1
|
Huang YM, Shih LJ, Hsieh TW, Tsai KW, Lu KC, Liao MT, Hu WC. Type 2 hypersensitivity disorders, including systemic lupus erythematosus, Sjögren's syndrome, Graves' disease, myasthenia gravis, immune thrombocytopenia, autoimmune hemolytic anemia, dermatomyositis, and graft-versus-host disease, are THαβ-dominant autoimmune diseases. Virulence 2024; 15:2404225. [PMID: 39267271 PMCID: PMC11409508 DOI: 10.1080/21505594.2024.2404225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/21/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024] Open
Abstract
The THαβ host immunological pathway contributes to the response to infectious particles (viruses and prions). Furthermore, there is increasing evidence for associations between autoimmune diseases, and particularly type 2 hypersensitivity disorders, and the THαβ immune response. For example, patients with systemic lupus erythematosus often produce anti-double stranded DNA antibodies and anti-nuclear antibodies and show elevated levels of type 1 interferons, type 3 interferons, interleukin-10, IgG1, and IgA1 throughout the disease course. These cytokines and antibody isotypes are associated with the THαβ host immunological pathway. Similarly, the type 2 hypersensitivity disorders myasthenia gravis, Graves' disease, graft-versus-host disease, autoimmune hemolytic anemia, immune thrombocytopenia, dermatomyositis, and Sjögren's syndrome have also been linked to the THαβ pathway. Considering the potential associations between these diseases and dysregulated THαβ immune responses, therapeutic strategies such as anti-interleukin-10 or anti-interferon α/β could be explored for effective management.
Collapse
Affiliation(s)
- Yao-Ming Huang
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Li-Jane Shih
- Department of Medical Laboratory, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei city, Taiwan
| | - Teng-Wei Hsieh
- Division of Immunology, Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Kuo-Wang Tsai
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Wan-Chung Hu
- Department of Clinical Pathology, Taipei Tzu Chi Hospital, Buddhist Medical Tzu Chi Foundation, New Taipei City, Taiwan
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Uvarova AN, Zheremyan EA, Ustiugova AS, Murashko MM, Bogomolova EA, Demin DE, Stasevich EM, Kuprash DV, Korneev KV. Autoimmunity-Associated SNP rs3024505 Disrupts STAT3 Binding in B Cells, Leading to IL10 Dysregulation. Int J Mol Sci 2024; 25:10196. [PMID: 39337678 PMCID: PMC11432243 DOI: 10.3390/ijms251810196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Interleukin 10 (IL10) is a major anti-inflammatory cytokine that acts as a master regulator of the immune response. A single nucleotide polymorphism rs3024505(C/T), located downstream of the IL10 gene, is associated with several aggressive inflammatory diseases, including systemic lupus erythematosus, Sjögren's syndrome, Crohn's disease, and ulcerative colitis. In such autoimmune pathologies, IL10-producing B cells play a protective role by decreasing the level of inflammation and restoring immune homeostasis. This study demonstrates that rs3024505 is located within an enhancer that augments the activity of the IL10 promoter in a reporter system based on a human B cell line. The common rs3024505(C) variant creates a functional binding site for the transcription factor STAT3, whereas the risk allele rs3024505(T) disrupts STAT3 binding, thereby reducing the IL10 promoter activity. Our findings indicate that B cells from individuals carrying the minor rs3024505(T) allele may produce less IL10 due to the disrupted STAT3 binding site, contributing to the progression of inflammatory pathologies.
Collapse
Affiliation(s)
- Aksinya N. Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elina A. Zheremyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alina S. Ustiugova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Matvey M. Murashko
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Elvina A. Bogomolova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Denis E. Demin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ekaterina M. Stasevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Dmitry V. Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Kirill V. Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
3
|
Bulondo F, Babensee JE. Optimization of Interleukin-10 incorporation for dendritic cells embedded in Poly(ethylene glycol) hydrogels. J Biomed Mater Res A 2024; 112:1317-1336. [PMID: 38562052 DOI: 10.1002/jbm.a.37714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Translational research in biomaterials and immunoengineering is leading to the development of novel advanced therapeutics to treat diseases such as cancer, autoimmunity, and viral infections. Dendritic cells (DCs) are at the center of these therapeutics given that they bridge innate and adaptive immunity. The biomaterial system developed herein uses a hydrogel carrier to deliver immunomodulatory DCs for amelioration of autoimmunity. This biomaterial vehicle is comprised of a poly (ethylene glycol)-4 arm maleimide (PEG-4MAL) hydrogels, conjugated with the immunosuppressive cytokine, interleukin-10, IL-10, and cross-linked with a collagenase-degradable peptide sequence for the injectable delivery of immunosuppressive DCs to an anatomical disease-relevant site of the cervical lymph nodes, for intended application to treat multiple sclerosis. The amount of IL-10 incorporated in the hydrogel was optimized to be 500 ng in vitro, based on immunological endpoints. At this concentration, DCs exhibited the best viability, most immunosuppressive phenotype, and protection against proinflammatory insult as compared with hydrogel-incorporated DCs with lower IL-10 loading amounts. Additionally, the effect of the degradability of the PEG-4MAL hydrogel on the release rate of incorporated IL-10 was assessed by varying the ratio of degradable peptides: VPM (degradable) and DTT (nondegradable) and measuring the IL-10 release rates. This IL-10-conjugated hydrogel delivery system for immunosuppressive DCs is set to be assessed for in vivo functionality as the immunosuppressive cytokine provides a tolerogenic environment that keeps DCs in their immature phenotype, which consequently enhances cell viability and optimizes the system's immunomodulatory functionality.
Collapse
Affiliation(s)
- Fredrick Bulondo
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Biomedical Sciences and Engineering, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Julia E Babensee
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Verma S, Shah S, Nanda R, Meher J, Rathore V, Patel S, Mohapatra E. Exploring the Role of Th10 Cells and IL-10 in Systemic Lupus Erythematosus. Cureus 2024; 16:e63875. [PMID: 39099913 PMCID: PMC11298017 DOI: 10.7759/cureus.63875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody production and immune complex deposition in various organs. The pathogenesis of SLE is multifactorial, involving genetic, hormonal, environmental, and immune factors. Interleukin-10 (IL-10) is a pleiotropic cytokine produced by various immune cells and has conflicting roles in inflammation. MATERIALS AND METHODS This is a cross-sectional study involving 56 SLE patients and 30 healthy controls. RESULTS AND ANALYSIS We found a significant increase in T helper 10 (Th10) cells and IL-10 levels in SLE patients compared to controls. Disease activity, measured by Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score, correlated positively with Th10 cells and IL-10 levels. Further analysis categorized patients into active and inactive SLE, showing significant differences in laboratory parameters, including C3, C4, Th10 cells, and IL-10, between the two groups. Notably, Th10 cells and IL-10 exhibited a significant positive correlation with SLEDAI scores. The study also explored SLE patients with and without nephritis, a severe manifestation of the disease. Th10 cell expression was significantly higher in nephritis patients, while IL-10 levels did not differ significantly between the two groups. CONCLUSION In conclusion, this study provides valuable insights into the association between Th10 cells, IL-10, and disease activity in SLE. The findings suggest that Th10 cells and IL-10 could serve as potential biomarkers for disease activity in SLE, offering a basis for further research into therapeutic interventions targeting these factors. These results contribute to our understanding of the complex immunological factors at play in SLE and may pave the way for more targeted and effective treatment approaches.
Collapse
Affiliation(s)
- Shradha Verma
- Biochemistry, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Seema Shah
- Biochemistry, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Rachita Nanda
- Biochemistry, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Jhasaketan Meher
- General Medicine, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Vinay Rathore
- Nephrology, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Suprava Patel
- Biochemistry, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Eli Mohapatra
- Biochemistry, All India Institute of Medical Sciences, Raipur, Raipur, IND
| |
Collapse
|
5
|
Bellisario V, Squillacioti G, Ghelli F, Monti MC, Correale L, Montomoli C, Bono R. Inflammation and physical activity in multiple sclerosis patients. A systematic review and meta-analysis. Complement Ther Med 2024; 82:103040. [PMID: 38608788 DOI: 10.1016/j.ctim.2024.103040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
OBJECTIVES Due to the inflammatory nature of multiple sclerosis (MS), the most widely used therapeutic approach targets the immune response but can comprise side effects (e.g. secondary immunosuppression). For these reasons, among non-pharmaceutical interventions without known side effects, physical activity (PA) gained importance because it is feasible, safe and a supportive complementary treatment strategy to alleviate symptoms in MS subjects. Consequently, the main aim of this systematic review is to analyze the effect of PA protocols, as a complementary therapy, on inflammatory status in MS patients. METHODS Four electronic databases (PubMed, Embase, CINAHL, and Cochrane CENTRAL) were systematically searched up to 01 June 2023 (Prospero Protocol ID=CRD42021244418). The refined search strategy was based on three concepts: "MULTIPLE SCLEROSIS" AND "PHYSICAL ACTIVITY" AND "INFLAMMATION". RESULTS three main findings emerged: 1) untrained subjects showed a negative modulation of inflammatory biomarkers concentrations when compared to trained people (-0.74, 95 %C.I.-1.16, -0.32); 2) training modulated positively inflammatory biomarkers (+0.47, 95 %C.I. 0.24,0.71); 3) Aerobic PA protocol enhance higher positive influence on inflammation. CONCLUSIONS Persistent, low-grade inflammation in MS could be upregulated by non-pharmacological complementary therapies, in particular by regular aerobic PA that could reduce and positively modulate inflammation.
Collapse
Affiliation(s)
- V Bellisario
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - G Squillacioti
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy.
| | - F Ghelli
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - M C Monti
- Department of Public Health Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - L Correale
- Department of Public Health Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - C Montomoli
- Department of Public Health Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - R Bono
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| |
Collapse
|
6
|
Wang M, Zhou J, Niu Q, Wang H. Mechanism of tacrolimus in the treatment of lupus nephritis. Front Pharmacol 2024; 15:1331800. [PMID: 38774214 PMCID: PMC11106426 DOI: 10.3389/fphar.2024.1331800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/19/2024] [Indexed: 05/24/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder, with more than half of the patients developing lupus nephritis (LN), which significantly contributes to chronic kidney disease (CKD) and end-stage renal disease (ESRD). The treatment of lupus nephritis has always been challenging. Tacrolimus (TAC), an effective immunosuppressant, has been increasingly used in the treatment of LN in recent years. This review aims to explore the mechanisms of action of tacrolimus in treating LN. Firstly, we briefly introduce the pharmacological properties of tacrolimus, including its role as a calcineurin (CaN) inhibitor, exerting immunosuppressive effects by inhibiting T cell activation and cytokine production. Subsequently, we focus on various other immunomodulatory mechanisms of tacrolimus in LN therapy, including its effects on T cells, B cells, and immune cells in kidney. Particularly, we emphasize tacrolimus' regulatory effect on inflammatory mediators and its importance in modulating the Th1/Th2 and Th17/Treg balance. Additionally, we review its effects on actin cytoskeleton, angiotensin II (Ang II)-specific vascular contraction, and P-glycoprotein activity, summarizing its impacts on non-immune mechanisms. Finally, we summarize the efficacy and safety of tacrolimus in clinical studies and trials. Although some studies have shown significant efficacy of tacrolimus in treating LN, its safety remains a challenge. We outline the potential adverse reactions of long-term tacrolimus use and provide suggestions on effectively monitoring and managing these adverse reactions in clinical practice. In general, tacrolimus, as a novel immunosuppressant, holds promising prospects for treating LN. Of course, further research is needed to better understand its therapeutic mechanisms and ensure its safety and efficacy in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Hongyue Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Zhang M, Wang C, Li Q, Wang H, Li X. Risk factors and an early predictive model for Kawasaki disease shock syndrome in Chinese children. Ital J Pediatr 2024; 50:22. [PMID: 38310292 PMCID: PMC10837898 DOI: 10.1186/s13052-024-01597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/21/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Kawasaki disease shock syndrome (KDSS), though rare, has increased risk for cardiovascular complications. Early diagnosis is crucial to improve the prognosis of KDSS patients. Our study aimed to identify risk factors and construct a predictive model for KDSS. METHODS This case-control study was conducted from June, 2015 to July, 2023 in two children's hospitals in China. Children initially diagnosed with KDSS and children with Kawasaki disease (KD) without shock were matched at a ratio of 1:4 by using the propensity score method. Laboratory results obtained prior to shock syndrome and treatment with intravenous immunoglobulin were recorded to predict the onset of KDSS. Univariable logistic regression and forward stepwise logistic regression were used to select significant and independent risk factors associated with KDSS. RESULTS After matching by age and gender, 73 KDSS and 292 KD patients without shock formed the development dataset; 40 KDSS and 160 KD patients without shock formed the validation dataset. Interleukin-10 (IL-10) > reference value, platelet counts (PLT) < 260 × 109/L, C-reactive protein (CRP) > 80 mg/ml, procalcitonin (PCT) > 1ng/ml, and albumin (Alb) < 35 g/L were independent risk factors for KDSS. The nomogram model including the above five indicators had area under the curves (AUCs) of 0.91(95% CI: 0.87-0.94) and 0.90 (95% CI: 0.71-0.86) in the development and validation datasets, with a specificity and sensitivity of 80% and 86%, 66% and 77%, respectively. Calibration curves showed good predictive accuracy of the nomogram. Decision curve analyses revealed the predictive model has application value. CONCLUSIONS This study identified IL-10, PLT, CRP, PCT and Alb as risk factors for KDSS. The nomogram model can effectively predict the occurrence of KDSS in Chinese children. It will facilitate pediatricians in early diagnosis, which is essential to the prevention of cardiovascular complications.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Cardiology, Children's Hospital Capital Institute of Pediatrics, Beijing, 10020, China
| | - Congying Wang
- Department of Cardiology, Children's Hospital Capital Institute of Pediatrics, Beijing, 10020, China
- Department of Cardiology, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Qirui Li
- Department of Cardiology, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Hongmao Wang
- Department of Cardiology, Children's Hospital Capital Institute of Pediatrics, Beijing, 10020, China
| | - Xiaohui Li
- Department of Cardiology, Children's Hospital Capital Institute of Pediatrics, Beijing, 10020, China.
