1
|
Al-Osaimi HM, Kanan M, Marghlani L, Al-Rowaili B, Albalawi R, Saad A, Alasmari S, Althobaiti K, Alhulaili Z, Alanzi A, Alqarni R, Alsofiyani R, Shrwani R. A systematic review on malaria and dengue vaccines for the effective management of these mosquito borne diseases: Improving public health. Hum Vaccin Immunother 2024; 20:2337985. [PMID: 38602074 PMCID: PMC11017952 DOI: 10.1080/21645515.2024.2337985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Insect vector-borne diseases (VBDs) pose significant global health challenges, particularly in tropical and subtropical regions. The WHO has launched the "Global Vector Control Response (GVCR) 2017-2030" to address these diseases, emphasizing a comprehensive approach to vector control. This systematic review investigates the potential of malaria and dengue vaccines in controlling mosquito-borne VBDs, aiming to alleviate disease burdens and enhance public health. Following PRISMA 2020 guidelines, the review incorporated 39 new studies out of 934 identified records. It encompasses various studies assessing malaria and dengue vaccines, emphasizing the significance of vaccination as a preventive measure. The findings indicate variations in vaccine efficacy, duration of protection, and safety considerations for each disease, influencing public health strategies. The review underscores the urgent need for vaccines to combat the increasing burden of VBDs like malaria and dengue, advocating for ongoing research and investment in vaccine development.
Collapse
Affiliation(s)
- Hind M. Al-Osaimi
- Department of Pharmacy Services Administration, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Kanan
- Department of Clinical Pharmacy, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Lujain Marghlani
- Department of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Badria Al-Rowaili
- Pharmaceutical Services Department, Northern Area Armed Forces Hospital, King Khalid Military, Hafr Al Batin, Kingdom of Saudi Arabia
| | - Reem Albalawi
- Department of Medicine, Tabuk University, Tabuk, Kingdom of Saudi Arabia
| | - Abrar Saad
- Pharmacy Department, Royal Commission Hospital, Yanbu, Kingdom of Saudi Arabia
| | - Saba Alasmari
- Department of Clinical Pharmacy, King Khalid University, Jeddah, Kingdom of Saudi Arabia
| | - Khaled Althobaiti
- Department of Medicine, Taif University, Ta’if, Kingdom of Saudi Arabia
| | - Zainab Alhulaili
- Department of Clinical Pharmacy, Dammam Medical Complex, Dammam, Kingdom of Saudi Arabia
| | - Abeer Alanzi
- Department of Medicine, King Abdulaziz Hospital, Makkah, Kingdom of Saudi Arabia
| | - Rawan Alqarni
- Department of Medicine and Surgery, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Razan Alsofiyani
- Department of Medicine, Taif University, Ta’if, Kingdom of Saudi Arabia
| | - Reem Shrwani
- Department of Clinical Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Gupta A, Rudra A, Reed K, Langer R, Anderson DG. Advanced technologies for the development of infectious disease vaccines. Nat Rev Drug Discov 2024:10.1038/s41573-024-01041-z. [PMID: 39433939 DOI: 10.1038/s41573-024-01041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
Vaccines play a critical role in the prevention of life-threatening infectious disease. However, the development of effective vaccines against many immune-evading pathogens such as HIV has proven challenging, and existing vaccines against some diseases such as tuberculosis and malaria have limited efficacy. The historically slow rate of vaccine development and limited pan-variant immune responses also limit existing vaccine utility against rapidly emerging and mutating pathogens such as influenza and SARS-CoV-2. Additionally, reactogenic effects can contribute to vaccine hesitancy, further undermining the ability of vaccination campaigns to generate herd immunity. These limitations are fuelling the development of novel vaccine technologies to more effectively combat infectious diseases. Towards this end, advances in vaccine delivery systems, adjuvants, antigens and other technologies are paving the way for the next generation of vaccines. This Review focuses on recent advances in synthetic vaccine systems and their associated challenges, highlighting innovation in the field of nano- and nucleic acid-based vaccines.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnab Rudra
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kaelan Reed
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Calic PPS, Ashton TD, Mansouri M, Loi K, Jarman KE, Qiu D, Lehane AM, Roy S, Rao GP, Maity B, Wittlin S, Crespo B, Gamo FJ, Deni I, Fidock DA, Chowdury M, de Koning-Ward TF, Cowman AF, Jackson PF, Baud D, Brand S, Laleu B, Sleebs BE. Optimization of pyrazolopyridine 4-carboxamides with potent antimalarial activity for which resistance is associated with the P. falciparum transporter ABCI3. Eur J Med Chem 2024; 276:116677. [PMID: 39024967 DOI: 10.1016/j.ejmech.2024.116677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Emerging resistance to current antimalarials is reducing their effectiveness and therefore there is a need to develop new antimalarial therapies. Toward this goal, high throughput screens against the P. falciparum asexual parasite identified the pyrazolopyridine 4-carboxamide scaffold. Structure-activity relationship analysis of this chemotype defined that the N1-tert-butyl group and aliphatic foliage in the 3- and 6-positions were necessary for activity, while the inclusion of a 7'-aza-benzomorpholine on the 4-carboxamide motif resulted in potent anti-parasitic activity and increased aqueous solubility. A previous report that resistance to the pyrazolopyridine class is associated with the ABCI3 transporter was confirmed, with pyrazolopyridine 4-carboxamides showing an increase in potency against parasites when the ABCI3 transporter was knocked down. The low metabolic stability intrinsic to the pyrazolopyridine scaffold and the slow rate by which the compounds kill asexual parasites resulted in poor performance in a P. berghei asexual blood stage mouse model. Lowering the risk of resistance and mitigating the metabolic stability and cytochrome P450 inhibition will be challenges in the future development of the pyrazolopyrimidine antimalarial class.
Collapse
Affiliation(s)
- Petar P S Calic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Trent D Ashton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Mahta Mansouri
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Katie Loi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Kate E Jarman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Deyun Qiu
- Research School of Biology, Australian National University, Canberra, 2601, Australia
| | - Adele M Lehane
- Research School of Biology, Australian National University, Canberra, 2601, Australia
| | - Sayantan Roy
- TCG Lifesciences, Kolkata, West Bengal, 700091, India
| | - Gunturu P Rao
- TCG Lifesciences, Kolkata, West Bengal, 700091, India
| | - Bikash Maity
- TCG Lifesciences, Kolkata, West Bengal, 700091, India
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland; University of Basel, 4003, Basel, Switzerland
| | - Benigno Crespo
- Global Health Medicines R&D, GSK, Tres Cantos, 28760, Spain
| | | | - Ioanna Deni
- Department of Microbiology & Immunology, Columbia University, Irving Medical Center, New York, 10032, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University, Irving Medical Center, New York, 10032, NY, USA
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University, Irving Medical Center, New York, 10032, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University, Irving Medical Center, New York, 10032, NY, USA
| | - Mrittika Chowdury
- School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia; Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, 3216, Australia
| | - Tania F de Koning-Ward
- School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia; Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, 3216, Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Paul F Jackson
- Global Public Health, Janssen R&D LLC, La Jolla, 92121, USA
| | - Delphine Baud
- MMV Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215, Geneva, Switzerland
| | - Stephen Brand
- MMV Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215, Geneva, Switzerland
| | - Benoît Laleu
- MMV Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215, Geneva, Switzerland
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
4
|
Okombo J, Fidock DA. Towards next-generation treatment options to combat Plasmodium falciparum malaria. Nat Rev Microbiol 2024:10.1038/s41579-024-01099-x. [PMID: 39367132 DOI: 10.1038/s41579-024-01099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
Malaria, which is caused by infection of red blood cells with Plasmodium parasites, can be fatal in non-immune individuals if left untreated. The recent approval of the pre-erythrocytic vaccines RTS, S/AS01 and R21/Matrix-M has ushered in hope of substantial reductions in mortality rates, especially when combined with other existing interventions. However, the efficacy of these vaccines is partial, and chemotherapy remains central to malaria treatment and control. For many antimalarial drugs, clinical efficacy has been compromised by the emergence of drug-resistant Plasmodium falciparum strains. Therefore, there is an urgent need for new antimalarial medicines to complement the existing first-line artemisinin-based combination therapies. In this Review, we discuss various opportunities to expand the present malaria treatment space, appraise the current antimalarial drug development pipeline and highlight examples of promising targets. We also discuss other approaches to circumvent antimalarial resistance and how potency against drug-resistant parasites could be retained.
Collapse
Affiliation(s)
- John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Chutiyami M, Saravanakumar P, Bello UM, Salihu D, Adeleye K, Kolo MA, Dawa KK, Hamina D, Bhandari P, Sulaiman SK, Sim J. Malaria vaccine efficacy, safety, and community perception in Africa: a scoping review of recent empirical studies. Infection 2024; 52:2007-2028. [PMID: 38441731 PMCID: PMC11499420 DOI: 10.1007/s15010-024-02196-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/22/2024] [Indexed: 10/24/2024]
Abstract
AIM The review summarizes the recent empirical evidence on the efficacy, safety, and community perception of malaria vaccines in Africa. METHODS Academic Search Complete, African Journals Online, CINAHL, Medline, PsychInfo, and two gray literature sources were searched in January 2023, and updated in June 2023. Relevant studies published from 2012 were included. Studies were screened, appraised, and synthesized in line with the review aim. Statistical results are presented as 95% Confidence Intervals and proportions/percentages. RESULTS Sixty-six (N = 66) studies met the inclusion criteria. Of the vaccines identified, overall efficacy at 12 months was highest for the R21 vaccine (N = 3) at 77.0%, compared to the RTS,S vaccine (N = 15) at 55%. The efficacy of other vaccines was BK-SE36 (11.0-50.0%, N = 1), ChAd63/MVA ME-TRAP (- 4.7-19.4%, N = 2), FMP2.1/AS02A (7.6-9.9%, N = 1), GMZ2 (0.6-60.0%, N = 5), PfPZ (20.0-100.0%, N = 5), and PfSPZ-CVac (24.8-33.6%, N = 1). Injection site pain and fever were the most common adverse events (N = 26), while febrile convulsion (N = 8) was the most reported, vaccine-related Serious Adverse Event. Mixed perceptions of malaria vaccines were found in African communities (N = 17); awareness was generally low, ranging from 11% in Tanzania to 60% in Nigeria (N = 9), compared to willingness to accept the vaccines, which varied from 32.3% in Ethiopia to 96% in Sierra Leone (N = 15). Other issues include availability, logistics, and misconceptions. CONCLUSION Malaria vaccines protect against malaria infection in varying degrees, with severe side effects rarely occurring. Further research is required to improve vaccine efficacy and community involvement is needed to ensure successful widespread use in African communities.
Collapse
Affiliation(s)
- Muhammad Chutiyami
- School of Nursing and Midwifery, University of Technology Sydney, Sydney, Australia.
| | - Priya Saravanakumar
- School of Nursing and Midwifery, University of Technology Sydney, Sydney, Australia
| | - Umar Muhammad Bello
- Department of Physiotherapy and Paramedicine, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Dauda Salihu
- College of Nursing, Jouf University, Sakaka, Saudi Arabia
| | - Khadijat Adeleye
- College of Nursing, University of Massachusetts, Amherst, MA, 01003, USA
| | | | - Kabiru Kasamu Dawa
- School of Nursing, Midwifery and Health Education, University of Bedfordshire, Luton, UK
| | - Dathini Hamina
- Department of Nursing Science, University of Maiduguri, Maiduguri, Nigeria
| | - Pratibha Bhandari
- School of Nursing and Midwifery, University of Technology Sydney, Sydney, Australia
| | | | - Jenny Sim
- WHO Collaborating Centre for Nursing, Midwifery and Health Development, University of Technology Sydney, Sydney, Australia
- School of Nursing, Midwifery and Paramedicine, Australian Catholic University, Sydney, Australia
| |
Collapse
|
6
|
Wang LT, Cooper AJR, Farrell B, Miura K, Diouf A, Müller-Sienerth N, Crosnier C, Purser L, Kirtley PJ, Maciuszek M, Barrett JR, McHugh K, Ogwang R, Tucker C, Li S, Doumbo S, Doumtabe D, Pyo CW, Skinner J, Nielsen CM, Silk SE, Kayentao K, Ongoiba A, Zhao M, Nguyen DC, Lee FEH, Minassian AM, Geraghty DE, Traore B, Seder RA, Wilder BK, Crompton PD, Wright GJ, Long CA, Draper SJ, Higgins MK, Tan J. Natural malaria infection elicits rare but potent neutralizing antibodies to the blood-stage antigen RH5. Cell 2024; 187:4981-4995.e14. [PMID: 39059381 PMCID: PMC11383431 DOI: 10.1016/j.cell.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is the most advanced blood-stage malaria vaccine candidate and is being evaluated for efficacy in endemic regions, emphasizing the need to study the underlying antibody response to RH5 during natural infection, which could augment or counteract responses to vaccination. Here, we found that RH5-reactive B cells were rare, and circulating immunoglobulin G (IgG) responses to RH5 were short-lived in malaria-exposed Malian individuals, despite repeated infections over multiple years. RH5-specific monoclonal antibodies isolated from eight malaria-exposed individuals mostly targeted non-neutralizing epitopes, in contrast to antibodies isolated from five RH5-vaccinated, malaria-naive UK individuals. However, MAD8-151 and MAD8-502, isolated from two malaria-exposed Malian individuals, were among the most potent neutralizers out of 186 antibodies from both cohorts and targeted the same epitopes as the most potent vaccine-induced antibodies. These results suggest that natural malaria infection may boost RH5-vaccine-induced responses and provide a clear strategy for the development of next-generation RH5 vaccines.
