1
|
Burrell R, Saravanos GL, Kesson A, Leung KC, Outhred AC, Wood N, Muscatello D, Britton PN. Respiratory virus detections in children presenting to an Australian paediatric referral hospital pre-COVID-19 pandemic, January 2014 to December 2019. PLoS One 2025; 20:e0313504. [PMID: 39841690 DOI: 10.1371/journal.pone.0313504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/24/2024] [Indexed: 01/24/2025] Open
Abstract
Acute respiratory infections cause significant paediatric morbidity, but for pathogens other than influenza, respiratory syncytial virus (RSV), and SARS-CoV-2, systematic monitoring is not commonly performed. This retrospective analysis of six years of routinely collected respiratory pathogen multiplex PCR testing at a major paediatric hospital in New South Wales Australia, describes the epidemiology, year-round seasonality, and co-detection patterns of 15 viral respiratory pathogens. 32,599 respiratory samples from children aged under 16 years were analysed. Most samples were associated with a hospital admission (24,149, 74.1%) and the median age of sampling was 16 months (IQR 5-53). Viruses were detected in 62.9% (20,510) of samples, with single virus detections occurring in 73.5% (15,082) of positive samples. In instances of single virus detection, rhinovirus was most frequent (5125, 40.6%), followed by RSV-B (1394, 9.2%) and RSV-A (1290, 8.6%). Moderate to strong seasonal strength was observed for most viruses with some notable exceptions. Rhinovirus and enterovirus were detected year-round and low seasonal strength was observed for adenovirus and bocavirus. Biennial seasonal patterns were observed for influenza B and parainfluenza virus 2. Co-detections occurred in 5,428 samples, predominantly with two (4284, 79.0%) or three viruses (904, 16.7%). The most common co-detections were rhinovirus-adenovirus (566, 10.4%), rhinovirus-enterovirus (357, 8.3%), and rhinovirus-RSV-B (337, 7.9%). Ongoing pan-pathogen surveillance, integrating both laboratory and clinical data, is necessary to assist in identification of key pathogens and combination of pathogens to support effective preventative public health strategies and reduce the burden of paediatric respiratory infections.
Collapse
Affiliation(s)
- Rebecca Burrell
- Sydney Medical School, University of Sydney, Sydney, New South Wales (NSW), Australia
- Centre for Paediatric and Perinatal Infection Research, The Children's Hospital at Westmead, Westmead, NSW, Australia
- The University of Sydney Infectious Diseases Institute (Sydney ID), University of Sydney, Sydney, NSW, Australia
| | - Gemma L Saravanos
- Centre for Paediatric and Perinatal Infection Research, The Children's Hospital at Westmead, Westmead, NSW, Australia
- The University of Sydney Infectious Diseases Institute (Sydney ID), University of Sydney, Sydney, NSW, Australia
- Susan Wakil School of Nursing and Midwifery, University of Sydney, Sydney, NSW, Australia
| | - Alison Kesson
- The University of Sydney Infectious Diseases Institute (Sydney ID), University of Sydney, Sydney, NSW, Australia
- Department of Infectious Diseases & Microbiology, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Kin-Chuen Leung
- Department of Infectious Diseases & Microbiology, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Alex C Outhred
- Department of Infectious Diseases & Microbiology, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Nicholas Wood
- Sydney Medical School, University of Sydney, Sydney, New South Wales (NSW), Australia
- The University of Sydney Infectious Diseases Institute (Sydney ID), University of Sydney, Sydney, NSW, Australia
- Department of Infectious Diseases & Microbiology, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - David Muscatello
- School of Population Health, University of New South Wales, Sydney, NSW, Australia
| | - Philip N Britton
- Sydney Medical School, University of Sydney, Sydney, New South Wales (NSW), Australia
- Centre for Paediatric and Perinatal Infection Research, The Children's Hospital at Westmead, Westmead, NSW, Australia
- The University of Sydney Infectious Diseases Institute (Sydney ID), University of Sydney, Sydney, NSW, Australia
- Department of Infectious Diseases & Microbiology, The Children's Hospital at Westmead, Westmead, NSW, Australia
| |
Collapse
|
2
|
Mansour O, Fadeev AV, Perederiy AA, Danilenko DM, Lioznov DA, Komissarov AB. Development of Primer Panels for Amplicon Sequencing of Human Parainfluenza Viruses Type 1 and 2. Int J Mol Sci 2024; 25:13119. [PMID: 39684830 DOI: 10.3390/ijms252313119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Human parainfluenza viruses (hPIVs) are major contributors to respiratory tract infections in young children worldwide. Despite their global significance, genomic surveillance of hPIV1 and hPIV2 had not previously been conducted in Russia. This study aimed to develop a robust amplicon-based sequencing protocol for these viruses. The designed primer sets were tested on clinical samples containing hPIV RNA to evaluate their performance and efficiency. Sequencing results demonstrated high-quality genome data and efficient amplification across various Ct values. As a result, 41 hPIV1 and 13 hPIV2 near-complete genome sequences were successfully obtained from clinical specimens collected in Saint Petersburg (Russia). Phylogenetic analysis of the HN gene sequences showed that Russian hPIV1 strains clustered into clades II and III, while hPIV2 strains were distributed between clusters G1a and G3. The whole-genome-based trees confirmed the same distribution of the strains. These findings highlight the potential of our primer panels and contribute to a better understanding of the molecular characteristics and phylogenetic diversity of circulating hPIV strains. Notably, this study presents the first evolutionary analysis of hPIVs in Russia.
Collapse
Affiliation(s)
- Oula Mansour
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
| | - Artem V Fadeev
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
| | | | - Daria M Danilenko
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
| | - Dmitry A Lioznov
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
- Department of Infectious Diseases and Epidemiology, Pavlov First Saint Petersburg State Medical University, 197022 Saint Petersburg, Russia
| | - Andrey B Komissarov
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
| |
Collapse
|
3
|
Huang J, Li Y, Chen H, Liu H, Li W, Isiaka ID, Du H, Noman M, Rizwan MA, Du Q, Li Y, Lin Y, Liu Y, Lu X, Liu D, Yan Y. Epidemiological, Clinical, and Genomic Traits of PIV in Hospitalized Children After the COVID-19 Pandemic in Wuhan, China. J Med Virol 2024; 96:e70117. [PMID: 39673291 PMCID: PMC11645542 DOI: 10.1002/jmv.70117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/25/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
Human parainfluenza virus (PIV) is a main cause of acute lower respiratory tract infections (ALRTIs), which contributes to childrens' mortality worldwide; however, the epidemiology of PIVs following the SARS-CoV-2 pandemic is still not clarified, and poses risks of potential outbreaks. Herein, we conducted a retrospective observational study from September 26, 2020 to September 30, 2023 to assess PIV epidemiology in Wuhan, China, as well as the clinical characteristics of PIV infections. In total, 14,065 inpatients with ALRTIs were enrolled, of which 936 were identified to have PIV infection. We also obtained 69 PIV3 RNA to reveal its molecular traits. An alteration in PIV season pattern away from spring and summer prevalence was noted, as well as a progressive rise in its detection rate. PIV-related ALRTIs were more prevalent in male patients. PIV3 was the dominant PIV type in recent years. In comparison with the phase before the cancellation of Dynamic Zero-COVID Policy in December 2022, symptoms after its repeal were milder. All Wuhan strains were classified with C3f lineage and possibly evolved from native strains in China. Additionally, some mutations, such as Q499P in protein hemagglutinin-neuraminidase, should be given further attention. In summary, our study demonstrates the clinical characteristics of PIVs and genomic traits of PIV3 in Wuhan, China, thus holds importance for the diagnosis and control of PIV infections in the post-pandemic era.
Collapse
Grants
- This study was supported by the Natural Science Foundation of Hubei Province (2023AFB221, 2021CFA012), the Funding for Scientific Research Projects from Wuhan Children's Hospital (2024FEBSJJ007), Medical Research Project of Wuhan Health Commission (S202401120097), the Knowledge Innovation Program of Wuhan-Basic Research (2022020801010569), and the Health Commission of Hubei Province (WJ2021M262).
- This study was supported by the Natural Science Foundation of Hubei Province (2023AFB221, 2021CFA012), the Funding for Scientific Research Projects from Wuhan Children's Hospital (2024FEBSJJ007), Medical Research Project of Wuhan Health Commission (S202401120097), the Knowledge Innovation Program of Wuhan‐Basic Research (2022020801010569), and the Health Commission of Hubei Province (WJ2021M262).
Collapse
Affiliation(s)
- Jiaming Huang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega‐Science, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Key Laboratory of Virology and Biosafety, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Computational Virology Group, Etiology Research Center, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ying Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega‐Science, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Key Laboratory of Virology and Biosafety, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Computational Virology Group, Etiology Research Center, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hebin Chen
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega‐Science, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Key Laboratory of Virology and Biosafety, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Computational Virology Group, Etiology Research Center, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
| | - Wenqing Li
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ismaila Damilare Isiaka
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega‐Science, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Key Laboratory of Virology and Biosafety, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Computational Virology Group, Etiology Research Center, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hui Du
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Muhammad Noman
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega‐Science, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Key Laboratory of Virology and Biosafety, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Computational Virology Group, Etiology Research Center, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Muhammad Arif Rizwan
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega‐Science, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Key Laboratory of Virology and Biosafety, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Computational Virology Group, Etiology Research Center, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qing Du
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yang Li
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yaxin Lin
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuehu Liu
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoxia Lu
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega‐Science, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Key Laboratory of Virology and Biosafety, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Computational Virology Group, Etiology Research Center, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yi Yan
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
4
|
Quan Y, Zhang X, Yang G, Ma C, Liu M. Epidemiological characteristics of five non-COVID respiratory viruses among 37,139 all-age patients during 2018 - 2023 in Weifang, China: a cross-sectional study. BMC Infect Dis 2024; 24:1324. [PMID: 39567889 PMCID: PMC11580454 DOI: 10.1186/s12879-024-10212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Common non-COVID respiratory viruses, such as influenza virus (IFVA/IFVB), parainfluenza virus (PIV), respiratory syncytial virus (RSV), and adenovirus (ADV), often cause acute respiratory infections (ARIs). This study aimed to explore the epidemiological characteristics of these five viruses in patients with ARIs before, during, and after the COVID-19 pandemic from 2018 to 2023. METHODS A total of 37,139 serum specimens and epidemiological data from all-aged patients who presented with ARIs were collected from January 2018 to December 2023. The IgM antibodies of five non-COVID respiratory viruses were tested by an IgM kit with indirect immunofluorescent assay (lFA). RESULTS 12,806 specimens were screened as positive for any one of the targeted viruses, with an overall positivity rate of 34.48%. Among all age groups, the most prevalent respiratory viruses were PIV (21.30%) and influenza virus (17.30% of IFVB and 9.91% of IFVA). Children aged 1-14 years were most vulnerable to lower respiratory viruses, and children aged 4-6 years have the highest prevalence no matter the positivity rate for overall viruses (53.06%) or for each virus. From 2018 to 2023, the annual percentage change (APC) revealed that the prevalence of total viruses have a 13.53% rise (p < 0.05), which increased with statistically significant for all age groups. In addition, both the infection rate and the number of samples detected have decreased significantly in the "first-level response" stage of the COVID-19 pandemic and in the "first three months" after fully lifted. Compared to those in the previous five years, the total infection rate (44.64%) and infection rate (26.93%) of the older adults (> 60 years) were all the highest in 2023, and the number of samples collected in 2023 sharply increased, increasing by 77.10% compared to the average of the number of detected in 2018-2022. CONCLUSIONS The data from this study indicate that the epidemiological characteristics of five non-COVID respiratory viruses are vulnerability to the environment, age, sex, and epidemics status among AIR patients, and that the detected number and positivity rate of these viruses have increased in the "post-pandemic era", which is critical for the late or retrospective diagnosis and can serve as a useful surveillance tool to inform local public policy in Weifang, China.
Collapse
Affiliation(s)
- Yining Quan
- Department of Clinical Laboratory, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Xiaomeng Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Guimao Yang
- Department of Clinical Laboratory, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Chunqiang Ma
- Department of Clinical Laboratory, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Mengmeng Liu
- Department of Clinical Laboratory, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China.
| |
Collapse
|
5
|
Marcink TC, Zipursky G, Sobolik EB, Golub K, Herman E, Stearns K, Greninger AL, Porotto M, Moscona A. How a paramyxovirus fusion/entry complex adapts to escape a neutralizing antibody. Nat Commun 2024; 15:8831. [PMID: 39396053 PMCID: PMC11470942 DOI: 10.1038/s41467-024-53082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024] Open
Abstract
Paramyxoviruses including measles, Nipah, and parainfluenza viruses are public health threats with pandemic potential. Human parainfluenza virus type 3 (HPIV3) is a leading cause of illness in pediatric, older, and immunocompromised populations. There are no approved vaccines or therapeutics for HPIV3. Neutralizing monoclonal antibodies (mAbs) that target viral fusion are a potential strategy for mitigating paramyxovirus infection, however their utility may be curtailed by viral evolution that leads to resistance. Paramyxoviruses enter cells by fusing with the cell membrane in a process mediated by a complex consisting of a receptor binding protein (HN) and a fusion protein (F). Existing atomic resolution structures fail to reveal physiologically relevant interactions during viral entry. We present cryo-ET structures of pre-fusion HN-F complexes in situ on surfaces of virions that evolved resistance to an anti-HPIV3 F neutralizing mAb. Single mutations in F abolish mAb binding and neutralization. In these complexes, the HN protein that normally restrains F triggering has shifted to uncap the F apex. These complexes are more readily triggered to fuse. These structures shed light on the adaptability of the pre-fusion HN-F complex and mechanisms of paramyxoviral resistance to mAbs, and help define potential barriers to resistance for the design of mAbs.
Collapse
Affiliation(s)
- Tara C Marcink
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - Gillian Zipursky
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Elizabeth B Sobolik
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kate Golub
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Emily Herman
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Kyle Stearns
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Anne Moscona
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Department of Microbiology & Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Department of Physiology & Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
6
|
Wolf JD, Sirrine MR, Cox RM, Plemper RK. Structural basis of paramyxo- and pneumovirus polymerase inhibition by non-nucleoside small-molecule antivirals. Antimicrob Agents Chemother 2024; 68:e0080024. [PMID: 39162479 PMCID: PMC11459973 DOI: 10.1128/aac.00800-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Small-molecule antivirals can be used as chemical probes to stabilize transitory conformational stages of viral target proteins, facilitating structural analyses. Here, we evaluate allosteric pneumo- and paramyxovirus polymerase inhibitors that have the potential to serve as chemical probes and aid the structural characterization of short-lived intermediate conformations of the polymerase complex. Of multiple inhibitor classes evaluated, we discuss in-depth distinct scaffolds that were selected based on well-understood structure-activity relationships, insight into resistance profiles, biochemical characterization of the mechanism of action, and photoaffinity-based target mapping. Each class is thought to block structural rearrangements of polymerase domains albeit target sites and docking poses are distinct. This review highlights validated druggable targets in the paramyxo- and pneumovirus polymerase proteins and discusses discrete structural stages of the polymerase complexes required for bioactivity.
