1
|
Qian C, Wang Q, Qiao Y, Xu Z, Zhang L, Xiao H, Lin Z, Wu M, Xia W, Yang H, Bai J, Geng D. Arachidonic acid in aging: New roles for old players. J Adv Res 2025; 70:79-101. [PMID: 38710468 DOI: 10.1016/j.jare.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Arachidonic acid (AA), one of the most ubiquitous polyunsaturated fatty acids (PUFAs), provides fluidity to mammalian cell membranes. It is derived from linoleic acid (LA) and can be transformed into various bioactive metabolites, including prostaglandins (PGs), thromboxanes (TXs), lipoxins (LXs), hydroxy-eicosatetraenoic acids (HETEs), leukotrienes (LTs), and epoxyeicosatrienoic acids (EETs), by different pathways. All these processes are involved in AA metabolism. Currently, in the context of an increasingly visible aging world population, several scholars have revealed the essential role of AA metabolism in osteoporosis, chronic obstructive pulmonary disease, and many other aging diseases. AIM OF REVIEW Although there are some reviews describing the role of AA in some specific diseases, there seems to be no or little information on the role of AA metabolism in aging tissues or organs. This review scrutinizes and highlights the role of AA metabolism in aging and provides a new idea for strategies for treating aging-related diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW As a member of lipid metabolism, AA metabolism regulates the important lipids that interfere with the aging in several ways. We present a comprehensivereviewofthe role ofAA metabolism in aging, with the aim of relieving the extreme suffering of families and the heavy economic burden on society caused by age-related diseases. We also collected and summarized data on anti-aging therapies associated with AA metabolism, with the expectation of identifying a novel and efficient way to protect against aging.
Collapse
Affiliation(s)
- Chen Qian
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Yusen Qiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Ze Xu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China
| | - Linlin Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China
| | - Haixiang Xiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Zhixiang Lin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Mingzhou Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Wenyu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| |
Collapse
|
2
|
Castro É, Vieira TS, Peixoto ÁS, Leonardi BF, Tomazelli CA, Lino CA, Oliveira TE, Pessoa NM, Pessoa EVM, Abe-Honda MA, Pontara-Corte N, Silva-Junior LP, Pires AB, Chaves-Filho AB, Moustaid-Moussa N, Festuccia WT. Fish Oil and EPA Improve Insulin Sensitivity, in Part Through Adipocyte mTORC2 Activation in Diet-Induced Obese Male Mice. Mol Nutr Food Res 2025; 69:e70001. [PMID: 39961050 DOI: 10.1002/mnfr.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 12/24/2024] [Accepted: 01/23/2025] [Indexed: 03/21/2025]
Abstract
Fish oil rich in omega-3 polyunsaturated fatty acids (n-3 PUFAs) improves rodent glucose homeostasis and insulin sensitivity through unknown mechanisms. We investigated the involvement of adipocyte Rictor/mTORC2 as a mediator of fish oil and n-3 PUFA eicosapentaenoic acid (EPA) effects. Male mice bearing or not Rictor/mTORC2 deficiency in adipocytes were fed isocaloric high fat diets produced either with lard (HFD) or fish oil (HFn3) and evaluated for glucose homeostasis and insulin sensitivity. HFn3 intake improved glucose tolerance and insulin sensitivity, increased glucose uptake in adipose tissue and skeletal muscle per unit of insulin, and reduced hepatic glucose production as well as adipose tissue and liver de novo fatty acid synthesis. Interestingly, this improvement in glucose homeostasis was concurrent with low serum insulin levels and increased content of Ser473 phosphorylated (p) Akt in adipose tissue, but not skeletal muscle and liver. Intake of an HFD supplemented with EPA increased, in an mTORC2-dependent manner, insulin sensitivity and adipocyte pAkt Ser473, but not glucose tolerance. In conclusion, adipocyte mTORC2 mediates in part the improvement in insulin sensitivity induced by fish oil and EPA, while the improvement in glucose tolerance induced by fish oil seems to be triggered by mTORC2-independent actions in muscle and liver.
Collapse
Affiliation(s)
- Érique Castro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Thayna S Vieira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Álbert S Peixoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Bianca F Leonardi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Caroline A Tomazelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Caroline A Lino
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Tiago E Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Natália M Pessoa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Erika V M Pessoa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Marina A Abe-Honda
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Natália Pontara-Corte
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Luciano P Silva-Junior
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana B Pires
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Adriano B Chaves-Filho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
- Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Schiel A, Tosso RD, Angelina E, García A, Hennuyer N, Cortes D, Cabedo N, Enriz RD. N-Tosyl Hydrazone Benzopyran, a New Ligand of PPARα Obtained from Mapping the Conformational Space of Its Active Site. J Chem Inf Model 2025; 65:298-311. [PMID: 39720903 DOI: 10.1021/acs.jcim.4c01887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
We report here a new ligand for the peroxisome-proliferator-activated receptor type α (PPARα), an N-tosyl hydrazone benzopyran that was designed throughout the mapping of the polar zone of the binding site of PPARα; such a compound displays a strong activity on this receptor that is comparable to that of the reference compound WY-14643. For the design of the N-tosyl hydrazone benzopyran, we have carried out an exhaustive conformational study of WY-14643 and a previously reported hydrazine benzopyran derivative using conformational potential energy surfaces (PES). This study allowed us to map in a systematic way the entire binding site of the PPARα. PESs allowed us to evaluate all of the critical points on the surface (minimum, transition states, and maxima) and determine the different conformational interconversion paths. Once the geometries of the different complexes were determined, we carried out the study of the different molecular interactions that stabilize these complexes through the use of QTAIM calculations. We report here for the first time the molecular behavior of WY-14643 and two compounds synthesized in our lab interacting in the active site of the PPARα providing all of the details about the different interactions that stabilize the formation of these complexes. On the basis of such information, we were able to design and synthesize a new N-tosyl hydrazone benzopyran possessing a strong agonist effect on PPARα. The information provided by this study is very useful to get a better understanding of the behavior with this type of ligand on the PPARα, giving also interesting information as a guide for the design of new ligands for this receptor.
Collapse
Affiliation(s)
- Ayelén Schiel
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). CONICET, Ejército de los Andes 950, 5700 San Luis, Argentina
- Departamento de Química, Universidad Ncaional del Sur, Instituto de Química del Sur (INQUISUR-UNS). CONICET, Av. Alem 1253, B800CPB Bahía Blanca, Argentina
| | - Rodrigo D Tosso
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). CONICET, Ejército de los Andes 950, 5700 San Luis, Argentina
| | - Emilio Angelina
- Laboratorio de Estructura Molecular y Propiedades, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Instituto de Química Básica y Aplicada (IQUIBA-NEA). CONICET, Avda. Libertad 5460, 3400 Corrientes, Argentina
| | - Ainhoa García
- Departamento de Farmacología, Universidad de Valencia, Burjassot, 46100 Valencia, Spain
- Instituto de Investigación Sanitaria-INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Nathalie Hennuyer
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U-1011-EGID, F-59000 Lille, France
| | - Diego Cortes
- Departamento de Farmacología, Universidad de Valencia, Burjassot, 46100 Valencia, Spain
- Instituto de Investigación Sanitaria-INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Nuria Cabedo
- Departamento de Farmacología, Universidad de Valencia, Burjassot, 46100 Valencia, Spain
- Instituto de Investigación Sanitaria-INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). CONICET, Ejército de los Andes 950, 5700 San Luis, Argentina
| |
Collapse
|
4
|
Hayes CM, Gallucci GM, Boyer JL, Assis DN, Ghonem NS. PPAR agonists for the treatment of cholestatic liver diseases: Over a decade of clinical progress. Hepatol Commun 2025; 9:e0612. [PMID: 39699308 PMCID: PMC11661771 DOI: 10.1097/hc9.0000000000000612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are characterized by the destruction of the small bile ducts and the formation of multifocal biliary strictures, respectively, impairing bile flow. This leads to the hepatic accumulation of bile acids, causing liver injury and the risk of progression to cirrhosis and liver failure. First-line therapy for PBC is ursodeoxycholic acid, although up to 40% of treated individuals are incomplete responders, and there is no effective therapy for PSC, highlighting the need for better therapeutic options in these diseases. In addition, pruritus is a common symptom of cholestasis that has severe consequences for quality of life and is often undertreated or untreated. Nuclear receptors are pharmacological targets to treat cholestasis due to their multifactorial regulation of hepatic enzymatic pathways, particularly in bile acid metabolism. The peroxisome proliferator-activated receptor (PPAR) is of significant clinical interest due to its role in regulating bile acid synthesis and detoxification pathways. PPAR agonism by fibrates has traditionally been explored due to PPARα's expression in the liver; however, recent interest has expanded to focus on newer PPAR agonists that activate other PPAR isoforms, for example, δ, γ, alone or in combination. Several PPAR agonists have been investigated as second-line therapy for people living with PBC, including the recent accelerated United States Food and Drug Administration approval of elafibranor and seladelpar. This review evaluates available data on the efficacy and safety of the five PPAR agonists investigated for the treatment of cholestasis and associated pruritus in PBC and PSC, namely fenofibrate, bezafibrate, saroglitazar, elafibranor, and seladelpar.
Collapse
Affiliation(s)
- Colleen M. Hayes
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Gina M. Gallucci
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - James L. Boyer
- Section of Digestive Diseases and Yale Liver Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - David N. Assis
- Section of Digestive Diseases and Yale Liver Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nisanne S. Ghonem
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
5
|
Gatti CR, Schibert F, Taylor VS, Capobianco E, Montero V, Higa R, Jawerbaum A. Maternal dietary olive oil protects diabetic rat offspring from impaired uterine decidualization. Placenta 2024:S0143-4004(24)00776-8. [PMID: 39609224 DOI: 10.1016/j.placenta.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
INTRODUCTION Maternal diabetes increases the risk of adverse maternal, perinatal and offspring outcomes. This study aimed to address whether alterations in uterine decidualization are programmed in the prepubertal offspring from diabetic rats fed diets enriched or not in extra virgin olive oil (EVOO). METHODS Control and mild pregestational diabetic female rats (F0) were mated with control males and fed diets enriched or not with 6 % EVOO during pregnancy. Offspring (F1) were evaluated on postnatal day 30, after induction of uterine decidualization (PMSG 50 IU- hCG 50 IU). Signaling pathways involved in decidualization, including prolactin, PPAR and mTOR pathways as well as microRNAs (miRs) regulating these pathways were evaluated by Western blot or qPCR in the decidualized uteri. RESULTS The offspring from diabetic rats evidenced reduced prolactin and prolactin receptor levels in the decidualized uteri. Additionally, these tissues showed increased PPARγ levels and reduced levels of its negative regulators miR-19b and miR-155. MiR-21, a microRNA that targets both PPARα and mTOR pathway regulators was reduced, whereas PPARα, PTEN and FOXO1 mRNA levels were increased in the decidualized uteri of the offspring from diabetic rats. The mTOR pathway activity was reduced in the decidualized uteri of the offspring from diabetic rats. Most of the observed alterations were prevented by the EVOO-enriched maternal diet. DISCUSSION Impaired pathways relevant to decidualization are programmed in the uteri of prepubertal offspring from diabetic dams, alterations capable of being prevented by maternal diets enriched in EVOO.
Collapse
Affiliation(s)
- Cintia Romina Gatti
- Universidad de Buenos Aires (UBA). Facultad de Medicina, Argentina; CONICET - UBA. Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| | - Florencia Schibert
- Universidad de Buenos Aires (UBA). Facultad de Medicina, Argentina; CONICET - UBA. Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| | - Virginia Soledad Taylor
- Universidad de Buenos Aires (UBA). Facultad de Medicina, Argentina; CONICET - UBA. Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| | - Evangelina Capobianco
- Universidad de Buenos Aires (UBA). Facultad de Medicina, Argentina; CONICET - UBA. Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| | | | - Romina Higa
- Universidad de Buenos Aires (UBA). Facultad de Medicina, Argentina; CONICET - UBA. Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| | - Alicia Jawerbaum
- Universidad de Buenos Aires (UBA). Facultad de Medicina, Argentina; CONICET - UBA. Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Mertens RT, Misra A, Xiao P, Baek S, Rone JM, Mangani D, Sivanathan KN, Arojojoye AS, Awuah SG, Lee I, Shi GP, Petrova B, Brook JR, Anderson AC, Flavell RA, Kanarek N, Hemberg M, Nowarski R. A metabolic switch orchestrated by IL-18 and the cyclic dinucleotide cGAMP programs intestinal tolerance. Immunity 2024; 57:2077-2094.e12. [PMID: 38906145 DOI: 10.1016/j.immuni.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/10/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024]
Abstract
Tissues are exposed to diverse inflammatory challenges that shape future inflammatory responses. While cellular metabolism regulates immune function, how metabolism programs and stabilizes immune states within tissues and tunes susceptibility to inflammation is poorly understood. Here, we describe an innate immune metabolic switch that programs long-term intestinal tolerance. Intestinal interleukin-18 (IL-18) stimulation elicited tolerogenic macrophages by preventing their proinflammatory glycolytic polarization via metabolic reprogramming to fatty acid oxidation (FAO). FAO reprogramming was triggered by IL-18 activation of SLC12A3 (NCC), leading to sodium influx, release of mitochondrial DNA, and activation of stimulator of interferon genes (STING). FAO was maintained in macrophages by a bistable switch that encoded memory of IL-18 stimulation and by intercellular positive feedback that sustained the production of macrophage-derived 2'3'-cyclic GMP-AMP (cGAMP) and epithelial-derived IL-18. Thus, a tissue-reinforced metabolic switch encodes durable immune tolerance in the gut and may enable reconstructing compromised immune tolerance in chronic inflammation.
