1
|
van Wyk S, Moir M, Banerjee A, Bazykin GA, Biswas NK, Sitharam N, Das S, Ma W, Maitra A, Mazumder A, Karim WA, Lamarca AP, Li M, Nabieva E, Tegally H, San JE, Vasconcelos ATR, Xavier JS, Wilkinson E, de Oliveira T. "The COVID-19 pandemic in BRICS: Milestones, interventions, and molecular epidemiology". PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003023. [PMID: 39705269 DOI: 10.1371/journal.pgph.0003023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/02/2024] [Indexed: 12/22/2024]
Abstract
Brazil, Russia, India, China, and South Africa (BRICS) are a group of developing countries with shared economic, healthcare, and scientific interests. These countries navigate multiple syndemics, and the COVID-19 pandemic placed severe strain on already burdened BRICS' healthcare systems, hampering effective pandemic interventions. Genomic surveillance and molecular epidemiology remain indispensable tools for facilitating informed pandemic intervention. To evaluate the combined manner in which the pandemic unfolded in BRICS countries, we reviewed the BRICS pandemic epidemiological and genomic milestones, which included the first reported cases and deaths, and pharmaceutical and non-pharmaceutical interventions implemented in these countries. To assess the development of genomic surveillance capacity and efficiency over the pandemic, we analyzed the turnaround time from sample collection to data availability and the technologies used for genomic analysis. This data provided information on the laboratory capacities that enable the detection of emerging SARS-CoV-2 variants and highlight their potential for monitoring other pathogens in ongoing public health efforts. Our analyses indicated that BRICS suffered >105.6M COVID-19 infections, resulting in >1.7M deaths. BRICS countries detected intricate genetic combinations of SARS-CoV-2 variants that fueled country-specific pandemic waves. BRICS' genomic surveillance programs enabled the identification and characterization of the majority of globally circulating Variants of Concern (VOCs) and their descending lineages. Pandemic intervention strategies first implemented by BRICS countries included non-pharmaceutical interventions during the onset of the pandemic, such as nationwide lockdowns, quarantine procedures, the establishment of fever clinics, and mask mandates- which were emulated internationally. Vaccination rollout strategies complemented this, some representing the first of their kind. Improvements in BRICS sequencing and data generation turnaround time facilitated quicker detection of circulating and emerging variants, supported by investments in sequencing and bioinformatic infrastructure. Intra-BRICS cooperation contributed to the ongoing intervention in COVID-19 and other pandemics, enhancing collective capabilities in addressing these health challenges. The data generated continues to inform BRICS-centric pandemic intervention strategies and influences global health matters. The increased laboratory and bioinformatic capacity post-COVID-19 will support the detection of emerging pathogens.
Collapse
Affiliation(s)
- Stephanie van Wyk
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Monika Moir
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Anindita Banerjee
- BRICS-National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Georgii A Bazykin
- A.A. Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Nidhan K Biswas
- BRICS-National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Nikita Sitharam
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Saumitra Das
- BRICS-National Institute of Biomedical Genomics, Kalyani, West Bengal, India
- Indian Institute of Science, Bengaluru, Karnataka, India
| | - Wentai Ma
- Beijing Institute of Genomics, CAS Key Laboratory of Genomic and Precision Medicine, Chinese Academy of Sciences / China National Centre for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Arindam Maitra
- BRICS-National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Anup Mazumder
- BRICS-National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Wasim Abdool Karim
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Alessandra Pavan Lamarca
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Mingkun Li
- Beijing Institute of Genomics, CAS Key Laboratory of Genomic and Precision Medicine, Chinese Academy of Sciences / China National Centre for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Elena Nabieva
- A.A. Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
- Princeton University, Princeton, New Jersey, United States of America
| | - Houriiyah Tegally
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - James Emmanuel San
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Ana Tereza R Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Joicymara S Xavier
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Institute of Agricultural Sciences, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Unaí, Brasil
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Eduan Wilkinson
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Tulio de Oliveira
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
2
|
Tang J, Zou SM, Zhou JF, Gao RB, Xin L, Zeng XX, Huang WJ, Li XY, Cheng YH, Liu LQ, Xiao N, Wang DY. R229I substitution from oseltamivir induction in HA1 region significantly increased the fitness of a H7N9 virus bearing NA 292K. Emerg Microbes Infect 2024; 13:2373314. [PMID: 38922326 PMCID: PMC467099 DOI: 10.1080/22221751.2024.2373314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
The proportion of human isolates with reduced neuraminidase inhibitors (NAIs) susceptibility in highly pathogenic avian influenza (HPAI) H7N9 virus was high. These drug-resistant strains showed good replication capacity without serious loss of fitness. In the presence of oseltamivir, R229I substitution were found in HA1 region of the HPAI H7N9 virus before NA R292K appeared. HPAI H7N9 or H7N9/PR8 recombinant viruses were developed to study whether HA R229I could increase the fitness of the H7N9 virus bearing NA 292K. Replication efficiency was assessed in MDCK or A549 cells. Neuraminidase enzyme activity and receptor-binding ability were analyzed. Pathogenicity in C57 mice was evaluated. Antigenicity analysis was conducted through a two-way HI test, in which the antiserum was obtained from immunized ferrets. Transcriptomic analysis of MDCK infected with HPAI H7N9 24hpi was done. It turned out that HA R229I substitution from oseltamivir induction in HA1 region increased (1) replication ability in MDCK(P < 0.05) and A549(P < 0.05), (2) neuraminidase enzyme activity, (3) binding ability to both α2,3 and α2,6 receptor, (4) pathogenicity to mice(more weight loss; shorter mean survival day; viral titer in respiratory tract, P < 0.05; Pathological changes in pneumonia), (5) transcriptome response of MDCK, of the H7N9 virus bearing NA 292K. Besides, HA R229I substitution changed the antigenicity of H7N9/PR8 virus (>4-fold difference of HI titre). It indicated that through the fine-tuning of HA-NA balance, R229I increased the fitness and changed the antigenicity of H7N9 virus bearing NA 292K. Public health attention to this mechanism needs to be drawn.
Collapse
MESH Headings
- Animals
- Oseltamivir/pharmacology
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/drug effects
- Influenza A Virus, H7N9 Subtype/pathogenicity
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/physiology
- Neuraminidase/genetics
- Neuraminidase/metabolism
- Dogs
- Virus Replication/drug effects
- Antiviral Agents/pharmacology
- Humans
- Mice
- Orthomyxoviridae Infections/virology
- Madin Darby Canine Kidney Cells
- A549 Cells
- Mice, Inbred C57BL
- Drug Resistance, Viral/genetics
- Amino Acid Substitution
- Influenza, Human/virology
- Ferrets
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Female
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Jing Tang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Shu-Mei Zou
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Jian-Fang Zhou
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Rong-Bao Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Li Xin
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Xiao-Xu Zeng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Wei-Juan Huang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Xi-Yan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Yan-Hui Cheng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Li-Qi Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Ning Xiao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Da-Yan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Dong Q, Sun B, Liu Y, Huang X. Sewerage surveillance tracking characteristics of human antibiotic resistance genes in sewer system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175850. [PMID: 39209175 DOI: 10.1016/j.scitotenv.2024.175850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/30/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Sewage surveillance is widely applied to track valid human excretion information and identify public health conditions during corona virus disease 2019 (COVID-19) pandemic. This approach can be applied to monitor the antibiotic resistance level in sewers and to assess the risk of spreading antibiotic resistance in municipal wastewater systems. However, there is still little information about human antibiotic resistance occurrence characteristics in sewer system. This study conducted a field trial for whole year to advance understanding on spatial and temporal occurrence of antibiotic resistance genes (ARGs) in gravity sewerage. The spatial distribution of ARGs along the drainage pipe line (from human settlements to wastewater treatement pant (WWTP)) was insignificant, which may be affected by irregular human emission alongside the pipeline. The correlation between ARGs and antibiotics in sewage was insignificant. The temporal distribution showed that the effect of temperature on ARGs abundance was evident, the ARGs abundance in sewage was generally higher during the cold season. Metagenomic analysis revealed that the detected ARGs were mainly distributed in Proteobacteria (47.51 %) and Antinobacteria (20.11 %). Potential hosts of ARGs in sewage were mainly identified as human gut microorganisms, including human pathogenic bacteria, such as Prevotella, Kocuria, and Propionibacterium, etc. This study provides a new insight into the sewerage surveillance tracking characteristics of human ARGs in sewer system, and suggesting that the sewage-carried ARGs surveillance is a promising method for assessment and management of antibiotic resistance level on population size.
Collapse
Affiliation(s)
- Qian Dong
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bo Sun
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yanchen Liu
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| | - Xia Huang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Kang M, Wang LF, Sun BW, Wan WB, Ji X, Baele G, Bi YH, Suchard MA, Lai A, Zhang M, Wang L, Zhu YH, Ma L, Li HP, Haerheng A, Qi YR, Wang RL, He N, Su S. Zoonotic infections by avian influenza virus: changing global epidemiology, investigation, and control. THE LANCET. INFECTIOUS DISEASES 2024; 24:e522-e531. [PMID: 38878787 DOI: 10.1016/s1473-3099(24)00234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/21/2024] [Accepted: 04/07/2024] [Indexed: 07/28/2024]
Abstract
Avian influenza virus continues to pose zoonotic, epizootic, and pandemic threats worldwide, as exemplified by the 2020-23 epizootics of re-emerging H5 genotype avian influenza viruses among birds and mammals and the fatal jump to humans of emerging A(H3N8) in early 2023. Future influenza pandemic threats are driven by extensive mutations and reassortments of avian influenza viruses rooted in frequent interspecies transmission and genetic mixing and underscore the urgent need for more effective actions. We examine the changing global epidemiology of human infections caused by avian influenza viruses over the past decade, including dramatic increases in both the number of reported infections in humans and the spectrum of avian influenza virus subtypes that have jumped to humans. We also discuss the use of advanced surveillance, diagnostic technologies, and state-of-the-art analysis methods for tracking emerging avian influenza viruses. We outline an avian influenza virus-specific application of the One Health approach, integrating enhanced surveillance, tightened biosecurity, targeted vaccination, timely precautions, and timely clinical management, and fostering global collaboration to control the threats of avian influenza viruses.
Collapse
Affiliation(s)
- Mei Kang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China; Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Fang Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bo-Wen Sun
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Wen-Bo Wan
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Xiang Ji
- Department of Mathematics, School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Yu-Hai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Marc A Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA; Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexander Lai
- School of Science, Technology, Engineering, and Mathematics, Kentucky State University, Frankfort, KY, USA
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Wang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Hong Zhu
- Department of Scientific Research Management, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Ma
- Department of Scientific Research Management, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Peng Li
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Ayidana Haerheng
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Yang-Rui Qi
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Rui-Lan Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na He
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Shuo Su
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Liu Y, Chen Y, Yang Z, Lin Y, Fu S, Chen J, Xu L, Liu T, Niu B, Huang Q, Liu H, Zheng C, Liao M, Jia W. Evolution and Antigenic Differentiation of Avian Influenza A(H7N9) Virus, China. Emerg Infect Dis 2024; 30:1218-1222. [PMID: 38640498 PMCID: PMC11138980 DOI: 10.3201/eid3006.230530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024] Open
Abstract
We characterized the evolution and molecular characteristics of avian influenza A(H7N9) viruses isolated in China during 2021-2023. We systematically analyzed the 10-year evolution of the hemagglutinin gene to determine the evolutionary branch. Our results showed recent antigenic drift, providing crucial clues for updating the H7N9 vaccine and disease prevention and control.
Collapse
MESH Headings
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/immunology
- China/epidemiology
- Animals
- Evolution, Molecular
- Influenza in Birds/virology
- Influenza in Birds/epidemiology
- Phylogeny
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza, Human/epidemiology
- Influenza, Human/virology
- Influenza, Human/immunology
- Antigens, Viral/immunology
- Antigens, Viral/genetics
- Birds/virology
- Antigenic Variation
Collapse
|
6
|
Jia M, Zhao H, Morano NC, Lu H, Lui YM, Du H, Becker JE, Yuen KY, Ho DD, Kwong PD, Shapiro L, To KKW, Wu X. Human neutralizing antibodies target a conserved lateral patch on H7N9 hemagglutinin head. Nat Commun 2024; 15:4505. [PMID: 38802413 PMCID: PMC11130183 DOI: 10.1038/s41467-024-48758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Avian influenza A virus H7N9 causes severe human infections with >30% fatality. Currently, there is no H7N9-specific prevention or treatment for humans. Here, from a 2013 H7N9 convalescent case in Hong Kong, we isolate four hemagglutinin (HA)-reactive monoclonal antibodies (mAbs), with three directed to the globular head domain (HA1) and one to the stalk domain (HA2). Two clonally related HA1-directed mAbs, H7.HK1 and H7.HK2, potently neutralize H7N9 and protect female mice from lethal H7N9/AH1 challenge. Cryo-EM structures reveal that H7.HK1 and H7.HK2 bind to a β14-centered surface and disrupt the 220-loop that makes hydrophobic contacts with sialic acid on an adjacent protomer, thereby blocking viral entry. Sequence analysis indicates the lateral patch targeted by H7.HK1 and H7.HK2 to be conserved among influenza subtypes. Both H7.HK1 and H7.HK2 retain HA1 binding and neutralization capacity to later H7N9 isolates from 2016-2017, consistent with structural data showing that the antigenic mutations during this timeframe occur at their epitope peripheries. The HA2-directed mAb H7.HK4 lacks neutralizing activity but when used in combination with H7.HK2 moderately augments female mouse protection. Overall, our data reveal antibodies to a conserved lateral HA1 supersite that confer neutralization, and when combined with a HA2-directed non-neutralizing mAb, augment protection.
Collapse
Grants
- ZIA AI005022 Intramural NIH HHS
- W911NF-14-C-0001 U.S. Department of Defense (United States Department of Defense)
- FNIH SHAP19IUFV Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
- Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
- Donations from Richard Yu and Carol Yu, Shaw Foundation Hong Kong, Michael Seak-Kan Tong, The Hui Ming, Hui Hoy and Chow Sin Lan Charity Fund Limited, Chan Yin Chuen Memorial Charitable Foundation, Marina Man-Wai Lee, Jessie and George Ho Charitable Foundation, Kai Chong Tong, Tse Kam Ming Laurence, Foo Oi Foundation Limited, Betty Hing-Chu Lee, and Ping Cham So
Collapse
Affiliation(s)
- Manxue Jia
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Hanjun Zhao
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, China
| | - Nicholas C Morano
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Biochemistry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Hong Lu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Yin-Ming Lui
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Haijuan Du
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jordan E Becker
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Biochemistry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection, University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Peter D Kwong
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lawrence Shapiro
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Biochemistry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, China.