Collapse
Affiliation(s)
- Lawrence T Wang
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Medical Scientist Training Program, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Andrew J R Cooper
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Brendan Farrell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | - Cécile Crosnier
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Lauren Purser
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Payton J Kirtley
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97006, USA
| | - Maciej Maciuszek
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jordan R Barrett
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Kirsty McHugh
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Rodney Ogwang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Courtney Tucker
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Point G, BP 1805 Bamako, Mali
| | - Didier Doumtabe
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Point G, BP 1805 Bamako, Mali
| | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Carolyn M Nielsen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Sarah E Silk
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Point G, BP 1805 Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Point G, BP 1805 Bamako, Mali
| | - Ming Zhao
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Doan C Nguyen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Angela M Minassian
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Point G, BP 1805 Bamako, Mali
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brandon K Wilder
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97006, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Gavin J Wright
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
7
|
Li J, Docile HJ, Fisher D, Pronyuk K, Zhao L. Current Status of Malaria Control and Elimination in Africa: Epidemiology, Diagnosis, Treatment, Progress and Challenges. J Epidemiol Glob Health 2024; 14:561-579. [PMID: 38656731 PMCID: PMC11442732 DOI: 10.1007/s44197-024-00228-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
The African continent carries the greatest malaria burden in the world. Falciparum malaria especially has long been the leading cause of death in Africa. Climate, economic factors, geographical location, human intervention and unstable security are factors influencing malaria transmission. Due to repeated infections and early interventions, the proportion of clinically atypical malaria or asymptomatic plasmodium carriers has increased significantly, which easily lead to misdiagnosis and missed diagnosis. African countries have made certain progress in malaria control and elimination, including rapid diagnosis of malaria, promotion of mosquito nets and insecticides, intermittent prophylactic treatment in high-risk groups, artemisinin based combination therapies, and the development of vaccines. Between 2000 and 2022, there has been a 40% decrease in malaria incidence and a 60% reduction in mortality rate in the WHO African Region. However, many challenges are emerging in the fight against malaria in Africa, such as climate change, poverty, substandard health services and coverage, increased outdoor transmission and the emergence of new vectors, and the growing threat of resistance to antimalarial drugs and insecticides. Joint prevention and treatment, identifying molecular determinants of resistance, new drug development, expanding seasonal malaria chemo-prevention intervention population, and promoting the vaccination of RTS, S/AS01 and R21/Matrix-M may help to solve the dilemma. China's experience in eliminating malaria is conducive to Africa's malaria prevention and control, and China-Africa cooperation needs to be constantly deepened and advanced. Our review aims to help the global public develop a comprehensive understanding of malaria in Africa, thereby contributing to malaria control and elimination.
Collapse
Affiliation(s)
- Jiahuan Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Haragakiza Jean Docile
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - David Fisher
- Department of Medical Biosciences, Faculty of Natural Sciences, University of The Western Cape, Cape Town, South Africa
| | - Khrystyna Pronyuk
- Department of Infectious Diseases, O. Bogomolets National Medical University, Kyiv, Ukraine
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
8
|
Ranjit A, Wylie BJ. Malaria in Pregnancy, Current Challenges, and Emerging Prevention Strategies in a Warming Climate. Clin Obstet Gynecol 2024; 67:620-632. [PMID: 39061127 DOI: 10.1097/grf.0000000000000888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Malaria still presents a grave threat to the health of pregnancies worldwide with prevention currently stalling as traditional control and prevention strategies are limited by both insecticide and drug resistance. Furthermore, climate change is bringing malaria to locations where it was once eradicated and intensifying malaria in other areas. Even where malaria is not currently common, obstetricians will need to understand the pathogenesis of the disease, how it is transmitted, methods for prevention and treatment in pregnancy, and promising emerging strategies such as vaccines. A renewed global response is needed for this age-old disease in which pregnancy poses specific susceptibility.
Collapse
Affiliation(s)
- Anju Ranjit
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Maternal-Fetal Medicine, University of California, San Francisco
| | - Blair J Wylie
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Columbia University Medical Center, New York, New York
| |
Collapse
|
9
|
Ashton TD, Calic PPS, Dans MG, Kang Ooi Z, Zhou Q, Loi K, Jarman KE, Palandri J, Qiu D, Lehane AM, Maity B, De N, Famodimu MT, Delves MJ, Mao EY, Gancheva MR, Wilson DW, Chowdury M, de Koning-Ward TF, Baud D, Brand S, Jackson PF, Cowman AF, Sleebs BE. Lactam Truncation Yields a Dihydroquinazolinone Scaffold with Potent Antimalarial Activity that Targets PfATP4. ChemMedChem 2024:e202400549. [PMID: 39210733 DOI: 10.1002/cmdc.202400549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The emergence of resistance against current antimalarial treatments has necessitated the need for the development of novel antimalarial chemotypes. Toward this goal, we recently optimised the antimalarial activity of the dihydroquinazolinone scaffold and showed it targeted PfATP4. Here, we deconstruct the lactam moiety of the tricyclic dihydroquinazolinone scaffold and investigate the structure-activity relationship of the truncated scaffold. It was shown that SAR between scaffolds was largely transferrable and generated analogues with potent asexual stage activity. Evaluation of the truncated analogues against PfATP4 mutant drug-resistant parasite strains and in assays measuring PfATP4-associated ATPase activity demonstrated retention of PfATP4 as the molecular target. Analogues exhibited activity against both male and female gametes and multidrug resistant parasites. Limited efficacy of analogues in a P. berghei asexual stage mouse model was attributed to their moderate metabolic stability and low aqueous stability. Further development is required to address these attributes toward the potential use of the dihydroquinazolinone class in a curative and transmission blocking combination antimalarial therapy.
Collapse
Affiliation(s)
- Trent D Ashton
- Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Petar P S Calic
- Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Madeline G Dans
- Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Zi Kang Ooi
- Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Victoria, Australia
| | - Qingmiao Zhou
- Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Victoria, Australia
| | - Katie Loi
- Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Kate E Jarman
- Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Josephine Palandri
- Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Deyun Qiu
- Research School of Biology, Australian National University, Canberra, 2601, Australia
| | - Adele M Lehane
- Research School of Biology, Australian National University, Canberra, 2601, Australia
| | - Bikash Maity
- TCG Lifesciences, Kolkata, West Bengal, 700091, India
| | - Nirupam De
- TCG Lifesciences, Kolkata, West Bengal, 700091, India
| | - Mufuliat T Famodimu
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Michael J Delves
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Emma Y Mao
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, 5005, Australia
| | - Maria R Gancheva
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, 5005, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, 5005, Australia
| | - Mrittika Chowdury
- School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, 3216, Australia
| | - Tania F de Koning-Ward
- School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, 3216, Australia
| | - Delphine Baud
- MMV Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215, Geneva, Switzerland
| | - Stephen Brand
- MMV Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215, Geneva, Switzerland
| | - Paul F Jackson
- Emerging Science & Innovation, Discovery Sciences, Janssen R&D LLC, La Jolla, California, 92121, USA
| | - Alan F Cowman
- Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Brad E Sleebs
- Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, 3010, Victoria, Australia
| |
Collapse
|
10
|
Tang WK, Salinas ND, Kolli SK, Xu S, Urusova DV, Kumar H, Jimah JR, Subramani PA, Ogbondah MM, Barnes SJ, Adams JH, Tolia NH. Multistage protective anti-CelTOS monoclonal antibodies with cross-species sterile protection against malaria. Nat Commun 2024; 15:7487. [PMID: 39209843 PMCID: PMC11362571 DOI: 10.1038/s41467-024-51701-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
CelTOS is a malaria vaccine antigen that is conserved in Plasmodium and other apicomplexan parasites and plays a role in cell-traversal. The structural basis and mechanisms of CelTOS-induced protective immunity to parasites are unknown. Here, CelTOS-specific monoclonal antibodies (mAbs) 7g7 and 4h12 demonstrated multistage activity, protecting against liver infection and preventing parasite transmission to mosquitoes. Both mAbs demonstrated cross-species activity with sterile protection against in vivo challenge with transgenic parasites containing either P. falciparum or P. vivax CelTOS, and with transmission reducing activity against P. falciparum. The mAbs prevented CelTOS-mediated pore formation providing insight into the protective mechanisms. X-ray crystallography and mutant-library epitope mapping revealed two distinct broadly conserved neutralizing epitopes. 7g7 bound to a parallel dimer of CelTOS, while 4h12 bound to a novel antiparallel dimer architecture. These findings inform the design of antibody therapies and vaccines and raise the prospect of a single intervention to simultaneously combat P. falciparum and P. vivax malaria.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Animals
- Plasmodium falciparum/immunology
- Plasmodium vivax/immunology
- Malaria Vaccines/immunology
- Antibodies, Protozoan/immunology
- Mice
- Malaria, Falciparum/immunology
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/parasitology
- Crystallography, X-Ray
- Epitopes/immunology
- Malaria, Vivax/prevention & control
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Antigens, Protozoan/immunology
- Humans
- Female
- Epitope Mapping
- Malaria/immunology
- Malaria/prevention & control
- Malaria/parasitology
- Mice, Inbred BALB C
- Protozoan Proteins/immunology
- Protozoan Proteins/chemistry
Collapse
Affiliation(s)
- Wai Kwan Tang
- Host‒Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nichole D Salinas
- Host‒Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Surendra Kumar Kolli
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Shulin Xu
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Darya V Urusova
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hirdesh Kumar
- Host‒Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Jimah
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Pradeep Annamalai Subramani
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Madison M Ogbondah
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Samantha J Barnes
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - John H Adams
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Niraj H Tolia
- Host‒Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Angage D, Chmielewski J, Maddumage JC, Hesping E, Caiazzo S, Lai KH, Yeoh LM, Menassa J, Opi DH, Cairns C, Puthalakath H, Beeson JG, Kvansakul M, Boddey JA, Wilson DW, Anders RF, Foley M. A broadly cross-reactive i-body to AMA1 potently inhibits blood and liver stages of Plasmodium parasites. Nat Commun 2024; 15:7206. [PMID: 39174515 PMCID: PMC11341838 DOI: 10.1038/s41467-024-50770-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/19/2024] [Indexed: 08/24/2024] Open
Abstract
Apical membrane antigen-1 (AMA1) is a conserved malarial vaccine candidate essential for the formation of tight junctions with the rhoptry neck protein (RON) complex, enabling Plasmodium parasites to invade human erythrocytes, hepatocytes, and mosquito salivary glands. Despite its critical role, extensive surface polymorphisms in AMA1 have led to strain-specific protection, limiting the success of AMA1-based interventions beyond initial clinical trials. Here, we identify an i-body, a humanised single-domain antibody-like molecule that recognises a conserved pan-species conformational epitope in AMA1 with low nanomolar affinity and inhibits the binding of the RON2 ligand to AMA1. Structural characterisation indicates that the WD34 i-body epitope spans the centre of the conserved hydrophobic cleft in AMA1, where interacting residues are highly conserved among all Plasmodium species. Furthermore, we show that WD34 inhibits merozoite invasion of erythrocytes by multiple Plasmodium species and hepatocyte invasion by P. falciparum sporozoites. Despite a short half-life in mouse serum, we demonstrate that WD34 transiently suppressed P. berghei infections in female BALB/c mice. Our work describes the first pan-species AMA1 biologic with inhibitory activity against multiple life-cycle stages of Plasmodium. With improved pharmacokinetic characteristics, WD34 could be a potential immunotherapy against multiple species of Plasmodium.
Collapse
Affiliation(s)
- Dimuthu Angage
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - Jill Chmielewski
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Janesha C Maddumage
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - Eva Hesping
- Infectious Diseases & Immune Defense Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Sabrina Caiazzo
- Infectious Diseases & Immune Defense Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Keng Heng Lai
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Lee Ming Yeoh
- Burnet Institute, Melbourne, Victoria, 3004, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Joseph Menassa
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - D Herbert Opi
- Burnet Institute, Melbourne, Victoria, 3004, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, 3052, Australia
- Central Clinical School and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Callum Cairns
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - Hamsa Puthalakath
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, 3004, Australia
- Central Clinical School and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
- Department of Infectious Diseases, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - Justin A Boddey
- Infectious Diseases & Immune Defense Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- Burnet Institute, Melbourne, Victoria, 3004, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Robin F Anders
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - Michael Foley
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia.
- AdAlta, Science Drive, Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
12
|
Zhuo Y, Zeng H, Su C, Lv Q, Cheng T, Lei L. Tailoring biomaterials for vaccine delivery. J Nanobiotechnology 2024; 22:480. [PMID: 39135073 PMCID: PMC11321069 DOI: 10.1186/s12951-024-02758-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Biomaterials are substances that can be injected, implanted, or applied to the surface of tissues in biomedical applications and have the ability to interact with biological systems to initiate therapeutic responses. Biomaterial-based vaccine delivery systems possess robust packaging capabilities, enabling sustained and localized drug release at the target site. Throughout the vaccine delivery process, they can contribute to protecting, stabilizing, and guiding the immunogen while also serving as adjuvants to enhance vaccine efficacy. In this article, we provide a comprehensive review of the contributions of biomaterials to the advancement of vaccine development. We begin by categorizing biomaterial types and properties, detailing their reprocessing strategies, and exploring several common delivery systems, such as polymeric nanoparticles, lipid nanoparticles, hydrogels, and microneedles. Additionally, we investigated how the physicochemical properties and delivery routes of biomaterials influence immune responses. Notably, we delve into the design considerations of biomaterials as vaccine adjuvants, showcasing their application in vaccine development for cancer, acquired immunodeficiency syndrome, influenza, corona virus disease 2019 (COVID-19), tuberculosis, malaria, and hepatitis B. Throughout this review, we highlight successful instances where biomaterials have enhanced vaccine efficacy and discuss the limitations and future directions of biomaterials in vaccine delivery and immunotherapy. This review aims to offer researchers a comprehensive understanding of the application of biomaterials in vaccine development and stimulate further progress in related fields.
Collapse
Affiliation(s)
- Yanling Zhuo
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China
| | - Huanxuan Zeng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chunyu Su
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Qizhuang Lv
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China.
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, 537000, China.
| | - Tianyin Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
13
|
Gawriljuk VO, Godoy AS, Oerlemans R, Welker LAT, Hirsch AKH, Groves MR. Cryo-EM structure of 1-deoxy-D-xylulose 5-phosphate synthase DXPS from Plasmodium falciparum reveals a distinct N-terminal domain. Nat Commun 2024; 15:6642. [PMID: 39103329 PMCID: PMC11300867 DOI: 10.1038/s41467-024-50671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
Plasmodium falciparum is the main causative agent of malaria, a deadly disease that mainly affects children under five years old. Artemisinin-based combination therapies have been pivotal in controlling the disease, but resistance has arisen in various regions, increasing the risk of treatment failure. The non-mevalonate pathway is essential for the isoprenoid synthesis in Plasmodium and provides several under-explored targets to be used in the discovery of new antimalarials. 1-deoxy-D-xylulose-5-phosphate synthase (DXPS) is the first and rate-limiting enzyme of the pathway. Despite its importance, there are no structures available for any Plasmodium spp., due to the complex sequence which contains large regions of high disorder, making crystallisation a difficult task. In this manuscript, we use cryo-electron microscopy to solve the P. falciparum DXPS structure at a final resolution of 2.42 Å. Overall, the structure resembles other DXPS enzymes but includes a distinct N-terminal domain exclusive to the Plasmodium genus. Mutational studies show that destabilization of the cap domain interface negatively impacts protein stability and activity. Additionally, a density for the co-factor thiamine diphosphate is found in the active site. Our work highlights the potential of cryo-EM to obtain structures of P. falciparum proteins that are unfeasible by means of crystallography.