Collapse
Affiliation(s)
- Randall T Mertens
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Aditya Misra
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peng Xiao
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Seungbyn Baek
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Joseph M Rone
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Davide Mangani
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kisha N Sivanathan
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; Center for Pharmaceutical Research and Innovation, College of Pharmacy and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Boryana Petrova
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jeannette R Brook
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ana C Anderson
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martin Hemberg
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Roni Nowarski
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
Barutcu AR, Black MB, Andersen ME. Transcriptomic re-analyses of human hepatocyte spheroids treated with PFAS reveals chain length and dose-dependent modes of action. Toxicol Appl Pharmacol 2024; 489:117013. [PMID: 38936668 DOI: 10.1016/j.taap.2024.117013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
To identify pathway perturbations and examine biological modes of action (MOAs) for various perfluoroalkyl substances, we re-analyzed published in vitro gene expression studies from human primary liver spheroids. With treatment times ranging from 10 to 14 days, shorter-chain PFAS (those with 6 or fewer fluorinated carbon atoms in the alkyl chain) showed enrichment for pathways of fatty acid metabolism and fatty acid beta-oxidation with upregulated genes. Longer-chain PFAS compounds, specifically PFOS (perfluorooctane sulfonate), PFDS (perfluorodecane sulfonate), and higher doses of PFOA (perfluorooctanoic acid), had enrichment for pathways involved in steroid metabolism, fatty acid metabolism, and biological oxidation for downregulated genes. Although PFNA (perfluorononanoic acid), PFDA (perfluorodecanoic acid), and PFUnDA (perfluoroundecanoic acid) were more toxic and could only be examined after a 1-day treatment, all three had enrichment patterns similar to those observed with PFOS. With PFOA there were dose-dependent changes in pathway enrichment, shifting from upregulation of fatty acid metabolism and downregulation of steroid metabolism to downregulation of both at higher doses. The response to PFHpS (perfluoroheptanesulfonic acid) was similar to the PFOA pattern at the lower treatment dose. Based on results of transcription factor binding sites analyses, we propose that downregulation of pathways of lipid metabolism by longer chain PFAS may be due to inhibitory interactions of PPARD on genes controlled by PPARA and PPARG. In conclusion, our transcriptomic analysis indicates that the biological MOAs of PFAS compounds differ according to chain length and dose, and that risk assessments for PFAS should consider these differences in biological MOAs when evaluating mixtures of these compounds.
Collapse
Affiliation(s)
- A Rasim Barutcu
- ScitoVation LLC, Research Triangle Park, Suite 146, NC, USA.
| | | | | |
Collapse
|
8
|
Komiya Y, Sakazaki Y, Goto T, Kawabata F, Suzuki T, Sato Y, Sawano S, Nakamura M, Tatsumi R, Ikeuchi Y, Arihara K, Mizunoya W. Eicosapentaenoic acid increases proportion of type 1 muscle fibers through PPARδ and AMPK pathways in rats. iScience 2024; 27:109816. [PMID: 38779480 PMCID: PMC11108975 DOI: 10.1016/j.isci.2024.109816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/07/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Muscle fiber type composition (% slow-twitch and % fast-twitch fibers) is associated with metabolism, with increased slow-twitch fibers alleviating metabolic disorders. Previously, we reported that dietary fish oil intake induced a muscle fiber-type transition in a slower direction in rats. The aim of this study was to determine the functionality of eicosapentaenoic acid (EPA), a unique fatty acid in fish oil, to skeletal muscle fiber type and metabolism in rats. Here, we showed that dietary EPA promotes whole-body oxidative metabolism and improves muscle function by increasing proportion of slow-twitch type 1 fibers in rats. Transcriptomic and metabolomic analyses revealed that EPA supplementation activated the peroxisome proliferator-activated receptor δ (PPARδ) and AMP-activated protein kinase (AMPK) pathways in L6 myotube cultures, which potentially increasing slow-twitch fiber share. This highlights the role of EPA as an exercise-mimetic dietary component that improves metabolism and muscle function, with potential benefits for health and athletic performance.
Collapse
Affiliation(s)
- Yusuke Komiya
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Yuka Sakazaki
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Tsuyoshi Goto
- Division of Food Science & Biotechnology, Kyoto University, Kyoto, Japan
| | - Fuminori Kawabata
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yusuke Sato
- Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Shoko Sawano
- Department of Food and Life Science, School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Mako Nakamura
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Keizo Arihara
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Wataru Mizunoya
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| |
Collapse
|
9
|
Agosta F, Cozzini P. A Combined Molecular Dynamics and Hydropathic INTeraction (HINT) Approach to Investigate Protein Flexibility: The PPARγ Case Study. Molecules 2024; 29:2234. [PMID: 38792097 PMCID: PMC11124508 DOI: 10.3390/molecules29102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Molecular Dynamics (MD) is a computational technique widely used to evaluate a molecular system's thermodynamic properties and conformational behavior over time. In particular, the energy analysis of a protein conformation ensemble produced though MD simulations plays a crucial role in explaining the relationship between protein dynamics and its mechanism of action. In this research work, the HINT (Hydropathic INTeractions) LogP-based scoring function was first used to handle MD trajectories and investigate the molecular basis behind the intricate PPARγ mechanism of activation. The Peroxisome Proliferator-Activated Receptor γ (PPARγ) is an emblematic example of a highly flexible protein due to the extended ω-loop delimiting the active site, and it is responsible for the receptor's ability to bind chemically different compounds. In this work, we focused on the PPARγ complex with Rosiglitazone, a common anti-diabetic compound and analyzed the molecular basis of the flexible ω-loop stabilization effect produced by the Oleic Acid co-binding. The HINT-based analysis of the produced MD trajectories allowed us to account for all of the energetic contributions involved in interconverting between conformational states and describe the intramolecular interactions between the flexible ω-loop and the helix H3 triggered by the allosteric binding mechanism.
Collapse
Affiliation(s)
| | - Pietro Cozzini
- Molecular Modelling Lab, Food and Drug Department, University of Parma, Parco Area delle Scienze, 17/A, 43121 Parma, Italy;
| |
Collapse
|
10
|
Antoniou M, Papavasileiou KD, Melagraki G, Dondero F, Lynch I, Afantitis A. Development of a Robust Read-Across Model for the Prediction of Biological Potency of Novel Peroxisome Proliferator-Activated Receptor Delta Agonists. Int J Mol Sci 2024; 25:5216. [PMID: 38791255 PMCID: PMC11121726 DOI: 10.3390/ijms25105216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
A robust predictive model was developed using 136 novel peroxisome proliferator-activated receptor delta (PPARδ) agonists, a distinct subtype of lipid-activated transcription factors of the nuclear receptor superfamily that regulate target genes by binding to characteristic sequences of DNA bases. The model employs various structural descriptors and docking calculations and provides predictions of the biological activity of PPARδ agonists, following the criteria of the Organization for Economic Co-operation and Development (OECD) for the development and validation of quantitative structure-activity relationship (QSAR) models. Specifically focused on small molecules, the model facilitates the identification of highly potent and selective PPARδ agonists and offers a read-across concept by providing the chemical neighbours of the compound under study. The model development process was conducted on Isalos Analytics Software (v. 0.1.17) which provides an intuitive environment for machine-learning applications. The final model was released as a user-friendly web tool and can be accessed through the Enalos Cloud platform's graphical user interface (GUI).
Collapse
Affiliation(s)
- Maria Antoniou
- Department of Chemoinformatics, NovaMechanics Ltd., Nicosia 1046, Cyprus; (M.A.); (K.D.P.)
- Department of ChemoInformatics, NovaMechanics MIKE, 18545 Piraeus, Greece
- Entelos Institute, Larnaca 6059, Cyprus; (F.D.); (I.L.)
| | - Konstantinos D. Papavasileiou
- Department of Chemoinformatics, NovaMechanics Ltd., Nicosia 1046, Cyprus; (M.A.); (K.D.P.)
- Department of ChemoInformatics, NovaMechanics MIKE, 18545 Piraeus, Greece
- Entelos Institute, Larnaca 6059, Cyprus; (F.D.); (I.L.)
| | - Georgia Melagraki
- Division of Physical Sciences & Applications, Hellenic Military Academy, 16672 Vari, Greece;
| | - Francesco Dondero
- Entelos Institute, Larnaca 6059, Cyprus; (F.D.); (I.L.)
- Department of Science and Technological Innovation, Università del Piemonte Orientale, 15121 Alessandria, Italy
| | - Iseult Lynch
- Entelos Institute, Larnaca 6059, Cyprus; (F.D.); (I.L.)
- School of Geography, Earth and Environmental Sciences, University of Birmingham Edgbaston, Birmingham B15 2TT, UK
| | - Antreas Afantitis
- Department of Chemoinformatics, NovaMechanics Ltd., Nicosia 1046, Cyprus; (M.A.); (K.D.P.)
- Department of ChemoInformatics, NovaMechanics MIKE, 18545 Piraeus, Greece
- Entelos Institute, Larnaca 6059, Cyprus; (F.D.); (I.L.)
| |
Collapse
|
11
|
Wang XX, Ding MJ, Gao J, Zhao L, Cao R, Wang XW. Modulation of host lipid metabolism by virus infection leads to exoskeleton damage in shrimp. PLoS Pathog 2024; 20:e1012228. [PMID: 38739679 PMCID: PMC11115362 DOI: 10.1371/journal.ppat.1012228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/23/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The arthropod exoskeleton provides protection and support and is vital for survival and adaption. The integrity and mechanical properties of the exoskeleton are often impaired after pathogenic infection; however, the detailed mechanism by which infection affects the exoskeleton remains largely unknown. Here, we report that the damage to the shrimp exoskeleton is caused by modulation of host lipid profiles after infection with white spot syndrome virus (WSSV). WSSV infection disrupts the mechanical performance of the exoskeleton by inducing the expression of a chitinase (Chi2) in the sub-cuticle epidermis and decreasing the cuticle chitin content. The induction of Chi2 expression is mediated by a nuclear receptor that can be activated by certain enriched long-chain saturated fatty acids after infection. The damage to the exoskeleton, an aftereffect of the induction of host lipogenesis by WSSV, significantly impairs the motor ability of shrimp. Blocking the WSSV-caused lipogenesis restored the mechanical performance of the cuticle and improved the motor ability of infected shrimp. Therefore, this study reveals a mechanism by which WSSV infection modulates shrimp internal metabolism resulting in phenotypic impairment, and provides new insights into the interactions between the arthropod host and virus.
Collapse
Affiliation(s)
- Xin-Xin Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ming-Jie Ding
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jie Gao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ling Zhao
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Rong Cao
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
12
|
Ma S, Ming Y, Wu J, Cui G. Cellular metabolism regulates the differentiation and function of T-cell subsets. Cell Mol Immunol 2024; 21:419-435. [PMID: 38565887 PMCID: PMC11061161 DOI: 10.1038/s41423-024-01148-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
T cells are an important component of adaptive immunity and protect the host from infectious diseases and cancers. However, uncontrolled T cell immunity may cause autoimmune disorders. In both situations, antigen-specific T cells undergo clonal expansion upon the engagement and activation of antigens. Cellular metabolism is reprogrammed to meet the increase in bioenergetic and biosynthetic demands associated with effector T cell expansion. Metabolites not only serve as building blocks or energy sources to fuel cell growth and expansion but also regulate a broad spectrum of cellular signals that instruct the differentiation of multiple T cell subsets. The realm of immunometabolism research is undergoing swift advancements. Encapsulating all the recent progress within this concise review in not possible. Instead, our objective is to provide a succinct introduction to this swiftly progressing research, concentrating on the metabolic intricacies of three pivotal nutrient classes-lipids, glucose, and amino acids-in T cells. We shed light on recent investigations elucidating the roles of these three groups of metabolites in mediating the metabolic and immune functions of T cells. Moreover, we delve into the prospect of "editing" metabolic pathways within T cells using pharmacological or genetic approaches, with the aim of synergizing this approach with existing immunotherapies and enhancing the efficacy of antitumor and antiinfection immune responses.