Collapse
Affiliation(s)
- Josef D. Wolf
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Michael R. Sirrine
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Robert M. Cox
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Richard K. Plemper
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Hernández Bautista PF, Cabrera Gaytán DA, Vallejos Parás A, Moctezuma Paz A, Santacruz Tinoco CE, Alvarado Yaah JE, Anguiano Hernández YM, Martínez Miguel B, Arriaga Nieto L, Jaimes Betancourt L, Sandoval Gutiérrez N. Respiratory virus behavior: Results of laboratory-based epidemiological surveillance. PLoS One 2024; 19:e0307322. [PMID: 39361667 PMCID: PMC11449343 DOI: 10.1371/journal.pone.0307322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/02/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Respiratory viruses have clinical and epidemiological importance. With the COVID-19 pandemic, interest has focused on SARS-CoV-2, but as a result, the number of samples available for the differential diagnosis of other respiratory viruses has increased. STUDY DESIGN Cross-sectional study. OBJECTIVE To describe the epidemiological behavior of respiratory viruses based on a laboratory-based epidemiological surveillance system using data from 2017 to 2023. METHODS Univariate, bivariate and multivariate analyses of data from a laboratory database of respiratory viruses detected by multiplex RT‒qPCR were performed. RESULTS A total of 4,632 samples with positive results for at least 1 respiratory virus, not including influenza or SARS-CoV-2, were analyzed. The most common virus detected was respiratory syncytial virus in 1,467 (26.3%) samples, followed by rhinovirus in 1,384 (24.8%) samples. Most of the samples were from children under 5 years of age. The age-adjusted odds ratio (OR) of death for patients infected with parainfluenza virus 4 was 4.1 (95% confidence interval [95% CI] 2.0-8.2). CONCLUSION Respiratory syncytial virus and rhinovirus had the highest frequency and proportion of coinfections, whereas parainfluenza virus 4 was associated with an increased risk of death.
Collapse
Affiliation(s)
| | | | - Alfonso Vallejos Parás
- Instituto Mexicano del Seguro Social, Coordinación de Vigilancia Epidemiológica, México, México
| | - Alejandro Moctezuma Paz
- Instituto Mexicano del Seguro Social, Coordinación de Investigación en Salud, México, México
| | | | - Julio Elias Alvarado Yaah
- Instituto Mexicano del Seguro Social, Coordinación de Calidad de Insumos y Laboratorios Especializados, México, México
| | - Yu Mei Anguiano Hernández
- Instituto Mexicano del Seguro Social, Coordinación de Calidad de Insumos y Laboratorios Especializados, México, México
| | - Bernardo Martínez Miguel
- Instituto Mexicano del Seguro Social, Coordinación de Calidad de Insumos y Laboratorios Especializados, México, México
| | - Lumumba Arriaga Nieto
- Instituto Mexicano del Seguro Social, Coordinación de Vigilancia Epidemiológica, México, México
| | | | - Nancy Sandoval Gutiérrez
- Instituto Mexicano del Seguro Social, Coordinación de Calidad de Insumos y Laboratorios Especializados, México, México
| |
Collapse
|
8
|
Zhu Y, Sun Y, Li C, Lu G, Jin R, Xu B, Shang Y, Ai J, Wang R, Duan Y, Chen X, Xie Z. Genetic characteristics of human parainfluenza viruses 1-4 associated with acute lower respiratory tract infection in Chinese children, during 2015-2021. Microbiol Spectr 2024; 12:e0343223. [PMID: 39264196 PMCID: PMC11448424 DOI: 10.1128/spectrum.03432-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 08/09/2024] [Indexed: 09/13/2024] Open
Abstract
Human parainfluenza viruses (HPIVs) are a significant cause of acute lower respiratory tract infections (ALRTIs) among young children and elderly individuals worldwide. The four types of HPIVs (HPIV1-4) can cause recurrent infections and pose a significant economic burden on health care systems globally. However, owing to the limited availability of complete genome sequences, the genetic evolution of these viruses and the development of vaccines and antiviral treatments are hampered. To address this issue, this study utilized next-generation sequencing to obtain 156 complete genome sequences of HPIV1-4, which were isolated from hospitalized children with ALRTIs in six regions of China between 2015 and 2021. This study revealed multiple clades, lineages, or sublineages of HPIVs circulating in mainland China, with a novel clade D of HPIV1 identified as geographically restricted to China. Moreover, this study identified the endemic dominant genotype of HPIV3, lineage C3, which has widely spread and continuously circulated in China. Bioinformatic analysis of the genome sequences revealed that the proteins of HPIV3 possessed the most variable sites, with the P protein showing more diversity than the other proteins among all types of HPIVs. The HN proteins of HPIV1-3 are all under negative/purifying selection, and two amino acid substitutions in the HN proteins correspond to known mAb neutralizing sites in the two HPIV3 strains. These findings provide crucial insights into the genetic diversity and evolutionary dynamics of HPIVs circulating among children in China and may facilitate research on the molecular diagnosis, vaccine development, and surveillance of HPIVs.IMPORTANCEPhylogenetic analysis revealed the prevalence of multiple clades, lineages, or sublineages of human parainfluenza viruses (HPIVs) circulating in mainland China. Notably, a unique evolutionary branch of HPIV1 containing only Chinese strains was identified and designated clade D. Furthermore, in 2023, HPIV3 strains from Pakistan and Russia formed a new lineage within clade C, named C6. The first HPIV4b sequence obtained in this study from China belongs to lineage C2. Evolutionary rate assessments revealed that both the HN and whole-genome sequences of HPIV3 presented the lowest evolutionary rates compared with those of the other HPIV types, with rates of 6.98E-04 substitutions/site/year (95% HPD: 5.87E-04 to 8.25E-03) and 5.85E-04 substitutions/site/year (95% HPD: 5.12E-04 to 6.62E-04), respectively. Recombination analysis revealed a potential recombination event in the F gene of an HPIV1 strain in this study. Additionally, all the newly obtained HPIV1-3 strains exhibited negative selection pressure, and two mutations were identified in the HN protein of two HPIV3 strains at monoclonal antibody-binding sites.
Collapse
MESH Headings
- Humans
- China/epidemiology
- Respiratory Tract Infections/virology
- Respiratory Tract Infections/epidemiology
- Phylogeny
- Child, Preschool
- Genome, Viral/genetics
- Child
- Male
- Genotype
- Female
- Infant
- Parainfluenza Virus 1, Human/genetics
- Parainfluenza Virus 1, Human/isolation & purification
- Parainfluenza Virus 1, Human/classification
- Parainfluenza Virus 4, Human/genetics
- Parainfluenza Virus 4, Human/classification
- Parainfluenza Virus 4, Human/isolation & purification
- Parainfluenza Virus 3, Human/genetics
- Parainfluenza Virus 3, Human/classification
- Parainfluenza Virus 3, Human/isolation & purification
- High-Throughput Nucleotide Sequencing
- Whole Genome Sequencing
- Genetic Variation
- Respirovirus Infections/virology
- Respirovirus Infections/epidemiology
- Respirovirus/genetics
- Respirovirus/classification
- Respirovirus/isolation & purification
- Parainfluenza Virus 2, Human/genetics
- Parainfluenza Virus 2, Human/classification
- Parainfluenza Virus 2, Human/isolation & purification
- East Asian People
Collapse
Affiliation(s)
- Yun Zhu
- Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Children’s Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children’s Health, Beijing, China
- Research Unit of Critical infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Sun
- The Division of General Pediatrics, Yinchuan Women and Children Healthcare Hospital, Yinchuan, China
| | - Changchong Li
- Department of Pediatric of Pulmonology, The 2nd Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Gen Lu
- The Respiratory Department, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Rong Jin
- The Respiratory Department, Guizhou Maternal and Child Health Care Hospital, Guiyang Children’s Hospital, Guiyang, China
| | - Baoping Xu
- Department of Respiratory Diseases I, Beijing Children’s Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children’s Health, Beijing, China
| | - Yunxiao Shang
- The Division of Pediatric Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junhong Ai
- Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Children’s Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children’s Health, Beijing, China
- Research Unit of Critical infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Ran Wang
- Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Children’s Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children’s Health, Beijing, China
- Research Unit of Critical infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Yali Duan
- Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Children’s Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children’s Health, Beijing, China
- Research Unit of Critical infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiangpeng Chen
- Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Children’s Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children’s Health, Beijing, China
- Research Unit of Critical infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengde Xie
- Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Children’s Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children’s Health, Beijing, China
- Research Unit of Critical infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Taye B, Sarna M, Le H, Levy A, Minney‐Smith C, Richmond P, Menzies R, Blyth C, Moore H. Respiratory Viral Testing Rate Patterns in Young Children Attending Tertiary Care Across Western Australia: A Population-Based Birth Cohort Study. Influenza Other Respir Viruses 2024; 18:e70005. [PMID: 39225070 PMCID: PMC11369639 DOI: 10.1111/irv.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND An understanding of viral testing rates is crucial to accurately estimate the pathogen-specific hospitalisation burden. We aimed to estimate the patterns of testing for respiratory syncytial virus (RSV), influenza virus, parainfluenza virus (PIV) and human metapneumovirus (hMPV) by geographical location, age and time in children <5 years old in Western Australia. METHODS We conducted a population-based cohort study of children born between 1 January 2010 and 31 December 2021, utilising linked administrative data incorporating birth and death records, hospitalisations and respiratory viral surveillance testing records from state-wide public pathology data. We examined within-hospital testing rates using survival analysis techniques and identified independent predictors of testing using binary logistic regression. RESULTS Our dataset included 46,553 laboratory tests for RSV, influenza, PIV, or hMPV from 355,021 children (52.5% male). Testing rates declined in the metropolitan region over the study period (RSV testing in infants: from 242.11/1000 child-years in 2012 to 155.47/1000 child-years in 2018) and increased thereafter. Conversely, rates increased in non-metropolitan areas (e.g., RSV in Goldfields: from 364.92 in 2012 to 504.37/1000 child-years in 2021). The strongest predictors of testing were age <12 months (adjusted odds ratio [aOR] = 2.25, 95% CI 2.20-2.31), preterm birth (<32 weeks: aOR = 2.90, 95% CI 2.76-3.05) and remote residence (aOR = 0.77, 95% CI 0.73-0.81). CONCLUSION These current testing rates highlight the potential underestimation of respiratory virus hospitalisations by routine surveillance and the need for estimation of the true burden of respiratory virus admissions.
Collapse
Affiliation(s)
- Belaynew W. Taye
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids InstituteUniversity of Western AustraliaPerthAustralia
- School of Population HealthCurtin UniversityPerthAustralia
| | - Mohinder Sarna
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids InstituteUniversity of Western AustraliaPerthAustralia
- School of Population HealthCurtin UniversityPerthAustralia
| | - Huong Le
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids InstituteUniversity of Western AustraliaPerthAustralia
- School of Population HealthCurtin UniversityPerthAustralia
| | - Avram Levy
- Pathogen Genomics and Surveillance Unit, PathWest Laboratory MedicineQEII Medical CentrePerthAustralia
- School of Biomedical SciencesUniversity of Western AustraliaPerthAustralia
| | - Cara Minney‐Smith
- Department of Microbiology, PathWest Laboratory MedicineQEII Medical CentrePerthAustralia
| | - Peter Richmond
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids InstituteUniversity of Western AustraliaPerthAustralia
- School of MedicineUniversity of Western AustraliaPerthAustralia
- Department of ImmunologyPerth Children's HospitalPerthAustralia
| | - Robert Menzies
- Sanofi VaccinesSanofi‐Aventis, Australia and New Zealand, SydneyMacquarie ParkAustralia
| | - Christopher C. Blyth
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids InstituteUniversity of Western AustraliaPerthAustralia
- Department of Microbiology, PathWest Laboratory MedicineQEII Medical CentrePerthAustralia
- School of MedicineUniversity of Western AustraliaPerthAustralia
| | - Hannah C. Moore
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids InstituteUniversity of Western AustraliaPerthAustralia
- School of Population HealthCurtin UniversityPerthAustralia
| |
Collapse
|
10
|
Xiao M, Banu A, Zeng X, Shi S, Peng R, Chen S, Ge N, Tang C, Huang Y, Wang G, Hu X, Cui X, Chan JFW, Yin F, Chang M. Epidemiology of Human Parainfluenza Virus Infections among Pediatric Patients in Hainan Island, China, 2021-2023. Pathogens 2024; 13:740. [PMID: 39338931 PMCID: PMC11434638 DOI: 10.3390/pathogens13090740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Human parainfluenza viruses (HPIVs) are the leading causes of acute respiratory tract infections (ARTIs), particularly in children. During the COVID-19 pandemic, non-pharmaceutical interventions (NPIs) significantly influenced the epidemiology of respiratory viruses. This study analyzed 19,339 respiratory specimens from pediatric patients with ARTIs to detect HPIVs using PCR or tNGS, focusing on the period from 2021 to 2023. HPIVs were identified in 1395 patients (7.21%, 1395/19,339), with annual detection rates of 6.86% (303/4419) in 2021, 6.38% (331/5188) in 2022, and 7.82% (761/9732) in 2023. Notably, both the total number of tests and HPIV-positive cases increased in 2023 compared to 2021 and 2022. Seasonal analysis revealed a shift in HPIV prevalence from winter and spring in 2021-2022 to spring and summer in 2023. Most HPIV-positive cases were in children aged 0-7 years, with fewer infections among those aged 7-18 years. Since June 2022, HPIV-3 has been the most prevalent serotype (59.55%, 524/880), whereas HPIV-2 had the lowest proportion (0.80%, 7/880). The proportions of HPIV-1 (24.89%, 219/880) and HPIV-4 (15.45%, 136/880) were similar. Additionally, the incidence of co-infections with other common respiratory pathogens has increased since 2021. This study highlights rising HPIV detection rates post-COVID-19 and underscores the need for continuous surveillance of HPIVs to inform public health strategies for future epidemic seasons.
Collapse
Affiliation(s)
- Meifang Xiao
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children’s Medical Center, Hainan Medical University, Haikou 570206, China; (M.X.); (X.Z.); (S.S.)
- Department of Microbiology, Faculty of Medicine, Lincoln University College, Petaling Jaya 47301, Malaysia;
| | - Afreen Banu
- Department of Microbiology, Faculty of Medicine, Lincoln University College, Petaling Jaya 47301, Malaysia;
| | - Xiangyue Zeng
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children’s Medical Center, Hainan Medical University, Haikou 570206, China; (M.X.); (X.Z.); (S.S.)
| | - Shengjie Shi
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children’s Medical Center, Hainan Medical University, Haikou 570206, China; (M.X.); (X.Z.); (S.S.)
| | - Ruoyan Peng
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China; (R.P.); (S.C.); (N.G.); (C.T.); (Y.H.); (G.W.); (X.H.); (X.C.)
| | - Siqi Chen
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China; (R.P.); (S.C.); (N.G.); (C.T.); (Y.H.); (G.W.); (X.H.); (X.C.)
| | - Nan Ge
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China; (R.P.); (S.C.); (N.G.); (C.T.); (Y.H.); (G.W.); (X.H.); (X.C.)
| | - Cheng Tang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China; (R.P.); (S.C.); (N.G.); (C.T.); (Y.H.); (G.W.); (X.H.); (X.C.)
| | - Yi Huang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China; (R.P.); (S.C.); (N.G.); (C.T.); (Y.H.); (G.W.); (X.H.); (X.C.)
| | - Gaoyu Wang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China; (R.P.); (S.C.); (N.G.); (C.T.); (Y.H.); (G.W.); (X.H.); (X.C.)
| | - Xiaoyuan Hu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China; (R.P.); (S.C.); (N.G.); (C.T.); (Y.H.); (G.W.); (X.H.); (X.C.)
| | - Xiuji Cui
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China; (R.P.); (S.C.); (N.G.); (C.T.); (Y.H.); (G.W.); (X.H.); (X.C.)
- Department of Pathogen Biology, Hainan Medical University, Haikou 571199, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China;
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Feifei Yin
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children’s Medical Center, Hainan Medical University, Haikou 570206, China; (M.X.); (X.Z.); (S.S.)
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China; (R.P.); (S.C.); (N.G.); (C.T.); (Y.H.); (G.W.); (X.H.); (X.C.)