Collapse
Affiliation(s)
- Victor O Gawriljuk
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Andre S Godoy
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, 13563-120, Brazil
| | - Rick Oerlemans
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Luise A T Welker
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
- Saarland University, Department of Pharmacy, Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Matthew R Groves
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
14
|
Hayes CC, Schal C. Review on the impacts of indoor vector control on domiciliary pests: good intentions challenged by harsh realities. Proc Biol Sci 2024; 291:20240609. [PMID: 39043243 PMCID: PMC11265923 DOI: 10.1098/rspb.2024.0609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 07/25/2024] Open
Abstract
Arthropod vectored diseases have been a major impediment to societal advancements globally. Strategies to mitigate transmission of these diseases include preventative care (e.g. vaccination), primary treatment and most notably, the suppression of vectors in both indoor and outdoor spaces. The outcomes of indoor vector control (IVC) strategies, such as long-lasting insecticide-treated nets (LLINs) and indoor residual sprays (IRSs), are heavily influenced by individual and community-level perceptions and acceptance. These perceptions, and therefore product acceptance, are largely influenced by the successful suppression of non-target nuisance pests such as bed bugs and cockroaches. Adoption and consistent use of LLINs and IRS is responsible for immense reductions in the prevalence and incidence of malaria. However, recent observations suggest that failed control of indoor pests, leading to product distrust and abandonment, may threaten vector control programme success and further derail already slowed progress towards malaria elimination. We review the evidence of the relationship between IVC and nuisance pests and discuss the dearth of research on this relationship. We make the case that the ancillary control of indoor nuisance and public health pests needs to be considered in the development and implementation of new technologies for malaria elimination.
Collapse
Affiliation(s)
- Christopher C. Hayes
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC27695-7613, USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC27695-7613, USA
| |
Collapse
|
15
|
Farhan K, Tariq B, Sohail F, Saeed N. R21/Matrix-M™ malaria vaccine: A realm of hope for combating malaria in developing countries? New Microbes New Infect 2024; 60-61:101443. [PMID: 39040126 PMCID: PMC11261086 DOI: 10.1016/j.nmni.2024.101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024] Open
Affiliation(s)
- Kanza Farhan
- Jinnah Sindh Medical University, Karachi, Pakistan
| | - Burhan Tariq
- Jinnah Sindh Medical University, Karachi, Pakistan
| | - Fiza Sohail
- Jinnah Sindh Medical University, Karachi, Pakistan
| | - Navera Saeed
- Jinnah Sindh Medical University, Karachi, Pakistan
| |
Collapse
|
16
|
Arunachalam PS, Ha N, Dennison SM, Spreng RL, Seaton KE, Xiao P, Feng Y, Zarnitsyna VI, Kazmin D, Hu M, Santagata JM, Xie X, Rogers K, Shirreff LM, Chottin C, Spencer AJ, Dutta S, Prieto K, Julien JP, Tomai M, Fox CB, Villinger F, Hill AVS, Tomaras GD, Pulendran B. A comparative immunological assessment of multiple clinical-stage adjuvants for the R21 malaria vaccine in nonhuman primates. Sci Transl Med 2024; 16:eadn6605. [PMID: 39083589 DOI: 10.1126/scitranslmed.adn6605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/04/2024] [Indexed: 08/02/2024]
Abstract
Authorization of the Matrix-M (MM)-adjuvanted R21 vaccine by three countries and its subsequent endorsement by the World Health Organization for malaria prevention in children are a milestone in the fight against malaria. Yet, our understanding of the innate and adaptive immune responses elicited by this vaccine remains limited. Here, we compared three clinically relevant adjuvants [3M-052 + aluminum hydroxide (Alum) (3M), a TLR7/8 agonist formulated in Alum; GLA-LSQ, a TLR4 agonist formulated in liposomes with QS-21; and MM, the now-approved adjuvant for R21] for their capacity to induce durable immune responses to R21 in macaques. R21 adjuvanted with 3M on a 0, 8, and 23-week schedule elicited anti-circumsporozoite antibody responses comparable in magnitude to the R21/MM vaccine administered using a 0-4-8-week regimen and persisted up to 72 weeks with a half-life of 337 days. A booster dose at 72 weeks induced a recall response similar to the R21/MM vaccination. In contrast, R21/GLA-LSQ immunization induced a lower, short-lived response at the dose used. Consistent with the durable serum antibody responses, MM and 3M induced long-lived plasma cells in the bone marrow and other tissues, including the spleen. Furthermore, whereas 3M stimulated potent and persistent antiviral transcriptional and cytokine signatures after primary and booster immunizations, MM induced enhanced expression of interferon- and TH2-related signatures more highly after the booster vaccination. Collectively, these findings provide a resource on the immune responses of three clinically relevant adjuvants with R21 and highlight the promise of 3M as another adjuvant for malarial vaccines.
Collapse
Affiliation(s)
- Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - NaYoung Ha
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - S Moses Dennison
- Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC 27701, USA
| | - Rachel L Spreng
- Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC 27701, USA
- Duke Human Vaccine Institute, Duke University, Durham, NC 27703, USA
| | - Kelly E Seaton
- Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC 27701, USA
| | - Peng Xiao
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Yupeng Feng
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | - Dmitri Kazmin
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mengyun Hu
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jordan M Santagata
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xia Xie
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kenneth Rogers
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Lisa M Shirreff
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Claire Chottin
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | | | - Sheetij Dutta
- Structural Vaccinology Laboratory, Biologics Research and Development Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Katherine Prieto
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Departments of Biochemistry and Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | | | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC 27701, USA
- Duke Human Vaccine Institute, Duke University, Durham, NC 27703, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Duffy PE, Gorres JP, Healy SA, Fried M. Malaria vaccines: a new era of prevention and control. Nat Rev Microbiol 2024:10.1038/s41579-024-01065-7. [PMID: 39025972 DOI: 10.1038/s41579-024-01065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/20/2024]
Abstract
Malaria killed over 600,000 people in 2022, a death toll that has not improved since 2015. Additionally, parasites and mosquitoes resistant to existing interventions are spreading across Africa and other regions. Vaccines offer hope to reduce the mortality burden: the first licensed malaria vaccines, RTS,S and R21, will be widely deployed in 2024 and should substantially reduce childhood deaths. In this Review, we provide an overview of the malaria problem and the Plasmodium parasite, then describe the RTS,S and R21 vaccines (the first vaccines for any human parasitic disease), summarizing their benefits and limitations. We explore next-generation vaccines designed using new knowledge of malaria pathogenesis and protective immunity, which incorporate antigens and platforms to elicit effective immune responses against different parasite stages in human or mosquito hosts. We describe a decision-making process that prioritizes malaria vaccine candidates for development in a resource-constrained environment. Future vaccines might improve upon the protective efficacy of RTS,S or R21 for children, or address the wider malaria scourge by preventing pregnancy malaria, reducing the burden of Plasmodium vivax or accelerating malaria elimination.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - J Patrick Gorres
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Li J, Li X, Dong J, Wei J, Guo X, Wang G, Xu M, Zhao A. Enhanced Immune Responses in Mice by Combining the Mpox Virus B6R-Protein and Aluminum Hydroxide-CpG Vaccine Adjuvants. Vaccines (Basel) 2024; 12:776. [PMID: 39066415 PMCID: PMC11281346 DOI: 10.3390/vaccines12070776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Novel adjuvants and innovative combinations of adjuvants (Adjuvant Systems) have facilitated the development of enhanced and new vaccines against re-emerging and challenging pathogenic microorganisms. Nonetheless, the efficacy of adjuvants is influenced by various factors, and the same adjuvant may generate entirely different immune responses when paired with different antigens. Herein, we combined the MPXV-B6R antigen with BC02, a novel adjuvant with proprietary technology, to assess its capability to induce both cellular and humoral immunity in mouse models. Mice received two intramuscular injections of B6R-BC02, which resulted in the production of MPXV-specific IgG, IgG1, and IgG2a antibodies. Additionally, it elicited strong MPXV-specific Th1-oriented cellular immunity and persistent effector memory B-cell responses. The advantages of BC02 were further validated, including rapid initiation of the immune response, robust recall memory, and sustained immune response induction. Although the potential of immunized mice to produce serum-neutralizing antibodies against the vaccinia virus requires further improvement, the exceptional performance of BC02 as an adjuvant for the MPXV-B6R antigen has been consistently demonstrated.
Collapse
Affiliation(s)
- Junli Li
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China; (J.L.); (X.L.); (J.D.); (J.W.); (X.G.); (G.W.); (M.X.)
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing 102629, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing 102629, China
| | - Xiaochi Li
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China; (J.L.); (X.L.); (J.D.); (J.W.); (X.G.); (G.W.); (M.X.)
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing 102629, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing 102629, China
| | - Jiaxin Dong
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China; (J.L.); (X.L.); (J.D.); (J.W.); (X.G.); (G.W.); (M.X.)
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing 102629, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing 102629, China
| | - Jiazheng Wei
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China; (J.L.); (X.L.); (J.D.); (J.W.); (X.G.); (G.W.); (M.X.)
- College of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang 117004, China
| | - Xiaonan Guo
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China; (J.L.); (X.L.); (J.D.); (J.W.); (X.G.); (G.W.); (M.X.)
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing 102629, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing 102629, China
| | - Guozhi Wang
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China; (J.L.); (X.L.); (J.D.); (J.W.); (X.G.); (G.W.); (M.X.)
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing 102629, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing 102629, China
| | - Miao Xu
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China; (J.L.); (X.L.); (J.D.); (J.W.); (X.G.); (G.W.); (M.X.)
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing 102629, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing 102629, China
| | - Aihua Zhao
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China; (J.L.); (X.L.); (J.D.); (J.W.); (X.G.); (G.W.); (M.X.)
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing 102629, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing 102629, China
| |
Collapse
|
19
|
Yanik S, Venkatesh V, Gordy JT, Gabriel-Alameh M, Meza J, Li Y, Glass E, Flores-Garcia Y, Tam Y, Chaiyawong N, Sarkar D, Weissman D, Markham R, Srinivasan P. Immature dendritic cell-targeting mRNA vaccine expressing PfCSP enhances protective immune responses against Plasmodium liver infection. RESEARCH SQUARE 2024:rs.3.rs-4656309. [PMID: 39041038 PMCID: PMC11261966 DOI: 10.21203/rs.3.rs-4656309/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Resurgence in malaria has been noted in 2022 with 249 million clinical cases resulting in 608,000 deaths, mostly in children under five. Two vaccines, RTS, S, and more recently R21, targeting the circumsporozoite protein (CSP) are recommended by the WHO but are not yet widely available. Strong humoral responses to neutralize sporozoites before they can infect the hepatocytes are important for vaccine-mediated protection. Suboptimal protection conferred by these first-generation vaccines highlight the need for approaches to improve vaccine-induced immune responses. With the recent success of mRNA-LNP vaccines against COVID-19, there is growing interest in leveraging this approach to enhance malaria vaccines. Here, we present the development of a novel chemokine fusion mRNA vaccine aimed at boosting immune responses to PfCSP by targeting the immunogen to immature dendritic cells (iDC). Vaccination of mice with mRNA encoding full-length CSP fused to macrophage inflammatory protein 3 alpha (MIP3α) encapsulated within lipid nanoparticles (LNP) elicited robust CD4+ T cell responses and enhanced antibody titers against NANP repeat epitopes compared to a conventional CSP mRNA-LNP vaccine. Importantly, the CSP-MIP3α fusion vaccine provided significantly greater protection against liver infection upon challenge with P. berghei PfCSP transgenic sporozoites. This enhanced protection was associated with multifunctional CD4+ T cells levels and anti-NANP repeat titers. This study highlights the potential to augment immune responses to PfCSP through iDC targeting and bolster protection against malaria liver infection.
Collapse
Affiliation(s)
- Sean Yanik
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Varsha Venkatesh
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - James T Gordy
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | | | - Jacob Meza
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | - Yangchen Li
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | - Elizabeth Glass
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Ying Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | - Nattawat Chaiyawong
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Deepti Sarkar
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Drew Weissman
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA 19104
| | - Richard Markham
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | - Prakash Srinivasan
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| |
Collapse
|
20
|
Sinumvayo JP, Munezero PC, Tope AT, Adeyemo RO, Bale MI, Nyandwi JB, Haakuria VM, Mutesa L, Adedeji AA. Advancing Vaccinology Capacity: Education and Efforts in Vaccine Development and Manufacturing across Africa. Vaccines (Basel) 2024; 12:741. [PMID: 39066380 PMCID: PMC11281707 DOI: 10.3390/vaccines12070741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Africa, home to the world's second-largest population of approximately 1.3 billion, grapples with significant challenges in meeting its medical needs, particularly in accessing quality healthcare services and products. The continent faces a continuous onslaught of emerging infectious diseases, exacerbating the strain on its already fragile public health infrastructure. The COVID-19 crisis highlighted the urgency to build local vaccine production capacity and strengthen the health infrastructure in general. The risks associated with a heavy reliance on imported vaccines were exposed during the COVID-19 pandemic, necessitating the need to nurture and strengthen the local manufacturing of vaccines and therapeutic biologics. Various initiatives addressing training, manufacturing, and regulatory affairs are underway, and these require increasing dedicated and purposeful financial investment. Building vaccine manufacturing capacity requires substantial investment in training and infrastructure. This manuscript examines the current state of education in vaccinology and related sciences in Africa. It also provides an overview of the continent's efforts to address educational needs in vaccine development and manufacturing. Additionally, it evaluates the initiatives aimed at strengthening vaccine education and literacy, highlighting successful approaches and ongoing challenges. By assessing the progress made and identifying the remaining obstacles, this review offers insights into how Africa can enhance its vaccine manufacturing capacity to respond to vaccine-preventable disease challenges.
Collapse
Affiliation(s)
- Jean Paul Sinumvayo
- Department of Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye P.O. Box 117, Rwanda; (P.C.M.); (A.T.T.); (R.O.A.); (M.I.B.)
- East African Community, Regional Center of Excellence for Vaccines, Immunization and Health Supply Chain Management (EAC RCE-VIHSCM), Kigali P.O. Box 3286, Rwanda; (J.B.N.); (V.M.H.)
- Future of Medicine, Science, Technology and Innovation Research Group, School of Medicine and Pharmacy, University of Rwanda, Rwanda, Kigali P.O. Box 3286, Rwanda;
| | - Pierre Celestin Munezero
- Department of Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye P.O. Box 117, Rwanda; (P.C.M.); (A.T.T.); (R.O.A.); (M.I.B.)
- Future of Medicine, Science, Technology and Innovation Research Group, School of Medicine and Pharmacy, University of Rwanda, Rwanda, Kigali P.O. Box 3286, Rwanda;
| | - Adegboyega Taofeek Tope
- Department of Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye P.O. Box 117, Rwanda; (P.C.M.); (A.T.T.); (R.O.A.); (M.I.B.)
- Future of Medicine, Science, Technology and Innovation Research Group, School of Medicine and Pharmacy, University of Rwanda, Rwanda, Kigali P.O. Box 3286, Rwanda;
| | - Rasheed Omotayo Adeyemo
- Department of Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye P.O. Box 117, Rwanda; (P.C.M.); (A.T.T.); (R.O.A.); (M.I.B.)
