feng Y, Wang Z, Fan L, Zhang Y, Zeng F, Zou J. Effects of fasting and re-feeding on mstn and mstnb genes expressions in Cranoglanis bouderius. Gene 2019; 682:1-12. [DOI: 10.1016/j.gene.2018.09.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/15/2018] [Accepted: 09/25/2018] [Indexed: 12/09/2022]
|
21
|
de Bruijn R, Romero LM. The role of glucocorticoids in the vertebrate response to weather. Gen Comp Endocrinol 2018; 269:11-32. [PMID: 30012539 DOI: 10.1016/j.ygcen.2018.07.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/29/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
Abstract
Changes in the environment related to inclement weather can threaten survival and reproductive success both through direct adverse exposure and indirectly by decreasing food availability. Glucocorticoids, released during activation of the hypothalamic-pituitary-adrenal axis as part of the stress response, are an important candidate for linking vertebrate coping mechanisms to weather. This review attempts to determine if there is a consensus response of glucocorticoids to exposure to weather-related stimuli, including food availability, precipitation, temperature and barometric pressure. The included studies cover field and laboratory studies for all vertebrate taxa, and are separated into four exposure periods, e.g., hours, days, weeks and months. Each reported result was assigned a score based on the glucocorticoid response, e.g., increased, no change, or decreased. Short-term exposure to weather-related stimuli, of up to 24 h, is generally associated with increased glucocorticoids (79% of studies), suggesting that these stimuli are perceived as stressors by most animals. In contrast, the pattern for exposures longer than 24 h shows more variation, even though a majority of studies still report an increase (64%). Lack of glucocorticoid increases appeared to result from instances where: (1) prolonged exposure was a predictable part of the life history of an animal; (2) environmental context was important for the ultimate effect of a stimulus (e.g., precipitation limited food availability in one environment, but increased food in another); (3) prolonged exposure induced chronic stress; and (4) long-term responses appeared to reflect adaptations to seasonal shifts, instead of to short-term weather. However, there is a strong bias towards studies in domesticated laboratory species and wild animals held in captivity, indicating a need for field studies, especially in reptiles and amphibians. In conclusion, the accumulated literature supports the hypothesis that glucocorticoids can serve as the physiological mechanism promoting fitness during inclement weather.
Collapse
Affiliation(s)
- Robert de Bruijn
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| | - L Michael Romero
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
22
|
Hack NL, Strobel JS, Journey ML, Beckman BR, Lema SC. Response of the insulin-like growth factor-1 (Igf1) system to nutritional status and growth rate variation in olive rockfish (Sebastes serranoides). Comp Biochem Physiol A Mol Integr Physiol 2018; 224:42-52. [DOI: 10.1016/j.cbpa.2018.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
|
23
|
Vélez EJ, Perelló M, Azizi S, Moya A, Lutfi E, Pérez-Sánchez J, Calduch-Giner JA, Navarro I, Blasco J, Fernández-Borràs J, Capilla E, Gutiérrez J. Recombinant bovine growth hormone (rBGH) enhances somatic growth by regulating the GH-IGF axis in fingerlings of gilthead sea bream (Sparus aurata). Gen Comp Endocrinol 2018; 257:192-202. [PMID: 28666853 DOI: 10.1016/j.ygcen.2017.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
Abstract
The growth hormone (GH)/insulin-like growth factors (IGFs) endocrine axis is the main growth-regulator system in vertebrates. Some authors have demonstrated the positive effects on growth of a sustained-release formulation of a recombinant bovine GH (rBGH) in different fish species. The aim of this work was to characterize the effects of a single injection of rBGH in fingerlings of gilthead sea bream on growth, GH-IGF axis, and both myogenic and osteogenic processes. Thus, body weight and specific growth rate were significantly increased in rBGH-treated fish respect to control fish at 6weeks post-injection, whereas the hepatosomatic index was decreased and the condition factor and mesenteric fat index were unchanged, altogether indicating enhanced somatic growth. Moreover, rBGH injection increased the plasma IGF-I levels in parallel with a rise of hepatic mRNA from total IGF-I, IGF-Ic and IGF-II, the binding proteins IGFBP-1a and IGFBP-2b, and also the receptors IGF-IRb, GHR-I and GHR-II. In skeletal muscle, the expression of IGF-Ib and GHR-I was significantly increased but that of IGF-IRb was reduced; the mRNA levels of myogenic regulatory factors, proliferation and differentiation markers (PCNA and MHC, respectively), or that of different molecules of the signaling pathway (TOR/AKT) were unaltered. Besides, the growth inhibitor myostatin (MSTN1 and MSTN2) and the hypertrophic marker (MLC2B) expression resulted significantly enhanced, suggesting altogether that the muscle is in a non-proliferative stage of development. Contrarily in bone, although the expression of most molecules of the GH/IGF axis was decreased, the mRNA levels of several osteogenic genes were increased. The histology analysis showed a GH induced lipolytic effect with a clear decrease in the subcutaneous fat layer. Overall, these results reveal that a better growth potential can be achieved on this species and supports the possibility to improve growth and quality through the optimization of its culture conditions.
Collapse
Affiliation(s)
- Emilio J Vélez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Miquel Perelló
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Sheida Azizi
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alberto Moya
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Esmail Lutfi
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Isabel Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Josefina Blasco
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jaume Fernández-Borràs
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
24
|
Tanaka H, Oishi G, Nakano Y, Mizuta H, Nagano Y, Hiramatsu N, Ando H, Shimizu M. Production of recombinant salmon insulin-like growth factor binding protein-1 subtypes. Gen Comp Endocrinol 2018; 257:184-191. [PMID: 28666856 DOI: 10.1016/j.ygcen.2017.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 05/04/2017] [Accepted: 06/21/2017] [Indexed: 11/22/2022]
Abstract
Insulin-like growth factor (IGF)-I is a growth promoting hormone that exerts its actions through endocrine, paracrine and autocrine modes. Local IGF-I is essential for normal growth, whereas circulating IGF-I plays a crucial role in regulating the production and secretion of growth hormone (GH) by the pituitary gland. These actions of IGF-I are modulated by six insulin-like growth factor binding proteins (IGFBPs). In teleosts, two subtypes of each IGFBP are present due to an extra round of whole-genome duplication. IGFBP-1 is generally inhibitory to IGF-I action under catabolic conditions such as fasting and stress. In salmon, IGFBP-1a and -1b are two of three major circulating IGFBPs and assumed to affect growth through modulating IGF-I action. However, exact functions of salmon IGFBP-1 subtypes on growth regulation are not known due to the lack of purified or recombinant protein. We expressed recombinant salmon (rs) IGFBP-1a and -1b with a fusion protein (thioredoxin, Trx) and a His-tag using the pET-32a(+) vector expression system in Escherichia coli. Trx.His.rsIGFBP-1s were isolated by Ni-affinity chromatography, enzymatically cleaved by enterokinase to remove the fusion partners and further purified by reversed-phase HPLC. We next examined effects of rsIGFBP-1a and -1b in combination with human IGF-I on GH release from cultured masu salmon (Oncorhynchus masou) pituitary cells. Unexpectedly, IGF-I increased GH release and an addition of rsIGFBP-1a, but not rsIGFBP-1b, restored GH levels. The results suggest that IGFBP-1a can inhibit IGF-I action on the pituitary in masu salmon. Availability of recombinant salmon IGFBP-1s should facilitate further functional analyses and assay development.