Collapse
Affiliation(s)
- Sicong Ma
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China
| | - Yanan Ming
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China
| | - Jingxia Wu
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China.
| | - Guoliang Cui
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China.
| |
Collapse
|
13
|
Wang Y, Jin J, Wu G, Wei W, Jin Q, Wang X. Omega-9 monounsaturated fatty acids: a review of current scientific evidence of sources, metabolism, benefits, recommended intake, and edible safety. Crit Rev Food Sci Nutr 2024; 65:1857-1877. [PMID: 38343184 DOI: 10.1080/10408398.2024.2313181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Omega-9 monounsaturated fatty acids (ω-9 MUFAs) are a group of unsaturated fatty acids with a unique double bond in the 9th position at the end of the methyl group terminal, having the same double bond location but different carbon chain lengths. Although knowledge about ω-9 MUFAs is constantly being updated, problems with its integration remain in the field. The review summarizes the natural sources, biosynthesis, and catabolic properties of ω-9 MUFAs, emphasizing their positive effects on health functions as well as the active intermediates produced during their metabolic processes. Subsequently, the gap between the actual consumption and recommended intake of ω-9 MUFAs in our daily diet was calculated, and their food safety and potential challenges were discussed. Finally, the outlook of potential future applications and possible research trends are presented. The review aims to promote the rational consumption of ω-9 MUFAs, provide references for their application as functional foods and clinical auxiliary special medical foods, and propose more ideas and possibilities for future scientific research.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Maeda K, Hirano M, Hayashi T, Iida M, Kurata H, Ishibashi H. Elucidating Key Characteristics of PFAS Binding to Human Peroxisome Proliferator-Activated Receptor Alpha: An Explainable Machine Learning Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:488-497. [PMID: 38134352 DOI: 10.1021/acs.est.3c06561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely employed anthropogenic fluorinated chemicals known to disrupt hepatic lipid metabolism by binding to human peroxisome proliferator-activated receptor alpha (PPARα). Therefore, screening for PFAS that bind to PPARα is of critical importance. Machine learning approaches are promising techniques for rapid screening of PFAS. However, traditional machine learning approaches lack interpretability, posing challenges in investigating the relationship between molecular descriptors and PPARα binding. In this study, we aimed to develop a novel, explainable machine learning approach to rapidly screen for PFAS that bind to PPARα. We calculated the PPARα-PFAS binding score and 206 molecular descriptors for PFAS. Through systematic and objective selection of important molecular descriptors, we developed a machine learning model with good predictive performance using only three descriptors. The molecular size (b_single) and electrostatic properties (BCUT_PEOE_3 and PEOE_VSA_PPOS) are important for PPARα-PFAS binding. Alternative PFAS are considered safer than their legacy predecessors. However, we found that alternative PFAS with many carbon atoms and ether groups exhibited a higher affinity for PPARα. Therefore, confirming the toxicity of these alternative PFAS compounds with such characteristics through biological experiments is important.
Collapse
Affiliation(s)
- Kazuhiro Maeda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Fukuoka, Japan
| | - Masashi Hirano
- Department of Food and Life Sciences, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-City 862-8652, Kumamoto, Japan
| | - Taka Hayashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Midori Iida
- Department of Physics and Information Technology, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Fukuoka, Japan
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Fukuoka, Japan
| | - Hiroshi Ishibashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| |
Collapse
|
15
|
Jeon KB, Park HM, Kim S, Kim NY, Lee TE, Oh DK, Yoon DY. Phorbal-12-mysristate-13-acetate-induced inflammation is restored by protectin DX through PPARγ in human promonocytic U937 cells. Life Sci 2024; 336:122288. [PMID: 38007146 DOI: 10.1016/j.lfs.2023.122288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
AIMS Protectin DX (PDX), a specialized pro-resolving mediator, is an important pharmaceutical compound with potential antioxidant and inflammation-resolving effects. However, the fundamental mechanism by which PDX's ameliorate chronic inflammatory diseases has not yet been elucidated. This study aims to evaluate the anti-inflammatory properties and PPARγ-mediated mechanisms of PDX in phorbal-12-mysristate-13-acetate (PMA)-stimulated human promonocytic U937 cells. MAIN METHODS We confirmed the effects of PDX on expressions of pro-inflammatory cytokines, mediators, and CD14 using conventional PCR, RT-qPCR, ELISA, and flow cytometry. Using western blotting, immunofluorescence, and reactive oxygen species (ROS) determination, we observed that PDX regulated PMA-induced signaling cascades. Molecular docking analysis and a cellular thermal shift assay were conducted to verify the interaction between PDX and the proliferator-activated receptor-γ (PPARγ) ligand binding domain. Western blotting was then employed to explore the alterations in PPARγ expression levels and validate PDX as a PPARγ full agonist. KEY FINDINGS PDX attenuated protein and mRNA expression levels of interleukin-6, tumor necrosis factor-α, and cyclooxygenase-2 in PMA-treated U937 cells. PDX acts as a PPARγ agonist, exerting a modulating effect on the ROS/JNK/c-Fos signaling pathways. Furthermore, PDX reduced human monocyte differentiation antigen CD14 expression levels. SIGNIFICANCE PPARγ exhibits pro-resolving effects to regulate the excessive inflammation. These results suggest that PDX demonstrates the resolution of inflammation, indicating the potential for therapeutic targeting of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Kyeong-Bae Jeon
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyo-Min Park
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seonhwa Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Na-Yeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Tae-Eui Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
16
|
Qiu Y, Gan M, Wang X, Liao T, Chen Q, Lei Y, Chen L, Wang J, Zhao Y, Niu L, Wang Y, Zhang S, Zhu L, Shen L. The global perspective on peroxisome proliferator-activated receptor γ (PPARγ) in ectopic fat deposition: A review. Int J Biol Macromol 2023; 253:127042. [PMID: 37742894 DOI: 10.1016/j.ijbiomac.2023.127042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Excessive expansion of adipocytes can have unhealthy consequences as excess free fatty acids enter other tissues and cause ectopic fat deposition by resynthesizing triglycerides. This lipid accumulation in various tissues is harmful and can increase the risk of related metabolic diseases such as type II diabetes, cardiovascular disease, and insulin resistance. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that play a key role in energy metabolism as fatty acid metabolism sensors, and peroxisome proliferator-activated receptor γ (PPARγ) is the main subtype responsible for fat cell differentiation and adipogenesis. In this paper, we introduce the main structure and function of PPARγ and its regulatory role in the process of lipogenesis in the liver, kidney, skeletal muscle, and pancreas. This information can serve as a reference for further understanding the regulatory mechanisms and measures of the PPAR family in the process of ectopic fat deposition.
Collapse
Affiliation(s)
- Yanhao Qiu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xingyu Wang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianci Liao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiuyang Chen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhang Lei
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China
| | - Ye Zhao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linyuan Shen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
17
|
Almeida NMS, Bali SK, James D, Wang C, Wilson AK. Binding of Per- and Polyfluoroalkyl Substances (PFAS) to the PPARγ/RXRα-DNA Complex. J Chem Inf Model 2023; 63:7423-7443. [PMID: 37990410 DOI: 10.1021/acs.jcim.3c01384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Nuclear receptors are the fundamental building blocks of gene expression regulation and the focus of many drug targets. While binding to DNA, nuclear receptors act as transcription factors, governing a multitude of functions in the human body. Peroxisome proliferator-activator receptor γ (PPARγ) and the retinoid X receptor α (RXRα) form heterodimers with unique properties and have a primordial role in insulin sensitization. This PPARγ/RXRα heterodimer has been shown to be impacted by per- and polyfluoroalkyl substances (PFAS) and linked to a variety of significant health conditions in humans. Herein, a selection of the most common PFAS (legacy and emerging) was studied utilizing molecular dynamics simulations for PPARγ/RXRα. The local and global structural effects of PFAS binding on the known ligand binding pockets of PPARγ and RXRα as well as the DNA binding domain (DBD) of RXRα were inspected. The binding free energies were predicted computationally and were compared between the different binding pockets. In addition, two electronic structure approaches were utilized to model the interaction of PFAS within the DNA binding domain, density functional theory (DFT) and domain-based pair natural orbital coupled cluster with perturbative triples (DLPNO-CCSD(T)) approaches, with implicit solvation. Residue decomposition and hydrogen-bonding analysis were also performed, detailing the role of prominent residues in molecular recognition. The role of l-carnitine is explored as a potential in vivo remediation strategy for PFAS interaction with the PPARγ/RXRα heterodimer. In this work, it was found that PFAS can bind and act as agonists for all of the investigated pockets. For the first time in the literature, PFAS are postulated to bind to the DNA binding domain in a nonspecific manner. In addition, for the PPARγ ligand binding domain, l-carnitine shows promise in replacing smaller PFAS from the pocket.
Collapse
Affiliation(s)
- Nuno M S Almeida
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Semiha Kevser Bali
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Deepak James
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Cong Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| |
Collapse
|
18
|
Mukherjee AG, Renu K, Gopalakrishnan AV, Jayaraj R, Dey A, Vellingiri B, Ganesan R. Epicardial adipose tissue and cardiac lipotoxicity: A review. Life Sci 2023; 328:121913. [PMID: 37414140 DOI: 10.1016/j.lfs.2023.121913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Epicardial adipose tissue (EAT) has morphological and physiological contiguity with the myocardium and coronary arteries, making it a visceral fat deposit with some unique properties. Under normal circumstances, EAT exhibits biochemical, mechanical, and thermogenic cardioprotective characteristics. Under clinical processes, epicardial fat can directly impact the heart and coronary arteries by secreting proinflammatory cytokines via vasocrine or paracrine mechanisms. It is still not apparent what factors affect this equilibrium. Returning epicardial fat to its physiological purpose may be possible by enhanced local vascularization, weight loss, and focused pharmacological therapies. This review centers on EAT's developing physiological and pathophysiological dimensions and its various and pioneering clinical utilities.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| | - Rama Jayaraj
- Jindal Institute of Behavioral Sciences (JIBS), Jindal Global Institution of Eminence Deemed to Be University, 28, Sonipat 131001, India; Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT 0909, Australia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
19
|
Gomez Ribot D, Diaz E, Fazio MV, Gómez HL, Careaga V, Maier M, Macchi SB, Gresta CA, Capobianco E, Jawerbaum A. Metabolic and molecular effects of dietary extra virgin olive oil in blood and placenta of women with GDM. Front Endocrinol (Lausanne) 2023; 14:1219276. [PMID: 37654560 PMCID: PMC10465367 DOI: 10.3389/fendo.2023.1219276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/10/2023] [Indexed: 09/02/2023] Open
Abstract
Gestational diabetes mellitus (GDM) increases the risks of maternal, placental, and neonatal complications. Previously, we found that a diet enriched in extra virgin olive oil (EVOO) prevents increased maternal triglyceridemia and placental proinflammatory markers in a cohort of GDM patients. The aim of this work was to evaluate maternal circulating markers of insulin resistance, placental collagen, glycogen and lipid levels, and placental levels of proteins, mRNAs, and a microRNA involved in the endocytic pathway in the same cohort of control women and women with GDM who received or did not receive a diet enriched in EVOO (36 g/day) from weeks 24 to 28 of pregnancy until term. Results At term, the TG/HDL cholesterol ratio, fatty acid binding protein 4 circulating levels, and maternal BMI were increased in the GDM patients, alterations prevented by the maternal diet enriched in EVOO. Although there were no changes in placental lipid levels and lipid profile, GDM placentas were thicker than controls and showed increased glycogen and collagen content, alterations prevented by the EVOO enriched diet. GDM placentas showed increases in megalin levels, in the expression of several genes involved in the endocytic pathway, and in miR-199, which targets these genes, alterations prevented by the maternal diet enriched in EVOO. Conclusions We identified novel beneficial effects of an EVOO-enriched diet in GDM women, a diet capable of regulating maternal insulin resistance, the structure and metabolism of the placenta, and the placental endocytic pathway, suggesting effects that may be beneficial for fetal development.