- Department of Pathogen Biology, Hainan Medical University, Haikou 571199, China
| | - Meng Chang
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children’s Medical Center, Hainan Medical University, Haikou 570206, China; (M.X.); (X.Z.); (S.S.)
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China; (R.P.); (S.C.); (N.G.); (C.T.); (Y.H.); (G.W.); (X.H.); (X.C.)
| |
Collapse
|
11
|
Mizukoshi F, Kimura H, Sugimoto S, Kimura R, Nagasawa N, Hayashi Y, Hashimoto K, Hosoya M, Shirato K, Ryo A. Molecular Evolutionary Analyses of the Fusion Genes in Human Parainfluenza Virus Type 4. Microorganisms 2024; 12:1633. [PMID: 39203475 PMCID: PMC11356533 DOI: 10.3390/microorganisms12081633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
The human parainfluenza virus type 4 (HPIV4) can be classified into two distinct subtypes, 4a and 4b. The full lengths of the fusion gene (F gene) of 48 HPIV4 strains collected during the period of 1966-2022 were analyzed. Based on these gene sequences, the time-scaled evolutionary tree was constructed using Bayesian Markov chain Monte Carlo methods. A phylogenetic tree showed that the first division of the two subtypes occurred around 1823, and the most recent common ancestors of each type, 4a and 4b, existed until about 1940 and 1939, respectively. Although the mean genetic distances of all strains were relatively wide, the distances in each subtype were not wide, indicating that this gene was conserved in each subtype. The evolutionary rates of the genes were relatively low (4.41 × 10-4 substitutions/site/year). Moreover, conformational B-cell epitopes were predicted in the apex of the trimer fusion protein. These results suggest that HPIV4 subtypes diverged 200 years ago and the progenies further diverged and evolved.
Collapse
Affiliation(s)
- Fuminori Mizukoshi
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama-shi 208-0011, Tokyo, Japan; (S.S.); (K.S.); (A.R.)
| | - Hirokazu Kimura
- Department of Health Science, Graduate School of Health Sciences, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (N.N.); (Y.H.)
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa-shi 377-0008, Gunma, Japan
- Department of Clinical Engineering, Faculty of Medical Technology, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan
| | - Satoko Sugimoto
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama-shi 208-0011, Tokyo, Japan; (S.S.); (K.S.); (A.R.)
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Musashimurayama-shi 208-0011, Tokyo, Japan
| | - Ryusuke Kimura
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi-shi 371-8511, Gunma, Japan;
| | - Norika Nagasawa
- Department of Health Science, Graduate School of Health Sciences, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (N.N.); (Y.H.)
| | - Yuriko Hayashi
- Department of Health Science, Graduate School of Health Sciences, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (N.N.); (Y.H.)
| | - Koichi Hashimoto
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima-shi 960-1295, Fukushima, Japan;
| | - Mitsuaki Hosoya
- Department of Perinatology and Pediatrics for Regional Medical Support, Fukushima Medical University, Fukushima-shi 960-1295, Fukushima, Japan;
| | - Kazuya Shirato
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama-shi 208-0011, Tokyo, Japan; (S.S.); (K.S.); (A.R.)
| | - Akihide Ryo
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama-shi 208-0011, Tokyo, Japan; (S.S.); (K.S.); (A.R.)
| |
Collapse
|
12
|
Gordon CJ, Walker SM, Tchesnokov EP, Kocincova D, Pitts J, Siegel DS, Perry JK, Feng JY, Bilello JP, Götte M. Mechanism and spectrum of inhibition of a 4'-cyano modified nucleotide analog against diverse RNA polymerases of prototypic respiratory RNA viruses. J Biol Chem 2024; 300:107514. [PMID: 38945449 PMCID: PMC11345399 DOI: 10.1016/j.jbc.2024.107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024] Open
Abstract
The development of safe and effective broad-spectrum antivirals that target the replication machinery of respiratory viruses is of high priority in pandemic preparedness programs. Here, we studied the mechanism of action of a newly discovered nucleotide analog against diverse RNA-dependent RNA polymerases (RdRps) of prototypic respiratory viruses. GS-646939 is the active 5'-triphosphate metabolite of a 4'-cyano modified C-adenosine analog phosphoramidate prodrug GS-7682. Enzyme kinetics show that the RdRps of human rhinovirus type 16 (HRV-16) and enterovirus 71 incorporate GS-646939 with unprecedented selectivity; GS-646939 is incorporated 20-50-fold more efficiently than its natural ATP counterpart. The RdRp complex of respiratory syncytial virus and human metapneumovirus incorporate GS-646939 and ATP with similar efficiency. In contrast, influenza B RdRp shows a clear preference for ATP and human mitochondrial RNA polymerase does not show significant incorporation of GS-646939. Once incorporated into the nascent RNA strand, GS-646939 acts as a chain terminator although higher NTP concentrations can partially overcome inhibition for some polymerases. Modeling and biochemical data suggest that the 4'-modification inhibits RdRp translocation. Comparative studies with GS-443902, the active triphosphate form of the 1'-cyano modified prodrugs remdesivir and obeldesivir, reveal not only different mechanisms of inhibition, but also differences in the spectrum of inhibition of viral polymerases. In conclusion, 1'-cyano and 4'-cyano modifications of nucleotide analogs provide complementary strategies to target the polymerase of several families of respiratory RNA viruses.
Collapse
Affiliation(s)
- Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Simon M Walker
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Dana Kocincova
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jared Pitts
- Gilead Sciences, Inc, Foster City, California, USA
| | | | | | - Joy Y Feng
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
13
|
Pai MC, Liu YC, Yen TY, Huang KY, Lu CY, Chen JM, Lee PI, Chang LY, Huang LM. Clinical characteristics and risk factors of severe human parainfluenza virus infection in hospitalized children. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:573-579. [PMID: 38849217 DOI: 10.1016/j.jmii.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/02/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Human parainfluenza viruses (HPIVs) commonly cause childhood respiratory illness requiring hospitalization in Taiwan. This study aimed to investigate clinical severity and identify risk factors predisposing to severe disease in hospitalized children with HPIV infection. METHODS We included hospitalized patients with lab-confirmed HPIV infection from 2007 to 2018 and collected their demographic and clinical characteristics. Patients with ventilator support, intravenous inotropic agents, and extracorporeal membrane oxygenation were defined as severe cases. RESULTS There were 554 children hospitalized for HPIV infection. The median age was 1.2 years; 518 patients had non-severe HPIV infection, whereas 36 patients (6.5%) had severe HPIV infection. 266 (48%) patients had underlying diseases, and 190 patients (34.3%) had bacterial co-detection. Children with severe HPIV infection were more likely to have bacterial co-detection than those without (52.8% vs 33.0%, p = 0.02). Patients with lung patch or consolidation had more invasive bacterial co-infection or co-detection than those without patch or consolidation (43% vs 33%, p = 0.06). Patients with neurological disease (adjusted OR 4.77, 95% CI 1.94-11.68), lung consolidation/patch (adjusted OR 6.64, 95% CI 2.80-15.75), and effusion (adjusted OR 11.59, 95% CI 1.52-88.36) had significantly higher risk to have severe HPIV infection. CONCLUSION Neurological disease and lung consolidation/patch or effusion were the most significant predictors of severe HPIV infection.
Collapse
Affiliation(s)
- Meng-Chiu Pai
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pediatrics, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Yun-Chung Liu
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Yu Yen
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuan-Ying Huang
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Yi Lu
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Jong-Min Chen
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ping-Ing Lee
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Luan-Yin Chang
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Li-Min Huang
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Demay MB, Pittas AG, Bikle DD, Diab DL, Kiely ME, Lazaretti-Castro M, Lips P, Mitchell DM, Murad MH, Powers S, Rao SD, Scragg R, Tayek JA, Valent AM, Walsh JME, McCartney CR. Vitamin D for the Prevention of Disease: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2024; 109:1907-1947. [PMID: 38828931 DOI: 10.1210/clinem/dgae290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Numerous studies demonstrate associations between serum concentrations of 25-hydroxyvitamin D (25[OH]D) and a variety of common disorders, including musculoskeletal, metabolic, cardiovascular, malignant, autoimmune, and infectious diseases. Although a causal link between serum 25(OH)D concentrations and many disorders has not been clearly established, these associations have led to widespread supplementation with vitamin D and increased laboratory testing for 25(OH)D in the general population. The benefit-risk ratio of this increase in vitamin D use is not clear, and the optimal vitamin D intake and the role of testing for 25(OH)D for disease prevention remain uncertain. OBJECTIVE To develop clinical guidelines for the use of vitamin D (cholecalciferol [vitamin D3] or ergocalciferol [vitamin D2]) to lower the risk of disease in individuals without established indications for vitamin D treatment or 25(OH)D testing. METHODS A multidisciplinary panel of clinical experts, along with experts in guideline methodology and systematic literature review, identified and prioritized 14 clinically relevant questions related to the use of vitamin D and 25(OH)D testing to lower the risk of disease. The panel prioritized randomized placebo-controlled trials in general populations (without an established indication for vitamin D treatment or 25[OH]D testing), evaluating the effects of empiric vitamin D administration throughout the lifespan, as well as in select conditions (pregnancy and prediabetes). The panel defined "empiric supplementation" as vitamin D intake that (a) exceeds the Dietary Reference Intakes (DRI) and (b) is implemented without testing for 25(OH)D. Systematic reviews queried electronic databases for publications related to these 14 clinical questions. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology was used to assess the certainty of evidence and guide recommendations. The approach incorporated perspectives from a patient representative and considered patient values, costs and resources required, acceptability and feasibility, and impact on health equity of the proposed recommendations. The process to develop this clinical guideline did not use a risk assessment framework and was not designed to replace current DRI for vitamin D. RESULTS The panel suggests empiric vitamin D supplementation for children and adolescents aged 1 to 18 years to prevent nutritional rickets and because of its potential to lower the risk of respiratory tract infections; for those aged 75 years and older because of its potential to lower the risk of mortality; for those who are pregnant because of its potential to lower the risk of preeclampsia, intra-uterine mortality, preterm birth, small-for-gestational-age birth, and neonatal mortality; and for those with high-risk prediabetes because of its potential to reduce progression to diabetes. Because the vitamin D doses in the included clinical trials varied considerably and many trial participants were allowed to continue their own vitamin D-containing supplements, the optimal doses for empiric vitamin D supplementation remain unclear for the populations considered. For nonpregnant people older than 50 years for whom vitamin D is indicated, the panel suggests supplementation via daily administration of vitamin D, rather than intermittent use of high doses. The panel suggests against empiric vitamin D supplementation above the current DRI to lower the risk of disease in healthy adults younger than 75 years. No clinical trial evidence was found to support routine screening for 25(OH)D in the general population, nor in those with obesity or dark complexion, and there was no clear evidence defining the optimal target level of 25(OH)D required for disease prevention in the populations considered; thus, the panel suggests against routine 25(OH)D testing in all populations considered. The panel judged that, in most situations, empiric vitamin D supplementation is inexpensive, feasible, acceptable to both healthy individuals and health care professionals, and has no negative effect on health equity. CONCLUSION The panel suggests empiric vitamin D for those aged 1 to 18 years and adults over 75 years of age, those who are pregnant, and those with high-risk prediabetes. Due to the scarcity of natural food sources rich in vitamin D, empiric supplementation can be achieved through a combination of fortified foods and supplements that contain vitamin D. Based on the absence of supportive clinical trial evidence, the panel suggests against routine 25(OH)D testing in the absence of established indications. These recommendations are not meant to replace the current DRIs for vitamin D, nor do they apply to people with established indications for vitamin D treatment or 25(OH)D testing. Further research is needed to determine optimal 25(OH)D levels for specific health benefits.
Collapse
Affiliation(s)
- Marie B Demay
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Anastassios G Pittas
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Daniel D Bikle
- Departments of Medicine and Dermatology, University of California San Francisco, San Francisco VA Medical Center, San Francisco, CA 94158, USA
| | - Dima L Diab
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Mairead E Kiely
- Cork Centre for Vitamin D and Nutrition Research, School of Food and Nutritional Sciences and INFANT Research Centre, University College Cork, Cork, T12 Y337, Ireland
| | - Marise Lazaretti-Castro
- Department of Internal Medicine, Division of Endocrinology, Universidade Federal de Sao Paulo, Sao Paulo 04220-00, Brazil
| | - Paul Lips
- Endocrine Section, Amsterdam University Medical Center, Internal Medicine, 1007 MB Amsterdam, Netherlands
| | - Deborah M Mitchell
- Pediatric Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - M Hassan Murad
- Evidence-Based Practice Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Shelley Powers
- Bone Health and Osteoporosis Foundation, Los Gatos, CA 95032, USA
| | - Sudhaker D Rao
- Division of Endocrinology, Diabetes and Bone & Mineral Disorders, Henry Ford Health, Detroit, MI 48202, USA
- College of Human Medicine, Michigan State University, Lansing, MI 48824, USA
| | - Robert Scragg
- School of Population Health, The University of Auckland, Auckland 1142, New Zealand
| | - John A Tayek
- Department of Internal Medicine, Harbor-UCLA Medical Center, Torrance, CA 90509, USA
- The Lundquist Institute, Torrance, CA 90502, USA
| | - Amy M Valent
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Judith M E Walsh
- Division of General Internal Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Christopher R McCartney
- Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Medicine, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
15
|
Afroz S, Saul S, Dai J, Surman S, Liu X, Park HS, Le Nouën C, Lingemann M, Dahal B, Coleman JR, Mueller S, Collins PL, Buchholz UJ, Munir S. Human parainfluenza virus 3 vaccine candidates attenuated by codon-pair deoptimization are immunogenic and protective in hamsters. Proc Natl Acad Sci U S A 2024; 121:e2316376121. [PMID: 38861603 PMCID: PMC11194498 DOI: 10.1073/pnas.2316376121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Human parainfluenza virus type 3 (HPIV3) is a major pediatric respiratory pathogen lacking available vaccines or antiviral drugs. We generated live-attenuated HPIV3 vaccine candidates by codon-pair deoptimization (CPD). HPIV3 open reading frames (ORFs) encoding the nucleoprotein (N), phosphoprotein (P), matrix (M), fusion (F), hemagglutinin-neuraminidase (HN), and polymerase (L) were modified singly or in combination to generate 12 viruses designated Min-N, Min-P, Min-M, Min-FHN, Min-L, Min-NP, Min-NPM, Min-NPL, Min-PM, Min-PFHN, Min-MFHN, and Min-PMFHN. CPD of N or L severely reduced growth in vitro and was not further evaluated. CPD of P or M was associated with increased and decreased interferon (IFN) response in vitro, respectively, but had little effect on virus replication. In Vero cells, CPD of F and HN delayed virus replication, but final titers were comparable to wild-type (wt) HPIV3. In human lung epithelial A549 cells, CPD F and HN induced a stronger IFN response, viral titers were reduced 100-fold, and the expression of F and HN proteins was significantly reduced without affecting N or P or the relative packaging of proteins into virions. Following intranasal infection in hamsters, replication in the nasal turbinates and lungs tended to be the most reduced for viruses bearing CPD F and HN, with maximum reductions of approximately 10-fold. Despite decreased in vivo replication (and lower expression of CPD F and HN in vitro), all viruses induced titers of serum HPIV3-neutralizing antibodies similar to wt and provided complete protection against HPIV3 challenge. In summary, CPD of HPIV3 yielded promising vaccine candidates suitable for further development.
