1
|
Müller TD, Adriaenssens A, Ahrén B, Blüher M, Birkenfeld AL, Campbell JE, Coghlan MP, D'Alessio D, Deacon CF, DelPrato S, Douros JD, Drucker DJ, Figueredo Burgos NS, Flatt PR, Finan B, Gimeno RE, Gribble FM, Hayes MR, Hölscher C, Holst JJ, Knerr PJ, Knop FK, Kusminski CM, Liskiewicz A, Mabilleau G, Mowery SA, Nauck MA, Novikoff A, Reimann F, Roberts AG, Rosenkilde MM, Samms RJ, Scherer PE, Seeley RJ, Sloop KW, Wolfrum C, Wootten D, DiMarchi RD, Tschöp MH. Glucose-dependent insulinotropic polypeptide (GIP). Mol Metab 2025; 95:102118. [PMID: 40024571 PMCID: PMC11931254 DOI: 10.1016/j.molmet.2025.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic polypeptide (GIP) was the first incretin identified and plays an essential role in the maintenance of glucose tolerance in healthy humans. Until recently GIP had not been developed as a therapeutic and thus has been overshadowed by the other incretin, glucagon-like peptide 1 (GLP-1), which is the basis for several successful drugs to treat diabetes and obesity. However, there has been a rekindling of interest in GIP biology in recent years, in great part due to pharmacology demonstrating that both GIPR agonism and antagonism may be beneficial in treating obesity and diabetes. This apparent paradox has reinvigorated the field, led to new lines of investigation, and deeper understanding of GIP. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GIP biology and discuss the therapeutic implications of GIPR signal modification on various diseases. MAJOR CONCLUSIONS Following its classification as an incretin hormone, GIP has emerged as a pleiotropic hormone with a variety of metabolic effects outside the endocrine pancreas. The numerous beneficial effects of GIPR signal modification render the peptide an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, drug-induced nausea and both bone and neurodegenerative disorders.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Germany.
| | - Alice Adriaenssens
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Bo Ahrén
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen 72076, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Matthew P Coghlan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - David D'Alessio
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Carolyn F Deacon
- School of Biomedical Sciences, Ulster University, Coleraine, UK; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefano DelPrato
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy
| | | | - Daniel J Drucker
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, and the Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Natalie S Figueredo Burgos
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Brian Finan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Fiona M Gribble
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Hölscher
- Neurodegeneration Research Group, Henan Academy of Innovations in Medical Science, Xinzheng, China
| | - Jens J Holst
- Department of Biomedical Sciences and the Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Patrick J Knerr
- Indianapolis Biosciences Research Institute, Indianapolis, IN, USA
| | - Filip K Knop
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine M Kusminski
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France; CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France
| | | | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany
| | - Frank Reimann
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Anna G Roberts
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Ricardo J Samms
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Philip E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kyle W Sloop
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Matthias H Tschöp
- Helmholtz Munich, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Byun S, Maric I, Börchers S, Sotzen MR, Olekanma D, Hayes MR, Skibicka KP. From the pancreas to the amygdala: New brain area critical for ingestive and motivated behavior control exerted by amylin. iScience 2025; 28:112040. [PMID: 40124523 PMCID: PMC11928841 DOI: 10.1016/j.isci.2025.112040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/13/2025] [Accepted: 02/13/2025] [Indexed: 03/25/2025] Open
Abstract
Amylin, a pancreatic peptide, has a well-established role in feeding behavior control. Amylin analogues are clinically utilized in patients with diabetes and are under investigation as potential anti-obesity pharmacotherapies. The neural circuits underlying actions of amylin on behavior are not well understood. While amylin was found to bind to the central amygdala (CeA) of rodents and primates and we found that all components of amylin receptors are present in the CeA, their potential role in physiology or behavior remains unknown. Here, we investigated the impact of this potential pancreas - CeA amylin-mediated communication - on ingestive and motivated behaviors. Activation of CeA amylin receptors resulted in a robust hypophagia, reduced food-motivated behavior, and altered macronutrient preference in male and female rats. Clinically used amylin analogue, pramlintide, reduced meal size and frequency by acting on the CeA. Disruption of CeA amylin signaling led to hyperphagia and body weight gain in a sex divergent manner. Importantly, CeA amylin signaling was required for appetite suppression induced by peripherally applied amylin, highlighting translational relevance of this brain site. Our data indicate the CeA is a critical neural substrate for amylin signaling.
