1
|
Cho JY, Woo HE, Yeom J, An M, Ma S, Yim DJ, Kim SH, Lim YH. Microbial chaperonin 60 inhibits osteoclast differentiation by interfering with RANK/RANKL binding and overexpression of lipocalin2. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119850. [PMID: 39303785 DOI: 10.1016/j.bbamcr.2024.119850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Osteoclasts play a crucial role in bone destruction in rheumatoid arthritis (RA). This study aimed to investigate the inhibitory effects of chaperonin 60 (CPN60), identified in the surface proteins of Propionibacterium freudenreichii MJ2, on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation, and elucidate the underlying mechanisms. Treatment with CPN60 inhibited RANKL-induced osteoclast differentiation by decreasing the expression of osteoclast differentiation-related genes and proteins. CPN60 interfered with the binding of RANKL to RANK, as elucidated using surface plasmon resonance (SPR) and immunofluorescence. In silico molecular docking analysis further supported the interference of CPN60 with the binding of RANKL and RANK. CPN60 suppressed the expression of molecules linked to the calcium-dependent pathway in RANKL-induced osteoclast differentiation at both mRNA and protein levels. Microarray analysis showed elevated expression of lipocalin 2 (Lcn2), which was closely linked to the inhibition of osteoclast differentiation in CPN60-treated RAW 264.7 cells. Inhibition of Lcn2 decreased the inhibitory effect of CPN60 on osteoclast differentiation, indicating that increased expression of Lcn2 by CPN60 contributes to the inhibition of osteoclastogenesis. In addition, CPN60 treatment alleviated arthritis symptoms in collagen-induced arthritis mice by reducing the generation of collagen-specific antibodies and inhibiting osteoclast differentiation. In conclusion, CPN60 of P. freudenreichii MJ2 interfered with RANKL-RANK binding, reduced the expression of genes and proteins related to osteoclast differentiation and upregulated Lcn2 expression, thereby inhibiting RANKL-induced osteoclast differentiation, which might contribute to ameliorate collagen-induced arthritis.
Collapse
Affiliation(s)
- Joo-Young Cho
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hee-Eun Woo
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Jiah Yeom
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Mirae An
- Department of Public Health Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Seongho Ma
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Dong Joon Yim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Hun Kim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Young-Hee Lim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea; School of Biosystems and Biomedical Sciences, Korea University, Seoul 02841, Republic of Korea; Department of Laboratory Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea.
| |
Collapse
|
2
|
Uttam V, Vohra V, Chhotaray S, Santhosh A, Diwakar V, Patel V, Gahlyan RK. Exome-wide comparative analyses revealed differentiating genomic regions for performance traits in Indian native buffaloes. Anim Biotechnol 2024; 35:2277376. [PMID: 37934017 DOI: 10.1080/10495398.2023.2277376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
In India, 20 breeds of buffalo have been identified and registered, yet limited studies have been conducted to explore the performance potential of these breeds, especially in the Indian native breeds. This study is a maiden attempt to delineate the important variants and unique genes through exome sequencing for milk yield, milk composition, fertility, and adaptation traits in Indian local breeds of buffalo. In the present study, whole exome sequencing was performed on Chhattisgarhi (n = 3), Chilika (n = 4), Gojri (n = 3), and Murrah (n = 4) buffalo breeds and after stringent quality control, 4333, 6829, 4130, and 4854 InDels were revealed, respectively. Exome-wide FST along 100-kb sliding windows detected 27, 98, 38, and 35 outlier windows in Chhattisgarhi, Chilika, Gojri, and Murrah, respectively. The comparative exome analysis of InDels and subsequent gene ontology revealed unique breed specific genes for milk yield (CAMSAP3), milk composition (CLCN1, NUDT3), fertility (PTGER3) and adaptation (KCNA3, TH) traits. Study provides insight into mechanism of how these breeds have evolved under natural selection, the impact of these events on their respective genomes, and their importance in maintaining purity of these breeds for the traits under study. Additionally, this result will underwrite to the genetic acquaintance of these breeds for breeding application, and in understanding of evolution of these Indian local breeds.
Collapse
Affiliation(s)
- Vishakha Uttam
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vikas Vohra
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Supriya Chhotaray
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Ameya Santhosh
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vikas Diwakar
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vaibhav Patel
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Rajesh Kumar Gahlyan
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
3
|
Vandenberghe-Dürr S, Gilliet M, Di Domizio J. OLFM4 regulates the antimicrobial and DNA binding activity of neutrophil cationic proteins. Cell Rep 2024; 43:114863. [PMID: 39396234 DOI: 10.1016/j.celrep.2024.114863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/30/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
Neutrophil cationic proteins (NCPs) are a group of granule antimicrobial and inflammatory proteins released by activated neutrophils. These proteins primarily function via their positively charged structure, which facilitates interactions with bacterial membranes and the formation of immunogenic DNA complexes, thereby contributing to the initiation of wound repair in injured skin. After analyzing the structural properties of secreted neutrophil granule proteins, we identified OLFM4 as the only negatively charged molecule that interferes with NCP oligomerization. Through this interference, OLFM4 can inhibit neutrophil-mediated bacterial killing and DNA complex-dependent activation of Toll-like receptor 9 (TLR9) in plasmacytoid dendritic cells (pDCs) and neutrophils. While addition of exogenous OLFM4 blocks these processes, OLFM4 inhibition enhances neutrophil-dependent bacterial killing and DNA complex formation, ultimately leading to accelerated closure of skin wounds.
Collapse
Affiliation(s)
- Sophie Vandenberghe-Dürr
- Department of Dermatology and Venereology, University Hospital of Lausanne UNIL-CHUV, 1011 Lausanne, Switzerland
| | - Michel Gilliet
- Department of Dermatology and Venereology, University Hospital of Lausanne UNIL-CHUV, 1011 Lausanne, Switzerland.
| | - Jeremy Di Domizio
- Department of Dermatology and Venereology, University Hospital of Lausanne UNIL-CHUV, 1011 Lausanne, Switzerland.
| |
Collapse
|
4
|
He Y, Cheng S, Yang L, Ding L, Chen Y, Lu J, Zheng R. Associations between plasma markers and symptoms of anxiety and depression in patients with breast cancer. BMC Psychiatry 2024; 24:678. [PMID: 39394561 PMCID: PMC11468209 DOI: 10.1186/s12888-024-06143-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND AND PURPOSE Among patients with solid tumors, those with breast cancer (BC) experience the most severe psychological issues, exhibiting a high global prevalence of depression that negatively impacts prognosis. Depression can be easily missed, and clinical markers for its diagnosis are lacking. Therefore, this study in order to investigate the diagnostic markers for BC patients with depression and anxiety and explore the specific changes of metabolism. METHOD AND RESULTS Thirty-eight BC patients and thirty-six matched healthy controls were included in the study. The anxiety and depression symptoms of the participants were evaluated by the 17-item Hamilton Depression Scale (HAMD-17) and Hamilton Anxiety Scale (HAMA). Plasma levels of glial fibrillary acidic protein (GFAP) and lipocalin-2 (LCN2) were evaluated using enzyme linked immunosorbent assay, and plasma lactate levels and metabolic characteristics were analyzed. CONCLUSION This study revealed that GFAP and LCN2 may be good diagnostic markers for anxiety or depression in patients with BC and that plasma lactate levels are also a good diagnostic marker for anxiety. In addition, specific changes in metabolism in patients with BC were preliminarily explored.
Collapse
Affiliation(s)
- Yibo He
- Department of Oncology, Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Shangping Cheng
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingrong Yang
- Department of Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Lingyu Ding
- Department of Oncology, Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Yidan Chen
- Department of Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Jing Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, 310003, China.
| | - Ruzhen Zheng
- Department of Oncology, Hangzhou Cancer Hospital, Hangzhou, 310002, China.
| |
Collapse
|
5
|
Yang Y, Li S, Liu K, Zhang Y, Zhu F, Ben T, Chen Z, Zhi F. Lipocalin-2-mediated intestinal epithelial cells pyroptosis via NF-κB/NLRP3/GSDMD signaling axis adversely affects inflammation in colitis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167279. [PMID: 38844113 DOI: 10.1016/j.bbadis.2024.167279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Ulcerative colitis (UC) is a major inflammatory bowel disease (IBD) characterized by intestinal epithelium damage. Recently, Lipocalin-2 (LCN2) has been identified as a potential fecal biomarker for patients with UC. However, further investigation is required to explore its pro-inflammatory role in UC and the underlying mechanism. The biological analysis revealed that Lcn2 serves as a putative signature gene in the colon mucosa of patients with UC and its association with the capsase/pyroptosis signaling pathway in UC. In wild-type mice with DSS-induced colitis, LCN2 overexpression in colon mucosa via in vivo administration of Lcn2 overexpression plasmid resulted in exacerbation of colitis symptoms and epithelium damage, as well as increased expression levels of pyroptosis markers (cleaved caspase1, GSDMD, IL-1β, HMGB1 and IL-18). Additionally, we observed downregulation in the expression levels of pyroptosis markers following in vivo silencing of LCN2. However, the pro-inflammatory effect of LCN2 overexpression was effectively restrained in GSDMD-KO mice. Moreover, single-cell RNA-sequencing analysis revealed that Lcn2 was predominantly expressed in the intestinal epithelial cells (IECs) within the colon mucosa of patients with UC. We found that LCN2 effectively regulated pyroptosis events by modulating the NF-κB/NLRP3/GSDMD signaling axis in NCM460 cells stimulated by LPS and ATP. These findings demonstrate the pro-inflammatory role of LCN2 in colon epithelium and provide a potential target for inhibiting pyroptosis in UC.
Collapse
Affiliation(s)
- Yuyi Yang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China; Department of Gastroenterology, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512026, China
| | - Ke Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Fangqing Zhu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Teng Ben
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Zheng Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China.
| |
Collapse
|
6
|
Herfindal AM, Nilsen M, Aspholm TE, Schultz GIG, Valeur J, Rudi K, Thoresen M, Lundin KEA, Henriksen C, Bøhn SK. Effects of fructan and gluten on gut microbiota in individuals with self-reported non-celiac gluten/wheat sensitivity-a randomised controlled crossover trial. BMC Med 2024; 22:358. [PMID: 39227818 PMCID: PMC11373345 DOI: 10.1186/s12916-024-03562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Individuals with non-celiac gluten/wheat sensitivity (NCGWS) experience improvement in gastrointestinal symptoms following a gluten-free diet. Although previous results have indicated that fructo-oligosaccharides (FOS), a type of short-chain fructans, were more likely to induce symptoms than gluten in self-reported NCGWS patients, the underlying mechanisms are unresolved. METHODS Our main objective was therefore to investigate whether FOS-fructans and gluten affect the composition and diversity of the faecal microbiota (16S rRNA gene sequencing), faecal metabolites of microbial fermentation (short-chain fatty acids [SCFA]; gas chromatography with flame ionization detector), and a faecal biomarker of gut inflammation (neutrophil gelatinase-associated lipocalin, also known as lipocalin 2, NGAL/LCN2; ELISA). In the randomised double-blind placebo-controlled crossover study, 59 participants with self-reported NCGWS underwent three different 7-day diet challenges with gluten (5.7 g/day), FOS-fructans (2.1 g/day), and placebo separately (three periods, six challenge sequences). RESULTS The relative abundances of certain bacterial taxa were affected differently by the diet challenges. After the FOS-fructan challenge, Fusicatenibacter increased, while Eubacterium (E.) coprostanoligenes group, Anaerotruncus, and unknown Ruminococcaceae genera decreased. The gluten challenge was primarily characterized by increased abundance of Eubacterium xylanophilum group. However, no differences were found for bacterial diversity (α-diversity), overall bacterial community structure (β-diversity), faecal metabolites (SCFA), or NGAL/LCN2. Furthermore, gastrointestinal symptoms in response to FOS-fructans were generally not linked to substantial shifts in the gut bacterial community. However, the reduction in E. coprostanoligenes group following the FOS-fructan challenge was associated with increased gastrointestinal pain. Finally, correlation analysis revealed that changes in gastrointestinal symptoms following the FOS-fructan and gluten challenges were linked to varying bacterial abundances at baseline. CONCLUSIONS In conclusion, while FOS-fructans induced more gastrointestinal symptoms than gluten in the NCGWS patients, we did not find that substantial shifts in the composition nor function of the faecal microbiota could explain these differences in the current study. However, our results indicate that individual variations in baseline bacterial composition/function may influence the gastrointestinal symptom response to both FOS-fructans and gluten. Additionally, the change in E. coprostanoligenes group, which was associated with increased symptoms, implies that attention should be given to these bacteria in future trials investigating the impact of dietary treatments on gastrointestinal symptoms. TRIAL REGISTRATION Clinicaltrials.gov as NCT02464150.