- Department of Cardiology, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China.
| |
Collapse
|
8
|
Yasuda M, Uzawa A, Ozawa Y, Kojima Y, Onishi Y, Akamine H, Kuwabara S. Serum cytokine profiles in myasthenia gravis with anti-muscle-specific kinase antibodies. J Neuroimmunol 2023; 384:578205. [PMID: 37774555 DOI: 10.1016/j.jneuroim.2023.578205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
This study measured the serum levels of of 15 cytokines in 15 patients with anti-muscle-specific kinase antibody-positive MG (MuSK-MG) using a multiplex suspension array system. Fifteen patients with non-inflammatory neurological diseases served as controls. Compared with controls, patients with MuSK-MG showed higher levels of Th1- (IFN-γ), Th2- (IL-25, IL-31, and IL-33), Th17- (IL-22), Treg-related cytokines (IL-10), and soluble CD40 ligand (sCD40L). Higher serum Th2-related cytokines (IL-25 and IL-31) levels were correlated with less MG Foundation of America (MGFA) class. These suggest that Th2-related cytokines have protective effects, whereas sCD40L and others may facilitate the disease.
Collapse
Affiliation(s)
- Manato Yasuda
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan.
| | - Yukiko Ozawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan; Department of Neurology, Japanese Red Cross Narita Hospital, Japan
| | - Yuta Kojima
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan; Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yosuke Onishi
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Hiroyuki Akamine
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| |
Collapse
|
9
|
Jeyamogan S, Leventhal JR, Mathew JM, Zhang ZJ. CD4 +CD25 +FOXP3 + regulatory T cells: a potential "armor" to shield "transplanted allografts" in the war against ischemia reperfusion injury. Front Immunol 2023; 14:1270300. [PMID: 37868962 PMCID: PMC10587564 DOI: 10.3389/fimmu.2023.1270300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Despite the advances in therapeutic interventions, solid organ transplantation (SOT) remains the "gold standard" treatment for patients with end-stage organ failure. Recently, vascularized composite allotransplantation (VCA) has reemerged as a feasible treatment option for patients with complex composite tissue defects. In both SOT and VCA, ischemia reperfusion injury (IRI) is inevitable and is a predominant factor that can adversely affect transplant outcome by potentiating early graft dysfunction and/or graft rejection. Restoration of oxygenated blood supply to an organ which was previously hypoxic or ischemic for a period of time triggers cellular oxidative stress, production of both, pro-inflammatory cytokines and chemokines, infiltration of innate immune cells and amplifies adaptive alloimmune responses in the affected allograft. Currently, Food and Drug Administration (FDA) approved drugs for the treatment of IRI are unavailable, therefore an efficacious therapeutic modality to prevent, reduce and/or alleviate allograft damages caused by IRI induced inflammation is warranted to achieve the best-possible transplant outcome among recipients. The tolerogenic capacity of CD4+CD25+FOXP3+ regulatory T cells (Tregs), have been extensively studied in the context of transplant rejection, autoimmunity, and cancer. It was not until recently that Tregs have been recognized as a potential cell therapeutic candidate to be exploited for the prevention and/or treatment of IRI, owing to their immunomodulatory potential. Tregs can mitigate cellular oxidative stress, produce anti-inflammatory cytokines, promote wound healing, and tissue repair and prevent the infiltration of pro-inflammatory immune cells in injured tissues. By using strategic approaches to increase the number of Tregs and to promote targeted delivery, the outcome of SOT and VCA can be improved. This review focuses on two sections: (a) the therapeutic potential of Tregs in preventing and mitigating IRI in the context of SOT and VCA and (b) novel strategies on how Tregs could be utilized for the prevention and/or treatment of IRI.
Collapse
Affiliation(s)
- Shareni Jeyamogan
- Department of Surgery, Comprehensive Transplant Center Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Joseph R. Leventhal
- Department of Surgery, Comprehensive Transplant Center Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Simpson Querrey Institute for BioNanotechnology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - James M. Mathew
- Department of Surgery, Comprehensive Transplant Center Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Simpson Querrey Institute for BioNanotechnology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Zheng Jenny Zhang
- Department of Surgery, Comprehensive Transplant Center Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Simpson Querrey Institute for BioNanotechnology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Microsurgery and Pre-Clinical Research Core, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
10
|
Tichauer JE, Arellano G, Acuña E, González LF, Kannaiyan NR, Murgas P, Panadero-Medianero C, Ibañez-Vega J, Burgos PI, Loda E, Miller SD, Rossner MJ, Gebicke-Haerter PJ, Naves R. Interferon-gamma ameliorates experimental autoimmune encephalomyelitis by inducing homeostatic adaptation of microglia. Front Immunol 2023; 14:1191838. [PMID: 37334380 PMCID: PMC10272814 DOI: 10.3389/fimmu.2023.1191838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Compelling evidence has shown that interferon (IFN)-γ has dual effects in multiple sclerosis and in its animal model of experimental autoimmune encephalomyelitis (EAE), with results supporting both a pathogenic and beneficial function. However, the mechanisms whereby IFN-γ may promote neuroprotection in EAE and its effects on central nervous system (CNS)-resident cells have remained an enigma for more than 30 years. In this study, the impact of IFN-γ at the peak of EAE, its effects on CNS infiltrating myeloid cells (MC) and microglia (MG), and the underlying cellular and molecular mechanisms were investigated. IFN-γ administration resulted in disease amelioration and attenuation of neuroinflammation associated with significantly lower frequencies of CNS CD11b+ myeloid cells and less infiltration of inflammatory cells and demyelination. A significant reduction in activated MG and enhanced resting MG was determined by flow cytometry and immunohistrochemistry. Primary MC/MG cultures obtained from the spinal cord of IFN-γ-treated EAE mice that were ex vivo re-stimulated with a low dose (1 ng/ml) of IFN-γ and neuroantigen, promoted a significantly higher induction of CD4+ regulatory T (Treg) cells associated with increased transforming growth factor (TGF)-β secretion. Additionally, IFN-γ-treated primary MC/MG cultures produced significantly lower nitrite in response to LPS challenge than control MC/MG. IFN-γ-treated EAE mice had a significantly higher frequency of CX3CR1high MC/MG and expressed lower levels of program death ligand 1 (PD-L1) than PBS-treated mice. Most CX3CR1highPD-L1lowCD11b+Ly6G- cells expressed MG markers (Tmem119, Sall2, and P2ry12), indicating that they represented an enriched MG subset (CX3CR1highPD-L1low MG). Amelioration of clinical symptoms and induction of CX3CR1highPD-L1low MG by IFN-γ were dependent on STAT-1. RNA-seq analyses revealed that in vivo treatment with IFN-γ promoted the induction of homeostatic CX3CR1highPD-L1low MG, upregulating the expression of genes associated with tolerogenic and anti-inflammatory roles and down-regulating pro-inflammatory genes. These analyses highlight the master role that IFN-γ plays in regulating microglial activity and provide new insights into the cellular and molecular mechanisms involved in the therapeutic activity of IFN-γ in EAE.
Collapse
Affiliation(s)
- Juan E. Tichauer
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gabriel Arellano
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eric Acuña
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Luis F. González
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Nirmal R. Kannaiyan
- Molecular Neurobiology, Department of Psychiatry & Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Paola Murgas
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | | | - Jorge Ibañez-Vega
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paula I. Burgos
- Department of Clinical Immunology and Rheumatology , School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eileah Loda
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Moritz J. Rossner
- Molecular Neurobiology, Department of Psychiatry & Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Peter J. Gebicke-Haerter
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, Mannheim, Germany
| | - Rodrigo Naves
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Shafiei M, Mozhgani SH. Th17/IL-17 Axis in HTLV-1-Associated Myelopathy Tropical Spastic Paraparesis and Multiple Sclerosis: Novel Insights into the Immunity During HAMTSP. Mol Neurobiol 2023; 60:3839-3854. [PMID: 36947318 DOI: 10.1007/s12035-023-03303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Human T lymphotropic virus-associated myelopathy/tropical spastic paraparesis (HTLV/TSP), also known as HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP), and multiple sclerosis (MS) are chronic debilitating diseases of the central nervous system; although the etiology of which is different, similarities have been observed between these two demyelinating diseases, especially in clinical manifestation and immunopathogenesis. Exorbitant response of the immune system to the virus and neurons in CNS is the causative agent of HAM/TSP and MS, respectively. Helper T lymphocyte-17 cells (Th17s), a component of the immune system, which have a proven role in immunity and autoimmunity, mediate protection against bacterial/fungal infections. The role of these cells has been reviewed in several CNS diseases. A pivotal role for Th17s is presented in demyelination, even more axial than Th1s, during MS. The effect of Th17s is not well determined in HTLV-1-associated infections; however, the evidence that we have supplied in this review illustrates the attendance, also the role of Th17 cells during HAM/TSP. Furthermore, for better conception concerning the trace of these cells in HAM/TSP, a comparative characterization with MS, the resembling disease, has been applied here.
Collapse
Affiliation(s)
- Mohammadreza Shafiei
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
12
|
M Frias IA, Zine N, Sigaud M, Lozano-Sanchez P, Caffio M, Errachid A. Non-covalent π-π functionalized Gii-sense Ⓡ graphene foam for interleukin 10 impedimetric detection. Biosens Bioelectron 2023; 222:114954. [PMID: 36502717 DOI: 10.1016/j.bios.2022.114954] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/21/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
Monitoring Interleukin 10 (IL-10) is essential for understanding the vast responses of T-cells in cancer, autoimmunity, and internal homeostasis after physical stress. However, current diagnostic methods are complex and more focused on medical screening rather than point-of-care monitoring. Biosensors based on graphene's conductivity and flexibility are attractive to offer simple single-use and reduced handling. However, oxidation of its carbon lattice to develop functional moieties for biomolecule immobilization cuts down its electronic conductivity potential. In this work, the authors present a microfluidic lab-on-chip device for simple impedimetric monitoring of IL-10 based on graphene foam (GF) flexible electrodes. Graphene's structure was maintained by employing π-π non-covalent functionalization with pyrene carboxylic acid (PCA). Impedimetric measurements could be performed in low ionic strength phosphate-buffered saline (LI-PBS). The PCA-antibody modification showed to endure the incubation, measurement, and washing processes performed in the microfluidic device. Electrode modification and measurements were characterized by, electrochemical impedance spectroscopy (EIS), contact angle, and scanning electron microscopy. From the contact angle results, we found that the wettability of the graphene surface increased gradually after each modification step. Detection measurements performed in the 3D-printed microfluidic device showed a linear response between 10 fg/mL to 100 fg/mL with a limit of detection (LOD) of 7.89 fg/mL in artificial saliva. With these features, the device was used to quantify IL-10 samples by the standard addition method for 10 fg and 50 fg with recoveries between 82% and 99%. Specificity was evaluated towards interleukin 6, TNF-⍺ and bovine serum albumin.