- Department of Clinical Microbiology and Infection, University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China.
| | - Xueling Wu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
| |
Collapse
|
7
|
Jackson LA, Stapleton JT, Walter EB, Chen WH, Rouphael NG, Anderson EJ, Neuzil KM, Winokur PL, Smith MJ, Schmader KE, Swamy GK, Thompson AB, Mulligan MJ, Rostad CA, Cross K, Tsong R, Wegel A, Roberts PC. Immunogenicity and safety of varying dosages of a fifth-wave influenza A/H7N9 inactivated vaccine given with and without AS03 adjuvant in healthy adults. Vaccine 2024; 42:295-309. [PMID: 38105137 PMCID: PMC10790638 DOI: 10.1016/j.vaccine.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Human infections with the avian influenza A(H7N9) virus were first reported in China in 2013 and continued to occur in annual waves. In the 2016/2017 fifth wave, Yangtze River Delta (YRD) lineage viruses, which differed antigenically from those of earlier waves, predominated. METHODS In this phase 2 double-blinded trial we randomized 720 adults ≥ 19 years of age to receive two injections of a YRD lineage inactivated A/Hong Kong/125/2017 fifth-wave H7N9 vaccine, given 21 days apart, at doses of 3.75, 7.5, and 15 µg of hemagglutinin (HA) with AS03A adjuvant and at doses of 15 and 45 µg of HA without adjuvant. RESULTS Two doses of adjuvanted vaccine were required to induce HA inhibition (HI) antibody titers ≥ 40 in most participants. After two doses of the 15 µg H7N9 formulation, given with or without AS03 adjuvant, the proportion achieving a HI titer ≥ 40 against the vaccine strain at 21 days after the second vaccination was 65 % (95 % CI, 57 %-73 %) and 0 % (95 % CI, 0 %-4%), respectively. Among those who received two doses of the 15 µg adjuvanted formulation the proportion with HI titer ≥ 40 at 21 days after the second vaccination was 76 % (95 % CI, 66 %-84 %) in those 19-64 years of age and 49 % (95 % CI, 37 %-62 %) in those ≥ 65 years of age. Responses to the adjuvanted vaccine formulations did not vary by HA content. Antibody responses declined over time and responses against drifted H7N9 strains were diminished. Overall, the vaccines were well tolerated but, as expected, adjuvanted vaccines were associated with more frequent solicited systemic and local adverse events. CONCLUSIONS AS03 adjuvant improved the immune responses to an inactivated fifth-wave H7N9 influenza vaccine, particularly in younger adults, but invoked lower responses to drifted H7N9 strains. These findings may inform future influenza pandemic preparedness strategies.
Collapse
Affiliation(s)
- Lisa A Jackson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA.
| | - Jack T Stapleton
- Departments of Internal Medicine and Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Emmanuel B Walter
- Duke Human Vaccine Institute, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Wilbur H Chen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nadine G Rouphael
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Evan J Anderson
- Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Kathleen M Neuzil
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patricia L Winokur
- Division of Infectious Diseases, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael J Smith
- Duke Human Vaccine Institute, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Kenneth E Schmader
- Division of Geriatrics, Department of Medicine, Duke University School of Medicine and GRECC, Durham VA Health Care System, Durham, NC, USA
| | - Geeta K Swamy
- Duke Human Vaccine Institute and Department of Obstetrics & Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Amelia B Thompson
- Duke Human Vaccine Institute, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Mark J Mulligan
- Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Christina A Rostad
- Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | - Paul C Roberts
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
8
|
Yang L, Fan M, Wang Y, Sun X, Zhu H. Effect of avian influenza scare on transmission of zoonotic avian influenza: A case study of influenza A (H7N9). Math Biosci 2024; 367:109125. [PMID: 38072124 DOI: 10.1016/j.mbs.2023.109125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/15/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024]
Abstract
Avian influenza scare is a human psychological factor that asserts both positive and negative effects on the transmission of zoonotic avian influenza. In order to study the dichotomous effect of avian influenza scare on disease transmission, taking H7N9 avian influenza as a typical case, a two-patch epidemic model is proposed. The global dynamics and the threshold criteria are established by LaSalle invariant principle and the theory of asymptotic autonomous system. To mitigate the negative effects and curb illegal poultry trade, a game-theoretic model is adopted to explore the optimal policy of culling subsidies to reasonably compensate stakeholders for their economic losses resulting from the scare. The optimal policy of culling subsidy is found to heavily depend on the penalty of illegal poultry trade, the stakeholders' income, the intensity of control measures, and the prevalence level of the disease. The negative effect of avian influenza scare on disease transmission is considerably more significant than the positive effect. In order to avoid a widespread outbreak of zoonotic avian influenza across the region, a comprehensive national global control strategy is essential and effective, even in the presence of the negative effect of the avian influenza scare.
Collapse
Affiliation(s)
- Liu Yang
- School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, PR China; China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, PR China
| | - Meng Fan
- School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, PR China.
| | - Youming Wang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, PR China
| | - Xiangdong Sun
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, PR China
| | - Huaiping Zhu
- LAMPS, Department of Mathematics and Statistics, York university, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
9
|
Jia M, Zhao H, Morano NC, Lu H, Lui YM, Du H, Becker JE, Yuen KY, Ho DD, Kwong PD, Shapiro L, To KKW, Wu X. Allosteric Neutralization by Human H7N9 Antibodies. RESEARCH SQUARE 2023:rs.3.rs-3429355. [PMID: 37986867 PMCID: PMC10659534 DOI: 10.21203/rs.3.rs-3429355/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The avian influenza A virus H7N9 causes severe human infections with more than 30% fatality despite the use of neuraminidase inhibitors. Currently there is no H7N9-specific prevention or treatment for humans. From a 2013 H7N9 convalescent case occurred in Hong Kong, we isolated four H7 hemagglutinin (HA)-reactive monoclonal antibodies (mAbs) by single B cell cloning, with three mAbs directed to the HA globular head domain (HA1) and one to the HA stem region (HA2). Two clonally related HA1-directed mAbs, H7.HK1 and H7.HK2, potently neutralized H7N9 and protected mice from a lethal H7N9/AH1 challenge. Cryo-EM structures revealed that H7.HK1 and H7.HK2 bind to a β14-centered surface partially overlapping with the antigenic site D of HA1 and disrupt the 220-loop that makes hydrophobic contacts with sialic acid on the adjacent protomer, thus affectively blocking viral entry. The more potent mAb H7.HK2 retained full HA1 binding and neutralization capacity to later H7N9 isolates from 2016-2017, which is consistent with structural data showing that the antigenic mutations of 2016-2017 from the 2013 H7N9 only occurred at the periphery of the mAb epitope. The HA2-directed mAb H7.HK4 lacked neutralizing activity but protected mice from the lethal H7N9/AH1 challenge when engineered to mouse IgG2a enabling Fc effector function in mice. Used in combination with H7.HK2 at a suboptimal dose, H7.HK4 augmented mouse protection. Our data demonstrated an allosteric mechanism of mAb neutralization and augmented protection against H7N9 when a HA1-directed neutralizing mAb and a HA2-directed non-neutralizing mAb were combined.
Collapse
Affiliation(s)
- Manxue Jia
- Aaron Diamond AIDS Research Center, Affiliate of Rockefeller University, New York, NY 10016, USA
| | - Hanjun Zhao
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, China
| | - Nicholas C. Morano
- Department of Biochemistry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Hong Lu
- Aaron Diamond AIDS Research Center, Affiliate of Rockefeller University, New York, NY 10016, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yin-Ming Lui
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Haijuan Du
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jordan E. Becker
- Department of Biochemistry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection, University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Affiliate of Rockefeller University, New York, NY 10016, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Peter D. Kwong
- Department of Biochemistry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Department of Biochemistry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection, University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xueling Wu
- Aaron Diamond AIDS Research Center, Affiliate of Rockefeller University, New York, NY 10016, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
10
|
Zhang F, Shang J, Luo J, Yin X, Yu X, Jiang W, Li J, Yuan L, Hou G, Liu H, Li Y. Development of a recombinase-aided amplification combined with a lateral flow dipstick assay for rapid detection of H7 subtype avian influenza virus. Front Microbiol 2023; 14:1286713. [PMID: 38029110 PMCID: PMC10654746 DOI: 10.3389/fmicb.2023.1286713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Avian influenza viruses (AIV) pose a significant persistent threat to the public health and safety. It is estimated that there have been over 100 outbreaks caused by various H7 subtypes of avian influenza viruses (AIV-H7) worldwide, resulting in over 33 million deaths of poultry. In this study, we developed a recombinase-aided amplification combined with a lateral flow dipstick assay for the detection of hemagglutinin (HA) genes to provide technical support for rapid clinical detection of AIV-H7. The results showed that the assay can complete the reaction within 30 min at a temperature of 39°C. Specificity tests demonstrated that there was no cross-reactivity with other common poultry pathogens, including Newcastle disease virus (NDV) and infections bronchitis virus (IBV). The detection limit of this assay was 1 × 101 copies/μL, while RT-qPCR method was 1 × 101 copies/μL, and RT-PCR was 1 × 102 copies/μL. The κ value of the RT-RAA-LFD and RT-PCR assay in 132 avian clinical samples was 0.9169 (p < 0.001). These results indicated that the developed RT-RAA-LFD assay had good specificity, sensitivity, stability and repeatability and may be used for rapid detection of AIV-H7 in clinical diagnosis.
Collapse
Affiliation(s)
- Fuyou Zhang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Jiajing Shang
- China Animal Health and Epidemiology Center, Qingdao, China
- Hebei University of Engineering, Handan, China
| | - Juan Luo
- China Animal Health and Epidemiology Center, Qingdao, China
- Hebei University of Engineering, Handan, China
| | - Xin Yin
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Xiaohui Yu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Wenming Jiang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Jinping Li
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Liping Yuan
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Guangyu Hou
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Hualei Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Yang Li
- China Animal Health and Epidemiology Center, Qingdao, China
| |
Collapse
|
11
|
Lambert S, Bauzile B, Mugnier A, Durand B, Vergne T, Paul MC. A systematic review of mechanistic models used to study avian influenza virus transmission and control. Vet Res 2023; 54:96. [PMID: 37853425 PMCID: PMC10585835 DOI: 10.1186/s13567-023-01219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/05/2023] [Indexed: 10/20/2023] Open
Abstract
The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. Various mechanistic models have been developed to better understand avian influenza transmission and evaluate the effectiveness of control measures in mitigating the socioeconomic losses caused by these viruses. However, the results of models of avian influenza transmission and control have not yet been subject to a comprehensive review. Such a review could help inform policy makers and guide future modeling work. To help fill this gap, we conducted a systematic review of the mechanistic models that have been applied to field outbreaks. Our three objectives were to: (1) describe the type of models and their epidemiological context, (2) list estimates of commonly used parameters of low pathogenicity and highly pathogenic avian influenza transmission, and (3) review the characteristics of avian influenza transmission and the efficacy of control strategies according to the mechanistic models. We reviewed a total of 46 articles. Of these, 26 articles estimated parameters by fitting the model to data, one evaluated the effectiveness of control strategies, and 19 did both. Values of the between-individual reproduction number ranged widely: from 2.18 to 86 for highly pathogenic avian influenza viruses, and from 4.7 to 45.9 for low pathogenicity avian influenza viruses, depending on epidemiological settings, virus subtypes and host species. Other parameters, such as the durations of the latent and infectious periods, were often taken from the literature, limiting the models' potential insights. Concerning control strategies, many models evaluated culling (n = 15), while vaccination received less attention (n = 6). According to the articles reviewed, optimal control strategies varied between virus subtypes and local conditions, and depended on the overall objective of the intervention. For instance, vaccination was optimal when the objective was to limit the overall number of culled flocks. In contrast, pre-emptive culling was preferred for reducing the size and duration of an epidemic. Early implementation consistently improved the overall efficacy of interventions, highlighting the need for effective surveillance and epidemic preparedness.
Collapse
Affiliation(s)
| | - Billy Bauzile
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | - Benoit Durand
- Epidemiology Unit, Laboratory for Animal Health, French Agency for Food, Environment and Occupational Health and Safety (ANSES), Paris-Est University, Maisons-Alfort, France
| | | | | |
Collapse
|
12
|
Hufsky F, Abecasis AB, Babaian A, Beck S, Brierley L, Dellicour S, Eggeling C, Elena SF, Gieraths U, Ha AD, Harvey W, Jones TC, Lamkiewicz K, Lovate GL, Lücking D, Machyna M, Nishimura L, Nocke MK, Renard BY, Sakaguchi S, Sakellaridi L, Spangenberg J, Tarradas-Alemany M, Triebel S, Vakulenko Y, Wijesekara RY, González-Candelas F, Krautwurst S, Pérez-Cataluña A, Randazzo W, Sánchez G, Marz M. The International Virus Bioinformatics Meeting 2023. Viruses 2023; 15:2031. [PMID: 37896809 PMCID: PMC10612056 DOI: 10.3390/v15102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
The 2023 International Virus Bioinformatics Meeting was held in Valencia, Spain, from 24-26 May 2023, attracting approximately 180 participants worldwide. The primary objective of the conference was to establish a dynamic scientific environment conducive to discussion, collaboration, and the generation of novel research ideas. As the first in-person event following the SARS-CoV-2 pandemic, the meeting facilitated highly interactive exchanges among attendees. It served as a pivotal gathering for gaining insights into the current status of virus bioinformatics research and engaging with leading researchers and emerging scientists. The event comprised eight invited talks, 19 contributed talks, and 74 poster presentations across eleven sessions spanning three days. Topics covered included machine learning, bacteriophages, virus discovery, virus classification, virus visualization, viral infection, viromics, molecular epidemiology, phylodynamic analysis, RNA viruses, viral sequence analysis, viral surveillance, and metagenomics. This report provides rewritten abstracts of the presentations, a summary of the key research findings, and highlights shared during the meeting.