Collapse
Affiliation(s)
- Sharmin Afroz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Sirle Saul
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Jin Dai
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Sonja Surman
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Xueqiao Liu
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Hong-Su Park
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Cyril Le Nouën
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Matthias Lingemann
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Bibha Dahal
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | | | | | - Peter Leon Collins
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Ursula Johanna Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Shirin Munir
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| |
Collapse
|
16
|
Schnyder Ghamloush S, Essink B, Hu B, Kalidindi S, Morsy L, Egwuenu-Dumbuya C, Kapoor A, Girard B, Dhar R, Lackey R, Snape MD, Shaw CA. Safety and Immunogenicity of an mRNA-Based hMPV/PIV3 Combination Vaccine in Seropositive Children. Pediatrics 2024; 153:e2023064748. [PMID: 38738290 DOI: 10.1542/peds.2023-064748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/18/2024] [Accepted: 02/08/2024] [Indexed: 05/14/2024] Open
Abstract
OBJECTIVES Human metapneumovirus (hMPV) and parainfluenza virus type 3 (PIV3) are common respiratory illnesses in children. The safety and immunogenicity of an investigational mRNA-based vaccine, mRNA-1653, encoding membrane-anchored fusion proteins of hMPV and PIV3, was evaluated in hMPV/PIV3-seropositive children. METHODS In this phase 1b randomized, observer-blind, placebo-controlled, dose-ranging study, hMPV/PIV3-seropositive children were enrolled sequentially into 2 dose levels of mRNA-1653 administered 2 months apart; children aged 12 to 36 months were randomized (1:1) to receive 10-μg of mRNA-1653 or placebo and children aged 12 to 59 months were randomized (3:1) to receive 30-μg of mRNA-1653 or placebo. RESULTS Overall, 27 participants aged 18 to 55 months were randomized; 15 participants received 10-μg of mRNA-1653 (n = 8) or placebo (n = 7), whereas 12 participants received 30-μg of mRNA-1653 (n = 9) or placebo (n = 3). mRNA-1653 was well-tolerated at both dose levels. The only reported solicited local adverse reaction was tenderness at injection site; solicited systemic adverse reactions included grade 1 or 2 chills, irritability, loss of appetite, and sleepiness. A single 10-μg or 30-μg mRNA-1653 injection increased hMPV and PIV3 neutralizing antibody titers (geometric mean fold-rise ratio over baseline: hMPV-A = 2.9-6.1; hMPV-B = 6.2-13.2; PIV3 = 2.8-3.0) and preF and postF binding antibody concentrations (geometric mean fold-rise ratio: hMPV preF = 5.3-6.1; postF = 4.6-6.5 and PIV3 preF = 13.9-14.2; postF = 11.0-12.1); a second injection did not further increase antibody levels in these seropositive children. Binding antibody responses were generally preF biased. CONCLUSIONS mRNA-1653 was well-tolerated and boosted hMPV and PIV3 antibody levels in seropositive children aged 12 to 59 months, supporting the continued development of mRNA-1653 or its components for the prevention of hMPV and PIV3.
Collapse
Affiliation(s)
| | | | - Bo Hu
- Moderna, Inc., Cambridge, Massachusetts
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Palmas G, Trapani S, Agosti M, Alberti I, Aricò M, Azzari C, Bresesti I, Bressan S, Caselli D, Cazzato S, Da Dalt L, Felici E, Garazzino S, Giannattasio A, Iudica G, Lanari M, Marchisio P, Martelli G, Milani GP, Soro F, Piccotti E, Tirelli F, Resti M, Indolfi G. Disrupted Seasonality of Respiratory Viruses: Retrospective Analysis of Pediatric Hospitalizations in Italy from 2019 to 2023. J Pediatr 2024; 268:113932. [PMID: 38309520 DOI: 10.1016/j.jpeds.2024.113932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/07/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
This multicenter study in Italian hospitals highlights the epidemiologic disruptions in the circulation of the 5 main respiratory viruses from 2019 to 2023. Our data reveal a resurgence of respiratory syncytial virus and influenza during the 2022-2023 winter season, with an earlier peak in cases for both viruses, emphasizing the importance of timely monitoring.
Collapse
Affiliation(s)
- Giordano Palmas
- Pediatric Unit, Meyer Children's Hospital IRCCS, Florence, Italy.
| | - Sandra Trapani
- Pediatric Unit, Meyer Children's Hospital IRCCS, Florence, Italy; Department of Health Sciences, University of Florence, Florence, Italy
| | - Massimo Agosti
- Department of Woman and Child, University of Insubria, Varese, Italy
| | - Ilaria Alberti
- Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Aricò
- Pediatric Unit, S. Spirito Hospital, Azienda Sanitaria Locale, Pescara, Italy
| | - Chiara Azzari
- Pediatric Unit, Meyer Children's Hospital IRCCS, Florence, Italy; Department of Health Sciences, University of Florence, Florence, Italy
| | - Ilia Bresesti
- Department of Woman and Child, University of Insubria, Varese, Italy
| | - Silvia Bressan
- Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | - Desiree Caselli
- Pediatric Infectious Diseases Unit, Giovanni XXIII Children's Hospital, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Salvatore Cazzato
- Pediatric Unit, Department of Mother and Child Health, Salesi Children's Hospital, Ancona, Italy
| | - Liviana Da Dalt
- Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | - Enrico Felici
- Pediatric and Pediatric Emergency Unit, Children Hospital, AO SS Antonio e Biagio e C. Arrigo, Alessandria, Italy
| | - Silvia Garazzino
- Unit of Pediatric Infectious Diseases, University of Turin, Regina Margherita Children's Hospital, Turin, Italy
| | | | - Giovanna Iudica
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Marcello Lanari
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy; Pediatric Emergency Unit, IRCCS-Policlinico Ospedaliero Universitario di Bologna, Bologna, Italy
| | - Paola Marchisio
- Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gaia Martelli
- Pediatric Unit, Department of Mother and Child Health, Salesi Children's Hospital, Ancona, Italy
| | - Gregorio Paolo Milani
- Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Soro
- Department of Preventive Medicine, University of Brescia, Brescia, Italy
| | - Emanuela Piccotti
- Pediatric Emergency Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Francesca Tirelli
- Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | - Massimo Resti
- Pediatric Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Giuseppe Indolfi
- Pediatric Unit, Meyer Children's Hospital IRCCS, Florence, Italy; Department of NEUROFARBA, University of Florence, Florence, Italy
| |
Collapse
|
18
|
Abu-Shmais AA, Miller RJ, Janke AK, Wolters RM, Holt CM, Raju N, Carnahan RH, Crowe JE, Mousa JJ, Georgiev IS. Potent HPIV3-neutralizing IGHV5-51 Antibodies Identified from Multiple Individuals Show L Chain and CDRH3 Promiscuity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1450-1456. [PMID: 38488511 PMCID: PMC11018509 DOI: 10.4049/jimmunol.2300880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/21/2024] [Indexed: 04/17/2024]
Abstract
Human parainfluenza virus 3 (HPIV3) is a widespread pathogen causing severe and lethal respiratory illness in at-risk populations. Effective countermeasures are in various stages of development; however, licensed therapeutic and prophylactic options are not available. The fusion glycoprotein (HPIV3 F), responsible for facilitating viral entry into host cells, is a major target of neutralizing Abs that inhibit infection. Although several neutralizing Abs against a small number of HPIV3 F epitopes have been identified to date, relatively little is known about the Ab response to HPIV3 compared with other pathogens, such as influenza virus and SARS-CoV-2. In this study, we aimed to characterize a set of HPIV3-specific Abs identified in multiple individuals for genetic signatures, epitope specificity, neutralization potential, and publicness. We identified 12 potently neutralizing Abs targeting three nonoverlapping epitopes on HPIV3 F. Among these, six Abs identified from two different individuals used Ig heavy variable gene IGHV 5-51, with five of the six Abs targeting the same epitope. However, despite the use of the same H chain variable (VH) gene, these Abs used multiple different L chain variable genes (VL) and diverse H chain CDR 3 (CDRH3) sequences. Together, these results provide further information about the genetic and functional characteristics of HPIV3-neutralizing Abs and suggest the existence of a reproducible VH-dependent Ab response associated with VL and CDRH3 promiscuity. Understanding sites of HPIV3 F vulnerability and the genetic and molecular characteristics of Abs targeting these sites will help guide efforts for effective vaccine and therapeutic development.
Collapse
Affiliation(s)
- Alexandra A. Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical
Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and
Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rose J. Miller
- Department of Infectious Diseases, College of
Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Center for Vaccines and Immunology, College of
Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Alexis K. Janke
- Vanderbilt Vaccine Center, Vanderbilt University Medical
Center, Nashville, TN 37232, USA
| | - Rachael M. Wolters
- Vanderbilt Vaccine Center, Vanderbilt University Medical
Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and
Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Clinton M. Holt
- Vanderbilt Vaccine Center, Vanderbilt University Medical
Center, Nashville, TN 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt
University Medical Center; Nashville, TN 37232, USA
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical
Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and
Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert H. Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical
Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University
Medical Center, Nashville, TN 37232, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical
Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and
Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University
Medical Center, Nashville, TN 37232, USA
| | - Jarrod J. Mousa
- Department of Infectious Diseases, College of
Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Center for Vaccines and Immunology, College of
Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, Franklin
College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical
Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and
Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and
Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Computer Science, Vanderbilt
University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt
University, Nashville, TN 37232, USA
- Program in Computational Microbiology and
Immunology, Vanderbilt University Medical Center; Nashville, TN, 37232, USA
| |
Collapse
|
19
|
Lee K, Park K, Sung H, Kim MN. Phylogenetic lineage dynamics of global parainfluenza virus type 3 post-COVID-19 pandemic. mSphere 2024; 9:e0062423. [PMID: 38501829 PMCID: PMC11036794 DOI: 10.1128/msphere.00624-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, outbreaks of parainfluenza virus type 3 (PIV-3) decreased due to infection control measures. However, a post-pandemic resurgence of PIV-3 has recently been observed. Nonetheless, the role of viral genetic epidemiology, possibly influenced by a genetic bottleneck effect, remains unexplored. We investigated the phylogenetic structure of the publicly available PIV-3 whole-genome and hemagglutinin-neuraminidase (HN) gene sequences spanning the last 65 years, including the COVID-19 pandemic. Sequences were retrieved from the nucleotide database of the National Center for Biotechnology Information using the search term "Human respirovirus 3." Sequence subsets covering all six genes of PIV-3 or the HN gene were designated as the whole-genome and HN surveillance data sets, respectively. Using these data sets, we constructed maximum-likelihood phylogenetic trees and performed a time-scaled analysis using a Bayesian SkyGrid coalescent prior. A total of 455 whole-genome and 1,139 HN gene sequences were extracted, revealing 10 and 11 distinct lineages, respectively, with >98% concurrence in lineage assignments. During the 2020 COVID-19 pandemic, only three single-lineage clusters were identified in Japan, Korea, and the USA. The inferred year of origin for PIV-3 was 1938 (1903-1963) for the whole-genome data set and 1955 (1930-1963) for the HN gene data set. Our study suggests that PIV-3 epidemics in the post-COVID era are likely influenced by a pandemic-driven bottleneck phenomenon and supports previous hypotheses suggesting s that PIV-3 originated during the early half of the 20th century.IMPORTANCEUsing publicly available parainfluenza virus type 3 (PIV-3) whole-genome sequences, we estimated that PIV-3 originated during the 1930s, consistent with previous hypotheses. Lineage typing and time-scaled phylogenetic analysis revealed that PIV-3 experienced a bottleneck phenomenon in Korea and the USA during the coronavirus disease 2019 pandemic. We identified the conservative hemagglutinin-neuraminidase gene as a viable alternative marker in long-term epidemiological studies of PIV-3 when whole-genome analysis is limited.
Collapse
Affiliation(s)
| | - Kuenyoul Park
- Department of Laboratory Medicine, Sanggye Paik Hospital, School of Medicine, Inje University, Seoul, South Korea
| | - Heungsup Sung
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Mi-Na Kim
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
20
|
Wang X, Li Y, Shi T, Bont LJ, Chu HY, Zar HJ, Wahi-Singh B, Ma Y, Cong B, Sharland E, Riley RD, Deng J, Figueras-Aloy J, Heikkinen T, Jones MH, Liese JG, Markić J, Mejias A, Nunes MC, Resch B, Satav A, Yeo KT, Simões EAF, Nair H. Global disease burden of and risk factors for acute lower respiratory infections caused by respiratory syncytial virus in preterm infants and young children in 2019: a systematic review and meta-analysis of aggregated and individual participant data. Lancet 2024; 403:1241-1253. [PMID: 38367641 DOI: 10.1016/s0140-6736(24)00138-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/05/2024] [Accepted: 01/23/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Infants and young children born prematurely are at high risk of severe acute lower respiratory infection (ALRI) caused by respiratory syncytial virus (RSV). In this study, we aimed to assess the global disease burden of and risk factors for RSV-associated ALRI in infants and young children born before 37 weeks of gestation. METHODS We conducted a systematic review and meta-analysis of aggregated data from studies published between Jan 1, 1995, and Dec 31, 2021, identified from MEDLINE, Embase, and Global Health, and individual participant data shared by the Respiratory Virus Global Epidemiology Network on respiratory infectious diseases. We estimated RSV-associated ALRI incidence in community, hospital admission, in-hospital mortality, and overall mortality among children younger than 2 years born prematurely. We conducted two-stage random-effects meta-regression analyses accounting for chronological age groups, gestational age bands (early preterm, <32 weeks gestational age [wGA], and late preterm, 32 to <37 wGA), and changes over 5-year intervals from 2000 to 2019. Using individual participant data, we assessed perinatal, sociodemographic, and household factors, and underlying medical conditions for RSV-associated ALRI incidence, hospital admission, and three severity outcome groups (longer hospital stay [>4 days], use of supplemental oxygen and mechanical ventilation, or intensive care unit admission) by estimating pooled odds ratios (ORs) through a two-stage meta-analysis (multivariate logistic regression and random-effects meta-analysis). This study is registered with PROSPERO, CRD42021269742. FINDINGS We included 47 studies from the literature and 17 studies with individual participant-level data contributed by the participating investigators. We estimated that, in 2019, 1 650 000 (95% uncertainty range [UR] 1 350 000-1 990 000) RSV-associated ALRI episodes, 533 000 (385 000-730 000) RSV-associated hospital admissions, 3050 (1080-8620) RSV-associated in-hospital deaths, and 26 760 (11 190-46 240) RSV-attributable deaths occurred in preterm infants worldwide. Among early preterm infants, the RSV-associated ALRI incidence rate and hospitalisation rate were significantly higher (rate ratio [RR] ranging from 1·69 to 3·87 across different age groups and outcomes) than for all infants born at any gestational age. In the second year of life, early preterm infants and young children had a similar incidence rate but still a significantly higher hospitalisation rate (RR 2·26 [95% UR 1·27-3·98]) compared with all infants and young children. Although late preterm infants had RSV-associated ALRI incidence rates similar to that of all infants younger than 1 year, they had higher RSV-associated ALRI hospitalisation rate in the first 6 months (RR 1·93 [1·11-3·26]). Overall, preterm infants accounted for 25% (95% UR 16-37) of RSV-associated ALRI hospitalisations in all infants of any gestational age. RSV-associated ALRI in-hospital case fatality ratio in preterm infants was similar to all infants. The factors identified to be associated with RSV-associated ALRI incidence were mainly perinatal and sociodemographic characteristics, and factors associated with severe outcomes from infection were mainly underlying medical conditions including congenital heart disease, tracheostomy, bronchopulmonary dysplasia, chronic lung disease, or Down syndrome (with ORs ranging from 1·40 to 4·23). INTERPRETATION Preterm infants face a disproportionately high burden of RSV-associated disease, accounting for 25% of RSV hospitalisation burden. Early preterm infants have a substantial RSV hospitalisation burden persisting into the second year of life. Preventive products for RSV can have a substantial public health impact by preventing RSV-associated ALRI and severe outcomes from infection in preterm infants. FUNDING EU Innovative Medicines Initiative Respiratory Syncytial Virus Consortium in Europe.