Collapse
Affiliation(s)
- Isaac A M Frias
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon-5, Rue de La Doua, F-69100, Villeurbanne, France
| | - Nadia Zine
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon-5, Rue de La Doua, F-69100, Villeurbanne, France
| | - Monique Sigaud
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon-5, Rue de La Doua, F-69100, Villeurbanne, France
| | - Pablo Lozano-Sanchez
- Integrated Graphene Ltd Eurohouse, Wellgreen Place Stirling, FK8 2DJ, Scottland, UK
| | - Marco Caffio
- Integrated Graphene Ltd Eurohouse, Wellgreen Place Stirling, FK8 2DJ, Scottland, UK
| | - Abdelhamid Errachid
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon-5, Rue de La Doua, F-69100, Villeurbanne, France.
| |
Collapse
|
13
|
Voss K, Sewell AE, Krystofiak ES, Gibson-Corley KN, Young AC, Basham JH, Sugiura A, Arner EN, Beavers WN, Kunkle DE, Dickson ME, Needle GA, Skaar EP, Rathmell WK, Ormseth MJ, Major AS, Rathmell JC. Elevated transferrin receptor impairs T cell metabolism and function in systemic lupus erythematosus. Sci Immunol 2023; 8:eabq0178. [PMID: 36638190 PMCID: PMC9936798 DOI: 10.1126/sciimmunol.abq0178] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
T cells in systemic lupus erythematosus (SLE) exhibit multiple metabolic abnormalities. Excess iron can impair mitochondria and may contribute to SLE. To gain insights into this potential role of iron in SLE, we performed a CRISPR screen of iron handling genes on T cells. Transferrin receptor (CD71) was identified as differentially critical for TH1 and inhibitory for induced regulatory T cells (iTregs). Activated T cells induced CD71 and iron uptake, which was exaggerated in SLE-prone T cells. Cell surface CD71 was enhanced in SLE-prone T cells by increased endosomal recycling. Blocking CD71 reduced intracellular iron and mTORC1 signaling, which inhibited TH1 and TH17 cells yet enhanced iTregs. In vivo treatment reduced kidney pathology and increased CD4 T cell production of IL-10 in SLE-prone mice. Disease severity correlated with CD71 expression on TH17 cells from patients with SLE, and blocking CD71 in vitro enhanced IL-10 secretion. T cell iron uptake via CD71 thus contributes to T cell dysfunction and can be targeted to limit SLE-associated pathology.
Collapse
Affiliation(s)
- Kelsey Voss
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Allison E. Sewell
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Evan S. Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Katherine N. Gibson-Corley
- Division of Comparative Medicine, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Arissa C. Young
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jacob H. Basham
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ayaka Sugiura
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily N. Arner
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William N. Beavers
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dillon E. Kunkle
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Megan E. Dickson
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gabriel A. Needle
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P. Skaar
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - W. Kimryn Rathmell
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michelle J. Ormseth
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN, USA
| | - Amy S. Major
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN, USA
| | - Jeffrey C. Rathmell
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
14
|
Sachdeva R, Pal R. A pregnancy hormone-cell death link promotes enhanced lupus-specific immunological effects. Front Immunol 2022; 13:1051779. [PMID: 36505418 PMCID: PMC9730325 DOI: 10.3389/fimmu.2022.1051779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Women of reproductive age demonstrate an increased incidence of systemic lupus erythematosus, and reproductive hormones have been implicated in disease progression. Additionally, pregnancy can be associated with disease "flares", the reasons for which remain obscure. While apoptotic bodies are believed to provide an autoantigenic trigger in lupus, whether autoantigenic constituents vary with varying cellular insults, and whether such variations can be immunologically consequential in the context of pregnancy, remains unknown. As assessed by antigenicity and mass spectrometry, apoptotic bodies elicited by different drugs demonstrated the differential presence of lupus-associated autoantigens, and varied in the ability to elicit lupus-associated cytokines from lupus splenocytes and alter the phenotype of lupus B cells. Immunization of tamoxifen-induced apoptotic bodies in lupus-prone mice generated higher humoral autoreactive responses than did immunization with cisplatin-induced apoptotic bodies, and both apoptotic bodies were poorly immunogenic in healthy mice. Incubation of lupus splenocytes (but not healthy splenocytes) with the pregnancy hormone human chorionic gonadotropin (hCG) along with tamoxifen-induced apoptotic bodies (but not cisplatin-induced apoptotic bodies) induced increases in the secretion of lupus-associated cytokines and in the up-modulation of B cell phenotypic markers. In addition, levels of secreted autoantibodies (including of specificities linked to lupus pathogenesis) were enhanced. These events were associated with the heightened phosphorylation of several signaling intermediates. Observations suggest that hCG is a potential disease-promoting co-stimulant in a lupus-milieu; when combined with specific apoptotic bodies, it enhances the intensity of multiple lupus-associated events. These findings deepen mechanistic insight into the hormone's links with autoreactive responses in lupus-prone mice and humans.
Collapse
|
15
|
Kraemer AN, Schäfer AL, Sprenger DTL, Sehnert B, Williams JP, Luo A, Riechert L, Al-Kayyal Q, Dumortier H, Fauny JD, Winter Z, Heim K, Hofmann M, Herrmann M, Heine G, Voll RE, Chevalier N. Impact of dietary vitamin D on immunoregulation and disease pathology in lupus-prone NZB/W F1 mice. Front Immunol 2022; 13:933191. [PMID: 36505422 PMCID: PMC9730823 DOI: 10.3389/fimmu.2022.933191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022] Open
Abstract
Vitamin D (VD) deficiency is a highly prevalent worldwide phenomenon and is extensively discussed as a risk factor for the development of systemic lupus erythematosus (SLE) and other immune-mediated diseases. In addition, it is now appreciated that VD possesses multiple immunomodulatory effects. This study aims to explore the impact of dietary VD intake on lupus manifestation and pathology in lupus-prone NZB/W F1 mice and identify the underlying immunological mechanisms modulated by VD. Here, we show that low VD intake accelerates lupus progression, reflected in reduced overall survival and an earlier onset of proteinuria, as well higher concentrations of anti-double-stranded DNA autoantibodies. This unfavorable effect gained statistical significance with additional low maternal VD intake during the prenatal period. Among examined immunological effects, we found that low VD intake consistently hampered the adoption of a regulatory phenotype in lymphocytes, significantly reducing both IL-10-expressing and regulatory CD4+ T cells. This goes along with a mildly decreased frequency of IL-10-expressing B cells. We did not observe consistent effects on the phenotype and function of innate immune cells, including cytokine production, costimulatory molecule expression, and phagocytic capacity. Hence, our study reveals that low VD intake promotes lupus pathology, likely via the deviation of adaptive immunity, and suggests that the correction of VD deficiency might not only exert beneficial functions by preventing osteoporosis but also serve as an important module in prophylaxis and as an add-on in the treatment of lupus and possibly other immune-mediated diseases. Further research is required to determine the most appropriate dosage, as too-high VD serum levels may also induce adverse effects, possibly also on lupus pathology.
Collapse
Affiliation(s)
- Antoine N. Kraemer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna-Lena Schäfer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dalina T. L. Sprenger
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bettina Sehnert
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johanna P. Williams
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Aileen Luo
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Riechert
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Qusai Al-Kayyal
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hélène Dumortier
- Centre national de la recherche scientifique (CNRS) UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, Strasbourg, France
| | - Jean-Daniel Fauny
- Centre national de la recherche scientifique (CNRS) UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, Strasbourg, France
| | - Zoltan Winter
- Institute of Radiology, Preclinical Imaging Platform Erlangen (PIPE), Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Kathrin Heim
- Department of Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3, and Deutsches Zentrum Immuntherapie (DZI), University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Guido Heine
- Division of Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Reinhard E. Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Chevalier
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
CD4+ Cytotoxic T Cells Involved in the Development of EBV-Associated Diseases. Pathogens 2022; 11:pathogens11080831. [PMID: 35894054 PMCID: PMC9330826 DOI: 10.3390/pathogens11080831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Activated cytotoxic CD4 T cells (HLA-DR+) play an important role in the control of EBV infection, especially in cells with latency I (EBNA-1). One of the evasion mechanisms of these latency cells is generated by gp42, which, via peripherally binding to the β1 domain of the β chain of MHC class II (HLA-DQ, -DR, and -DP) of the infected B lymphocyte, can block/alter the HLA class II/T-cell receptor (TCR) interaction, and confer an increased level of susceptibility towards the development of EBV-associated autoimmune diseases or cancer in genetically predisposed individuals (HLA-DRB1* and DQB1* alleles). The main developments predisposing the factors of these diseases are: EBV infection; HLA class II risk alleles; sex; and tissue that is infiltrated with EBV-latent cells, forming ectopic lymphoid structures. Therefore, there is a need to identify treatments for eliminating cells with EBV latency, because the current treatments (e.g., antivirals and rituximab) are ineffective.
Collapse
|
17
|
Quach SS, Zhu A, Lee RSB, Seymour GJ. Immunomodulation—What to Modulate and Why? Potential Immune Targets. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.883342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite over 50 years of research into the immunology of periodontal disease, the precise mechanisms and the role of many cell types remains an enigma. Progress has been limited by the inability to determine disease activity clinically. Understanding the immunopathogenesis of periodontal disease however is fundamental if immunomodulation is to be used as a therapeutic strategy. It is important for the clinician to understand what could be modulated and why. In this context, potential targets include different immune cell populations and their subsets, as well as various cytokines. The aim of this review is to examine the role of the principal immune cell populations and their cytokines in the pathogenesis of periodontal disease and their potential as possible therapeutic targets.
Collapse
|
18
|
Markiewicz-Górka I, Chowaniec M, Martynowicz H, Wojakowska A, Jaremków A, Mazur G, Wiland P, Pawlas K, Poręba R, Gać P. Cadmium Body Burden and Inflammatory Arthritis: A Pilot Study in Patients from Lower Silesia, Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3099. [PMID: 35270791 PMCID: PMC8910441 DOI: 10.3390/ijerph19053099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 12/04/2022]
Abstract
The purpose of this study was to determine the relationship between cadmium exposure and the likelihood of developing or exacerbating symptoms of inflammatory arthritis (IA). The study included 51 IA patients and 46 control subjects. Demographic and lifestyle data were collected. Haematological and biochemical parameters and blood cadmium levels (Cd-B) were determined. Cd-B correlated positively with age, smoking, living in a high-traffic area, and serum levels of inflammatory markers and negatively with mean corpuscular haemoglobin concentration (MCHC). The binary logistic regression model implied that high Cd-B (≥0.65 μg/L) is linked with an increased risk of IA in the studied population (odds ratio: 4.4). High levels of DNA oxidative damage marker (8-hydroxy-2'-deoxyguanosine) (≥7.66 ng/mL) and cyclooxygenase-2 (≥22.9 ng/mL) and frequent consumption of offal was also associated with increased risk of IA. High Cd-B was related to increased risk of disease symptoms onset in the group of IA patients, decreased the level of interleukin 10, and positively correlated with the disease activity. Increased Cd-B is associated with intensified inflammatory processes and decreased haemoglobin levels; in IA patients with decreased anti-inflammatory interleukin 10. These changes partly explain why cadmium exposure and a high cadmium body burden may raise the risk of IA and of disease symptoms exacerbation.
Collapse
Affiliation(s)
- Iwona Markiewicz-Górka
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, 7 Mikulicza-Radeckiego St., 50-345 Wroclaw, Poland; (M.C.); (A.J.); (K.P.); (P.G.)
| | - Małgorzata Chowaniec
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, 7 Mikulicza-Radeckiego St., 50-345 Wroclaw, Poland; (M.C.); (A.J.); (K.P.); (P.G.)
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland;
| | - Helena Martynowicz
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland; (H.M.); (A.W.); (G.M.); (R.P.)
| | - Anna Wojakowska
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland; (H.M.); (A.W.); (G.M.); (R.P.)
| | - Aleksandra Jaremków
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, 7 Mikulicza-Radeckiego St., 50-345 Wroclaw, Poland; (M.C.); (A.J.); (K.P.); (P.G.)
| | - Grzegorz Mazur
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland; (H.M.); (A.W.); (G.M.); (R.P.)
| | - Piotr Wiland
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland;
| | - Krystyna Pawlas
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, 7 Mikulicza-Radeckiego St., 50-345 Wroclaw, Poland; (M.C.); (A.J.); (K.P.); (P.G.)
| | - Rafał Poręba
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland; (H.M.); (A.W.); (G.M.); (R.P.)
| | - Paweł Gać
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, 7 Mikulicza-Radeckiego St., 50-345 Wroclaw, Poland; (M.C.); (A.J.); (K.P.); (P.G.)
| |
Collapse
|
19
|
Biscetti L, De Vanna G, Cresta E, Bellotti A, Corbelli I, Letizia Cupini M, Calabresi P, Sarchielli P. Immunological findings in patients with migraine and other primary headaches: a narrative review. Clin Exp Immunol 2022; 207:11-26. [PMID: 35020858 PMCID: PMC8802184 DOI: 10.1093/cei/uxab025] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/14/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
Experimental findings suggest an involvement of neuroinflammatory mechanisms in the pathophysiology of migraine. Specifically, preclinical models of migraine have emphasized the role of neuroinflammation following the activation of the trigeminal pathway at several peripheral and central sites including dural vessels, the trigeminal ganglion, and the trigeminal nucleus caudalis. The evidence of an induction of inflammatory events in migraine pathophysiological mechanisms has prompted researchers to investigate the human leukocyte antigen (HLA) phenotypes as well as cytokine genetic polymorphisms in order to verify their potential relationship with migraine risk and severity. Furthermore, the role of neuroinflammation in migraine seems to be supported by evidence of an increase in pro-inflammatory cytokines, both ictally and interictally, together with the prevalence of Th1 lymphocytes and a reduction in regulatory lymphocyte subsets in peripheral blood of migraineurs. Cytokine profiles of cluster headache (CH) patients and those of tension-type headache patients further suggest an immunological dysregulation in the pathophysiology of these primary headaches, although evidence is weaker than for migraine. The present review summarizes available findings to date from genetic and biomarker studies that have explored the role of inflammation in primary headaches.