Collapse
Affiliation(s)
- Franziska Hufsky
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Ana B. Abecasis
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Artem Babaian
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
- Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Sebastian Beck
- Leibniz Institute of Virology, Department Viral Zoonoses—One Health, 20251 Hamburg, Germany;
| | - Liam Brierley
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Department of Health Data Science, University of Liverpool, Liverpool L69 3GF, UK
| | - Simon Dellicour
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 av. FD Roosevelt, 1050 Bruxelles, Belgium
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, University of Leuven, 3000 Leuven, Belgium
| | - Christian Eggeling
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Santiago F. Elena
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Institute for Integrative Systems Biology (I2SysBio), CSIC-Universitat de Valencia, Catedratico Agustin Escardino 9, 46980 Valencia, Spain
| | - Udo Gieraths
- Institute of Virology, Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Anh D. Ha
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Will Harvey
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Terry C. Jones
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Institute of Virology, Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Kevin Lamkiewicz
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Gabriel L. Lovate
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Dominik Lücking
- Max-Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Martin Machyna
- Paul-Ehrlich-Institut, Host-Pathogen-Interactions, 63225 Langen, Germany
| | - Luca Nishimura
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Maximilian K. Nocke
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Department for Molecular & Medical Virology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Bernard Y. Renard
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Digital Engineering Faculty, Hasso Plattner Institute, University of Potsdam, 14482 Potsdam, Germany
| | - Shoichi Sakaguchi
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan;
| | - Lygeri Sakellaridi
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Jannes Spangenberg
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Maria Tarradas-Alemany
- Computational Genomics Lab., Department of Genetics, Microbiology and Statistics, Institut de Biomedicina UB (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Sandra Triebel
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Yulia Vakulenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Rajitha Yasas Wijesekara
- Institute for Bioinformatics, University of Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany
| | - Fernando González-Candelas
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Institute for Integrative Systems Biology (I2SysBio), CSIC-Universitat de Valencia, Catedratico Agustin Escardino 9, 46980 Valencia, Spain
- Joint Research Unit “Infection and Public Health” FISABIO, University of Valencia, 46010 Valencia, Spain
| | - Sarah Krautwurst
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Alba Pérez-Cataluña
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, 46980 Valencia, Spain
| | - Walter Randazzo
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, 46980 Valencia, Spain
| | - Gloria Sánchez
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, 46980 Valencia, Spain
| | - Manja Marz
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Michael Stifel Center Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745 Jena, Germany
- Leibniz Institute for Age Research—Fritz Lippman Institute, 07745 Jena, Germany
| |
Collapse
|
13
|
Li H, Ge M, Wang C. Spatio-temporal evolution patterns of influenza incidence and its nonlinear spatial correlation with environmental pollutants in China. BMC Public Health 2023; 23:1685. [PMID: 37658301 PMCID: PMC10472579 DOI: 10.1186/s12889-023-16646-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Currently, the influenza epidemic in China is at a high level and mixed with other respiratory diseases. Current studies focus on regional influenza and the impact of environmental pollutants on time series, and lack of overall studies on the national influenza epidemic and the nonlinear correlation between environmental pollutants and influenza. The unclear spatial and temporal evolution patterns of influenza as well as the unclear correlation effect between environmental pollutants and influenza epidemic have greatly hindered the prevention and treatment of influenza epidemic by relevant departments, resulting in unnecessary economic and human losses. METHOD This study used Chinese influenza incidence data for 2007-2017 released by the China CDC and air pollutant site monitoring data. Seasonal as well as inter monthly differences in influenza incidence across 31 provinces of China have been clarified through time series. Space-Time Cube model (STC) was used to investigate the spatio-temporal evolution of influenza incidence in 315 Chinese cities during 2007-2017. Then, based on the spatial heterogeneity of influenza incidence in China, Generalized additive model (GAM) was used to identify the correlation effect of environmental pollutants (PM2.5, PM10, CO, SO2, NO2, O3) and influenza incidence. RESULT The influenza incidence in China had obvious seasonal changes, with frequent outbreaks in winter and spring. The influenza incidence decreased significantly after March, with only sporadic outbreaks occurring in some areas. In the past 11 years, the influenza epidemic had gradually worsened, and the clustering of influenza had gradually expanded, which had become a serious public health problem. The correlation between environmental pollutants and influenza incidence was nonlinear. Generally, PM2.5, CO and NO2 were positively correlated at high concentrations, while PM10 and SO2 were negatively correlated. O3 was not strongly correlated with the influenza incidence. CONCLUSION The study found that the influenza epidemic in China was in a rapidly rising stage, and several regions had a multi-year outbreak trend and the hot spots continue to expand outward. The association between environmental pollutants and influenza incidence was nonlinear and spatially heterogeneous. Relevant departments should improve the monitoring of influenza epidemic, optimize the allocation of resources, reduce environmental pollution, and strengthen vaccination to effectively prevent the aggravation and spread of influenza epidemic in the high incidence season and areas.
Collapse
Affiliation(s)
- Hao Li
- Institute of Healthy Geography, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Miao Ge
- Institute of Healthy Geography, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China.
| | - Congxia Wang
- Department of Cardiology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
14
|
Szablewski CM, Iwamoto C, Olsen SJ, Greene CM, Duca LM, Davis CT, Coggeshall KC, Davis WW, Emukule GO, Gould PL, Fry AM, Wentworth DE, Dugan VG, Kile JC, Azziz-Baumgartner E. Reported Global Avian Influenza Detections Among Humans and Animals During 2013-2022: Comprehensive Review and Analysis of Available Surveillance Data. JMIR Public Health Surveill 2023; 9:e46383. [PMID: 37651182 PMCID: PMC10502594 DOI: 10.2196/46383] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 06/26/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Avian influenza (AI) virus detections occurred frequently in 2022 and continue to pose a health, economic, and food security risk. The most recent global analysis of official reports of animal outbreaks and human infections with all reportable AI viruses was published almost a decade ago. Increased or renewed reports of AI viruses, especially high pathogenicity H5N8 and H5N1 in birds and H5N1, H5N8, and H5N6 in humans globally, have established the need for a comprehensive review of current global AI virus surveillance data to assess the pandemic risk of AI viruses. OBJECTIVE This study aims to provide an analysis of global AI animal outbreak and human case surveillance information from the last decade by describing the circulating virus subtypes, regions and temporal trends in reporting, and country characteristics associated with AI virus outbreak reporting in animals; surveillance and reporting gaps for animals and humans are identified. METHODS We analyzed AI virus infection reports among animals and humans submitted to animal and public health authorities from January 2013 to June 2022 and compared them with reports from January 2005 to December 2012. A multivariable regression analysis was used to evaluate associations between variables of interest and reported AI virus animal outbreaks. RESULTS From 2013 to 2022, 52.2% (95/182) of World Organisation for Animal Health (WOAH) Member Countries identified 34 AI virus subtypes during 21,249 outbreaks. The most frequently reported subtypes were high pathogenicity AI H5N1 (10,079/21,249, 47.43%) and H5N8 (6722/21,249, 31.63%). A total of 10 high pathogenicity AI and 6 low pathogenicity AI virus subtypes were reported to the WOAH for the first time during 2013-2022. AI outbreaks in animals occurred in 26 more Member Countries than reported in the previous 8 years. Decreasing World Bank income classification was significantly associated with decreases in reported AI outbreaks (P<.001-.02). Between January 2013 and June 2022, 17/194 (8.8%) World Health Organization (WHO) Member States reported 2000 human AI virus infections of 10 virus subtypes. H7N9 (1568/2000, 78.40%) and H5N1 (254/2000, 12.70%) viruses accounted for the most human infections. As many as 8 of these 17 Member States did not report a human case prior to 2013. Of 1953 human cases with available information, 74.81% (n=1461) had a known animal exposure before onset of illness. The median time from illness onset to the notification posted on the WHO event information site was 15 days (IQR 9-30 days; mean 24 days). Seasonality patterns of animal outbreaks and human infections with AI viruses were very similar, occurred year-round, and peaked during November through May. CONCLUSIONS Our analysis suggests that AI outbreaks are more frequently reported and geographically widespread than in the past. Global surveillance gaps include inconsistent reporting from all regions and human infection reporting delays. Continued monitoring for AI virus outbreaks in animals and human infections with AI viruses is crucial for pandemic preparedness.
Collapse
Affiliation(s)
- Christine M Szablewski
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Chelsea Iwamoto
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Sonja J Olsen
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Carolyn M Greene
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Lindsey M Duca
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - C Todd Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Kira C Coggeshall
- Division of Global Health Protection, Global Health Center, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - William W Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Gideon O Emukule
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Philip L Gould
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Alicia M Fry
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - David E Wentworth
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Vivien G Dugan
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - James C Kile
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Eduardo Azziz-Baumgartner
- Influenza Division, National Center for Immunization and Respiratory Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
15
|
Horefti E. The Importance of the One Health Concept in Combating Zoonoses. Pathogens 2023; 12:977. [PMID: 37623937 PMCID: PMC10460008 DOI: 10.3390/pathogens12080977] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
One Health fundamentally acknowledges that human health is linked to animal health and the environment. One of the pillars One Health is built on is zoonoses. Through the years, zoonotic infections have caused numerous outbreaks and pandemics, as well as millions of fatalities, with the COVID-19 pandemic being the latest one. Apart from the consequences to public health, zoonoses also affect society and the economy. Since its establishment, One Health has contributed significantly to the protection of humans, animals, and the environment, through preparedness, surveillance, and mitigation of such public dangers.
Collapse
Affiliation(s)
- Elina Horefti
- Public Health Laboratories and Diagnostic Department, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
16
|
Pinto RM, Bakshi S, Lytras S, Zakaria MK, Swingler S, Worrell JC, Herder V, Hargrave KE, Varjak M, Cameron-Ruiz N, Collados Rodriguez M, Varela M, Wickenhagen A, Loney C, Pei Y, Hughes J, Valette E, Turnbull ML, Furnon W, Gu Q, Orr L, Taggart A, Diebold O, Davis C, Boutell C, Grey F, Hutchinson E, Digard P, Monne I, Wootton SK, MacLeod MKL, Wilson SJ, Palmarini M. BTN3A3 evasion promotes the zoonotic potential of influenza A viruses. Nature 2023; 619:338-347. [PMID: 37380775 DOI: 10.1038/s41586-023-06261-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
Spillover events of avian influenza A viruses (IAVs) to humans could represent the first step in a future pandemic1. Several factors that limit the transmission and replication of avian IAVs in mammals have been identified. There are several gaps in our understanding to predict which virus lineages are more likely to cross the species barrier and cause disease in humans1. Here, we identified human BTN3A3 (butyrophilin subfamily 3 member A3)2 as a potent inhibitor of avian IAVs but not human IAVs. We determined that BTN3A3 is expressed in human airways and its antiviral activity evolved in primates. We show that BTN3A3 restriction acts primarily at the early stages of the virus life cycle by inhibiting avian IAV RNA replication. We identified residue 313 in the viral nucleoprotein (NP) as the genetic determinant of BTN3A3 sensitivity (313F or, rarely, 313L in avian viruses) or evasion (313Y or 313V in human viruses). However, avian IAV serotypes, such as H7 and H9, that spilled over into humans also evade BTN3A3 restriction. In these cases, BTN3A3 evasion is due to substitutions (N, H or Q) in NP residue 52 that is adjacent to residue 313 in the NP structure3. Thus, sensitivity or resistance to BTN3A3 is another factor to consider in the risk assessment of the zoonotic potential of avian influenza viruses.
Collapse
Affiliation(s)
- Rute Maria Pinto
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Siddharth Bakshi
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Spyros Lytras
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Simon Swingler
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Julie C Worrell
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Vanessa Herder
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Kerrie E Hargrave
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Margus Varjak
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- Faculty of Science and Technology, Institute of Technology, University of Tartu, Tartu, Estonia
| | | | | | - Mariana Varela
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Colin Loney
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Elise Valette
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Lauren Orr
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Aislynn Taggart
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Ola Diebold
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Chris Davis
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Finn Grey
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Paul Digard
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Megan K L MacLeod
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Sam J Wilson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | |
Collapse
|
17
|
Lou X, Yan H, Su L, Sun Y, Wang X, Gong L, Chen Y, Li Z, Fang Z, Mao H, Chen K, Zhang Y. Detecting the Neuraminidase R294K Mutation in Avian Influenza A (H7N9) Virus Using Reverse Transcription Droplet Digital PCR Method. Viruses 2023; 15:v15040983. [PMID: 37112963 PMCID: PMC10146270 DOI: 10.3390/v15040983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The R294K mutation in neuraminidase (NA) causes resistance to oseltamivir in the avian influenza virus H7N9. Reverse transcription droplet digital polymerase chain reaction (RT-dd PCR) is a novel technique for detecting single-nucleotide polymorphisms. This study aimed to develop an RT-dd PCR method for detecting the R294K mutation in H7N9. Primers and dual probes were designed using the H7N9 NA gene and the annealing temperature was optimized at 58.0 °C. The sensitivity of our RT-dd PCR method was not significantly different from that of RT-qPCR (p = 0.625), but it could specifically detect R294 and 294K in H7N9. Among 89 clinical samples, 2 showed the R294K mutation. These two strains were evaluated using a neuraminidase inhibition test, which revealed that their sensitivity to oseltamivir was greatly reduced. The sensitivity and specificity of RT-dd PCR were similar to those of RT-qPCR and its accuracy was comparable to that of NGS. The RT-dd PCR method had the advantages of absolute quantitation, eliminating the need for a calibration standard curve, and being simpler in both experimental operation and result interpretation than NGS. Therefore, this RT-dd PCR method can be used to quantitatively detect the R294K mutation in H7N9.
Collapse
Affiliation(s)
- Xiuyu Lou
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Hao Yan
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Lingxuan Su
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yi Sun
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Xinyin Wang
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Liming Gong
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yin Chen
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Zhen Li
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Zhongbiao Fang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Haiyan Mao
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yanjun Zhang
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| |
Collapse
|
18
|
AbuBakar U, Amrani L, Kamarulzaman FA, Karsani SA, Hassandarvish P, Khairat JE. Avian Influenza Virus Tropism in Humans. Viruses 2023; 15:833. [PMID: 37112812 PMCID: PMC10142937 DOI: 10.3390/v15040833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
An influenza pandemic happens when a novel influenza A virus is able to infect and transmit efficiently to a new, distinct host species. Although the exact timing of pandemics is uncertain, it is known that both viral and host factors play a role in their emergence. Species-specific interactions between the virus and the host cell determine the virus tropism, including binding and entering cells, replicating the viral RNA genome within the host cell nucleus, assembling, maturing and releasing the virus to neighboring cells, tissues or organs before transmitting it between individuals. The influenza A virus has a vast and antigenically varied reservoir. In wild aquatic birds, the infection is typically asymptomatic. Avian influenza virus (AIV) can cross into new species, and occasionally it can acquire the ability to transmit from human to human. A pandemic might occur if a new influenza virus acquires enough adaptive mutations to maintain transmission between people. This review highlights the key determinants AIV must achieve to initiate a human pandemic and describes how AIV mutates to establish tropism and stable human adaptation. Understanding the tropism of AIV may be crucial in preventing virus transmission in humans and may help the design of vaccines, antivirals and therapeutic agents against the virus.