Collapse
Affiliation(s)
- Xin Wang
- National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University, Nanjing, China; Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - You Li
- National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University, Nanjing, China; Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Ting Shi
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Louis J Bont
- Department of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, Netherlands; ReSViNET Foundation, Zeist, Netherlands
| | - Helen Y Chu
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, Cape Town, South Africa; South African Medical Research Council Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Bhanu Wahi-Singh
- Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Yiming Ma
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Bingbing Cong
- National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Emma Sharland
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Richard D Riley
- Centre for Prognosis Research, School of Medicine, Keele University, Keele, UK
| | - Jikui Deng
- Department of Infectious Diseases, Shenzhen Children's Hospital, Shenzhen, China
| | | | - Terho Heikkinen
- Department of Pediatrics, Turku University Hospital, Turku, Finland; Department of Pediatrics, University of Turku, Turku, Finland
| | - Marcus H Jones
- Department of Pediatrics, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Johannes G Liese
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Joško Markić
- Department of Pediatrics, University Hospital Split, Split, Croatia; School of Medicine, University of Split, Split, Croatia
| | - Asuncion Mejias
- Department of Pediatrics, Division of Infectious Diseases, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Marta C Nunes
- South African Medical Research Council, Wits Vaccines and Infectious Diseases Analytics Research Unit and Department of Science and Technology and National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Center of Excellence in Respiratory Pathogens, Hospices Civils de Lyon, and Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Bernhard Resch
- Research Unit for Neonatal Infectious Diseases and Epidemiology, Medical University of Graz, Graz, Austria; Division of Neonatology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Ashish Satav
- MAHAN Trust Mahatma Gandhi Tribal Hospital, District Amaravati, Maharashtra, India
| | - Kee Thai Yeo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Neonatology, KK Women's and Children's Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Eric A F Simões
- Department of Pediatrics, Section of Infectious Diseases, School of Medicine, University of Colorado, Aurora, CO, USA; Department of Epidemiology and Center for Global Health, Colorado School of Public Health, Aurora, CO, USA
| | - Harish Nair
- National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University, Nanjing, China; Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK; MRC/Wits Rural Public Health and Health Transitions Research Unit, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
21
|
Gao Y, Ma Y, Feng D, Zhang F, Wang B, Liu X, Zhu B, Xie H, Zhao L, Long X, Chen Y, Wang B, Jiang J, Zhu Z, Zhang Y, Cui A, Xia B, Mao N. Epidemiological Characteristics of Human Parainfluenza Viruses Infections - China, 2019-2023. China CDC Wkly 2024; 6:235-241. [PMID: 38633430 PMCID: PMC11018516 DOI: 10.46234/ccdcw2024.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/17/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction A retrospective study based on sentinel surveillance was conducted in 10 provincial-level administrative divisions (PLADs) in China to enhance the understanding of the epidemiological characteristics of human parainfluenza viruses (HPIVs). Methods From January 2019 to June 2023, respiratory specimens were collected from individuals with acute respiratory infections (ARIs) and screened for four HPIVs serotypes and other common respiratory viruses using multiplex real-time polymerase chain reaction (PCR). This study analyzed the association of HPIVs infections with seasonal patterns, geographical distribution, demographic profiles, clinical features, and co-infection status. Results During the study period, a total of 12,866 ARIs were included. The overall detection rate of HPIVs was 6.15%, varying from 5.04% in 2022 to 9.70% in 2020. The median age of HPIVs-infected patients was 3 years. HPIV2 was more prevalent among individuals aged 5-17 years (42.57%), while HPIV4 was more common in those over 65 years (12.24%). HPIV3 (54.16%) and HPIV1 (27.18%) were the predominant serotypes, and their prevalence exhibited significant seasonal fluctuations post- coronavirus disease 2019 (COVID-19) pandemic. The peak of HPIV3 shifted three months later in 2020 compared to 2019 and returned to a summer peak thereafter. Two peaks of HPIV1 were observed in 2021 following the peak of HPIV3. Additionally, co-infections were frequent in HPIVs cases (overall rate: 22.12%), with human rhinovirus being the most common co-infecting virus. Conclusions The prevalence of HPIVs in China was predominantly due to HPIV3 and HPIV1, and their seasonal patterns were altered by pandemic restrictions. Hence, continuous surveillance of HPIVs is essential.
Collapse
Affiliation(s)
- Yixuan Gao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; Beijing, China
| | - Yingwei Ma
- Precision Medicine Research Center, Children’s Hospital of Changchun, Changchun City, Jilin Province, China
| | - Daxing Feng
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou City, Henan Province, China
| | - Feng Zhang
- Laboratory of Viral Diseases, Qingdao Municipal Centre for Disease Control and Prevention, Qingdao City, Shandong Province, China
| | - Biao Wang
- Virus Laboratory, Gansu Provincial Center for Disease Control and Prevention, Lanzhou City, Gansu Province, China
| | - Xiaoqing Liu
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang City, Gansu Province, China
| | - Bing Zhu
- Virus Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, China
| | - Hui Xie
- Institute for Immunization and Prevention, Beijing Center for Disease Prevention and Control, Academy for Preventive Medicine, Institute of Tuberculosis Control Research and Prevention, Beijing, China
| | - Linqing Zhao
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Xiaoru Long
- Department of Infection, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Chen
- Inner Mongolia Autonomous Region Comprehensive Center for Disease Control and Prevention, Hohhot City, Inner Mongolia Autonomous Region, China
| | - Bing Wang
- Shenyang Prefecture Center for Disease Control and Prevention, Shenyang City, Liaoning Province, China
| | - Jie Jiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; Beijing, China
| | - Zhen Zhu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; Beijing, China
| | - Yan Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; Beijing, China
| | - Aili Cui
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; Beijing, China
| | - Baicheng Xia
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; Beijing, China
| | - Naiying Mao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; Beijing, China
| |
Collapse
|
22
|
Alsaleh AN, Aziz IM, Alkubaisi NA, Almajhdi FN. Genetic analysis of human parainfluenza type 2 virus in Riyadh, Saudi Arabia. Virus Genes 2024; 60:1-8. [PMID: 37906378 DOI: 10.1007/s11262-023-02035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
The extensive mass gathering of pilgrims from all over the world, as well as the constant flow of foreign workers via country entry crossings, raises the likelihood of respiratory virus outbreaks spreading and evolving in Saudi Arabia. Here, we report the sequence and phylogenetic analysis of the human parainfluenza type-2 (HPIV-2) in nasopharyngeal aspirates (NPAs) collected from Riyadh, Saudi Arabia, from 2020/21 to 2021/22 seasons. RNA was extracted from the clinical samples and subjected to RT-PCR analysis for the detection of IAV and IBV. The full-length HN gene of HPIV-2 was amplified and sequenced. Multiple sequence alignments (both nucleotides and deduced amino acids) were aligned using Clustal W, MegAlign program of Lasergene software, and MEGA 7.0. HPIV-2 was found in (4; 2% of 200) NPAs. Sequence and phylogenetic analysis results showed that indicated a genotype shifting from G3 to G4a with 83% sequence homology 62-M786 from Japan, which was prominent throughout the winter seasons of 2008/09. Multiple amino acid sequence alignment revealed 25 sites of possible difference between G3 genotypes and G4a. A total of twenty- two of these locations were shared by the other G4a genotypes, whereas three positions, 67 V, 175 S, and 377Q, were exclusively shared by G3. Only eight conserved N-glycosylation sites were found at amino acids 6(NLS), 286(NTT), 335(NIT), 388(NNS), 498(NES), 504(NPT), 517(NTT), and 539(NGT) in four Riyadh isolates. Our findings also revealed that the G4a genotype of HPIV-2 predominated in our samples population during the winter seasons of 2020/21 and 2021/22. Further research with a larger sample size covering numerous regions of Saudi Arabia throughout different epidemic seasons is needed to achieve an improved knowledge of HPIV-2 circulation.
Collapse
Affiliation(s)
- Asma N Alsaleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ibrahim M Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Noorah A Alkubaisi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fahad N Almajhdi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
23
|
Cohen R, Haas H, Romain O, Béchet S, Romain C, de Lays CDT, Wollner A, Guiheneuf C, de Pontual L, Levy C. Use of Rapid Antigen Triple Test Nasal Swabs (COVID-VIRO ALL-IN TRIPLEX: Severe Acute Respiratory Syndrome Coronavirus 2, Respiratory Syncytial Virus, and Influenza) in Children With Respiratory Symptoms: A Real-life Prospective Study. Open Forum Infect Dis 2024; 11:ofad617. [PMID: 38173847 PMCID: PMC10764097 DOI: 10.1093/ofid/ofad617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Background In autumn 2022, the epidemics due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respiratory syncytial virus (RSV), and influenza overlapped, and these diseases can present with the same symptomatology. The use of a triple antigen test (SARS-CoV-2 + influenza A/B + RSV) seems crucial for accurate viral diagnosis in the context of implementing long-acting monoclonal antibody vaccination against RSV in the upcoming RSV season. Methods We assessed the usefulness of the triple test in real life in this prospective study performed from October 2022 to May 2023 and involving 116 pediatricians (2 emergency department pediatricians and 114 ambulatory pediatricians). Children <15 years old with flu-like illness (with fever), bronchiolitis (dyspnea ± wheezing), otitis, and croup were enrolled and sampled with a nasal triple test. Results For 8329 children with flu-like illness (65.3%), bronchiolitis (17.9%), otitis (8.8%), and croup (6.3%), the use of the triple test led to a viral diagnosis in 47.9% of cases. The highest RSV positivity occurred in children with bronchiolitis (32.9%). The highest influenza A and B positivity (24.6% and 19.6%) occurred in children with flu-like illness. A succession of 3 epidemics (RSV and influenza A and B) occurred over time with several overlap periods. Conclusions The triple test allowed for a viral diagnosis in half of our cases. The upcoming introduction of RSV prevention will emphasize the need for active surveillance with viral results both in ambulatory settings and hospitals. Clinical Trials Registration. NCT0441231.
Collapse
Affiliation(s)
- Robert Cohen
- Pediatric Department, Association Clinique et Thérapeutique Infantile du Val-de-Marne, Créteil, France
- Clinical Research Center, Centre Hospitalier Intercommunal de Créteil, Créteil, France
- Institut Mondor de Recherche Biomédicale-Groupe de Recherche Clinique, Groupe d'Etude des Maladie Infectieuses Néonatales et Infantiles, Université Paris Est, Créteil, France
- Pediatric Department, Association Française de Pédiatrie Ambulatoire, Orléans, France
- Pediatric Department, Groupe de Pathologie Infectieuse Pédiatrique, Créteil, France
| | - Hervé Haas
- Pediatric Department, Groupe de Pathologie Infectieuse Pédiatrique, Créteil, France
- Service de pédiatrie, Hôpital Princesse Grace, Monaco
| | - Olivier Romain
- Pediatric Department, Groupe de Pathologie Infectieuse Pédiatrique, Créteil, France
| | - Stéphane Béchet
- Pediatric Department, Association Clinique et Thérapeutique Infantile du Val-de-Marne, Créteil, France
- Pediatric Department, Association Française de Pédiatrie Ambulatoire, Orléans, France
| | - Catherine Romain
- Pediatric Department, Groupe de Pathologie Infectieuse Pédiatrique, Créteil, France
| | - Camille de Truchis de Lays
- Pediatric Department, Groupe de Pathologie Infectieuse Pédiatrique, Créteil, France
- Service de pédiatrie, Hôpital Avicenne, Assistance Publique–Hôpitaux de Paris, Bondy, France
| | - Alain Wollner
- Pediatric Department, Association Clinique et Thérapeutique Infantile du Val-de-Marne, Créteil, France
- Pediatric Department, Association Française de Pédiatrie Ambulatoire, Orléans, France
| | - Cécile Guiheneuf
- Pediatric Department, Association Française de Pédiatrie Ambulatoire, Orléans, France
| | - Loic de Pontual
- Pediatric Department, Groupe de Pathologie Infectieuse Pédiatrique, Créteil, France
- Service de pédiatrie, Hôpital Avicenne, Assistance Publique–Hôpitaux de Paris, Bondy, France
| | - Corinne Levy
- Pediatric Department, Association Clinique et Thérapeutique Infantile du Val-de-Marne, Créteil, France
- Clinical Research Center, Centre Hospitalier Intercommunal de Créteil, Créteil, France
- Institut Mondor de Recherche Biomédicale-Groupe de Recherche Clinique, Groupe d'Etude des Maladie Infectieuses Néonatales et Infantiles, Université Paris Est, Créteil, France
- Pediatric Department, Association Française de Pédiatrie Ambulatoire, Orléans, France
- Pediatric Department, Groupe de Pathologie Infectieuse Pédiatrique, Créteil, France
| |
Collapse
|
24
|
González Aparicio LJ, Yang Y, Hackbart M, López CB. Copy-back viral genomes induce a cellular stress response that interferes with viral protein expression without affecting antiviral immunity. PLoS Biol 2023; 21:e3002381. [PMID: 37983241 PMCID: PMC10695362 DOI: 10.1371/journal.pbio.3002381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/04/2023] [Accepted: 10/15/2023] [Indexed: 11/22/2023] Open
Abstract
Antiviral responses are often accompanied by translation inhibition and formation of stress granules (SGs) in infected cells. However, the triggers for these processes and their role during infection remain subjects of active investigation. Copy-back viral genomes (cbVGs) are the primary inducers of the mitochondrial antiviral signaling (MAVS) pathway and antiviral immunity during Sendai virus (SeV) and respiratory syncytial virus (RSV) infections. The relationship between cbVGs and cellular stress during viral infections is unknown. Here, we show that SGs form during infections containing high levels of cbVGs, and not during infections with low levels of cbVGs. Moreover, using RNA fluorescent in situ hybridization to differentiate accumulation of standard viral genomes from cbVGs at a single-cell level during infection, we show that SGs form exclusively in cells that accumulate high levels of cbVGs. Protein kinase R (PKR) activation is increased during high cbVG infections and, as expected, is necessary for virus-induced SGs. However, SGs form independent of MAVS signaling, demonstrating that cbVGs induce antiviral immunity and SG formation through 2 independent mechanisms. Furthermore, we show that translation inhibition and SG formation do not affect the overall expression of interferon and interferon stimulated genes during infection, making the stress response dispensable for global antiviral immunity. Using live-cell imaging, we show that SG formation is highly dynamic and correlates with a drastic reduction of viral protein expression even in cells infected for several days. Through analysis of active protein translation at a single-cell level, we show that infected cells that form SGs show inhibition of protein translation. Together, our data reveal a new cbVG-driven mechanism of viral interference where cbVGs induce PKR-mediated translation inhibition and SG formation, leading to a reduction in viral protein expression without altering overall antiviral immunity.