Collapse
Affiliation(s)
- Leonardo Biscetti
- Istituto Nazionale di Riposo e Cura dell'Anziano a carattere scientifico, IRCSS-INRCA, Ancona, Italy
| | - Gioacchino De Vanna
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Cresta
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alessia Bellotti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ilenia Corbelli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Paolo Calabresi
- Department of Neuroscience, Università Cattolica Sacro Cuore, Rome, Italy.,Neurologia, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Paola Sarchielli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
20
|
Hendrawan K, Khoo MLM, Visweswaran M, Massey JC, Withers B, Sutton I, Ma DDF, Moore JJ. Long-Term Suppression of Circulating Proinflammatory Cytokines in Multiple Sclerosis Patients Following Autologous Haematopoietic Stem Cell Transplantation. Front Immunol 2022; 12:782935. [PMID: 35126353 PMCID: PMC8807525 DOI: 10.3389/fimmu.2021.782935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Autologous haematopoietic stem cell transplantation (AHSCT) is a therapeutic option for haematological malignancies, such as non-Hodgkin’s lymphoma (NHL), and more recently, for autoimmune diseases, such as treatment-refractory multiple sclerosis (MS). The immunological mechanisms underlying remission in MS patients following AHSCT likely involve an anti-inflammatory shift in the milieu of circulating cytokines. We hypothesised that immunological tolerance in MS patients post-AHSCT is reflected by an increase in anti-inflammatory cytokines and a suppression of proinflammatory cytokines in the patient blood. We investigated this hypothesis using a multiplex-ELISA assay to compare the concentrations of secreted cytokine in the peripheral blood of MS patients and NHL patients undergoing AHSCT. In MS patients, we detected significant reductions in proinflammatory T helper (Th)17 cytokines interleukin (IL)-17, IL-23, IL-1β, and IL-21, and Th1 cytokines interferon (IFN)γ and IL-12p70 in MS patients from day 8 to 24 months post-AHSCT. These changes were not observed in the NHL patients despite similar pre-conditioning treatment for AHSCT. Some proinflammatory cytokines show similar trends in both cohorts, such as IL-8 and tumour necrosis factor (TNF)-α, indicating a probable treatment-related AHSCT response. Anti-inflammatory cytokines (IL-10, IL-4, and IL-2) were only transiently reduced post-AHSCT, with only IL-10 exhibiting a significant surge at day 14 post-AHSCT. MS patients that relapsed post-AHSCT exhibited significantly elevated levels of IL-17 at 12 months post-AHSCT, unlike non-relapse patients which displayed sustained suppression of Th17 cytokines at all post-AHSCT timepoints up to 24 months. These findings suggest that suppression of Th17 cytokines is essential for the induction of long-term remission in MS patients following AHSCT.
Collapse
Affiliation(s)
- Kevin Hendrawan
- Blood, Stem Cells and Cancer Research Programme, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Melissa L. M. Khoo
- Blood, Stem Cells and Cancer Research Programme, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Malini Visweswaran
- Blood, Stem Cells and Cancer Research Programme, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Jennifer C. Massey
- Blood, Stem Cells and Cancer Research Programme, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Neurology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
- Department of Haematology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - Barbara Withers
- Blood, Stem Cells and Cancer Research Programme, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Haematology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - Ian Sutton
- Blood, Stem Cells and Cancer Research Programme, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Neurology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - David D. F. Ma
- Blood, Stem Cells and Cancer Research Programme, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Haematology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - John J. Moore
- Blood, Stem Cells and Cancer Research Programme, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Haematology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
- *Correspondence: John J. Moore,
| |
Collapse
|
21
|
Lu X, Oh-Hora M, Takeda K, Yamasaki S. Selective suppression of IL-10 transcription by calcineurin in dendritic cells through inactivation of CREB. Int Immunol 2021; 34:197-206. [PMID: 34953165 DOI: 10.1093/intimm/dxab112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/24/2021] [Indexed: 11/15/2022] Open
Abstract
Myeloid cells play a pivotal role in immune responses against bacterial and fungal infection. Among innate immune receptors, C-type lectin receptors (CLRs) can induce a wide spectrum of cytokines through immunoreceptor tyrosine-based activation motifs (ITAMs)-mediated signaling pathways. Dendritic cells (DCs) produce IL-10 through CLR stimulation; however, the regulatory mechanism of IL-10 expression has not been elucidated. In the current study, we report that calcium (Ca 2+) signaling-deficient DCs produced more IL-10 than wild type DCs. Mechanistically, Ca 2+-dependent phosphatase calcineurin directly inactivates cAMP response element binding protein (CREB), a transcription factor of Il10 in DCs, through dephosphorylating CREB at serine 133. In calcineurin-deficient DCs, CREB was highly phosphorylated and increased its binding to Il10 promoter. Elimination of MAPK signaling that phosphorylates CREB, deficiency of CREB, as well as deletion of CREB-binding site in Il10 promoter could diminish IL-10 production in DCs. Our findings identified a novel substrate of calcineurin as well as a mechanism through which Ca 2+ signaling regulates IL-10 expression downstream of CLRs. As IL-10 is a crucial immunosuppressive cytokine, this mechanism may counteract the over-activated IL-10 producing signals induced by CARD9 and MAPK pathways, preventing the ineffectiveness of immune system during bacterial and fungal infection.
Collapse
Affiliation(s)
- Xiuyuan Lu
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Masatsugu Oh-Hora
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Mucosal Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan.,Center for Infectious Disease Education and Research, Osaka University (CiDER), Suita, Japan
| | - Sho Yamasaki
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan.,Center for Infectious Disease Education and Research, Osaka University (CiDER), Suita, Japan.,Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,Division of Molecular Design, Research Center for Systems Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
22
|
Singh O, Hsu WL, Su ECY. ILeukin10Pred: A Computational Approach for Predicting IL-10-Inducing Immunosuppressive Peptides Using Combinations of Amino Acid Global Features. BIOLOGY 2021; 11:biology11010005. [PMID: 35053004 PMCID: PMC8773200 DOI: 10.3390/biology11010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/25/2021] [Accepted: 12/15/2021] [Indexed: 01/03/2023]
Abstract
Simple Summary Interleukin-10 is a cytokine that exhibits potent anti-inflammatory characteristics that play an essential role in limiting the host’s immune response to pathogens and regulating the growth or differentiation of various immune cells. Moreover, interleukin-10 prediction via conventional approaches is time-consuming and labor-intensive. Hence, researchers are inclined towards an alternative approach to predict interleukin-10-inducing peptides. Additionally, numerous in silico tools are available to predict T cell epitopes. These methods generally follow a direct or indirect approach where they directly predict cytotoxic T-lymphocyte epitopes rather than major histocompatibility complex binders or indirectly predict single components of the T cell recognition pathway. However, very few studies are available that address cytokine-specific predictions. Our research utilized a computer-aided approach to develop a model to predict IL-10-inducing peptides. This study outperformed the existing state-of-the-art method and achieved an accuracy of 87.5% and Matthew’s correlation coefficient (MCC) of 0.755 on the hybrid feature types and outperformed an existing state-of-the-art method based on dipeptide compositions that achieved an accuracy of 81.24% and an MCC value of 0.59. Therefore, our model is promising to assist in predicting immunosuppressive peptides that induce interleukin-10 cytokines. Abstract Interleukin (IL)-10 is a homodimer cytokine that plays a crucial role in suppressing inflammatory responses and regulating the growth or differentiation of various immune cells. However, the molecular mechanism of IL-10 regulation is only partially understood because its regulation is environment or cell type-specific. In this study, we developed a computational approach, ILeukin10Pred (interleukin-10 prediction), by employing amino acid sequence-based features to predict and identify potential immunosuppressive IL-10-inducing peptides. The dataset comprises 394 experimentally validated IL-10-inducing and 848 non-inducing peptides. Furthermore, we split the dataset into a training set (80%) and a test set (20%). To train and validate the model, we applied a stratified five-fold cross-validation method. The final model was later evaluated using the holdout set. An extra tree classifier (ETC)-based model achieved an accuracy of 87.5% and Matthew’s correlation coefficient (MCC) of 0.755 on the hybrid feature types. It outperformed an existing state-of-the-art method based on dipeptide compositions that achieved an accuracy of 81.24% and an MCC value of 0.59. Our experimental results showed that the combination of various features achieved better predictive performance..
Collapse
Affiliation(s)
- Onkar Singh
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei 115, Taiwan; (O.S.); (W.-L.H.)
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Wen-Lian Hsu
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei 115, Taiwan; (O.S.); (W.-L.H.)
- Department of Computer Science and Information Engineering, Asia University, Taichung 413, Taiwan
| | - Emily Chia-Yu Su
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-66382736 (ext. 1515); Fax: +886-2-66380233
| |
Collapse
|
23
|
Biscetti L, De Vanna G, Cresta E, Corbelli I, Gaetani L, Cupini L, Calabresi P, Sarchielli P. Headache and immunological/autoimmune disorders: a comprehensive review of available epidemiological evidence with insights on potential underlying mechanisms. J Neuroinflammation 2021; 18:259. [PMID: 34749743 PMCID: PMC8573865 DOI: 10.1186/s12974-021-02229-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/04/2021] [Indexed: 12/31/2022] Open
Abstract
Several lines of evidence support a role of the immune system in headache pathogenesis, with particular regard to migraine. Firstly, alterations in cytokine profile and in lymphocyte subsets have been reported in headache patients. Secondly, several genetic and environmental pathogenic factors seem to be frequently shared by headache and immunological/autoimmune diseases. Accordingly, immunological alterations in primary headaches, in particular in migraine, have been suggested to predispose some patients to the development of immunological and autoimmune diseases. On the other hand, pathogenic mechanisms underlying autoimmune disorders, in some cases, seem to favour the onset of headache. Therefore, an association between headache and immunological/autoimmune disorders has been thoroughly investigated in the last years. The knowledge of this possible association may have relevant implications in the clinical practice when deciding diagnostic and therapeutic approaches. The present review summarizes findings to date regarding the plausible relationship between headache and immunological/autoimmune disorders, starting from a description of immunological alteration of primary headaches, and moving onward to the evidence supporting a potential link between headache and each specific autoimmune/immunological disease.
Collapse
Affiliation(s)
- Leonardo Biscetti
- Istituto Nazionale di Riposo e Cura dell'Anziano a carattere scientifico, IRCSS- INRCA, Ancona, Italy
| | - Gioacchino De Vanna
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Cresta
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ilenia Corbelli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Letizia Cupini
- Headache Center, UOC Neurologia-Stroke Unit, Emergency Department, Ospedale S. Eugenio, Rome, Italy
| | - Paolo Calabresi
- Department of Neuroscience, Università Cattolica Sacro Cuore, Rome, Italy
| | - Paola Sarchielli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| |
Collapse
|
24
|
Rasquinha MT, Sur M, Lasrado N, Reddy J. IL-10 as a Th2 Cytokine: Differences Between Mice and Humans. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2205-2215. [PMID: 34663593 PMCID: PMC8544817 DOI: 10.4049/jimmunol.2100565] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
The discovery of IL-10 more than 30 years ago marked the beginning of our understanding of how cytokines regulate immune responses, based on cross-regulation between Th1 and Th2 cytokines. Although multiple cell types were shown to produce IL-10, its identity as a Th2 cytokine remained strong because it was rigidly associated with Th2 clones in mice, whereas both Th1 and Th2 clones could secrete IL-10 in humans. However, as new Th1/Th2 cell functionalities emerged, anti-inflammatory action of IL-10 gained more attention than its inhibitory effect on Th1 cells, which may occur as an indirect consequence of suppression of APCs. This notion is also supported by the discovery of regulatory T cells, whose suppressor functions involve the mediation of IL-10, among other molecules. From this perspective, we discuss the functionalities of IL-10 by highlighting important differences between mice and humans with an emphasis on the Th1 and Th2 paradigm.