Collapse
Affiliation(s)
- Umarqayum AbuBakar
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Lina Amrani
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Farah Ayuni Kamarulzaman
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Saiful Anuar Karsani
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Pouya Hassandarvish
- Tropical Infectious Diseases Research and Education Center, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Jasmine Elanie Khairat
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
19
|
Braun KM, Haddock III LA, Crooks CM, Barry GL, Lalli J, Neumann G, Watanabe T, Imai M, Yamayoshi S, Ito M, Moncla LH, Koelle K, Kawaoka Y, Friedrich TC. Avian H7N9 influenza viruses are evolutionarily constrained by stochastic processes during replication and transmission in mammals. Virus Evol 2023; 9:vead004. [PMID: 36814938 PMCID: PMC9939568 DOI: 10.1093/ve/vead004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
H7N9 avian influenza viruses (AIVs) have caused over 1,500 documented human infections since emerging in 2013. Although wild-type H7N9 AIVs can be transmitted by respiratory droplets in ferrets, they have not yet caused widespread outbreaks in humans. Previous studies have revealed molecular determinants of H7N9 AIV host switching, but little is known about potential evolutionary constraints on this process. Here, we compare patterns of sequence evolution for H7N9 AIV and mammalian H1N1 viruses during replication and transmission in ferrets. We show that three main factors-purifying selection, stochasticity, and very narrow transmission bottlenecks-combine to severely constrain the ability of H7N9 AIV to effectively adapt to mammalian hosts in isolated, acute spillover events. We find rare evidence of natural selection favoring new, potentially mammal-adapting mutations within ferrets but no evidence of natural selection acting during transmission. We conclude that human-adapted H7N9 viruses are unlikely to emerge during typical spillover infections. Our findings are instead consistent with a model in which the emergence of a human-transmissible virus would be a rare and unpredictable, though highly consequential, 'jackpot' event. Strategies to control the total number of spillover infections will limit opportunities for the virus to win this evolutionary lottery.
Collapse
Affiliation(s)
| | | | - Chelsea M Crooks
- AIDS Vaccine Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, 585 Science Dr. Madison, WI 53711, USA
| | - Gabrielle L Barry
- AIDS Vaccine Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, 585 Science Dr. Madison, WI 53711, USA
| | - Joseph Lalli
- Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall Madison, WI 53706, US
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, 575 Science Dr. Madison, WI 53711, USA
| | - Tokiko Watanabe
- Division of Virology, Institute of Medical Science, University of Tokyo, 4 Chome-6-1 Shirokanedai Minato City, Tokyo 108-0071, Japan,Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka Suita City, Osaka 565-0871, Japan,Center for Infectious Disease Education and Research (CiDER), Osaka University, 2-8 Yamadaoka Suita City, Osaka 565-0871, Japan
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, 4 Chome-6-1 Shirokanedai Minato City, Tokyo 108-0071, Japan,The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, 1 Chome-21-1 Toyama Shinjuku City, Tokyo 162-8655, Japan
| | | | - Mutsumi Ito
- Division of Virology, Institute of Medical Science, University of Tokyo, 4 Chome-6-1 Shirokanedai Minato City, Tokyo 108-0071, Japan
| | | | | | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, 575 Science Dr. Madison, WI 53711, USA,Division of Virology, Institute of Medical Science, University of Tokyo, 4 Chome-6-1 Shirokanedai Minato City, Tokyo 108-0071, Japan,The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, 1 Chome-21-1 Toyama Shinjuku City, Tokyo 162-8655, Japan
| | | |
Collapse
|
20
|
NS2 is a key determinant of compatibility in reassortant avian influenza virus with heterologous H7N9-derived NS segment. Virus Res 2023; 324:199028. [PMID: 36572153 DOI: 10.1016/j.virusres.2022.199028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/30/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Influenza A viruses are common pathogens with high prevalence worldwide and potential for pandemic spread. While influenza A infections typically elicit robust cellular innate immune responses, the non-structural protein 1 (NS1) antagonizes host anti-viral responses and is critical for efficient virus replication and virulence. The avian influenza virus (AIV) H7N9 initially emerged in China in 2013 and has since crossed the avian-human barrier, causing severe disease in humans. To investigate the influence of the H7N9 NS gene (NS079) on viral replication and innate immune response, we generated several recombinant AIVs bearing various NS079 segments on the backbone of H6N1 (strain 0702). Intriguingly, the recombinant virus bearing the heterologous NS079 gene was highly attenuated compared with virus carrying the homologous NS gene (NS0702). Furthermore, we generated a NS079-0702R virus that expresses a chimeric NS gene in which part of the NS079 effector domain was replaced with the sequence from NS0702. The NS079-0702R virus exhibited significantly enhanced viral yield, approximately 100-fold more than virus bearing NS079. The high infection rate of NS079-0702R virus was reflected by strong induction of IFN and Mx expression in human A549 cells. Intriguingly, our in vitro comparative analysis suggested that the increased NS079-0702R infection capacity was independent of the ability of NS1 to interact with cellular partners, such as PKR and CPSF30. Since partial substitution of the effector domain from NS0702 altered the coding sequence of NS2, we further generated another recombinant virus with NS2 derived from H7N9. Surprisingly, the virus with H7N9-derived NS2 exhibited growth characteristics similar to NS079. Our data demonstrate that swapping NS2 components changes infection efficiency, suggesting a key role for NS2 as a determinant of viral compatibility upon reassortment. These findings warrant further investigation into the precise mechanisms by which NS2 contributes to viral replication and host immunity.1.
Collapse
|
21
|
He J, Hou S, Xiong C, Hu L, Gong L, Yu J, Zhou X, Chen Q, Yuan Y, He L, Zhu M, Li W, Shi Y, Sun Y, Pan H, Su B, Lu Y, Wu J. Avian influenza A virus H7N9 in China, a role reversal from reassortment receptor to the donator. J Med Virol 2023; 95:e28392. [PMID: 36484390 DOI: 10.1002/jmv.28392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Reassortment can introduce one or more gene segments of influenza A viruses (IAVs) into another, resulting in novel subtypes. Since 2013, a new outbreak of human highly pathogenic avian influenza has emerged in the Yangtze River Delta (YRD) and South-Central regions of China. In this study, using Anhui province as an example, we discuss the possible impact of H7N9 IAVs on future influenza epidemics through a series of gene reassortment events. Sixty-one human H7N9 isolates were obtained from five outbreaks in Anhui province from 2013 to 2019. Bioinformatics analyses revealed that all of them were characterized by low pathogenicity and high human or mammalian tropism and had introduced novel avian influenza A virus (AIV) subtypes such as H7N2, H7N6, H9N9, H5N6, H6N6, and H10N6 through gene reassortment. In reassortment events, Anhui isolates may donate one or more segments of HA, NA, and the six internal protein-coding genes for the novel subtype AIVs. Our study revealed that H7N9, H9N2, and H5N1 can serve as stable and persistent gene pools for AIVs in the YRD and South-Central regions of China. Novel AIV subtypes might be generated continuously by reassortment. These AIVs may have obtained human-type receptor-binding abilities from their donors and prefer binding to them, which can cause human epidemics through accidental spillover infections. Facing the continual threat of emerging avian influenza, constant monitoring of AIVs should be conducted closely for agricultural and public health.
Collapse
Affiliation(s)
- Jun He
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China.,School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Sai Hou
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Chenglong Xiong
- School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Linjie Hu
- School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Lei Gong
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Junling Yu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Xiaoyu Zhou
- School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Qingqing Chen
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Yuan Yuan
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Lan He
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Meng Zhu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Weiwei Li
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Yonglin Shi
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Yong Sun
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Haifeng Pan
- School of Public Health, Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Bin Su
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Yihan Lu
- School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Jiabing Wu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China.,School of Public Health, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
22
|
Chen T, Tan Y, Song Y, Wei G, Li Z, Wang X, Yang J, Millman AJ, Chen M, Liu D, Huang T, Jiao M, He W, Zhao X, Greene CM, Kile JC, Zhou S, Zhang R, Zeng X, Guo Q, Wang D. Enhanced environmental surveillance for avian influenza A/H5, H7 and H9 viruses in Guangxi, China, 2017-2019. BIOSAFETY AND HEALTH 2023; 5:30-36. [PMID: 39206216 PMCID: PMC11350926 DOI: 10.1016/j.bsheal.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We conducted environmental surveillance to detect avian influenza viruses circulating at live poultry markets (LPMs) and poultry farms in Guangxi Autonomous Region, China, where near the China-Vietnam border. From November through April 2017-2018 and 2018-2019, we collected environmental samples from 14 LPMs, 4 poultry farms, and 5 households with backyard poultry in two counties of Guangxi and tested for avian influenza A, H5, H7, and H9 by real-time reverse transcription-polymerase chain reaction (rRT-PCR). In addition, we conducted four cross-sectional questionnaire surveys among stall owners on biosecurity practices in LPMs of two study sites. Among 16,713 environmental specimens collected and tested, the median weekly positive rate for avian influenza A was 53.6% (range = 33.5% - 66.0%), including 25.2% for H9, 4.9% for H5, and 21.2% for other avian influenza viruses A subtypes, whereas a total of two H7 positive samples were detected. Among the 189 LPM stalls investigated, most stall owners (73.0%) sold chickens and ducks. Therefore, continued surveillance of the avian influenza virus is necessary for detecting and responding to emerging trends in avian influenza virus epidemiology.
Collapse
Affiliation(s)
- Tao Chen
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yi Tan
- Guangxi Autonomous Regional Center for Disease Control and Prevention, Nanning 530028, China
| | - Ying Song
- Centers for Disease Control and Prevention, Atlanta 30329, USA
| | - Guangwu Wei
- Chongzuo City Center for Disease Control and Prevention, Chongzuo 532299, China
| | - Zhiqiang Li
- Pingxiang Center for Disease Control and Prevention, Pingxiang 532699, China
| | - Ximing Wang
- Longzhou Center for Disease Control and Prevention, Chongzuo 532499, China
| | - Jing Yang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | | | - Minmei Chen
- Guangxi Autonomous Regional Center for Disease Control and Prevention, Nanning 530028, China
| | - Deping Liu
- Chongzuo City Center for Disease Control and Prevention, Chongzuo 532299, China
| | - Tao Huang
- Chongzuo City Center for Disease Control and Prevention, Chongzuo 532299, China
| | - Ming Jiao
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Weitao He
- Guangxi Autonomous Regional Center for Disease Control and Prevention, Nanning 530028, China
| | - Xiuchang Zhao
- Chongzuo City Center for Disease Control and Prevention, Chongzuo 532299, China
| | | | - James C. Kile
- Centers for Disease Control and Prevention, Atlanta 30329, USA
| | - Suizan Zhou
- Centers for Disease Control and Prevention, Atlanta 30329, USA
| | - Ran Zhang
- Centers for Disease Control and Prevention, Atlanta 30329, USA
| | - Xiaoxu Zeng
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qian Guo
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Dayan Wang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
23
|
Cui B, Yip CSC, Chen X, Xu MY, Ke J, Tian Y. Phasing out live poultry market trading policy in China: characteristics of chicken consumption, decision-making behavior, and consumer cluster analysis. J Verbrauch Lebensm 2022; 18:71-81. [PMID: 36568908 PMCID: PMC9760183 DOI: 10.1007/s00003-022-01411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 11/06/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
With the emergence of avian influenza viruses, many Chinese cities periodically close the live poultry markets to restrict the trade of live chicken. This study investigated customers' decision-making clusters and consumption preferences. Data from 1108 participants were collected in May 2021 in the Jiangsu province using a mixed sampling method. Eight decision-making behaviors were identified using the Exploratory Factor Analysis. Five consumer clusters were identified using K-Means Cluster Analysis. Chi-square tests and pairwise comparisons of multiple sample rates were used to identify the differences in consumption preferences between the consumer clusters. The results show that only the concern of risking an avian influenza virus infection might not effectively change consumer preferences towards live chicken and patronage of wet markets and farms. Product quality, consumer habits and loyalty, limited knowledge and technology, and leisure elements in visiting farms are hindering changes in consumer preferences. Effective policies are needed to help customers to overcome the barriers of buying chilled and frozen chicken. Supplementary Information The online version contains supplementary material available at 10.1007/s00003-022-01411-y.
Collapse
Affiliation(s)
- Bin Cui
- Business School of Yangzhou University, Yangzhou, 225001 Jiangsu Province China
| | - Cynthia Sau Chun Yip
- Department of Business Administration, Chu Hai College of Higher Education, 80, Castle Peak Road, Tuen Mun, N.T. Hong Kong China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225001 Jiangsu Province China
| | - Mei Yin Xu
- Business School of Yangzhou University, Yangzhou, 225001 Jiangsu Province China
| | - Jun Ke
- Business School of Yangzhou University, Yangzhou, 225001 Jiangsu Province China
| | - Yi Tian
- Business School of Yangzhou University, Yangzhou, 225001 Jiangsu Province China
| |
Collapse
|
24
|
Jiang H, Liu F, Chan TC, Yin J, Huang R, Shen L, Tu S, Kang L, Liu W, Zhao N, Zhang D, Xu W, Li W, Liu S, Huang C. Comparison of clinical characteristics between COVID-19 and H7N9 fatal cases: An observational study. Front Public Health 2022; 10:1047362. [PMID: 36504959 PMCID: PMC9729836 DOI: 10.3389/fpubh.2022.1047362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Objective The outbreak of COVID-19 in 2020 is reminiscent of the H7N9 outbreak in 2013, which poses a huge threat to human health. We aim to compare clinical features and survival factors in fatal cases of COVID-19 and H7N9. Methods Data on confirmed COVID-19 and H7N9 fatal cases identified in mainland China were analyzed to compare demographic characteristics and clinical severity. Survival curves were estimated by the Kaplan-Meier method and compared using log-rank tests and a restricted mean survival time model. A Cox regression model was used to identify survival factors in fatal cases of COVID-19 and H7N9. Results Similar demographic characteristics were observed in fatal cases of COVID-19 and H7N9. The proportion of fatal cases of H7N9 receiving antibiotics, antiviral drugs, and oxygen treatment was higher than that of COVID-19. The potential protective factors for fatal COVID-19 cases were receiving antibiotics (HR: 0.37, 95% CI: 0.22-0.61), oxygen treatment (HR: 0.66, 95% CI: 0.44-0.99), and corticosteroids (HR: 0.46, 95% CI: 0.35-0.62). In contrast, antiviral drugs (HR: 0.21, 95% CI: 0.08-0.56) and corticosteroids (HR: 0.45, 95% CI: 0.29-0.69) were the protective factors for H7N9 fatal cases. Conclusion The proportion of males, those having one or more underlying medical condition, and older age was high in COVID-19 and H7N9 fatal cases. Offering antibiotics, oxygen treatment, and corticosteroids to COVID-19 cases extended the survival time. Continued global surveillance remains an essential component of pandemic preparedness.