Collapse
Affiliation(s)
- Dalmiro Gomez Ribot
- Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Universidad de Buenos Aires (UBA), Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
- Department of Obstetrics, Hospital General de Agudos Dr. Ignacio Pirovano, Buenos Aires, Argentina
| | - Esteban Diaz
- Department of Obstetrics, Hospital General de Agudos Dr. Ignacio Pirovano, Buenos Aires, Argentina
| | - María Victoria Fazio
- Department of Obstetrics, Hospital General de Agudos Dr. Ignacio Pirovano, Buenos Aires, Argentina
| | - Hebe Lorena Gómez
- Department of Obstetrics, Hospital General de Agudos Dr. Ignacio Pirovano, Buenos Aires, Argentina
| | - Valeria Careaga
- Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica (UMYMFOR) [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires (UBA)], Department of Organic Chemistry, School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Marta Maier
- Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica (UMYMFOR) [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires (UBA)], Department of Organic Chemistry, School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Silvia Beatriz Macchi
- Department of Obstetrics, Hospital General de Agudos Dr. Ignacio Pirovano, Buenos Aires, Argentina
| | - Carlos Alberto Gresta
- Department of Obstetrics, Hospital General de Agudos Dr. Ignacio Pirovano, Buenos Aires, Argentina
| | - Evangelina Capobianco
- Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Universidad de Buenos Aires (UBA), Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| | - Alicia Jawerbaum
- Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Universidad de Buenos Aires (UBA), Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| |
Collapse
|
20
|
Martens N, Zhan N, Voortman G, Leijten FPJ, van Rheenen C, van Leerdam S, Geng X, Huybrechts M, Liu H, Jonker JW, Kuipers F, Lütjohann D, Vanmierlo T, Mulder MT. Activation of Liver X Receptors and Peroxisome Proliferator-Activated Receptors by Lipid Extracts of Brown Seaweeds: A Potential Application in Alzheimer's Disease? Nutrients 2023; 15:3004. [PMID: 37447330 DOI: 10.3390/nu15133004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The nuclear liver X receptors (LXRα/β) and peroxisome proliferator-activated receptors (PPARα/γ) are involved in the regulation of multiple biological processes, including lipid metabolism and inflammation. The activation of these receptors has been found to have neuroprotective effects, making them interesting therapeutic targets for neurodegenerative disorders such as Alzheimer's Disease (AD). The Asian brown seaweed Sargassum fusiforme contains both LXR-activating (oxy)phytosterols and PPAR-activating fatty acids. We have previously shown that dietary supplementation with lipid extracts of Sargassum fusiforme prevents disease progression in a mouse model of AD, without inducing adverse effects associated with synthetic pan-LXR agonists. We now determined the LXRα/β- and PPARα/γ-activating capacity of lipid extracts of six European brown seaweed species (Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosus, Himanthalia elongata, Saccharina latissima, and Sargassum muticum) and the Asian seaweed Sargassum fusiforme using a dual luciferase reporter assay. We analyzed the sterol and fatty acid profiles of the extracts by GC-MS and UPLC MS/MS, respectively, and determined their effects on the expression of LXR and PPAR target genes in several cell lines using quantitative PCR. All extracts were found to activate LXRs, with the Himanthalia elongata extract showing the most pronounced efficacy, comparable to Sargassum fusiforme, for LXR activation and transcriptional regulation of LXR-target genes. Extracts of Alaria esculenta, Fucus vesiculosus, and Saccharina latissima showed the highest capacity to activate PPARα, while extracts of Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosus, and Sargassum muticum showed the highest capacity to activate PPARγ, comparable to Sargassum fusiforme extract. In CCF-STTG1 astrocytoma cells, all extracts induced expression of cholesterol efflux genes (ABCG1, ABCA1, and APOE) and suppressed expression of cholesterol and fatty acid synthesis genes (DHCR7, DHCR24, HMGCR and SREBF2, and SREBF1, ACACA, SCD1 and FASN, respectively). Our data show that lipophilic fractions of European brown seaweeds activate LXRs and PPARs and thereby modulate lipid metabolism. These results support the potential of brown seaweeds in the prevention and/or treatment of neurodegenerative diseases and possibly cardiometabolic and inflammatory diseases via concurrent activation of LXRs and PPARs.
Collapse
Affiliation(s)
- Nikita Martens
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, B-3590 Hasselt, Belgium
| | - Na Zhan
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Gardi Voortman
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Frank P J Leijten
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Connor van Rheenen
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Suzanne van Leerdam
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Xicheng Geng
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Michiel Huybrechts
- Department of Environmental Biology, Center for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Hongbing Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Johan W Jonker
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, D-53127 Bonn, Germany
| | - Tim Vanmierlo
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, B-3590 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neurosciences, Division Translational Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
21
|
Lee H, Kim H, Provido SMP, Kang M, Chung GH, Lee JW, Hong S, Yu SH, Lee CB, Lee JE. Associations of Dietary Intakes of Total and Specific Types of Fat with Blood Lipid Levels in the Filipino Women's Diet and Health Study (FiLWHEL). Glob Heart 2023; 18:29. [PMID: 37334397 PMCID: PMC10275172 DOI: 10.5334/gh.1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/11/2023] [Indexed: 06/20/2023] Open
Abstract
Background Limited evidence exists on the association between dietary fat intake and lipid profiles in Southeast Asian populations. Objectives We aimed to examine the cross-sectional associations of dietary intake of total and specific types of fat with dyslipidemia in Filipino immigrant women in Korea. Methods We included 406 Filipino women married to Korean in the Filipino Women's Diet and Health Study (FiLWHEL). Dietary fat intake was assessed using 24-hour recalls. Impaired blood lipid profiles were defined as high total cholesterol (TC) (≥200 mg/dL), high triglyceride (TG) (≥150 mg/dL), high LDL Cholesterol (LDL-C) (≥ 130 mg/dL), or low HDL cholesterol (HDL-C) (<50 mg/dL). The genomic DNA samples were genotyped using DNA chip. The odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using multivariate logistic regression. Results Substituting carbohydrates with dietary saturated fat (SFA) intake was associated with increased prevalence of dyslipidemia; ORs (95% CIs) for subsequent tertiles compared to the first tertile were 2.28 (1.19-4.35), and 2.88 (1.29-6.39) (P for trend = 0.02). When we examined individual markers, ORs (95% CIs, P for trend) comparing the third to the first tertile were 3.62 (1.53-8.55, 0.01) for high TC, 1.46 (0.42-5.10, 0.72) for high TG, 4.00 (1.48-10.79, 0.02) for high LDL-C, and 0.69 (0.30-1.59, 0.36) for low HDL-C. When we examined the interaction by LDL-C-related polymorphisms, the association with dyslipidemia was more pronounced among participants with CC alleles than among those with T alleles of rs6102059 (P for interaction = 0.01). Conclusions High dietary SFA intake was significantly associated with a high prevalence of dyslipidemia in Filipino women in Korea. Further prospective cohort studies are warranted to determine risk factors for CVD in Southeast Asian populations.
Collapse
Affiliation(s)
- Heejin Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Hyojin Kim
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Sherlyn Mae P. Provido
- Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Minji Kang
- Department of Food and Nutrition, Duksung Women’s University, Seoul, Republic of Korea
| | - Grace H. Chung
- Child Development and Family Studies, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Jae W. Lee
- Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sangmo Hong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Republic of Korea
| | - Sung Hoon Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Republic of Korea
| | - Chang Beom Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Republic of Korea
| | - Jung Eun Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Sung Y, Yu YC, Han JM. Nutrient sensors and their crosstalk. Exp Mol Med 2023; 55:1076-1089. [PMID: 37258576 PMCID: PMC10318010 DOI: 10.1038/s12276-023-01006-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 06/02/2023] Open
Abstract
The macronutrients glucose, lipids, and amino acids are the major components that maintain life. The ability of cells to sense and respond to fluctuations in these nutrients is a crucial feature for survival. Nutrient-sensing pathways are thus developed to govern cellular energy and metabolic homeostasis and regulate diverse biological processes. Accordingly, perturbations in these sensing pathways are associated with a wide variety of pathologies, especially metabolic diseases. Molecular sensors are the core within these sensing pathways and have a certain degree of specificity and affinity to sense the intracellular fluctuation of each nutrient either by directly binding to that nutrient or indirectly binding to its surrogate molecules. Once the changes in nutrient levels are detected, sensors trigger signaling cascades to fine-tune cellular processes for energy and metabolic homeostasis, for example, by controlling uptake, de novo synthesis or catabolism of that nutrient. In this review, we summarize the major discoveries on nutrient-sensing pathways and explain how those sensors associated with each pathway respond to intracellular nutrient availability and how these mechanisms control metabolic processes. Later, we further discuss the crosstalk between these sensing pathways for each nutrient, which are intertwined to regulate overall intracellular nutrient/metabolic homeostasis.
Collapse
Affiliation(s)
- Yulseung Sung
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Ya Chun Yu
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Jung Min Han
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea.
- Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, 03722, South Korea.
- POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| |
Collapse
|
23
|
Bujo S, Toko H, Ito K, Koyama S, Ishizuka M, Umei M, Yanagisawa-Murakami H, Guo J, Zhai B, Zhao C, Kishikawa R, Takeda N, Tsushima K, Ikeda Y, Takimoto E, Morita H, Harada M, Komuro I. Low-carbohydrate diets containing plant-derived fat but not animal-derived fat ameliorate heart failure. Sci Rep 2023; 13:3987. [PMID: 36894670 PMCID: PMC9998649 DOI: 10.1038/s41598-023-30821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Cardiovascular disease (CVD) is a global health burden in the world. Although low-carbohydrate diets (LCDs) have beneficial effects on CVD risk, their preventive effects remain elusive. We investigated whether LCDs ameliorate heart failure (HF) using a murine model of pressure overload. LCD with plant-derived fat (LCD-P) ameliorated HF progression, whereas LCD with animal-derived fat (LCD-A) aggravated inflammation and cardiac dysfunction. In the hearts of LCD-P-fed mice but not LCD-A, fatty acid oxidation-related genes were highly expressed, and peroxisome proliferator-activated receptor α (PPARα), which regulates lipid metabolism and inflammation, was activated. Loss- and gain-of-function experiments indicated the critical roles of PPARα in preventing HF progression. Stearic acid, which was more abundant in the serum and heart of LCD-P-fed mice, activated PPARα in cultured cardiomyocytes. We highlight the importance of fat sources substituted for reduced carbohydrates in LCDs and suggest that the LCD-P-stearic acid-PPARα pathway as a therapeutic target for HF.
Collapse
Affiliation(s)
- Satoshi Bujo
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan. .,Department of Advanced Translational Research and Medicine in Management of Pulmonary Hypertension, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Haruhiro Toko
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Satoshi Koyama
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Masato Ishizuka
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masahiko Umei
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Haruka Yanagisawa-Murakami
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Jiaxi Guo
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Bowen Zhai
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Chunxia Zhao
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Risa Kishikawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Norifumi Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kensuke Tsushima
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yuichi Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.,Department of Advanced Translational Research and Medicine in Management of Pulmonary Hypertension, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mutsuo Harada
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.,Department of Advanced Clinical Science and Therapeutics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
24
|
Shao T, McCann JC, Shike DW. Effects of Late Gestation Supplements Differing in Fatty Acid Amount and Profile to Beef Cows on Cow Performance, Steer Progeny Growth Performance through Weaning, and Relative mRNA Expression of Genes Associated with Muscle and Adipose Tissue Development. Animals (Basel) 2023; 13:ani13030437. [PMID: 36766325 PMCID: PMC9913262 DOI: 10.3390/ani13030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Strategic supplementation during late gestation has the potential to alter progeny performance. Mature fall-calving Simmental × Angus cows were used to evaluate the effects of late gestation supplementation of fatty acids to beef cows on cow performance, steer progeny growth performance during pre-weaning and backgrounding periods, and relative mRNA expression of genes associated with myogenesis and adipogenesis. Cows (n = 190; 4 pasture groups of cows/treatment) grazed endophyte-infected tall fescue and were supplemented during late gestation with calcium salts of either saturated fatty acid/monounsaturated fatty acid (SFA/MUFA), polyunsaturated fatty acid (PUFA), or an isocaloric and isonitrogenous control (CON). There were no differences (p ≥ 0.11) in cow body weight (BW) or body condition scores from pre-supplementation to weaning or steer BW at birth, weaning, or at the end of the backgrounding period. Concentrations of C18:2n-6 in plasma were greater (p = 0.01) in SFA/MUFA and PUFA cows compared to CON cows during supplementation. For mRNA expression in the longissimus muscle of steer progeny from birth to weaning: PAX7 decreased to a greater (p < 0.01) extent for SFA/MUFA and PUFA steers; AGPAT1 and CPT1 increased to a greater (p ≤ 0.02) extent for CON steers. The expression of MYH7 mRNA during the pre-weaning period was greater (p = 0.01) in PUFA. In conclusion, late gestation fatty acid supplementation modified plasma relative concentrations of fatty acids for dams and progeny and modified mRNA expression of genes related to myogenesis and adipogenesis but had limited effects on progeny growth performance during pre-weaning and backgrounding periods.