Collapse
Affiliation(s)
- Lavinia J. González Aparicio
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine in St. Louis, Missouri, United States of America
| | - Yanling Yang
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine in St. Louis, Missouri, United States of America
| | - Matthew Hackbart
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine in St. Louis, Missouri, United States of America
| | - Carolina B. López
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine in St. Louis, Missouri, United States of America
| |
Collapse
|
25
|
Sarna M, Gebremedhin A, Richmond PC, Glass K, Levy A, Moore HC. Factors Predicting Secondary Respiratory Morbidity Following Early-Life Respiratory Syncytial Virus Infections: Population-Based Cohort Study. Open Forum Infect Dis 2023; 10:ofad450. [PMID: 37790944 PMCID: PMC10544950 DOI: 10.1093/ofid/ofad450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/27/2023] [Indexed: 10/05/2023] Open
Abstract
Background The association between early-life respiratory syncytial virus (RSV) infections and later respiratory morbidity is well established. However, there is limited evidence on factors that influence this risk. We examined sociodemographic and perinatal factors associated with later childhood respiratory morbidity requiring secondary care following exposure to a laboratory-confirmed RSV episode in the first 2 years. Methods We used a probabilistically linked whole-of-population-based birth cohort including 252 287 children born in Western Australia between 2000 and 2009 with follow-up to the end of 2012. Cox proportional hazards models estimated adjusted hazard ratios (aHRs) of the association of various risk factors with the first respiratory episode for asthma, wheezing, and unspecified acute lower respiratory infection beyond the age of 2 years. Results The analytic cohort included 4151 children with a confirmed RSV test before age 2 years. The incidence of subsequent respiratory morbidity following early-life RSV infection decreased with child age at outcome (highest incidence in 2-<4-year-olds: 41.8 per 1000 child-years; 95% CI, 37.5-46.6), increased with age at RSV infection (6-<12-month-olds: 23.6/1000 child-years; 95% CI, 19.9-27.8; 12-<24-month-olds: 22.4/1000 child-years; 95% CI, 18.2-22.7) and decreasing gestational age (50.8/1000 child-years; 95% CI, 33.5-77.2 for children born extremely preterm, <28 weeks gestation). Risk factors included age at first RSV episode (6-<12 months: aHR, 1.42; 95% CI, 1.06-1.90), extreme prematurity (<28 weeks: aHR, 2.22; 95% CI, 1.40-3.53), maternal history of asthma (aHR, 1.33; 95% CI, 1.04-1.70), and low socioeconomic index (aHR, 1.76; 95% CI, 1.03-3.00). Conclusions Our results suggest that in addition to preterm and young infants, children aged 12-<24 months could also be potential target groups for RSV prevention to reduce the burden of later respiratory morbidities associated with RSV.
Collapse
Affiliation(s)
- Mohinder Sarna
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Curtin School of Population Health, Curtin University, Bentley, Western Australia, Australia
| | - Amanuel Gebremedhin
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Curtin School of Population Health, Curtin University, Bentley, Western Australia, Australia
| | - Peter C Richmond
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- School of Medicine, University of Western Australia, Nedlands, Western Australia, Australia
- Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Kathryn Glass
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- National Centre for Epidemiology and Population Health, ANU College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Avram Levy
- PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Perth, Western Australia, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, Perth, Western Australia, Australia
| | - Hannah C Moore
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Curtin School of Population Health, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
26
|
Lopez CB, Gonzalez Aparicio LJ, Yang Y, Hackbart MS. Copy-back viral genomes induce a cellular stress response that interferes with viral protein expression without affecting antiviral immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541157. [PMID: 37292625 PMCID: PMC10245731 DOI: 10.1101/2023.05.17.541157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antiviral responses are often accompanied by translation inhibition and formation of stress granules (SG) in infected cells. However, the triggers for these processes and their role during infection remain subjects of active investigation. Copy-back viral genomes (cbVGs) are the primary inducers of the Mitochondrial Antiviral Signaling (MAVS) pathway and antiviral immunity during Sendai Virus (SeV) and Respiratory Syncytial virus (RSV) infections. The relationship between cbVGs and cellular stress during viral infections is unknown. Here we show that SG form during infections containing high levels of cbVGs, and not during infections with low levels of cbVGs. Moreover, using RNA fluorescent in situ hybridization to differentiate accumulation of standard viral genomes from cbVGs at a single-cell level during infection, we show that SG form exclusively in cells that accumulate high levels of cbVGs. PKR activation is increased during high cbVG infections and, as expected, PKR is necessary to induce virus-induced SG. However, SG form independent of MAVS signaling, demonstrating that cbVGs induce antiviral immunity and SG formation through two independent mechanisms. Furthermore, we show that translation inhibition and SG formation do not affect the overall expression of interferon and interferon stimulated genes during infection, making the stress response dispensable for antiviral immunity. Using live-cell imaging, we show that SG formation is highly dynamic and correlates with a drastic reduction of viral protein expression even in cells infected for several days. Through analysis of active protein translation at a single cell level, we show that infected cells that form SG show inhibition of protein translation. Together, our data reveal a new cbVG-driven mechanism of viral interference where cbVGs induce PKR-mediated translation inhibition and SG formation leading to a reduction in viral protein expression without altering overall antiviral immunity.
Collapse
|
27
|
Burrell R, Saravanos G, Britton PN. Unintended impacts of COVID-19 on the epidemiology and burden of paediatric respiratory infections. Paediatr Respir Rev 2023:S1526-0542(23)00044-1. [PMID: 37580220 DOI: 10.1016/j.prrv.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
Acute respiratory infections (ARI), especially lower respiratory infections (LRI), are a leading cause of childhood morbidity and mortality globally. Non-pharmaceutical interventions (NPI) employed during the COVID-19 pandemic have impacted on the epidemiology and burden of paediatric ARI, although accurately describing the full nature of the impact is challenging. For most ARI pathogens, a reduction was observed in the early phase of the pandemic, correlating with the most stringent NPI. In later phases of the pandemic resurgence of disease was observed as NPI eased. This pattern was most striking for seasonal viruses, such as influenza and respiratory syncytial virus. The impact on ARI-associated bacterial disease varied; marked reductions in invasive Streptococcus pneumoniae and Streptococcus pyogenes were observed, followed by a resurgence that correlated with increases in respiratory viral infections. For Corynebacterium diphtheriae,Bordetella pertussis, andMycoplasma pneumoniae, a sustained reduction of disease was observed well into 2022 in most regions. Proposedmechanisms for the varied epidemiological disruption amongst ARI pathogens includedifferential effects of NPI on specific pathogens, population-level immunological effects, and ecological and genetic pathogen adaptations. Additionally, important indirect effects of pandemic restrictions on paediatric respiratory infections have been identified. These occurred as a result of disruptions to routine health services, reductions in vaccination coverage, and disruptions to respiratory infection research and surveillance activities. Impacts have been disproportionately borne by those in low resource settings. We discuss opportunities to leverage pandemic learnings to support improved understanding of the epidemiology of paediatric respiratory infections to inform future prevention and health system strengthening. Educational Aims. The reader will gain an improved understanding of.
Collapse
Affiliation(s)
- Rebecca Burrell
- Sydney Medical School, University of Sydney, Australia; Sydney Infectious Diseases Institute, University of Sydney, New South Wales, Australia
| | - Gemma Saravanos
- Susan Wakil School of Nursing and Midwifery, University of Sydney, Australia; Sydney Infectious Diseases Institute, University of Sydney, New South Wales, Australia
| | - Philip N Britton
- Sydney Medical School, University of Sydney, Australia; Department of Infectious Diseases & Microbiology, The Children's Hospital at Westmead, Westmead, Australia; Sydney Infectious Diseases Institute, University of Sydney, New South Wales, Australia.
| |
Collapse
|
28
|
Parsons J, Korsman S, Smuts H, Hsiao NY, Valley-Omar Z, Gelderbloem T, Hardie D. Human Parainfluenza Virus (HPIV) Detection in Hospitalized Children with Acute Respiratory Tract Infection in the Western Cape, South Africa during 2014-2022 Reveals a Shift in Dominance of HPIV 3 and 4 Infections. Diagnostics (Basel) 2023; 13:2576. [PMID: 37568938 PMCID: PMC10417174 DOI: 10.3390/diagnostics13152576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The epidemiology of human parainfluenza viruses (HPIV), particularly its role as a cause of acute respiratory infection (ARI) in infants, has not been formally studied in South Africa. We evaluated HPIV prevalence in diagnostic samples from hospitalized children from public sector hospitals in the Western Cape between 2014 and 2022. HPIV infection was detected in 2-10% of patients, with the majority of infections detected in children less than 1 year of age. Prior to 2020, HPIV 4 (40%) and HPIV 3 (34%) were the most prevalent types, with seasonal peaks in late winter/spring for HPIV 3 and autumn/winter for HPIV 4. HPIV 4A and 4B co-circulated during the seasonal activity between 2014 and 2017. Pandemic restrictions in 2020 had a profound effect on HPIV circulation and the rebound was dominated by waves of HPIV 3, accounting for 66% of detections and a sustained decline in the circulation of HPIV 1, 2 and 4. An immunity gap could account for the surge in HPIV 3 infections, but the decline in prior HPIV 4 dominance is unexplained and requires further study.
Collapse
Affiliation(s)
- Jane Parsons
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7700, South Africa; (J.P.); (S.K.); (H.S.); (N.-Y.H.); (Z.V.-O.)
- National Health Laboratory Service, Johannesburg 2193, South Africa;
| | - Stephen Korsman
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7700, South Africa; (J.P.); (S.K.); (H.S.); (N.-Y.H.); (Z.V.-O.)
- National Health Laboratory Service, Johannesburg 2193, South Africa;
| | - Heidi Smuts
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7700, South Africa; (J.P.); (S.K.); (H.S.); (N.-Y.H.); (Z.V.-O.)
- National Health Laboratory Service, Johannesburg 2193, South Africa;
| | - Nei-Yuan Hsiao
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7700, South Africa; (J.P.); (S.K.); (H.S.); (N.-Y.H.); (Z.V.-O.)
- National Health Laboratory Service, Johannesburg 2193, South Africa;
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7700, South Africa
| | - Ziyaad Valley-Omar
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7700, South Africa; (J.P.); (S.K.); (H.S.); (N.-Y.H.); (Z.V.-O.)
- National Health Laboratory Service, Johannesburg 2193, South Africa;
| | | | - Diana Hardie
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7700, South Africa; (J.P.); (S.K.); (H.S.); (N.-Y.H.); (Z.V.-O.)
- National Health Laboratory Service, Johannesburg 2193, South Africa;
| |
Collapse
|
29
|
O’Neill GK, Taylor J, Kok J, Dwyer DE, Dilcher M, Hua H, Levy A, Smith D, Minney-Smith CA, Wood T, Jelley L, Huang QS, Trenholme A, McAuliffe G, Barr I, Sullivan SG. Circulation of influenza and other respiratory viruses during the COVID-19 pandemic in Australia and New Zealand, 2020-2021. Western Pac Surveill Response J 2023; 14:1-9. [PMID: 37946717 PMCID: PMC10630701 DOI: 10.5365/wpsar.2023,14.3.948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
Objective Circulation patterns of influenza and other respiratory viruses have been globally disrupted since the emergence of coronavirus disease (COVID-19) and the introduction of public health and social measures (PHSMs) aimed at reducing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. Methods We reviewed respiratory virus laboratory data, Google mobility data and PHSMs in five geographically diverse regions in Australia and New Zealand. We also described respiratory virus activity from January 2017 to August 2021. Results We observed a change in the prevalence of circulating respiratory viruses following the emergence of SARS-CoV-2 in early 2020. Influenza activity levels were very low in all regions, lower than those recorded in 2017-2019, with less than 1% of laboratory samples testing positive for influenza virus. In contrast, rates of human rhinovirus infection were increased. Respiratory syncytial virus (RSV) activity was delayed; however, once it returned, most regions experienced activity levels well above those seen in 2017-2019. The timing of the resurgence in the circulation of both rhinovirus and RSV differed within and between the two countries. Discussion The findings of this study suggest that as domestic and international borders are opened up and other COVID-19 PHSMs are lifted, clinicians and public health professionals should be prepared for resurgences in influenza and other respiratory viruses. Recent patterns in RSV activity suggest that these resurgences in non-COVID-19 viruses have the potential to occur out of season and with increased impact.
Collapse
Affiliation(s)
- Genevieve K O’Neill
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Janette Taylor
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology-Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| | - Jen Kok
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology-Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| | - Dominic E Dwyer
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology-Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| | - Meik Dilcher
- Canterbury Health Laboratories, Christchurch, New Zealand
| | - Harry Hua
- Canterbury Health Laboratories, Christchurch, New Zealand
| | - Avram Levy
- PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia
- Infection and Immunity, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - David Smith
- PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | | | - Timothy Wood
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Lauren Jelley
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Q Sue Huang
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
- Institute of Environmental Science and Research, Wellington, New Zealand
| | | | - Gary McAuliffe
- Virology and Immunology Department, LabPLUS, Auckland City Hospital, Auckland District Health Board, Auckland, New Zealand
| | - Ian Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sheena G Sullivan
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Infectious Diseases and Centre for Epidemiology and Biostatistics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Feng Y, Zhu Z, Xu J, Sun L, Zhang H, Xu H, Zhang F, Wang W, Han G, Jiang J, Liu Y, Zhou S, Zhang Y, Ji Y, Mao N, Xu W. Molecular Evolution of Human Parainfluenza Virus Type 2 Based on Hemagglutinin-Neuraminidase Gene. Microbiol Spectr 2023; 11:e0453722. [PMID: 37039701 PMCID: PMC10269610 DOI: 10.1128/spectrum.04537-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/06/2023] [Indexed: 04/12/2023] Open
Abstract
To understand the molecular evolution of human parainfluenza virus type 2 (HPIV2), 21 Hemagglutinin-Neuraminidase (HN) gene sequences covering seven Chinese provinces in 2011 and 2017 to 2021 were combined with 90 published HN sequences worldwide for phylogenetic analysis. The result showed that global HPIV2 could be classified into two distinct clusters (I and II), five lineages (IA to IIE), and four sublineages (IB1 and 2, and IIE1 and 2). The minimum genetic distances between different clusters and lineages were 0.049 and 0.014, respectively. In the last decade, one lineage (IID) and three sublineages (IB1, IB2, and IIE1) have been cocirculating in China, with the sublineages IB2 and IIE1 dominating, while sublineages IB1 and IIE1 are dominant globally. In addition, the spread of HPIV2 had relative spatial clustering, and sublineage IB2 has only been detected in China thus far. The overall evolution rate of HPIV2 was relatively low, on the order of 10-4 substitutions/site/year, except for sublineage IB2 at 10-3 substitutions/site/year. Furthermore, human-animal transmission was observed, suggesting that the HPIV2 might have jumped out of animal reservoirs in approximately 1922, the predicted time of a common ancestor. The entire HN protein was under purifying/negative selection, and the specific amino acid changes and two novel N-glycosylation sites (N316 and N517) in sublineages IB1, IB2, and IIE1 were mostly located in the globular head region of the HN protein. In this study, preliminary evolutionary characteristics of HPIV2 based on the HN gene were obtained, increasing the recognition of the evolution and adaptation of HPIV2. IMPORTANCE The phylogenetic analysis showed that global HPIV2 could be classified into two distinct clusters (I and II) and five lineages (IA to IIE) with at least 0.049 and 0.014 genetic distances between clusters and lineages, respectively. Furthermore, lineages IB and IIE could be further divided into two sublineages (IB1-2 and IIE1-2). All China sequences belong to one lineage and three sublineages (IB1, IB2, IID, and IIE1), among which sublineages IB2 and IIE1 are predominant and cocirculating in China, while sublineages IB1 and IIE1 are dominant globally. The overall evolution rate of HPIV2 is on the order of 10-4 substitutions/site/year, with the highest rate of 2.18 × 10-3 for sublineage IB2. The entire HN protein is under purifying/negative selection, and the specific amino acid substitutions and two novel N-glycosylation sites (N316 and N517) in sublineages IB1, IB2, and IIE1 are mostly located in the globular head region of the HN protein.