- Future of Medicine, Science, Technology and Innovation Research Group, School of Medicine and Pharmacy, University of Rwanda, Rwanda, Kigali P.O. Box 3286, Rwanda;
| | - Muritala Issa Bale
- Department of Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye P.O. Box 117, Rwanda; (P.C.M.); (A.T.T.); (R.O.A.); (M.I.B.)
- Future of Medicine, Science, Technology and Innovation Research Group, School of Medicine and Pharmacy, University of Rwanda, Rwanda, Kigali P.O. Box 3286, Rwanda;
| | - Jean Baptiste Nyandwi
- East African Community, Regional Center of Excellence for Vaccines, Immunization and Health Supply Chain Management (EAC RCE-VIHSCM), Kigali P.O. Box 3286, Rwanda; (J.B.N.); (V.M.H.)
- Department of Pharmacology and Toxicology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye P.O. Box 117, Rwanda
| | - Vetjaera Mekupi Haakuria
- East African Community, Regional Center of Excellence for Vaccines, Immunization and Health Supply Chain Management (EAC RCE-VIHSCM), Kigali P.O. Box 3286, Rwanda; (J.B.N.); (V.M.H.)
| | - Leon Mutesa
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye P.O. Box 117, Rwanda;
- Center for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda
| | - Ahmed Adebowale Adedeji
- Future of Medicine, Science, Technology and Innovation Research Group, School of Medicine and Pharmacy, University of Rwanda, Rwanda, Kigali P.O. Box 3286, Rwanda;
- Department of Pharmacology and Toxicology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye P.O. Box 117, Rwanda
| |
Collapse
|
21
|
Franco A, Flores-Garcia Y, Venezia J, Daoud A, Scott AL, Zavala F, Sullivan DJ. Hemozoin-induced IFN-γ production mediates innate immune protection against sporozoite infection. Microbes Infect 2024; 26:105343. [PMID: 38670216 DOI: 10.1016/j.micinf.2024.105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Hemozoin is a crystal synthesized by Plasmodium parasites during hemoglobin digestion in the erythrocytic stage. The hemozoin released when the parasites egress from the red blood cell, which is complexed with parasite DNA, is cleared from the circulation by circulating and tissue-resident monocytes and macrophages, respectively. Recently, we reported that intravenous administration of purified hemozoin complexed with Plasmodium berghei DNA (HzPbDNA) resulted in an innate immune response that blocked liver stage development of sporozoites that was dose-dependent and time-limited. Here, we further characterize the organismal, cellular, and molecular events associated with this protective innate response in the liver and report that a large proportion of the IV administered HzPbDNA localized to F4/80+ cells in the liver and that the rapid and strong protection against liver-stage development waned quickly such that by 1 week post-HzPbDNA treatment animals were fully susceptible to infection. RNAseq of the liver after IV administration of HzPbDNA demonstrated that the rapid and robust induction of genes associated with the acute phase response, innate immune activation, cellular recruitment, and IFN-γ signaling observed at day 1 was largely absent at day 7. RNAseq analysis implicated NK cells as the major cellular source of IFN-γ. In vivo cell depletion and IFN-γ neutralization experiments supported the hypothesis that tissue-resident macrophages and NK cells are major contributors to the protective response and the NK cell-derived IFN-γ is key to induction of the mechanisms that block sporozoite development in the liver. These findings advance our understanding of the innate immune responses that prevent liver stage malaria infection.
Collapse
Affiliation(s)
- Adriano Franco
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Jarrett Venezia
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Abdel Daoud
- Department of Pathology, Johns Hopkins School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Alan L Scott
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
22
|
Ferrer P, Berry AA, Bucsan AN, Prajapati SK, Krishnan K, Barbeau MC, Rickert DM, Guerrero SM, Usui M, Abebe Y, Patil A, Chakravarty S, Billingsley PF, Pa'ahana-Brown F, Strauss K, Shrestha B, Nomicos E, Deye GA, Sim BKL, Hoffman SL, Williamson KC, Lyke KE. Repeat controlled human Plasmodium falciparum infections delay bloodstream patency and reduce symptoms. Nat Commun 2024; 15:5194. [PMID: 38890271 PMCID: PMC11189388 DOI: 10.1038/s41467-024-49041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Resistance to clinical malaria takes years to develop even in hyperendemic regions and sterilizing immunity has rarely been observed. To evaluate the maturation of the host response against controlled repeat exposures to P. falciparum (Pf) NF54 strain-infected mosquitoes, we systematically monitored malaria-naïve participants through an initial exposure to uninfected mosquitoes and 4 subsequent homologous exposures to Pf-infected mosquitoes over 21 months (n = 8 males) (ClinicalTrials.gov# NCT03014258). The primary outcome was to determine whether protective immunity against parasite infection develops following repeat CHMI and the secondary outcomes were to track the clinical signs and symptoms of malaria and anti-Pf antibody development following repeat CHMI. After two exposures, time to blood stage patency increases significantly and the number of reported symptoms decreases indicating the development of clinical tolerance. The time to patency correlates positively with both anti-Pf circumsporozoite protein (CSP) IgG and CD8 + CD69+ effector memory T cell levels consistent with partial pre-erythrocytic immunity. IFNγ levels decrease significantly during the participants' second exposure to high blood stage parasitemia and could contribute to the decrease in symptoms. In contrast, CD4-CD8 + T cells expressing CXCR5 and the inhibitory receptor, PD-1, increase significantly after subsequent Pf exposures, possibly dampening the memory response and interfering with the generation of robust sterilizing immunity.
Collapse
Affiliation(s)
- Patricia Ferrer
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Andrea A Berry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allison N Bucsan
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Surendra K Prajapati
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Karthik Krishnan
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Michelle C Barbeau
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - David M Rickert
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Sandra Mendoza Guerrero
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Miho Usui
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | | | | | | | | | - Faith Pa'ahana-Brown
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathy Strauss
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Biraj Shrestha
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Effie Nomicos
- Division of Microbiology and Infectious Diseases, Parasitology and International Programs Branch, NIAID, NIH, Bethesda, MD, USA
| | - Gregory A Deye
- Division of Microbiology and Infectious Diseases, Parasitology and International Programs Branch, NIAID, NIH, Bethesda, MD, USA
| | | | | | - Kim C Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Olawade DB, Wada OZ, Ezeagu CN, Aderinto N, Balogun MA, Asaolu FT, David-Olawade AC. Malaria vaccination in Africa: A mini-review of challenges and opportunities. Medicine (Baltimore) 2024; 103:e38565. [PMID: 38875411 PMCID: PMC11175883 DOI: 10.1097/md.0000000000038565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024] Open
Abstract
Malaria remains an endemic public health concern in Africa, significantly contributing to morbidity and mortality rates. The inadequacies of traditional prevention measures, like integrated vector management and antimalarial drugs, have spurred efforts to strengthen the development and deployment of malaria vaccines. In addition to existing interventions like insecticide-treated bed nets and artemisinin-based combination therapies, malaria vaccine introduction and implementation in Africa could drastically reduce the disease burden and hasten steps toward malaria elimination. The malaria vaccine rollout is imminent as optimistic results from final clinical trials are anticipated. Thus, determining potential hurdles to malaria vaccine delivery and uptake in malaria-endemic regions of sub-Saharan Africa will enhance decisions and policymakers' preparedness to facilitate efficient and equitable vaccine delivery. A multisectoral approach is recommended to increase funding and resources, active community engagement and participation, and the involvement of healthcare providers.
Collapse
Affiliation(s)
- David B. Olawade
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, UK
| | - Ojima Z. Wada
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Chiamaka Norah Ezeagu
- Department of Public Health, School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | | | | |
Collapse
|
24
|
Friedman-Klabanoff DJ, Berry AA, Travassos MA, Shriver M, Cox C, Butts J, Lundeen JS, Strauss KA, Joshi S, Shrestha B, Mo AX, Nomicos EYH, Deye GA, Regules JA, Bergmann-Leitner ES, Pasetti MF, Laurens MB. Recombinant Full-length Plasmodium falciparum Circumsporozoite Protein-Based Vaccine Adjuvanted With Glucopyranosyl Lipid A-Liposome Quillaja saponaria 21: Results of Phase 1 Testing With Malaria Challenge. J Infect Dis 2024; 229:1883-1893. [PMID: 38330357 PMCID: PMC11175675 DOI: 10.1093/infdis/jiae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Malaria is preventable yet causes >600 000 deaths annually. RTS,S, the first marketed malaria vaccine, has modest efficacy, but improvements are needed for eradication. METHODS We conducted an open-label, dose escalation phase 1 study of a full-length recombinant circumsporozoite protein vaccine (rCSP) administered with adjuvant glucopyranosyl lipid A-liposome Quillaja saponaria 21 formulation (GLA-LSQ) on days 1, 29, and 85 or 1 and 490 to healthy, malaria-naive adults. The primary end points were safety and reactogenicity. The secondary end points were antibody responses and Plasmodium falciparum parasitemia after homologous controlled human malaria infection. RESULTS Participants were enrolled into 4 groups receiving rCSP/GLA-LSQ: 10 µg × 3 (n = 20), 30 µg × 3 (n = 10), 60 µg × 3 (n = 10), or 60 µg × 2 (n = 9); 10 participants received 30 µg rCSP alone × 3, and there were 6 infectivity controls. Participants experienced no serious adverse events. Rates of solicited and unsolicited adverse events were similar among groups. All 26 participants who underwent controlled human malaria infection 28 days after final vaccinations developed malaria. Increasing vaccine doses induced higher immunoglobulin G titers but did not achieve previously established RTS,S benchmarks. CONCLUSIONS rCSP/GLA-LSQ had favorable safety results. However, tested regimens did not induce protective immunity. Further investigation could assess whether adjuvant or schedule adjustments improve efficacy. CLINICAL TRIALS REGISTRATION NCT03589794.
Collapse
Affiliation(s)
- DeAnna J Friedman-Klabanoff
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Andrea A Berry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mark A Travassos
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mallory Shriver
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | - Kathleen A Strauss
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sudhaunshu Joshi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Biraj Shrestha
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Annie X Mo
- Parasitology and International Programs Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Effie Y H Nomicos
- Parasitology and International Programs Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gregory A Deye
- Parasitology and International Programs Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason A Regules
- Biologics Research & Development, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Elke S Bergmann-Leitner
- Biologics Research & Development, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Marcela F Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew B Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Wistuba-Hamprecht J, Reuter B, Fendel R, Hoffman SL, Campo JJ, Felgner PL, Kremsner PG, Mordmüller B, Pfeifer N. Machine learning prediction of malaria vaccine efficacy based on antibody profiles. PLoS Comput Biol 2024; 20:e1012131. [PMID: 38848436 PMCID: PMC11189177 DOI: 10.1371/journal.pcbi.1012131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 06/20/2024] [Accepted: 05/02/2024] [Indexed: 06/09/2024] Open
Abstract
Immunization through repeated direct venous inoculation of Plasmodium falciparum (Pf) sporozoites (PfSPZ) under chloroquine chemoprophylaxis, using the PfSPZ Chemoprophylaxis Vaccine (PfSPZ-CVac), induces high-level protection against controlled human malaria infection (CHMI). Humoral and cellular immunity contribute to vaccine efficacy but only limited information about the implicated Pf-specific antigens is available. Here, we examined Pf-specific antibody profiles, measured by protein arrays representing the full Pf proteome, of 40 placebo- and PfSPZ-immunized malaria-naïve volunteers from an earlier published PfSPZ-CVac dose-escalation trial. For this purpose, we both utilized and adapted supervised machine learning methods to identify predictive antibody profiles at two different time points: after immunization and before CHMI. We developed an adapted multitask support vector machine (SVM) approach and compared it to standard methods, i.e. single-task SVM, regularized logistic regression and random forests. Our results show, that the multitask SVM approach improved the classification performance to discriminate the protection status based on the underlying antibody-profiles while combining time- and dose-dependent data in the prediction model. Additionally, we developed the new fEature diStance exPlainabilitY (ESPY) method to quantify the impact of single antigens on the non-linear multitask SVM model and make it more interpretable. In conclusion, our multitask SVM model outperforms the studied standard approaches in regard of classification performance. Moreover, with our new explanation method ESPY, we were able to interpret the impact of Pf-specific antigen antibody responses that predict sterile protective immunity against CHMI after immunization. The identified Pf-specific antigens may contribute to a better understanding of immunity against human malaria and may foster vaccine development.
Collapse
Affiliation(s)
- Jacqueline Wistuba-Hamprecht
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- Institute for Biomedical Informatics, University of Tübingen, Tübingen, Germany
| | - Bernhard Reuter
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- Institute for Biomedical Informatics, University of Tübingen, Tübingen, Germany
| | - Rolf Fendel
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, partner site Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | | - Joseph J. Campo
- Antigen Discovery Inc., Irvine, California, United States of America
| | - Philip L. Felgner
- Department of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Peter G. Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, partner site Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nico Pfeifer
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- Institute for Biomedical Informatics, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, partner site Tübingen, Tübingen, Germany
| |
Collapse
|
26
|
Lawal L, Buhari AO, Jaji TA, Alatare AS, Adeyemo AO, Olumoh AO, Yusuff YA, Osborn G, Mogaji AB, Adoto BH, Ibrahim NG, Saliu WO, Abdul‐Rahman T. Lingering challenges in malaria elimination efforts in sub-Saharan Africa: Insights and potential solutions. Health Sci Rep 2024; 7:e2122. [PMID: 38831778 PMCID: PMC11144596 DOI: 10.1002/hsr2.2122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/14/2024] [Accepted: 04/28/2024] [Indexed: 06/05/2024] Open
Abstract
Introduction Between 2000 and 2015, significant gains were recorded in reducing the global burden of malaria due to enhanced global collaboration and increased funding. However, progress has stagnated post-2015, and the COVID-19 pandemic seems to have reversed some of these gains, necessitating a critical reevaluation of interventions. This paper aims to analyze the setbacks and offer recommendations for advancement in malaria control and prevention in sub-Saharan Africa. Methods We conducted searches on Google Scholar, PubMed, and relevant organization websites to identify relevant studies on malaria control and prevention and associated challenges in sub-Saharan Africa from 2015 to the present. Additionally, studies on individual sub-Saharan African countries were reviewed to ensure comprehensiveness. Data from selected studies were extracted and analyzed using a narrative synthesis approach to offer a concise overview of the evidence. Findings We observe that the halt in progress of malaria control in sub-Saharan Africa has deep roots in socioeconomic, political, and environmental factors. These challenges are exacerbated by the population explosion in the region, low coverage of interventions due to funding deficits and incessant crises, and the degradation of the efficacy of existing malaria commodities. Conclusion Sub-Saharan Africa is at a crossroads in its fight against malaria. Promising new frontiers such as malaria vaccines, preventive monoclonal antibodies, new-generation insecticide-treated nets, and potentially artificial intelligence-driven technologies offer hope in advancing malaria control and prevention in the region. Through commitment and collaboration, leveraging these opportunities can help surmount challenges and ultimately eliminate malaria in sub-Saharan Africa.