Collapse
Affiliation(s)
- Hanae Tanaka
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Gakuto Oishi
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Yusuke Nakano
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Hiroko Mizuta
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Yuta Nagano
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Naoshi Hiramatsu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Hironori Ando
- Sado Marine Biological Station, Faculty of Science, Niigata University, 87 Tassha, Sado 952-2135, Japan
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
25
|
Garcia de la Serrana D, Macqueen DJ. Insulin-Like Growth Factor-Binding Proteins of Teleost Fishes. Front Endocrinol (Lausanne) 2018; 9:80. [PMID: 29593649 PMCID: PMC5857546 DOI: 10.3389/fendo.2018.00080] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/22/2018] [Indexed: 11/21/2022] Open
Abstract
The insulin-like growth factor (Igf) binding protein (Igfbp) family has a broad range of physiological functions and a fascinating evolutionary history. This review focuses on the Igfbps of teleost fishes, where genome duplication events have diversified gene repertoire, function, and physiological regulation-with six core Igfbps expanded into a family of over twenty genes in some lineages. In addition to briefly summarizing the current state of knowledge on teleost Igfbp evolution, function, and expression-level regulation, we highlight gaps in our understanding and promising areas for future work.
Collapse
Affiliation(s)
- Daniel Garcia de la Serrana
- School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, United Kingdom
- *Correspondence: Daniel Garcia de la Serrana,
| | - Daniel J. Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
26
|
Shimizu M, Dickhoff WW. Circulating insulin-like growth factor binding proteins in fish: Their identities and physiological regulation. Gen Comp Endocrinol 2017; 252:150-161. [PMID: 28782538 DOI: 10.1016/j.ygcen.2017.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 01/29/2023]
Abstract
Insulin-like growth factor binding proteins (IGFBPs) play crucial roles in regulating the availability of IGFs to receptors and prolong the half-lives of IGFs. There are six IGFBPs present in the mammalian circulation with IGFBP-3 being most abundant. In mammals IGFBP-3 is the major carrier of circulating IGFs, facilitated by forming a ternary complex with IGF and an acid-labile subunit (ALS). IGFBP-1 is generally inhibitory to IGF action by preventing it from interacting with its receptors. In teleosts, the third-round of vertebrate whole genome duplication created paralogs of each IGFBP, except IGFBP-4. In the fish circulation, three major IGFBPs are typically detected at molecular ranges of 20-25, 28-32 and 40-50kDa. However, their identities are not well established. Three major circulating IGFBPs in Chinook salmon have been identified through protein purification and cDNA cloning. Salmon 28- and 22-kDa IGFBPs are co-orthologs of IGFBP-1, termed IGFBP-1a and -1b, respectively. They are induced under catabolic conditions such as stress and fasting but their responses are somewhat different, with IGFBP-1b being the most sensitive of the two. Cortisol stimulates production and secretion of these IGFBP-1 subtypes while, unlike in mammals, insulin may not be a primary suppressor. Salmon 41-kDa IGFBP, a major carrier of IGF-I, is not IGFBP-3, as might be expected extrapolating from mammals, but is in fact IGFBP-2b. Salmon IGFBP-2b levels in plasma are high when fish are fed, and GH treatment increases its circulating levels similar to mammalian IGFBP-3. These findings suggest that salmon IGFBP-2b acquired the role and regulation similar to mammalian IGFBP-3. Multiple replications of fish IGFBPs offer a unique opportunity to investigate molecular evolution of IGFBPs.
Collapse
Affiliation(s)
- Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| | - Walton W Dickhoff
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| |
Collapse
|
27
|
Malandrakis EE, Dadali O, Golomazou E, Kavouras M, Dailianis S, Chadio S, Exadactylos A, Panagiotaki P. DNA damage and differential gene expression associated with physical stress in gilthead seabream (Sparus aurata). Gen Comp Endocrinol 2016; 236:98-104. [PMID: 27401265 DOI: 10.1016/j.ygcen.2016.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 06/05/2016] [Accepted: 07/07/2016] [Indexed: 11/25/2022]
Abstract
Fish stress may result in inhibition of reproduction, development and growth. Thus, appropriate indices should be developed to accurately define the physiological plasticity of fish, in terms of coping with stress. Sea bream individuals were subjected to physical stress (fasting and confinement). DNA fragmentation of liver cells was assessed, in addition to gene expression of selected genes and plasma cortisol levels determination. Stress response was characterized with significant temporal alterations. Increased DNA fragmentation was observed as an aftereffect of physical stress and consequently gene expression of tp53 was stimulated. The expression pattern of glucocorticoid receptor (nr3c1) was directly correlated with plasma cortisol. Furthermore, glucokinase (gk) gene expression was considerably upregulated under acute stress, depicting putative energetic demands. Finally, igf1 downregulation during stress, reflects the suppression of the GH/IGF axis and the substantial stress effects on growth. To conclude, most of the indices described in the present study could be synergistically used, in order to robustly quantify physical stress in marine teleosts.
Collapse
Affiliation(s)
- E E Malandrakis
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fitokou Str., Volos, Greece.
| | - O Dadali
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fitokou Str., Volos, Greece
| | - E Golomazou
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fitokou Str., Volos, Greece
| | - M Kavouras
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fitokou Str., Volos, Greece
| | - S Dailianis
- Department of Biology, Section of Animal Biology, University of Patras, 26500 Patra, Greece
| | - S Chadio
- Department of Anatomy and Physiology of Domestic Animals, Faculty of Animal Science, Agricultural University of Athens, 75 Iera Odos, 18855 Athens, Greece
| | - A Exadactylos
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fitokou Str., Volos, Greece
| | - P Panagiotaki
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fitokou Str., Volos, Greece
| |
Collapse
|
28
|
Alzaid A, Castro R, Wang T, Secombes CJ, Boudinot P, Macqueen DJ, Martin SAM. Cross Talk Between Growth and Immunity: Coupling of the IGF Axis to Conserved Cytokine Pathways in Rainbow Trout. Endocrinology 2016; 157:1942-55. [PMID: 27035654 DOI: 10.1210/en.2015-2024] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although disease and infection is associated with attenuated growth, the molecular pathways involved are poorly characterized. We postulated that the IGF axis, a central governor of vertebrate growth, is repressed during infection to promote resource reallocation towards immunity. This hypothesis was tested in rainbow trout (Oncorhynchus mykiss) challenged by Aeromonas salmonicida (AS), a Gram-negative bacterial pathogen, or viral hemorrhagic septicemia virus (VHSv) at hatch, first feeding, and 3 weeks after first feeding. Quantitative transcriptional profiling was performed for genes encoding both IGF hormones, 19 salmonid IGF binding proteins (IGFBPs) and a panel of marker genes for growth and immune status. There were major differences in the developmental response of the IGF axis to AS and VHSv, with the VHSv challenge causing strong down-regulation of many genes. Despite this, IGFBP-1A1 and IGFBP-6A2 subtypes, each negative regulators of IGF signaling, were highly induced by AS and VHSv in striking correlation with host defense genes regulated by cytokine pathways. Follow-up experiments demonstrated a highly significant coregulation of IGFBP-1A1 and IGFBP-6A2 with proinflammatory cytokine genes in primary immune tissues (spleen and head kidney) when trout were challenged by a different Gram-negative bacterium, Yersinia ruckeri. Based on our findings, we propose a model where certain IGFBP subtypes are directly regulated by cytokine signaling pathways, allowing immediate modulation of growth and/or immune system phenotypes according to the level of activation of immunity. Our findings provide new and comprehensive insights into cross talk between conserved pathways regulating teleost growth, development, and immunity.