Collapse
Affiliation(s)
- Anne Mari Herfindal
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway
| | - Morten Nilsen
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway
| | - Trude E Aspholm
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway
| | | | - Jørgen Valeur
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Knut Rudi
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway
| | - Magne Thoresen
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Knut E A Lundin
- Disease Research Centre, Norwegian Coeliac, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Christine Henriksen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Siv K Bøhn
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway.
| |
Collapse
|
7
|
Laohavisudhi K, Sriwichaiin S, Attachaipanich T, Wittayachamnankul B, Chattipakorn N, Chattipakorn S. Mechanistic insights into Lipocalin-2 in ischemic stroke and hemorrhagic brain injury: Integrating animal and clinical studies. Exp Neurol 2024; 379:114885. [PMID: 38996863 DOI: 10.1016/j.expneurol.2024.114885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Brain injuries, including strokes and traumatic brain injuries (TBI), are a major global health concern, contributing significantly to both mortality and long-term disability. Recent research has identified lipocalin-2 (LCN2), a glycoprotein secreted by various brain cells, as a key factor in influencing brain injury outcomes. Evidence from animal and clinical studies firmly establishes the pivotal role of LCN2 in driving the inflammatory responses triggered by damage to brain tissue. Furthermore, increased LCN2 promotes cellular differentiation, blood-brain barrier breakdown, and decreases cell viability. Interventions with LCN2 inhibitors attenuated brain injury through a reduction in the inflammation process and enhanced cellular viability. Potential mechanisms of LCN2 involve several pathways including the Janus kinase-2 (JAK2)-signal transducers and the transcription-3 (STAT3) signaling, hypoxia-inducible factor 1-alpha (HIF-1α)-LCN2-vascular endothelial growth factor alpha (VEGFα), and the PKR-like ER kinase (PERK) pathways. LCN2 itself interacts with diverse inflammatory cytokines in TBI and intracranial hemorrhage (ICH), resulting in disruption of the blood-brain barrier, increased programmed cell death, and an imbalance in iron homeostasis. Clinical studies have also shown that increased LCN2 level can act as a prognostic biomarker of outcomes following brain injuries. Therefore, this review aims to comprehensively evaluate the role and underlying mechanisms of LCN2 in brain injuries, including stroke and TBI, and explore potential therapeutic interventions targeting LCN2 in these conditions.
Collapse
Affiliation(s)
- Korsin Laohavisudhi
- Department of Emergency Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirawit Sriwichaiin
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tanawat Attachaipanich
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Borwon Wittayachamnankul
- Department of Emergency Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Siriporn Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
8
|
Deng Y, Lu L, Zhu D, Zhang H, Fu Y, Tan Y, Tan X, Guo M, Zhang Y, Yang H, Yang B, Liu T, Chen Y. MafG/MYH9-LCN2 axis promotes liver fibrosis through inhibiting ferroptosis of hepatic stellate cells. Cell Death Differ 2024; 31:1127-1139. [PMID: 38871948 PMCID: PMC11369194 DOI: 10.1038/s41418-024-01322-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
Hepatic stellate cells (HSCs) secrete extracellular matrix for collagen deposition, contributing to liver fibrosis. Ferroptosis is a novel type of programmed cell death induced by iron overload-dependent lipid peroxidation. Regulation of ferroptosis in hepatic stellate cells (HSCs) may have therapeutic potential for liver fibrosis. Here, we found that Maf bZIP transcription factor G (MafG) was upregulated in human and murine liver fibrosis. Interestingly, MafG knockdown increased HSCs ferroptosis, while MafG overexpression conferred resistance of HSCs to ferroptosis. Mechanistically, MafG physically interacted with non-muscle myosin heavy chain IIa (MYH9) to transcriptionally activate lipocalin 2 (LCN2) expression, a known suppressor for ferroptosis. Site-directed mutations of MARE motif blocked the binding of MafG to LCN2 promoter. Re-expression of LCN2 in MafG knockdown HSCs restored resistance to ferroptosis. In bile duct ligation (BDL)-induced mice model, we found that treatment with erastin alleviated murine liver fibrosis by inducing HSC ferroptosis. HSC-specific knowdown MafG based on adeno-associated virus 6 (AAV-6) improved erastin-induced HSC ferroptosis and alleviation of liver fibrosis. Taken together, MafG inhibited HSCs ferroptosis to promote liver fibrosis through transcriptionally activating LCN2 expression. These results suggest that MafG/MYH9-LCN2 signaling pathway could be a novel targets for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yalan Deng
- Department of Ultrasonic Imaging, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Liqing Lu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Dandan Zhu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huajun Zhang
- Department of Ultrasonic Imaging, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ying Fu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuying Tan
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xuemei Tan
- Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ye Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Heping Yang
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bing Yang
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ting Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
9
|
Li J, Simmons AJ, Hawkins CV, Chiron S, Ramirez-Solano MA, Tasneem N, Kaur H, Xu Y, Revetta F, Vega PN, Bao S, Cui C, Tyree RN, Raber LW, Conner AN, Pilat JM, Jacobse J, McNamara KM, Allaman MM, Raffa GA, Gobert AP, Asim M, Goettel JA, Choksi YA, Beaulieu DB, Dalal RL, Horst SN, Pabla BS, Huo Y, Landman BA, Roland JT, Scoville EA, Schwartz DA, Washington MK, Shyr Y, Wilson KT, Coburn LA, Lau KS, Liu Q. Identification and multimodal characterization of a specialized epithelial cell type associated with Crohn's disease. Nat Commun 2024; 15:7204. [PMID: 39169060 PMCID: PMC11339313 DOI: 10.1038/s41467-024-51580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Crohn's disease (CD) is a complex chronic inflammatory disorder with both gastrointestinal and extra-intestinal manifestations associated immune dysregulation. Analyzing 202,359 cells from 170 specimens across 83 patients, we identify a distinct epithelial cell type in both terminal ileum and ascending colon (hereon as 'LND') with high expression of LCN2, NOS2, and DUOX2 and genes related to antimicrobial response and immunoregulation. LND cells, confirmed by in-situ RNA and protein imaging, are rare in non-IBD controls but expand in active CD, and actively interact with immune cells and specifically express IBD/CD susceptibility genes, suggesting a possible function in CD immunopathogenesis. Furthermore, we discover early and late LND subpopulations with different origins and developmental potential. A higher ratio of late-to-early LND cells correlates with better response to anti-TNF treatment. Our findings thus suggest a potential pathogenic role for LND cells in both Crohn's ileitis and colitis.
Collapse
Affiliation(s)
- Jia Li
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Caroline V Hawkins
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sophie Chiron
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marisol A Ramirez-Solano
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Naila Tasneem
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Harsimran Kaur
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yanwen Xu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Frank Revetta
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paige N Vega
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shunxing Bao
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Can Cui
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Regina N Tyree
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Larry W Raber
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna N Conner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer M Pilat
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Justin Jacobse
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kara M McNamara
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Margaret M Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gabriella A Raffa
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeremy A Goettel
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yash A Choksi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Dawn B Beaulieu
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robin L Dalal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara N Horst
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baldeep S Pabla
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuankai Huo
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Joseph T Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth A Scoville
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David A Schwartz
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Kay Washington
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA.
| | - Lori A Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA.
| | - Ken S Lau
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
10
|
Tomonaga T, Higashi H, Izumi H, Nishida C, Kawai N, Sato K, Morimoto T, Higashi Y, Yatera K, Morimoto Y. Investigation of pulmonary inflammatory responses following intratracheal instillation of and inhalation exposure to polypropylene microplastics. Part Fibre Toxicol 2024; 21:29. [PMID: 39107780 PMCID: PMC11301944 DOI: 10.1186/s12989-024-00592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Microplastics have been detected in the atmosphere as well as in the ocean, and there is concern about their biological effects in the lungs. We conducted a short-term inhalation exposure and intratracheal instillation using rats to evaluate lung disorders related to microplastics. We conducted an inhalation exposure of polypropylene fine powder at a low concentration of 2 mg/m3 and a high concentration of 10 mg/m3 on 8-week-old male Fischer 344 rats for 6 h a day, 5 days a week for 4 weeks. We also conducted an intratracheal instillation of polypropylene at a low dose of 0.2 mg/rat and a high dose of 1.0 mg/rat on 12-week-old male Fischer 344 rats. Rats were dissected from 3 days to 6 months after both exposures, and bronchoalveolar lavage fluid (BALF) and lung tissue were collected to analyze lung inflammation and lung injury. RESULTS Both exposures to polypropylene induced a persistent influx of inflammatory cells and expression of CINC-1, CINC-2, and MPO in BALF from 1 month after exposure. Genetic analysis showed a significant increase in inflammation-related factors for up to 6 months. The low concentration in the inhalation exposure of polypropylene also induced mild lung inflammation. CONCLUSION These findings suggest that inhaled polypropylene, which is a microplastic, induces persistent lung inflammation and has the potential for lung disorder. Exposure to 2 mg/m3 induced inflammatory changes and was thought to be the Lowest Observed Adverse Effect Level (LOAEL) for acute effects of polypropylene. However, considering the concentration of microplastics in a real general environment, the risk of environmental hazards to humans may be low.
Collapse
Affiliation(s)
- Taisuke Tomonaga
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan.
| | - Hidenori Higashi
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Chinatsu Nishida
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Naoki Kawai
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Kazuma Sato
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Toshiki Morimoto
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Yasuyuki Higashi
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Yasuo Morimoto
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| |
Collapse
|
11
|
Hutchings CJ, Sato AK. Phage display technology and its impact in the discovery of novel protein-based drugs. Expert Opin Drug Discov 2024; 19:887-915. [PMID: 39074492 DOI: 10.1080/17460441.2024.2367023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/07/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Phage display technology is a well-established versatile in vitro display technology that has been used for over 35 years to identify peptides and antibodies for use as reagents and therapeutics, as well as exploring the diversity of alternative scaffolds as another option to conventional therapeutic antibody discovery. Such successes have been responsible for spawning a range of biotechnology companies, as well as many complementary technologies devised to expedite the drug discovery process and resolve bottlenecks in the discovery workflow. AREAS COVERED In this perspective, the authors summarize the application of phage display for drug discovery and provide examples of protein-based drugs that have either been approved or are being developed in the clinic. The amenability of phage display to generate functional protein molecules to challenging targets and recent developments of strategies and techniques designed to harness the power of sampling diverse repertoires are highlighted. EXPERT OPINION Phage display is now routinely combined with cutting-edge technologies to deep-mine antibody-based repertoires, peptide, or alternative scaffold libraries generating a wealth of data that can be leveraged, e.g. via artificial intelligence, to enable the potential for clinical success in the discovery and development of protein-based therapeutics.
Collapse
|
12
|
Afridi R, Kim JH, Bhusal A, Lee WH, Suk K. Lipocalin-2 as a mediator of neuroimmune communication. J Leukoc Biol 2024; 116:357-368. [PMID: 38149462 DOI: 10.1093/jleuko/qiad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Lipocalin-2, a neutrophil gelatinase-associated lipocalin, is a 25-kDa secreted protein implicated in a broad range of inflammatory diseases affecting the brain and periphery. It is a pleotropic protein expressed by various immune and nonimmune cells throughout the body. Importantly, the surge in lipocalin-2 levels in disease states has been associated with a myriad of undesirable effects, further exacerbating the ongoing pathological processes. In the brain, glial cells are the principal source of lipocalin-2, which plays a definitive role in determining their functional phenotypes. In different central nervous system pathologies, an increased expression of glial lipocalin-2 has been linked to neurotoxicity. Lipocalin-2 mediates a crosstalk between central and peripheral immune cells under neuroinflammatory conditions. One intriguing aspect is that elevated lipocalin-2 levels in peripheral disorders, such as cancer, metabolic conditions, and liver diseases, potentially incite an inflammatory activation of glial cells while disrupting neuronal functions. This review comprehensively summarizes the influence of lipocalin-2 on the exacerbation of neuroinflammation by regulating various cellular processes. Additionally, this review explores lipocalin-2 as a mediator of neuroimmune crosstalk in various central nervous system pathologies and highlights the role of lipocalin-2 in carrying inflammatory signals along the neuroimmune axis.