Collapse
Affiliation(s)
- Lukman Lawal
- Centre for Malaria and Other Tropical DiseasesIlorinNigeria
- Faculty of Clinical SciencesUniversity of IlorinIlorinNigeria
| | | | | | | | | | | | | | - Gabriel Osborn
- Faculty of Clinical SciencesUniversity of IlorinIlorinNigeria
| | | | | | | | | | - Toufik Abdul‐Rahman
- Medical InstituteSumy State UniversitySumyUkraine
- Toufik's World Medical AssociationSumyUkraine
| |
Collapse
|
27
|
Johnson Y, Shakri AR, Pond-Tor S, Jnawali A, Najrana T, Wu H, Badhai J, Alameh MG, Weissman D, Kabyemela E, Duffy P, Fried M, Kurtis J, Raj DK. Immunization with PfGBP130 generates antibodies that inhibit RBC invasion by P. falciparum parasites. Front Immunol 2024; 15:1350560. [PMID: 38863702 PMCID: PMC11165087 DOI: 10.3389/fimmu.2024.1350560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/30/2024] [Indexed: 06/13/2024] Open
Abstract
Background Despite decades of effort, Plasmodium falciparum malaria remains a leading killer of children. The absence of a highly effective vaccine and the emergence of parasites resistant to both diagnosis as well as treatment hamper effective public health interventions. Methods and results To discover new vaccine candidates, we used our whole proteome differential screening method and identified PfGBP130 as a parasite protein uniquely recognized by antibodies from children who had developed resistance to P. falciparum infection but not from those who remained susceptible. We formulated PfGBP130 as lipid encapsulated mRNA, DNA plasmid, and recombinant protein-based immunogens and evaluated the efficacy of murine polyclonal anti-PfGBP130 antisera to inhibit parasite growth in vitro. Immunization of mice with PfGBP130-A (aa 111-374), the region identified in our differential screen, formulated as a DNA plasmid or lipid encapsulated mRNA, but not as a recombinant protein, induced antibodies that inhibited RBC invasion in vitro. mRNA encoding the full ectodomain of PfGBP130 (aa 89-824) also generated parasite growth-inhibitory antibodies. Conclusion We are currently advancing PfGBP130-A formulated as a lipid-encapsulated mRNA for efficacy evaluation in non-human primates.
Collapse
Affiliation(s)
- Yannick Johnson
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Ahmad Rushdi Shakri
- Department of Internal Medicine, University of South Florida, Tampa, FL, United States
| | - Sunthorn Pond-Tor
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Center for International Health Research, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Anup Jnawali
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Center for International Health Research, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Tanbir Najrana
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Center for International Health Research, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Haiwei Wu
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Center for International Health Research, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Jhasketan Badhai
- Department of Internal Medicine, University of South Florida, Tampa, FL, United States
| | | | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Edward Kabyemela
- Department of Pathology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Patrick Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Jonathan Kurtis
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Center for International Health Research, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Dipak Kumar Raj
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Internal Medicine, University of South Florida, Tampa, FL, United States
- Center for International Health Research, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
28
|
Miura K. How to Accelerate Early Stage of Malaria Vaccine Development by Optimizing Functional Assays. Vaccines (Basel) 2024; 12:586. [PMID: 38932315 PMCID: PMC11209467 DOI: 10.3390/vaccines12060586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
While two Plasmodium falciparum circumsporozoite protein-based pre-erythrocytic vaccines (PEV), RTS,S and R21, have been approved by the WHO, no blood-stage vaccine (BSV) or transmission-blocking vaccine (TBV) has reached a phase 3 trial. One of the major obstacles that slows down malaria vaccine development is the shortage (or lack) of in vitro assays or animal models by which investigators can reasonably select the best vaccine formulation (e.g., antigen, adjuvant, or platform) and/or immunization strategy (e.g., interval of inoculation or route of immunization) before a human phase 2 trial. In the case of PEV, RTS,S and R21 have set a benchmark, and a new vaccine can be compared with (one of) the approved PEV directly in preclinical or early clinical studies. However, such an approach cannot be utilized for BSV or TBV development at this moment. The focus of this review is in vitro assays or in vivo models that can be used for P. falciparum BSV or TBV development, and I discuss important considerations during assay selection, standardization, qualification, validation, and interpretation of the assay results. Establishment of a robust assay/model with proper interpretation of the results is the one of key elements to accelerate future vaccine development.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
29
|
Ventocilla JA, Tapia LL, Ponce R, Franco A, Leelawong M, Aguiar JC, Baldeviano GC, Wilder BK. Evaluation of naturally acquired immune responses against novel pre-erythrocytic Plasmodium vivax proteins in a low endemic malaria population located in the Peruvian Amazon Basin. Malar J 2024; 23:163. [PMID: 38783317 PMCID: PMC11118720 DOI: 10.1186/s12936-024-04978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Plasmodium vivax represents the most geographically widespread human malaria parasite affecting civilian and military populations in endemic areas. Targeting the pre-erythrocytic (PE) stage of the parasite life cycle is especially appealing for developing P. vivax vaccines as it would prevent disease and transmission. Here, naturally acquired immunity to a panel of P. vivax PE antigens was explored, which may facilitate vaccine development and lead to a better understanding of naturally acquired PE immunity. METHODS Twelve P. vivax PE antigens orthologous to a panel of P. falciparum antigens previously identified as highly immunogenic in protected subjects after immunization with radiation attenuated sporozoites (RAS) were used for evaluation of humoral and cellular immunity by ELISA and IFN-γ ELISpot. Samples from P. vivax infected individuals (n = 76) from a low endemic malaria region in the Peruvian Amazon Basin were used. RESULTS In those clinical samples, all PE antigens evaluated showed positive IgG antibody reactivity with a variable prevalence of 58-99% in recently P. vivax diagnosed patients. The magnitude of the IgG antibody response against PE antigens was lower compared with blood stage antigens MSP1 and DBP-II, although antibody levels persisted better for PE antigens (average decrease of 6% for PE antigens and 43% for MSP1, p < 0.05). Higher IgG antibodies was associated with one or more previous malaria episodes only for blood stage antigens (p < 0.001). High IgG responders across PE and blood stage antigens showed significantly lower parasitaemia compared to low IgG responders (median 1,921 vs 4,663 par/µl, p < 0.05). In a subgroup of volunteers (n = 17),positive IFN-γ T cell response by ELISPOT was observed in 35% vs 9-35% against blood stage MSP1 and PE antigens, respectively, but no correlation with IgG responses. CONCLUSIONS These results demonstrate clear humoral and T cell responses against P. vivax PE antigens in individuals naturally infected with P. vivax. These data identify novel attractive PE antigens suitable for use in the potential development and selection of new malaria vaccine candidates which can be used as a part of malaria prevention strategies in civilian and military populations living in P. vivax endemic areas.
Collapse
Affiliation(s)
- Julio A Ventocilla
- Vysnova Partners Inc., Bethesda, USA
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - L Lorena Tapia
- U.S. Naval Medical Research Unit South, Lima-Peru (NAMRU SOUTH), Bellavista, Peru
| | | | | | - Mindy Leelawong
- U.S. Naval Medical Research Unit South, Lima-Peru (NAMRU SOUTH), Bellavista, Peru
- NYC Department of Health and Mental Hygiene, Long Island City, USA
| | | | - G Christian Baldeviano
- U.S. Naval Medical Research Unit South, Lima-Peru (NAMRU SOUTH), Bellavista, Peru
- Bluebird Bio, Inc, Somerville, USA
| | - Brandon K Wilder
- U.S. Naval Medical Research Unit South, Lima-Peru (NAMRU SOUTH), Bellavista, Peru.
- Oregon Health & Science University, Portland, USA.
| |
Collapse
|
30
|
Lv Y, Wu S, Nie Q, Liu S, Xu W, Chen G, Du Y, Chen J. Extracellular vesicles derived from plasmodium-infected red blood cells alleviate cerebral malaria in plasmodium berghei ANKA-infected C57BL/6J mice. Int Immunopharmacol 2024; 132:111982. [PMID: 38569430 DOI: 10.1016/j.intimp.2024.111982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
RTS,S is the first malaria vaccine recommended for implementation among young children at risk. However, vaccine efficacy is modest and short-lived. To mitigate the risk of cerebral malaria (CM) among children under the age of 5, it is imperative to develop new vaccines. EVs are potential vaccine candidates as they obtain the ability of brain-targeted delivery and transfer plasmodium antigens and immunomodulators during infections. This study extracted EVs from BALB/c mice infected with Plasmodium yoelii 17XNL (P.y17XNL). C57BL/6J mice were intravenously immunized with EVs (EV-I.V. + CM group) or subcutaneously vaccinated with the combination of EVs and CpG ODN-1826 (EV + CPG ODN-S.C. + CM group) on days 0 and 20, followed by infection with Plasmodium berghei ANKA (P.bANKA) on day 20 post-second immunization. We monitored Parasitemia and survival rate. The integrity of the Blood-brain barrier (BBB) was examined using Evans blue staining.The levels of cytokines and adhesion molecules were evaluated using Luminex, RT-qPCR, and WB. Brain pathology was evaluated by hematoxylin and eosin and immunohistochemical staining. The serum levels of IgG, IgG1, and IgG2a were analyzed by enzyme-linked immunosorbent assay. Compared with those in the P.bANKA-infected group, parasitemia increased slowly, death was delayed (day 10 post-infection), and the survival rate reached 75 %-83.3 % in the EV-I.V. + ECM and EV + CPG ODN-S.C. + ECM groups. Meanwhile, compared with the EV + CPG ODN-S.C. + ECM group, although parasitemia was almost the same, the survival rate increased in the EV-I.V. + ECM group.Additionally, EVs immunization markedly downregulated inflammatory responses in the spleen and brain and ameliorated brain pathological changes, including BBB disruption and infected red blood cell (iRBC) sequestration. Furthermore, the EVs immunization group exhibited enhanced antibody responses (upregulation of IgG1 and IgG2a production) compared to the normal control group. EV immunization exerted protective effects, improving the integrity of the BBB, downregulating inflammation response of brain tissue, result in reduces the incidence of CM. The protective effects were determined by immunological pathways and brain targets elicited by EVs. Intravenous immunization exhibited better performance than subcutaneous immunization, which perhaps correlated with EVs, which can naturally cross BBB to play a better role in brain protection.
Collapse
Affiliation(s)
- Yinyi Lv
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou 318000, China
| | - Shuang Wu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou 318000, China
| | - Qing Nie
- Weifang Centers for Disease Control and Prevention, No 4801 Huixian Road, Gaoxin Distric, Weifang 261061, Shandong Province, China
| | - Shuangchun Liu
- Municipal Hospital Affiliated to Medical School of Taizhou University, No 381, Zhongshan East Road, Jiaojiang District, Taizhou 318000, China
| | - Wenxin Xu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou 318000, China
| | - Guang Chen
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou 318000, China.
| | - Yunting Du
- Department of Laboratory Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, NO. 44 Xiaoheyan Road, Dadong District, Shenyang 110042, China.
| | - Jinguang Chen
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou 318000, China.
| |
Collapse
|
31
|
Tavares J, Cordeiro-da-Silva A, Calderón F. Ending Malaria: Where Are We? ACS Infect Dis 2024; 10:1429-1430. [PMID: 38656180 DOI: 10.1021/acsinfecdis.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Affiliation(s)
- Joana Tavares
- Host-Parasite Interactions Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4099-002, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4099-002, Portugal
| | - Anabela Cordeiro-da-Silva
- Host-Parasite Interactions Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4099-002, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4099-002, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto 4099-002, Portugal
| | - Félix Calderón
- Global Health Medicines R&D, GSK, Tres Cantos 28760, Spain
| |
Collapse
|
32
|
Abdullaziz MA, Takada S, Illarionov B, Pessanha de Carvalho L, Sakamoto Y, Höfmann S, Knak T, Kiffe-Delf AL, Mazzone F, Pfeffer K, Kalscheuer R, Bacher A, Held J, Fischer M, Tanaka N, Kurz T. Reverse N-Substituted Hydroxamic Acid Derivatives of Fosmidomycin Target a Previously Unknown Subpocket of 1-Deoxy-d-xylulose 5-Phosphate Reductoisomerase (DXR). ACS Infect Dis 2024; 10:1739-1752. [PMID: 38647213 DOI: 10.1021/acsinfecdis.4c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Reverse analogs of the phosphonohydroxamic acid antibiotic fosmidomycin are potent inhibitors of the nonmevalonate isoprenoid biosynthesis enzyme 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR, IspC) of Plasmodium falciparum. Some novel analogs with large phenylalkyl substituents at the hydroxamic acid nitrogen exhibit nanomolar PfDXR inhibition and potent in vitro growth inhibition of P. falciparum parasites coupled with good parasite selectivity. X-ray crystallographic studies demonstrated that the N-phenylpropyl substituent of the newly developed lead compound 13e is accommodated in a subpocket within the DXR catalytic domain but does not reach the NADPH binding pocket of the N-terminal domain. As shown for reverse carba and thia analogs, PfDXR selectively binds the S-enantiomer of the new lead compound. In addition, some representatives of the novel inhibitor subclass are nanomolar Escherichia coli DXR inhibitors, whereas the inhibition of Mycobacterium tuberculosis DXR is considerably weaker.