Collapse
Affiliation(s)
- Abdullah Alzaid
- Institute of Biological and Environmental Sciences (A.A., T.W., C.J.S., D.J.M., S.A.M.M.), University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; and Virologie et Immunologie Moléculaires (R.C., P.B.), Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France
| | - Rosario Castro
- Institute of Biological and Environmental Sciences (A.A., T.W., C.J.S., D.J.M., S.A.M.M.), University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; and Virologie et Immunologie Moléculaires (R.C., P.B.), Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France
| | - Tiehui Wang
- Institute of Biological and Environmental Sciences (A.A., T.W., C.J.S., D.J.M., S.A.M.M.), University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; and Virologie et Immunologie Moléculaires (R.C., P.B.), Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France
| | - Christopher J Secombes
- Institute of Biological and Environmental Sciences (A.A., T.W., C.J.S., D.J.M., S.A.M.M.), University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; and Virologie et Immunologie Moléculaires (R.C., P.B.), Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France
| | - Pierre Boudinot
- Institute of Biological and Environmental Sciences (A.A., T.W., C.J.S., D.J.M., S.A.M.M.), University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; and Virologie et Immunologie Moléculaires (R.C., P.B.), Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France
| | - Daniel J Macqueen
- Institute of Biological and Environmental Sciences (A.A., T.W., C.J.S., D.J.M., S.A.M.M.), University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; and Virologie et Immunologie Moléculaires (R.C., P.B.), Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France
| | - Samuel A M Martin
- Institute of Biological and Environmental Sciences (A.A., T.W., C.J.S., D.J.M., S.A.M.M.), University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; and Virologie et Immunologie Moléculaires (R.C., P.B.), Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France
| |
Collapse
|
29
|
Vélez EJ, Azizi S, Millán-Cubillo A, Fernández-Borràs J, Blasco J, Chan SJ, Calduch-Giner JA, Pérez-Sánchez J, Navarro I, Capilla E, Gutiérrez J. Effects of sustained exercise on GH-IGFs axis in gilthead sea bream (Sparus aurata). Am J Physiol Regul Integr Comp Physiol 2015; 310:R313-22. [PMID: 26661095 DOI: 10.1152/ajpregu.00230.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 12/08/2015] [Indexed: 11/22/2022]
Abstract
The endocrine system regulates growth mainly through the growth hormone (GH)/insulin-like growth factors (IGFs) axis and, although exercise promotes growth, little is known about its modulation of these factors. The aim of this work was to characterize the effects of 5 wk of moderate sustained swimming on the GH-IGFs axis in gilthead sea bream fingerlings. Plasma IGF-I/GH ratio and tissue gene expression of total IGF-I and three splice variants, IGF-II, three IGF binding proteins, two GH receptors, two IGF-I receptors, and the downstream molecules were analyzed. Fish under exercise (EX) grew more than control fish (CT), had a higher plasma IGF-I/GH ratio, and showed increased hepatic IGF-I expression (mainly IGF-Ia). Total IGF-I expression levels were similar in the anterior and caudal muscles; however, IGF-Ic expression increased with exercise, suggesting that this splice variant may be the most sensitive to mechanical action. Moreover, IGFBP-5b and IGF-II increased in the anterior and caudal muscles, respectively, supporting enhanced muscle growth. Furthermore, in EX fish, hepatic IGF-IRb was reduced together with both GHRs; GHR-II was also reduced in anterior muscle, while GHR-I showed higher expression in the two muscle regions, indicating tissue-dependent differences and responses to exercise. Exercise also increased gene and protein expression of target of rapamycin (TOR), suggesting enhanced muscle protein synthesis. Altogether, these data demonstrate that moderate sustained activity may be used to increase the plasma IGF-I/GH ratio and to potentiate growth in farmed gilthead sea bream, modulating the gene expression of different members of the GH-IGFs axis (i.e., IGF-Ic, IGF-II, IGFBP-5b, GHR-I, and TOR).
Collapse
Affiliation(s)
- Emilio J Vélez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Sheida Azizi
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Antonio Millán-Cubillo
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Fernández-Borràs
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Josefina Blasco
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Shu Jin Chan
- Departments of Biochemistry, and Molecular Biology and Medicine, The Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois; and
| | - Josep A Calduch-Giner
- Nutrition and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas, Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrition and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas, Castellón, Spain
| | - Isabel Navarro
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Encarnación Capilla
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain;
| |
Collapse
|
30
|
Hevrøy EM, Tipsmark CK, Remø SC, Hansen T, Fukuda M, Torgersen T, Vikeså V, Olsvik PA, Waagbø R, Shimizu M. Role of the GH-IGF-1 system in Atlantic salmon and rainbow trout postsmolts at elevated water temperature. Comp Biochem Physiol A Mol Integr Physiol 2015; 188:127-38. [DOI: 10.1016/j.cbpa.2015.06.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 02/06/2023]
|
31
|
Fukuda M, Kaneko N, Kawaguchi K, Hevrøy EM, Hara A, Shimizu M. Development of a time-resolved fluoroimmunoassay for salmon insulin-like growth factor binding protein-1b. Comp Biochem Physiol A Mol Integr Physiol 2015; 187:66-73. [DOI: 10.1016/j.cbpa.2015.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/30/2015] [Accepted: 04/30/2015] [Indexed: 12/14/2022]
|
32
|
Madison BN, Tavakoli S, Kramer S, Bernier NJ. Chronic cortisol and the regulation of food intake and the endocrine growth axis in rainbow trout. J Endocrinol 2015; 226:103-19. [PMID: 26101374 DOI: 10.1530/joe-15-0186] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2015] [Indexed: 12/15/2022]
Abstract
To gain a better understanding of the mechanisms by which cortisol suppresses growth during chronic stress in fish, we characterized the effects of chronic cortisol on food intake, mass gain, the expression of appetite-regulating factors, and the activity of the GH/IGF axis. Fish given osmotic pumps that maintained plasma cortisol levels at ∼70 or 116 ng/ml for 34 days were sampled 14, 28 and 42 days post-implantation. Relative to shams, the cortisol treatments reduced food intake by 40-60% and elicited marked increases in liver leptin (lep-a1) and brain preoptic area (POA) corticotropin-releasing factor (crf) mRNA levels. The cortisol treatments also elicited 40-80% reductions in mass gain associated with increases in pituitary gh, liver gh receptor (ghr), liver igfI and igf binding protein (igfbp)-1 and -2 mRNA levels, reduced plasma GH and no change in plasma IGF1. During recovery, while plasma GH and pituitary gh, liver ghr and igfI gene expression did not differ between treatments, the high cortisol-treated fish had lower plasma IGF1 and elevated liver igfbp1 mRNA levels. Finally, the cortisol-treated fish had higher plasma glucose levels, reduced liver glycogen and lipid reserves, and muscle lipid content. Thus, our findings suggest that the growth-suppressing effects of chronic cortisol in rainbow trout result from reduced food intake mediated at least in part by increases in liver lep-a1 and POA crf mRNA, from sustained increases in hepatic igfbp1 expression that reduce the growth-promoting actions of the GH/IGF axis, and from a mobilization of energy reserves.