Collapse
Affiliation(s)
- Hui Jiang
- Beijing Chest Hospital, Capital Medical University, Beijing, China,Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Fangchao Liu
- Beijing Chest Hospital, Capital Medical University, Beijing, China,Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ta-Chien Chan
- Research Center for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan
| | - Jinfeng Yin
- Beijing Chest Hospital, Capital Medical University, Beijing, China,Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ruowen Huang
- Beijing Normal University School of Mathematical Sciences, Beijing, China
| | - Li Shen
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengjin Tu
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kang
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Liu
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Zhao
- School of Ecology and Environment, Anhui Normal University, Wuhu, China
| | - Di Zhang
- Beijing Chest Hospital, Capital Medical University, Beijing, China,Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Wangli Xu
- Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, China
| | - Weimin Li
- Beijing Chest Hospital, Capital Medical University, Beijing, China,Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shelan Liu
- Department of Infectious Diseases, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang, China,*Correspondence: Shelan Liu
| | - Chaolin Huang
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Chaolin Huang
| |
Collapse
|
25
|
Bai T, Chen Y, Beck S, Stanelle-Bertram S, Mounogou NK, Chen T, Dong J, Schneider B, Jia T, Yang J, Wang L, Meinhardt A, Zapf A, Kreienbrock L, Wang D, Shu Y, Gabriel G. H7N9 avian influenza virus infection in men is associated with testosterone depletion. Nat Commun 2022; 13:6936. [PMID: 36376288 PMCID: PMC9662777 DOI: 10.1038/s41467-022-34500-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Human infections with H7N9 avian influenza A virus that emerged in East China in 2013 and caused high morbidity rates were more frequently detected in men than in women over the last five epidemic waves. However, molecular markers associated with poor disease outcomes in men are still unknown. In this study, we systematically analysed sex hormone and cytokine levels in males and females with laboratory-confirmed H7N9 influenza in comparison to H7N9-negative control groups as well as laboratory-confirmed seasonal H1N1/H3N2 influenza cases (n = 369). Multivariable analyses reveal that H7N9-infected men present with considerably reduced testosterone levels associated with a poor outcome compared to non-infected controls. Regression analyses reveal that testosterone levels in H7N9-infected men are negatively associated with the levels of several pro-inflammatory cytokines, such as IL-6 and IL-15. To assess whether there is a causal relationship between low testosterone levels and avian H7N9 influenza infection, we used a mouse model. In male mice, we show that respiratory H7N9 infection leads to a high viral load and inflammatory cytokine response in the testes as well as a reduction in pre-infection plasma testosterone levels. Collectively, these findings suggest that monitoring sex hormone levels may support individualized management for patients with avian influenza infections.
Collapse
Affiliation(s)
- Tian Bai
- Viral Zoonoses-One Health, Leibniz Institute for Virology (LIV), Hamburg, Germany ,grid.198530.60000 0000 8803 2373Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206 P.R. China
| | - Yongkun Chen
- grid.12981.330000 0001 2360 039XSchool of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 510275 P.R. China ,grid.12981.330000 0001 2360 039XSchool of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107 P.R. China
| | - Sebastian Beck
- Viral Zoonoses-One Health, Leibniz Institute for Virology (LIV), Hamburg, Germany
| | | | | | - Tao Chen
- grid.198530.60000 0000 8803 2373Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206 P.R. China
| | - Jie Dong
- grid.198530.60000 0000 8803 2373Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206 P.R. China
| | - Bettina Schneider
- grid.412970.90000 0001 0126 6191Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Tingting Jia
- grid.12981.330000 0001 2360 039XSchool of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 510275 P.R. China ,grid.12981.330000 0001 2360 039XSchool of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107 P.R. China
| | - Jing Yang
- grid.198530.60000 0000 8803 2373Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206 P.R. China
| | - Lijie Wang
- grid.198530.60000 0000 8803 2373Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206 P.R. China
| | - Andreas Meinhardt
- grid.8664.c0000 0001 2165 8627Institute for Anatomy and Cell Biology, Justus-Liebig University of Gießen, Gießen, Germany
| | - Antonia Zapf
- grid.13648.380000 0001 2180 3484Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lothar Kreienbrock
- grid.412970.90000 0001 0126 6191Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Dayan Wang
- grid.198530.60000 0000 8803 2373Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206 P.R. China
| | - Yuelong Shu
- grid.198530.60000 0000 8803 2373Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206 P.R. China ,grid.12981.330000 0001 2360 039XSchool of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 510275 P.R. China ,grid.12981.330000 0001 2360 039XSchool of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107 P.R. China ,grid.506261.60000 0001 0706 7839Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Gülsah Gabriel
- Viral Zoonoses-One Health, Leibniz Institute for Virology (LIV), Hamburg, Germany ,grid.412970.90000 0001 0126 6191Institute of Virology, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
26
|
Yang Y, Zhao R, Wang Y, Song D, Jiang B, Guo X, Liu W, Long F, Song H, Hao R. Rapid and universal detection of SARS-CoV-2 and influenza A virus using a reusable dual-channel optic fiber immunosensor. J Med Virol 2022; 94:5325-5335. [PMID: 35859097 PMCID: PMC9349508 DOI: 10.1002/jmv.28015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 12/15/2022]
Abstract
Establishment of rapid on-site detection technology capable of concurrently detecting SARS-Cov-2 and influenza A virus is urgent to effectively control the epidemic from these two types of important viruses. Accordingly, we developed a reusable dual-channel optical fiber immunosensor (DOFIS), which utilized the evanescent wave-sensing properties and tandem detection mode of the mobile phase, effectively accelerating the detection process such that it can be completed within 10 min. It could detect the nucleoprotein of multiple influenza A viruses (H1N1, H3N2, and H7N9), as well as the spike proteins of the SARS-CoV-2 Omicron and Delta variants, and could respond to 20 TCID50 /ml SARS-CoV-2 pseudovirus and 100 TCID50 /ml influenza A (A/PR/8/H1N1), presenting lower limit of detection and wider linear range than enzyme-linked immunosorbent assay. The detection results on 26 clinical samples for SARS-CoV-2 demonstrated its specificity (100%) and sensitivity (94%), much higher than the sensitivity of commercial colloidal gold test strip (35%). Particularly, DOFIS might be reused more than 80 times, showing not only cost-saving but also potential in real-time monitoring of the pathogenic viruses. Therefore, this newly-developed DOFIS platform is low cost, simple to operate, and has broad spectrum detection capabilities for SARS-CoV-2 mutations and multiple influenza A strains. It may prove suitable for deployment as a rapid on-site screening and surveillance technique for infectious disease.
Collapse
Affiliation(s)
- Yi Yang
- Chinese PLA Center for Disease Control and PreventionBeijingChina
| | - Rongtao Zhao
- Chinese PLA Center for Disease Control and PreventionBeijingChina
| | - Yule Wang
- Chinese PLA Center for Disease Control and PreventionBeijingChina
| | - Dan Song
- School of Environment and Natural ResourcesRenmin University of ChinaBeijingChina
| | - Bo Jiang
- Department of Toxicology and Sanitary Chemistry, School of Public HealthCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Environmental ToxicologyCapital Medical UniversityBeijingChina
| | - Xudong Guo
- Chinese PLA Center for Disease Control and PreventionBeijingChina
| | - Wanying Liu
- Chinese PLA Center for Disease Control and PreventionBeijingChina
| | - Feng Long
- School of Environment and Natural ResourcesRenmin University of ChinaBeijingChina
| | - Hongbin Song
- Chinese PLA Center for Disease Control and PreventionBeijingChina
| | - Rongzhang Hao
- Chinese PLA Center for Disease Control and PreventionBeijingChina,Department of Toxicology and Sanitary Chemistry, School of Public HealthCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Environmental ToxicologyCapital Medical UniversityBeijingChina
| |
Collapse
|
27
|
Shi Z, Wei L, Wang P, Wang S, Liu Z, Jiang Y, Wang J. Spatio-temporal spread and evolution of influenza A (H7N9) viruses. Front Microbiol 2022; 13:1002522. [PMID: 36187942 PMCID: PMC9520483 DOI: 10.3389/fmicb.2022.1002522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The influenza A (H7N9) virus has been seriously concerned for its potential to cause an influenza pandemic. To understand the spread and evolution process of the virus, a spatial and temporal Bayesian evolutionary analysis was conducted on 2,052 H7N9 viruses isolated during 2013 and 2018. It revealed that the H7N9 virus was probably emerged in a border area of Anhui Province in August 2012, approximately 6 months earlier than the first human case reported. Two major epicenters had been developed in the Yangtze River Delta and Peral River Delta regions by the end of 2013, and from where the viruses have also spread to other regions at an average speed of 6.57 km/d. At least 24 genotypes showing have been developed and each of them showed a distinct spatio-temporal distribution pattern. Furthermore, A random forest algorithm-based model has been developed to predict the occurrence risk of H7N9 virus. The model has a high overall forecasting precision (> 97%) and the monthly H7N9 occurrence risk for each county of China was predicted. These findings provide new insights for a comprehensive understanding of the origin, evolution, and occurrence risk of H7N9 virus. Moreover, our study also lays a theoretical basis for conducting risk-based surveillance and prevention of the disease.
Collapse
|
28
|
Ding L, Chen Y, Su N, Xu X, Yin J, Qiu J, Wang J, Zheng D. Comparison of acute respiratory distress syndrome in patients with COVID-19 and influenza A (H7N9) virus infection. Int J Infect Dis 2022; 122:593-598. [PMID: 35793755 PMCID: PMC9250702 DOI: 10.1016/j.ijid.2022.06.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES We aimed to compared the clinical features of acute respiratory distress syndrome (ARDS) induced by COVID-19 and H7N9 virus infections. METHODS Clinical data of 100 patients with COVID-19 and 46 patients with H7N9 were retrospectively analyzed. RESULTS Elevated inflammatory indices and coagulation disorders were more common in COVID-19-ARDS group than in the H7N9-ARDS group. The median interval from illness onset to ARDS development was shorter in H7N9-ARDS. The PaO2/FiO2 level was lower in H7N9-ARDS, whereas the Sepsis-related Organ Failure Assessment score was higher in COVID-19-ARDS. The proportion of patients with disseminated intravascular coagulation and liver injury in COVID-19-ARDS and H7N9-ARDS was 45.5% versus 3.1% and 28.8% versus 50%, respectively (P <0.05). The mean interval from illness onset to death was shorter in H7N9-ARDS. A total of 59.1% patients with H7N9-ARDS died of refractory hypoxemia compared with 28.9% with COVID-19-ARDS (P = 0.014). Patients with COVID-19-ARDS were more likely to die of septic shock and multiple organ dysfunction compared with H7N9-ARDS (71.2% vs 36.4%, P = 0.005). CONCLUSION Patients with H7N9 were more susceptible to develop severe ARDS and showed a more acute disease course. COVID-19-ARDS was associated with severe inflammatory response and coagulation dysfunction, whereas liver injury was more common in H7N9-ARDS. The main causes of death between patients with the two diseases were different.
Collapse
Affiliation(s)
- Ling Ding
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Yikun Chen
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Nan Su
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xizhen Xu
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingping Yin
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jun Qiu
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jiajia Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China,Corresponding author: Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Address: Pinghai Road No. 899, Suzhou 215000, China, Phone: +86-51267972108; fax: +86-51267972108
| | - Dong Zheng
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China,Corresponding author: Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Address: Pinghai Road No. 899, Suzhou 215000, China, Phone: +86-51267973327; fax: +86-51267973327
| |
Collapse
|
29
|
Zhu C, Zhang M, Fu W, He Y, Yang Y, Zhang L, Yuan S, Jiang L, Xu J, Zhang X. Comparison of H7N9 and H9N2 influenza infections in mouse model unravels the importance of early innate immune response in host protection. Front Cell Infect Microbiol 2022; 12:941078. [PMID: 36034707 PMCID: PMC9414078 DOI: 10.3389/fcimb.2022.941078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 12/03/2022] Open
Abstract
The outcome of infection with influenza A virus is determined by a complex virus-host interaction. A new H7N9 virus of avian origin crossed the species barrier to infect humans, causing high mortality and emerged as a potential pandemic threat. The mechanisms underlying the virulence and pathogenicity of H7N9 virus remains elusive. H7N9 virus originated from a genetic assortment that involved the avian H9N2 virus, which was the donor of the six internal genes. Unlike the H7N9 virus, the H9N2 virus caused only mild phenotype in infected mice. In this study, we used the mouse infection model to dissect the difference in the host response between the H7N9 and H9N2 viruses. Through analyzing transcriptomics of infected lungs, we surprisingly found that the H9N2 infection elicited an earlier induction of innate immunity than H7N9 infection. This finding was further corroborated by an immunohistochemical study demonstrating earlier recruitment of macrophage to the H9N2-infected lung than the H7N9-infected lung, which could occur as early as 6 hours post infection. In contrast, H7N9 infection was characterized by a late, strong lung CD8+ T cell response that is more robust than H9N2 infection. The different pattern of immune response may underlie more severe lung pathology caused by H7N9 infection compared to H9N2 infection. Finally, we could show that co-infection of the H9N2 virus protected mice from the challenge of both H7N9 and PR8 viruses, thereby strengthening the importance of the induction of an early innate immunity in the host’s defense against influenza infection. Collectively, our study unraveled a previously unidentified difference in host response between H7N9 and H9N2 infection and shed new insight on how virus-host interaction shapes the in vivo outcome of influenza infection.