Collapse
|
25
|
Yasukawa T, Sasaki M, Motomura K, Yuki K, Kurihara T, Tomita Y, Mori K, Ozawa N, Ozawa Y, Yamagishi K, Hanyuda A, Sawada N, Tsubota K, Tsugane S, Iso H. Association Between Fatty Acid Intakes and Age-Related Macular Degeneration in a Japanese Population: JPHC-NEXT Eye Study. Transl Vis Sci Technol 2023; 12:3. [PMID: 36595278 PMCID: PMC9819671 DOI: 10.1167/tvst.12.1.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Purpose To determine the associations between fatty acid intakes and the prevalence of age-related macular degeneration (AMD) under a population-based cross-sectional study. Methods Residents of Chikusei City aged ≥40 years underwent systemic and eye screening. AMD was graded according to a modified version of the Age-Related Eye Disease Study classification. Dietary intake was assessed using a food frequency questionnaire and was adjusted for total energy intake. Results Altogether, 10,788 eyes of 5394 participants, 2116 men (mean [standard deviation (SD)] age, 62.4 [9.4] years) and 3278 women (60.6 [9.5] years), were included. The mean daily total fat intakes were 52.8 g and 59.0 g in men and women, respectively. After adjustments for potential confounders, saturated fatty acid (SFA) intake was inversely associated with the prevalence of any AMD in men (for each energy-adjusted 1-SD increase: odds ratio [OR], 0.86; 95% confidence interval [CI], 0.74-1.00). Significant trends were found for decreasing odds ratios of AMD with increasing SFA, monounsaturated fatty acid (MUFA), and polyunsaturated fatty acid (PUFA) intake (P for trend = 0.02, 0.04, and 0.04, respectively). In women, only a significant association was observed between the second quartile of linolenic acid intake and the prevalence of any AMD (OR, 0.78; 95% CI, 0.62-0.99). Conclusions We found an inverse association of SFA intake and a weak inverse association of MUFA and PUFA intakes with the prevalence of any AMD in a Japanese population. Translational Relevance Adequate fatty acid intake may be necessary to prevent or decelerate AMD.
Collapse
Affiliation(s)
- Tomoyo Yasukawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Mariko Sasaki
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan,Tachikawa Hospital, Tokyo, Japan,National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Kaoru Motomura
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kenya Yuki
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Tomita
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kiwako Mori
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiro Ozawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yoko Ozawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazumasa Yamagishi
- Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba, Ibaraki, Japan,Ibaraki Western Medical Center, Ibaraki, Japan
| | - Akiko Hanyuda
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Norie Sawada
- Epidemiology and Prevention Group, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shoichiro Tsugane
- Epidemiology and Prevention Group, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan,National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Hiroyasu Iso
- Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba, Ibaraki, Japan,Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Osaka, Japan,Institute for Global Health Policy Research, Bureau of International Health Cooperation, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
26
|
Carrillo-Tripp M, Reyes Y, Delgado-Coello B, Mas-Oliva J, Gutiérrez-Vidal R. Peptide Helix-Y 12 as Potential Effector for Peroxisome Proliferator-Activated Receptors. PPAR Res 2023; 2023:8047378. [PMID: 37096195 PMCID: PMC10122583 DOI: 10.1155/2023/8047378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors involved in the regulation of lipids and glucose metabolism, and immune response. Therefore, they have been considered pharmacological targets for treating metabolic diseases, such as dyslipidemia, atherosclerosis, and non-alcoholic fatty liver disease. However, the available synthetic ligands of PPARs have mild to significant side effects, generating the necessity to identify new molecules that are selective PPAR ligands with specific biological responses. This study aimed to evaluate some components of the atheroprotective and hepatoprotective HB-ATV-8 nanoparticles [the amphipathic peptide Helix-Y12, thermozeaxanthin, thermozeaxanthin-13, thermozeaxanthin-15, and a set of glycolipids], as possible ligands of PPARs through blind molecular docking. According to the change in free energy upon protein-ligand binding, ∆G b, thermozeaxanthins show a more favorable interaction with PPARs, followed by Helix-Y12. Moreover, Helix-Y12 interacts with most parts of the Y-shaped ligand-binding domain (LBD), surrounding helix 3 of PPARs, and reaching helix 12 of PPARα and PPARγ. As previously reported for other ligands, Tyr314 and Tyr464 of PPARα interact with Helix-Y12 through hydrogen bonds. Several PPARα's amino acids are involved in the ligand binding by hydrophobic interactions. Furthermore, we identified additional PPARs' amino acids interacting with Helix-Y12 through hydrogen bonds still not reported for known ligands. Our results show that, from the studied ligand set, the Helix-Y12 peptide and Tzeaxs have the most significant probability of binding to the PPARs' LBD, suggesting novel ligands for PPARs.
Collapse
Affiliation(s)
- Mauricio Carrillo-Tripp
- Biomolecular Diversity Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Vía del Conocimiento 201, PIIT, C.P. 66600, Apodaca, Nuevo León, Mexico
| | - Yair Reyes
- Metabolic Diseases Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Vía del Conocimiento 201, PIIT, C.P. 66600, Apodaca, Nuevo León, Mexico
- Universidad Politécnica de Puebla, Tercer Carril del Ejido, Serrano s/n, Cuanalá, C.P. 7264, Puebla, Mexico
| | - Blanca Delgado-Coello
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, C.P. 04510, CDMX, Mexico
| | - Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, C.P. 04510, CDMX, Mexico
| | - Roxana Gutiérrez-Vidal
- Metabolic Diseases Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Vía del Conocimiento 201, PIIT, C.P. 66600, Apodaca, Nuevo León, Mexico
- Programa de Investigadoras e Investigadores por México, Conacyt, CDMX, Mexico
| |
Collapse
|
27
|
Role of Omega-3 Fatty Acids in Cardiovascular Disease: the Debate Continues. Curr Atheroscler Rep 2023; 25:1-17. [PMID: 36580204 PMCID: PMC9834373 DOI: 10.1007/s11883-022-01075-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW The omega-3 fatty acids (n3-FAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have recently undergone testing for their ability to reduce residual cardiovascular (CV) risk among statin-treated subjects. The outcome trials have yielded highly inconsistent results, perhaps attributable to variations in dosage, formulation, and composition. In particular, CV trials using icosapent ethyl (IPE), a highly purified ethyl ester of EPA, reproducibly reduced CV events and progression of atherosclerosis compared with mixed EPA/DHA treatments. This review summarizes the mechanistic evidence for differences among n3-FAs on the development and manifestations of atherothrombotic disease. RECENT FINDINGS Large randomized clinical trials with n3-FAs have produced discordant outcomes despite similar patient profiles, doses, and triglyceride (TG)-lowering effects. A large, randomized trial with IPE, a prescription EPA only formulation, showed robust reduction in CV events in statin treated patients in a manner proportional to achieved blood EPA concentrations. Multiple trials using mixed EPA/DHA formulations have not shown such benefits, despite similar TG lowering. These inconsistencies have inspired investigations into mechanistic differences among n3-FAs, as EPA and DHA have distinct membrane interactions, metabolic products, effects on cholesterol efflux, antioxidant properties, and tissue distribution. EPA maintains normal membrane cholesterol distribution, enhances endothelial function, and in combination with statins improves features implicated in plaque stability and reduces lipid content of plaques. Insights into reductions in residual CV risk have emerged from clinical trials using different formulations of n3-FAs. Among high-risk patients on contemporary care, mixed n3-FA formulations showed no reduction in CV events. The distinct benefits of IPE in multiple trials may arise from pleiotropic actions that correlate with on-treatment EPA levels beyond TG-lowering. These effects include altered platelet function, inflammation, cholesterol distribution, and endothelial dysfunction. Elucidating such mechanisms of vascular protection for EPA may lead to new interventions for atherosclerosis, a disease that continues to expand worldwide.
Collapse
|
28
|
Santa-María C, López-Enríquez S, Montserrat-de la Paz S, Geniz I, Reyes-Quiroz ME, Moreno M, Palomares F, Sobrino F, Alba G. Update on Anti-Inflammatory Molecular Mechanisms Induced by Oleic Acid. Nutrients 2023; 15:nu15010224. [PMID: 36615882 PMCID: PMC9824542 DOI: 10.3390/nu15010224] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
In 2010, the Mediterranean diet was recognized by UNESCO as an Intangible Cultural Heritage of Humanity. Olive oil is the most characteristic food of this diet due to its high nutraceutical value. The positive effects of olive oil have often been attributed to its minor components; however, its oleic acid (OA) content (70-80%) is responsible for its many health properties. OA is an effective biomolecule, although the mechanism by which OA mediates beneficial physiological effects is not fully understood. OA influences cell membrane fluidity, receptors, intracellular signaling pathways, and gene expression. OA may directly regulate both the synthesis and activities of antioxidant enzymes. The anti-inflammatory effect may be related to the inhibition of proinflammatory cytokines and the activation of anti-inflammatory ones. The best-characterized mechanism highlights OA as a natural activator of sirtuin 1 (SIRT1). Oleoylethanolamide (OEA), derived from OA, is an endogenous ligand of the peroxisome proliferator-activated receptor alpha (PPARα) nuclear receptor. OEA regulates dietary fat intake and energy homeostasis and has therefore been suggested to be a potential therapeutic agent for the treatment of obesity. OEA has anti-inflammatory and antioxidant effects. The beneficial effects of olive oil may be related to the actions of OEA. New evidence suggests that oleic acid may influence epigenetic mechanisms, opening a new avenue in the exploration of therapies based on these mechanisms. OA can exert beneficial anti-inflammatory effects by regulating microRNA expression. In this review, we examine the cellular reactions and intracellular processes triggered by OA in T cells, macrophages, and neutrophils in order to better understand the immune modulation exerted by OA.
Collapse
Affiliation(s)
- Consuelo Santa-María
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Seville, 41012 Seville, Spain
- Correspondence: (C.S.-M.); (S.L.-E.)
| | - Soledad López-Enríquez
- Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Seville, 41009 Seville, Spain
- Correspondence: (C.S.-M.); (S.L.-E.)
| | - Sergio Montserrat-de la Paz
- Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Seville, 41009 Seville, Spain
| | - Isabel Geniz
- Distrito Sanitario Seville Norte y Aljarafe, Servicio Andaluz de Salud, 41008 Seville, Spain
| | - María Edith Reyes-Quiroz
- Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Seville, 41009 Seville, Spain
| | - Manuela Moreno
- Departamento de Farmacia y Nutrición, Hospital Costa del Sol, 29603 Málaga, Spain
| | - Francisca Palomares
- Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Seville, 41009 Seville, Spain
| | - Francisco Sobrino
- Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Seville, 41009 Seville, Spain
| | - Gonzalo Alba
- Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Seville, 41009 Seville, Spain
| |
Collapse
|
29
|
Omega-3 polyunsaturated fatty acids and corneal nerve health: Current evidence and future directions. Ocul Surf 2023; 27:1-12. [PMID: 36328309 DOI: 10.1016/j.jtos.2022.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
Corneal nerves play a key role in maintaining ocular surface integrity. Corneal nerve damage, from local or systemic conditions, can lead to ocular discomfort, pain, and, if poorly managed, neurotrophic keratopathy. Omega-3 polyunsaturated fatty acids (PUFAs) are essential dietary components that play a key role in neural development, maintenance, and function. Their potential application in modulating ocular and systemic inflammation has been widely reported. Omega-3 PUFAs and their metabolites also have neuroprotective properties and can confer benefit in neurodegenerative disease. Several preclinical studies have shown that topical administration of omega-3 PUFA-derived lipid mediators promote corneal nerve recovery following corneal surgery. Dietary omega-3 PUFA supplementation can also reduce corneal epithelial nerve loss and promote corneal nerve regeneration in diabetes. Omega-3 PUFAs and their lipid mediators thus show promise as therapeutic approaches to modulate corneal nerve health in ocular and systemic disease. This review discusses the role of dietary omega-3 PUFAs in maintaining ocular surface health and summarizes the possible applications of omega-3 PUFAs in the management of ocular and systemic conditions that cause corneal nerve damage. In examining the current evidence, this review also highlights relatively underexplored applications of omega-3 PUFAs in conferring neuroprotection and addresses their therapeutic potential in mediating corneal nerve regeneration.
Collapse
|
30
|
The Role of PPARs in Breast Cancer. Cells 2022; 12:cells12010130. [PMID: 36611922 PMCID: PMC9818187 DOI: 10.3390/cells12010130] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is a malignant tumor with high morbidity and lethality. Its pathogenesis is related to the abnormal expression of many genes. The peroxisome proliferator-activated receptors (PPARs) are a class of ligand-dependent transcription factors in the nuclear receptor superfamily. They can regulate the transcription of a large number of target genes, which are involved in life activities such as cell proliferation, differentiation, metabolism, and apoptosis, and regulate physiological processes such as glucose metabolism, lipid metabolism, inflammation, and wound healing. Further, the changes in its expression are associated with various diseases, including breast cancer. The experimental reports related to "PPAR" and "breast cancer" were retrieved from PubMed since the discovery of PPARs and summarized in this paper. This review (1) analyzed the roles and potential molecular mechanisms of non-coordinated and ligand-activated subtypes of PPARs in breast cancer progression; (2) discussed the correlations between PPARs and estrogen receptors (ERs) as the nuclear receptor superfamily; and (3) investigated the interaction between PPARs and key regulators in several signaling pathways. As a result, this paper identifies PPARs as targets for breast cancer prevention and treatment in order to provide more evidence for the synthesis of new drugs targeting PPARs or the search for new drug combination treatments.