Collapse
Affiliation(s)
- Barry N Madison
- Department of Integrative BiologyUniversity of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Sara Tavakoli
- Department of Integrative BiologyUniversity of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Sarah Kramer
- Department of Integrative BiologyUniversity of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Nicholas J Bernier
- Department of Integrative BiologyUniversity of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
33
|
Duncan CA, Jetzt AE, Cohick WS, John-Alder HB. Nutritional modulation of IGF-1 in relation to growth and body condition in Sceloporus lizards. Gen Comp Endocrinol 2015; 216:116-24. [PMID: 25709095 DOI: 10.1016/j.ygcen.2015.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 02/11/2015] [Accepted: 02/14/2015] [Indexed: 01/22/2023]
Abstract
Nutrition and energy balance are important regulators of growth and the growth hormone/insulin-like growth factor (GH/IGF) axis. However, our understanding of these functions does not extend uniformly to all classes of vertebrates and is mainly limited to controlled laboratory conditions. Lizards can be useful models to improve our understanding of the nutritional regulation of the GH/IGF-1 axis because many species are relatively easy to observe and manipulate both in the laboratory and in the field. In the present study, the effects of variation in food intake on growth, body condition, and hepatic IGF-1 mRNA levels were measured in (1) juveniles of Sceloporus jarrovii maintained on a full or 1/3 ration and (2) hatchlings of Sceloporus undulatus subjected to full or zero ration with or without re-feeding. These parameters plus plasma IGF-1 were measured in a third experiment using adults of S. undulatus subjected to full or zero ration with or without re-feeding. In all experiments, plasma corticosterone was measured as an anticipated indicator of nutritional stress. In S. jarrovii, growth and body condition were reduced but lizards remained in positive energy balance on 1/3 ration, and hepatic IGF-1 mRNA and plasma corticosterone were not affected in comparison to full ration. In S. undulatus, growth, body condition, hepatic IGF-1 mRNA, and plasma IGF-1 were all reduced by zero ration and restored by refeeding. Plasma corticosterone was increased in response to zero ration and restored by full ration in hatchlings but not adults of S. undulatus. These data indicate that lizards conform to the broader vertebrate model in which severe food deprivation and negative energy balance is required to attenuate systemic IGF-1 expression. However, when animals remain in positive energy balance, reduced food intake does not appear to affect systemic IGF-1. Consistent with other studies on lizards, the corticosterone response to reduced food intake is an unreliable indicator of nutritional stress. Further studies on ecologically relevant variation in food intake are required to establish the importance of nutrition as an environmental regulator of the GH/IGF axis. Within the range of positive energy balance, the potential involvement of molecular signals in growth regulation requires further investigation.
Collapse
Affiliation(s)
- Christine A Duncan
- Graduate Program in Endocrinology and Animal Biosciences, Rutgers University, 84 Lipman Drive, New Brunswick, NJ 08901, USA.
| | - Amanda E Jetzt
- Department of Animal Sciences, Rutgers University, 84 Lipman Drive, New Brunswick, NJ 08901, USA.
| | - Wendie S Cohick
- Graduate Program in Endocrinology and Animal Biosciences, Rutgers University, 84 Lipman Drive, New Brunswick, NJ 08901, USA; Department of Animal Sciences, Rutgers University, 84 Lipman Drive, New Brunswick, NJ 08901, USA.
| | - Henry B John-Alder
- Graduate Program in Endocrinology and Animal Biosciences, Rutgers University, 84 Lipman Drive, New Brunswick, NJ 08901, USA; Department of Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
34
|
Huang X, Ye H, Huang H, Liu A, Feng B. Implication for the regulation of catabolism drawn from the single insulin-like growth factor binding domain protein (SIBD) gene in the mud crab, Scylla paramamosain. Gen Comp Endocrinol 2015; 216:24-32. [PMID: 25921474 DOI: 10.1016/j.ygcen.2015.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/14/2015] [Accepted: 04/20/2015] [Indexed: 10/23/2022]
Abstract
Insulin-like growth factor (IGF) signaling system holds a central position in regulating growth and metabolism in vertebrates. As critical components of this system, the IGF-binding proteins (IGFBPs) play important roles in regulating the biological activities of IGFs. Recently, the single IGF-binding domain protein (SIBD) was identified in invertebrates and its sequence was highly homologous with the N-terminal domain of IGFBP. In view of the possible role as counterparts of vertebrate IGFBPs, SIBDs have attracted the ever-increasing attention. This study reports the identification of a 1284bp SIBD gene (Sp-SIBD) from a member of commercially important family of Portunidae. The tissue distribution analysis showed that Sp-SIBD was mainly expressed in the nervous tissues and hepatopancreas. RNA in situ hybridization analysis showed that the positive signals were predominantly distributed in the secretory cells of the hepatopancreas. Subsequently, we examined the effects of various stresses, including hyperosmotic stress, hyperthermia, activated stress and fasting, on glucose levels in the hemolymph and Sp-SIBD expressions in the hepatopancreas. Interestingly, we found that Sp-SIBD expression was strongly up-regulated in response to these catabolic circumstances. Given the previous findings of insulin-like peptides (ILPs) in invertebrates, we speculate that invertebrate ILPs and SIBDs promise to serve as a pair of counterparts of IGFs and IGFBPs from vertebrate species respectively. In this context, the combined results suggested, by analogy with IGFBP 1 from vertebrates, for the first time that SIBD might play a key physiological role by sequestering ILPs to inhibit energy-expensive growth until conditions are more favorable.
Collapse
Affiliation(s)
- Xiaoshuai Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Collaborative Innovation Center for Development and Utilization of Marine Biological Resources, Xiamen 361102, China.