Collapse
Affiliation(s)
- Suyeun Byun
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, USA
| | - Ivana Maric
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, USA
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Stina Börchers
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, USA
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Morgan R. Sotzen
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, USA
- Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA
| | - Doris Olekanma
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, USA
- Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA
| | - Matthew R. Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Karolina P. Skibicka
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, USA
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
3
|
Overholtzer LN, Torgerson C, Morrel J, Ahmadi H, Tyszka JM, Herting MM. Amygdala subregion volumes and apportionment in preadolescents - Associations with age, sex, and body mass index. Dev Cogn Neurosci 2025; 73:101554. [PMID: 40139048 DOI: 10.1016/j.dcn.2025.101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
The amygdala, a key limbic structure, is critical to emotional, social, and appetitive behaviors that develop throughout adolescence. Composed of a heterogeneous group of nuclei, questions remain about potential differences in the maturation of its subregions during development. In 3953 9- and 10-year-olds from the Adolescent Brain Cognitive Development℠ Study, the CIT168 Atlas was used to segment nine amygdala subregions. Linear mixed-effects models were used to examine the effects of age, sex, pubertal stage, and body mass index z-score (BMIz) on subregion volumes and their relative apportionment within the amygdala. Distinct associations were observed between age, sex, and BMIz with whole amygdala volume, subregion volumes, and subregion apportionment. Pubertal stage was not related to amygdala subregion volumes. Age was associated with near-global expansion of amygdala subregions during this developmental period. Female sex was linked to smaller volumes in most amygdala subregions, with larger relative apportionment in the dorsal subregions and smaller apportionment in the basolateral ventral paralaminar subregion. Higher BMIz was associated with smaller volumes in large basolateral subregions, with increased relative apportionment in smaller subregions. These findings provide a foundational context for understanding how developmental variables influence amygdala structure, with implications for understanding future risk for brain disorders.
Collapse
Affiliation(s)
- L Nate Overholtzer
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA; Neurosciences Graduate Program, University of Southern California, Los Angeles, CA, USA; USC-Caltech MD-PhD Program, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Carinna Torgerson
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA; Neurosciences Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Jessica Morrel
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA; Neurosciences Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - J Michael Tyszka
- Caltech Brain Imaging Center, California Institute of Technology, Pasadena, CA, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Overholtzer LN, Torgerson C, Morrel J, Ahmadi H, Tyszka JM, Herting MM. Amygdala Subregion Volumes and Apportionment in Preadolescents - Associations with Age, Sex, and Body Mass Index. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.07.617048. [PMID: 39416063 PMCID: PMC11482789 DOI: 10.1101/2024.10.07.617048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The amygdala, a key limbic structure, is critical to emotional, social, and appetitive behaviors that develop throughout adolescence. Composed of a heterogeneous group of nuclei, questions remain about potential differences in the maturation of its subregions during development. In 3,953 9- and 10-year-olds from the Adolescent Brain Cognitive DevelopmentlZI Study, the CIT168 Amygdala Atlas was used to segment nine amygdala subregions. Linear mixed-effects models were used to examine the effects of age, sex, pubertal stage, and body mass index z-score (BMIz) on subregion volumes and their relative apportionment within the amygdala. Distinct associations were observed between age, sex, and BMIz and whole amygdala volume, subregion volumes, and subregion apportionment. Pubertal stage was not related to amygdala subregion volumes. Age was associated with near-global expansion of amygdala subregions during this developmental period. Female sex was linked to smaller volumes in most amygdala subregions, with larger relative apportionment in the dorsal subregions and smaller apportionment in the basolateral ventral paralaminar subregion. Higher BMIz was associated with smaller volumes in large basolateral subregions, with increased relative apportionment in smaller subregions. These findings provide a foundational context for understanding how developmental variables influence amygdala structure, with implications for understanding future risk for brain disorders. Highlights Segmentation of amygdala subregions in nearly 4,000 preadolescents.Age, but not puberty, was associated with a near-global expansion of the amygdala.Sex differences exist in preadolescent amygdala apportionment.Childhood obesity is linked to differences in the basolateral amygdala.