Collapse
Affiliation(s)
- Yi Feng
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhen Zhu
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jin Xu
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou, China
| | - Liwei Sun
- Changchun Children's Hospital, Changchun, China
| | - Hui Zhang
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, China
| | - Hongmei Xu
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Zhang
- Qingdao Center for Disease Control and Prevention, Qingdao, China
| | - Wenyang Wang
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Guangyue Han
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, China
| | - Jie Jiang
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Liu
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shanshan Zhou
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Zhang
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yixin Ji
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Naiying Mao
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenbo Xu
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
31
|
Thompson RE, Edmonds K, Dutch RE. Specific Residues in the C-Terminal Domain of the Human Metapneumovirus Phosphoprotein Are Indispensable for Formation of Viral Replication Centers and Regulation of the Function of the Viral Polymerase Complex. J Virol 2023; 97:e0003023. [PMID: 37092993 PMCID: PMC10231248 DOI: 10.1128/jvi.00030-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Human metapneumovirus (HMPV) is a negative-strand RNA virus that frequently causes respiratory tract infections in infants, the elderly, and the immunocompromised. A hallmark of HMPV infection is the formation of membraneless, liquid-like replication and transcription centers in the cytosol termed inclusion bodies (IBs). The HMPV phosphoprotein (P) and nucleoprotein (N) are the minimal viral proteins necessary to form IB-like structures, and both proteins are required for the viral polymerase to synthesize RNA during infection. HMPV P is a homotetramer with regions of intrinsic disorder and has several known and predicted phosphorylation sites of unknown function. In this study, we found that the P C-terminal intrinsically disordered domain (CTD) must be present to facilitate IB formation with HMPV N, while either the N-terminal intrinsically disordered domain or the central oligomerization domain was dispensable. Alanine substitution at a single tyrosine residue within the CTD abrogated IB formation and reduced coimmunoprecipitation with HMPV N. Mutations to C-terminal phosphorylation sites revealed a potential role for phosphorylation in regulating RNA synthesis and P binding partners within IBs. Phosphorylation mutations which reduced RNA synthesis in a reporter assay produced comparable results in a recombinant viral rescue system, measured as an inability to produce infectious viral particles with genomes containing these single P mutations. This work highlights the critical role HMPV P plays in facilitating a key step of the viral life cycle and reveals the potential role for phosphorylation in regulating the function of this significant viral protein. IMPORTANCE Human metapneumovirus (HMPV) infects global populations, with severe respiratory tract infections occurring in infants, the elderly, and the immunocompromised. There are currently no FDA-approved therapeutics available to prevent or treat HMPV infection. Therefore, understanding how HMPV replicates is vital for the identification of novel targets for therapeutic development. During HMPV infection, viral RNA synthesis proteins localize to membraneless structures called inclusion bodies (IBs), which are sites of genome replication and transcription. The HMPV phosphoprotein (P) is necessary for IBs to form and for the virus to synthesize RNA, but it is not known how this protein contributes to IB formation or if it is capable of regulating viral replication. We show that the C-terminal domain of P is the location of a molecular interaction driving IB formation and contains potential phosphorylation sites where amino acid charge regulates the function of the viral polymerase complex.
Collapse
Affiliation(s)
- Rachel Erin Thompson
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Kearstin Edmonds
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
32
|
Moyes J, Tempia S, Walaza S, McMorrow ML, Treurnicht F, Wolter N, von Gottberg A, Kahn K, Cohen AL, Dawood H, Variava E, Cohen C. The burden of RSV-associated illness in children aged < 5 years, South Africa, 2011 to 2016. BMC Med 2023; 21:139. [PMID: 37038125 PMCID: PMC10088270 DOI: 10.1186/s12916-023-02853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/27/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Vaccines and monoclonal antibodies to protect the very young infant against the respiratory syncytial virus (RSV)-associated illness are effective for limited time periods. We aimed to estimate age-specific burden to guide implementation strategies and cost-effectiveness analyses. METHODS We combined case-based surveillance and ecological data to generate a national estimate of the burden of RSV-associated acute respiratory illness (ARI) and severe acute respiratory illness (SARI) in South African children aged < 5 years (2011-2016), including adjustment for attributable fraction. We estimated the RSV burden by month of life in the < 1-year age group, by 3-month intervals until 2 years, and then 12 monthly intervals to < 5 years for medically and non-medically attended illness. RESULTS We estimated a mean annual total (medically and non-medically attended) of 264,112 (95% confidence interval (CI) 134,357-437,187) cases of RSV-associated ARI and 96,220 (95% CI 66,470-132,844) cases of RSV-associated SARI (4.7% and 1.7% of the population aged < 5 years, respectively). RSV-associated ARI incidence was highest in 2-month-old infants (18,361/100,000 population, 95% CI 9336-28,466). The highest incidence of RSV-associated SARI was in the < 1-month age group 14,674/100,000 (95% CI 11,175-19,645). RSV-associated deaths were highest in the first and second month of life (110.8 (95% CI 74.8-144.5) and 111.3 (86.0-135.8), respectively). CONCLUSIONS Due to the high burden of RSV-associated illness, specifically SARI cases in young infants, maternal vaccination and monoclonal antibody products delivered at birth could prevent significant RSV-associated disease burden.
Collapse
Affiliation(s)
- Jocelyn Moyes
- Center for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Private Bag X4, Sandringham, 2131, Johannesburg, Gauteng, South Africa.
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Stefano Tempia
- Center for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Private Bag X4, Sandringham, 2131, Johannesburg, Gauteng, South Africa
| | - Sibongile Walaza
- Center for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Private Bag X4, Sandringham, 2131, Johannesburg, Gauteng, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Meredith L McMorrow
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Florette Treurnicht
- Division of Virology, Faculty of Health Sciences, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Nicole Wolter
- Center for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Private Bag X4, Sandringham, 2131, Johannesburg, Gauteng, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne von Gottberg
- Center for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Private Bag X4, Sandringham, 2131, Johannesburg, Gauteng, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kathleen Kahn
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Epidemiology and Global Health Unit, Johannesburg, South Africa
| | - Adam L Cohen
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Influenza Program, Centers for Disease Control and Prevention, Pretoria, South Africa
| | - Halima Dawood
- Department of Medicine, Pietermaritzburg Metropolitan Hospital, Pietermaritzburg, South Africa
- Caprisa, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Ebrahim Variava
- Department of Medicine, Klerksdorp-Tshepong Hospital Complex, Klerksdorp, South Africa
- Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl Cohen
- Center for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Private Bag X4, Sandringham, 2131, Johannesburg, Gauteng, South Africa.
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
33
|
Li L, Jia R, Zhang Y, Sun H, Ma J. Changes of parainfluenza virus infection in children before and after the COVID-19 pandemic in Henan, China. J Infect 2023; 86:504-507. [PMID: 36773892 PMCID: PMC9911975 DOI: 10.1016/j.jinf.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Affiliation(s)
| | | | | | | | - Jiayue Ma
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| |
Collapse
|
34
|
Kim HM, Rhee JE, Lee NJ, Woo SH, Park AK, Lee J, Yoo CK, Kim EJ. Recent increase in the detection of human parainfluenza virus during the coronavirus disease-2019 pandemic in the Republic of Korea. Virol J 2022; 19:215. [PMID: 36510212 PMCID: PMC9744062 DOI: 10.1186/s12985-022-01938-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Since the onset of the coronavirus disease-2019 (COVID-19) pandemic, the prevalence of respiratory infectious diseases, particularly, the flu epidemic, has considerably decreased. The low detection rate and decreased number of specimens have hindered the implementation of the Korea Influenza and Respiratory Viruses Surveillance System (KINRESS), a sentinel surveillance system. Most patients with influenza-like illness visit the COVID-19 screening clinic; therefore, the number of samples collected in sentinel surveillance has decreased by more than 50%. Thus, the Korea Disease Control and Prevention Agency supplemented sentinel surveillance with non-sentinel surveillance by private medical diagnostic centers. We report here a delayed and unprecedented high detection of human parainfluenza virus (hPIV) in the Republic of Korea during the COVID-19 pandemic through sentinel and non-sentinel surveillance. We also examined the causes and implications of the changes in prevalence of hPIV.l METHODS: We collected data for 56,984 and 257,217 samples obtained through sentinel and non-sentinel surveillance, respectively. Eight viruses were confirmed using real-time reverse transcription-polymerase chain reaction (PCR) or real-time PCR. Some specimens from the sentinel surveillance were used for genetic characterization of hPIV type 3. RESULTS In 2020, hPIV was rarely detected; however, it was detected in August 2021. The detection rate continued to increase considerably in September and reached over 70% in October, 2021. The detection rate of hPIV3 was significantly higher in infants and preschoolers aged 0-6 years in both sentinel and non-sentinel surveillance. Detection of hPIV was delayed in metropolitan areas compared to that in suburban regions. The hemagglutinin-neuraminidase sequences of hPIV3 generated in 2021 were not distinct from those detected prior to the COVID-19 pandemic. CONCLUSIONS The operation of non-sentinel and sentinel surveillance to monitor respiratory viruses could sensitively detect an unprecedented revival of hPIV in the Republic of Korea during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Heui Man Kim
- grid.418967.50000 0004 1763 8617Division of Emerging Infectious Diseases, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Republic of Korea
| | - Jee Eun Rhee
- grid.418967.50000 0004 1763 8617Division of Emerging Infectious Diseases, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Republic of Korea
| | - Nam-Joo Lee
- grid.418967.50000 0004 1763 8617Division of Emerging Infectious Diseases, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Republic of Korea
| | - Sang Hee Woo
- grid.418967.50000 0004 1763 8617Division of Emerging Infectious Diseases, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Republic of Korea
| | - Ae Kyung Park
- grid.418967.50000 0004 1763 8617Division of Emerging Infectious Diseases, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Republic of Korea
| | - Jaehee Lee
- grid.418967.50000 0004 1763 8617Division of Emerging Infectious Diseases, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Republic of Korea
| | - Cheon Kwon Yoo
- grid.418967.50000 0004 1763 8617Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju-si, Republic of Korea
| | - Eun-Jin Kim
- grid.418967.50000 0004 1763 8617Division of Emerging Infectious Diseases, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Republic of Korea
| |
Collapse
|
35
|
Chow EJ, Casto AM, Sampoleo R, Mills MG, Han PD, Xie H, Pfau B, Nguyen TV, Sereewit J, Rogers JH, Cox SN, Rolfes MA, Ogokeh C, Mosites E, Uyeki TM, Greninger AL, Hughes JP, Shim MM, Sugg N, Duchin JS, Starita LM, Englund JA, Roychoudhury P, Chu HY. Human Parainfluenza Virus in Homeless Shelters before and during the COVID-19 Pandemic, Washington, USA. Emerg Infect Dis 2022; 28:2343-2347. [DOI: 10.3201/eid2811.221156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
36
|
Shen DP, Vermeulen F, Debeer A, Lagrou K, Smits A. Impact of COVID-19 on viral respiratory infection epidemiology in young children: A single-center analysis. Front Public Health 2022; 10:931242. [PMID: 36203684 PMCID: PMC9530989 DOI: 10.3389/fpubh.2022.931242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/22/2022] [Indexed: 01/24/2023] Open
Abstract
Background The COVID-19 pandemic impacts different health aspects. Concomitant with the adoption of non-pharmaceutical interventions (NPIs) to reduce the spread of SARS-CoV-2, global surveillance studies reported a reduction in occurrence of respiratory pathogens like influenza A and B virus (IAV & IBV) and respiratory syncytial virus (RSV). We hypothesized to observe this collateral benefit on viral respiratory infection epidemiology in young children. Methods Respiratory samples of children aged below 6 years, presenting at the outpatient clinic, emergency department, or pediatric infectious diseases department of the University Hospitals Leuven, between April 2017 and April 2021 were retrospectively analyzed. The occurrence (positivity rate), and seasonal patterns of viral respiratory infections were described. Chi-squared or Fisher's exact test (and Bonferroni correction) were used to explore differences in occurrence between 2020-2021 and previous 12-month (April to April) periods. Results We included 3020 samples (453 respiratory panels, 2567 single SARS-CoV-2 PCR tests). IAV and IBV were not detected from March and January 2020, respectively. For IAV, positivity rate in 2020-2021 (0%, n = 0) was significantly different from 2018-2019 (12.4%, n = 17) (p < 0.001) and 2019-2020 (15.4%, n = 19) (p < 0.001). IBV positivity rate in 2020-2021 (0%, n = 0) was not significantly different from previous periods. RSV occurrence was significantly lower in 2020-2021 (3.2%, n = 3), compared to 2017-2018 (15.0%, n = 15) (p = 0.006), 2018-2019 (16.1%, n = 22) (p = 0.002) and 2019-2020 (22.8%, n = 28) (p < 0.001). The RSV (winter) peak was absent and presented later (March-April 2021). Positivity rate of parainfluenza virus 3 (PIV-3) was significantly higher in 2020-2021 (11.8%, n = 11) than 2017-2018 (1%, n = 1) (p = 0.002). PIV-3 was absent from April 2020 to January 2021, whereas no clear seasonal pattern was distinguished the other years. For the other viruses tested, no significant differences in occurrence were observed between 2020-2021 and previous periods. From March 2020 onwards, 20 cases (0.7%) of SARS-CoV-2 were identified. Conclusion These findings reinforce the hypothesis of NPIs impacting the epidemiology of influenza viruses and RSV in young children. Compared to previous periods, no IAV and IBV cases were observed in the 2020-2021 study period, and the RSV peak occurred later. Since the pandemic is still ongoing, continuation of epidemiological surveillance, even on a larger scale, is indicated.
Collapse
Affiliation(s)
| | - François Vermeulen
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Anne Debeer
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Laboratory Medicine and National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Anne Smits
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
- L-C&Y, KU Leuven Child & Youth Institute, Leuven, Belgium
| |
Collapse
|
37
|
Liu P, Zhang S, Ma J, Jin D, Qin Y, Chen M. Vimentin inhibits α-tubulin acetylation via enhancing α-TAT1 degradation to suppress the replication of human parainfluenza virus type 3. PLoS Pathog 2022; 18:e1010856. [PMID: 36108090 PMCID: PMC9524669 DOI: 10.1371/journal.ppat.1010856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/30/2022] [Accepted: 09/03/2022] [Indexed: 11/24/2022] Open
Abstract
We previously found that, among human parainfluenza virus type 3 (HPIV3) proteins, the interaction of nucleoprotein (N) and phosphoprotein (P) provides the minimal requirement for the formation of cytoplasmic inclusion bodies (IBs), which are sites of RNA synthesis, and that acetylated α-tubulin enhances IB fusion and viral replication. In this study, using immunoprecipitation and mass spectrometry assays, we determined that vimentin (VIM) specifically interacted with the N-P complex of HPIV3, and that the head domain of VIM was responsible for this interaction, contributing to the inhibition of IB fusion and viral replication. Furthermore, we found that VIM promoted the degradation of α-tubulin acetyltransferase 1 (α-TAT1), through its head region, thereby inhibiting the acetylation of α-tubulin, IB fusion, and viral replication. In addition, we identified a 20-amino-acid peptide derived from the head region of VIM that participated in the interaction with the N-P complex and inhibited viral replication. Our findings suggest that VIM inhibits the formation of HPIV3 IBs by downregulating α-tubulin acetylation via enhancing the degradation of α-TAT1. Our work sheds light on a new mechanism by which VIM suppresses HPIV3 replication.