| | - Huiyang Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - An Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Biyun Feng
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
35
|
Gimbo RY, Fávero GC, Franco Montoya LN, Urbinati EC. Energy deficit does not affect immune responses of experimentally infected pacu (Piaractus mesopotamicus). FISH & SHELLFISH IMMUNOLOGY 2015; 43:295-300. [PMID: 25584872 DOI: 10.1016/j.fsi.2015.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 01/02/2015] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
We investigated if the energy deficit following a 30-day starvation period could affect the ability of fish to mount immune responses after experimental exposure to Aeromonas hydrophila. Fish were submitted to two feeding strategies during 30 days: starvation and continuously feeding. Fish were then sampled to allow for the assessment of baseline metabolic and immune system indicators, were next intraperitonially inoculated with A. hydrophila, and finally were sampled at 3 and 24 h after the challenge. The respiratory activity of leukocytes was lower in starved fish at baseline, increasing after bacterial inoculation to levels similar to those seen among fed fish. Levels of serum lysozyme were higher in starved fish at baseline. The same response profile was observed 3 h after inoculation, but among fed fish, these levels increased to values similar to those of starved fish 24 h after infection. Among starved fish, lysozyme concentration did not change over the course of the experiment. The serum ACH activity was lower in starved fish at baseline and increased after bacterial inoculation in both fish groups. Baseline levels of blood glucose of starved fish were lower than those of fed fish and increased 3 h after bacterial inoculation in both fish groups, decreasing in both groups at 24 h after inoculation. Baseline liver glycogen levels were similar in both fish groups and higher than at 3 and 24 h after inoculation. Three hours after bacterial inoculation, liver glycogen was less reduced in fed fish. Baseline levels of blood triglycerides were lower in starved fish and the profile remained unchanged 3 h after inoculation. There was a gradual decrease in fed fish, and the levels of starved fish remained unchanged throughout the observation period. Blood glycerol levels at baseline were higher in starved fish than in fed fish and remained unaltered at 3 h after inoculation. However those levels increased at 24 h. In fed fish there was a gradual increase of glycerol levels up to 24 h after bacterial inoculation. Baseline liver lipid levels of starved fish were lower and this difference in the response profile remained unchanged 3 and 24 h after inoculation. The liver lipid levels of starved fish decreased after inoculation, and remained unchanged in fed fish. As observed in liver lipid, muscle lipid levels of starved fish were lower than in fed fish, throughout the experiment. Starved fish levels remained unchanged; however fed fish levels decreased 24 h after bacterial inoculation. Levels of cortisol were higher in starved fish at baseline and increased in both fish groups 3 h after bacterial inoculation, reaching intermediary levels 24 h after inoculation. Our results show that in pacu, although mounting an immune response triggered after bacterial exposure is an energy-expensive process, fish under energetic deficit status were able to display protection against infection.
Collapse
Affiliation(s)
- Rodrigo Y Gimbo
- Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castelane, 14884-900 Jaboticabal, SP, Brazil
| | - Gisele C Fávero
- Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castelane, 14884-900 Jaboticabal, SP, Brazil
| | - Luz N Franco Montoya
- Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castelane, 14884-900 Jaboticabal, SP, Brazil
| | - Elisabeth C Urbinati
- Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castelane, 14884-900 Jaboticabal, SP, Brazil; Centro de Aquicultura, UNESP Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castelane, 14884-900 Jaboticabal, SP, Brazil.
| |
Collapse
|
36
|
Rolland M, Dalsgaard J, Holm J, Gómez-Requeni P, Skov PV. Dietary methionine level affects growth performance and hepatic gene expression of GH-IGF system and protein turnover regulators in rainbow trout (Oncorhynchus mykiss) fed plant protein-based diets. Comp Biochem Physiol B Biochem Mol Biol 2014; 181:33-41. [PMID: 25479406 DOI: 10.1016/j.cbpb.2014.11.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/21/2014] [Accepted: 11/25/2014] [Indexed: 12/22/2022]
Abstract
The effects of dietary level of methionine were investigated in juvenile rainbow trout (Oncorhynchus mykiss) fed five plant-based diets containing increasing content of crystalline methionine (Met), in a six week growth trial. Changes in the hepatic expression of genes related to i) the somatotropic axis: including the growth hormone receptor I (GHR-I), insulin-like growth hormones I and II (IGF-I and IGF-II, respectively), and insulin-like growth hormone binding protein-1b (IGFBP-1b); and ii) protein turnover: including the target of rapamycin protein (TOR), proteasome 20 delta (Prot 20D), cathepsin L, calpains 1 and 2 (Capn 1 and Capn 2, respectively), and calpastatin long and short isoforms (CAST-L and CAST-S, respectively) were measured for each dietary treatment. The transcript levels of GHR-I and IGF-I increased linearly with the increase of dietary Met content (P<0.01), reflecting overall growth performances. The apparent capacity for hepatic protein degradation (derived from the gene expression of TOR, Prot 20D, Capn 1, Capn 2, CAST-L and CAST-S) decreased with increasing dietary Met level in a relatively linear manner. Our results suggest that Met availability affects, directly or indirectly, the expression of genes involved in the GH/IGF axis response and protein turnover, which are centrally involved in the regulation of growth.
Collapse
Affiliation(s)
- Marine Rolland
- BioMar A/S, Mylius Erichsensvej 35, DK-7330 Brande, Denmark; Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Center, P.O. Box 101, DK-9850 Hirtshals, Denmark.
| | - Johanne Dalsgaard
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Center, P.O. Box 101, DK-9850 Hirtshals, Denmark
| | - Jørgen Holm
- BioMar A/S, Mylius Erichsensvej 35, DK-7330 Brande, Denmark
| | | | - Peter V Skov
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Center, P.O. Box 101, DK-9850 Hirtshals, Denmark
| |
Collapse
|
37
|
Breves JP, Tipsmark CK, Stough BA, Seale AP, Flack BR, Moorman BP, Lerner DT, Grau EG. Nutritional status and growth hormone regulate insulin-like growth factor binding protein (igfbp) transcripts in Mozambique tilapia. Gen Comp Endocrinol 2014; 207:66-73. [PMID: 24818968 PMCID: PMC4226746 DOI: 10.1016/j.ygcen.2014.04.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/09/2014] [Accepted: 04/22/2014] [Indexed: 01/28/2023]
Abstract
Growth in teleosts is controlled in large part by the activities of the growth hormone (Gh)/insulin-like growth factor (Igf) system. In this study, we initially identified igf-binding protein (bp)1b, -2b, -4, -5a and -6b transcripts in a tilapia EST library. In Mozambique tilapia (Oreochromis mossambicus), tissue expression profiling of igfbps revealed that igfbp1b and -2b had the highest levels of expression in liver while igfbp4, -5a and -6b were expressed at comparable levels in most other tissues. We compared changes in hepatic igfbp1b, -2b and -5a expression during catabolic conditions (28days of fasting) along with key components of the Gh/Igf system, including plasma Gh and Igf1 and hepatic gh receptor (ghr2), igf1 and igf2 expression. In parallel with elevated plasma Gh and decreased Igf1 levels, we found that hepatic igfbp1b increased substantially in fasted animals. We then tested whether systemic Gh could direct the expression of igfbps in liver. A single intraperitoneal injection of ovine Gh into hypophysectomized tilapia specifically stimulated liver igfbp2b expression along with plasma Igf1 and hepatic ghr2 levels. Our collective data suggest that hepatic endocrine signaling during fasting may involve post-translational regulation of plasma Igf1 via a shift towards the expression of igfbp1b. Thus, Igfbp1b may operate as a molecular switch to restrict Igf1 signaling in tilapia; furthermore, we provide new details regarding isoform-specific regulation of igfbp expression by Gh.