Collapse
|
5
|
Simoes E, Uchida R, Nucci M, Duran F, Lima J, Gama L, Costa N, Otaduy M, Bin F, Otoch J, Alcantara P, Ramos A, Laviano A, Diaz M, Esiri M, DeLuca G, Herzig S, Filho G, Seelaender M. Cachexia Alters Central Nervous System Morphology and Functionality in Cancer Patients. J Cachexia Sarcopenia Muscle 2025; 16:e13742. [PMID: 39962362 PMCID: PMC11832348 DOI: 10.1002/jcsm.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/23/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Cachexia is a clinically challenging multifactorial and multi-organ syndrome, associated with poor outcome in cancer patients, and characterised by inflammation, wasting and loss of appetite. The syndrome leads to central nervous system (CNS) function dysregulation and to neuroinflammation; nevertheless, the mechanisms involved in human cachexia remain unclear. METHODS We used in vivo structural and functional magnetic resonance imaging (Cohort 1), as well as postmortem neuropathological analyses (Cohort 2) in cachectic cancer (CC) patients compared to weight stable cancer (WSC) patients. Cohort 1 included treatment-naïve adults diagnosed with colorectal cancer, further divided into WSC (n = 12; 6/6 [male/female], 61.3 ± 3.89 years) and CC (n = 10; 6/4, 63.0 ± 2.74 years). Cohort 2 was composed by human postmortem cases where gastrointestinal carcinoma was the underlying cause of death (WSC n = 6; 3/3, 82.7 ± 3.33 years and CC n = 10; 5/5, 84.2 ± 2.28 years). RESULTS Here we demonstrate that the CNS of CC patients presents regional structural differences within the grey matter (GM). Cachectic patients presented an augmented area within the region of the orbitofrontal cortex, olfactory tract and the gyrus rectus (coordinates X, Y, Z = 6, 20,-24; 311 voxels; pFWE = 0.023); increased caudate and putamen volume (-10, 20, -8; 110 voxel; pFWE = 0.005); and reduced GM in superior temporal gyrus and rolandic operculum (56,0,2; 156 voxels; pFWE = 0.010). Disrupted functional connectivity was found in several regions such as the salience network, subcortical and temporal cortical areas of cachectic patients (20 decreased and 5 increased regions connectivity pattern, pFDR < 0.05). Postmortem neuropathological analyses identified abnormal neuronal morphology and density, increased microglia/macrophage burden, astrocyte profile disruption and mTOR pathway related neuroinflammation (p < 0.05). CONCLUSIONS Our results indicate that cachexia compromises CNS morphology mostly causing changes in the GM of cachectic patients, leading to alterations in regional volume patterns, functional connectivity, neuronal morphology, neuroglia profile and inducing neuroinflammation, all of which may contribute to the loss of homeostasis control and to deficient information processing, as well as to the metabolic and behavioural derangements commonly observed in human cachexia. This first human mapping of CNS cachexia responses will now pave the way to mechanistically interrogate these pathways in terms of their therapeutic potential.
Collapse
Affiliation(s)
- Estefania Simoes
- Cancer Metabolism Research Group (LIM26‐HCFMUSP), Department of SurgerySão PauloBrazil
- Institute for Diabetes and Cancer, Helmholtz Munich, and German Center for Diabetes Research DZDNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Unit, Inner MedicineHeidelberg University HospitalHeidelbergGermany
| | - Ricardo Uchida
- Mental Health DepartmentSanta Casa de São Paulo School of Medical SciencesSão PauloBrazil
| | - Mariana P. Nucci
- Department of Radiology, Faculty of MedicineLaboratory of Magnetic Resonance in Neuroradiology (LIM44‐ HCFMUSP)São PauloBrazil
| | - Fabio L. S. Duran
- Neuroimaging Laboratory (LIM21‐HCFMUSP), institute PsychiatryUniversity of São PauloSão PauloBrazil
| | - Joanna D. C. C. Lima
- Cancer Metabolism Research Group (LIM26‐HCFMUSP), Department of SurgerySão PauloBrazil
| | - Leonardo R. Gama
- Center for Translational Research in Oncology, Cancer Institute of the State of São PauloUniversity of São PauloSão PauloBrazil
| | - Naomi A. Costa
- Neuroimaging Laboratory (LIM21‐HCFMUSP), institute PsychiatryUniversity of São PauloSão PauloBrazil
| | - Maria C. G. Otaduy
- Department of Radiology, Faculty of MedicineLaboratory of Magnetic Resonance in Neuroradiology (LIM44‐ HCFMUSP)São PauloBrazil
| | - Fang C. Bin
- Hospital Santa Casa de Misericórdia de São PauloSão PauloBrazil
| | - Jose P. Otoch
- Cancer Metabolism Research Group (LIM26‐HCFMUSP), Department of SurgerySão PauloBrazil
- Department of Clinical SurgeryUniversity Hospital USPSão PauloBrazil
| | - Paulo Alcantara
- Department of Clinical SurgeryUniversity Hospital USPSão PauloBrazil
| | - Alexandre Ramos
- Center for Translational Research in Oncology, Cancer Institute of the State of São PauloUniversity of São PauloSão PauloBrazil
- School of Arts, Sciences and HumanitiesUniversity of São PauloSão PauloBrazil
| | - Alessandro Laviano
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Mauricio Berriel Diaz
- Institute for Diabetes and Cancer, Helmholtz Munich, and German Center for Diabetes Research DZDNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Unit, Inner MedicineHeidelberg University HospitalHeidelbergGermany
| | - Margaret M. Esiri
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Gabriele C. DeLuca
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Munich, and German Center for Diabetes Research DZDNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Unit, Inner MedicineHeidelberg University HospitalHeidelbergGermany