Collapse
Affiliation(s)
- Pengfei Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Luo Jia Hill, Wuhan, China
| | - Shengwei Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Jingyi Ma
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Luo Jia Hill, Wuhan, China
| | - Dongning Jin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Luo Jia Hill, Wuhan, China
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Luo Jia Hill, Wuhan, China
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Luo Jia Hill, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Li Y, Wang X, Blau DM, Caballero MT, Feikin DR, Gill CJ, Madhi SA, Omer SB, Simões EAF, Campbell H, Pariente AB, Bardach D, Bassat Q, Casalegno JS, Chakhunashvili G, Crawford N, Danilenko D, Do LAH, Echavarria M, Gentile A, Gordon A, Heikkinen T, Huang QS, Jullien S, Krishnan A, Lopez EL, Markić J, Mira-Iglesias A, Moore HC, Moyes J, Mwananyanda L, Nokes DJ, Noordeen F, Obodai E, Palani N, Romero C, Salimi V, Satav A, Seo E, Shchomak Z, Singleton R, Stolyarov K, Stoszek SK, von Gottberg A, Wurzel D, Yoshida LM, Yung CF, Zar HJ, Nair H. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: a systematic analysis. Lancet 2022; 399:2047-2064. [PMID: 35598608 PMCID: PMC7613574 DOI: 10.1016/s0140-6736(22)00478-0] [Citation(s) in RCA: 722] [Impact Index Per Article: 240.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is the most common cause of acute lower respiratory infection in young children. We previously estimated that in 2015, 33·1 million episodes of RSV-associated acute lower respiratory infection occurred in children aged 0-60 months, resulting in a total of 118 200 deaths worldwide. Since then, several community surveillance studies have been done to obtain a more precise estimation of RSV associated community deaths. We aimed to update RSV-associated acute lower respiratory infection morbidity and mortality at global, regional, and national levels in children aged 0-60 months for 2019, with focus on overall mortality and narrower infant age groups that are targeted by RSV prophylactics in development. METHODS In this systematic analysis, we expanded our global RSV disease burden dataset by obtaining new data from an updated search for papers published between Jan 1, 2017, and Dec 31, 2020, from MEDLINE, Embase, Global Health, CINAHL, Web of Science, LILACS, OpenGrey, CNKI, Wanfang, and ChongqingVIP. We also included unpublished data from RSV GEN collaborators. Eligible studies reported data for children aged 0-60 months with RSV as primary infection with acute lower respiratory infection in community settings, or acute lower respiratory infection necessitating hospital admission; reported data for at least 12 consecutive months, except for in-hospital case fatality ratio (CFR) or for where RSV seasonality is well-defined; and reported incidence rate, hospital admission rate, RSV positive proportion in acute lower respiratory infection hospital admission, or in-hospital CFR. Studies were excluded if case definition was not clearly defined or not consistently applied, RSV infection was not laboratory confirmed or based on serology alone, or if the report included fewer than 50 cases of acute lower respiratory infection. We applied a generalised linear mixed-effects model (GLMM) to estimate RSV-associated acute lower respiratory infection incidence, hospital admission, and in-hospital mortality both globally and regionally (by country development status and by World Bank Income Classification) in 2019. We estimated country-level RSV-associated acute lower respiratory infection incidence through a risk-factor based model. We developed new models (through GLMM) that incorporated the latest RSV community mortality data for estimating overall RSV mortality. This review was registered in PROSPERO (CRD42021252400). FINDINGS In addition to 317 studies included in our previous review, we identified and included 113 new eligible studies and unpublished data from 51 studies, for a total of 481 studies. We estimated that globally in 2019, there were 33·0 million RSV-associated acute lower respiratory infection episodes (uncertainty range [UR] 25·4-44·6 million), 3·6 million RSV-associated acute lower respiratory infection hospital admissions (2·9-4·6 million), 26 300 RSV-associated acute lower respiratory infection in-hospital deaths (15 100-49 100), and 101 400 RSV-attributable overall deaths (84 500-125 200) in children aged 0-60 months. In infants aged 0-6 months, we estimated that there were 6·6 million RSV-associated acute lower respiratory infection episodes (4·6-9·7 million), 1·4 million RSV-associated acute lower respiratory infection hospital admissions (1·0-2·0 million), 13 300 RSV-associated acute lower respiratory infection in-hospital deaths (6800-28 100), and 45 700 RSV-attributable overall deaths (38 400-55 900). 2·0% of deaths in children aged 0-60 months (UR 1·6-2·4) and 3·6% of deaths in children aged 28 days to 6 months (3·0-4·4) were attributable to RSV. More than 95% of RSV-associated acute lower respiratory infection episodes and more than 97% of RSV-attributable deaths across all age bands were in low-income and middle-income countries (LMICs). INTERPRETATION RSV contributes substantially to morbidity and mortality burden globally in children aged 0-60 months, especially during the first 6 months of life and in LMICs. We highlight the striking overall mortality burden of RSV disease worldwide, with one in every 50 deaths in children aged 0-60 months and one in every 28 deaths in children aged 28 days to 6 months attributable to RSV. For every RSV-associated acute lower respiratory infection in-hospital death, we estimate approximately three more deaths attributable to RSV in the community. RSV passive immunisation programmes targeting protection during the first 6 months of life could have a substantial effect on reducing RSV disease burden, although more data are needed to understand the implications of the potential age-shifts in peak RSV burden to older age when these are implemented. FUNDING EU Innovative Medicines Initiative Respiratory Syncytial Virus Consortium in Europe (RESCEU).
Collapse
Affiliation(s)
- You Li
- School of Public Health, Nanjing Medical University, Nanjing, China; Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Xin Wang
- School of Public Health, Nanjing Medical University, Nanjing, China; Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Dianna M Blau
- Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mauricio T Caballero
- Fundacion INFANT, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Daniel R Feikin
- Department of Immunizations, Vaccines, and Biologicals, WHO, Geneva, Switzerland
| | - Christopher J Gill
- Boston University School of Public Health, Department of Global Health, Boston, Massachusetts, USA
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Faculty of Health Sciences, Johannesburg, South Africa; African Leadership Initiative in Vaccinology Expertise, University of the Witwatersrand, Faculty of Health Sciences, Johannesburg, South Africa
| | - Saad B Omer
- Yale Institute for Global Health, New Haven, CT, USA
| | - Eric A F Simões
- Department of Pediatrics, Section of Infectious Diseases, University of Colorado, School of Medicine, Aurora, CO, USA; Department of Epidemiology and Center for Global Health, Colorado School of Public Health, Aurora, CO, USA
| | - Harry Campbell
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Ana Bermejo Pariente
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Darmaa Bardach
- National Center for Communicable Diseases (Mongolia), Ulaanbaatar, Mongolia
| | - Quique Bassat
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique; Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Jean-Sebastien Casalegno
- Hospices Civils de Lyon, Hôpital de la Croix-Rousse, Centre de Biologie Nord, Institut des Agents Infectieux, Laboratoire de Virologie, Lyon, France
| | | | - Nigel Crawford
- The Royal Children's Hospital, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Daria Danilenko
- Smorodintsev Research Institute of Influenza, Saint Petersburg, Russia
| | - Lien Anh Ha Do
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Marcela Echavarria
- Clinical Virology Unit, Centro de Educación Médica e Investigaciones Clínicas, Buenos Aires, Argentina
| | - Angela Gentile
- Ricardo Gutierrez Children Hospital, Buenos Aires, Argentina
| | - Aubree Gordon
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Terho Heikkinen
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Q Sue Huang
- WHO National Influenza Centre, Institute of Environmental Science and Research, Wellington, New Zealand
| | - Sophie Jullien
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Jigme Dorji Wangchuck National Referral Hospital, Gongphel Lam, Thimphu, Bhutan
| | - Anand Krishnan
- Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Eduardo Luis Lopez
- Hospital de Niños Dr. Ricardo Gutiérrez, Department of Medicine, Pediatric Infectious Diseases Program, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Joško Markić
- Department of Pediatrics, University Hospital Split, Split, Croatia; University of Split, School of Medicine, Split, Croatia
| | - Ainara Mira-Iglesias
- Área de Investigación en Vacunas, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Salud Pública, Valencia, Spain
| | - Hannah C Moore
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Jocelyn Moyes
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Lawrence Mwananyanda
- Boston University School of Public Health, Department of Global Health, Boston, Massachusetts, USA
| | - D James Nokes
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya; School of Life Sciences, University of Warwick, Coventry, UK
| | - Faseeha Noordeen
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Evangeline Obodai
- Virology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Nandhini Palani
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, India
| | | | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashish Satav
- MAHAN Trust Mahatma Gandhi Tribal Hospital, Karmgram, Utavali, Tahsil, Dharni, India
| | - Euri Seo
- Department of Pediatrics, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, South Korea
| | - Zakhar Shchomak
- Department of Pediatrics, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | | | - Kirill Stolyarov
- Smorodintsev Research Institute of Influenza, Saint Petersburg, Russia
| | | | - Anne von Gottberg
- School of Pathology, University of the Witwatersrand, Faculty of Health Sciences, Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Danielle Wurzel
- Murdoch Children's Research Institute, Melbourne, Australia; Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Lay-Myint Yoshida
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Chee Fu Yung
- Infectious Diseases Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore; Duke-NUS Medical School, Singapore; Lee Kong Chian School of Medicine, Imperial College, Nanyang Technological University, Singapore
| | - Heather J Zar
- Department of Paediatrics and Child Health, and South African Medical Research Council Unit on Child & Adolescent Health, University of Cape Town and Red Cross War Memorial Children's Hospital, Cape Town, South Africa
| | - Harish Nair
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK; Respiratory Syncytial Virus Network Foundation, Zeist, Netherlands, on behalf of the Respiratory Virus Global Epidemiology Network, and the RESCEU investigators.
| |
Collapse
|
39
|
Obermeier PE, Heim A, Biere B, Hage E, Alchikh M, Conrad T, Schweiger B, Rath BA. Linking digital surveillance and in-depth virology to study clinical patterns of viral respiratory infections in vulnerable patient populations. iScience 2022; 25:104276. [PMID: 35573195 PMCID: PMC9092969 DOI: 10.1016/j.isci.2022.104276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/09/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022] Open
Abstract
To improve the identification and management of viral respiratory infections, we established a clinical and virologic surveillance program for pediatric patients fulfilling pre-defined case criteria of influenza-like illness and viral respiratory infections. The program resulted in a cohort comprising 6,073 patients (56% male, median age 1.6 years, range 0–18.8 years), where every patient was assessed with a validated disease severity score at the point-of-care using the ViVI ScoreApp. We used machine learning and agnostic feature selection to identify characteristic clinical patterns. We tested all patients for human adenoviruses, 571 (9%) were positive. Adenovirus infections were particularly common and mild in children ≥1 month of age but rare and potentially severe in neonates: with lower airway involvement, disseminated disease, and a 50% mortality rate (n = 2/4). In one fatal case, we discovered a novel virus: HAdV-80. Standardized surveillance leveraging digital technology helps to identify characteristic clinical patterns, risk factors, and emerging pathogens. We used mobile health technology to enable clinical pattern recognition The ViVI ScoreApp provided precision data for cross-cohort meta-analysis Neonates with adenovirus infection are at risk of severe or fatal disease outcomes In one neonate with disseminated disease, we found a new adenovirus: HAdV-D80
Collapse
Affiliation(s)
- Patrick E. Obermeier
- Vienna Vaccine Safety Initiative, Pediatric Infectious Diseases, Berlin, Germany
- Charité University Medical Center, Department of Pediatrics, Berlin, Germany
- UMR Chrono-environnement, Université Bourgogne Franche-Comté, Besançon, France
| | - Albert Heim
- National Reference Laboratory for Adenoviruses, Hannover Medical School, Hannover, Germany
| | - Barbara Biere
- National Reference Centre for Influenza, Robert Koch-Institute, Berlin, Germany
| | - Elias Hage
- National Reference Laboratory for Adenoviruses, Hannover Medical School, Hannover, Germany
| | - Maren Alchikh
- Vienna Vaccine Safety Initiative, Pediatric Infectious Diseases, Berlin, Germany
- Charité University Medical Center, Department of Pediatrics, Berlin, Germany
- UMR Chrono-environnement, Université Bourgogne Franche-Comté, Besançon, France
| | - Tim Conrad
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Brunhilde Schweiger
- National Reference Centre for Influenza, Robert Koch-Institute, Berlin, Germany
| | - Barbara A. Rath
- Vienna Vaccine Safety Initiative, Pediatric Infectious Diseases, Berlin, Germany
- Charité University Medical Center, Department of Pediatrics, Berlin, Germany
- UMR Chrono-environnement, Université Bourgogne Franche-Comté, Besançon, France
- Corresponding author
| |
Collapse
|
40
|
OUP accepted manuscript. J Infect Dis 2022; 226:S135-S141. [DOI: 10.1093/infdis/jiac078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/01/2022] [Indexed: 11/14/2022] Open
|
41
|
Interactions between the Nucleoprotein and the Phosphoprotein of Pneumoviruses: Structural Insight for Rational Design of Antivirals. Viruses 2021; 13:v13122449. [PMID: 34960719 PMCID: PMC8706346 DOI: 10.3390/v13122449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
Pneumoviruses include pathogenic human and animal viruses, the most known and studied being the human respiratory syncytial virus (hRSV) and the metapneumovirus (hMPV), which are the major cause of severe acute respiratory tract illness in young children worldwide, and main pathogens infecting elderly and immune-compromised people. The transcription and replication of these viruses take place in specific cytoplasmic inclusions called inclusion bodies (IBs). These activities depend on viral polymerase L, associated with its cofactor phosphoprotein P, for the recognition of the viral RNA genome encapsidated by the nucleoprotein N, forming the nucleocapsid (NC). The polymerase activities rely on diverse transient protein-protein interactions orchestrated by P playing the hub role. Among these interactions, P interacts with the NC to recruit L to the genome. The P protein also plays the role of chaperone to maintain the neosynthesized N monomeric and RNA-free (called N0) before specific encapsidation of the viral genome and antigenome. This review aims at giving an overview of recent structural information obtained for hRSV and hMPV P, N, and more specifically for P-NC and N0-P complexes that pave the way for the rational design of new antivirals against those viruses.
Collapse
|
42
|
Abstract
Human parainfluenza virus type 3 (HPIV-3) is a significant cause of lower respiratory tract infections, with the most severe disease in young infants, immunocompromised individuals, and the elderly. HPIV-3 infections are currently untreatable with licensed therapeutics, and prophylactic and therapeutic options are needed for patients at risk. To complement existing human airway models of HPIV-3 infection and develop an animal model to assess novel intervention strategies, we evaluated infection and transmission of HPIV-3 in ferrets. A well-characterized human clinical isolate (CI) of HPIV-3 engineered to express enhanced green fluorescent protein (rHPIV-3 CI-1-EGFP) was passaged on primary human airway epithelial cells (HAE) or airway organoids (AO) to avoid tissue culture adaptations. rHPIV3 CI-1-EGFP infection was assessed in vitro in ferret AO and in ferrets in vivo. Undifferentiated and differentiated ferret AO cultures supported rHPIV-3 CI-1-EGFP replication, but the ferret primary airway cells from AO were less susceptible and permissive than HAE. In vivo rHPIV-3 CI-1-EGFP replicated in the upper and lower airways of ferrets and targeted respiratory epithelial cells, olfactory epithelial cells, type I pneumocytes, and type II pneumocytes. The infection efficiently induced specific antibody responses. Taken together, ferrets are naturally susceptible to HPIV-3 infection; however, limited replication was observed that led to neither overt clinical signs nor ferret-to-ferret transmission. However, in combination with ferret AO, the ferret model of HPIV-3 infection, tissue tropism, and neutralizing antibodies complements human ex vivo lung models and can be used as a platform for prevention and treatment studies for this important respiratory pathogen. IMPORTANCE HPIV-3 is an important cause of pediatric disease and significantly impacts the elderly. Increasing numbers of immunocompromised patients suffer from HPIV-3 infections, often related to problems with viral clearance. There is a need to model HPIV-3 infections in vitro and in vivo to evaluate novel prophylaxis and treatment options. Currently existing animal models lack the potential for studying animal-to-animal transmission or the effect of immunosuppressive therapy. Here, we describe the use of the ferret model in combination with authentic clinical viruses to further complement human ex vivo models, providing a platform to study approaches to prevent and treat HPIV-3 infection. Although we did not detect ferret-to-ferret transmission in our studies, these studies lay the groundwork for further refinement of the ferret model to immunocompromised ferrets, allowing for studies of severe HPIV-3-associated disease. Such models for preclinical evaluation of prophylaxis and antivirals can contribute to reducing the global health burden of HPIV-3.
Collapse
|