Collapse
Affiliation(s)
- Mahima T Rasquinha
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Meghna Sur
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
25
|
Wu YR, Hsing CH, Chiu CJ, Huang HY, Hsu YH. Roles of IL-1 and IL-10 family cytokines in the progression of systemic lupus erythematosus: Friends or foes? IUBMB Life 2021; 74:143-156. [PMID: 34668305 DOI: 10.1002/iub.2568] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease of unknown etiology that can affect nearly every organ system in the body. Besides genetic and environmental factors, unbalanced pro-inflammatory and anti-inflammatory cytokines contribute to immune dysregulation, trigger an inflammatory response, and induce tissue and organ damage. Inflammatory responses in SLE can be promoted and/or maintained by the availability of cytokines that are overproduced systemically and/or in local tissues. Several key cytokines have been considered potential targets for the reduction of chronic inflammation in SLE. Recent studies indicated that dysregulated production of several cytokines, including those of the IL-1 family and IL-10 family, orchestrate immune activation and self-tolerance, play critical roles in the pathogenesis of SLE. Among IL-1 family cytokines, IL-1, IL-18, IL-33, IL-36, IL-37, and IL-38 had been the most thoroughly investigated in SLE. Additionally, IL-10 family cytokines, IL-10, IL-20, IL-22, IL-26, IL-28, and IL-29 are dysregulated in SLE. Therefore, a better understanding of the initiation and progression of SLE may provide suitable novel targets for therapeutic intervention. In this review, we discuss the involvement of inflammation in the pathogenesis of SLE, with a focus on IL-1 family and IL-10 family cytokines, and highlight pathophysiological approaches and therapeutic potential for treating SLE.
Collapse
Affiliation(s)
- Yi-Rou Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan.,Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chiao-Juno Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
26
|
Czaja AJ. Review article: targeting the B cell activation system in autoimmune hepatitis. Aliment Pharmacol Ther 2021; 54:902-922. [PMID: 34506662 DOI: 10.1111/apt.16574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/30/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The B cell activation system, consisting of B cell activating factor and a proliferation-inducing ligand, may have pathogenic effects in autoimmune hepatitis. AIMS To describe the biological actions of the B cell activation system, indicate its possible role in autoimmune diseases, and evaluate its prospects as a therapeutic target in autoimmune hepatitis METHODS: English abstracts were identified in PubMed by multiple search terms. Full length articles were selected for review, and secondary and tertiary bibliographies were developed. RESULTS The B cell activating factor is crucial for the maturation and survival of B cells, and it can co-stimulate T cell activation, proliferation, and survival. It can also modulate the immune response by inducing interleukin 10 production by regulatory B cells. A proliferation-inducing ligand modulates and diversifies the antibody response by inducing class-switch recombination in B cells. It can also increase the proliferation, survival, and antigen activation of T cells. These immune stimulatory actions can be modulated by inducing proliferation of regulatory T cells. The B cell activation system has been implicated in diverse autoimmune diseases, and therapeutic blockade is a management strategy now being evaluated in autoimmune hepatitis. CONCLUSIONS The B cell activation system has profound effects on B and T cell function in autoimmune diseases. Blockade therapy is being actively evaluated in autoimmune hepatitis. Clarification of the critical pathogenic components of the B cell activation system will improve the targeting, efficacy, and safety of blockade therapy in this disease.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
27
|
Maghbooli M, Esmaeilzadeh A, Zarandi FK, Jafarzadeh A, Biglari S, Shalbaf NA, Farhoudi N. Is There Any Relation between Serum Levels of Interleukin-10 and Neurophysiological Abnormalities in Bell's Palsy? Acta Med Litu 2021; 28:262-271. [PMID: 35474925 PMCID: PMC8958650 DOI: 10.15388/amed.2021.28.2.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/29/2021] [Accepted: 09/18/2021] [Indexed: 12/02/2022] Open
Abstract
Background Bell's palsy is the most common cause of peripheral facial palsy. The etiology and treatment of Bell's palsy are still controversial. Previous studies emphasize the role of herpes simplex and herpes zoster viruses in this ailment. The role of Interleukin-10 (IL-10) in Bell's palsy is yet unknown, and few studies have shed light on the matter. This study intended to assess the prognostic value of IL-10 and its relation to the intensity of electrodiagnostic abnormalities and evaluate its potential use as a factor for judging the need for medical or surgical interventions. Materials and Methods 30 patients in the acute phase of Bell's palsy participated in this study. Peripheral blood samples were obtained for IL-10 assessment within the first 72 hours (before commencing treatment), and a nerve conduction study (NCS) was performed six days after symptom onset. Results There was no significant correlation between IL-10 serum levels and the severity of nerve conduction pathology in Orbicularis oculi and Orbicularis oris muscles. Also, IL-10 serum levels did not show any meaningful relationships with participants' age, gender, or symptoms. Conclusion The IL-10 serum levels are not relevant to the pathology of Bell's palsy, and the assessment of IL-10 serum levels cannot be used as an alternative to NCS for evaluating the severity of acute Bell's palsy.
Collapse
Affiliation(s)
- Mehdi Maghbooli
- Zanjan University of Medical Sciences, Vali-e-Asr University Hospital, Neurology Department, Zanjan, IranORCID ID: https://orcid.org/0000-0003-0482-9062
| | - Abdolreza Esmaeilzadeh
- Zanjan University of Medical Sciences, Immunology Department and Cancer Gene Therapy Research Center, Zanjan, Iran ORCID ID: http://orcid.org/0000-0002-5402-3967
| | - Fatemeh Karami Zarandi
- Zanjan University of Medical Sciences, Vali-e-Asr University Hospital, Neurology Department, Zanjan, Iran
| | | | | | - Nazanin Azizi Shalbaf
- Zanjan University of Medical Sciences, Zanjan, Iran ORCID ID: http://orcid.org/0000-0001-8872-0093
| | - Negar Farhoudi
- Zanjan University of Medical Sciences, Vali-e-Asr University Hospital, Neurology Department, Zanjan, Iran
| |
Collapse
|
28
|
Ochayon DE, Waggoner SN. The Effect of Unconventional Cytokine Combinations on NK-Cell Responses to Viral Infection. Front Immunol 2021; 12:645850. [PMID: 33815404 PMCID: PMC8017335 DOI: 10.3389/fimmu.2021.645850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/01/2021] [Indexed: 12/30/2022] Open
Abstract
Cytokines are soluble and membrane-bound factors that dictate immune responses. Dogmatically, cytokines are divided into families that promote type 1 cell-mediated immune responses (e.g., IL-12) or type 2 humoral responses (e.g., IL-4), each capable of antagonizing the opposing family of cytokines. The discovery of additional families of cytokines (e.g., IL-17) has added complexity to this model, but it was the realization that immune responses frequently comprise mixtures of different types of cytokines that dismantled this black-and-white paradigm. In some cases, one type of response may dominate these mixed milieus in disease pathogenesis and thereby present a clear therapeutic target. Alternatively, synergistic or blended cytokine responses may obfuscate the origins of disease and perplex clinical decision making. Most immune cells express receptors for many types of cytokines and can mediate a myriad of functions important for tolerance, immunity, tissue damage, and repair. In this review, we will describe the unconventional effects of a variety of cytokines on the activity of a prototypical type 1 effector, the natural killer (NK) cell, and discuss how this may impact the contributions of these cells to health and disease.
Collapse
Affiliation(s)
- David E. Ochayon
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Stephen N. Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
29
|
Sexual dimorphism in immunometabolism and autoimmunity: Impact on personalized medicine. Autoimmun Rev 2021; 20:102775. [PMID: 33609790 DOI: 10.1016/j.autrev.2021.102775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023]
Abstract
Immune cells play essential roles in metabolic homeostasis and thus, undergo analogous changes in normal physiology (e.g., puberty and pregnancy) and in various metabolic and immune diseases. An essential component of this close relationship between the two is sex differences. Many autoimmune diseases, such as systemic lupus erythematous and multiple sclerosis, feature strikingly increased prevalence in females, whereas in contrast, infectious diseases, such as Ebola and Middle East Respiratory Syndrome, affect more men than women. Therefore, there are fundamental aspects of metabolic homeostasis and immune functions that are regulated differently in males and females. This can be observed in sex hormone-immune interaction where androgens, such as testosterone, have shown immunosuppressive effects whilst estrogen is on the opposite side of the spectrum with immunoenhancing facilitation of mechanisms. In addition, the two sexes exhibit significant differences in metabolic regulation, with estrous cycles in females known to induce variability in traits and more pronounced metabolic disease phenotype exhibited by males. It is likely that these differences underlie both the development of metabolic and autoimmune diseases and the response to current treatment options. Sexual dimorphism in immunometabolism has emerged to become an area of intense research, aiming to uncover sex-biased effector molecules in the various metabolic tissues and immune cell types, identify sex-biased cell-type-specific functions of common effector molecules, and understand whether the sex differences in metabolic and immune functions influence each other during autoimmune pathogenesis. In this review, we will summarize recent findings that address these critical questions of sexual dimorphism in immunometabolism as well as their translational implications for the clinical management of autoimmune diseases.
Collapse
|
30
|
Gachpazan M, Akhlaghipour I, Rahimi HR, Saburi E, Mojarrad M, Abbaszadegan MR, Moghbeli M. Genetic and molecular biology of systemic lupus erythematosus among Iranian patients: an overview. AUTO- IMMUNITY HIGHLIGHTS 2021; 12:2. [PMID: 33516274 PMCID: PMC7847600 DOI: 10.1186/s13317-020-00144-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a clinicopathologically heterogeneous chronic autoimmune disorder affecting different organs and tissues. It has been reported that there is an increasing rate of SLE incidence among Iranian population. Moreover, the Iranian SLE patients have more severe clinical manifestations compared with other countries. Therefore, it is required to introduce novel methods for the early detection of SLE in this population. Various environmental and genetic factors are involved in SLE progression. MAIN BODY In present review we have summarized all of the reported genes which have been associated with clinicopathological features of SLE among Iranian patients. CONCLUSIONS Apart from the reported cytokines and chemokines, it was interestingly observed that the apoptosis related genes and non-coding RNAs were the most reported genetic abnormalities associated with SLE progression among Iranians. This review clarifies the genetics and molecular biology of SLE progression among Iranian cases. Moreover, this review paves the way of introducing an efficient panel of genetic markers for the early detection and better management of SLE in this population.
Collapse
Affiliation(s)
- Meisam Gachpazan
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Zhang Z, Song X, Zhang Z, Li H, Duan Y, Zhang H, Lu H, Luo C, Wang M. The molecular characterization and immune protection of adhesion protein 65 (AP65) of Trichomonas vaginalis. Microb Pathog 2021; 152:104750. [PMID: 33484808 DOI: 10.1016/j.micpath.2021.104750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/13/2020] [Accepted: 01/13/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Adherence to the surface of the host cell is the precondition for T. vaginalis parasitism and pathogenicity, causing urogenital infection. The AP65 of T. vaginalis (TvAP65) involves in the process of adhesion. So, the present study was aimed at investigating the molecular characterization and vaccine candidacy of TvAP65 for protecting the host from the onset of Trichomoniasis. METHODS The open reading frame (ORF) of TvAP65 was amplified and then inserted into pET-32a (+) to clone recombinant TvAP65 (rTvAP65). The immunoblotting determined the immunogenicity and molecular size of TvAP65, while immunofluorescence staining visualized and the precise localization of TvAP65 in T. vaginalis trophozoites. Animal challenge and enzyme-linked immunosorbent assay (ELISA) test were used to evaluate the immunoprotection and the types of the immune response of TvAP65. RESULTS By the sequence analysis, TvAP65 encoded a 63.13 kDa protein that consisted 567 amino acid residues with a high antigenic index. The western blotting revealed that rTvAP65 and native TvAP65 could interact with the antibodies in the rat serums post hoc rTvAP65 immunization and the serums from the mice that were experimentally infected with T. vaginalis, respectively. Immunofluorescence stained TvAP65 on the surface of T. vaginalis trophozoites. Moreover, following emulsification with Freund's adjuvant, rTvAP65 was subsequently administered to BALB/c mice three times at 0, 2, and 4 weeks and the results from this animal challenge experiments showed significant increases in immunoglobulins of IgG2a, IgG1, and IgG, and cytokine of IFN-γ, and IL-2, and 10. Lastly, rTvAP65 vaccinated animals had a prolonged survival time (26.80 ± 4.05) after challenged by T. vaginalis. CONCLUSIONS TvAP65 mediated the adhesion of T. vaginalis to the host epithelia for the pathogenesis of the parasite and can be considered as a candidate protein for designing a functional vaccine that induces cell-mediated and humoral immunity against the T. vaginalis infection.