Collapse
Affiliation(s)
- Cuisong Zhu
- Department of Scientific Research, Shanghai Public Health Clinical Center, Shanghai, China
- Department of Pathology, Institute of Clinical Science and Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Miaomiao Zhang
- Department of Scientific Research, Shanghai Public Health Clinical Center, Shanghai, China
| | - Weihui Fu
- Department of Scientific Research, Shanghai Public Health Clinical Center, Shanghai, China
| | - Yongquan He
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine,Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Linxia Zhang
- Department of Scientific Research, Shanghai Public Health Clinical Center, Shanghai, China
| | - Songhua Yuan
- Department of Scientific Research, Shanghai Public Health Clinical Center, Shanghai, China
| | - Lang Jiang
- Department of Scientific Research, Shanghai Public Health Clinical Center, Shanghai, China
| | - Jianqing Xu
- Department of Scientific Research, Shanghai Public Health Clinical Center, Shanghai, China
- Department of Pathology, Institute of Clinical Science and Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
- *Correspondence: Xiaoyan Zhang, ; Jianqing Xu,
| | - Xiaoyan Zhang
- Department of Scientific Research, Shanghai Public Health Clinical Center, Shanghai, China
- Department of Pathology, Institute of Clinical Science and Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
- *Correspondence: Xiaoyan Zhang, ; Jianqing Xu,
| |
Collapse
|
30
|
de Bruin ACM, Funk M, Spronken MI, Gultyaev AP, Fouchier RAM, Richard M. Hemagglutinin Subtype Specificity and Mechanisms of Highly Pathogenic Avian Influenza Virus Genesis. Viruses 2022; 14:1566. [PMID: 35891546 PMCID: PMC9321182 DOI: 10.3390/v14071566] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Highly Pathogenic Avian Influenza Viruses (HPAIVs) arise from low pathogenic precursors following spillover from wild waterfowl into poultry populations. The main virulence determinant of HPAIVs is the presence of a multi-basic cleavage site (MBCS) in the hemagglutinin (HA) glycoprotein. The MBCS allows for HA cleavage and, consequently, activation by ubiquitous proteases, which results in systemic dissemination in terrestrial poultry. Since 1959, 51 independent MBCS acquisition events have been documented, virtually all in HA from the H5 and H7 subtypes. In the present article, data from natural LPAIV to HPAIV conversions and experimental in vitro and in vivo studies were reviewed in order to compile recent advances in understanding HA cleavage efficiency, protease usage, and MBCS acquisition mechanisms. Finally, recent hypotheses that might explain the unique predisposition of the H5 and H7 HA sequences to obtain an MBCS in nature are discussed.
Collapse
Affiliation(s)
- Anja C. M. de Bruin
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Mathis Funk
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Monique I. Spronken
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Alexander P. Gultyaev
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
- Group Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science (LIACS), Leiden University, 2300 RA Leiden, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| |
Collapse
|
31
|
Glycine Nano-Selenium Enhances Immunoglobulin and Cytokine Production in Mice Immunized with H9N2 Avian Influenza Virus Vaccine. Int J Mol Sci 2022; 23:ijms23147914. [PMID: 35887267 PMCID: PMC9317336 DOI: 10.3390/ijms23147914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
This study was performed to investigate the immune enhancement effect of glycine nano-selenium, a microelement on H9N2 avian influenza virus vaccine (H9N2 AIV vaccine) in mice. Fifty (50) Specific Pathogen Free Kunming mice aged 4−6 weeks (18−20 g Body weight) were randomly divided into five groups: control normal group, which received no immunization + 0.5 mL 0.9% normal saline, positive control group, which received H9N2 AIV vaccine + 0.5 mL 0.9% normal saline, 0.25 mg/kg selenium group, which received H9N2 AIV vaccine + 0.5 mL 0.25 mg/kg selenium solution, 0.5 mg/kg selenium group, which received H9N2 AIV vaccine + 0.5 mL 0.5 mg/kg selenium solution, and 1 mg/kg selenium group, which received H9N2 AIV vaccine + 0.5 mL 1 mg/kg selenium solution. Hematoxylin and eosin staining, enzyme linked immunosorbent assay (ELISA), and quantitative real time polymerase chain reaction (qRT-PCR) methods were used to investigate the pathological changes, immunoglobulin levels, and cytokine gene expressions in this study. The results showed that all tested doses (0.25 mg/kg, 0.5 mg/kg and 1.00 mg/kg) of glycine nano-selenium did not lead to poisoning in mice. In addition, when compared to the positive control group, glycine nano-selenium increased the immunoglobin indexes (IgA, IgG, IgM and AIV-H9 IgG in serum) as well as the mRNA levels of IL-1β, IL-6 and INF-γ in the liver, lungs, and spleen (p < 0.05). In summary, glycine nano-selenium could enhance the efficacy of avian influenza vaccine.
Collapse
|
32
|
Moise L, Meyers LM, Jang H, Grizotte-Lake M, Boyle CM, McGonnigal B, Ge P, Ross TM, De Groot AS. Novel H7N9 influenza immunogen design enhances mobilization of seasonal influenza T cell memory in H3N2 pre-immune mice. Hum Vaccin Immunother 2022; 18:2082191. [PMID: 35704783 DOI: 10.1080/21645515.2022.2082191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Strategies that improve influenza vaccine immunogenicity are critical for the development of vaccines for pandemic preparedness. Hemagglutinin (HA)-specific CD4+ T cell epitopes support protective B cell responses against seasonal influenza. However, in the case of avian H7N9, which poses a pandemic threat, HA elicits only weak neutralizing antibody responses in infection and vaccination without adjuvant. We hypothesized that an immune-engineered H7N9 HA incorporating a broadly reactive H3N2 HA-specific memory CD4+ T cell epitope that replaces a regulatory T cell-inducing epitope at the corresponding position in H7N9 HA could harness preexisting influenza T cell immunity to increase CD4+ T cells that are needed for protective antibody development. We designed and produced a virus-like particle (VLP) vaccine that carries the epitope augmented H7N9 HA (OPT1) and immunized HLA-DR3 transgenic mice with established H3N2 immunity. OPT1-VLPs stimulated higher stem cell, central, and effector memory CD4+ T cell levels over wild type VLP immunization. In addition, activated, IL-21-producing follicular helper T cell frequencies were enhanced. This novel immunogen design strategy illustrates that site-specific modifications aimed to augment T cell epitope content enhance CD4+ T cell responses among critical subpopulations capable of aiding protective immune responses upon antigen re-encounter and that mobilization of immune memory can be used to overcome the poor immunogenicity of avian influenza viruses.
Collapse
Affiliation(s)
- Leonard Moise
- EpiVax, Inc., Providence, RI, USA.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | | | - Hyesun Jang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | | | | | | | - Pan Ge
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA.,Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Anne S De Groot
- EpiVax, Inc., Providence, RI, USA.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| |
Collapse
|
33
|
Yan Y, Zheng R, Liu H, Wu Z, Hao M, Ma L, Wang L, Gao J, Yang Y, Liu D, Lu X. Identifying Japanese Encephalitis Virus Using Metatranscriptomic Sequencing, Xinjiang Province, China. Emerg Infect Dis 2022; 28:1298-1300. [PMID: 35608868 PMCID: PMC9155892 DOI: 10.3201/eid2806.210616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The treat of infectious disease epidemics has increased the critical need for continuous broad-ranging surveillance of pathogens with outbreak potential. Using metatranscriptomic sequencing of blood samples, we identified several cases of Japanese encephalitis virus infection from Xinjiang Uyghur Autonomous Region, China. This discovery highlights the risk for known viral diseases even in nonendemic areas.
Collapse
|
34
|
Chicken meat taste preferences, perceived risk of human infection with avian influenza virus, and self-reported chicken meat consumption in China. Prev Vet Med 2022; 203:105658. [DOI: 10.1016/j.prevetmed.2022.105658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022]
|
35
|
Gu J, Yan Y, Zeng Z, Wang W, Gao R, Hu J, Hu S, Wang X, Gu M, Liu X. Characterization of two chicken origin highly pathogenic H7N9 viruses isolated in northern China. Vet Microbiol 2022; 268:109394. [PMID: 35316713 DOI: 10.1016/j.vetmic.2022.109394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 01/08/2023]
Abstract
Since the national vaccination program was implemented with the H5/H7 bivalent vaccine in poultry in September 2017, the prevalence of H7N9 avian influenza viruses (AIVs) has been controlled effectively in China. However, highly pathogenic H7N9 viruses still exist, causing sporadic outbreaks especially in some regions of northern China. During our routine surveillance in poultry in 2020, we isolated two strains of H7N9 subtype AIV from breeder layer farms in northern China. We found that these two chicken-origin H7N9 isolates were both highly pathogenic (HP) with a four-amino-acid (KRTA) insertion and an I326V mutation (H3 numbering) in the cleavage site of HA to make the motif PEVPKRKRTAR↓GLF. Molecular markers associated with antigenic drift and enhanced pathogenicity in mammals and interspecies transmission were detected in both isolates. Remarkably, both strains gained the F102V and N157D mutations in their HA genes, which have never been reported before. Solid-phase direct binding assay showed that these two isolates both had dual-receptor binding characteristics, while thermal and acid stability assays indicated that they were relatively stable in high-temperature or acidic conditions. In addition, the animal experiments demonstrated that both strains were highly pathogenic to chickens but low pathogenic to mice. These results suggested that the evolution of H7N9 subtype AIV is still continuing, and they pose a potential threat to poultry and public health. Thus, attention should be paid to the importance of continual surveillance of the H7N9 AIVs.
Collapse
Affiliation(s)
- Jinyuan Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yayao Yan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zixiong Zeng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenli Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|
36
|
Chen K, Wu X, Wang Q, Wang Y, Zhang H, Zhao S, Li C, Hu Z, Yang Z, Li L. The protective effects of a D-tetra-peptide hydrogel adjuvant vaccine against H7N9 influenza virus in mice. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Hu Z, Zhang Y, Hu J, Hu S, Liu X. Characterization of antibody response to an epitope spanning the haemagglutinin cleavage site of H7N9 subtype avian influenza virus for differentiation of infected and vaccinated chickens. Avian Pathol 2022; 51:330-338. [PMID: 35297704 DOI: 10.1080/03079457.2022.2054308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractH7N9 subtype avian influenza virus (AIV) is endemic in poultry in China and vaccination is used as the primary strategy for disease control. However, monitoring H7N9 virus infection in vaccinated poultry by current serological tests is difficult because vaccine-induced antibodies are not readily distinguishable from those induced by field viruses. Therefore, a test that differentiates infected and vaccinated animals (DIVA) is critical for H7N9 virus monitoring. However, no DIVA test is available for H7N9 subtype AIV. In this study, the potential of an epitope (the peptide 11) spanning the haemagglutinin (HA) cleavage site as a DIVA antigen for H7N9 virus was investigated. The results showed that the H7N9 virus infection sera and post-challenge sera obtained from H7N9 vaccinated chickens reacted with the peptide 11, whereas the sera elicited by inactivated and viral-vectored H7N9 vaccines had no reactivity with this peptide. The peptide 11 was further split in two peptides at the HA cleavage site, and the truncated peptides failed to discriminate H7N9 infected and vaccinated chickens. The peptide 11 locates in a prominent surface loop in the HA protein and contains highly conserved residues in the HA cleavage site among the H7N9 subtype and different subtypes of group 1 and 2, suggesting the potential of this peptide as a broad DIVA antigen for influenza viruses. Our study highlighted that the peptide 11 is a promising DIVA antigen and serological tests based on this peptide may serve as useful tools for monitoring H7N9 virus infection in vaccinated poultry in the field.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yanyan Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
38
|
Coinfection of Chickens with H9N2 and H7N9 Avian Influenza Viruses Leads to Emergence of Reassortant H9N9 Virus with Increased Fitness for Poultry and a Zoonotic Potential. J Virol 2022; 96:e0185621. [PMID: 35019727 PMCID: PMC8906417 DOI: 10.1128/jvi.01856-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An H7N9 low-pathogenicity avian influenza virus (LPAIV) emerged in 2013 through genetic reassortment between H9N2 and other LPAIVs circulating in birds in China. This virus causes inapparent clinical disease in chickens, but zoonotic transmission results in severe and fatal disease in humans. To examine a natural reassortment scenario between H7N9 and G1 lineage H9N2 viruses predominant in the Indian subcontinent, we performed an experimental coinfection of chickens with A/Anhui/1/2013/H7N9 (Anhui/13) virus and A/Chicken/Pakistan/UDL-01/2008/H9N2 (UDL/08) virus. Plaque purification and genotyping of the reassortant viruses shed via the oropharynx of contact chickens showed H9N2 and H9N9 as predominant subtypes. The reassortant viruses shed by contact chickens also showed selective enrichment of polymerase genes from H9N2 virus. The viable "6+2" reassortant H9N9 (having nucleoprotein [NP] and neuraminidase [NA] from H7N9 and the remaining genes from H9N2) was successfully shed from the oropharynx of contact chickens, plus it showed an increased replication rate in human A549 cells and a significantly higher receptor binding to α2,6 and α2,3 sialoglycans compared to H9N2. The reassortant H9N9 virus also had a lower fusion pH, replicated in directly infected ferrets at similar levels compared to H7N9 and transmitted via direct contact. Ferrets exposed to H9N9 via aerosol contact were also found to be seropositive, compared to H7N9 aerosol contact ferrets. To the best of our knowledge, this is the first study demonstrating that cocirculation of H7N9 and G1 lineage H9N2 viruses could represent a threat for the generation of novel reassortant H9N9 viruses with greater virulence in poultry and a zoonotic potential. IMPORTANCE We evaluated the consequences of reassortment between the H7N9 and the contemporary H9N2 viruses of the G1 lineage that are enzootic in poultry across the Indian subcontinent and the Middle East. Coinfection of chickens with these viruses resulted in the emergence of novel reassortant H9N9 viruses with genes derived from both H9N2 and H7N9 viruses. The "6+2" reassortant H9N9 (having NP and NA from H7N9) virus was shed from contact chickens in a significantly higher proportion compared to most of the reassortant viruses, showed significantly increased replication fitness in human A549 cells, receptor binding toward human (α2,6) and avian (α2,3) sialic acid receptor analogues, and the potential to transmit via contact among ferrets. This study demonstrated the ability of viruses that already exist in nature to exchange genetic material, highlighting the potential emergence of viruses from these subtypes with zoonotic potential.