Collapse
Affiliation(s)
- Ruqayya Afridi
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41940, Republic of Korea
| | - Jae-Hong Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41940, Republic of Korea
| | - Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41940, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41940, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
13
|
Wacker JN, Woods JJ, Rupert PB, Peterson A, Allaire M, Lukens WW, Gaiser AN, Minasian SG, Strong RK, Abergel RJ. Actinium chelation and crystallization in a macromolecular scaffold. Nat Commun 2024; 15:5741. [PMID: 39009580 PMCID: PMC11251196 DOI: 10.1038/s41467-024-50017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Targeted alpha therapy (TAT) pairs the specificity of antigen targeting with the lethality of alpha particles to eradicate cancerous cells. Actinium-225 [225Ac; t1/2 = 9.920(3) days] is an alpha-emitting radioisotope driving the next generation of TAT radiopharmaceuticals. Despite promising clinical results, a fundamental understanding of Ac coordination chemistry lags behind the rest of the Periodic Table due to its limited availability, lack of stable isotopes, and inadequate systems poised to probe the chemical behavior of this radionuclide. In this work, we demonstrate a platform that combines an 8-coordinate synthetic ligand and a mammalian protein to characterize the solution and solid-state behavior of the longest-lived Ac isotope, 227Ac [t1/2 = 21.772(3) years]. We expect these results to direct renewed efforts for 225Ac-TAT development, aid in understanding Ac coordination behavior relative to other +3 lanthanides and actinides, and more broadly inform this element's position on the Periodic Table.
Collapse
Affiliation(s)
- Jennifer N Wacker
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Joshua J Woods
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Peter B Rupert
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Appie Peterson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Marc Allaire
- Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Wayne W Lukens
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alyssa N Gaiser
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI, 48824, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Stefan G Minasian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Roland K Strong
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
14
|
Doroszkiewicz J, Kulczyńska-Przybik A, Dulewicz M, Mroczko J, Borawska R, Słowik A, Zetterberg H, Hanrieder J, Blennow K, Mroczko B. Associations between Microglia and Astrocytic Proteins and Tau Biomarkers across the Continuum of Alzheimer's Disease. Int J Mol Sci 2024; 25:7543. [PMID: 39062786 PMCID: PMC11277045 DOI: 10.3390/ijms25147543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Recent investigations implicate neuroinflammatory changes, including astrocyte and microglia activation, as crucial in the progression of Alzheimer's disease (AD) Thus, we compared selected proteins reflecting neuroinflammatory processes to establish their connection to AD pathologies. Our study, encompassing 80 subjects with (n = 42) AD, (n = 18) mild cognitive impairment (MCI) and (n = 20) non-demented controls compares the clinical potential of tested molecules. Using antibody-based methods, we assessed concentrations of NGAL, CXCL-11, sTREM1, and sTREM2 in cerebrospinal fluid (CSF). Proinflammatory proteins, NGAL, and CXCL-11 reached a peak in the early stage of the disease and allowed for the identification of patients with MCI. Furthermore, the concentration of the anti-inflammatory molecule sTREM2 was highest in the more advanced stage of the disease and permitted differentiation between AD and non-demented controls. Additionally, sTREM2 was biochemically linked to tau and pTau in the AD group. Notably, NGAL demonstrated superior diagnostic performance compared to classical AD biomarkers in discriminating MCI patients from controls. These findings suggest that proteins secreted mainly through microglia dysfunction might play not only a detrimental but also a protective role in the development of AD pathology.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (J.D.); (A.K.-P.); (J.M.); (R.B.)
| | - Agnieszka Kulczyńska-Przybik
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (J.D.); (A.K.-P.); (J.M.); (R.B.)
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 431 80 Mölndal, Sweden; (M.D.); (H.Z.); (J.H.); (K.B.)
| | - Jan Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (J.D.); (A.K.-P.); (J.M.); (R.B.)
| | - Renata Borawska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (J.D.); (A.K.-P.); (J.M.); (R.B.)
| | - Agnieszka Słowik
- Department of Neurology, Jagiellonian University, 30-688 Cracow, Poland;
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 431 80 Mölndal, Sweden; (M.D.); (H.Z.); (J.H.); (K.B.)
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London WC1N 3AR, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792-2460, USA
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 431 80 Mölndal, Sweden; (M.D.); (H.Z.); (J.H.); (K.B.)
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- SciLifeLab, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 431 80 Mölndal, Sweden; (M.D.); (H.Z.); (J.H.); (K.B.)
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (J.D.); (A.K.-P.); (J.M.); (R.B.)
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
15
|
Buoso C, Seifert M, Lang M, Griffith CM, Talavera Andújar B, Castelo Rueda MP, Fischer C, Doerrier C, Talasz H, Zanon A, Pramstaller PP, Schymanski EL, Pichler I, Weiss G. Dopamine‑iron homeostasis interaction rescues mitochondrial fitness in Parkinson's disease. Neurobiol Dis 2024; 196:106506. [PMID: 38648865 DOI: 10.1016/j.nbd.2024.106506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Imbalances of iron and dopamine metabolism along with mitochondrial dysfunction have been linked to the pathogenesis of Parkinson's disease (PD). We have previously suggested a direct link between iron homeostasis and dopamine metabolism, as dopamine can increase cellular uptake of iron into macrophages thereby promoting oxidative stress responses. In this study, we investigated the interplay between iron, dopamine, and mitochondrial activity in neuroblastoma SH-SY5Y cells and human induced pluripotent stem cell (hiPSC)-derived dopaminergic neurons differentiated from a healthy control and a PD patient with a mutation in the α-synuclein (SNCA) gene. In SH-SY5Y cells, dopamine treatment resulted in increased expression of the transmembrane iron transporters transferrin receptor 1 (TFR1), ferroportin (FPN), and mitoferrin2 (MFRN2) and intracellular iron accumulation, suggesting that dopamine may promote iron uptake. Furthermore, dopamine supplementation led to reduced mitochondrial fitness including decreased mitochondrial respiration, increased cytochrome c control efficiency, reduced mtDNA copy number and citrate synthase activity, increased oxidative stress and impaired aconitase activity. In dopaminergic neurons derived from a healthy control individual, dopamine showed comparable effects as observed in SH-SY5Y cells. The hiPSC-derived PD neurons harboring an endogenous SNCA mutation demonstrated altered mitochondrial iron homeostasis, reduced mitochondrial capacity along with increased oxidative stress and alterations of tricarboxylic acid cycle linked metabolic pathways compared with control neurons. Importantly, dopamine treatment of PD neurons promoted a rescue effect by increasing mitochondrial respiration, activating antioxidant stress response, and normalizing altered metabolite levels linked to mitochondrial function. These observations provide evidence that dopamine affects iron homeostasis, intracellular stress responses and mitochondrial function in healthy cells, while dopamine supplementation can restore the disturbed regulatory network in PD cells.
Collapse
Affiliation(s)
- Chiara Buoso
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy; Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus Seifert
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Martin Lang
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy
| | - Corey M Griffith
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Begoña Talavera Andújar
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | | | - Christine Fischer
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Heribert Talasz
- Institute of Medical Biochemistry, Protein Core Facility, Biocenter Innsbruck, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | | | - Emma L Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy.
| | - Guenter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
16
|
Levinson T, Shenhar-Tsarfaty S, Grupper A, Witztum T, Berliner S, Shtark M. Inflammation-Associated Tubulopathy in Patients with Acute Bacterial Infections. Int J Gen Med 2024; 17:2691-2699. [PMID: 38883704 PMCID: PMC11178074 DOI: 10.2147/ijgm.s452068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/09/2024] [Indexed: 06/18/2024] Open
Abstract
Background Acute kidney injury associated with the underlying inflammatory process of an acute bacterial infection affects patient morbidity and mortality. Clinicians use creatinine and estimated glomerular filtration rate (EGFR) to assess this renal injury, however, these measures may lag behind and change only once significant kidney injury has occurred. Neutrophil gelatinase-associated lipocalin (NGAL) is up-regulated by inflammation and infection and may serve as an early detection biomarker of kidney injury. Methods Patients hospitalized with bacterial infections were assessed demographically, clinically and had their creatinine levels, EGFR and inflammatory biomarker levels, including urinary NGAL measured. Findings were compared between controls and patients across different EGFRs. Results Fifty-one participants were included in the study. Among this cohort, 31 suffered bacterial infection. Inflammatory biomarkers including urinary NGAL were found to be higher in the infection group compared to the control group. Urinary NGAL level was significantly higher across all EGFRs of patients diagnosed with infection, including those with normal EGFR. Conclusion Urinary NGAL identifies early kidney damage associated with bacterial infection even at normal EGFR and alerts the treating physician to undertake the necessary measures to mitigate the renal injury.
Collapse
Affiliation(s)
- Tal Levinson
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Infectious Diseases Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Internal Medicine H, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Shani Shenhar-Tsarfaty
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Internal Medicine C, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ayelet Grupper
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Nephrology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Organ Transplantation Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Tamar Witztum
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Internal Medicine D, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Shlomo Berliner
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Internal Medicine E, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Moshe Shtark
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Clinical Laboratory Services, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
17
|
Qiu X, Ye K, Ma Y, Zhao Q, Wang L, Yang J. Genome sequence-based species classification of Enterobacter cloacae complex: a study among clinical isolates. Microbiol Spectr 2024; 12:e0431223. [PMID: 38687068 PMCID: PMC11237491 DOI: 10.1128/spectrum.04312-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/13/2024] [Indexed: 05/02/2024] Open
Abstract
Accurate species-level identification of Enterobacter cloacae complex (ECC) is crucial for related research. The classification of ECC is based on strain-to-strain phylogenetic congruence, as well as genomic features including average nucleotide identity (ANI) and digitalized DNA-DNA hybridization (dDDH). ANI and dDDH derived from whole-genome sequencing have emerged as a reliable metric for assessing genetic relatedness between genomes and are increasingly recognized as a standard for species delimitation. Up to now, there are two different classification methods for ECC. The first one categorizes E. hormaechei, a species within ECC, into five subspecies (E. hormaechei subsp. steigerwaltii, subsp. oharae, subsp. xiangfangensis, subsp. hoffmannii, and subsp. hormaechei). The second classifies E. hormaechei as three species: E. hormaechei, "E. xiangfangensis," "E. hoffmanii." While the former is well-accepted in the academic area, the latter may have a greater ability to distinguish different species of ECC. To assess the suitability of these identification criteria for clinical ECC isolates, we conducted a comprehensive analysis involving phylogenetic analysis, ANI and dDDH value alignment, virulence gene identification, and capsule typing on 256 clinical ECC strains isolated from the bloodstream. Our findings indicated that the method of categorizing E. hormaechei into five subspecies has better correlation and consistency with the molecular characteristics of clinical ECC isolates, as evidenced by phylogenetic analysis, virulence genes, and capsule typing. Therefore, the subspecies-based classification method appears more suitable for taxonomic assignments of clinical ECC isolates. IMPORTANCE Standardizing taxonomy of the Enterobacter cloacae complex (ECC) is necessary for data integration across diverse studies. The study utilized whole-genome data to accurately identify 256 clinical ECC isolated from bloodstream infections using average nucleotide identity (ANI), digitalized DNA-DNA hybridization (dDDH), and phylogenetic analysis. Through comprehensive assessments including phylogenetic analysis, ANI and dDDH comparisons, virulence gene, and capsule typing of the 256 clinical isolates, it was concluded that the classification method based on subspecies exhibited better correlation and consistency with the molecular characteristics of clinical ECC isolates. In summary, this research contributes to the precise identification of clinical ECC at the species level and expands our understanding of ECC.
Collapse
Affiliation(s)
- Xuemei Qiu
- Laboratory Medicine Department, First Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical school of Chinese PLA, Beijing, China
| | - Kun Ye
- Laboratory Medicine Department, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanning Ma
- Laboratory Medicine Department, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiang Zhao
- Laboratory Medicine Department, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lifeng Wang
- Laboratory Medicine Department, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiyong Yang
- Laboratory Medicine Department, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
Moeller J, Bozhanova NG, Voehler M, Meiler J, Schoeder CT. Backbone chemical shift and secondary structure assignments for mouse siderocalin. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:79-84. [PMID: 38564159 PMCID: PMC11081974 DOI: 10.1007/s12104-024-10171-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
The lipocalin protein family is a structurally conserved group of proteins with a variety of biological functions defined by their ability to bind small molecule ligands and interact with partner proteins. One member of this family is siderocalin, a protein found in mammals. Its role is discussed in inflammatory processes, iron trafficking, protection against bacterial infections and oxidative stress, cell migration, induction of apoptosis, and cancer. Though it seems to be involved in numerous essential pathways, the exact mechanisms are often not fully understood. The NMR backbone assignments for the human siderocalin and its rat ortholog have been published before. In this work we describe the backbone NMR assignments of siderocalin for another important model organism, the mouse - data that might become important for structure-based drug discovery. Secondary structure elements were predicted based on the assigned backbone chemical shifts using TALOS-N and CSI 3.0, revealing a high content of beta strands and one prominent alpha helical region. Our findings correlate well with the known crystal structure and the overall conserved fold of the lipocalin family.