Collapse
Affiliation(s)
- Zhenchao Zhang
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China.
| | - Xiaoxiao Song
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Zhengbo Zhang
- School of International Education, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Haoran Li
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Yujuan Duan
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Hao Zhang
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Haoran Lu
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Chengyang Luo
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Mingyong Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China.
| |
Collapse
|
32
|
Abstract
The relationship between headache and multiple sclerosis (MS) has been a matter of controversy for over 60 years. Headaches are still rated as a "red flag", indicating alternative diagnoses to MS, although in the last few years numerous studies have shown a frequent association between headache and MS. In recent studies on MS patients, a link was found between lower age/shorter disease duration of MS and frequent headaches. A study of 50 patients manifesting MS for the first time showed the highest headache prevalence in MS of 78% reported so far.Headaches can also be a possible side effect of most disease-modifying MS drugs. In many cases, however, the headache appears to be a symptom of MS in terms of secondary headache. This is also supported by pathophysiological implications, for example, by detecting B cell follicles in the meninges of MS patients.Migraine is the most common type of headache in MS. In some cases, this is a comorbidity of two diseases with many similarities, but headaches caused by inflammatory MS lesions also appear to be phenomenologically very similar to classic migraines; thus, distinguishing between them is often only successful with the help of thorough differential diagnostics (cerebrospinal fluid, MRI etc.).The task of future studies must be to specify the phenomenology of headache in MS even more precisely, in order to, to gain knowledge in, among others, patients with radiologically isolated syndrome, who often suffer from headache, because in these patients a considerable differential diagnostic and therapeutic uncertainty exists.
Collapse
|
33
|
Lee YM, Shin DW, Lim BO. Chlorogenic Acid Improves Symptoms of Inflammatory Bowel Disease in Interleukin-10 Knockout Mice. J Med Food 2020; 23:1043-1053. [PMID: 33054539 DOI: 10.1089/jmf.2019.4621] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammation that is highly prevalent worldwide. Interleukin (IL)-10 can effectively inhibit negative cascades such as the production of inflammatory mediators (inducible nitric oxide synthase [iNOS], cyclooxygenase-2), accumulation of inflammatory infiltrates (macrophages, eosinophils, neutrophils), toxicity (lower T cell subsets), and secretion of pro-inflammatory cytokines (IL-1β, TNF-α) in tissues such as the spleen, mesenteric lymph nodes (MLN), Peyer's patch (PP), and colon. In this study, we investigated whether chlorogenic acid (CHA) can regulate inflammation in IL-10 knockout (KO) mice used as an IBD animal model. CHA significantly increased the ratio of CD4+/CD8+, T cell subsets in PP, and MLN of IL-10 KO mice. In addition, CHA also morphologically attenuated colon inflammation in IL-10 KO mice. We demonstrated that CHA significantly reduced the expression levels of iNOS, IL-1β, TNF-α, which were highly expressed in IL-10 KO mice. Therefore, CHA may provide beneficial effects for improving IBD by decreasing inflammations.
Collapse
Affiliation(s)
- Young Min Lee
- College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - Dong Wook Shin
- College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - Beong Ou Lim
- College of Biomedical and Health Science, Konkuk University, Chungju, Korea.,Research Institute of Inflammatory Diseases, Konkuk University, Chungju, Korea
| |
Collapse
|
34
|
Zhang Z, Li Y, Wang S, Hao L, Zhu Y, Li H, Song X, Duan Y, Sang Y, Wu P, Li X. The Molecular Characterization and Immunity Identification of Trichomonas vaginalis Adhesion Protein 33 (AP33). Front Microbiol 2020; 11:1433. [PMID: 32695085 PMCID: PMC7338309 DOI: 10.3389/fmicb.2020.01433] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022] Open
Abstract
Trichomoniasis is caused by Trichomonas vaginalis (T. vaginalis), which is a widespread and serious sexually transmitted pathogen in humans. The procedure of T. vaginalis adherence to the host cell is the precondition for T. vaginalis parasitism and pathogenicity. The AP33 adhesin of T. vaginalis (TvAP33) plays a key role in the process of adhesion. In this study, the specific primers for polymerase chain reaction (PCR) were designed based on the sequence of TvAP33 (GenBank Accession No. U87098.1) to amplify the open reading frame (ORF), and the ORF was inserted into pET-32a (+) to produce recombinant TvAP33 (rTvAP33). The sequence analysis indicated that the TvAP33 gene encoded a protein of 309 amino acids with 32.53 kDa, and the protein was predicted to have a high antigen index. Western blotting assay showed rTvAP33 was successfully recognized by the sera of mice experimentally infected with T. vaginalis, while native TvAP33 in the somatic extract of T. vaginalis trophozoite was as well detected by sera from rats immunized with the rTvAP33. Immunofluorescence analysis using an antibody against rTvAP33 demonstrated that the protein was expressed and located on the surface of T. vaginalis trophozoites. The recombinant protein was emulsified in Freund's adjuvant and used to immunize BALB/C mice three times at days 0, 14, and 28. The result of animal challenge experiments revealed the levels of IgG, IgG1, and IgG2a, and IL-4, IL-10, and IL17 among rTvAP33 vaccinated animals were integrally increased. Moreover, the rTvAP33 vaccinated animals were apparently prolonged survival time (26.45 ± 4.10) after challenge infection with this parasite. All these results indicated that TvAP33 could be used as vaccine candidate antigen to induce cell-mediated and humoral immunity.
Collapse
Affiliation(s)
- Zhenchao Zhang
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yuhua Li
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Shuai Wang
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Lixia Hao
- Xinxiang Maternity and Child Health Care Hospital, Xinxiang, China
| | - Yunqing Zhu
- Xinxiang Maternity and Child Health Care Hospital, Xinxiang, China
| | - Haoran Li
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiaoxiao Song
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yujuan Duan
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yuhui Sang
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Pucheng Wu
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiangrui Li
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
35
|
Identification of Toxoplasma Gondii Tyrosine Hydroxylase (TH) Activity and Molecular Immunoprotection against Toxoplasmosis. Vaccines (Basel) 2020; 8:vaccines8020158. [PMID: 32244791 PMCID: PMC7349186 DOI: 10.3390/vaccines8020158] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
The neurotropic parasite Toxoplasma gondii (T. gondii) infection can change the behavior of rodents and cause neuropsychological symptoms in humans, which may be related to the change in neurotransmitter dopamine in the host brain caused by T. gondii infection. T. gondii tyrosine hydroxylase (TgTH) is an important factor in increasing the neurotransmitter dopamine in the host brain. In this study, the enzyme activity of TgTH catalytic substrate for dopamine production and the molecular characteristics of TgTH were identified. In order to amplify the open reading frame (ORF), the designing of the specific primers for polymerase chain reaction (PCR) was on the basis of the TgTH sequence (GenBank Accession No. EU481510.1), which was inserted into pET-32a (+) for the expression of recombined TgTH (rTgTH). The sequence analysis indicated that the gene of TgTH directed the encoding of a 62.4-kDa protein consisting of 565 amino acid residues, which was predicted to have a high antigen index. The enzyme activity test showed that rTgTH and the soluble proteins extracted separately from T. gondii RH strain and PRU strain could catalyze the substrate to produce dopamine in a dose-dependent manner, and the optimum catalytic temperature was 37 °C. The result of the Western Blotting assay revealed that the rTgTH and the native TgTH extracted from somatic of T. gondii RH tachyzoite were successfully detected by the sera of mice infected with T. gondii and the rat serum after rTgTH immune, respectively. Immunofluorescence analysis using antibody against rTgTH demonstrated that the protein was expressed and located on the surface of T. gondii RH tachyzoite. Freund’s adjuvant was used to emulsify the rTgTH, which was subsequently applied to BALB/c mouse immune thrice on week 0, week 2, and week 4, respectively. The result of the animal challenge experiments showed an integral increase in IgG, IgG2a, IgG1, and IFN-γ, IL-4, and IL17 were as well significantly increased, and that the rTgTH vaccinated animals apparently had a prolonged survival time (14.30 ± 2.41) after infection with the RH strain of T. gondii compared with that of the non-vaccinated control animals, which died within 11 days. Additionally, in the rTgTH vaccination group, the number of brain cysts (1275 ± 224) significantly decreased (p < 0.05) compared to the blank control group (2375 ± 883), and the size of the brain cysts in the animals immunized with rTgTH vaccination was remarkably smaller than that of the control mice. All the findings prove that TgTH played an important role in increasing the neurotransmitter dopamine in the host brain and could be used as a vaccine candidate antigen to mediate cell-mediated and humoral immunity.
Collapse
|
36
|
Ruiz F, Vigne S, Pot C. Resolution of inflammation during multiple sclerosis. Semin Immunopathol 2019; 41:711-726. [PMID: 31732775 PMCID: PMC6881249 DOI: 10.1007/s00281-019-00765-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is a frequent autoimmune demyelinating disease of the central nervous system (CNS). There are three clinical forms described: relapsing-remitting multiple sclerosis (RRMS), the most common initial presentation (85%) among which, if not treated, about half will transform, into the secondary progressive multiple sclerosis (SPMS) and the primary progressive MS (PPMS) (15%) that is directly progressive without superimposed clinical relapses. Inflammation is present in all subsets of MS. The relapsing/remitting form could represent itself a particular interest for the study of inflammation resolution even though it remains incomplete in MS. Successful resolution of acute inflammation is a highly regulated process and dependent on mechanisms engaged early in the inflammatory response that are scarcely studied in MS. Moreover, recent classes of disease-modifying treatment (DMTs) that are effective against RRMS act by re-establishing the inflammatory imbalance, taking advantage of the pre-existing endogenous suppressor. In this review, we will discuss the active role of regulatory immune cells in inflammation resolution as well as the role of tissue and non-hematopoietic cells as contributors to inflammation resolution. Finally, we will explore how DMTs, more specifically induction therapies, impact the resolution of inflammation during MS.
Collapse
Affiliation(s)
- F Ruiz
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - S Vigne
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - C Pot
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland.
| |
Collapse
|
37
|
Aflatoonian M, Sivandzadeh G, Morovati-Sharifabad M, Mirjalili SR, Akbarian-Bafghi MJ, Neamatzadeh H. ASSOCIATIONS OF IL-6 -174G>C AND IL-10 -1082A>G POLYMORPHISMS WITH SUSCEPTIBILITY TO CELIAC DISEASE: EVIDENCE FROM A META-ANALYSIS AND LITERATURE REVIEW. ARQUIVOS DE GASTROENTEROLOGIA 2019; 56:323-328. [PMID: 31633733 DOI: 10.1590/s0004-2803.201900000-60] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/15/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND There has been little evidence to suggest that the IL-6 -174G>C and IL-10 -1082A>G polymorphisms are significantly associated with susceptibility to celiac disease. Thus, we performed the present meta-analysis to explore the potential association between these polymorphisms and celiac disease risk. METHODS Eligible studies were searched in PubMed, Medline, Embase, Web of Science and CNKI database up to April 20, 2019. Odds ratios with 95% confidence interval were calculated to assess the potential associations. Moreover, we performed the heterogeneity, sensitivity, and publication bias tests to clarify and validate the pooled results. RESULTS Overall, nine case-control studies involving five studies with 737 cases and 1,338 control on IL-6 -174G>C polymorphism and four studies with 923 cases and 864 controls on IL-10 -1082A>G polymorphism were selected. The pooled ORs showed that the IL-6 -174G>C and IL-10 -1082A>G polymorphisms were not significantly associated with increased risk of celiac disease under all five genetic models. There was no publication bias. CONCLUSION To the best of our knowledge, this is the first meta-analysis summarizing all of the available studies on the association of IL-6 -174G>C and IL-10 -1082A>G polymorphisms with celiac disease. Our results suggest that the IL-6 -174G>C and IL-10 -1082A>G polymorphisms may not be associated with increased risk of celiac disease. Moreover, large and well-designed studies are needed to fully describe the association of IL-6 -174G>C and IL-10 -1082A>G polymorphisms with celiac disease.