Collapse
|
31
|
Zeng W, Yin X, Jiang Y, Jin L, Liang W. PPARα at the crossroad of metabolic-immune regulation in cancer. FEBS J 2022; 289:7726-7739. [PMID: 34480827 DOI: 10.1111/febs.16181] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/04/2021] [Accepted: 09/03/2021] [Indexed: 01/14/2023]
Abstract
Rewiring metabolism to sustain cell growth, division, and survival is the most prominent feature of cancer cells. In particular, dysregulated lipid metabolism in cancer has received accumulating interest, since lipid molecules serve as cell membrane structure components, secondary signaling messengers, and energy sources. Given the critical role of immune cells in host defense against cancer, recent studies have revealed that immune cells compete for nutrients with cancer cells in the tumor microenvironment and accordingly develop adaptive metabolic strategies for survival at the expense of compromised immune functions. Among these strategies, lipid metabolism reprogramming toward fatty acid oxidation is closely related to the immunosuppressive phenotype of tumor-infiltrated immune cells, including macrophages and dendritic cells. Therefore, it is important to understand the lipid-mediated crosstalk between cancer cells and immune cells in the tumor microenvironment. Peroxisome proliferator-activated receptors (PPARs) consist of a nuclear receptor family for lipid sensing, and one of the family members PPARα is responsible for fatty acid oxidation, energy homeostasis, and regulation of immune cell functions. In this review, we discuss the emerging role of PPARα-associated metabolic-immune regulation in tumor-infiltrated immune cells, and key metabolic events and pathways involved, as well as their influences on antitumor immunity.
Collapse
Affiliation(s)
- Wenfeng Zeng
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaozhe Yin
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| | - Yunhan Jiang
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lingtao Jin
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Wei Liang
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Jost Z, Tomczyk M, Chroboczek M, Calder PC, Fisk HL, Przewłócka K, Antosiewicz J. Increased Plasma L-Arginine Levels and L-Arginine/ADMA Ratios after Twelve Weeks of Omega-3 Fatty Acid Supplementation in Amateur Male Endurance Runners. Nutrients 2022; 14:nu14224749. [PMID: 36432437 PMCID: PMC9699131 DOI: 10.3390/nu14224749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
It is not fully understood how supplementation with omega-3 fatty acids affects the metabolism of amino acids required for the bioavailability/synthesis of NO, i.e., L-arginine (L-arg), asymmetric dimethylarginine (ADMA), their metabolites, and the L-arg/ADMA ratio and their impact on running economy (RE) in runners. Thus, 26 male amateur endurance runners completed a twelve-week study in which they were divided into two supplemented groups: the OMEGA group (n = 14; 2234 mg and 916 mg of eicosapentaenoic and docosahexaenoic acid daily) or the MCT group (n = 12; 4000 mg of medium-chain triglycerides daily). At the same time, all participants followed an endurance training program. Before and after the 12-week intervention, blood was collected from participants at two time points (at rest and immediately post-exercise) to determine EPA and DHA in red blood cells (RBCs) and plasma levels of L-arg, ADMA, and their metabolites. RBC EPA and DHA significantly increased in the OMEGA group (p < 0.001), which was related to the resting increase in L-arg (p = 0.001) and in the L-arg/ADMA ratio (p = 0.005) with no changes in the MCT group. No differences were found in post-exercise amino acid levels. A total of 12 weeks of omega-3 fatty acid supplementation at a dose of 2234 mg of EPA and 916 mg of DHA daily increased levels of L-arg and the L-arg/ADMA ratio, which indirectly indicates increased bioavailability/NO synthesis. However, these changes were not associated with improved RE in male amateur endurance runners.
Collapse
Affiliation(s)
- Zbigniew Jost
- Department of Biochemistry, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
- Correspondence: (Z.J.); (J.A.)
| | - Maja Tomczyk
- Department of Biochemistry, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | - Maciej Chroboczek
- Department of Physiology, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| | - Helena L. Fisk
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Katarzyna Przewłócka
- Department of Bioenergetics and Exercise Physiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Jędrzej Antosiewicz
- Department of Bioenergetics and Exercise Physiology, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence: (Z.J.); (J.A.)
| |
Collapse
|
33
|
Klyushova LS, Perepechaeva ML, Grishanova AY. The Role of CYP3A in Health and Disease. Biomedicines 2022; 10:2686. [PMID: 36359206 PMCID: PMC9687714 DOI: 10.3390/biomedicines10112686] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
CYP3A is an enzyme subfamily in the cytochrome P450 (CYP) superfamily and includes isoforms CYP3A4, CYP3A5, CYP3A7, and CYP3A43. CYP3A enzymes are indiscriminate toward substrates and are unique in that these enzymes metabolize both endogenous compounds and diverse xenobiotics (including drugs); almost the only common characteristic of these compounds is lipophilicity and a relatively large molecular weight. CYP3A enzymes are widely expressed in human organs and tissues, and consequences of these enzymes' activities play a major role both in normal regulation of physiological levels of endogenous compounds and in various pathological conditions. This review addresses these aspects of regulation of CYP3A enzymes under physiological conditions and their involvement in the initiation and progression of diseases.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, 630117 Novosibirsk, Russia
| | | |
Collapse
|
34
|
Noguchi M, Shimizu M, Lu P, Takahashi Y, Yamauchi Y, Sato S, Kiyono H, Kishino S, Ogawa J, Nagata K, Sato R. Lactic acid bacteria-derived γ-linolenic acid metabolites are PPARδ ligands that reduce lipid accumulation in human intestinal organoids. J Biol Chem 2022; 298:102534. [PMID: 36162507 PMCID: PMC9636582 DOI: 10.1016/j.jbc.2022.102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Gut microbiota regulate physiological functions in various hosts, such as energy metabolism and immunity. Lactic acid bacteria, including Lactobacillus plantarum, have a specific polyunsaturated fatty acid saturation metabolism that generates multiple fatty acid species, such as hydroxy fatty acids, oxo fatty acids, conjugated fatty acids, and trans-fatty acids. How these bacterial metabolites impact host physiology is not fully understood. Here, we investigated the ligand activity of lactic acid bacteria–produced fatty acids in relation to nuclear hormone receptors expressed in the small intestine. Our reporter assays revealed two bacterial metabolites of γ-linolenic acid (GLA), 13-hydroxy-cis-6,cis-9-octadecadienoic acid (γHYD), and 13-oxo-cis-6,cis-9-octadecadienoic acid (γKetoD) activated peroxisome proliferator-activated receptor delta (PPARδ) more potently than GLA. We demonstrate that both γHYD and γKetoD bound directly to the ligand-binding domain of human PPARδ. A docking simulation indicated that four polar residues (T289, H323, H449, and Y473) of PPARδ donate hydrogen bonds to these fatty acids. Interestingly, T289 does not donate a hydrogen bond to GLA, suggesting that bacterial modification of GLA introducing hydroxy and oxo group determines ligand selectivity. In human intestinal organoids, we determined γHYD and γKetoD increased the expression of PPARδ target genes, enhanced fatty acid β-oxidation, and reduced intracellular triglyceride accumulation. These findings suggest that γHYD and γKetoD, which gut lactic acid bacteria could generate, are naturally occurring PPARδ ligands in the intestinal tract and may improve lipid metabolism in the human intestine.
Collapse
Affiliation(s)
- Makoto Noguchi
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo
| | - Makoto Shimizu
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo.
| | - Peng Lu
- Food Biotechnology and Structural Biology Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo
| | - Yu Takahashi
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo
| | - Yoshio Yamauchi
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo; Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo
| | - Shintaro Sato
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama
| | - Hiroshi Kiyono
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Future Medicine Education and Research Organization, Chiba University, Chiba
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto
| | - Koji Nagata
- Food Biotechnology and Structural Biology Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo
| | - Ryuichiro Sato
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo.
| |
Collapse
|
35
|
Microsecond MD Simulations to Explore the Structural and Energetic Differences between the Human RXRα-PPARγ vs. RXRα-PPARγ-DNA. Molecules 2022; 27:molecules27185778. [PMID: 36144514 PMCID: PMC9503000 DOI: 10.3390/molecules27185778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The heterodimeric complex between retinoic X receptor alpha (RXRα) and peroxisome proliferator-activated receptor gamma (PPARγ) is one of the most important and predominant regulatory systems, controlling lipid metabolism by binding to specific DNA promoter regions. X-ray and molecular dynamics (MD) simulations have revealed the average conformation adopted by the RXRα-PPARγ heterodimer bound to DNA, providing information about how multiple domains communicate to regulate receptor properties. However, knowledge of the energetic basis of the protein-ligand and protein-protein interactions is still lacking. Here we explore the structural and energetic mechanism of RXRα-PPARγ heterodimer bound or unbound to DNA and forming complex with co-crystallized ligands (rosiglitazone and 9-cis-retinoic acid) through microsecond MD simulations, molecular mechanics generalized Born surface area binding free energy calculations, principal component analysis, the free energy landscape, and correlated motion analysis. Our results suggest that DNA binding alters correlated motions and conformational mobility within RXRα–PPARγ system that impact the dimerization and the binding affinity on both receptors. Intradomain correlated motions denotes a stronger correlation map for RXRα-PPARγ-DNA than RXRα-PPARγ, involving residues at the ligand binding site. In addition, our results also corroborated the greater role of PPARγ in regulation of the free and bound DNA state.
Collapse
|
36
|
Helmstädter M, Schierle S, Isigkeit L, Proschak E, Marschner JA, Merk D. Activity Screening of Fatty Acid Mimetic Drugs Identified Nuclear Receptor Agonists. Int J Mol Sci 2022; 23:ijms231710070. [PMID: 36077469 PMCID: PMC9456086 DOI: 10.3390/ijms231710070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Fatty acid mimetics (FAM) are bioactive molecules acting through the binding sites of endogenous fatty acid metabolites on enzymes, transporters, and receptors. Due to the special characteristics of these binding sites, FAMs share common chemical features. Pharmacological modulation of fatty acid signaling has therapeutic potential in multiple pathologies, and several FAMs have been developed as drugs. We aimed to elucidate the promiscuity of FAM drugs on lipid-activated transcription factors and tested 64 approved compounds for activation of RAR, PPARs, VDR, LXR, FXR, and RXR. The activity screening revealed nuclear receptor agonism of several FAM drugs and considerable promiscuity of NSAIDs, while other compound classes evolved as selective. These screening results were not anticipated by three well-established target prediction tools, suggesting that FAMs are underrepresented in bioactivity data for model development. The screening dataset may therefore valuably contribute to such tools. Oxaprozin (RXR), tianeptine (PPARδ), mycophenolic acid (RAR), and bortezomib (RAR) exhibited selective agonism on one nuclear receptor and emerged as attractive leads for the selective optimization of side activities. Additionally, their nuclear receptor agonism may contribute relevant and valuable polypharmacology.
Collapse
Affiliation(s)
- Moritz Helmstädter
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Simone Schierle
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Laura Isigkeit
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | | | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
- Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Correspondence:
| |
Collapse
|
37
|
Tong Y, Zhu W, Wen T, Mukhamejanova Z, Xu F, Xiang Q, Pang J. Xyloketal B Reverses Nutritional Hepatic Steatosis, Steatohepatitis, and Liver Fibrosis through Activation of the PPARα/PGC1α Signaling Pathway. JOURNAL OF NATURAL PRODUCTS 2022; 85:1738-1750. [PMID: 35749236 DOI: 10.1021/acs.jnatprod.2c00259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a class of disorders including hepatic steatosis, steatohepatitis, and liver fibrosis. Previous research suggested that xyloketal B (Xyl-B), a marine-derived natural product, could attenuate the NAFLD-related lipid accumulation. Herein, we investigated the protective mechanism of Xyl-B in a high-fat diet (HFD) mice fatty liver model by combining a quantitative proteomic approach with experimental methods. The results showed that the administration of Xyl-B (20 and 40 mg·kg-1·day-1, ip) ameliorated the hepatic steatosis in HFD mice. Proteomic profiling together with bioinformatics analysis highlighted the upregulation of a cluster of peroxisome proliferator-activated receptor-α (PPARα) downstream enzymes mainly related to fatty acid oxidation (FAO) as key changes after the treatment. These changes were subsequently confirmed by bioassays. Moreover, further results showed that the expression levels of PPARα and PPARγ coactivator-1α (PGC1α) were increased after the treatment. The related mode-of-action was confirmed by PPARα inhibition. Furthermore, we evaluated the PPARα-mediated anti-inflammatory and antifibrosis effect of Xyl-B in methionine-choline-deficient (MCD) mice hepatitis and liver fibrosis models. According to the results, the histological features were improved, and the levels of inflammatory factors, adhesion molecules, as well as fibrosis markers were decreased after the treatment. Collectively, these results indicated that Xyl-B ameliorated different phases of NAFLD through activation of the PPARα/PGC1α signaling pathway. Our findings revealed the possible metabolism-regulating mechanism of Xyl-B, broadened the application of xyloketal family compounds, and may provide a new strategy to curb the development of NAFLD.