Collapse
Affiliation(s)
- Johanna Moeller
- Institute for Drug Discovery, Leipzig University Medical School, 04103, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig, Leipzig University, Leipzig, Germany
| | - Nina G Bozhanova
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Markus Voehler
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jens Meiler
- Institute for Drug Discovery, Leipzig University Medical School, 04103, Leipzig, Germany
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Clara T Schoeder
- Institute for Drug Discovery, Leipzig University Medical School, 04103, Leipzig, Germany.
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig, Leipzig University, Leipzig, Germany.
| |
Collapse
|
19
|
Kreimendahl S, Pernas L. Metabolic immunity against microbes. Trends Cell Biol 2024; 34:496-508. [PMID: 38030541 DOI: 10.1016/j.tcb.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Pathogens, including viruses, bacteria, fungi, and parasites, remodel the metabolism of their host to acquire the nutrients they need to proliferate. Thus, host cells are often perceived as mere exploitable nutrient pools during infection. Mounting reports challenge this perception and instead suggest that host cells can actively reprogram their metabolism to the detriment of the microbial invader. In this review, we present metabolic mechanisms that host cells use to defend against pathogens. We highlight the contribution of domesticated microbes to host defenses and discuss examples of host-pathogen arms races that are derived from metabolic conflict.
Collapse
Affiliation(s)
| | - Lena Pernas
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
20
|
Melchior K, Gerner RR, Hossain S, Nuccio SP, Moreira CG, Raffatellu M. IL-22-dependent responses and their role during Citrobacter rodentium infection. Infect Immun 2024; 92:e0009924. [PMID: 38557196 PMCID: PMC11075456 DOI: 10.1128/iai.00099-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
The mouse pathogen Citrobacter rodentium is utilized as a model organism for studying infections caused by the human pathogens enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) and to elucidate mechanisms of mucosal immunity. In response to C. rodentium infection, innate lymphoid cells and T cells secrete interleukin (IL)-22, a cytokine that promotes mucosal barrier function. IL-22 plays a pivotal role in enabling mice to survive and recover from C. rodentium infection, although the exact mechanisms involved remain incompletely understood. Here, we investigated whether particular components of the host response downstream of IL-22 contribute to the cytokine's protective effects during C. rodentium infection. In line with previous research, mice lacking the IL-22 gene (Il22-/- mice) were highly susceptible to C. rodentium infection. To elucidate the role of specific antimicrobial proteins modulated by IL-22, we infected the following knockout mice: S100A9-/- (calprotectin), Lcn2-/- (lipocalin-2), Reg3b-/- (Reg3β), Reg3g-/- (Reg3γ), and C3-/- (C3). All knockout mice tested displayed a considerable level of resistance to C. rodentium infection, and none phenocopied the lethality observed in Il22-/- mice. By investigating another arm of the IL-22 response, we observed that C. rodentium-infected Il22-/- mice exhibited an overall decrease in gene expression related to intestinal barrier integrity as well as significantly elevated colonic inflammation, gut permeability, and pathogen levels in the spleen. Taken together, these results indicate that host resistance to lethal C. rodentium infection may depend on multiple antimicrobial responses acting in concert, or that other IL-22-regulated processes, such as tissue repair and maintenance of epithelial integrity, play crucial roles in host defense to attaching and effacing pathogens.
Collapse
Affiliation(s)
- Karine Melchior
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Romana R. Gerner
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- School of Life Sciences, ZIEL – Institute for Food and Health, Freising-Weihenstephan, Technical University of Munich, Munich, Germany
- Department of Internal Medicine III, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Suzana Hossain
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Sean-Paul Nuccio
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Cristiano Gallina Moreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD cMAV), La Jolla, California, USA
| |
Collapse
|
21
|
Krizanac M, Mass Sanchez PB, Weiskirchen R, Schröder SK. Overview of the expression patterns and roles of Lipocalin 2 in the reproductive system. Front Endocrinol (Lausanne) 2024; 15:1365602. [PMID: 38645429 PMCID: PMC11026566 DOI: 10.3389/fendo.2024.1365602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
The 25 kDa-sized protein Lipocalin 2 (LCN2) was originally isolated from human neutrophil granulocytes more than 30 years ago. LCN2 is an emerging player in innate immune defense, as it reduces bacterial growth due to its ability to sequester iron-containing bacterial siderophores. On the other hand, LCN2 also serves as a transporter for various hydrophobic substances due to its β-barrel shaped structure. Over the years, LCN2 has been detected in many other cell types including epithelial cells, astrocytes, and hepatocytes. Studies have clearly shown that aberrant expression of LCN2 is associated with a variety of disorders and malignancies, including several diseases of the reproductive system. Furthermore, LCN2 was proposed as a non-invasive prognostic and/or diagnostic biomarker in this context. Although several studies have shed light on the role of LCN2 in various disorders of the female and male reproductive systems, including tumorigenesis, a comprehensive understanding of the physiological function of LCN2 in the reproductive tract is still lacking. However, there is evidence that LCN2 is directly related to fertility, as global depletion of Lcn2 in mice has a negative effect on their pregnancy rate. Since LCN2 expression can be regulated by steroid hormones, it is not surprising that its expression fluctuates greatly during remodeling processes in the female reproductive tract, especially in the uterus. Well-founded details about the expression and regulation of LCN2 in a healthy reproductive state and also about possible changes during reproductive aging could contribute to a better understanding of LCN2 as a target in various diseases. Therefore, the present review summarizes current knowledge about LCN2 in the reproductive system, including studies in rodents and humans, and discusses changes in LCN2 expression during pathological events. The limited data suggest that LCN2 is expressed and regulated differently in healthy male and female reproductive organs.
Collapse
Affiliation(s)
| | | | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Sarah K. Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
22
|
Markey KA. Lipocalin-2: a novel potential therapy for GVHD. Trends Immunol 2024; 45:231-233. [PMID: 38548552 DOI: 10.1016/j.it.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024]
Abstract
Czech et al. used mouse models of allogeneic hematopoietic stem cell transplantation (allo-HCT) to investigate the role of lipocalin-2 (LCN2) as a newfound regulator of intestinal graft-versus-host disease (GVHD). Administration of recombinant LCN2 protein after disease onset prevented GVHD progression, suggesting that it may play a role in reversing tissue damage that has already begun.
Collapse
Affiliation(s)
- Kate A Markey
- Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
23
|
Zhan J, Chen J, Deng L, Lu Y, Luo L. Exploring the ferroptosis-related gene lipocalin 2 as a potential biomarker for sepsis-induced acute respiratory distress syndrome based on machine learning. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167101. [PMID: 38423372 DOI: 10.1016/j.bbadis.2024.167101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Sepsis is a major cause of mortality in patients, and ARDS is one of the most common outcomes. The pathophysiology of acute respiratory distress syndrome (ARDS) caused by sepsis is significantly impacted by genes related to ferroptosis. METHODS In this study, Weighted gene co-expression network analysis (WGCNA), protein-protein interaction (PPI) networks, functional enrichment analysis, and machine learning were employed to identify characterized genes and to construct receiver operating characteristic (ROC) curves. Additionally, DNA methylation levels were quantified and single-cell analysis was conducted. To validate the alterations in the expression of Lipocalin-2 (LCN2) and ferroptosis-related proteins in the in vitro model, Western blotting was carried out, and the changes in intracellular ROS and Fe2+ levels were detected. RESULTS A combination of eight machine learning algorithms, including RFE, LASSO, RandomForest, SVM-RFE, GBDT, Bagging, XGBoost, and Boruta, were used with a machine learning model to highlight the significance of LCN2 as a key gene in sepsis-induced ARDS. Analysis of immune cell infiltration showed a positive correlation between neutrophils and LCN2. In a cell model induced by LPS, it was found that Ferrostatin-1 (Fer-1), a ferroptosis inhibitor, was able to reverse the expression of LCN2. Knocking down LCN2 in BEAS-2B cells reversed the LPS-induced lipid peroxidation, Fe2+ levels, ACSL4, and GPX4 levels, indicating that LCN2, a ferroptosis-related gene (FRG), plays a crucial role in mediating ferroptosis. CONCLUSION Upon establishing an FRG model for individuals with sepsis-induced ARDS, we determined that LCN2 could be a dependable marker for predicting survival in these patients. This finding provides a basis for more accurate ARDS diagnosis and the exploration of innovative treatment options.
Collapse
Affiliation(s)
- Jiayi Zhan
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Junming Chen
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Liyan Deng
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Yining Lu
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, Guangdong, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, Guangdong, China.
| |
Collapse
|
24
|
Schwaderer AL, Rajadhyaksha E, Canas J, Saxena V, Hains DS. Intercalated cell function, kidney innate immunity, and urinary tract infections. Pflugers Arch 2024; 476:565-578. [PMID: 38227050 DOI: 10.1007/s00424-024-02905-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Intercalated cells (ICs) in the kidney collecting duct have a versatile role in acid-base and electrolyte regulation along with the host immune defense. Located in the terminal kidney tubule segment, ICs are among the first kidney cells to encounter bacteria when bacteria ascend from the bladder into the kidney. ICs have developed several mechanisms to combat bacterial infections of the kidneys. For example, ICs produce antimicrobial peptides (AMPs), which have direct bactericidal activity, and in many cases are upregulated in response to infections. Some AMP genes with IC-specific kidney expression are multiallelic, and having more copies of the gene confers increased resistance to bacterial infections of the kidney and urinary tract. Similarly, studies in human children demonstrate that those with history of UTIs are more likely to have single-nucleotide polymorphisms in IC-expressed AMP genes that impair the AMP's bactericidal activity. In murine models, depleted or impaired ICs result in decreased clearance of bacterial load following transurethral challenge with uropathogenic E. coli. A 2021 study demonstrated that ICs even act as phagocytes and acidify bacteria within phagolysosomes. Several immune signaling pathways have been identified in ICs which may represent future therapeutic targets in managing kidney infections or inflammation. This review's objective is to highlight IC structure and function with an emphasis on current knowledge of IC's diverse innate immune capabilities.
Collapse
Affiliation(s)
- Andrew L Schwaderer
- Division of Nephrology, Department of Pediatrics, Indiana University, 699 Riley Hospital Drive, STE 230, Indianapolis, IN, 46202, USA.
| | - Evan Rajadhyaksha
- Division of Nephrology, Department of Pediatrics, Indiana University, 699 Riley Hospital Drive, STE 230, Indianapolis, IN, 46202, USA
| | - Jorge Canas
- Division of Nephrology, Department of Pediatrics, Indiana University, 699 Riley Hospital Drive, STE 230, Indianapolis, IN, 46202, USA
| | - Vijay Saxena
- Division of Nephrology, Department of Pediatrics, Indiana University, 699 Riley Hospital Drive, STE 230, Indianapolis, IN, 46202, USA
| | - David S Hains
- Division of Nephrology, Department of Pediatrics, Indiana University, 699 Riley Hospital Drive, STE 230, Indianapolis, IN, 46202, USA
| |
Collapse
|
25
|
Chen F, Wu SS, Chen C, Zhou C. Dynamic changes and clinical value of lipocalin 2 in liver diseases caused by microbial infections. World J Hepatol 2024; 16:177-185. [PMID: 38495277 PMCID: PMC10941746 DOI: 10.4254/wjh.v16.i2.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/04/2023] [Accepted: 01/09/2024] [Indexed: 02/27/2024] Open
Abstract
Lipocalin 2 (LCN2) plays a pivotal role in iron metabolism, particularly in the context of microbial infection resistance (e.g., viruses, bacteria, parasites, etc.). LCN2 combats microbial infection by directly assisting the body in competing with microorganisms for iron, inducing immune cells to secrete various cytokines to enhance systemic immune responses, or recruiting neutrophils to infectious sites. The liver serves as the primary organ for LCN2 secretion during microbial infections. This review encapsulates recent advances in dynamic changes, clinical values, and the effects of LCN2 in infectious liver diseases caused by various microbial microorganisms.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Shan-Shan Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Chao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Cheng Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China.
| |
Collapse
|
26
|
Schröder SK, Krizanac M, Kim P, Kessel JC, Weiskirchen R. Ovaries of estrogen receptor 1-deficient mice show iron overload and signs of aging. Front Endocrinol (Lausanne) 2024; 15:1325386. [PMID: 38464972 PMCID: PMC10920212 DOI: 10.3389/fendo.2024.1325386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction Estrogens are crucial regulators of ovarian function, mediating their signaling through binding to estrogen receptors. The disruption of the estrogen receptor 1 (Esr1) provokes infertility associated with a hemorrhagic, cystic phenotype similar to that seen in diseased or aged ovaries. Our previous study indicated the possibility of altered iron metabolism in Esr1-deficient ovaries showing massive expression of lipocalin 2, a regulator of iron homeostasis. Methods Therefore, we examined the consequences of depleting Esr1 in mouse ovaries, focusing on iron metabolism. For that reason, we compared ovaries of adult Esr1-deficient animals and age-matched wild type littermates. Results and discussion We found increased iron accumulation in Esr1-deficient animals by using laser ablation inductively coupled plasma mass spectrometry. Western blot analysis and RT-qPCR confirmed that iron overload alters iron transport, storage and regulation. In addition, trivalent iron deposits in form of hemosiderin were detected in Esr1-deficient ovarian stroma. The depletion of Esr1 was further associated with an aberrant immune cell landscape characterized by the appearance of macrophage-derived multinucleated giant cells (MNGCs) and increased quantities of macrophages, particularly M2-like macrophages. Similar to reproductively aged animals, MNGCs in Esr1-deficient ovaries were characterized by iron accumulation and strong autofluorescence. Finally, deletion of Esr1 led to a significant increase in ovarian mast cells, involved in iron-mediated foam cell formation. Given that these findings are characteristics of ovarian aging, our data suggest that Esr1 deficiency triggers mechanisms similar to those associated with aging.