Collapse
Affiliation(s)
- Mona A Abdullaziz
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Universitätsstr. 1, 40225 Düsseldorf, Germany
- National Research Centre (NRC), 33 El Buhouth St, Ad Doqi, Dokki, Cairo 12622, Egypt
| | - Sana Takada
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo 108-8641, Japan
| | - Boris Illarionov
- Hamburg School of Food Science, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Lais Pessanha de Carvalho
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstr. 27, 72074 Tübingen, Germany
| | - Yasumitsu Sakamoto
- School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Stefan Höfmann
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Talea Knak
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Anna-Lene Kiffe-Delf
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical Biology and Biotechnology, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Flaminia Mazzone
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University, University Hospital Düsseldorf, Germany, 40225 Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University, University Hospital Düsseldorf, Germany, 40225 Düsseldorf, Germany
| | - Rainer Kalscheuer
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical Biology and Biotechnology, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Adelbert Bacher
- Hamburg School of Food Science, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- TUM School of Natural Sciences, Technical University of Munich, Boltzmannstr. 10, 85748 Garching, Germany
| | - Jana Held
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstr. 27, 72074 Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, 72074 Tübingen, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Nobutada Tanaka
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo 108-8641, Japan
| | - Thomas Kurz
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
33
|
Mouwenda YD, Jochems SP, Van Unen V, Betouke Ongwe ME, de Steenhuijsen Piters WA, Stam KA, Massinga Loembe M, Sim BKL, Esen M, Hoffman SL, Kremsner PG, Fendel R, Mordmüller B, Yazdanbakhsh M. Immune responses associated with protection induced by chemoattenuated PfSPZ vaccine in malaria-naive Europeans. JCI Insight 2024; 9:e170210. [PMID: 38716733 PMCID: PMC11141902 DOI: 10.1172/jci.insight.170210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/14/2024] [Indexed: 06/02/2024] Open
Abstract
Vaccination of malaria-naive volunteers with a high dose of Plasmodium falciparum sporozoites chemoattenuated by chloroquine (CQ) (PfSPZ-CVac [CQ]) has previously demonstrated full protection against controlled human malaria infection (CHMI). However, lower doses of PfSPZ-CVac [CQ] resulted in incomplete protection. This provides the opportunity to understand the immune mechanisms needed for better vaccine-induced protection by comparing individuals who were protected with those not protected. Using mass cytometry, we characterized immune cell composition and responses of malaria-naive European volunteers who received either lower doses of PfSPZ-CVac [CQ], resulting in 50% protection irrespective of the dose, or a placebo vaccination, with everyone becoming infected following CHMI. Clusters of CD4+ and γδ T cells associated with protection were identified, consistent with their known role in malaria immunity. Additionally, EMRA CD8+ T cells and CD56+CD8+ T cell clusters were associated with protection. In a cohort from a malaria-endemic area in Gabon, these CD8+ T cell clusters were also associated with parasitemia control in individuals with lifelong exposure to malaria. Upon stimulation with P. falciparum-infected erythrocytes, CD4+, γδ, and EMRA CD8+ T cells produced IFN-γ and/or TNF, indicating their ability to mediate responses that eliminate malaria parasites.
Collapse
Affiliation(s)
- Yoanne D. Mouwenda
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Simon P. Jochems
- Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Vincent Van Unen
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Madeleine Eunice Betouke Ongwe
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Centre National de la Recherche Scientifique et Technologique, Institut De Recherche En Écologie Tropical, Libreville, Gabon
| | | | - Koen A. Stam
- Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | | | - Betty Kim Lee Sim
- Sanaria Inc., Rockville, Maryland, USA
- Protein Potential LLC, Rockville, Maryland, USA
| | - Meral Esen
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124, Controlling Microbes to Fight Infection, Tübingen, Germany
| | | | - Peter G. Kremsner
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Rolf Fendel
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Benjamin Mordmüller
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Radboud University Medical Center (Radboudumc), Department of Medical Microbiology, Nijmegen, Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
34
|
Schmit N, Topazian HM, Natama HM, Bellamy D, Traoré O, Somé MA, Rouamba T, Tahita MC, Bonko MDA, Sourabié A, Sorgho H, Stockdale L, Provstgaard-Morys S, Aboagye J, Woods D, Rapi K, Datoo MS, Lopez FR, Charles GD, McCain K, Ouedraogo JB, Hamaluba M, Olotu A, Dicko A, Tinto H, Hill AVS, Ewer KJ, Ghani AC, Winskill P. The public health impact and cost-effectiveness of the R21/Matrix-M malaria vaccine: a mathematical modelling study. THE LANCET. INFECTIOUS DISEASES 2024; 24:465-475. [PMID: 38342107 DOI: 10.1016/s1473-3099(23)00816-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND The R21/Matrix-M vaccine has demonstrated high efficacy against Plasmodium falciparum clinical malaria in children in sub-Saharan Africa. Using trial data, we aimed to estimate the public health impact and cost-effectiveness of vaccine introduction across sub-Saharan Africa. METHODS We fitted a semi-mechanistic model of the relationship between anti-circumsporozoite protein antibody titres and vaccine efficacy to data from 3 years of follow-up in the phase 2b trial of R21/Matrix-M in Nanoro, Burkina Faso. We validated the model by comparing predicted vaccine efficacy to that observed over 12-18 months in the phase 3 trial. Integrating this framework within a mathematical transmission model, we estimated the cases, malaria deaths, and disability-adjusted life-years (DALYs) averted and cost-effectiveness over a 15-year time horizon across a range of transmission settings in sub-Saharan Africa. Cost-effectiveness was estimated incorporating the cost of vaccine introduction (dose, consumables, and delivery) relative to existing interventions at baseline. We report estimates at a median of 20% parasite prevalence in children aged 2-10 years (PfPR2-10) and ranges from 3% to 65% PfPR2-10. FINDINGS Anti-circumsporozoite protein antibody titres were found to satisfy the criteria for a surrogate of protection for vaccine efficacy against clinical malaria. Age-based implementation of a four-dose regimen of R21/Matrix-M vaccine was estimated to avert 181 825 (range 38 815-333 491) clinical cases per 100 000 fully vaccinated children in perennial settings and 202 017 (29 868-405 702) clinical cases per 100 000 fully vaccinated children in seasonal settings. Similar estimates were obtained for seasonal or hybrid implementation. Under an assumed vaccine dose price of US$3, the incremental cost per clinical case averted was $7 (range 4-48) in perennial settings and $6 (3-63) in seasonal settings and the incremental cost per DALY averted was $34 (29-139) in perennial settings and $30 (22-172) in seasonal settings, with lower cost-effectiveness ratios in settings with higher PfPR2-10. INTERPRETATION Introduction of the R21/Matrix-M malaria vaccine could have a substantial public health benefit across sub-Saharan Africa. FUNDING The Wellcome Trust, the Bill & Melinda Gates Foundation, the UK Medical Research Council, the European and Developing Countries Clinical Trials Partnership 2 and 3, the NIHR Oxford Biomedical Research Centre, and the Serum Institute of India, Open Philanthropy.
Collapse
Affiliation(s)
- Nora Schmit
- UK Medical Research Council Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK.
| | - Hillary M Topazian
- UK Medical Research Council Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - H Magloire Natama
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Duncan Bellamy
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK
| | - Ousmane Traoré
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - M Athanase Somé
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Toussaint Rouamba
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Marc Christian Tahita
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Massa Dit Achille Bonko
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Aboubakary Sourabié
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Hermann Sorgho
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Lisa Stockdale
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK
| | | | - Jeremy Aboagye
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK
| | - Danielle Woods
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK
| | - Katerina Rapi
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK
| | - Mehreen S Datoo
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK
| | | | - Giovanni D Charles
- UK Medical Research Council Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Kelly McCain
- UK Medical Research Council Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Jean-Bosco Ouedraogo
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso; Institut des Sciences et Techniques-Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Mainga Hamaluba
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Ally Olotu
- Clinical Trials and Interventions Unit, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Alassane Dicko
- The Malaria Research and Training Centre, University of Science, Technology, and Techniques of Bamako, Bamako, Mali
| | - Halidou Tinto
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso; Institut des Sciences et Techniques-Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Adrian V S Hill
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK
| | - Katie J Ewer
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK; GSK Vaccines Institute for Global Health (Global Health Vaccines R&D), GSK, Siena, Italy
| | - Azra C Ghani
- UK Medical Research Council Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Peter Winskill
- UK Medical Research Council Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
35
|
Osoro CB, Ochodo E, Kwambai TK, Otieno JA, Were L, Sagam CK, Owino EJ, Kariuki S, Ter Kuile FO, Hill J. Policy uptake and implementation of the RTS,S/AS01 malaria vaccine in sub-Saharan African countries: status 2 years following the WHO recommendation. BMJ Glob Health 2024; 9:e014719. [PMID: 38688566 PMCID: PMC11085798 DOI: 10.1136/bmjgh-2023-014719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/31/2024] [Indexed: 05/02/2024] Open
Abstract
In October 2021, the WHO recommended the world's first malaria vaccine-RTS,S/AS01-to prevent malaria in children living in areas with moderate-to-high transmission in sub-Saharan Africa (SSA). A second malaria vaccine, R21/Matrix-M, was recommended for use in October 2023 and added to the WHO list of prequalified vaccines in December 2023. This study analysis assessed the country status of implementation and delivery strategies for RTS,S/AS01 by searching websites for national malaria policies, guidelines and related documents. Direct contact with individuals working in malaria programmes was made to obtain documents not publicly available. 10 countries had documents with information relating to malaria vaccine implementation, 7 referencing RTS,S/AS01 and 3 (Burkina Faso, Kenya and Nigeria) referencing RTS,S/AS01 and R21/Matrix-M. Five other countries reported plans for malaria vaccine roll-out without specifying which vaccine. Ghana, Kenya and Malawi, which piloted RTS,S/AS01, have now integrated the vaccine into routine immunisation services. Cameroon and Burkina Faso are the first countries outside the pilot countries to incorporate the vaccine into national immunisation services. Uganda plans a phased RTS,S/AS01 introduction, while Guinea plans to first pilot RTS,S/AS01 in five districts. The RTS,S/AS01 schedule varied by country, with the first dose administered at 5 or 6 months in all countries but the fourth dose at either 18, 22 or 24 months. SSA countries have shown widespread interest in rolling out the malaria vaccine, the Global Alliance for Vaccines and Immunization having approved financial support for 20 of 30 countries which applied as of March 2024. Limited availability of RTS,S/AS01 means that some approved countries will not receive the required doses. Vaccine availability and equity must be addressed even as R21/Matrix-M becomes available.
Collapse
Affiliation(s)
- Caroline Bonareri Osoro
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Department of Global Health, Stellenbosch University, Stellenbosch, South Africa
| | - Eleanor Ochodo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Department of Global Health, Stellenbosch University, Stellenbosch, South Africa
| | | | - Jenifer Akoth Otieno
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Lisa Were
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Caleb Kimutai Sagam
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Eddy Johnson Owino
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Simon Kariuki
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Feiko O Ter Kuile
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jenny Hill
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
36
|
Senkpeil L, Bhardwaj J, Little MR, Holla P, Upadhye A, Fusco EM, Swanson PA, Wiegand RE, Macklin MD, Bi K, Flynn BJ, Yamamoto A, Gaskin EL, Sather DN, Oblak AL, Simpson E, Gao H, Haining WN, Yates KB, Liu X, Murshedkar T, Richie TL, Sim BKL, Otieno K, Kariuki S, Xuei X, Liu Y, Polidoro RB, Hoffman SL, Oneko M, Steinhardt LC, Schmidt NW, Seder RA, Tran TM. Innate immune activation restricts priming and protective efficacy of the radiation-attenuated PfSPZ malaria vaccine. JCI Insight 2024; 9:e167408. [PMID: 38687615 PMCID: PMC11382880 DOI: 10.1172/jci.insight.167408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
A systems analysis was conducted to determine the potential molecular mechanisms underlying differential immunogenicity and protective efficacy results of a clinical trial of the radiation-attenuated whole-sporozoite PfSPZ vaccine in African infants. Innate immune activation and myeloid signatures at prevaccination baseline correlated with protection from P. falciparum parasitemia in placebo controls. These same signatures were associated with susceptibility to parasitemia among infants who received the highest and most protective PfSPZ vaccine dose. Machine learning identified spliceosome, proteosome, and resting DC signatures as prevaccination features predictive of protection after highest-dose PfSPZ vaccination, whereas baseline circumsporozoite protein-specific (CSP-specific) IgG predicted nonprotection. Prevaccination innate inflammatory and myeloid signatures were associated with higher sporozoite-specific IgG Ab response but undetectable PfSPZ-specific CD8+ T cell responses after vaccination. Consistent with these human data, innate stimulation in vivo conferred protection against infection by sporozoite injection in malaria-naive mice while diminishing the CD8+ T cell response to radiation-attenuated sporozoites. These data suggest a dichotomous role of innate stimulation for malaria protection and induction of protective immunity by whole-sporozoite malaria vaccines. The uncoupling of vaccine-induced protective immunity achieved by Abs from more protective CD8+ T cell responses suggests that PfSPZ vaccine efficacy in malaria-endemic settings may be constrained by opposing antigen presentation pathways.
Collapse
Affiliation(s)
- Leetah Senkpeil
- Division of Infectious Diseases, Department of Medicine
- Department of Microbiology and Immunology, and
| | | | - Morgan R Little
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Prasida Holla
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aditi Upadhye
- Division of Infectious Diseases, Department of Medicine
| | | | - Phillip A Swanson
- Cellular Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Ryan E Wiegand
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Kevin Bi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Barbara J Flynn
- Cellular Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Ayako Yamamoto
- Cellular Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Erik L Gaskin
- Division of Infectious Diseases, Department of Medicine
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | | | - Edward Simpson
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hongyu Gao
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - W Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kathleen B Yates
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Xiaowen Liu
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | | | | | | - Kephas Otieno
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Simon Kariuki
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Xiaoling Xuei
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yunlong Liu
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rafael B Polidoro
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Martina Oneko
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Laura C Steinhardt
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nathan W Schmidt
- Department of Microbiology and Immunology, and
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Robert A Seder
- Cellular Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Tuan M Tran
- Division of Infectious Diseases, Department of Medicine
- Department of Microbiology and Immunology, and
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
37
|
Yamamoto Y, Fabbri C, Okuhara D, Takagi R, Kawabata Y, Katayama T, Iyori M, Hasyim AA, Sakamoto A, Mizukami H, Shida H, Lopes S, Yoshida S. A two-dose viral-vectored Plasmodium vivax multistage vaccine confers durable protection and transmission-blockade in a pre-clinical study. Front Immunol 2024; 15:1372584. [PMID: 38745665 PMCID: PMC11091281 DOI: 10.3389/fimmu.2024.1372584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Among Plasmodium spp. responsible for human malaria, Plasmodium vivax ranks as the second most prevalent and has the widest geographical range; however, vaccine development has lagged behind that of Plasmodium falciparum, the deadliest Plasmodium species. Recently, we developed a multistage vaccine for P. falciparum based on a heterologous prime-boost immunization regimen utilizing the attenuated vaccinia virus strain LC16m8Δ (m8Δ)-prime and adeno-associated virus type 1 (AAV1)-boost, and demonstrated 100% protection and more than 95% transmission-blocking (TB) activity in the mouse model. In this study, we report the feasibility and versatility of this vaccine platform as a P. vivax multistage vaccine, which can provide 100% sterile protection against sporozoite challenge and >95% TB efficacy in the mouse model. Our vaccine comprises m8Δ and AAV1 viral vectors, both harboring the gene encoding two P. vivax circumsporozoite (PvCSP) protein alleles (VK210; PvCSP-Sal and VK247; -PNG) and P25 (Pvs25) expressed as a Pvs25-PvCSP fusion protein. For protective efficacy, the heterologous m8Δ-prime/AAV1-boost immunization regimen showed 100% (short-term; Day 28) and 60% (long-term; Day 242) protection against PvCSP VK210 transgenic Plasmodium berghei sporozoites. For TB efficacy, mouse sera immunized with the vaccine formulation showed >75% TB activity and >95% transmission reduction activity by a direct membrane feeding assay using P. vivax isolates in blood from an infected patient from the Brazilian Amazon region. These findings provide proof-of-concept that the m8Δ/AAV1 vaccine platform is sufficiently versatile for P. vivax vaccine development. Future studies are needed to evaluate the safety, immunogenicity, vaccine efficacy, and synergistic effects on protection and transmission blockade in a non-human primate model for Phase I trials.