Collapse
Affiliation(s)
- Yichen Tong
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Wentao Zhu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Tianzhi Wen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | | | - Fang Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) & Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qi Xiang
- Institute of Biomedicine & Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiyan Pang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
38
|
Markussen LK, Rondini EA, Johansen OS, Madsen JGS, Sustarsic EG, Marcher AB, Hansen JB, Gerhart-Hines Z, Granneman JG, Mandrup S. Lipolysis regulates major transcriptional programs in brown adipocytes. Nat Commun 2022; 13:3956. [PMID: 35803907 PMCID: PMC9270495 DOI: 10.1038/s41467-022-31525-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
β-Adrenergic signaling is a core regulator of brown adipocyte function stimulating both lipolysis and transcription of thermogenic genes, thereby expanding the capacity for oxidative metabolism. We have used pharmacological inhibitors and a direct activator of lipolysis to acutely modulate the activity of lipases, thereby enabling us to uncover lipolysis-dependent signaling pathways downstream of β-adrenergic signaling in cultured brown adipocytes. Here we show that induction of lipolysis leads to acute induction of several gene programs and is required for transcriptional regulation by β-adrenergic signals. Using machine-learning algorithms to infer causal transcription factors, we show that PPARs are key mediators of lipolysis-induced activation of genes involved in lipid metabolism and thermogenesis. Importantly, however, lipolysis also activates the unfolded protein response and regulates the core circadian transcriptional machinery independently of PPARs. Our results demonstrate that lipolysis generates important metabolic signals that exert profound pleiotropic effects on transcription and function of cultured brown adipocytes.
Collapse
Affiliation(s)
- Lasse K Markussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Center for Adipocyte Signaling (AdipoSign), Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Odense, Denmark
| | - Elizabeth A Rondini
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Olivia Sveidahl Johansen
- Center for Adipocyte Signaling (AdipoSign), Odense, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Embark Biotech ApS, Copenhagen, Denmark
| | - Jesper G S Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Odense, Denmark
| | - Elahu G Sustarsic
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Britt Marcher
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Center for Adipocyte Signaling (AdipoSign), Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Odense, Denmark
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zachary Gerhart-Hines
- Center for Adipocyte Signaling (AdipoSign), Odense, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Embark Biotech ApS, Copenhagen, Denmark
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
- Center for Adipocyte Signaling (AdipoSign), Odense, Denmark.
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Odense, Denmark.
| |
Collapse
|
39
|
Wan S, Li Q, Yu H, Liu S, Kong L. A nuclear receptor heterodimer, CgPPAR2-CgRXR, acts as a regulator of carotenoid metabolism in Crassostrea gigas. Gene 2022; 827:146473. [PMID: 35390448 DOI: 10.1016/j.gene.2022.146473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022]
Abstract
Nuclear receptors (NRs) are mostly ligand-activated transcription factors in animals and play essential roles in metabolism and homeostasis. The NR heterodimer composed of PPAR/RXR (peroxisome proliferator-activated receptor/retinoid X receptor) is considered a key regulator of lipid metabolism in vertebrate. However, in molluscs, how this heterodimer is involved in carotenoid metabolism remains unclear. To elucidate how this heterodimer regulates carotenoid metabolism, we identified a PPAR gene in C. gigas, designated as CgPPAR2 (LOC105323212), and functionally characterized it using two-hybrid and reporter systems. CgPPAR2 is a direct orthologue of vertebrate PPARs and the second PPAR gene identified in C. gigas genome in addition to CgPPAR1 (LOC105317849). The results demonstrated that CgPPAR2 protein can form heterodimer with C. gigas RXR (CgRXR), and then regulate carotenoid metabolism by controlling carotenoid cleavage oxygenases with different carotenoid cleavage efficiencies. This regulation can be affected by retinoid ligands, i.e., carotenoid derivatives, validating a negative feedback regulation mechanism of carotenoid cleavage for retinoid production. Besides, organotins may disrupt this regulatory process through the mediation of CgPPAR2/CgRXR heterodimer. This is the first report of PPAR/RXR heterodimer regulating carotenoid metabolism in mollusks, contributing to a better understanding of the evolution and conservation of this nuclear receptor heterodimer.
Collapse
Affiliation(s)
- Sai Wan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Qingdao 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
40
|
Mason RP, Sherratt SCR, Eckel RH. Omega-3-fatty acids: Do they prevent cardiovascular disease? Best Pract Res Clin Endocrinol Metab 2022; 37:101681. [PMID: 35739003 DOI: 10.1016/j.beem.2022.101681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Despite cardiovascular disease (CVD) reductions with high-intensity statins, there remains residual risk among patients with metabolic disorders. Alongside low-density lipoproteins (LDL-C), elevated triglycerides (TG) are associated with incident CVD events. Omega-3 fatty acids (n3-FAs), specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), lower TG levels, but their ability to reduce CV risk has been highly inconsistent. Trials using icosapent ethyl (IPE), a purified EPA ethyl ester, produced reductions in CVD events and atherosclerotic plaque regression compared with mixed EPA/DHA formulations despite similar TG-reductions. The separate effects of EPA and DHA on tissue distribution, oxidative stress, inflammation, membrane structure and endothelial function may contribute to these discordant outcomes. Additional mechanistic trials will provide further insights into the role of n3-FAs in reducing CVD risk beyond TG lowering.
Collapse
Affiliation(s)
- R Preston Mason
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Samuel C R Sherratt
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03823, USA
| | - Robert H Eckel
- Division of Endocrinology, Metabolism & Diabetes, Division of Cardiology, University of Colorado Anschutz Medical Campus, 1635 Aurora Court, Aurora, CO 80045, USA
| |
Collapse
|
41
|
Han Z, Ma K, Tao H, Liu H, Zhang J, Sai X, Li Y, Chi M, Nian Q, Song L, Liu C. A Deep Insight Into Regulatory T Cell Metabolism in Renal Disease: Facts and Perspectives. Front Immunol 2022; 13:826732. [PMID: 35251009 PMCID: PMC8892604 DOI: 10.3389/fimmu.2022.826732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
Kidney disease encompasses a complex set of diseases that can aggravate or start systemic pathophysiological processes through their complex metabolic mechanisms and effects on body homoeostasis. The prevalence of kidney disease has increased dramatically over the last two decades. CD4+CD25+ regulatory T (Treg) cells that express the transcription factor forkhead box protein 3 (Foxp3) are critical for maintaining immune homeostasis and preventing autoimmune disease and tissue damage caused by excessive or unnecessary immune activation, including autoimmune kidney diseases. Recent studies have highlighted the critical role of metabolic reprogramming in controlling the plasticity, stability, and function of Treg cells. They are also likely to play a vital role in limiting kidney transplant rejection and potentially promoting transplant tolerance. Metabolic pathways, such as mitochondrial function, glycolysis, lipid synthesis, glutaminolysis, and mammalian target of rapamycin (mTOR) activation, are involved in the development of renal diseases by modulating the function and proliferation of Treg cells. Targeting metabolic pathways to alter Treg cells can offer a promising method for renal disease therapy. In this review, we provide a new perspective on the role of Treg cell metabolism in renal diseases by presenting the renal microenvironment、relevant metabolites of Treg cell metabolism, and the role of Treg cell metabolism in various kidney diseases.
Collapse
Affiliation(s)
- Zhongyu Han
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hongxia Tao
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongli Liu
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiyalatu Sai
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, China
| | - Yunlong Li
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qing Nian
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Department of Blood Transfusion Sicuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Linjiang Song
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
42
|
Ni HY, Yu L, Zhao XL, Wang LT, Zhao CJ, Huang H, Zhu HL, Efferth T, Gu CB, Fu YJ. Seed oil of Rosa roxburghii Tratt against non-alcoholic fatty liver disease in vivo and in vitro through PPARα/PGC-1α-mediated mitochondrial oxidative metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153919. [PMID: 35104757 DOI: 10.1016/j.phymed.2021.153919] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/07/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis and hepatocyte injury, is an obesity-induced metabolic dysregulation with few available therapeutic options. Enhancement of the mitochondrial function was considered as an effective treatment for NALFD. Unsaturated fatty acids (UFAs) have been shown to have beneficial effects on metabolic syndrome disease such as hyperlipidemia, coronary artery disease and cardiovascular diseases. The seed oil of Rosa roxburghii Tratt (ORRT) was of high quality in terms of its high amount of unsaturated fatty acids. However, the effects of ORRT on NALFD have not been reported so far. PURPOSE The study aimed to evaluate the protective effects and molecular mechanism of ORRT for the treatment of NAFLD in vivo and in vitro. METHODS The beneficial effects, especially improving the mitochondrial function, and the potential mechanism of ORRT on NAFLD were studied both in vivo and in vitro. Lipid levels were determined by triglyceride (TG), total cholesterol (TC), and Oil Red O staining. Oxidative stress and inflammation were assessed by detecting antioxidant enzyme activity, MDA content, and ELISA assay. Blood TG, TC, HDL-c and LDL-c levels were measured in HFD mice. Western blot analyses were used to determine the levels of the protein involved in fatty acid oxidation, oxidative metabolism, and mitochondria biogenesis and function. The mitochondrial membrane potential level was measured by JC-1 staining to teste the effect of ORRT on mitochondrial function in vitro. GW6471 (inhibitor of PPARα) was used to confirm the relationship between PPARα and PGC-1α. RESULTS ORRT significantly restrained NAFLD progression by attenuating lipid accumulation, oxidative stress and inflammatory response. Furthermore, ORRT upregulated thermogenesis-related gene expressions, such as uncoupling protein 1 (UCP1) and p38 mitogen-activated protein kinase (p38 MAPK). The results showed that the expression of key genes involved in fatty acid oxidation (e.g., CPT-1α, ACADL, PPARα) and in mitochondrial biogenesis and function (e.g., TFAM, NRF1, PGC-1α, and COX IV) was significantly increased. Together with the observed MMP improvement, these findings suggested that ORRT activated the mitochondrial oxidative pathway. Additionally, GW6471 inhibited the ORRT on promoting the expression of PGC-1α, CPT-1α, and ACADL. In conclusion, ORRT possessed the potential to prevent lipid accumulation via the PPARα/PGC-1α signaling pathway, which could be developed as a natural health-promoting oil against NAFLD.
Collapse
Affiliation(s)
- Hai-Yan Ni
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Liang Yu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Xue-Lian Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Li-Tao Wang
- College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Chun-Jian Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Han Huang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Han-Lin Zhu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Thomas Efferth
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Cheng-Bo Gu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Yu-Jie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Forestry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
43
|
Liu X, Wang L, Tan S, Chen Z, Wu B, Wu X. Therapeutic Effects of Berberine on Liver Fibrosis are associated With Lipid Metabolism and Intestinal Flora. Front Pharmacol 2022; 13:814871. [PMID: 35308208 PMCID: PMC8924518 DOI: 10.3389/fphar.2022.814871] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Liver cirrhosis is a form of liver fibrosis resulting from chronic hepatitis caused by various liver diseases, such as viral hepatitis, alcoholic liver damage, nonalcoholic steatohepatitis, autoimmune liver disease, and by parasitic diseases such as schistosomiasis. Liver fibrosis is the common pathological base and precursors of cirrhosis. Inflammation and disorders of lipid metabolism are key drivers in liver fibrosis. Studies have determined that parts of the arachidonic acid pathway, such as its metabolic enzymes and biologically active products, are hallmarks of inflammation, and that aberrant peroxisome proliferator-activated receptor gamma (PPARγ)-mediated regulation causes disorders of lipid metabolism. However, despite the ongoing research focus on delineating the mechanisms of liver fibrosis that underpin various chronic liver diseases, effective clinical treatments have yet to be developed. Berberine (BBR) is an isoquinoline alkaloid with multiple biological activities, such as anti-inflammatory, anti-bacterial, anti-cancer, and anti-hyperlipidemic activities. Many studies have also found that BBR acts via multiple pathways to alleviate liver fibrosis. Furthermore, the absorption of BBR is increased by nitroreductase-containing intestinal flora, and is strengthened via crosstalk with bile acid metabolism. This improves the oral bioavailability of BBR, thereby enhancing its clinical utility. The production of butyrate by intestinal anaerobic bacteria is dramatically increased by BBR, thereby amplifying butyrate-mediated alleviation of liver fibrosis. In this review, we discuss the effects of BBR on liver fibrosis and lipid metabolism, particularly the metabolism of arachidonic acid, and highlight the potential mechanisms by which BBR relieves liver fibrosis through lipid metabolism related and intestinal flora related pathways. We hope that this review will provide insights on the BBR-based treatment of liver cirrhosis and related research in this area, and we encourage further studies that increase the ability of BBR to enhance liver health.