- Chair Molecular Metabolic ControlTechnical University MunichMunichGermany
| | - Geraldo Busatto Filho
- Neuroimaging Laboratory (LIM21‐HCFMUSP), institute PsychiatryUniversity of São PauloSão PauloBrazil
| | - Marilia Seelaender
- Cancer Metabolism Research Group (LIM26‐HCFMUSP), Department of SurgerySão PauloBrazil
| |
Collapse
|
6
|
Mahdavi K, Zendehdel M, Zarei H. Decoding the role of ghrelin and its interactions with central signaling pathways in avian appetite regulation. Vet Res Commun 2025; 49:73. [PMID: 39804527 DOI: 10.1007/s11259-025-10644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/05/2025] [Indexed: 03/14/2025]
Abstract
Ghrelin, a peptide hormone primarily produced in the enteroendocrine cells of the gastrointestinal tract, plays a vital role in regulating food intake, and energy balance in avian species. This review examines the complex interactions between ghrelin and the central signaling pathways associated with hunger regulation in birds. In contrast to mammals, where ghrelin typically promotes feeding behavior, its effects in birds appear more nuanced, exhibiting anorexigenic properties under certain conditions. The interactions of ghrelin with central signaling pathways, particularly within the hypothalamus, are explored, highlighting its influence on various neuropeptide systems, including GABAergic, corticotropinergic, opioidergic, dopaminergic, serotonergic, cannabinoidergic, and adrenergic pathways. This article synthesizes current knowledge regarding ghrelin's structure and physiological functions, as well as its interactions with other neuropeptides and hormones that collectively govern avian feeding behaviors. Furthermore, this review proposes future research directions aimed at elucidating the intricate mechanisms underlying appetite control in birds. Insights gained from this analysis may not only enhance our understanding of avian biology and the optimal regulation of their food intake but also inform wildlife management and conservation strategies in response to environmental changes.
Collapse
Affiliation(s)
- Kimia Mahdavi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran.
| | - Hamed Zarei
- Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Seidel F, Vreeken D, Custers E, Wiesmann M, Özsezen S, van Duyvenvoorde W, Caspers M, Menke A, Morrison MC, Verschuren L, Duering M, Hazebroek EJ, Kiliaan AJ, Kleemann R. Metabolic dysfunction-associated steatotic liver disease is associated with effects on cerebral perfusion and white matter integrity. Heliyon 2024; 10:e38516. [PMID: 39391513 PMCID: PMC11466594 DOI: 10.1016/j.heliyon.2024.e38516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/29/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
It is unclear whether early metabolic and inflammatory aberrations in the liver are associated with detrimental changes in brain structure and cognitive function. This cross-sectional study examines putative associations between metabolic dysfunction-associated steatotic liver disease (MASLD) and brain health in 36-55 year-old participants with obesity (n = 70) from the BARICO study (BAriatric surgery Rijnstate and Radboudumc neuroImaging and Cognition in Obesity). The participants underwent brain magnetic resonance imaging to study brain volumes and cortical thickness (3T MRI including T1-weighted magnetization-prepared rapid gradient-echo sequence), cerebral blood perfusion (arterial spin labeling) and white matter integrity (diffusion weighted imaging to assess mean-skeletonized mean diffusivity and fluid-attenuated inversion recovery to detect the presence of white matter hyperintensities (WMH)). The participants additionally performed neuropsychological tests to assess global cognition, working and episodic memory, verbal fluency and the ability to shift attention. Liver biopsies were collected and liver dysfunction was examined with histopathological, biochemical, and gene expression analyses. Linear regression analyses were performed between liver and brain parameters and the influence of body-mass index, diabetes and hypertension was explored. Early stages of liver disease were not associated with cognitive status but with cerebrovascular changes independently of age, sex, BMI, diabetes and hypertension: hepatic fibrosis development was associated with higher spatial coefficient of variation (sCoV) in the nucleus accumbens (NAcc), reflecting greater variations in cerebral perfusion and reduced vascular efficiency. Elevated hepatic levels of free cholesterol and cholesteryl esters were associated with increased WMH, indicating cerebral small vessel disease. RNA-seq and pathway analyses identified associations between sCoV in NAcc and WMH and the expression of hepatic genes involved in inflammation and cellular stress. Additionally, sCoV in NAcc correlated with plasma IL-6 levels suggesting that systemic-low grade inflammation may, at least partly, mediate this relationship. In conclusion, this study demonstrates that specific features of liver dysfunction (e.g. free cholesterol, onset of fibrosis) are associated with subtle cerebrovascular impairments, when changes in cognitive performance are not yet noticeable. These findings highlight the need for future research on therapeutic strategies that normalize metabolic-inflammatory aberrations in the liver to reduce the risk of cognitive decline.