Collapse
|
39
|
A broadly neutralizing human monoclonal antibody against the hemagglutinin of avian influenza virus H7N9. Chin Med J (Engl) 2022; 135:799-805. [PMID: 35671181 PMCID: PMC9276153 DOI: 10.1097/cm9.0000000000002001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: The new emerging avian influenza A H7N9 virus, causing severe human infection with a mortality rate of around 41%. This study aims to provide a novel treatment option for the prevention and control of H7N9. Methods: H7 hemagglutinin (HA)-specific B cells were isolated from peripheral blood plasma cells of the patients previously infected by H7N9 in Jiangsu Province, China. The human monoclonal antibodies (mAbs) were generated by amplification and cloning of these HA-specific B cells. First, all human mAbs were screened for binding activity by enzyme-linked immunosorbent assay. Then, those mAbs, exhibiting potent affinity to recognize H7 HAs were further evaluated by hemagglutination-inhibiting (HAI) and microneutralization in vitro assays. Finally, the lead mAb candidate was selected and tested against the lethal challenge of the H7N9 virus using murine models. Results: The mAb 6-137 was able to recognize a panel of H7 HAs with high affinity but not HA of other subtypes, including H1N1 and H3N2. The mAb 6-137 can efficiently inhibit the HA activity in the inactivated H7N9 virus and neutralize 100 tissue culture infectious dose 50 (TCID50) of H7N9 virus (influenza A/Nanjing/1/2013) in vitro, with neutralizing activity as low as 78 ng/mL. In addition, the mAb 6-137 protected the mice against the lethal challenge of H7N9 prophylactically and therapeutically. Conclusion: The mAb 6-137 could be an effective antibody as a prophylactic or therapeutic biological treatment for the H7N9 exposure or infection.
Collapse
|
40
|
Tang H, Kang J, Shen C, Wang Y, Robertson ID, Cai C, Edwards J, Huang B, Bruce M. Benefit-cost analysis of a H7N9 vaccination program in poultry in Guangxi, China. Prev Vet Med 2022; 200:105580. [PMID: 35032782 DOI: 10.1016/j.prevetmed.2022.105580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
China launched a H7N9 vaccination program in poultry, starting from the Guangxi and Guangdong provinces in July 2017, followed by other provinces in September 2017, as a response to a steep increase of H7N9 influenza human infections from September 2016. Since then, H5-H7 bivalent vaccine has been used in the nationwide avian influenza compulsory vaccination program to replace the existing H5N1 vaccine. However, the economic returns of the H7N9 vaccination program in China have never been adequately assessed. This study was designed to evaluate the economic value of the H7N9 vaccination program in Guangxi by assessing the benefits and costs of the program compared to not vaccinating against H7N9. A benefit-cost analysis (BCA) was undertaken to evaluate the adoption of a vaccination program against H7N9 in each of three consecutive years from July 2017 to June 2020 with the baseline scenario (the absence of H7N9 vaccination in the 12-month period July 2016 to June 2017). Both animal and public health perspectives were included in the BCA framework and took account of both the private and public sectors. Benefit-Cost Ratio (BCR) of the three-year H7N9 vaccination program was 18.6 (90 %PI: 15.4; 21.8), and total Net Present Values reached to CNY 1.63 billion (90 %PI: 1.37 billion; 1.89 billion). The extra revenue generated by the yellow broiler industry comprised 93.8 % of the total benefits after adoption of H7N9 vaccination program in Guangxi. While cost-savings in public health and animal health expenditure avoided were 3.6 % and 2.6 %, respectively. Total costs arising from adoption of the revised vaccination program over the three years were CNY 12.46 million (90 %PI: 11.49 million; 14.14 million), CNY 34.87 million (90 %PI: 31.88 million; 40.06 million), and CNY 44.28 million (90 %PI: 39.66 million; 52.27 million), respectively. Sensitivity analysis found the yellow broiler wholesale prices contributed 97.7 % of the variance of the total NPV of three vaccination years. The study results demonstrate the significant economic advantage of implementing a vaccination program against H7N9 in Guangxi. It also offers a new set of evidence to China's H7N9 vaccination policy and debates around economic values of conducting routine avian influenza vaccination.
Collapse
Affiliation(s)
- Hao Tang
- China Animal Health and Epidemiology Centre, Qingdao, China; School of Veterinary Medicine, Murdoch University, Perth, Australia.
| | - Jingli Kang
- China Animal Health and Epidemiology Centre, Qingdao, China
| | - Chaojian Shen
- China Animal Health and Epidemiology Centre, Qingdao, China
| | - Youming Wang
- China Animal Health and Epidemiology Centre, Qingdao, China
| | - Ian D Robertson
- School of Veterinary Medicine, Murdoch University, Perth, Australia; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Chang Cai
- China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - John Edwards
- China Animal Health and Epidemiology Centre, Qingdao, China; School of Veterinary Medicine, Murdoch University, Perth, Australia
| | - Baoxu Huang
- China Animal Health and Epidemiology Centre, Qingdao, China
| | - Mieghan Bruce
- School of Veterinary Medicine, Murdoch University, Perth, Australia; Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Australia.
| |
Collapse
|
41
|
Ma P, Tang X, Zhang L, Wang X, Wang W, Zhang X, Wang S, Zhou N. Influenza A and B outbreaks differed in their associations with climate conditions in Shenzhen, China. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:163-173. [PMID: 34693474 PMCID: PMC8542503 DOI: 10.1007/s00484-021-02204-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 05/20/2023]
Abstract
Under the variant climate conditions in the transitional regions between tropics and subtropics, the impacts of climate factors on influenza subtypes have rarely been evaluated. With the available influenza A (Flu-A) and influenza B (Flu-B) outbreak data in Shenzhen, China, which is an excellent example of a transitional marine climate, the associations of multiple climate variables with these outbreaks were explored in this study. Daily laboratory-confirmed influenza virus and climate data were collected from 2009 to 2015. Potential impacts of daily mean/maximum/minimum temperatures (T/Tmax/Tmin), relative humidity (RH), wind velocity (V), and diurnal temperature range (DTR) were analyzed using the distributed lag nonlinear model (DLNM) and generalized additive model (GAM). Under its local climate partitions, Flu-A mainly prevailed in summer months (May to June), and a second peak appeared in early winter (December to January). Flu-B outbreaks usually occurred in transitional seasons, especially in autumn. Although low temperature caused an instant increase in both Flu-A and Flu-B risks, its effect could persist for up to 10 days for Flu-B and peak at 17 C (relative risk (RR) = 14.16, 95% CI: 7.46-26.88). For both subtypes, moderate-high temperature (28 C) had a significant but delayed effect on influenza, especially for Flu-A (RR = 26.20, 95% CI: 13.22-51.20). The Flu-A virus was sensitive to RH higher than 76%, while higher Flu-B risks were observed at both low (< 65%) and high (> 83%) humidity. Flu-A was active for a short term after exposure to large DTR (e.g., DTR = 10 C, RR = 12.45, 95% CI: 6.50-23.87), whereas Flu-B mainly circulated under stable temperatures. Although the overall wind speed in Shenzhen was low, moderate wind (2-3 m/s) was found to favor the outbreaks of both subtypes. This study revealed the thresholds of various climatic variables promoting influenza outbreaks, as well as the distinctions between the flu subtypes. These data can be helpful in predicting seasonal influenza outbreaks and minimizing the impacts, based on integrated forecast systems coupled with short-term climate models.
Collapse
Affiliation(s)
- Pan Ma
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, College of Atmospheric Science, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China.
| | - Xiaoxin Tang
- Shenzhen National Climate Observatory, Shenzhen Meteorological Bureau, Shenzhen, 518000, China
| | - Li Zhang
- Shenzhen National Climate Observatory, Shenzhen Meteorological Bureau, Shenzhen, 518000, China
| | - Xinzi Wang
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, College of Atmospheric Science, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China
| | - Weimin Wang
- Shangluo Meteorological Bureau, Shangluo, 726000, Shanxi, China
| | - Xiaoling Zhang
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, College of Atmospheric Science, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China
| | - Shigong Wang
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, College of Atmospheric Science, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China
| | - Ning Zhou
- The First Hospital of Lanzhou, Lanzhou, 730000, Gansu, China
| |
Collapse
|
42
|
Abstract
Viruses are essentially, obligate intracellular parasites. They require a host to replicate their genetic material, spread to other cells, and eventually to other hosts. For humans, most viral infections are not considered lethal, regardless if at the cellular level, the virus can obliterate individual cells. Constant genomic mutations, (which can alter the antigenic content of viruses such as influenza or coronaviruses), zoonosis or immunosuppression/immunocompromisation, is when viruses achieve higher host mortality. Frequent examples of the severe consequenses of viral infection can be seen in children and the elderly. In most instances, the immune system will take a multifaceted approach in defending the host against viruses. Depending on the virus, the individual, and the point of entry, the immune system will initiate a robust response which involves multiple components. In this chapter, we expand on the total immune system, breaking it down to the two principal types: Innate and Adaptive Immunity, their different roles in viral recognition and clearance. Finally, how different viruses activate and evade different arms of the immune system.
Collapse
|
43
|
Zhou A, Zhang J, Li H, Xu Q, Chen Y, Li B, Liu W, Su G, Ren X, Lao G, Luo B, Liao M, Qi W. Combined insertion of basic and non-basic amino acids at hemagglutinin cleavage site of highly pathogenic H7N9 virus promotes replication and pathogenicity in chickens and mice. Virol Sin 2022; 37:38-47. [PMID: 35234617 PMCID: PMC8922421 DOI: 10.1016/j.virs.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/22/2021] [Indexed: 12/22/2022] Open
|
44
|
Chen J, Liu Z, Li K, Li X, Xu L, Zhang M, Wu Y, Liu T, Wang X, Xie S, Xin A, Liao M, Jia W. Emergence of novel avian origin H7N9 viruses after introduction of H7-Re3 and rLN79 vaccine strains to China. Transbound Emerg Dis 2021; 69:213-220. [PMID: 34817918 DOI: 10.1111/tbed.14401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/14/2021] [Accepted: 11/14/2021] [Indexed: 12/13/2022]
Abstract
In early 2021, roughly 6 months after the H7N9 H7-Re3 and H7N9 rLN79 vaccine strains were introduced into China, we monitored a number of H7N9 subtype avian influenza viruses, which could have escaped vaccine-induced immunity in live poultry markets (LPMs) in Yunnan, Hebei, Shanxi and Guangdong provinces, China. To investigate whether these viruses were a novel H7N9 variant of highly pathogenic avian influenza (HPAI) virus and whether they had the potential for further spread, we characterized the genetic evolution, antigenic divergence and pathogenicity of the viruses in the context of vaccine immunity. The results show further diversification in the HA gene of newly isolated HPAI H7N9 viruses compared with antigenic variants that emerged after the period of 2017-2019. There were clear antigenic differences between current vaccines and these viruses, and SPF broilers under vaccine protection could not resist virus challenges. Our study demonstrates that the current vaccine has insufficient protective capacity against the novel H7N9 variants under experimental conditions. A novel H7N9 immune escape virus has emerged. Faced with potential outbreaks, we should strengthen surveillance and update vaccine strains.
Collapse
Affiliation(s)
- Junhong Chen
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaojie Liu
- Research and development center, Guangdong Huasheng Biotechnology Co., Ltd, Guangzhou, China
| | - Ke Li
- Institute of Poultry Management and Diseases, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Xiao Li
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lingyu Xu
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mengmeng Zhang
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yifan Wu
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tengfei Liu
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinkai Wang
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shumin Xie
- Experimental Animal Center, South China Agricultural University, Guangzhou, China
| | - Aiguo Xin
- Institute of Poultry Management and Diseases, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Ming Liao
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Weixin Jia
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
45
|
Lee YN, Lee DH, Kwon JH, Shin JI, Hong SY, Cha RM, Baek YG, Lee EK, Sagong M, Heo GB, Lee KN, Lee YJ. Genetic Characterization of Novel H7Nx Low Pathogenic Avian Influenza Viruses from Wild Birds in South Korea during the Winter of 2020-2021. Viruses 2021; 13:v13112274. [PMID: 34835080 PMCID: PMC8624117 DOI: 10.3390/v13112274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Zoonotic infection with avian influenza viruses (AIVs) of subtype H7, such as H7N9 and H7N4, has raised concerns worldwide. During the winter of 2020–2021, five novel H7 low pathogenic AIVs (LPAIVs) containing different neuraminidase (NA) subtypes, including two H7N3, an H7N8, and two H7N9, were detected in wild bird feces in South Korea. Complete genome sequencing and phylogenetic analysis showed that the novel H7Nx AIVs were reassortants containing two gene segments (hemagglutinin (HA) and matrix) that were related to the zoonotic Jiangsu–Cambodian H7 viruses causing zoonotic infection and six gene segments originating from LPAIVs circulating in migratory birds in Eurasia. A genomic constellation analysis demonstrated that all H7 isolates contained a mix of gene segments from different viruses, indicating that multiple reassortment occurred. The well-known mammalian adaptive substitution (E627K and D701N) in PB2 was not detected in any of these isolates. The detection of multiple reassortant H7Nx AIVs in wild birds highlights the need for intensive surveillance in both wild birds and poultry in Eurasia.
Collapse
Affiliation(s)
- Yu-Na Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea; (J.-I.S.); (S.Y.H.); (R.M.C.); (Y.-G.B.); (E.-K.L.); (M.S.); (G.-B.H.); (K.-N.L.); (Y.-J.L.)