Collapse
Affiliation(s)
- Sarah K. Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen, Germany
| | | | | | | | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen, Germany
| |
Collapse
|
27
|
Chiuariu T, Șalaru D, Ureche C, Vasiliu L, Lupu A, Lupu VV, Șerban AM, Zăvoi A, Benchea LC, Clement A, Tudurachi BS, Sascău RA, Stătescu C. Cardiac and Renal Fibrosis, the Silent Killer in the Cardiovascular Continuum: An Up-to-Date. J Cardiovasc Dev Dis 2024; 11:62. [PMID: 38392276 PMCID: PMC10889423 DOI: 10.3390/jcdd11020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Cardiovascular disease (CVD) and chronic kidney disease (CKD) often coexist and have a major impact on patient prognosis. Organ fibrosis plays a significant role in the pathogenesis of cardio-renal syndrome (CRS), explaining the high incidence of heart failure and sudden cardiac death in these patients. Various mediators and mechanisms have been proposed as contributors to the alteration of fibroblasts and collagen turnover, varying from hemodynamic changes to the activation of the renin-angiotensin system, involvement of FGF 23, and Klotho protein or collagen deposition. A better understanding of all the mechanisms involved has prompted the search for alternative therapeutic targets, such as novel inhibitors of the renin-angiotensin-aldosterone system (RAAS), serelaxin, and neutralizing interleukin-11 (IL-11) antibodies. This review focuses on the molecular mechanisms of cardiac and renal fibrosis in the CKD and heart failure (HF) population and highlights the therapeutic alternatives designed to target the responsible pathways.
Collapse
Affiliation(s)
- Traian Chiuariu
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Delia Șalaru
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Carina Ureche
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Laura Vasiliu
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Ancuta Lupu
- Department of Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Vasile Valeriu Lupu
- Department of Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Adela Mihaela Șerban
- Cardiology Department, Heart Institute Niculae Stăncioiu, 19-21 Motilor Street, 400001 Cluj-Napoca, Romania
| | - Alexandra Zăvoi
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Laura Catalina Benchea
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Alexandra Clement
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Bogdan-Sorin Tudurachi
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Radu Andy Sascău
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Cristian Stătescu
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| |
Collapse
|
28
|
Inomata T, Endo S, Ido H, Miyamoto M, Ichikawa H, Sugita R, Ozawa T, Masuda H. Detection of Microorganisms Using Artificial Siderophore-Fe III Complex-Modified Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2632-2645. [PMID: 38252152 DOI: 10.1021/acs.langmuir.3c03084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Four FeIII complexes of typical artificial siderophore ligands containing catecholate and/or hydroxamate groups of tricatecholate, biscatecholate-monohydroxamate, monocatecholate-bishydroxamate, and trihydroxamate type artificial siderophores (K3[FeIIILC3], K2[FeIIILC2H1], K[FeIIILC1H2], and [FeIIILH3]) were modified on Au substrate surfaces. Their abilities to adsorb microorganisms were investigated using scanning electron microscopy, quartz crystal microbalance, and AC impedance methods. The artificial siderophore-iron complexes modified on Au substrates (FeLC3/Au, FeLC2H1/Au, FeLC1H2/Au, and FeLH3/Au) showed the selective immobilization behavior for various microorganisms, depending on the structural features of the artificial siderophores (the number of catecholate and hydroxamate arms). Their specificities corresponded well with the structural characteristics of natural siderophores released by microorganisms and used for FeIII ion uptake. These findings suggest that they were generated via specific interactions between the artificial siderophore-FeIII complexes and the receptors on microorganism surfaces. Our observations revealed that the FeL/Au systems may be potentially used as effective microbe-capturing probes that can enable rapid and simple detection and identification of various microorganisms.
Collapse
Affiliation(s)
- Tomohiko Inomata
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Suguru Endo
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hiroki Ido
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Masakazu Miyamoto
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hiroki Ichikawa
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Ririka Sugita
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Tomohiro Ozawa
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Masuda
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
| |
Collapse
|
29
|
Gast RK, Dittoe DK, Ricke SC. Salmonella in eggs and egg-laying chickens: pathways to effective control. Crit Rev Microbiol 2024; 50:39-63. [PMID: 36583653 DOI: 10.1080/1040841x.2022.2156772] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022]
Abstract
Eggs contaminated with Salmonella have been internationally significant sources of human illness for several decades. Most egg-associated illness has been attributed to Salmonella serovar Enteritidis, but a few other serovars (notably S. Heidelberg and S. Typhimurium) are also sometimes implicated. The edible interior contents of eggs typically become contaminated with S. Enteritidis because the pathogen's unique virulence attributes enable it to colonize reproductive tissues in systemically infected laying hens. Other serovars are more commonly associated with surface contamination of eggshells. Both research and field experience have demonstrated that the most effective overall Salmonella control strategy in commercial laying flocks is the application of multiple interventions throughout the egg production cycle. At the preharvest (egg production) level, intervention options of demonstrated efficacy include vaccination and gastrointestinal colonization control via treatments such as prebiotics, probiotics, and bacteriophages, Effective environmental management of housing systems used for commercial laying flocks is also essential for minimizing opportunities for the introduction, transmission, and persistence of Salmonella in laying flocks. At the postharvest (egg processing and handling) level, careful regulation of egg storage temperatures is critical for limiting Salmonella multiplication inside the interior contents.
Collapse
Affiliation(s)
- Richard K Gast
- U.S. National Poultry Research Center, USDA Agricultural Research Service, Athens, GA, USA
| | - Dana K Dittoe
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, USA
| | - Steven C Ricke
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
30
|
Bao Y, Yan Z, Shi N, Tian X, Li J, Li T, Cheng X, Lv J. LCN2: Versatile players in breast cancer. Biomed Pharmacother 2024; 171:116091. [PMID: 38171248 DOI: 10.1016/j.biopha.2023.116091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/06/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Lipocalin 2 (LCN2) is a secreted glycoprotein that is produced by immune cells, including neutrophils and macrophages. It serves various functions such as transporting hydrophobic ligands across the cellular membrane, regulating immune responses, keeping iron balance, and fostering epithelial cell differentiation. LCN2 plays a crucial role in several physiological processes. LCN2 expression is upregulated in a variety of human diseases and cancers. High levels of LCN2 are specifically linked to breast cancer (BC) cell proliferation, apoptosis, invasion, migration, angiogenesis, immune regulation, chemotherapy resistance, and prognosis. As a result, LCN2 has gained attention as a potential therapeutic target for BC. This article offered an in-depth review of the advancement of LCN2 in the context of BC occurrence and development.
Collapse
Affiliation(s)
- Yuxiang Bao
- Department of General Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563099, China
| | - Zhongliang Yan
- Department of General Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563099, China
| | - Nianmei Shi
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Xiaoyan Tian
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Jiayang Li
- Office of Drug Clinical Trial Institution, the Affiliated Hospital of Zunyi Medical University, Zunyi 563099, China
| | - Taolang Li
- Department of General Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563099, China
| | - Xiaoming Cheng
- Department of General Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563099, China.
| | - Junyuan Lv
- Department of General Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563099, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
31
|
Abbas R, Chakkour M, Zein El Dine H, Obaseki EF, Obeid ST, Jezzini A, Ghssein G, Ezzeddine Z. General Overview of Klebsiella pneumonia: Epidemiology and the Role of Siderophores in Its Pathogenicity. BIOLOGY 2024; 13:78. [PMID: 38392297 PMCID: PMC10886558 DOI: 10.3390/biology13020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
The opportunistic pathogen Klebsiella pneumoniae (K. pneumoniae) can colonize mucosal surfaces and spread from mucosae to other tissues, causing fatal infections. Medical equipment and the healthcare setting can become colonized by Klebsiella species, which are widely distributed in nature and can be found in water, soil, and animals. Moreover, a substantial number of community-acquired illnesses are also caused by this organism worldwide. These infections are characterized by a high rate of morbidity and mortality as well as the capacity to spread metastatically. Hypervirulent Klebsiella strains are thought to be connected to these infections. Four components are critical to this bacterium's pathogenicity-the capsule, lipopolysaccharide, fimbriae, and siderophores. Siderophores are secondary metabolites that allow iron to sequester from the surrounding medium and transport it to the intracellular compartment of the bacteria. A number of variables may lead to K. pneumoniae colonization in a specific area. Risk factors for infection include local healthcare practices, antibiotic use and misuse, infection control procedures, nutrition, gender, and age.
Collapse
Affiliation(s)
- Rim Abbas
- Faculty of Health Sciences, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
| | - Mohamed Chakkour
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Hiba Zein El Dine
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | | | - Soumaya T Obeid
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box 30014, Lebanon
| | - Aya Jezzini
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box 30014, Lebanon
| | - Ghassan Ghssein
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box 30014, Lebanon
| | - Zeinab Ezzeddine
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box 30014, Lebanon
| |
Collapse
|
32
|
Liu Z, Wang Q, Chai Z, Wang D. Recognition of Actinides by Siderocalin. Inorg Chem 2024; 63:923-927. [PMID: 38156893 DOI: 10.1021/acs.inorgchem.3c03040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Plain simulations and enhanced sampling unveil a novel siderocalin (Scn) recognition mode for An-Ent (where An = actinides and Ent = enterobactin) complexes and identify a "seesaw" relationship between actinide affinity to Ent and Scn recognition to an An-Ent complex. Electrostatic interactions predominantly govern competitive binding in both processes. Additionally, hydrolysis-induced negative charge, water expulsion-driven entropy, and Ent's conformational adaptability collectively enhance high-affinity recognition.
Collapse
Affiliation(s)
- Ziyi Liu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Multidisciplinary Initiative Center and CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences and the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhifang Chai
- Multidisciplinary Initiative Center and CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences and the University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Radiation Medicine and Protection and School of Radiation Medicine and Interdisciplinary Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dongqi Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Multidisciplinary Initiative Center and CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences and the University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Bazid HAS, Shoeib MA, Shoeib MM, Sharaf REA, Mosatafa MI, Abd El Gayed EM. Serum lipocalin-2 levels are decreased in patients with leprosy. Indian J Dermatol Venereol Leprol 2024; 90:59-63. [PMID: 36688893 DOI: 10.25259/ijdvl_116_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/01/2022] [Indexed: 12/13/2022]
Abstract
Background Leprosy is an infectious disease caused by Mycobacterium leprae affecting the skin, peripheral nerves and mucosae. Lipocalin-2 is a key component of the immune system's antimicrobial defence - it prevents iron uptake by binding and sequestering iron-scavenging siderophores and thus inhibits bacterial growth. Aim We evaluated serum lipocalin-2 levels in leprosy patients and its relationship to the pathogenesis and prognosis of the disease. Materials and methods In this case-control study, serum lipocalin-2 levels were measured by ELISA in 20 patients with leprosy and 20 healthy controls. Results Serum levels of lipocalin-2 were significantly reduced (P < 0.001) in leprosy patients as compared to controls. The levels were significantly higher (P < 0.014) in patients with multibacillary leprosy than in those with paucibacillary leprosy. Although the levels of lipocalin-2 were higher in patients with multiple nerve involvement as compared to those with involvement of 1 or 2 nerves, the results were not statistically significant. Limitation of the study The small sample size and the lack of different ethnic groups in the study were the major limitations of this study. Conclusion The lower lipocalin-2 concentrations in leprosy patients point to the importance of the protective functions of lipocalin-2. The elevated levels of lipocalin-2 observed in leprosy patients with neural involvement may be related to the reported neurodegenerative role of lipocalin-2.