Collapse
Affiliation(s)
- Xianzhi Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Lifu Wang
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Siwei Tan
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Zebin Chen
- Department of Hepatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Xiaoying Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| |
Collapse
|
44
|
Kato T, Ohara T, Suzuki N, Muto S, Tokuyama R, Mizutani M, Fukasawa H, Matsumura KI, Itai A. Discovery and structure-based design of a new series of potent and selective PPARδ agonists utilizing a virtual screening method. Bioorg Med Chem Lett 2022; 59:128567. [DOI: 10.1016/j.bmcl.2022.128567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 11/02/2022]
|
45
|
Qualitative and Quantitative Effects of Fatty Acids Involved in Heart Diseases. Metabolites 2022; 12:metabo12030210. [PMID: 35323653 PMCID: PMC8950543 DOI: 10.3390/metabo12030210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Fatty acids (FAs) have structural and functional diversity. FAs in the heart are closely associated with cardiac function, and their qualitative or quantitative abnormalities lead to the onset and progression of cardiac disease. FAs are important as an energy substrate for the heart, but when in excess, they exhibit cardio-lipotoxicity that causes cardiac dysfunction or heart failure with preserved ejection fraction. FAs also play a role as part of phospholipids that compose cell membranes, and the changes in mitochondrial phospholipid cardiolipin and the FA composition of plasma membrane phospholipids affect cardiomyocyte survival. In addition, FA metabolites exert a wide variety of bioactivities in the heart as lipid mediators. Recent advances in measurement using mass spectrometry have identified trace amounts of n-3 polyunsaturated fatty acids (PUFAs)-derived bioactive metabolites associated with heart disease. n-3 PUFAs have a variety of cardioprotective effects and have been shown in clinical trials to be effective in cardiovascular diseases, including heart failure. This review outlines the contributions of FAs to cardiac function and pathogenesis of heart diseases from the perspective of three major roles and proposes therapeutic applications and new medical perspectives of FAs represented by n-3 PUFAs.
Collapse
|
46
|
Oyama T, Takiguchi K, Miyachi H. Crystal structures of the ligand-binding domain of human peroxisome proliferator-activated receptor δ in complexes with phenylpropanoic acid derivatives and a pyridine carboxylic acid derivative. Acta Crystallogr F Struct Biol Commun 2022; 78:81-87. [PMID: 35102897 PMCID: PMC8805212 DOI: 10.1107/s2053230x22000449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022] Open
Abstract
Peroxisome proliferator-activated receptor δ (PPARδ) is a member of the nuclear receptor family and regulates glucose and lipid homeostasis in a ligand-dependent manner. Numerous phenylpropanoic acid derivatives targeting three PPAR subtypes (PPARα, PPARγ and PPARδ) have been developed towards the treatment of serious diseases such as lipid-metabolism disorders. In spite of the increasing attraction of PPARδ as a pharmaceutical target, only a limited number of protein-ligand complex structures are available. Here, four crystal structures of the ligand-binding domain of PPARδ in complexes with phenylpropanoic acid derivatives and a pyridine carboxylic acid derivative are described, including an updated, higher resolution version of a previous studied structure and three novel structures. These structures showed that the ligands were bound in the ligand-binding pocket of the receptor in a similar manner but with minor variations. The results could provide variable structural information for the further design and development of ligands targeting PPARδ.
Collapse
Affiliation(s)
- Takuji Oyama
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Japan
| | - Kazuki Takiguchi
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Japan
| | - Hiroyuki Miyachi
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, Japan
| |
Collapse
|
47
|
Pudakalakatti S, Titus M, Enriquez JS, Ramachandran S, Zacharias NM, Shureiqi I, Liu Y, Yao JC, Zuo X, Bhattacharya PK. Identifying the Metabolic Signatures of PPARD-Overexpressing Gastric Tumors. Int J Mol Sci 2022; 23:1645. [PMID: 35163565 PMCID: PMC8835946 DOI: 10.3390/ijms23031645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptor delta (PPARD) is a nuclear receptor known to play an essential role in regulation of cell metabolism, cell proliferation, inflammation, and tumorigenesis in normal and cancer cells. Recently, we found that a newly generated villin-PPARD mouse model, in which PPARD is overexpressed in villin-positive gastric progenitor cells, demonstrated spontaneous development of large, invasive gastric tumors as the mice aged. However, the role of PPARD in regulation of downstream metabolism in normal gastric and tumor cells is elusive. The aim of the present study was to find PPARD-regulated downstream metabolic changes and to determine the potential significance of those changes to gastric tumorigenesis in mice. Hyperpolarized [1-13C] pyruvate magnetic resonance spectroscopy, nuclear magnetic resonance spectroscopy, and liquid chromatography-mass spectrometry were employed for metabolic profiling to determine the PPARD-regulated metabolite changes in PPARD mice at different ages during the development of gastric cancer, and the changes were compared to corresponding wild-type mice. Nuclear magnetic resonance spectroscopy-based metabolomic screening results showed higher levels of inosine monophosphate (p = 0.0054), uracil (p = 0.0205), phenylalanine (p = 0.017), glycine (p = 0.014), and isocitrate (p = 0.029) and lower levels of inosine (p = 0.0188) in 55-week-old PPARD mice than in 55-week-old wild-type mice. As the PPARD mice aged from 10 weeks to 35 weeks and 55 weeks, we observed significant changes in levels of the metabolites inosine monophosphate (p = 0.0054), adenosine monophosphate (p = 0.009), UDP-glucose (p = 0.0006), and oxypurinol (p = 0.039). Hyperpolarized [1-13C] pyruvate magnetic resonance spectroscopy performed to measure lactate flux in live 10-week-old PPARD mice with no gastric tumors and 35-week-old PPARD mice with gastric tumors did not reveal a significant difference in the ratio of lactate to total pyruvate plus lactate, indicating that this PPARD-induced spontaneous gastric tumor development does not require glycolysis as the main source of fuel for tumorigenesis. Liquid chromatography-mass spectrometry-based measurement of fatty acid levels showed lower linoleic acid, palmitic acid, oleic acid, and steric acid levels in 55-week-old PPARD mice than in 10-week-old PPARD mice, supporting fatty acid oxidation as a bioenergy source for PPARD-expressing gastric tumors.
Collapse
Affiliation(s)
- Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.P.); (J.S.E.)
| | - Mark Titus
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.T.); (S.R.)
| | - José S. Enriquez
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.P.); (J.S.E.)
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA;
| | - Sumankalai Ramachandran
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.T.); (S.R.)
| | - Niki M. Zacharias
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA;
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Imad Shureiqi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.S.); (Y.L.); (J.C.Y.); (X.Z.)
| | - Yi Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.S.); (Y.L.); (J.C.Y.); (X.Z.)
| | - James C. Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.S.); (Y.L.); (J.C.Y.); (X.Z.)
| | - Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.S.); (Y.L.); (J.C.Y.); (X.Z.)
| | - Pratip K. Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.P.); (J.S.E.)
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA;
| |
Collapse
|
48
|
Structural overview and perspectives of the nuclear receptors, a major family as the direct targets for small-molecule drugs. Acta Biochim Biophys Sin (Shanghai) 2021; 54:12-24. [PMID: 35130630 PMCID: PMC9909358 DOI: 10.3724/abbs.2021001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The nuclear receptors (NRs) are an evolutionarily related family of transcription factors, which share certain common structural characteristics and regulate the expressions of various genes by recognizing different response elements. NRs play important roles in cell differentiation, proliferation, survival and apoptosis, rendering them indispensable in many physiological activities including growth and metabolism. As a result, dysfunctions of NRs are closely related to a variety of diseases, such as diabetes, obesity, infertility, inflammation, the Alzheimer's disease, cardiovascular diseases, prostate and breast cancers. Meanwhile, small-molecule drugs directly targeting NRs have been widely used in the treatment of above diseases. Here we summarize recent progress in the structural biology studies of NR family proteins. Compared with the dozens of structures of isolated DNA-binding domains (DBDs) and the striking more than a thousand of structures of isolated ligand-binding domains (LBDs) accumulated in the Protein Data Bank (PDB) over thirty years, by now there are only a small number of multi-domain NR complex structures, which reveal the integration of different NR domains capable of the allosteric signal transduction, or the detailed interactions between NR and various coregulator proteins. On the other hand, the structural information about several orphan NRs is still totally unavailable, hindering the further understanding of their functions. The fast development of new technologies in structural biology will certainly help us gain more comprehensive information of NR structures, inspiring the discovery of novel NR-targeting drugs with a new binding site beyond the classic LBD pockets and/or a new mechanism of action.
Collapse
|
49
|
Dietary excess regulates absorption and surface of gut epithelium through intestinal PPARα. Nat Commun 2021; 12:7031. [PMID: 34857752 PMCID: PMC8639731 DOI: 10.1038/s41467-021-27133-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/05/2021] [Indexed: 02/08/2023] Open
Abstract
Intestinal surface changes in size and function, but what propels these alterations and what are their metabolic consequences is unknown. Here we report that the food amount is a positive determinant of the gut surface area contributing to an increased absorptive function, reversible by reducing daily food. While several upregulated intestinal energetic pathways are dispensable, the intestinal PPARα is instead necessary for the genetic and environment overeating-induced increase of the gut absorptive capacity. In presence of dietary lipids, intestinal PPARα knock-out or its pharmacological antagonism suppress intestinal crypt expansion and shorten villi in mice and in human intestinal biopsies, diminishing the postprandial triglyceride transport and nutrient uptake. Intestinal PPARα ablation limits systemic lipid absorption and restricts lipid droplet expansion and PLIN2 levels, critical for droplet formation. This improves the lipid metabolism, and reduces body adiposity and liver steatosis, suggesting an alternative target for treating obesity.
Collapse
|
50
|
Kumar GVN, Hoshitsuki K, Rathod S, Ramsey MJ, Kokai L, Kershaw EE, Xie W, Fernandez CA. Mechanistic studies of PEG-asparaginase-induced liver injury and hepatic steatosis in mice. Acta Pharm Sin B 2021; 11:3779-3790. [PMID: 35024306 PMCID: PMC8727916 DOI: 10.1016/j.apsb.2021.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/19/2023] Open
Abstract
PEGylated-l-asparaginase (PEG-ASNase) is a chemotherapeutic agent used to treat pediatric acute lymphoblastic leukemia (ALL). Its use is avoided in adults due to its high risk of liver injury including hepatic steatosis, with obesity and older age considered risk factors of the injury. Our study aims to elucidate the mechanism of PEG-ASNase-induced liver injury. Mice received 1500 U/kg of PEG-ASNase and were sacrificed 1, 3, 5, and 7 days after drug administration. Liver triglycerides were quantified, and plasma bilirubin, ALT, AST, and non-esterified fatty acids (NEFA) were measured. The mRNA and protein levels of genes involved in hepatic fatty acid synthesis, β-oxidation, very low-density lipoprotein (VLDL) secretion, and white adipose tissue (WAT) lipolysis were determined. Mice developed hepatic steatosis after PEG-ASNase, which associated with increases in bilirubin, ALT, and AST. The hepatic genes Ppara, Lcad/Mcad, Hadhb, Apob100, and Mttp were upregulated, and Srebp-1c and Fas were downregulated after PEG-ASNase. Increased plasma NEFA, WAT loss, and adipose tissue lipolysis were also observed after PEG-ASNase. Furthermore, we found that PEG-ASNase-induced liver injury was exacerbated in obese and aged mice, consistent with clinical studies of ASNase-induced liver injury. Our data suggest that PEG-ASNase-induced liver injury is due to drug-induced lipolysis and lipid redistribution to the liver.
Collapse
Affiliation(s)
- Gundala Venkata Naveen Kumar
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| | - Keito Hoshitsuki
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
- Division of General Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sanjay Rathod
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| | - Manda J. Ramsey
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| | - Lauren Kokai
- Department of Plastic Surgery, University of Pittsburgh and the McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15261, USA
| | - Erin E. Kershaw
- University of Pittsburgh, Division of Endocrinology, Department of Medicine, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| | - Christian A. Fernandez
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| |
Collapse
|