Collapse
Affiliation(s)
- Yutaro Yamamoto
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Camila Fabbri
- Instituto Leônidas & Maria Deane/Fiocruz Amazônia, Laboratório de Diagnóstico e Controle e Doenças Infecciosas da Amazônia, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Unidade de Pesquisa Clínica Carlos Borborema - UPCCB, Manaus, Amazonas, Brazil
| | - Daiki Okuhara
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Rina Takagi
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuna Kawabata
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takuto Katayama
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Mitsuhiro Iyori
- Department of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - Ammar A. Hasyim
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Akihiko Sakamoto
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Jichi Medical University, Shimono, Tochigi, Japan
| | - Hisatoshi Shida
- Laboratory of Primate Model, Research Center for Infectious Diseases, Institute for Frontier Life and Medical Science, Kyoto University, Kyoto, Japan
| | - Stefanie Lopes
- Instituto Leônidas & Maria Deane/Fiocruz Amazônia, Laboratório de Diagnóstico e Controle e Doenças Infecciosas da Amazônia, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Unidade de Pesquisa Clínica Carlos Borborema - UPCCB, Manaus, Amazonas, Brazil
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
38
|
Chou RT, Ouattara A, Adams M, Berry AA, Takala-Harrison S, Cummings MP. Positive-unlabeled learning identifies vaccine candidate antigens in the malaria parasite Plasmodium falciparum. NPJ Syst Biol Appl 2024; 10:44. [PMID: 38678051 PMCID: PMC11055854 DOI: 10.1038/s41540-024-00365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
Malaria vaccine development is hampered by extensive antigenic variation and complex life stages of Plasmodium species. Vaccine development has focused on a small number of antigens, many of which were identified without utilizing systematic genome-level approaches. In this study, we implement a machine learning-based reverse vaccinology approach to predict potential new malaria vaccine candidate antigens. We assemble and analyze P. falciparum proteomic, structural, functional, immunological, genomic, and transcriptomic data, and use positive-unlabeled learning to predict potential antigens based on the properties of known antigens and remaining proteins. We prioritize candidate antigens based on model performance on reference antigens with different genetic diversity and quantify the protein properties that contribute most to identifying top candidates. Candidate antigens are characterized by gene essentiality, gene ontology, and gene expression in different life stages to inform future vaccine development. This approach provides a framework for identifying and prioritizing candidate vaccine antigens for a broad range of pathogens.
Collapse
Affiliation(s)
- Renee Ti Chou
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, USA
| | - Amed Ouattara
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew Adams
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrea A Berry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Michael P Cummings
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, USA.
| |
Collapse
|
39
|
Nguyen W, Boulet C, Dans MG, Loi K, Jarman KE, Watson GM, Tham WH, Fairhurst KJ, Yeo T, Fidock DA, Wittlin S, Chowdury M, de Koning-Ward TF, Chen G, Yan D, Charman SA, Baud D, Brand S, Jackson PF, Cowman AF, Gilson PR, Sleebs BE. Activity refinement of aryl amino acetamides that target the P. falciparum STAR-related lipid transfer 1 protein. Eur J Med Chem 2024; 270:116354. [PMID: 38554474 DOI: 10.1016/j.ejmech.2024.116354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024]
Abstract
Malaria is a devastating disease that causes significant morbidity worldwide. The development of new antimalarial chemotypes is urgently needed because of the emergence of resistance to frontline therapies. Independent phenotypic screening campaigns against the Plasmodium asexual parasite, including our own, identified the aryl amino acetamide hit scaffold. In a prior study, we identified the STAR-related lipid transfer protein (PfSTART1) as the molecular target of this antimalarial chemotype. In this study, we combined structural elements from the different aryl acetamide hit subtypes and explored the structure-activity relationship. It was shown that the inclusion of an endocyclic nitrogen, to generate the tool compound WJM-715, improved aqueous solubility and modestly improved metabolic stability in rat hepatocytes. Metabolic stability in human liver microsomes remains a challenge for future development of the aryl acetamide class, which was underscored by modest systemic exposure and a short half-life in mice. The optimized aryl acetamide analogs were cross resistant to parasites with mutations in PfSTART1, but not to other drug-resistant mutations, and showed potent binding to recombinant PfSTART1 by biophysical analysis, further supporting PfSTART1 as the likely molecular target. The optimized aryl acetamide analogue, WJM-715 will be a useful tool for further investigating the druggability of PfSTART1 across the lifecycle of the malaria parasite.
Collapse
Affiliation(s)
- William Nguyen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | | | - Madeline G Dans
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Katie Loi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Kate E Jarman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Gabrielle M Watson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Kate J Fairhurst
- Department of Microbiology & Immunology, Columbia University, Irving Medical Center, New York, 10032, NY, USA
| | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University, Irving Medical Center, New York, 10032, NY, USA
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University, Irving Medical Center, New York, 10032, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University, Irving Medical Center, New York, 10032, NY, USA
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwi, Switzerland; University of Basel, 4003, Basel, Switzerland
| | - Mrittika Chowdury
- School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia; Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, 3216, Australia
| | - Tania F de Koning-Ward
- School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia; Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, 3216, Australia
| | - Gong Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Dandan Yan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Susan A Charman
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Delphine Baud
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215, Geneva, Switzerland
| | - Stephen Brand
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215, Geneva, Switzerland
| | - Paul F Jackson
- Global Public Health, Janssen R&D LLC, La Jolla, 92121, USA
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Paul R Gilson
- Burnet Institute, Melbourne, Victoria, 3004, Australia
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
40
|
Frempong NA, Mama A, Adu B, Kusi KA, Ofori MF, Ahiabor C, Anyan WK, Debrah AY, Anang AA, Ndam NT, Courtin D. Antibody response to malaria vaccine candidates in pregnant women with Plasmodium falciparum and Schistosoma haematobium infections. Parasite Immunol 2024; 46:e13027. [PMID: 38587985 DOI: 10.1111/pim.13027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 04/10/2024]
Abstract
Malaria in pregnancy has severe consequences for the mother and foetus. Antibody response to specific malaria vaccine candidates (MVC) has been associated with a decreased risk of clinical malaria and its outcomes. We studied Plasmodium falciparum (Pf) and Schistosoma haematobium (Sh) infections and factors that could influence antibody responses to MVC in pregnant women. A total of 337 pregnant women receiving antenatal care (ANC) and 139 for delivery participated in this study. Pf infection was detected by qPCR and Sh infection using urine filtration method. Antibody levels against CSP, AMA-1, GLURP-R0, VAR2CSA and Pfs48/45 MVC were quantified by ELISA. Multivariable linear regression models identified factors associated with the modulation of antibody responses. The prevalence of Pf and Sh infections was 27% and 4% at ANC and 7% and 4% at delivery. Pf infection, residing in Adidome and multigravidae were positively associated with specific IgG response to CSP, AMA-1, GLURP-R0 and VAR2CSA. ITN use and IPTp were negatively associated with specific IgG response to GLURP-R0 and Pfs48/45. There was no association between Sh infection and antibody response to MVC at ANC or delivery. Pf infections in pregnant women were positively associated with antibody response to CSP, GLURP-R0 and AMA-1. Antibody response to GLURP-R0 and Pfs48/45 was low for IPTp and ITN users. This could indicate a lower exposure to Pf infection and low malaria prevalence observed at delivery.
Collapse
Affiliation(s)
- Naa Adjeley Frempong
- Department of Clinical Microbiology, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Parasitology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Atikatou Mama
- Inserm U 1016, Institut Cochin, Université de, Paris, France
| | - Bright Adu
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Kwadwo Asamoah Kusi
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Michael F Ofori
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Charity Ahiabor
- Science Laboratory Department, Accra Technical University, Accra, Ghana
| | - William K Anyan
- Department of Clinical Microbiology, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alex Yaw Debrah
- Faculty of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Abraham A Anang
- Institute for Environment and Sanitation Studies (IESS), University of Ghana, Legon, Ghana
| | - Nicaise T Ndam
- UMR 216 MERIT, IRD, Université Paris Cité, Paris, France
| | - David Courtin
- UMR 216 MERIT, IRD, Université Paris Cité, Paris, France
| |
Collapse
|
41
|
Goswami D, Patel H, Betz W, Armstrong J, Camargo N, Patil A, Chakravarty S, Murphy SC, Sim BKL, Vaughan AM, Hoffman SL, Kappe SH. A replication competent Plasmodium falciparum parasite completely attenuated by dual gene deletion. EMBO Mol Med 2024; 16:723-754. [PMID: 38514791 PMCID: PMC11018819 DOI: 10.1038/s44321-024-00057-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Vaccination with infectious Plasmodium falciparum (Pf) sporozoites (SPZ) administered with antimalarial drugs (PfSPZ-CVac), confers superior sterilizing protection against infection when compared to vaccination with replication-deficient, radiation-attenuated PfSPZ. However, the requirement for drug administration constitutes a major limitation for PfSPZ-CVac. To obviate this limitation, we generated late liver stage-arresting replication competent (LARC) parasites by deletion of the Mei2 and LINUP genes (mei2-/linup- or LARC2). We show that Plasmodium yoelii (Py) LARC2 sporozoites did not cause breakthrough blood stage infections and engendered durable sterilizing immunity against various infectious sporozoite challenges in diverse strains of mice. We next genetically engineered a PfLARC2 parasite strain that was devoid of extraneous DNA and produced cryopreserved PfSPZ-LARC2. PfSPZ-LARC2 liver stages replicated robustly in liver-humanized mice but displayed severe defects in late liver stage differentiation and did not form liver stage merozoites. This resulted in complete abrogation of parasite transition to viable blood stage infection. Therefore, PfSPZ-LARC2 is the next-generation vaccine strain expected to unite the safety profile of radiation-attenuated PfSPZ with the superior protective efficacy of PfSPZ-CVac.
Collapse
Affiliation(s)
- Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
| | - Hardik Patel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
| | - William Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
| | - Janna Armstrong
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
| | - Asha Patil
- Sanaria Inc., 9800 Medical Center Dr., Rockville, MD, 20850, USA
| | | | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - B Kim Lee Sim
- Sanaria Inc., 9800 Medical Center Dr., Rockville, MD, 20850, USA
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Stefan Hi Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
42
|
Makanga M, Beattie P, Jajkowicz D, Nyirenda T, Tanner M, Hankins C. Impact with equity: EDCTP and equitable research partnerships. Lancet Glob Health 2024; 12:e552-e554. [PMID: 38485420 DOI: 10.1016/s2214-109x(24)00002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 03/19/2024]
Affiliation(s)
- Michael Makanga
- Global Health EDCTP3 Joint Undertaking, 1060 Brussels, Belgium.
| | | | | | | | - Marcel Tanner
- EDCTP Association, Swiss Academies of Arts and Sciences, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Catherine Hankins
- Amsterdam Institute for Global Health and Development, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
43
|
Palacpac NMQ, Ishii KJ, Arisue N, Tougan T, Horii T. Immune tolerance caused by repeated P. falciparum infection against SE36 malaria vaccine candidate antigen and the resulting limited polymorphism. Parasitol Int 2024; 99:102845. [PMID: 38101534 DOI: 10.1016/j.parint.2023.102845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
The call for second generation malaria vaccines needs not only the identification of novel candidate antigens or adjuvants but also a better understanding of immune responses and the underlying protective processes. Plasmodium parasites have evolved a range of strategies to manipulate the host immune system to guarantee survival and establish parasitism. These immune evasion strategies hamper efforts to develop effective malaria vaccines. In the case of a malaria vaccine targeting the N-terminal domain of P. falciparum serine repeat antigen 5 (SE36), now in clinical trials, we observed reduced responsiveness (lowered immunogenicity) which may be attributed to immune tolerance/immune suppression. Here, immunogenicity data and insights into the immune responses to SE36 antigen from epidemiological studies and clinical trials are summarized. Documenting these observations is important to help identify gaps for SE36 continued development and engender hope that highly effective blood-stage/multi-stage vaccines can be achieved.
Collapse
Affiliation(s)
- Nirianne Marie Q Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Ken J Ishii
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan; Laboratory of Vaccine Science, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| | - Nobuko Arisue
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Takahiro Tougan
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Malaria cases and deaths decreased from 2000 to 2015 but remain increased since 2019. Several new developments and strategies could help reverse this trend. The purpose of this review is to discuss new World Health Organization (WHO) guidelines and recent research on malaria prevention in children. RECENT FINDINGS Fifteen countries have now rolled out seasonal malaria chemoprophylaxis (SMC) in children at highest risk for severe malaria, and new WHO recommendations provide more flexibility for SMC implementation in terms of target age groups, geographic region, and number of cycles. Recent studies confirm that malaria burden in school aged children, and their contribution to transmission, is high. New guidelines permit expanded chemoprevention options for these children. Two vaccines have been approved for use in malaria endemic countries, RTS,S/AS01 E and R21/Matrix-M. Additionally, pyrethroid-chlorfenapyr bed nets are being deployed to combat resistant mosquitoes. SUMMARY While challenges remain in malaria control towards elimination, new guidelines and recently approved vaccines offer hope. Monitoring for continued vaccine and chemoprevention effectiveness, and for possible epidemiologic shifts in severe malaria presentation and deaths as additional prevention efforts roll out will be paramount.
Collapse
Affiliation(s)
- DeAnna J Friedman-Klabanoff
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dennis Adu-Gyasi
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Bono East Region, Ghana
- Centre for Research in Applied Biology, School of Sciences, University of Energy and Natural Resources, Sunyani, Bono Region, Ghana, West Africa
| | - Kwaku Poku Asante
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Bono East Region, Ghana
| |
Collapse
|
45
|
Stump WH, Klingenberg HJ, Ott AC, Gonzales DM, Burns JM. Design and Evaluation of Chimeric Plasmodium falciparum Circumsporozoite Protein-Based Malaria Vaccines. Vaccines (Basel) 2024; 12:351. [PMID: 38675734 PMCID: PMC11053680 DOI: 10.3390/vaccines12040351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Efficacy data on two malaria vaccines, RTS,S and R21, targeting Plasmodium falciparum circumsporozoite protein (PfCSP), are encouraging. Efficacy may be improved by induction of additional antibodies to neutralizing epitopes outside of the central immunodominant repeat domain of PfCSP. We designed four rPfCSP-based vaccines in an effort to improve the diversity of the antibody response. We also evaluated P. falciparum merozoite surface protein 8 (PfMSP8) as a malaria-specific carrier protein as an alternative to hepatitis B surface antigen. We measured the magnitude, specificity, subclass, avidity, durability, and efficacy of vaccine-induced antibodies in outbred CD1 mice. In comparison to N-terminal- or C-terminal-focused constructs, immunization with near full-length vaccines, rPfCSP (#1) or the chimeric rPfCSP/8 (#2), markedly increased the breadth of B cell epitopes recognized covering the N-terminal domain, junctional region, and central repeat. Both rPfCSP (#1) and rPfCSP/8 (#2) also elicited a high proportion of antibodies to conformation-dependent epitopes in the C-terminus of PfCSP. Fusion of PfCSP to PfMSP8 shifted the specificity of the T cell response away from PfCSP toward PfMSP8 epitopes. Challenge studies with transgenic Plasmodium yoelii sporozoites expressing PfCSP demonstrated high and consistent sterile protection following rPfCSP/8 (#2) immunization. Of note, antibodies to conformational C-terminal epitopes were not required for protection. These results indicate that inclusion of the N-terminal domain of PfCSP can drive responses to protective, repeat, and non-repeat B cell epitopes and that PfMSP8 is an effective carrier for induction of high-titer, durable anti-PfCSP antibodies.