Collapse
Affiliation(s)
- Majid Aflatoonian
- Shahid Sadoughi University of Medical Sciences, Department of Pediatrics, Yazd, Iran
| | - Gholamreza Sivandzadeh
- Shiraz University of Medical Sciences, Gastroenterohepatology Research Center, Shiraz, Iran
| | | | - Seyed Reza Mirjalili
- Shahid Sadoughi University of Medical Sciences, Department of Pediatrics, Yazd, Iran.,Shahid Sadoughi University of Medical Sciences, Mother and Newborn Health Research Center, Yazd, Iran
| | | | - Hossein Neamatzadeh
- Shahid Sadoughi University of Medical Sciences, Mother and Newborn Health Research Center, Yazd, Iran.,Shahid Sadoughi University of Medical Sciences, Department of Medical Genetics, Yazd, Iran
| |
Collapse
|
38
|
Ye Z, Jiang Y, Sun D, Zhong W, Zhao L, Jiang Z. The Plasma Interleukin (IL)-35 Level and Frequency of Circulating IL-35 + Regulatory B Cells are Decreased in a Cohort of Chinese Patients with New-onset Systemic Lupus Erythematosus. Sci Rep 2019; 9:13210. [PMID: 31519970 PMCID: PMC6744462 DOI: 10.1038/s41598-019-49748-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/30/2019] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multisystemic autoimmune disease that is associated with the destruction of immune tolerance and activation of B cells. Interleukin (IL)-35 and IL-35-producing (IL-35+) regulatory B cells (Bregs) have been demonstrated to possess immunosuppressive functions, but their roles in the initiation and early development of SLE have not been explored. Here, we measured and compared the frequencies of blood regulatory B cell subsets and the concentrations of plasma IL-35, IL-10, IL-17A, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in 47 Chinese patients with newly diagnosed SLE and 20 matched healthy controls (HCs). The SLE patients had decreased percentages of IL-35+ B cells and IL-10+ B cells among the total blood B cells as well as decreased concentrations of plasma IL-35. In addition, higher levels of plasma IL-10, IFN-γ, TNF-α, and IL-17 along with higher frequencies of circulating plasma and memory B cells were observed in the SLE patients. The percentage of IL-35+ Bregs and the serum IL-35 level were inversely correlated with the SLE disease activity index and the erythrocyte sedimentation rate (ESR) levels. Our results indicate that IL-35+ Bregs and IL-35 may play protective roles in SLE initiation and progression.
Collapse
Affiliation(s)
- Zhuang Ye
- Department of Rheumatology, First Hospital, Jilin University, Changchun, 130021, China
| | - Yanfang Jiang
- Genetic Diagnosis Center, First Hospital, Jilin University, Changchun, 130021, China.,Key Laboratory of Zoonosis Research, Ministry of Education, First Hospital, Jilin University, Changchun, 130021, China
| | - Dejun Sun
- Department of Biomedicine, Institute for Regeneration Medicine, Jilin University, Changchun, 130021, China
| | - Wei Zhong
- Department of Rheumatology, First Hospital, Jilin University, Changchun, 130021, China.,Department of Rheumatology, First Hospital of Qiqihaer City, Qiqihaer, 161006, China.,Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, China
| | - Ling Zhao
- Department of Rheumatology, First Hospital, Jilin University, Changchun, 130021, China. .,Department of Biomedicine, Institute for Regeneration Medicine, Jilin University, Changchun, 130021, China.
| | - Zhenyu Jiang
- Department of Rheumatology, First Hospital, Jilin University, Changchun, 130021, China.
| |
Collapse
|
39
|
Duncan SA, Dixit S, Sahu R, Martin D, Baganizi DR, Nyairo E, Villinger F, Singh SR, Dennis VA. Prolonged Release and Functionality of Interleukin-10 Encapsulated within PLA-PEG Nanoparticles. NANOMATERIALS 2019; 9:nano9081074. [PMID: 31357440 PMCID: PMC6723354 DOI: 10.3390/nano9081074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/09/2019] [Accepted: 07/24/2019] [Indexed: 01/12/2023]
Abstract
Inflammation, as induced by the presence of cytokines and chemokines, is an integral part of chlamydial infections. The anti-inflammatory cytokine, interleukin (IL)-10, has been reported to efficiently suppress the secretion of inflammatory cytokines triggered by Chlamydia in mouse macrophages. Though IL-10 is employed in clinical applications, its therapeutic usage is limited due to its short half-life. Here, we document the successful encapsulation of IL-10 within the biodegradable polymeric nanoparticles of PLA-PEG (Poly (lactic acid)-Poly (ethylene glycol), to prolong its half-life. Our results show the encapsulated-IL-10 size (~238 nm), zeta potential (−14.2 mV), polydispersity index (0.256), encapsulation efficiency (~77%), and a prolonged slow release pattern up to 60 days. Temperature stability of encapsulated-IL-10 was favorable, demonstrating a heat capacity of up to 89 °C as shown by differential scanning calorimetry analysis. Encapsulated-IL-10 modulated the release of IL-6 and IL-12p40 in stimulated macrophages in a time- and concentration-dependent fashion, and differentially induced SOCS1 and SOCS3 as induced by chlamydial stimulants in macrophages. Our finding offers the tremendous potential for encapsulated-IL-10 not only for chlamydial inflammatory diseases but also biomedical therapeutic applications.
Collapse
Affiliation(s)
- Skyla A Duncan
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Saurabh Dixit
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Rajnish Sahu
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - David Martin
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Dieudonné R Baganizi
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Elijah Nyairo
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, 4401 W Admiral Doyle Drive, New Iberia, LA 70560, USA
| | - Shree R Singh
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Vida A Dennis
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA.
| |
Collapse
|
40
|
Mohammadi S, Saghaeian Jazi M, Zare Ebrahimabad M, Eghbalpour F, Abdolahi N, Tabarraei A, Yazdani Y. Interleukin 10 gene promoter polymorphisms (rs1800896, rs1800871 and rs1800872) and haplotypes are associated with the activity of systemic lupus erythematosus and IL10 levels in an Iranian population. Int J Immunogenet 2019; 46:20-30. [PMID: 30430731 DOI: 10.1111/iji.12407] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/21/2018] [Accepted: 09/30/2018] [Indexed: 02/05/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with unknown aetiology. According to the role of interleukin 10 (IL10) in SLE pathogenesis, the genetic alterations in its promoter region could be associated with elevated IL10 levels and exacerbated disease. Here, we investigated the association of genotype and haplotype frequencies of three IL10 gene promoter polymorphisms with susceptibility to SLE, IL10 plasma levels and disease activity of patients in an Iranian population. A total of 116 SLE patients and 131 healthy subjects were enrolled. The PCR-RFLP technique was used to detect IL10 promoter genotypes at the positions of -1082 (G/A), -819 (C/T) and -592 (C/A) in association with IL10 plasma levels and SLEDAI scores. The GG genotype of -1082 polymorphism was associated with the increased risk of SLE [OR = 2.65, 95% CI (1.21-5.82), p-value = 0.046]. The CC genotype in -819 region was associated with SLE susceptibility [OR = 3.38, 95% CI (1.26-9.07), p-value = 0.034] and C allele was introduced as risk allele [OR = 1.86, 95% CI (1.15-3.01), p-value = 0.009] in this region. IL10 plasma levels were overexpressed in CC genotype carriers of -592 SNP and decreased in AA genotype carriers of -1082. IL10 was also increased in SLE patients with CGT (-592/-1082/-819) haplotype. The SLEDAI score was higher among CC genotype carriers at the position of -592 and TT genotype carriers at the region of -819. SLEDAI was also elevated among patients with CGC (-592/-1082/-819) and CAC (p = 0.011) haplotypes. The present study suggests that the IL10 -819(C/T), -1082(G/A) and -592(C/A) polymorphisms and the haplotypes are associated with SLE susceptibility, increased disease activity and elevated IL10 levels. While this is the first time to report such an association in an Iranian population, further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Saeed Mohammadi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Marie Saghaeian Jazi
- Biochemistry and Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mojtaba Zare Ebrahimabad
- Department of Biochemistry, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farnaz Eghbalpour
- Department of Molecular medicine, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nafiseh Abdolahi
- Golestan Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alijan Tabarraei
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Yaghoub Yazdani
- Infectious Diseases Research Center and Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
41
|
Horuluoglu B, Bayik D, Kayraklioglu N, Goguet E, Kaplan MJ, Klinman DM. PAM3 supports the generation of M2-like macrophages from lupus patient monocytes and improves disease outcome in murine lupus. J Autoimmun 2019; 99:24-32. [PMID: 30679006 DOI: 10.1016/j.jaut.2019.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 01/01/2023]
Abstract
Systematic Lupus Erythematosus (SLE) is an autoimmune syndrome of unclear etiology. While T and B cell abnormalities contribute to disease pathogenesis, recent work suggests that inflammatory M1-like macrophages also play a role. Previous work showed that the TLR2/1 agonist PAM3CSK4 (PAM3) could stimulate normal human monocytes to preferentially differentiate into immunosuppressive M2-like rather than inflammatory M1-like macrophages. This raised the possibility of PAM3 being used to normalize the M1:M2 ratio in SLE. Consistent with that possibility, monocytes from lupus patients differentiated into M2-like macrophages when treated with PAM3 in vitro. Furthermore, lupus-prone NZB x NZW F1 mice responded similarly to weekly PAM3 treatment. Normalization of the M2 macrophage frequency was associated with delayed disease progression, decreased autoantibody and inflammatory cytokine synthesis, reduced proteinuria and prolonged survival in NZB x NZW F1 mice. The ability of PAM3 to bias monocyte differentiation in favor of immunosuppressive macrophages may represent a novel approach to the therapy of SLE.
Collapse
Affiliation(s)
- Begum Horuluoglu
- Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick, MD 21720, USA; Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Defne Bayik
- Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick, MD 21720, USA
| | - Neslihan Kayraklioglu
- Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick, MD 21720, USA
| | - Emilie Goguet
- Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick, MD 21720, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Dennis M Klinman
- Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick, MD 21720, USA.
| |
Collapse
|
42
|
Xie L, Xu J. Role of MiR-98 and Its Underlying Mechanisms in Systemic Lupus Erythematosus. J Rheumatol 2018; 45:1397-1405. [DOI: 10.3899/jrheum.171290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2018] [Indexed: 12/12/2022]
Abstract
Objective.T-lymphocyte apoptosis plays a critical role in the pathogenesis of systemic lupus erythematosus (SLE). However, the underlying regulatory mechanisms of apoptosis in SLE remain unclear. The aim of this study was to explore the role of miR-98 in SLE and its underlying mechanisms.Methods.Western blotting and quantitative reverse transcription PCR (qRT-PCR) were used to analyze miR-98 and Fas expression. Luciferase reporter assays were performed to identify miR-98 targets. To modify miRNA levels, miR-98 mimics and inhibitor were transfected into cells. A lentiviral construct was used to overexpress the level of Fas in SLE CD4+ T cells. Gene and protein expression were determined by qRT-PCR and Western blotting. Apoptosis levels were evaluated by annexin V staining and flow cytometry.Results.Compared to those of healthy donors, miR-98 was downregulated in SLE CD4+ T cells, whereas Fas mRNA and protein expression were upregulated. Upregulation of miR-98 by mimic transfection protected Jurkat cells against Fas-mediated apoptosis at both mRNA and protein levels, while miR-98 inhibitor induced the completely opposite effect. Luciferase reporter assays demonstrated that miR-98 directly targeted Fas mRNA. Further, miR-98 inhibitor induced apoptosis in primary healthy CD4+ T cells through the Fas-caspase axis, while upregulation of miR-98 in SLE CD4+ T cells led to the opposite effect.Conclusion.The current study revealed that downregulation of miR-98 induces apoptosis by modulating the Fas-mediated apoptotic signaling pathway in SLE CD4+ T cells. These results suggest that miR-98 might serve as a potential target for SLE treatment.