Collapse
Affiliation(s)
- Florine Seidel
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ Nijmegen, the Netherlands
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands
| | - Debby Vreeken
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ Nijmegen, the Netherlands
- Department of Bariatric Surgery, Vitalys, part of Rijnstate hospital, Postbus 9555, 6800 TA Arnhem, the Netherlands
| | - Emma Custers
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ Nijmegen, the Netherlands
- Department of Bariatric Surgery, Vitalys, part of Rijnstate hospital, Postbus 9555, 6800 TA Arnhem, the Netherlands
| | - Maximilian Wiesmann
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ Nijmegen, the Netherlands
| | - Serdar Özsezen
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands
| | - Wim van Duyvenvoorde
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands
| | - Martien Caspers
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands
| | - Aswin Menke
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands
| | - Martine C. Morrison
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), University Hospital LMU Munich, Feodor-Lynen-Straße 17, 81377 Munich, Germany
- Medical Imaging Analysis Center (MIAC) and Department of Biomedical Engineering, University of Basel, Marktgasse 8, CH-4051 Basel, Switzerland
| | - Eric J. Hazebroek
- Department of Bariatric Surgery, Vitalys, part of Rijnstate hospital, Postbus 9555, 6800 TA Arnhem, the Netherlands
- Division of Human Nutrition and Health, Wageningen University, Postbus 17 6700 AA Wageningen Wageningen, the Netherlands
| | - Amanda J. Kiliaan
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ Nijmegen, the Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands
| |
Collapse
|
8
|
Zhao Z, Stern SA. Homeostatic feeding in hedonic centres. Nat Metab 2024; 6:1433-1434. [PMID: 39147932 DOI: 10.1038/s42255-024-01089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Affiliation(s)
- Zhe Zhao
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Sarah A Stern
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
| |
Collapse
|
9
|
Grajales-Reyes JG, Chen B, Meseguer D, Schneeberger M. Burning Question: How Does Our Brain Process Positive and Negative Cues Associated with Thermosensation? Physiology (Bethesda) 2024; 39:0. [PMID: 38536114 PMCID: PMC11368520 DOI: 10.1152/physiol.00034.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 05/16/2024] Open
Abstract
Whether it is the dramatic suffocating sensation from a heat wave in the summer or the positive reinforcement arising from a hot drink on a cold day; we can certainly agree that our thermal environment underlies our daily rhythms of sensation. Extensive research has focused on deciphering the central circuits responsible for conveying the impact of thermogenesis on mammalian behavior. Here, we revise the recent literature responsible for defining the behavioral correlates that arise from thermogenic fluctuations in mammals. We transition from the physiological significance of thermosensation to the circuitry responsible for the autonomic or behavioral responses associated with it. Subsequently, we delve into the positive and negative valence encoded by thermoregulatory processes. Importantly, we emphasize the crucial junctures where reward, pain, and thermoregulation intersect, unveiling a complex interplay within these neural circuits. Finally, we briefly outline fundamental questions that are pending to be addressed in the field. Fully deciphering the thermoregulatory circuitry in mammals will have far-reaching medical implications. For instance, it may lead to the identification of novel targets to overcome thermal pain or allow the maintenance of our core temperature in prolonged surgeries.