Collapse
Affiliation(s)
- Heba A S Bazid
- Department of Dermatology, Andrology & STDs, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Mohamed A Shoeib
- Department of Dermatology, Andrology & STDs, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - May M Shoeib
- Department of Dermatology, Andrology and STDs, Menoufia University, Menoufia, Egypt
| | - Raghda E A Sharaf
- Department of Dermatology, Andrology & STDs, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Mohammed I Mosatafa
- Department of Clinical Pathology, National Research Center Cairo, Menoufia University, Menoufia, Egypt
| | - Eman M Abd El Gayed
- Department of Medical Biochemistry, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
34
|
Nourie N, Ghaleb R, Lefaucheur C, Louis K. Toward Precision Medicine: Exploring the Landscape of Biomarkers in Acute Kidney Injury. Biomolecules 2024; 14:82. [PMID: 38254682 PMCID: PMC10813773 DOI: 10.3390/biom14010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Acute kidney injury (AKI) remains a complex challenge with diverse underlying pathological mechanisms and etiologies. Current detection methods predominantly rely on serum creatinine, which exhibits substantial limitations in specificity and poses the issue of late-stage detection of kidney injury. In this review, we propose an up-to-date and comprehensive summary of advancements that identified novel biomarker candidates in blood and urine and ideal criteria for AKI biomarkers such as renal injury specificity, mechanistic insight, prognostic capacity, and affordability. Recently identified biomarkers not only indicate injury location but also offer valuable insights into a range of pathological processes, encompassing reduced glomerular filtration rate, tubular function, inflammation, and adaptive response to injury. The clinical applications of AKI biomarkers are becoming extensive and serving as relevant tools in distinguishing acute tubular necrosis from other acute renal conditions. Also, these biomarkers can offer significant insights into the risk of progression to chronic kidney disease CKD and in the context of kidney transplantation. Integration of these biomarkers into clinical practice has the potential to improve early diagnosis of AKI and revolutionize the design of clinical trials, offering valuable endpoints for therapeutic interventions and enhancing patient care and outcomes.
Collapse
Affiliation(s)
- Nicole Nourie
- Department of Nephrology and Kidney Transplantation, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, 75010 Paris, France
- Human Immunology and Immunopathology, Inserm UMR 976, Université Paris Cité, 75010 Paris, France
| | - Rita Ghaleb
- Faculty of Medicine, Saint Joseph University, Beirut 1104 2020, Lebanon
| | - Carmen Lefaucheur
- Department of Nephrology and Kidney Transplantation, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, 75010 Paris, France
- Human Immunology and Immunopathology, Inserm UMR 976, Université Paris Cité, 75010 Paris, France
| | - Kevin Louis
- Department of Nephrology and Kidney Transplantation, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, 75010 Paris, France
- Human Immunology and Immunopathology, Inserm UMR 976, Université Paris Cité, 75010 Paris, France
| |
Collapse
|
35
|
Rivera JC, Opazo MC, Hernández-Armengol R, Álvarez O, Mendoza-León MJ, Caamaño E, Gatica S, Bohmwald K, Bueno SM, González PA, Neunlist M, Boudin H, Kalergis AM, Riedel CA. Transient gestational hypothyroxinemia accelerates and enhances ulcerative colitis-like disorder in the male offspring. Front Endocrinol (Lausanne) 2024; 14:1269121. [PMID: 38239991 PMCID: PMC10794346 DOI: 10.3389/fendo.2023.1269121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/06/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Gestational hypothyroxinemia (HTX) is a condition that occurs frequently at the beginning of pregnancy, and it correlates with cognitive impairment, autism, and attentional deficit in the offspring. Evidence in animal models suggests that gestational HTX can increase the susceptibility of the offspring to develop strong inflammation in immune-mediated inflammatory diseases. Ulcerative colitis (UC) is a frequent inflammatory bowel disease with unknown causes. Therefore, the intensity of ulcerative colitis-like disorder (UCLD) and the cellular and molecular factors involved in proinflammatory or anti-inflammatory responses were analyzed in the offspring gestated in HTX (HTX-offspring) and compared with the offspring gestated in euthyroidism (Control-offspring). Methods Gestational HTX was induced by the administration of 2-mercapto-1-methylimidazole in drinking water to pregnant mice during E10-E14. The HTX-offspring were induced with UCLD by the acute administration of dextran sodium sulfate (DSS). The score of UCLD symptomatology was registered every day, and colon histopathology, immune cells, and molecular factors involved in the inflammatory or anti-inflammatory response were analyzed on day 6 of DSS treatment. Results The HTX-offspring displayed earlier UCLD pathological symptoms compared with the Control-offspring. After 6 days of DSS treatment, the HTX-offspring almost doubled the score of the Control-offspring. The histopathological analyses of the colon samples showed signs of inflammation at the distal and medial colon for both the HTX-offspring and Control-offspring. However, significantly more inflammatory features were detected in the proximal colon of the HTX-offspring induced with UCLD compared with the Control-offspring induced with UCLD. Significantly reduced mRNA contents encoding for protective molecules like glutamate-cysteine ligase catalytic subunit (GCLC) and mucin-2 (MUC-2) were found in the colon of the HTX-offspring as compared with the Control-offspring. Higher percentages of Th17 lymphocytes were detected in the colon tissues of the HTX-offspring induced or not with UCLD as compared with the Control-offspring. Discussion Gestational HTX accelerates the onset and increases the intensity of UCLD in the offspring. The low expression of MUC-2 and GCLC together with high levels of Th17 Lymphocytes in the colon tissue suggests that the HTX-offspring has molecular and cellular features that favor inflammation and tissue damage. These results are important evidence to be aware of the impact of gestational HTX as a risk factor for UCLD development in offspring.
Collapse
Affiliation(s)
- Juan Carlos Rivera
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ma. Cecilia Opazo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Rosario Hernández-Armengol
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Oscar Álvarez
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María José Mendoza-León
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Esteban Caamaño
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastian Gatica
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michel Neunlist
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France
| | - Helene Boudin
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
36
|
Rossiter A, La A, Koyner JL, Forni LG. New biomarkers in acute kidney injury. Crit Rev Clin Lab Sci 2024; 61:23-44. [PMID: 37668397 DOI: 10.1080/10408363.2023.2242481] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/14/2023] [Accepted: 07/26/2023] [Indexed: 09/06/2023]
Abstract
Acute kidney injury (AKI) is a commonly encountered clinical syndrome. Although it often complicates community acquired illness, it is more common in hospitalized patients, particularly those who are critically ill or who have undergone major surgery. Approximately 20% of hospitalized adult patients develop an AKI during their hospital care, and this rises to nearly 60% in the critically ill, depending on the population being considered. In general, AKI is more common in older adults, in those with preexisting chronic kidney disease and in those with known risk factors for AKI (including diabetes and hypertension). The development of AKI is associated with an increase in both mortality and morbidity, including the development of post-AKI chronic kidney disease. Currently, AKI is defined by a rise in serum creatinine from either a known or derived baseline value and/or oliguria or anuria. However, clinicians may fail to recognize the initial development of AKI because of a delay in the rise of serum creatinine or because of inaccurate urine output monitoring. This, in turn, delays any putative measures to treat AKI or to limit its degree. Consequently, efforts have focused on new biomarkers associated with AKI that may allow early recognition of this syndrome with the intent that this will translate into improved patient outcomes. Here we outline current biomarkers associated with AKI and explore their potential in aiding diagnosis, understanding the pathophysiology and directing therapy.
Collapse
Affiliation(s)
- Adam Rossiter
- Critical Care Unit, Royal Surrey Hospital, Guildford, Surry, UK
| | - Ashley La
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Jay L Koyner
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Lui G Forni
- Critical Care Unit, Royal Surrey Hospital, Guildford, Surry, UK
- School of Medicine, Department of Clinical & Experimental Medicine, Faculty of Health Sciences, University of Surrey, Surry, UK
| |
Collapse
|
37
|
Crescenzi E, Mellone S, Gragnano G, Iaccarino A, Leonardi A, Pacifico F. NGAL Mediates Anaplastic Thyroid Carcinoma Cells Survival Through FAS/CD95 Inhibition. Endocrinology 2023; 165:bqad190. [PMID: 38091978 DOI: 10.1210/endocr/bqad190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Indexed: 12/27/2023]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL), a siderophore-mediated iron binding protein, is highly expressed in human anaplastic thyroid carcinomas (ATCs) where it plays pleiotropic protumorigenic roles including that of a prosurvival protein. Here we show that NGAL inhibits FAS/CD95 death receptor to control ATC cell survival. FAS/CD95 expression in human specimens from patients with ATC and in ATC-derived cell lines negatively correlate with NGAL expression. Silencing of NGAL in ATC cells leads to FAS/CD95 upregulation, whereas NGAL overexpression determines the opposite effect. As a result, an agonist anti-FAS/CD95 antibody induces cell death in NGAL-silenced cells while it is ineffective on NGAL-overexpressing cells. Interestingly, the inhibitory activity of NGAL on FAS/CD95 is due to its iron carrier property given that perturbing iron homeostasis of NGAL-proficient and -deficient ATC cells directly influences FAS/CD95 expression. Accordingly, conditioned media containing a mutant form of NGAL unable to bind siderophores cannot rescue cells from FAS/CD95-dependent death, whereas NGAL wild type-containing conditioned media abolish the effects of the agonist antibody. We also find that downregulation of FAS/CD95 expression is mediated by iron-dependent NGAL suppression of p53 transcriptional activity. Our results indicate that NGAL contributes to ATC cell survival by iron-mediated inhibition of p53-dependent FAS/CD95 expression and suggest that restoring FAS/CD95 by NGAL suppression could be a helpful strategy to kill ATC cells.
Collapse
Affiliation(s)
- Elvira Crescenzi
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80131 Naples, Italy
| | - Stefano Mellone
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80131 Naples, Italy
| | - Gianluca Gragnano
- Dipartimento di Salute Pubblica, "Federico II" University of Naples, 80131 Naples, Italy
| | - Antonino Iaccarino
- Dipartimento di Salute Pubblica, "Federico II" University of Naples, 80131 Naples, Italy
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, "Federico II" University of Naples, 80131 Naples, Italy
| | - Francesco Pacifico
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80131 Naples, Italy
| |
Collapse
|
38
|
Mostafa I, Hasan SMT, Gazi MA, Alam MA, Fahim SM, Saqeeb KN, Ahmed T. Alteration of stool pH and its association with biomarkers of gut enteropathy among slum-dwelling women of reproductive age in Bangladesh. BMC Womens Health 2023; 23:661. [PMID: 38071298 PMCID: PMC10710701 DOI: 10.1186/s12905-023-02758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Recent evidence suggests that measures of maternal gut enteropathy are associated with unfavorable fetal outcomes. It is, therefore, crucial to identify and treat the features of intestinal enteropathy among reproductive-age women living in areas where enteropathy is highly prevalent. However, there is a lack of non-invasive diagnostic tests to determine EED, making it difficult to identify the disease in field settings. In this study, we tested the potential of fecal pH as a biomarker of gut enteropathy and investigated its relationship with fecal biomarkers of intestinal enteropathy in reproductive-age women living in resource-limited environments. METHODS Data on socio-demographic information, anthropometry, and biological samples were collected from 78 apparently healthy women aged between 20 and 27 years from November 2018 to December 2019. The association of stool pH with two fecal biomarkers of gut enteropathy (i.e., intestinal alkaline phosphatase [IAP] and fecal lipocalin-2 [LCN-2] was investigated using multiple linear regression models after adjusting for relevant covariates. RESULTS In the adjusted models, alkaline stool pH (pH > 7.2) was found to be significantly associated with a decrease in the fecal IAP level by 1.05 unit (95% CI: -1.68, -0.42; p < 0.001) in the log scale, and acidic stool pH (pH < 6) was found to be significantly associated with an increase in the fecal LCN-2 level by 0.89 units (95% CI: 0.12, 1.67; p < 0.025) in the log scale. CONCLUSIONS The study findings demonstrated an association of fecal pH with biomarkers of gut enteropathy indicating its applicability as a simple tool for understanding intestinal enteropathy among reproductive-age women living in resource-limited settings.