Collapse
|
43
|
Özer G, Ergün U, İnan LE. Headache in Multiple Sclerosis From a Different Perspective: A Prospective Study. JOURNAL OF CLINICAL AND EXPERIMENTAL INVESTIGATIONS 2018. [DOI: 10.5799/jcei.413052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
44
|
Okamura T, Yamamoto K, Fujio K. Early Growth Response Gene 2-Expressing CD4 +LAG3 + Regulatory T Cells: The Therapeutic Potential for Treating Autoimmune Diseases. Front Immunol 2018. [PMID: 29535721 PMCID: PMC5834469 DOI: 10.3389/fimmu.2018.00340] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Regulatory T cells (Tregs) are necessary for the maintenance of immune tolerance. Tregs are divided into two major populations: one is thymus derived and the other develops in the periphery. Among these Tregs, CD4+CD25+ Tregs, which mainly originate in the thymus, have been extensively studied. Transcription factor Foxp3 is well known as a master regulatory gene for the development and function of CD4+CD25+ Tregs. On the other hand, peripheral Tregs consist of distinct cell subsets including Foxp3-dependent extrathymically developed Tregs and interleukin (IL)-10-producing type I regulatory T (Tr1) cells. Lymphocyte activation gene 3 (LAG3) and CD49b are reliable cell surface markers for Tr1 cells. CD4+CD25−LAG3+ Tregs (LAG3+ Tregs) develop in the periphery and produce a large amount of IL-10. LAG3+ Tregs characteristically express the early growth response gene 2 (Egr2), a zinc-finger transcription factor, and exhibit its suppressive activity in a Foxp3-independent manner. Although Egr2 was known to be essential for hindbrain development and myelination of the peripheral nervous system, recent studies revealed that Egr2 plays vital roles in the induction of T cell anergy and also the suppressive activities of LAG3+ Tregs. Intriguingly, forced expression of Egr2 converts naive CD4+ T cells into IL-10-producing Tregs that highly express LAG3. Among the four Egr gene family members, Egr3 is thought to compensate for the function of Egr2. Recently, we reported that LAG3+ Tregs suppress humoral immune responses via transforming growth factor β3 production in an Egr2- and Egr3-dependent manner. In this review, we focus on the role of Egr2 in Tregs and also discuss its therapeutic potential for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Max Planck-The University of Tokyo Center for Integrative Inflammology, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Max Planck-The University of Tokyo Center for Integrative Inflammology, The University of Tokyo, Tokyo, Japan.,Laboratory for Autoimmune Diseases, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
45
|
Shmagel KV, Korolevskaya LB, Saidakova EV, Shmagel NG, Chereshnev VA, Margolis L, Anthony D, Lederman M. HCV coinfection of the HIV-infected patients with discordant CD4 + T-cell response to antiretroviral therapy leads to intense systemic inflammation. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2018; 477:244-247. [PMID: 29299802 DOI: 10.1134/s0012496617060047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Indexed: 01/16/2023]
Abstract
The level of proinflammatory markers was assessed in HIV-infected patients that were coinfected with hepatitis C virus (HCV) and had failed to restore the CD4+ T cell counts (immunological nonresponders, INR) during the antiretroviral therapy (ART). Among four patient groups (HIV+HCV- and HIV+HCV+ subjects with the concordant response to ART; HIV+HCV- and HIV+HCV+ subjects that were INR), the greatest systemic inflammation was in the latter group. The maximum difference was between the subjects HIV+HCV-INR and HIV+HCV+ INR: the blood of coinfected patients contained significantly higher concentrations of the IP-10, sCD163, sTNF-RI, and sTNF-RII and of bacterial lipopolysaccharide. Systemic inflammation in HIV/HCV coinfected patients with the discordant response to ART is probably caused by a breach of hepatic barrier for the intestine products.
Collapse
Affiliation(s)
- K V Shmagel
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, Perm, Russia.
| | - L B Korolevskaya
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, Perm, Russia
| | - E V Saidakova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, Perm, Russia
| | - N G Shmagel
- Perm Regional Center for Protection against AIDS and Infectious Diseases, Perm, Russia
| | - V A Chereshnev
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, Perm, Russia.,Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
| | - L Margolis
- National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - D Anthony
- Case Western Reserve University, Cleveland, OH, USA
| | - M Lederman
- Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
46
|
Manolova I, Miteva L, Ivanova M, Kundurzhiev T, Stoilov R, Stanilova S. The Synergistic Effect of TNFA and IL10 Promoter Polymorphisms on Genetic Predisposition to Systemic Lupus Erythematosus. Genet Test Mol Biomarkers 2018; 22:135-140. [PMID: 29298134 DOI: 10.1089/gtmb.2017.0169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIMS We investigated the individual and combined effect of functional TNFA -308G/A and IL10 -1082G/A single nucleotide polymorphisms (SNPs) and their genotypes on the susceptibility to systemic lupus erythematosus (SLE) in a Bulgarian population. MATERIALS AND METHODS Genotyping for -1082A/G IL10 (rs1800896) and -308G/A TNFA (rs1800629) polymorphisms was performed for 154 SLE patients and 224 healthy controls. RESULTS An association between SLE and the rs1800629 polymorphism was established under the allelic model (allele A vs. allele G; odds ratios [OR] = 2.317), the dominant model (GA+AA vs. GG; OR = 3.214), and the overdominant model (GA vs. AA+GG; OR = 3.494). There was no association between rs1800896 and SLE, although a tendency for genetic predisposition to SLE was observed for the IL10 -1082 GG genotype under the recessive genetic model (OR = 1.454). When analyzing the influence of the combined TNFA/IL10 genotypes on SLE occurrence, we found that the carriage of both high cytokine-producing genotypes of two SNPs (TNFA -308AA/GA and IL10 -1082GG) significantly increased the risk of developing SLE with OR of 9.026 (p = 0.006). CONCLUSION Our findings suggest that the combinatorial complexity of TNFA and IL10 promoter polymorphisms impacts SLE susceptibility. Notably, we found that a TNFA promoter polymorphism is a leading risk factor for SLE susceptibility in a Bulgarian population, while the IL10 -1082 locus appears to act as a significant modifier.
Collapse
Affiliation(s)
- Irena Manolova
- 1 Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University , Stara Zagora, Bulgaria
| | - Lyuba Miteva
- 1 Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University , Stara Zagora, Bulgaria
| | - Mariana Ivanova
- 2 Clinic of Rheumatology, Medical Faculty, University Hospital "St. Iv. Rilski," Medical University , Sofia, Bulgaria
| | | | - Rumen Stoilov
- 2 Clinic of Rheumatology, Medical Faculty, University Hospital "St. Iv. Rilski," Medical University , Sofia, Bulgaria
| | - Spaska Stanilova
- 1 Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University , Stara Zagora, Bulgaria
| |
Collapse
|
47
|
Mollazadeh H, Cicero AFG, Blesso CN, Pirro M, Majeed M, Sahebkar A. Immune modulation by curcumin: The role of interleukin-10. Crit Rev Food Sci Nutr 2017; 59:89-101. [PMID: 28799796 DOI: 10.1080/10408398.2017.1358139] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cytokines are small secreted proteins released by different types of cells with specific effects on cellular signaling and communication via binding to their receptors on the cell surface. IL-10 is known to be a pleiotropic and potent anti-inflammatory and immunosuppressive cytokine that is produced by both innate and adaptive immunity cells including dendritic cells, macrophages, mast cells, natural killer cells, eosinophils, neutrophils, B cells, CD8+ T cells, and TH1, TH2, and TH17 and regulatory T cells. Both direct and indirect activation of the stress axis promotes IL-10 secretion. IL-10 deregulation plays a role in the development of a large number of inflammatory diseases such as neuropathic pain, Parkinson's disease, Alzheimer's disease, osteoarthritis, rheumatoid arthritis, psoriasis, systemic lupus erythematosus, type 1 diabetes, inflammatory bowel disease, and allergy. Curcumin is a natural anti-inflammatory compound able to induce the expression and production of IL-10 and enhancing its action on a large number of tissues. In vitro and in pre-clinical models curcumin is able to modulate the disease pathophysiology of conditions such as pain and neurodegenerative diseases, bowel inflammation, and allergy, but also of infections and cancer through its effect on IL-10 secretion. In humans, at least one part of the positive effects of curcumin on health could be related to its ability to enhance IL-10 -mediated effects.
Collapse
Affiliation(s)
- Hamid Mollazadeh
- a Department of Physiology and Pharmacology, School of Medicine , North Khorasan University of Medical Sciences , Bojnurd , Iran
| | - Arrigo F G Cicero
- b Department of Medical and Surgical Sciences , University of Bologna , Via Albertoni 15, Bologna , Italy
| | | | - Matteo Pirro
- d Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine , University of Perugia , Perugia , Italy
| | | | - Amirhossein Sahebkar
- f Department of Medical Biotechnology, Biotechnology Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
48
|
Gargouri M, Hamed H, Akrouti A, Christian M, Ksouri R, El Feki A. Immunomodulatory and antioxidant protective effect of Sarcocornia perennis L. (swampfire) in lead intoxicated rat. Toxicol Mech Methods 2017; 27:697-706. [DOI: 10.1080/15376516.2017.1351018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Manel Gargouri
- Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, Sfax, Tunisia
- EA 2219 Géoarchitecture, Faculty of Sciences, University of Western Brittany, Brest, France
| | - Houda Hamed
- Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, Sfax, Tunisia
| | - Amel Akrouti
- Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, Sfax, Tunisia
| | - Magné Christian
- EA 2219 Géoarchitecture, Faculty of Sciences, University of Western Brittany, Brest, France
| | - Riadh Ksouri
- LR15CBBC06, Laboratory of Aromatic and Medicinal Plants, Borj-Cédria Biotechnology Center, Hammam-lif, Tunisia
| | - Abdelfattah El Feki
- Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, Sfax, Tunisia
| |
Collapse
|
49
|
Danikowski KM, Jayaraman S, Prabhakar BS. Regulatory T cells in multiple sclerosis and myasthenia gravis. J Neuroinflammation 2017; 14:117. [PMID: 28599652 PMCID: PMC5466736 DOI: 10.1186/s12974-017-0892-8] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/29/2017] [Indexed: 01/09/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic debilitating disease of the central nervous system primarily mediated by T lymphocytes with specificity to neuronal antigens in genetically susceptible individuals. On the other hand, myasthenia gravis (MG) primarily involves destruction of the neuromuscular junction by antibodies specific to the acetylcholine receptor. Both autoimmune diseases are thought to result from loss of self-tolerance, which allows for the development and function of autoreactive lymphocytes. Although the mechanisms underlying compromised self-tolerance in these and other autoimmune diseases have not been fully elucidated, one possibility is numerical, functional, and/or migratory deficits in T regulatory cells (Tregs). Tregs are thought to play a critical role in the maintenance of peripheral immune tolerance. It is believed that Tregs function by suppressing the effector CD4+ T cell subsets that mediate autoimmune responses. Dysregulation of suppressive and migratory markers on Tregs have been linked to the pathogenesis of both MS and MG. For example, genetic abnormalities have been found in Treg suppressive markers CTLA-4 and CD25, while others have shown a decreased expression of FoxP3 and IL-10. Furthermore, elevated levels of pro-inflammatory cytokines such as IL-6, IL-17, and IFN-γ secreted by T effectors have been noted in MS and MG patients. This review provides several strategies of treatment which have been shown to be effective or are proposed as potential therapies to restore the function of various Treg subsets including Tr1, iTr35, nTregs, and iTregs. Strategies focusing on enhancing the Treg function find importance in cytokines TGF-β, IDO, interleukins 10, 27, and 35, and ligands Jagged-1 and OX40L. Likewise, strategies which affect Treg migration involve chemokines CCL17 and CXCL11. In pre-clinical animal models of experimental autoimmune encephalomyelitis (EAE) and experimental autoimmune myasthenia gravis (EAMG), several strategies have been shown to ameliorate the disease and thus appear promising for treating patients with MS or MG.
Collapse
Affiliation(s)
- K M Danikowski
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - S Jayaraman
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - B S Prabhakar
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
50
|
Schwartz JS, Peres AG, Mfuna Endam L, Cousineau B, Madrenas J, Desrosiers M. Topical probiotics as a therapeutic alternative for chronic rhinosinusitis: A preclinical proof of concept. Am J Rhinol Allergy 2017; 30:202-205. [PMID: 28124641 DOI: 10.2500/ajra.2016.30.4372] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Patients with chronic rhinosinusitis (CRS) have been shown to manifest a high inflammatory phenotype, with a sinus microbiome deficient in gram-positive bacteria. Gram-positive bacteria are capable of downregulating proinflammatory host responses via an interleukin (IL) 10 mediated response and may represent a potential therapeutic alternative for CRS. We wanted to (i) immunoprofile the IL-10 induction capacity of two gram-positive probiotic strains and (ii) verify the tolerance of these strains by the sinus epithelium. METHODS A peripheral blood mononuclear cell (PBMC) challenge model was used to document probiotic induction of IL-10 and tumor necrosis factor (TNF) alpha responses at various bacterial dilutions. Epithelial cell tolerance was demonstrated by using a primary epithelial cell model derived from patient biopsy specimens (six patients total [three with CRS and three controls]). After an incubation period with either a live or a heat-killed probiotic strain, cell viability was assessed by using light microscopy. RESULTS Both probiotic strains induced high IL-10 secretion in PBMCs, with differing profiles of TNF alpha production. Microscopic evaluation after probiotic incubation demonstrated intact cell viability for all cell cultures. CONCLUSION We identified well-tolerated, nonpathogenic, "generally recognized as safe" status gram-positive probiotics with anti-inflammatory properties. Topical probiotics represented a potential novel topical therapeutic strategy for CRS relevant for further clinical evaluation.
Collapse
Affiliation(s)
- Joseph S Schwartz
- Department of Otolaryngology, Head and Neck Surgery, McGill University, Montreal, Canada
| | | | | | | | | | | |
Collapse
|