Collapse
Affiliation(s)
- Jason P Breves
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA; Department of Biology & Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA.
| | - Christian K Tipsmark
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Beth A Stough
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Andre P Seale
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | - Brenda R Flack
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Benjamin P Moorman
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA; Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Darren T Lerner
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA; Sea Grant College Program, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - E Gordon Grau
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| |
Collapse
|
38
|
Du F, Xu G, Nie Z, Xu P, Gu R. Molecular characterization and differential expression of the myostatin gene in Coilia nasus. Gene 2014; 543:153-60. [DOI: 10.1016/j.gene.2014.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 01/07/2014] [Accepted: 03/07/2014] [Indexed: 10/25/2022]
|
39
|
Caldwell LK, Pierce AL, Nagler JJ. Metabolic endocrine factors involved in spawning recovery and rematuration of iteroparous female rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2013; 194:124-32. [PMID: 24060463 DOI: 10.1016/j.ygcen.2013.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 09/04/2013] [Accepted: 09/09/2013] [Indexed: 11/23/2022]
Abstract
To determine how energy balance affects metabolic hormones hypothesized to play a role in the onset of a new reproductive cycle in iteroparous salmonids, food availability after spawning was restricted in female rainbow trout. These fish were compared with a control group that was fed a standard brood stock ration. Bodyweight, length, and muscle lipid content were determined, and blood was collected from fish at regular intervals; a subset of fish from each group was sacrificed at each sampling time for the collection of liver and ovary tissue, and to calculate hepatosomatic index (HSI) and gonadosomatic index (GSI). Plasma hormone levels were quantified by radioimmunoassay, and tissue gene expression levels were analyzed using q-RT-PCR. The experiment was conducted twice, using two-year-old and three-year-old post-spawned fish. Food-restriction arrested ovarian growth and development within 15-20 weeks, as evidenced by lower GSI in restricted-ration fish. Food restriction also reduced Fulton's condition factor, muscle lipid content, and specific growth rate from one month onward, and reduced HSI after 3 months. In the liver, insulin-like growth factor (igf1 and igf2) gene expression was reduced in three-year-old food-restricted fish within 2 months; however, no effect of ration on igf1 or igf2 expression was detected in two-year-old fish. In both years, IGF binding protein-1 (igfbp1) gene expression decreased over time in both treatment groups. Liver leptin (slepA1) gene expression was lower in two-year-old food-restricted fish at 4 months. These results show that this feed restriction regime arrested reproductive development and affected factors associated with energy balance purported to play a role in initiating reproductive development within 2-4months after spawning.
Collapse
Affiliation(s)
- Lucius K Caldwell
- University of Idaho, Department of Biological Sciences & Center for Reproductive Biology, United States.
| | | | | |
Collapse
|
40
|
Diricx M, Sinha AK, Liew HJ, Mauro N, Blust R, De Boeck G. Compensatory responses in common carp (Cyprinus carpio) under ammonia exposure: additional effects of feeding and exercise. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:123-137. [PMID: 24001429 DOI: 10.1016/j.aquatox.2013.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 06/02/2023]
Abstract
Ammonia is an environmental pollutant that is toxic to all aquatic animals. The toxic effects of ammonia can be modulated by other physiological processes such as feeding and swimming. In this study, we wanted to examine these modulating effects in common carp (Cyprinus carpio). Fish were either fed (2% body weight) or starved (unfed for seven days prior to the sampling), and swimming at a sustainable, routine swimming speed or swum to exhaustion, while being exposed chronically (up to 28 days) to high environmental ammonia (HEA, 1 mg/L ~58.8 μmol/L as NH4Cl at pH 7.9). Swimming performance (critical swimming speed, Ucrit) and metabolic responses such as oxygen consumption rate (MO2), ammonia excretion rate (Jamm), ammonia quotient, liver and muscle energy budget (glycogen, lipid and protein), plasma ammonia and lactate, as well as plasma ion concentrations (Na(+), Cl(-), K(+) and Ca(2+)) were investigated in order to understand metabolic and iono-regulatory consequences of the experimental conditions. Cortisol plays an important role in stress and in both the regulation of energy and the ion homeostasis; therefore plasma cortisol was measured. Results show that during HEA, Jamm was elevated to a larger extent in fed fish and they were able to excrete much more efficiently than the starved fish. Consequently, the build-up of ammonia in plasma of HEA exposed fed fish was much slower. MO2 increased considerably in fed fish after exposure to HEA and was further intensified during exercise. During exposure to HEA, the level of cortisol in plasma augmented in both the feeding regimes, but the effect of HEA was more pronounced in starved fish. Energy stores dropped for both fed and the starved fish with the progression of the exposure period and further declined when swimming to exhaustion. Overall, fed fish were less affected by HEA than starved fish, and although exercise exacerbated the toxic effect in both feeding treatments, this was more pronounced in starved fish. This suggests that fish become more vulnerable to external ammonia during exercise, and feeding protects the fish against the adverse effects of high ammonia and exercise.
Collapse
Affiliation(s)
- Marjan Diricx
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
41
|
Kawaguchi K, Kaneko N, Fukuda M, Nakano Y, Kimura S, Hara A, Shimizu M. Responses of insulin-like growth factor (IGF)-I and two IGF-binding protein-1 subtypes to fasting and re-feeding, and their relationships with individual growth rates in yearling masu salmon (Oncorhynchus masou). Comp Biochem Physiol A Mol Integr Physiol 2013; 165:191-8. [DOI: 10.1016/j.cbpa.2013.02.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/28/2013] [Accepted: 02/28/2013] [Indexed: 01/25/2023]
|
42
|
Chen W, Lin H, Li W. Molecular characterization and expression pattern of insulin-like growth factor binding protein-3 (IGFBP-3) in common carp, Cyprinus carpio. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1843-1854. [PMID: 22736237 DOI: 10.1007/s10695-012-9681-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/15/2012] [Indexed: 06/01/2023]
Abstract
A full-length cDNA encoding the insulin-like growth factor binding protein-3 (IGFBP-3) was cloned from the liver of common carp (Cyprinus carpio) by RT-PCR. The IGFBP-3 cDNA sequence is 1,680 bp long and has an open reading frame of 882 bp encoding a predicted polypeptide of 293 amino acid residues. The deduced amino acid sequence contains a putative signal peptide of 25 amino acid residues resulting in a mature protein of 268 amino acids. A single band of approximate 1.9 kb was found in liver by Northern blot analysis. IGFBP-3 mRNA was observed in all regions of brain with high levels. In peripheral tissues, high levels of IGFBP-3 mRNA were found in retina, red muscle, liver, heart, posterior intestine, spleen, and testis. Relatively lower levels were found in white muscle, kidney, thymus gland, and ovary, while in head kidney, blood, skin, gill, middle intestine, and anterior intestine, the IGFBP-3 mRNA levels were much lower. IGFBP-3 mRNA was first detected in the blastula stage with significantly high level. The level sharply decreased in gastrula stage, and it became to increase in the following stages. During the reproductive cycle, the abundance of IGFBP-3 mRNA significantly decreased between the recrudescing stage and the matured stage in ovary, although in testis, IGFBP-3 mRNA expression level did not exhibit a significant change. The mRNA expression profiles in the present study imply that the IGFBP-3 may play important physiological functions in common carp development and reproduction.
Collapse
Affiliation(s)
- Wenbo Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
- Department of Biology, Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
43
|
Caruso G, Denaro MG, Caruso R, Genovese L, Mancari F, Maricchiolo G. Short fasting and refeeding in red porgy (Pagrus pagrus, Linnaeus 1758): response of some haematological, biochemical and non specific immune parameters. MARINE ENVIRONMENTAL RESEARCH 2012; 81:18-25. [PMID: 22938791 DOI: 10.1016/j.marenvres.2012.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 06/01/2023]
Abstract
A short fasting-refeeding experience was applied to specimens of red porgy, Pagrus pagrus (Teleostei, Sparidae) to assess its effects on some physiological parameters. Haematological (haematocrit), biochemical (serum cortisol and glucose) and immunological (lysozyme, haemolytic and haemagglutinating activities) parameters were measured. For this study, two fish groups were considered: one was fasted for 14 days and then refed to satiation during further 7 and 15 days (indicated as fasted/refed group), the other was fed throughout the study and was taken as a control group. Significantly lower values were recorded for the condition index, the hepato-somatic index and viscero-somatic index in the fasted/refed group compared to the fed one. Fasting did not affect significantly the examined parameters, except for cortisol; refeeding for 7 days induced a significant increase in the haemoagglutinating titre and the spontaneous haemolytic activity, but when refeeding was extended to 14 days haemagglutinating and haemolytic values remained lower than those measured in fed fish.