Collapse
Affiliation(s)
| | | | | | | | - James M. Burns
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA; (W.H.S.); (H.J.K.); (A.C.O.); (D.M.G.)
| |
Collapse
|
46
|
Plieskatt J, Bang P, Wood GK, Naghizadeh M, Singh SK, Jore MM, Theisen M. Clinical formulation development of Plasmodium falciparum malaria vaccine candidates based on Pfs48/45, Pfs230, and PfCSP. Vaccine 2024; 42:1980-1992. [PMID: 38388238 DOI: 10.1016/j.vaccine.2024.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/09/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Two malaria transmission-blocking vaccine (TBV) candidates, R0.6C and ProC6C, have completed preclinical development including the selection of adjuvants, Alhydrogel® with or without the saponin based adjuvant Matrix-M™. Here, we report on the final drug product (formulation) design of R0.6C and ProC6C and evaluate their safety and biochemical stability in preparation for preclinical and clinical pharmacy handling. The point-of-injection stability studies demonstrated that both the R0.6C and ProC6C antigens are stable on Alhydrogel in the presence or absence of Matrix-M for up to 24 h at room temperature. As this is the first study to combine Alhydrogel and Matrix-M for clinical use, we also evaluated their potential interactions. Matrix-M adsorbs to Alhydrogel, while not displacing the > 95 % adsorbed protein. The R0.6C and ProC6C formulations were found to be safe and well tolerated in repeated dose toxicity studies in rabbits generating high levels of functional antibodies that blocked infection of mosquitoes. Further, the R0.6C and ProC6C drug products were found to be stable for minimally 24 months when stored at 2-8 °C, with studies ongoing through 36 months. Together, this data demonstrates the safety and suitability of the L. lactis expression system as well as supports the clinical testing of the R0.6C and ProC6C malaria vaccine candidates in First-In-Human clinical trials.
Collapse
Affiliation(s)
- Jordan Plieskatt
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Bang
- Department of Vaccine Development, Statens Serum Institut, Copenhagen, Denmark
| | - Grith Krøyer Wood
- Department of Vaccine Development, Statens Serum Institut, Copenhagen, Denmark
| | - Mohammad Naghizadeh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark; Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark; Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Matthijs M Jore
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark; Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
47
|
Rathay V, Fürle K, Kiehl V, Ulmer A, Lanzer M, Thomson-Luque R. IgG Subclass Switch in Volunteers Repeatedly Immunized with the Full-Length Plasmodium falciparum Merozoite Surface Protein 1 (MSP1). Vaccines (Basel) 2024; 12:208. [PMID: 38400191 PMCID: PMC10893298 DOI: 10.3390/vaccines12020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccines are highly effective tools against infectious diseases and are also considered necessary in the fight against malaria. Vaccine-induced immunity is frequently mediated by antibodies. We have recently conducted a first-in-human clinical trial featuring SumayaVac-1, a malaria vaccine based on the recombinant, full-length merozoite surface protein 1 (MSP1FL) formulated with GLA-SE as an adjuvant. Vaccination with MSP1FL was safe and elicited sustainable IgG antibody titers that exceeded those observed in semi-immune populations from Africa. Moreover, IgG antibodies stimulated various Fc-mediated effector mechanisms associated with protection against malaria. However, these functionalities gradually waned. Here, we show that the initial two doses of SumayaVac-1 primarily induced the cytophilic subclasses IgG1 and IgG3. Unexpectedly, a shift in the IgG subclass composition occurred following the third and fourth vaccinations. Specifically, there was a progressive transition to IgG4 antibodies, which displayed a reduced capacity to engage in Fc-mediated effector functions and also exhibited increased avidity. In summary, our analysis of antibody responses to MSP1FL vaccination unveils a temporal shift towards noninflammatory IgG4 antibodies. These findings underscore the importance of considering the impact of IgG subclass composition on vaccine-induced immunity, particularly concerning Fc-mediated effector functions. This knowledge is pivotal in guiding the design of optimal vaccination strategies against malaria, informing decision making for future endeavors in this critical field.
Collapse
Affiliation(s)
- Veronika Rathay
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Kristin Fürle
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Viktoria Kiehl
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Anne Ulmer
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Michael Lanzer
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Richard Thomson-Luque
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
- Sumaya-Biotech GmbH & Co. KG, 69115 Heidelberg, Germany
| |
Collapse
|
48
|
Ali T, Sumbal A, Haque MA. The fight against malaria: a new hope with the R21 vaccine. INTERNATIONAL JOURNAL OF SURGERY: GLOBAL HEALTH 2024; 7. [DOI: 10.1097/gh9.0000000000000423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/29/2024] [Indexed: 08/21/2024]
Affiliation(s)
- Tehreem Ali
- Dow University of Health Sciences, Karachi, Pakistan
| | - Anusha Sumbal
- Dow University of Health Sciences, Karachi, Pakistan
| | - Md Ariful Haque
- Department of Public Health, Atish Dipankar University of Science and Technology
- Voice of Doctors Research School, Dhaka, Bangladesh
- Department of Orthopaedic Surgery, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| |
Collapse
|
49
|
Locke E, Flores-Garcia Y, Mayer BT, MacGill RS, Borate B, Salgado-Jimenez B, Gerber MW, Mathis-Torres S, Shapiro S, King CR, Zavala F. Establishing RTS,S/AS01 as a benchmark for comparison to next-generation malaria vaccines in a mouse model. NPJ Vaccines 2024; 9:29. [PMID: 38341502 DOI: 10.1038/s41541-024-00819-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
New strategies are needed to reduce the incidence of malaria, and promising approaches include vaccines targeting the circumsporozoite protein (CSP). To improve upon the malaria vaccine, RTS,S/AS01, it is essential to standardize preclinical assays to measure the potency of next-generation vaccines against this benchmark. We focus on RTS,S/AS01-induced antibody responses and functional activity in conjunction with robust statistical analyses. Transgenic Plasmodium berghei sporozoites containing full-length P. falciparum CSP (tgPb-PfCSP) allow two assessments of efficacy: quantitative reduction in liver infection following intravenous challenge, and sterile protection from mosquito bite challenge. Two or three doses of RTS,S/AS01 were given intramuscularly at 3-week intervals, with challenge 2-weeks after the last vaccination. Minimal inter- and intra-assay variability indicates the reproducibility of the methods. Importantly, the range of this model is suitable for screening more potent vaccines. Levels of induced anti-CSP antibody 2A10 equivalency were also associated with activity: 105 μg/mL (95% CI: 68.8, 141) reduced liver infection by 50%, whereas 285 μg/mL (95% CI: 166, 404) is required for 50% sterile protection from mosquito bite challenge. Additionally, the liver burden model was able to differentiate between protected and non-protected human plasma samples from a controlled human malaria infection study, supporting these models' relevance and predictive capability. Comparison in animal models of CSP-based vaccine candidates to RTS,S/AS01 is now possible under well controlled conditions. Assessment of the quality of induced antibodies, likely a determinant of durability of protection in humans, should be possible using these methods.
Collapse
Affiliation(s)
- Emily Locke
- Center for Vaccine Innovation and Access, PATH, Washington, DC, 20001, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bryan T Mayer
- Vaccine and Infectious Disease Division, Fred Hutchison Cancer Research Center, Seattle, WA, 98109, USA
| | - Randall S MacGill
- Center for Vaccine Innovation and Access, PATH, Washington, DC, 20001, USA
| | - Bhavesh Borate
- Vaccine and Infectious Disease Division, Fred Hutchison Cancer Research Center, Seattle, WA, 98109, USA
| | - Berenice Salgado-Jimenez
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Monica W Gerber
- Vaccine and Infectious Disease Division, Fred Hutchison Cancer Research Center, Seattle, WA, 98109, USA
| | - Shamika Mathis-Torres
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sarah Shapiro
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - C Richter King
- Center for Vaccine Innovation and Access, PATH, Washington, DC, 20001, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
50
|
Datoo MS, Dicko A, Tinto H, Ouédraogo JB, Hamaluba M, Olotu A, Beaumont E, Ramos Lopez F, Natama HM, Weston S, Chemba M, Compaore YD, Issiaka D, Salou D, Some AM, Omenda S, Lawrie A, Bejon P, Rao H, Chandramohan D, Roberts R, Bharati S, Stockdale L, Gairola S, Greenwood BM, Ewer KJ, Bradley J, Kulkarni PS, Shaligram U, Hill AVS. Safety and efficacy of malaria vaccine candidate R21/Matrix-M in African children: a multicentre, double-blind, randomised, phase 3 trial. Lancet 2024; 403:533-544. [PMID: 38310910 DOI: 10.1016/s0140-6736(23)02511-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Recently, we found that a new malaria vaccine, R21/Matrix-M, had over 75% efficacy against clinical malaria with seasonal administration in a phase 2b trial in Burkina Faso. Here, we report on safety and efficacy of the vaccine in a phase 3 trial enrolling over 4800 children across four countries followed for up to 18 months at seasonal sites and 12 months at standard sites. METHODS We did a double-blind, randomised, phase 3 trial of the R21/Matrix-M malaria vaccine across five sites in four African countries with differing malaria transmission intensities and seasonality. Children (aged 5-36 months) were enrolled and randomly assigned (2:1) to receive 5 μg R21 plus 50 μg Matrix-M or a control vaccine (licensed rabies vaccine [Abhayrab]). Participants, their families, investigators, laboratory teams, and the local study team were masked to treatment. Vaccines were administered as three doses, 4 weeks apart, with a booster administered 12 months after the third dose. Half of the children were recruited at two sites with seasonal malaria transmission and the remainder at standard sites with perennial malaria transmission using age-based immunisation. The primary objective was protective efficacy of R21/Matrix-M from 14 days after third vaccination to 12 months after completion of the primary series at seasonal and standard sites separately as co-primary endpoints. Vaccine efficacy against multiple malaria episodes and severe malaria, as well as safety and immunogenicity, were also assessed. This trial is registered on ClinicalTrials.gov, NCT04704830, and is ongoing. FINDINGS From April 26, 2021, to Jan 12, 2022, 5477 children consented to be screened, of whom 1705 were randomly assigned to control vaccine and 3434 to R21/Matrix-M; 4878 participants received the first dose of vaccine. 3103 participants in the R21/Matrix-M group and 1541 participants in the control group were included in the modified per-protocol analysis (2412 [51·9%] male and 2232 [48·1%] female). R21/Matrix-M vaccine was well tolerated, with injection site pain (301 [18·6%] of 1615 participants) and fever (754 [46·7%] of 1615 participants) as the most frequent adverse events. Number of adverse events of special interest and serious adverse events did not significantly differ between the vaccine groups. There were no treatment-related deaths. 12-month vaccine efficacy was 75% (95% CI 71-79; p<0·0001) at the seasonal sites and 68% (61-74; p<0·0001) at the standard sites for time to first clinical malaria episode. Similarly, vaccine efficacy against multiple clinical malaria episodes was 75% (71-78; p<0·0001) at the seasonal sites and 67% (59-73; p<0·0001) at standard sites. A modest reduction in vaccine efficacy was observed over the first 12 months of follow-up, of similar size at seasonal and standard sites. A rate reduction of 868 (95% CI 762-974) cases per 1000 children-years at seasonal sites and 296 (231-362) at standard sites occurred over 12 months. Vaccine-induced antibodies against the conserved central Asn-Ala-Asn-Pro (NANP) repeat sequence of circumsporozoite protein correlated with vaccine efficacy. Higher NANP-specific antibody titres were observed in the 5-17 month age group compared with 18-36 month age group, and the younger age group had the highest 12-month vaccine efficacy on time to first clinical malaria episode at seasonal (79% [95% CI 73-84]; p<0·001) and standard (75% [65-83]; p<0·001) sites. INTERPRETATION R21/Matrix-M was well tolerated and offered high efficacy against clinical malaria in African children. This low-cost, high-efficacy vaccine is already licensed by several African countries, and recently received a WHO policy recommendation and prequalification, offering large-scale supply to help reduce the great burden of malaria in sub-Saharan Africa. FUNDING The Serum Institute of India, the Wellcome Trust, the UK National Institute for Health Research Oxford Biomedical Research Centre, and Open Philanthropy.
Collapse
Affiliation(s)
- Mehreen S Datoo
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Alassane Dicko
- Clinical Research Unit of Bougouni-Ouelessebougou, Malaria Research and Training Centre, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Halidou Tinto
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | | | - Mainga Hamaluba
- Kenya Medical Research Institute Centre for Geographical Medicine Research-Coast (KEMRI-CGMRC), Kilifi, Kenya; Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, Oxford, UK
| | - Ally Olotu
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | - Emma Beaumont
- London School of Hygiene and Tropical Medicine, London, UK
| | - Fernando Ramos Lopez
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Hamtandi Magloire Natama
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Sophie Weston
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Mwajuma Chemba
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | | | - Djibrilla Issiaka
- Clinical Research Unit of Bougouni-Ouelessebougou, Malaria Research and Training Centre, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Diallo Salou
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Athanase M Some
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Sharon Omenda
- Kenya Medical Research Institute Centre for Geographical Medicine Research-Coast (KEMRI-CGMRC), Kilifi, Kenya
| | - Alison Lawrie
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Philip Bejon
- Kenya Medical Research Institute Centre for Geographical Medicine Research-Coast (KEMRI-CGMRC), Kilifi, Kenya
| | | | | | - Rachel Roberts
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | | | - Lisa Stockdale
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK
| | | | | | - Katie J Ewer
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK
| | - John Bradley
- London School of Hygiene and Tropical Medicine, London, UK
| | | | | | - Adrian V S Hill
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK; The Jenner Institute Laboratories, University of Oxford, Oxford, UK.
| |
Collapse
|