- Correspondence: ; Tel.: +82-54-912-0969; Fax: +82-54-912-0977
| | - Dong-Hun Lee
- Department of Pathobiology and Veterinary Science, The University of Connecticut, 61 North Eagleville Road, Unit-3089, Storrs, CT 06269, USA;
| | - Jung-Hoon Kwon
- College of Veterinary Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Korea;
| | - Jae-In Shin
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea; (J.-I.S.); (S.Y.H.); (R.M.C.); (Y.-G.B.); (E.-K.L.); (M.S.); (G.-B.H.); (K.-N.L.); (Y.-J.L.)
| | - Seo Yun Hong
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea; (J.-I.S.); (S.Y.H.); (R.M.C.); (Y.-G.B.); (E.-K.L.); (M.S.); (G.-B.H.); (K.-N.L.); (Y.-J.L.)
| | - Ra Mi Cha
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea; (J.-I.S.); (S.Y.H.); (R.M.C.); (Y.-G.B.); (E.-K.L.); (M.S.); (G.-B.H.); (K.-N.L.); (Y.-J.L.)
| | - Yoon-Gi Baek
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea; (J.-I.S.); (S.Y.H.); (R.M.C.); (Y.-G.B.); (E.-K.L.); (M.S.); (G.-B.H.); (K.-N.L.); (Y.-J.L.)
| | - Eun-Kyoung Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea; (J.-I.S.); (S.Y.H.); (R.M.C.); (Y.-G.B.); (E.-K.L.); (M.S.); (G.-B.H.); (K.-N.L.); (Y.-J.L.)
| | - Mingeun Sagong
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea; (J.-I.S.); (S.Y.H.); (R.M.C.); (Y.-G.B.); (E.-K.L.); (M.S.); (G.-B.H.); (K.-N.L.); (Y.-J.L.)
| | - Gyeong-Beum Heo
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea; (J.-I.S.); (S.Y.H.); (R.M.C.); (Y.-G.B.); (E.-K.L.); (M.S.); (G.-B.H.); (K.-N.L.); (Y.-J.L.)
| | - Kwang-Nyeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea; (J.-I.S.); (S.Y.H.); (R.M.C.); (Y.-G.B.); (E.-K.L.); (M.S.); (G.-B.H.); (K.-N.L.); (Y.-J.L.)
| | - Youn-Jeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea; (J.-I.S.); (S.Y.H.); (R.M.C.); (Y.-G.B.); (E.-K.L.); (M.S.); (G.-B.H.); (K.-N.L.); (Y.-J.L.)
| |
Collapse
|
46
|
Development of an Inactivated H7N9 Subtype Avian Influenza Serological DIVA Vaccine Using the Chimeric HA Epitope Approach. Microbiol Spectr 2021; 9:e0068721. [PMID: 34585985 PMCID: PMC8557892 DOI: 10.1128/spectrum.00687-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
H7N9 avian influenza virus (AIV) is an emerging zoonotic pathogen, and it is necessary to develop a differentiating infected from vaccinated animals (DIVA) vaccine for the purpose of eradication. H7N9 subtype AIV hemagglutinin subunit 2 glycoprotein (HA2) peptide chips and antisera of different AIV subtypes were used to screen H7N9 AIV-specific epitopes. A selected specific epitope in the HA2 protein of H7N9 AIV strain A/Chicken/Huadong/JD/17 (JD/17) was replaced with an epitope from an H3N2 subtype AIV strain by reverse genetics. The protection and serological DIVA characteristics of the recombinant H7N9 AIV strain were evaluated. The results showed that a specific epitope on the HA2 protein of H7N9 AIV, named the H7-12 peptide, was successfully screened. The recombinant H7N9 AIV with a modified epitope in the HA2 protein was rescued and named A/Chicken/Huadong/JD-cHA/17 (JD-cHA/17). The HA titer of JD-cHA/17 was 10 log2, and the 50% egg infective dose (EID50) titer was 9.67 log10 EID50/ml. Inactivated JD-cHA/17 induced a hemagglutination inhibition (HI) antibody titer similar that of the parent strain and provided 100% protection against high-pathogenicity or low-pathogenicity H7N9 AIV challenge. A peptide chip coated with H7-12 peptide was successfully applied to detect the seroconversion of chickens infected or vaccinated with JD/17, while there was no reactivity with antisera of chickens vaccinated with JD-cHA/17. Therefore, the marked vaccine candidate JD-cHA/17 can be used as a DIVA vaccine against H7N9 avian influenza when combined with an H7-12 peptide chip, making it a useful tool for stamping out the H7N9 AIV. IMPORTANCE DIVA vaccine is a useful tool for eradicating avian influenza, especially for highly pathogenic avian influenza. Several different DIVA strategies have been proposed for avian influenza inactivated whole-virus vaccine, involving the neuraminidase (NA), nonstructural protein 1 (NS1), matrix protein 2 ectodomain (M2e), or HA2 gene. However, virus reassortment, residual protein in a vaccine component, or reduced vaccine protection may limit the application of these DIVA strategies. Here, we constructed a novel chimeric H7N9 AIV, JD-cHA/17, that expressed the entire HA protein with substitution of an H3 AIV epitope in HA2. The chimeric H7N9 recombinant vaccine provides full clinical protection against high-pathogenicity or low-pathogenicity H7N9 AIV challenge. Combined with a short-peptide-based microarray chip containing the H7N9 AIV epitope in HA2, our finding is expected to be useful as a marker vaccine designed for avian influenza.
Collapse
|
47
|
Guo J, Song W, Ni X, Liu W, Wu J, Xia W, Zhou X, Wang W, He F, Wang X, Fan G, Zhou K, Chen H, Chen S. Pathogen change of avian influenza virus in the live poultry market before and after vaccination of poultry in southern China. Virol J 2021; 18:213. [PMID: 34715890 PMCID: PMC8554751 DOI: 10.1186/s12985-021-01683-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The fifth wave of H7N9 avian influenza virus caused a large number of human infections and a large number of poultry deaths in China. Since September 2017, mainland China has begun to vaccinate poultry with H5 + H7 avian influenza vaccine. We investigated the avian influenza virus infections in different types of live poultry markets and samples before and after genotype H5 + H7 vaccination in Nanchang, and analyzed the changes of the HA subtypes of AIVs. METHODS From 2016 to 2019, we monitored different live poultry markets and collected specimens, using real-time reverse transcription polymerase chain reaction (RT-PCR) technology to detect the nucleic acid of type A avian influenza virus in the samples. The H5, H7 and H9 subtypes of influenza viruses were further classified for the positive results. The χ2 test was used to compare the differences in the separation rates of different avian influenza subtypes. RESULTS We analyzed 5,196 samples collected before and after vaccination and found that the infection rate of AIV in wholesale market (21.73%) was lower than that in retail market (24.74%) (P < 0.05). Among all the samples, the positive rate of sewage samples (33.90%) was the highest (P < 0.001). After vaccination, the positive rate of H5 and H7 subtypes decreased, and the positive rate of H9 subtype and untypable HA type increased significantly (P < 0.001). The positive rates of H9 subtype in different types of LPMs and different types of samples increased significantly (P < 0.01), and the positive rates of untypable HA type increased significantly in all environmental samples (P < 0.05). CONCLUSIONS Since vaccination, the positive rates of H5 and H7 subtypes have decreased, but the positive rates of H9 subtypes have increased to varying degrees in different testing locations and all samples. This results show that the government should establish more complete measures to achieve long-term control of the avian influenza virus.
Collapse
Affiliation(s)
- Jin Guo
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China.,School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Wentao Song
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China
| | - Xiansheng Ni
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China
| | - Wei Liu
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China
| | - Jingwen Wu
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China
| | - Wen Xia
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China
| | - Xianfeng Zhou
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China
| | - Wei Wang
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China
| | - Fenglan He
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China
| | - Xi Wang
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China
| | - Guoyin Fan
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China
| | - Kun Zhou
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China
| | - Haiying Chen
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China
| | - Shengen Chen
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China.
| |
Collapse
|
48
|
Bi F, Jiang L, Huang L, Wei J, Pan X, Ju Y, Mo J, Chen M, Kang N, Tan Y, Li Y, Wang J. Genetic Characterization of Two Human Cases Infected with the Avian Influenza A (H5N6) Viruses - Guangxi Zhuang Autonomous Region, China, 2021. China CDC Wkly 2021; 3:923-928. [PMID: 34745693 PMCID: PMC8563334 DOI: 10.46234/ccdcw2021.199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 11/14/2022] Open
Abstract
What is known about this topic? H5N6 has replaced H5N1 as a dominant avian influenza virus (AIV) subtype in southern China. The increasing genetic diversity and geographical distribution of H5N6 pose a serious threat to the poultry industry and human health. What is added by this report? A total of 2 cases of H5N6 that occurred from February 2021 to July 2021 in Guangxi, China were reported in this study. Phylogenetic analysis of gene was constructed, and some mutations of HA gene, PB2 gene, PA gene, M1 gene, NS1 gene, the receptor-binding site were detected. The evolutionary origins of the internal genes were different. What are the implications for public health practice? As a multi-source reassortant virus, the H5N6 highly pathogenic AIV is continuously evolving. There is an urgent need to strengthen the surveillance of drug-resistant strains and novel variants.
Collapse
Affiliation(s)
- Fuyin Bi
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lili Jiang
- Guilin Center for Disease Control and Prevention, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Lihua Huang
- Hechi Center for Disease Control and Prevention, Hechi, Guangxi Zhuang Autonomous Region, China
| | - Jingguang Wei
- Hechi Center for Disease Control and Prevention, Hechi, Guangxi Zhuang Autonomous Region, China
| | - Xiaowen Pan
- Guilin Center for Disease Control and Prevention, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Yu Ju
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jianjun Mo
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Minmei Chen
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ning Kang
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yi Tan
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yonghong Li
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jing Wang
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
49
|
Tang H, Fournié G, Li J, Zou L, Shen C, Wang Y, Cai C, Edwards J, Robertson ID, Huang B, Bruce M. Analysis of the movement of live broilers in Guangxi, China and implications for avian influenza control. Transbound Emerg Dis 2021; 69:e775-e787. [PMID: 34693647 DOI: 10.1111/tbed.14351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/24/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022]
Abstract
Most Chinese provinces have a daily-updated database of live animal movements; however, the data are not efficiently utilized to support interventions to control H7N9 and other avian influenzas. Based on official records, this study assessed the spatio-temporal patterns of live broilers moved out of and within Guangxi in 2017. The yearly and monthly networks were analyzed for inter- and intra-provincial movements, respectively. Approximately 200,000 movements occurred in 2017, involving the transport of 200 million live broilers from Guangxi. Although Guangxi exported to 24 out of 32 provinces of China, 95% of inter-provincial movements occurred with three bordering provinces. Within Guangxi, counties were highly connected through the live broiler movements, creating conditions for rapid virus spreading throughout the province. Interestingly, a peak in movements during the Chinese Lunar New Year celebrations, late January in 2017, was not observed in this study, likely due to H7N9-related control measures constraining live bird trading. Both intra- and inter-provincial movements in March 2017 were significantly higher than in other months of that year, suggesting that dramatic price changes may influence the movement's network and reshape the risk pathways. However, despite these variations, the same small proportion of counties (less than 20%) exporting/importing more than 90% of inter- and intra-provincial movements remains the same throughout the year. Interventions, particularly surveillance and improving biosecurity, targeted to those counties are thus likely to be more effective for avian influenza risk mitigation than implemented indiscriminately. Additionally, simulations further demonstrated that targeting counties according to their degree or betweenness in the movement network would be the most efficient way to limit disease transmission via broiler movements. The study findings provide evidence to support the design of risk-based control interventions for H7N9 and all other avian influenza viruses in broiler value chains in Guangxi.
Collapse
Affiliation(s)
- Hao Tang
- China Animal Health and Epidemiology Centre, Qingdao, China.,School of Veterinary Medicine, Murdoch University, Perth, Australia
| | | | - Jinming Li
- China Animal Health and Epidemiology Centre, Qingdao, China
| | - Lianbin Zou
- Guangxi Centre of Animal Disease Prevention and Control, Nanning, China
| | - Chaojian Shen
- China Animal Health and Epidemiology Centre, Qingdao, China
| | - Youming Wang
- China Animal Health and Epidemiology Centre, Qingdao, China
| | - Chang Cai
- China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - John Edwards
- China Animal Health and Epidemiology Centre, Qingdao, China.,School of Veterinary Medicine, Murdoch University, Perth, Australia
| | - Ian D Robertson
- School of Veterinary Medicine, Murdoch University, Perth, Australia.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Baoxu Huang
- China Animal Health and Epidemiology Centre, Qingdao, China
| | - Mieghan Bruce
- School of Veterinary Medicine, Murdoch University, Perth, Australia.,Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Australia
| |
Collapse
|
50
|
Song Y, Zhang Y, Wang T, Qian S, Wang S. Spatio-temporal Differentiation in the Incidence of Influenza and Its Relationship with Air Pollution in China from 2004 to 2017. CHINESE GEOGRAPHICAL SCIENCE 2021; 31:815-828. [PMID: 34580569 PMCID: PMC8457542 DOI: 10.1007/s11769-021-1228-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/25/2021] [Indexed: 05/19/2023]
Abstract
The Healthy China Initiative is a major health strategy being pursued by the country. To prevent and control different types of diseases as well as their complex variants, research on the spatio-temporal differentiation among and mechanisms of influence of epidemic diseases is growing worldwide. This study analyzed monthly data on the incidence of influenza by using different methods, including Moran's I, the hotspot analysis model, concentration analysis, and correlation analysis, to determine the characteristics of spatio-temporal differentiation in the incidence of influenza across prefecture-level cities in China from 2004 to 2017, and to examine its relationship with air pollution. According to the results, the overall incidence of influenza in China exhibited a trend of increase from 2004 to 2017, with small peaks in 2009 and 2014. More cases of influenza were recorded in the first and fourth quarters of each year. Regions with higher incidences of influenza were concentrated in northwestern and northern China, and in the coastal areas of southeastern China. Over time, the distribution of regions with a higher incidence of influenza has shifted from the west to the east of the country. A significant relationship was observed between the incidence of influenza and factors related to air pollution. The contents of five air pollutants (PM2.5, PM10, SO2, NO2, and CO) were significantly positively correlated with the incidence of influenza, with a decreasing order of contribution to it of SO2 > CO > NO2 > PM2.5 > PM10. The content of O3 in the air was negatively correlated with the incidence of influenza. The influence of air pollution-related factors on the incidence of influenza in different regions and seasons showed minor differences. The large-scale empirical results provided here can supply a scientific basis for governmental disease control authorities to formulate strategies for regional prevention and control.
Collapse
Affiliation(s)
- Yang Song
- School of Geographical Sciences, Northeast Normal University, Changchun, 130024 China
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, Changchun, 130024 China
| | - Yu Zhang
- School of Geographical Sciences, Northeast Normal University, Changchun, 130024 China
| | - Tingting Wang
- School of Geographical Sciences, Northeast Normal University, Changchun, 130024 China
| | - Sitong Qian
- School of Geographical Sciences, Northeast Normal University, Changchun, 130024 China
| | - Shijun Wang
- School of Geographical Sciences, Northeast Normal University, Changchun, 130024 China
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, Changchun, 130024 China
| |
Collapse
|