Collapse
Affiliation(s)
- Gabriella Caruso
- Italian National Research Council, Istituto per l'Ambiente Marino Costiero, IAMC-CNR, Messina, Italy.
| | | | | | | | | | | |
Collapse
|
44
|
Hevrøy EM, Hunskår C, de Gelder S, Shimizu M, Waagbø R, Breck O, Takle H, Sussort S, Hansen T. GH-IGF system regulation of attenuated muscle growth and lipolysis in Atlantic salmon reared at elevated sea temperatures. J Comp Physiol B 2012; 183:243-59. [PMID: 22991175 DOI: 10.1007/s00360-012-0704-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 08/10/2012] [Accepted: 08/15/2012] [Indexed: 11/29/2022]
Abstract
Growth regulation in adult Atlantic salmon (1.6 kg) was investigated during 45 days in seawater at 13, 15, 17, and 19 °C. We focused on feed intake, nutrient uptake, nutrient utilization, and endocrine regulation through growth hormone (GH), insulin-like growth factors (IGF), and IGF-binding proteins (IGFBP). During prolonged thermal exposure, salmon reduced feed intake and growth. Feed utilization was reduced at 19 °C after 45 days compared with fish at lower temperatures, and body lipid storage was depleted with increasing water temperature. Although plasma IGF-1 concentrations did not change, 32-Da and 43-kDa IGFBP increased in fish reared at ≤17 °C, and dropped in fish reared at 19 °C. Muscle igf1 mRNA levels were reduced at 15 and 45 days in fish reared at 15, 17, and 19 °C. Muscle igf2 mRNA levels did not change after 15 days in response to increasing temperature, but were reduced after 45 days. Although liver igf2 mRNA levels were reduced with increasing temperatures after 15 and 45 days, temperature had no effect on igf1 mRNA levels. The liver igfbp2b mRNA level, which corresponds to circulating 43-kDa IGFBP, exhibited similar responses after 45 days. IGFBP of 23 kDa was only detected in plasma in fish reared at 17 °C, and up-regulation of the corresponding igfbp1b gene indicated a time-dependent catabolic response, which was not observed in fish reared at 19 °C. However, higher muscle ghr mRNA levels were detected in fish at 17 and 19 °C than in fish at lower temperatures, indicating lipolytic regulation in muscle. These results show that the reduction of muscle growth in large salmon is mediated by decreased igf1 and igf2 mRNA levels in addition to GH-associated lipolytic action to cope with prolonged thermal exposure. Accordingly, 13 °C appears to be a more optimal temperature for the growth of adult Atlantic salmon at sea.
Collapse
Affiliation(s)
- Ernst M Hevrøy
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bernier NJ, Gorissen M, Flik G. Differential effects of chronic hypoxia and feed restriction on the expression of leptin and its receptor, food intake regulation and the endocrine stress response in common carp. J Exp Biol 2012; 215:2273-82. [DOI: 10.1242/jeb.066183] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Appetite suppression is a common response to hypoxia in fish that confers significant energy savings. Yet little is known about the endocrine signals involved in the regulation of food intake during chronic hypoxia. Thus, we assessed the impact of chronic hypoxia on food intake, the expression of the potent anorexigenic signal leptin and its receptor (lepr), the mRNA levels of key hypothalamic appetite-regulating genes, and the activity of the hypothalamic–pituitary–interrenal (HPI) axis in common carp, Cyprinus carpio. Fish exposed to 10% O2 saturation for 8 days were chronically anorexic and consumed on average 79% less food than normoxic controls. Hypoxia also elicited gradual and parallel increases in the expression of liver leptin-a-I, leptin-a-II, lepr and erythropoietin, a known hypoxia-responsive gene. In contrast, the liver mRNA levels of all four genes remained unchanged in normoxic fish pair-fed to the hypoxia treatment. In the hypothalamus, expression of the appetite-regulating genes were consistent with an inhibition and stimulation of hunger in the hypoxic and pair-fed fish, respectively, and reduced feed intake led to a decrease in lepr. Although both treatments elicited similar delayed increases in plasma cortisol, they were characterized by distinct HPI axis effector transcript levels and a marked differential increase in pituitary lepr expression. Together, these results show that a reduction in O2 availability, and not feed intake, stimulates liver leptin-a expression in common carp and suggest that this pleiotropic cytokine is involved in the regulation of appetite and the endocrine stress response during chronic hypoxia.
Collapse
Affiliation(s)
- Nicholas J. Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Marnix Gorissen
- Department of Animal Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Gert Flik
- Department of Animal Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
46
|
Sinha AK, Liew HJ, Diricx M, Kumar V, Darras VM, Blust R, De Boeck G. Combined effects of high environmental ammonia, starvation and exercise on hormonal and ion-regulatory response in goldfish (Carassius auratus L.). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 114-115:153-164. [PMID: 22446827 DOI: 10.1016/j.aquatox.2012.02.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 02/14/2012] [Accepted: 02/17/2012] [Indexed: 05/31/2023]
Abstract
Due to eutrophication, high environmental ammonia (HEA) has become a frequent problem in aquatic environments, especially in agricultural or densely populated areas. During certain periods, e.g. winter, feed deprivation may occur simultaneously in natural waters. Additionally, under such stressful circumstances, fish may be enforced to swim at a high speed in order to catch prey, avoid predators and so on. Consequently, fish need to cope with all these stressors by altering physiological processes which in turn are controlled by genes expression. Therefore, in the present study, ammonia toxicity was tested in function of nutrient status (fed versus starved) and swimming performance activity (routine versus exhaustive). Goldfish, a relatively tolerant cyprinid, were exposed to HEA (1 mg/L; Flemish water quality guideline for surface water) for a period of 3 h, 12 h, 1 day, 4 days, 10 days, 21 days and 28 days and were either fed (2% body weight) or starved (kept unfed for 7 days prior to sampling). Results showed that the activity of Na⁺/K⁺-ATPase in the gills was stimulated by HEA and disturbance in ion balance was obvious with increases in plasma [Na⁺], [Cl⁻] and [Ca²⁺] after prolonged exposure. Additionally, osmoregulation and metabolism controlling hormones like cortisol and thyroid hormones (T3 and T4) were investigated to understand adaptive responses. The expression kinetics of growth, stress and osmo-regulatory representative genes such as Insulin-like growth factor 1 (IGF-I), growth hormone receptor (GHR), thyroid hormone receptor β (THRβ), prolactin receptor (PRLR), cortisol receptor (CR) and Na⁺/K⁺-ATPase α(3) were examined. Overall effect of HEA was evident since Na⁺/K⁺-ATPase activity, plasma cortisol, Na⁺ and Ca²⁺ concentration, expression level of CR and Na⁺/K⁺-ATPase α₃ mRNA in fed and starved fish were increased. On the contrary, transcript level of PRLR was reduced after 4 days of HEA; additionally T3 level and expression of GHR, IGF-I and THRβ genes were decreased following 10-21 days of HEA. Starvation, the additional challenge in the present study, significantly increased plasma cortisol level and CR transcript level under HEA compared to the fed exposed and control fish. Furthermore, a remarkable reduction in T3 and mRNA levels of THRβ, IGF-I and GHR genes was observed under starvation. The toxic effects in both feeding treatments were exacerbated when imposed to exhaustive swimming with more pronounced effects in starved fish. This confirms that starvation makes fish more vulnerable to external ammonia, especially during exercise.