Collapse
Affiliation(s)
- Jose G Grajales-Reyes
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, United States
| | - Bandy Chen
- Department of Cellular and Molecular Physiology, Laboratory of Neurovascular Control of Homeostasis, Yale School of Medicine, New Haven, Connecticut, United States
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, Connecticut, United States
| | - David Meseguer
- Department of Cellular and Molecular Physiology, Laboratory of Neurovascular Control of Homeostasis, Yale School of Medicine, New Haven, Connecticut, United States
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, Connecticut, United States
| | - Marc Schneeberger
- Department of Cellular and Molecular Physiology, Laboratory of Neurovascular Control of Homeostasis, Yale School of Medicine, New Haven, Connecticut, United States
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
10
|
Liskiewicz A, Müller TD. Regulation of energy metabolism through central GIPR signaling. Peptides 2024; 176:171198. [PMID: 38527521 DOI: 10.1016/j.peptides.2024.171198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
In recent years, significant progress has been made to pharmacologically combat the obesity pandemic, particularly with regard to biochemically tailored drugs that simultaneously target the receptors for glucagon-like peptide-1 (GLP-1) and the glucose-dependent insulinotropic polypeptide (GIP). But while the pharmacological benefits of GLP-1 receptor (GLP-1R) agonism are widely acknowledged, the role of the GIP system in regulating systems metabolism remains controversial. When given in adjunct to GLP-1R agonism, both agonism and antagonism of the GIP receptor (GIPR) improves metabolic outcome in preclinical and clinical studies, and despite persistent concerns about its potential obesogenic nature, there is accumulating evidence indicating that GIP has beneficial metabolic effects via central GIPR agonism. Nonetheless, despite growing recognition of the GIP system as a valuable pharmacological target, there remains great uncertainty as to where and how GIP acts in the brain to regulate metabolism, and how GIPR agonism may differ from GIPR antagonism in control of energy metabolism. In this review we highlight current knowledge on the central action of GIP, and discuss open questions related to its multifaceted biology in the brain and the periphery.
Collapse
Affiliation(s)
- Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.
| |
Collapse
|
11
|
Maejima Y, Yokota S, Yamachi M, Misaka S, Ono T, Oizumi H, Mizuno K, Hidema S, Nishimori K, Aoyama M, de Wet H, Shimomura K. Traditional Japanese medicine Kamikihito ameliorates sucrose preference, chronic inflammation and obesity induced by a high fat diet in middle-aged mice. Front Endocrinol (Lausanne) 2024; 15:1387964. [PMID: 38742193 PMCID: PMC11089234 DOI: 10.3389/fendo.2024.1387964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
The high prevalence of obesity has become a pressing global public health problem and there exists a strong association between increased BMI and mortality at a BMI of 25 kg/m2 or higher. The prevalence of obesity is higher among middle-aged adults than among younger groups and the combination of aging and obesity exacerbate systemic inflammation. Increased inflammatory cytokines such as interleukin 6 and tumor necrosis factor alpha (TNFα) are hallmarks of obesity, and promote the secretion of hepatic C-reactive protein (CRP) which further induces systematic inflammation. The neuropeptide oxytocin has been shown to have anti-obesity and anti-inflammation effects, and also suppress sweet-tasting carbohydrate consumption in mammals. Previously, we have shown that the Japanese herbal medicine Kamikihito (KKT), which is used to treat neuropsychological stress disorders in Japan, functions as an oxytocin receptors agonist. In the present study, we further investigated the effect of KKT on body weight (BW), food intake, inflammation, and sweet preferences in middle-aged obese mice. KKT oral administration for 12 days decreased the expression of pro-inflammatory cytokines in the liver, and the plasma CRP and TNFα levels in obese mice. The effect of KKT administration was found to be different between male and female mice. In the absence of sucrose, KKT administration decreased food intake only in male mice. However, while having access to a 30% sucrose solution, both BW and food intake was decreased by KKT administration in male and female mice; but sucrose intake was decreased in female mice alone. In addition, KKT administration decreased sucrose intake in oxytocin deficient lean mice, but not in the WT lean mice. The present study demonstrates that KKT ameliorates chronic inflammation, which is strongly associated with aging and obesity, and decreases food intake in male mice as well as sucrose intake in female mice; in an oxytocin receptor dependent manner.