Collapse
Affiliation(s)
- Ishita Mostafa
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh.
| | - S M Tafsir Hasan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Md Amran Gazi
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Md Ashraful Alam
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Shah Mohammad Fahim
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Kazi Nazmus Saqeeb
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
- Office of the Executive Director, icddr,b, Dhaka, 1212, Bangladesh
- Department of Global Health, University of Washington, Seattle, WA, 98195, USA
- Department of Public Health Nutrition, James P Grant School of Public Health, BRAC University, Dhaka, 1212, Bangladesh
| |
Collapse
|
39
|
Liu S, Xiao G, Wang Q, Tian J, Feng X, Zhang Q, Gong L. Effects of dietary Astragalus membranaceus and Codonopsis pilosula extracts on growth performance, antioxidant capacity, immune status, and intestinal health in broilers. Front Vet Sci 2023; 10:1302801. [PMID: 38144468 PMCID: PMC10748503 DOI: 10.3389/fvets.2023.1302801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
The objective of this study was to examine the effects of dietary Chinese herbal medicine (CHM) consisting of Astragalus membranaceus (Fisch.) Bunge (AMT) and Codonopsis pilosula (Franch.) Nannf (CPO) extracts on growth performance, antioxidant capacity, immune status, and intestinal health of broiler chickens. Two groups were formed, each consisting of six replicates of 12 one-day-old healthy male 817 white feather broilers. Broilers were fed either a basal diet (CON group) or a basal diet supplemented with 500 mg/kg CHM. The trial lasted 50 days. The results showed that CHM supplementation resulted in enhanced feed efficiency and antioxidant capacity in both the serum and liver, while it reduced uric acid and endotoxin levels, as well as diamine oxidase activity (p < 0.05). Additionally, CHM treatment increased the height of jejunum villi and upregulated Claudin-1 expression in the jejunal mucosa accompanied by an increase in the mRNA levels of interleukin-6 (IL-6), interferon-γ (IFN-γ), interferon-β (IFN-β), tumor necrosis factor-α (TNF-α), and anti-inflammatory cytokine interleukin-10 (IL-10) (p < 0.05). The presence of dietary CHM caused an increase in the proportions of Bacteroidetes and unclassified Bacteroidales but led to a decrease in those of Firmicutes and Alistipes (p < 0.05). The composition of the jejunal mucosa microbiota was correlated with the feed conversion ratio, serum metabolites, and gene expression based on Spearman correlation analysis. The findings indicated that the consumption of dietary CHM improved the utilization of feed, increased the mRNA expression of pro-inflammatory cytokines in the jejunal mucosa, and decreased the endotoxin level and activities of diamine oxidase and lactate dehydrogenase in the serum, which could potentially be linked to changes in the gut microbiota of broiler chickens.
Collapse
Affiliation(s)
- Shun Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Gengsheng Xiao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jinpeng Tian
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Xin Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Qingyang Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Li Gong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| |
Collapse
|
40
|
Zhang K, Chen J, Liang L, Wang Z, Xiong Q, Yu H, Du H. Lcn2 deficiency accelerates the infection of Escherichia coli O157:H7 by disrupting the intestinal barrier function. Microb Pathog 2023; 185:106435. [PMID: 37931825 DOI: 10.1016/j.micpath.2023.106435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/08/2023]
Abstract
Bacterial infections result in intestinal inflammation and injury, which affects gut health and nutrient absorption. Lipocalin 2 (Lcn2) is a protein that reacts to microbial invasion, inflammatory responses, and tissue damage. However, it remains unclear whether Lcn2 has a protective effect against bacterial induced intestinal inflammation. Therefore, this study endeavors to investigate the involvement of Lcn2 in the intestinal inflammation of mice infected with Enterohemorrhagic Escherichia coli O157:H7 (E. coli O157:H7). Lcn2 knockout (Lcn2-/-) mice were used to evaluate the changes of inflammatory responses. Lcn2 deficiency significantly exacerbated clinical symptoms of E. coli O157:H7 infection by reducing body weight and encouraging bacterial colonization of. Compared to infected wild type mice, infected Lcn2-/- mice had significantly elevated levels of pro-inflammatory cytokines in serum and ileum, including interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α), as well as severe villi destruction in the jejunum. Furthermore, Lcn2 deficiency aggravated intestinal barrier degradation by significantly reducing the expression of tight junction proteins occludin and claudin 1, the content of myeloperoxidase (MPO) in the ileum, and the number of goblet cells in the colon. Our findings indicated that Lcn2 could alleviate inflammatory damage caused by E. coli O157:H7 infection in mice by enhancing intestinal barrier function.
Collapse
Affiliation(s)
- Kang Zhang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jianjun Chen
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Li Liang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhenjie Wang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qingqing Xiong
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hong Yu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Huahua Du
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou, China; Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.
| |
Collapse
|
41
|
Moro H, Bamba Y, Nagano K, Hakamata M, Ogata H, Shibata S, Cho H, Aoki N, Sato M, Ohshima Y, Watanabe S, Koya T, Takada T, Kikuchi T. Dynamics of iron metabolism in patients with bloodstream infections: a time-course clinical study. Sci Rep 2023; 13:19143. [PMID: 37932342 PMCID: PMC10628148 DOI: 10.1038/s41598-023-46383-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
The close relationship between infectious diseases and iron metabolism is well known, but a more detailed understanding based on current knowledge may provide new insights into the diagnosis and treatment of infectious diseases, considering the growing threat of antibiotic-resistant bacteria. This study investigated adult patients with bloodstream infections, temporal changes, and relationships between blood levels of iron and related markers, including hepcidin and lipocalin-2 (LCN2). We included 144 samples from 48 patients (mean age 72 years, 50% male), with 30 diagnosed with sepsis. During the acute phase of infection, blood levels of hepcidin and LCN2 increased rapidly, whereas iron levels decreased, with values in 95.8% of cases below the normal range (40-188 μg/dL). Later, hepcidin and LCN2 decreased significantly during the recovery phase, and the decreased iron concentrations were restored. In the case of persistent inflammation, iron remained decreased. Acute LCN2 levels were significantly higher in patients with sepsis (p < 0.01). Hypoferremia induced by increased hepcidin would reduce iron in the environment of extracellular pathogens, and the increased LCN2 would inhibit siderophores, resulting in the prevention of the pathogen's iron acquisition in each manner during the acute phase of bloodstream infection.
Collapse
Affiliation(s)
- Hiroshi Moro
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan.
| | - Yuuki Bamba
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Kei Nagano
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Mariko Hakamata
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Hideyuki Ogata
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Satoshi Shibata
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Hiromi Cho
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Nobumasa Aoki
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Mizuho Sato
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Yasuyoshi Ohshima
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Toshiyuki Koya
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Toshinori Takada
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| |
Collapse
|
42
|
Zong H, Shang X, Wang X, Chen T, Wang Y, Ren Y, Jiang Y, Li Y, Lv Q, Liu P. Diagnosis of septic shock by serum measurement of human neutrophil lipocalin by a rapid homogeneous assay. J Immunol Methods 2023; 522:113570. [PMID: 37774777 DOI: 10.1016/j.jim.2023.113570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Human neutrophil lipocalin (HNL) is a marker of neutrophil activation and has a high efficacy in diagnosing bacterial infections. In this study, we applied the AlphaLISA technique to measure the serum level of HNL, evaluate HNL's efficacy in diagnosing septic shock, and identify any association between HNL level and septic patients' prognosis. METHODS We collected 146 serum samples from the Fifth Medical Center of Chinese PLA General Hospital. HNL was measured by AlphaLISA and results were compared with commercial ELISA kits. We studied 78 patients admitted to the ICU with sepsis and data on their clinical and physiological characteristics were recorded. Blood levels of HNL, procalcitonin (PCT), high-sensitivity C-reactive protein (hs-CRP), and lactate were measured. A receiver operating characteristic (ROC) curve was used to evaluate the performance of each marker. RESULTS The AlphaLISA assay for serum HNL had a detection range from 1.5 ng/mL to 1000 ng/mL, with a detection limit of 1 ng/mL and a detection time of approximately 25 min. The AlphaLISA assay's results were in high agreement with ELISA results (R2 = 0.9413). HNL levels were analyzed in sepsis patients, and HNL was significantly higher in sepsis patients with shock compared to sepsis patients without shock (median 356.47 ng/mL vs 158.93 ng/mL, P < 0.0001) and in the 28-day non-survivor group compared to the 28-day survivor group (median 331.83 ng/mL vs 175.17 ng/mL, P < 0.0001). ROC curve analysis was performed for the biomarkers. In differentiating the diagnosis of septic shock from sepsis patients, HNL was the most effective marker (AUC = 0.857), followed by PCT (AUC = 0.754) and hs-CRP (AUC = 0.627). In predicting the prognosis of septic patients, lactate had the best effect (AUC = 0.805), followed by HNL (AUC = 0.784), PCT (AUC = 0.721), and hs-CRP (AUC = 0.583). CONCLUSIONS As an assessment tool, we found that our AlphaLISA had good consistency with an ELISA and had several other advantages, including requiring a shorter processing time and detecting a wider range of serum HNL concentrations. Monitoring serum HNL levels of patients admitted to the ICU might be useful in distinguishing sepsis patients who have septic shock from other sepsis patients, indicating its value in the prediction of sepsis patient prognosis.
Collapse
Affiliation(s)
- Huijun Zong
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; The Fifth School of Clinical Medicine, Anhui Medical University, Hefei 230032, China; Department of Critical Care Medicine, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Xueyi Shang
- Department of Critical Care Medicine, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Xin Wang
- Department of Critical Care Medicine, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Ting Chen
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei 230032, China; Department of Critical Care Medicine, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Ye Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yuhao Ren
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yan Li
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei 230032, China; Department of Critical Care Medicine, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China.
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China.
| | - Peng Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China.
| |
Collapse
|
43
|
Thévenod F, Herbrechter R, Schlabs C, Pethe A, Lee WK, Wolff NA, Roussa E. Role of the SLC22A17/lipocalin-2 receptor in renal endocytosis of proteins/metalloproteins: a focus on iron- and cadmium-binding proteins. Am J Physiol Renal Physiol 2023; 325:F564-F577. [PMID: 37589051 DOI: 10.1152/ajprenal.00020.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023] Open
Abstract
The transmembrane protein SLC22A17 [or the neutrophil gelatinase-associated lipocalin/lipocalin-2 (LCN2)/24p3 receptor] is an atypical member of the SLC22 family of organic anion and cation transporters: it does not carry typical substrates of SLC22 transporters but mediates receptor-mediated endocytosis (RME) of LCN2. One important task of the kidney is the prevention of urinary loss of proteins filtered by the glomerulus by bulk reabsorption of multiple ligands via megalin:cubilin:amnionless-mediated endocytosis in the proximal tubule (PT). Accordingly, overflow, glomerular, or PT damage, as in Fanconi syndrome, results in proteinuria. Strikingly, up to 20% of filtered proteins escape the PT under physiological conditions and are reabsorbed by the distal nephron. The renal distal tubule and collecting duct express SLC22A17, which mediates RME of filtered proteins that evade the PT but with limited capacity to prevent proteinuria under pathological conditions. The kidney also prevents excretion of filtered essential and nonessential transition metals, such as iron or cadmium, respectively, that are largely bound to proteins with high affinity, e.g., LCN2, transferrin, or metallothionein, or low affinity, e.g., microglobulins or albumin. Hence, increased uptake of transition metals may cause nephrotoxicity. Here, we assess the literature on SLC22A17 structure, topology, tissue distribution, regulation, and assumed functions, emphasizing renal SLC22A17, which has relevance for physiology, pathology, and nephrotoxicity due to the accumulation of proteins complexed with transition metals, e.g., cadmium or iron. Other putative renal functions of SLC22A17, such as its contribution to osmotic stress adaptation, protection against urinary tract infection, or renal carcinogenesis, are discussed.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Robin Herbrechter
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Carolin Schlabs
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Abhishek Pethe
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Natascha A Wolff
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
44
|
Stefanache A, Lungu II, Butnariu IA, Calin G, Gutu C, Marcu C, Grierosu C, Bogdan Goroftei ER, Duceac LD, Dabija MG, Popa F, Damir D. Understanding How Minerals Contribute to Optimal Immune Function. J Immunol Res 2023; 2023:3355733. [PMID: 37946846 PMCID: PMC10632063 DOI: 10.1155/2023/3355733] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 09/09/2023] [Indexed: 11/12/2023] Open
Abstract
Sufficient mineral supply is vital not only for the innate immune system but also for the components of the adaptive immune defense, which encompass defense mechanisms against pathogens and the delicate balance of pro- and anti-inflammatory regulation in the long term. Generally, a well-balanced diet is capable of providing the necessary minerals to support the immune system. Nevertheless, specific vulnerable populations should be cautious about obtaining adequate amounts of minerals such as magnesium, zinc, copper, iron, and selenium. Inadequate levels of these minerals can temporarily impair immune competence and disrupt the long-term regulation of systemic inflammation. Therefore, comprehending the mechanisms and sources of these minerals is crucial. In exceptional circumstances, mineral deficiencies may necessitate supplementation; however, excessive intake of supplements can have adverse effects on the immune system and should be avoided. Consequently, any supplementation should be approved by medical professionals and administered in recommended doses. This review emphasizes the crucial significance of minerals in promoting optimal functioning of the immune system. It investigates the indispensable minerals required for immune system function and the regulation of inflammation. Moreover, it delves into the significance of maintaining an optimized intake of minerals from a nutritional standpoint.