Collapse
Affiliation(s)
- Amit Kumar Sinha
- Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | | | | | | | | | | | | |
Collapse
|
47
|
Shimizu M, Kishimoto K, Yamaguchi T, Nakano Y, Hara A, Dickhoff WW. Circulating salmon 28- and 22-kDa insulin-like growth factor binding proteins (IGFBPs) are co-orthologs of IGFBP-1. Gen Comp Endocrinol 2011; 174:97-106. [PMID: 21888908 DOI: 10.1016/j.ygcen.2011.08.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/30/2011] [Accepted: 08/05/2011] [Indexed: 01/30/2023]
Abstract
Circulating insulin-like growth factor binding proteins (IGFBPs) play pivotal roles in stabilizing IGFs and regulating their availability to target tissues. In the teleost circulation, three major IGFBPs are typically detected by ligand blotting with molecular masses around 20-25, 28-32 and 40-45kDa. However, their identity is poorly established and often confused. We previously identified salmon 22- and 41-kDa forms as IGFBP-1 and -2b, respectively. In the present study, we cloned the cDNA of 28-kDa IGFBP from Chinook salmon (Oncorhynchus tshawytscha) as well as rainbow trout (Oncorhynchus mykiss) based on the partial N-terminal amino acid sequence of purified protein and identified it as an ortholog of IGFBP-1. Structural and phylogenetic analyses revealed that the 28-kDa IGFBP is more closely related to human IGFBP-1 and zebrafish IGFBP-1a than the previously identified salmon IGFBP-1 (i.e. 22-kDa IGFBP). We thus named salmon 28- and 22-kDa forms as IGFBP-1a and -1b, respectively. Salmon IGFBP-1a contains a potential PEST region involved in rapid protein turnover and phosphorylation sites typically found in mammalian IGFBP-1, although the PEST and phosphorylation scores are not as high as those of human IGFBP-1. There was a striking difference in tissue distribution patterns between subtypes; Salmon igfbp-1a was expressed in a variety of tissues while igfbp-1b was almost exclusively expressed in the liver, suggesting that IGFBP-1a has more local actions. Direct seawater exposure (osmotic stress) of Chinook salmon parr caused increases in both IGFBP-1s in plasma, while IGFBP-1b appeared to be more sensitive. The presence of two co-orthologs of IGFBP-1 in the circulation in salmon, and most likely in other teleosts, provides a good opportunity to investigate subfunction partitioning of duplicated IGFBP-1 during postnatal growth.
Collapse
Affiliation(s)
- Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Copeland DL, Duff RJ, Liu Q, Prokop J, Londraville RL. Leptin in teleost fishes: an argument for comparative study. Front Physiol 2011; 2:26. [PMID: 21716655 PMCID: PMC3117194 DOI: 10.3389/fphys.2011.00026] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/27/2011] [Indexed: 12/13/2022] Open
Abstract
All organisms face tradeoffs with regard to how limited energy resources should be invested. When is it most favorable to grow, to reproduce, how much lipid should be allocated to storage in preparation for a period of limited resources (e.g., winter), instead of being used for growth or maturation? These are a few of the high consequence fitness "decisions" that represent the balance between energy acquisition and allocation. Indeed, for animals to make favorable decisions about when to grow, eat, or reproduce, they must integrate signals among the systems responsible for energy acquisition, storage, and demand. We make the argument that leptin signaling is a likely candidate for an integrating system. Great progress has been made understanding the leptin system in mammals, however our understanding in fishes has been hampered by difficulty in cloning fish orthologs of mammalian proteins and (we assert), underutilization of the comparative approach.
Collapse
|
49
|
Shepherd BS, Aluru N, Vijayan MM. Acute handling disturbance modulates plasma insulin-like growth factor binding proteins in rainbow trout (Oncorhynchus mykiss). Domest Anim Endocrinol 2011; 40:129-38. [PMID: 21185680 DOI: 10.1016/j.domaniend.2010.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/22/2010] [Accepted: 09/24/2010] [Indexed: 12/30/2022]
Abstract
The effects of acute stressor exposure on proximal (growth hormone [GH]) and distal (insulin-like growth factor-I [IFG-I] and insulin-like growth factor-binding proteins [IFGBPs]) components of the somatotropic axis are poorly understood in finfish. Rainbow trout (Oncorhynchus mykiss) were exposed to a 5-min handling disturbance to mimic an acute stressor episode, and levels of plasma GH, IGF-I, and IGFBPs at 0, 1, 4, and 24 h post-stressor exposure were measured. An unstressed group was also sampled at the same clock times (09:00, 10:00, 13:00, and 08:00 [the following day]) as acute stress sampling to determine temporal changes in the above somatotropic axis components. The acute stressor transiently elevated plasma cortisol and glucose levels at 1 and 4 h post-stressor exposure, whereas no changes were seen in the unstressed group. Plasma GH levels were not affected by handling stress or sampling time in the unstressed animals. Plasma IGF-I levels were significantly depressed at 1 and 4 h post-stressor exposure, but no discernible temporal pattern was seen in the unstressed animals. Using a western ligand blotting technique, we detected plasma IGFBPs of 21, 32, 42, and 50 kDa in size. The plasma levels of the lower-molecular-weight IGFBPs (21 and 32 kDa) were unaffected by handling stressor, nor were there any discernible temporal patterns in the unstressed animals. By contrast, the higher-molecular-weight IGFBPs (42 and 50 kDa) were affected by stress or time of sampling. Levels of the 42-kDa IGFBP levels significantly decreased over the sampling period in unstressed control animals, but this temporal drop was eliminated in stressed animals. Levels of the 50-kDa IGFBPs also decreased significantly over the sampling time in unstressed trout, whereas handling disturbance transiently increased levels of this IGFBP at 1 h but not at 4 and 24 h post-stressor exposure compared with the control group. Overall, our results suggest that acute stress adaptation involves modulation of plasma IGF-1 and high-molecular-mass IGFBP levels (42 and 50 kDa) in rainbow trout.
Collapse
Affiliation(s)
- B S Shepherd
- USDA/ARS/Great Lakes WATER Institute, Milwaukee, WI 53204, USA.
| | | | | |
Collapse
|
50
|
Zucchi S, Blüthgen N, Ieronimo A, Fent K. The UV-absorber benzophenone-4 alters transcripts of genes involved in hormonal pathways in zebrafish (Danio rerio) eleuthero-embryos and adult males. Toxicol Appl Pharmacol 2011; 250:137-46. [DOI: 10.1016/j.taap.2010.10.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/30/2010] [Accepted: 10/02/2010] [Indexed: 12/27/2022]
|