Collapse
Affiliation(s)
- Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Obesity and Inflammation research, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shoko Yokota
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Megumi Yamachi
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shingen Misaka
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoyuki Ono
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroaki Oizumi
- Tsumura Kampo Research Laboratories, Kampo Research and Development Division, Tsumura & Co., Ibaraki, Japan
| | - Keita Mizuno
- Tsumura Kampo Research Laboratories, Kampo Research and Development Division, Tsumura & Co., Ibaraki, Japan
| | - Shizu Hidema
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Katsuhiko Nishimori
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Masato Aoyama
- Department of Animal Science, Faculty of Agriculture, Utsunomiya University, Utsunomiya, Japan
| | - Heidi de Wet
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Obesity and Inflammation research, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
12
|
Boyle CA, Kola PK, Oraegbuna CS, Lei S. Leptin excites basolateral amygdala principal neurons and reduces food intake by LepRb-JAK2-PI3K-dependent depression of GIRK channels. J Cell Physiol 2024; 239:e31117. [PMID: 37683049 PMCID: PMC10920395 DOI: 10.1002/jcp.31117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/08/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Leptin is an adipocyte-derived hormone that modulates food intake, energy balance, neuroendocrine status, thermogenesis, and cognition. Whereas a high density of leptin receptors has been detected in the basolateral amygdala (BLA) neurons, the physiological functions of leptin in the BLA have not been determined yet. We found that application of leptin excited BLA principal neurons by activation of the long form leptin receptor, LepRb. The LepRb-elicited excitation of BLA neurons was mediated by depression of the G protein-activated inwardly rectifying potassium (GIRK) channels. Janus Kinase 2 (JAK2) and phosphoinositide 3-kinase (PI3K) were required for leptin-induced excitation of BLA neurons and depression of GIRK channels. Microinjection of leptin into the BLA reduced food intake via activation of LepRb, JAK2, and PI3K. Our results may provide a cellular and molecular mechanism to explain the physiological roles of leptin in vivo.
Collapse
Affiliation(s)
- Cody A. Boyle
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Phani K. Kola
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Chidiebele S. Oraegbuna
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| |
Collapse
|
13
|
Thieleking R, Medawar E, Villringer A, Beyer F, Witte AV. Neurocognitive predictors of food memory in healthy adults - A preregistered analysis. Neurobiol Learn Mem 2023; 205:107813. [PMID: 37625779 DOI: 10.1016/j.nlm.2023.107813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 07/18/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Memory processes have long been known to determine food choices (Rozin & Zellner, 1985) but recognition memory of food and its cognitive, homeostatic and neuroanatomical predictors are still largely understudied. 60 healthy, overweight, non-restrictive eating adults (20 females) took part in a food wanting and subsequent food recognition and lure discrimination task at four time points after a standardized breakfast shake. With advanced tractography of 3 T diffusion-weighted imaging data, we investigated the influence of the uncinate fasciculus' (UF) brain microstructure on the interplay of food wanting and memory processes. The analysis was preregistered in detail and conducted with Bayesian multilevel regression modeling. Target recognition (d') and lure discrimination (LDI) performance of food tended to be higher than of art images while single image food memory accuracy evidently dominated art memory. On this single item level, wanting enhanced recognition accuracy and caloric content enhanced food memory accuracy. The enhancement by reward anticipation was most pronounced during memory encoding. Subjective hunger level did not predict performance on the memory task. The microstructure of the UF did neither evidently affect memory performance outcomes nor moderate the wanting enhancement of the recognition accuracy. Interestingly, female participants outperformed males on the memory task, and individuals with stronger neuroticism showed poorer memory performance. We shed light on to date understudied processes in food decision-making: reward anticipation influenced recognition accuracy and food memory was enhanced by higher caloric content, both effects might shape food decisions. Our findings indicate that brain microstructure does not affect food decision processes in adult populations with overweight. We suggest extending investigation of this interplay to brain activity as well as to populations with eating behaviour disorders.