Collapse
Affiliation(s)
- Alina Stefanache
- “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Ionut-Iulian Lungu
- “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | | | - Gabriela Calin
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11 Pacurari Street, Iasi 700511, Romania
| | - Cristian Gutu
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Street, Galati 800008, Romania
| | - Constantin Marcu
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Street, Galati 800008, Romania
| | - Carmen Grierosu
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11 Pacurari Street, Iasi 700511, Romania
| | | | - Letitia-Doina Duceac
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Street, Galati 800008, Romania
| | | | - Florina Popa
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Street, Galati 800008, Romania
| | - Daniela Damir
- “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| |
Collapse
|
45
|
Živalj M, Van Ginderachter JA, Stijlemans B. Lipocalin-2: A Nurturer of Tumor Progression and a Novel Candidate for Targeted Cancer Therapy. Cancers (Basel) 2023; 15:5159. [PMID: 37958332 PMCID: PMC10648573 DOI: 10.3390/cancers15215159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Within the tumor microenvironment (TME) exists a complex signaling network between cancer cells and stromal cells, which determines the fate of tumor progression. Hence, interfering with this signaling network forms the basis for cancer therapy. Yet, many types of cancer, in particular, solid tumors, are refractory to the currently used treatments, so there is an urgent need for novel molecular targets that could improve current anti-cancer therapeutic strategies. Lipocalin-2 (Lcn-2), a secreted siderophore-binding glycoprotein that regulates iron homeostasis, is highly upregulated in various cancer types. Due to its pleiotropic role in the crosstalk between cancer cells and stromal cells, favoring tumor progression, it could be considered as a novel biomarker for prognostic and therapeutic purposes. However, the exact signaling route by which Lcn-2 promotes tumorigenesis remains unknown, and Lcn-2-targeting moieties are largely uninvestigated. This review will (i) provide an overview on the role of Lcn-2 in orchestrating the TME at the level of iron homeostasis, macrophage polarization, extracellular matrix remodeling, and cell migration and survival, and (ii) discuss the potential of Lcn-2 as a promising novel drug target that should be pursued in future translational research.
Collapse
Affiliation(s)
- Maida Živalj
- Brussels Center for Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, 1050 Brussels, Belgium
| | - Jo A. Van Ginderachter
- Brussels Center for Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, 1050 Brussels, Belgium
| | - Benoit Stijlemans
- Brussels Center for Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, 1050 Brussels, Belgium
| |
Collapse
|
46
|
Ullah I, Lang M. Key players in the regulation of iron homeostasis at the host-pathogen interface. Front Immunol 2023; 14:1279826. [PMID: 37942316 PMCID: PMC10627961 DOI: 10.3389/fimmu.2023.1279826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Iron plays a crucial role in the biochemistry and development of nearly all living organisms. Iron starvation of pathogens during infection is a striking feature utilized by a host to quell infection. In mammals and some other animals, iron is essentially obtained from diet and recycled from erythrocytes. Free iron is cytotoxic and is readily available to invading pathogens. During infection, most pathogens utilize host iron for their survival. Therefore, to ensure limited free iron, the host's natural system denies this metal in a process termed nutritional immunity. In this fierce battle for iron, hosts win over some pathogens, but others have evolved mechanisms to overdrive the host barriers. Production of siderophores, heme iron thievery, and direct binding of transferrin and lactoferrin to bacterial receptors are some of the pathogens' successful strategies which are highlighted in this review. The intricate interplay between hosts and pathogens in iron alteration systems is crucial for understanding host defense mechanisms and pathogen virulence. This review aims to elucidate the current understanding of host and pathogen iron alteration systems and propose future research directions to enhance our knowledge in this field.
Collapse
Affiliation(s)
- Inam Ullah
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- College of Life Science, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
47
|
Shinoda-Ito Y, Omori K, Ito T, Nakayama M, Ikeda A, Ito M, Ohara T, Takashiba S. Novel Iron Chelators, Super-Polyphenols, Show Antimicrobial Effects against Cariogenic Streptococcus mutans. Antibiotics (Basel) 2023; 12:1562. [PMID: 37998764 PMCID: PMC10668666 DOI: 10.3390/antibiotics12111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Dental caries are an oral infectious disease that can affect human health both orally and systemically. It remains an urgent issue to establish a novel antibacterial method to prevent oral infection for a healthy life expectancy. The aim of this study was to evaluate the inhibitory effects of novel iron chelators, super-polyphenols (SPs), on the cariogenic bacterium Streptococcus mutans, in vitro. SPs were developed to reduce the side effects of iron chelation therapy and were either water-soluble or insoluble depending on their isoforms. We found that SP6 and SP10 inhibited bacterial growth equivalent to povidone-iodine, and viability tests indicated that their effects were bacteriostatic. These results suggest that SP6 and SP10 have the potential to control oral bacterial infections such as Streptococcus mutans.
Collapse
Affiliation(s)
- Yuki Shinoda-Ito
- Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan (S.T.)
| | - Kazuhiro Omori
- Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan (S.T.)
| | - Takashi Ito
- Center for Innovative Clinical Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masaaki Nakayama
- Department of Oral Microbiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Atsushi Ikeda
- Department of Periodontics & Endodontics, Division of Dentistry, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan;
| | - Masahiro Ito
- Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan (S.T.)
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan;
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan (S.T.)
| |
Collapse
|
48
|
Spiga L, Fansler RT, Perera YR, Shealy NG, Munneke MJ, David HE, Torres TP, Lemoff A, Ran X, Richardson KL, Pudlo N, Martens EC, Folta-Stogniew E, Yang ZJ, Skaar EP, Byndloss MX, Chazin WJ, Zhu W. Iron acquisition by a commensal bacterium modifies host nutritional immunity during Salmonella infection. Cell Host Microbe 2023; 31:1639-1654.e10. [PMID: 37776864 PMCID: PMC10599249 DOI: 10.1016/j.chom.2023.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/06/2023] [Accepted: 08/29/2023] [Indexed: 10/02/2023]
Abstract
During intestinal inflammation, host nutritional immunity starves microbes of essential micronutrients, such as iron. Pathogens scavenge iron using siderophores, including enterobactin; however, this strategy is counteracted by host protein lipocalin-2, which sequesters iron-laden enterobactin. Although this iron competition occurs in the presence of gut bacteria, the roles of commensals in nutritional immunity involving iron remain unexplored. Here, we report that the gut commensal Bacteroides thetaiotaomicron acquires iron and sustains its resilience in the inflamed gut by utilizing siderophores produced by other bacteria, including Salmonella, via a secreted siderophore-binding lipoprotein XusB. Notably, XusB-bound enterobactin is less accessible to host sequestration by lipocalin-2 but can be "re-acquired" by Salmonella, allowing the pathogen to evade nutritional immunity. Because the host and pathogen have been the focus of studies of nutritional immunity, this work adds commensal iron metabolism as a previously unrecognized mechanism modulating the host-pathogen interactions and nutritional immunity.
Collapse
Affiliation(s)
- Luisella Spiga
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ryan T Fansler
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yasiru R Perera
- Departments of Biochemistry and Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Nicolas G Shealy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew J Munneke
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Holly E David
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Teresa P Torres
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew Lemoff
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xinchun Ran
- Departments of Chemistry, Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Katrina L Richardson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nicholas Pudlo
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Eric C Martens
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ewa Folta-Stogniew
- Keck Foundation Biotechnology Resource Laboratory, Yale University, 300 George Street, New Haven, CT 06511, USA
| | - Zhongyue J Yang
- Departments of Chemistry, Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mariana X Byndloss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Walter J Chazin
- Departments of Biochemistry and Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Wenhan Zhu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
49
|
Inomata T, Endo S, Ido H, Mori R, Iwai Y, Ozawa T, Masuda H. Iron(III) Complexes with Hybrid-Type Artificial Siderophores Containing Catecholate and Hydroxamate Sites. Inorg Chem 2023; 62:16362-16377. [PMID: 37738382 DOI: 10.1021/acs.inorgchem.3c01786] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Two hybrid-type artificial siderophore ligands containing both catecholate and hydroxamate groups as iron-capturing sites, bis(2,3-dihydroxybenzamidepropyl)mono[2-propyl]aminomethane (H5LC2H1) and mono(2,3-dihydroxybenzamide-propyl)bis[2-propyl]aminomethane (H4LC1H2), were designed and synthesized. Iron(III) complexes, K2[FeIIILC2H1] and K[FeIIILC1H2], were prepared and characterized spectroscopically, potentiometrically, and electrochemically. The results were compared with those previously reported for iron complexes with non-hybridized siderophores containing either catecholate or hydroxamate groups, K3[FeIIILC3] and [FeIIILH3]. Both K2[FeIIILC2H1] and K[FeIIILC1H2] formed six-coordinate octahedral iron(III) complexes. Evaluation of the thermodynamic properties of the complexes in an aqueous solution indicated high log β values of 37.3 and 32.3 for K2[FeIIILC2H1] and K[FeIIILC1H2], respectively, which were intermediate between those of K3[FeIIILC3] (44.2) and [FeIIILH3] (31). Evaluation of the ultraviolet-visible and Fourier transform infrared spectra of the two hybrid siderophore-iron complexes under different pH or pD (potential of dueterium) conditions showed that the protonation of K2[FeIIILC2H1] and K[FeIIILC1H2] generated the corresponding protonated species, [FeIIIHnLC2H1](2-n)- and [FeIIIHnLC1H2](1-n)-, accompanied by a significant change in the coordination mode. The protonated hybrid-type siderophore-iron complexes showed high reduction potentials, which were well within the range of those of biological reductants. The results suggest that the hybrid-type siderophore easily releases an iron(III) ion at low pH. The biological activity of the four artificial siderophore-iron complexes against Microbacterium flavescens and Escherichia coli clearly depends on the structural differences between the complexes. This finding demonstrates that the changes in the coordination sites of the siderophores enable close control of the interactions between the siderophores and receptors in the cell membrane.
Collapse
Affiliation(s)
- Tomohiko Inomata
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Suguru Endo
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hiroki Ido
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Reon Mori
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Yusuke Iwai
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Tomohiro Ozawa
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Masuda
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
| |
Collapse
|
50
|
Borges BM, Ramos RBC, Preite NW, Kaminski VDL, Alves de Castro P, Camacho M, Maximo MF, Fill TP, Calich VLG, Traynor AM, Sarikaya-Bayram Ö, Doyle S, Bayram Ö, de Campos CBL, Zelanis A, Goldman GH, Loures FV. Transcriptional profiling of a fungal granuloma reveals a low metabolic activity of Paracoccidioides brasiliensis yeasts and an actively regulated host immune response. Front Cell Infect Microbiol 2023; 13:1268959. [PMID: 37868350 PMCID: PMC10585178 DOI: 10.3389/fcimb.2023.1268959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Granulomas are important immunological structures in the host defense against the fungus Paracoccidioides brasiliensis, the main etiologic agent of Paracoccidioidomycosis (PCM), a granulomatous systemic mycosis endemic in Latin America. We have performed transcriptional and proteomic studies of yeasts present in the pulmonary granulomas of PCM aiming to identify relevant genes and proteins that act under stressing conditions. C57BL/6 mice were infected with 1x106 yeasts and after 8- and 12-weeks of infection, granulomatous lesions were obtained for extraction of fungal and murine RNAs and fungal proteins. Dual transcriptional profiling was done comparing lung cells and P. brasiliensis yeasts from granulomas with uninfected lung cells and the original yeast suspension used in the infection, respectively. Mouse transcripts indicated a lung malfunction, with low expression of genes related to muscle contraction and organization. In addition, an increased expression of transcripts related to the activity of neutrophils, eosinophils, macrophages, lymphocytes as well as an elevated expression of IL-1β, TNF-α, IFN-γ, IL-17 transcripts were observed. The increased expression of transcripts for CTLA-4, PD-1 and arginase-1, provided evidence of immune regulatory mechanisms within the granulomatous lesions. Also, our results indicate iron as a key element for the granuloma to function, where a high number of transcripts related to fungal siderophores for iron uptake was observed, a mechanism of fungal virulence not previously described in granulomas. Furthermore, transcriptomics and proteomics analyzes indicated a low fungal activity within the granuloma, as demonstrated by the decreased expression of genes and proteins related to energy metabolism and cell cycle.
Collapse
Affiliation(s)
- Bruno Montanari Borges
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Rafael Berton Correia Ramos
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Nycolas Willian Preite
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Valéria de Lima Kaminski
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Patrícia Alves de Castro
- Faculty of Pharmaceutical Science of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Maurício Camacho
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | | | - Taicia Pacheco Fill
- Institute of Chemistry, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Vera Lúcia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Aimee M. Traynor
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | | | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Özgür Bayram
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | | | - André Zelanis
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Gustavo H. Goldman
- Faculty of Pharmaceutical Science of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Flávio Vieira Loures
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| |
Collapse
|