Collapse
Affiliation(s)
- Ronja Thieleking
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.
| | - Evelyn Medawar
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; Cognitive Neurology, University of Leipzig Medical Center, 04103 Leipzig, Germany.
| | - Frauke Beyer
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; Cognitive Neurology, University of Leipzig Medical Center, 04103 Leipzig, Germany.
| | - A Veronica Witte
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; Cognitive Neurology, University of Leipzig Medical Center, 04103 Leipzig, Germany.
| |
Collapse
|
14
|
Akhlaghi M, Kohanmoo A. Sleep deprivation in development of obesity, effects on appetite regulation, energy metabolism, and dietary choices. Nutr Res Rev 2023:1-21. [PMID: 37905402 DOI: 10.1017/s0954422423000264] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Sleep deprivation, which is a decrease in duration and quality of sleep, is a common problem in today's life. Epidemiological and interventional investigations have suggested a link between sleep deprivation and overweight/obesity. Sleep deprivation affects homeostatic and non-homoeostatic regulation of appetite, with the food reward system playing a dominant role. Factors such as sex and weight status affect this regulation; men and individuals with excess weight seem to be more sensitive to reward-driven and hedonistic regulation of food intake. Sleep deprivation may also affect weight through affecting physical activity and energy expenditure. In addition, sleep deprivation influences food selection and eating behaviours, which are mainly managed by the food reward system. Sleep-deprived individuals mostly crave for palatable energy-dense foods and have low desire for fruit and vegetables. Consumption of meals may not change but energy intake from snacks increases. The individuals have more desire for snacks with high sugar and saturated fat content. The relationship between sleep and the diet is mutual, implying that diet and eating behaviours also affect sleep duration and quality. Consuming healthy diets containing fruit and vegetables and food sources of protein and unsaturated fats and low quantities of saturated fat and sugar may be used as a diet strategy to improve sleep. Since the effects of sleep deficiency differ between animals and humans, only evidence from human subject studies has been included, controversies are discussed and the need for future investigations is highlighted.
Collapse
Affiliation(s)
- Masoumeh Akhlaghi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Kohanmoo
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
He H, Qin Q, Xu F, Chen Y, Rao S, Wang C, Jiang X, Lu X, Xie C. Oral polyphenol-armored nanomedicine for targeted modulation of gut microbiota-brain interactions in colitis. SCIENCE ADVANCES 2023; 9:eadf3887. [PMID: 37235662 PMCID: PMC10219598 DOI: 10.1126/sciadv.adf3887] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Developing oral nanomedicines that suppress intestinal inflammation while modulating gut microbiota and brain interactions is essential for effectively treating inflammatory bowel disease. Here, we report an oral polyphenol-armored nanomedicine based on tumor necrosis factor-α (TNF-α)-small interfering RNA and gallic acid-mediated graphene quantum dot (GAGQD)-encapsulated bovine serum albumin nanoparticle, with a chitosan and tannin acid (CHI/TA) multilayer. Referred to "armor," the CHI/TA multilayer resists the harsh environment of the gastrointestinal tract and adheres to inflamed colon sites in a targeted manner. TA provides antioxidative stress and prebiotic activities that modulate the diverse gut microbiota. Moreover, GAGQD protected TNF-α-siRNA delivery. Unexpectedly, the armored nanomedicine suppressed hyperactive immune responses and modulated bacterial gut microbiota homeostasis in a mouse model of acute colitis. Notably, the armored nanomedicine alleviated anxiety- and depression-like behaviors and cognitive impairment in mice with colitis. This armor strategy sheds light on the effect of oral nanomedicines on bacterial gut microbiome-brain interactions.
Collapse
Affiliation(s)
- Huan He
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qiaozhen Qin
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Fang Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yitong Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shuquan Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Chao Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
16
|
Peters C, He S, Fermani F, Lim H, Ding W, Mayer C, Klein R. Transcriptomics reveals amygdala neuron regulation by fasting and ghrelin thereby promoting feeding. SCIENCE ADVANCES 2023; 9:eadf6521. [PMID: 37224253 DOI: 10.1126/sciadv.adf6521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/19/2023] [Indexed: 05/26/2023]
Abstract
The central amygdala (CeA) consists of numerous genetically defined inhibitory neurons that control defensive and appetitive behaviors including feeding. Transcriptomic signatures of cell types and their links to function remain poorly understood. Using single-nucleus RNA sequencing, we describe nine CeA cell clusters, of which four are mostly associated with appetitive and two with aversive behaviors. To analyze the activation mechanism of appetitive CeA neurons, we characterized serotonin receptor 2a (Htr2a)-expressing neurons (CeAHtr2a) that comprise three appetitive clusters and were previously shown to promote feeding. In vivo calcium imaging revealed that CeAHtr2a neurons are activated by fasting, the hormone ghrelin, and the presence of food. Moreover, these neurons are required for the orexigenic effects of ghrelin. Appetitive CeA neurons responsive to fasting and ghrelin project to the parabrachial nucleus (PBN) causing inhibition of target PBN neurons. These results illustrate how the transcriptomic diversification of CeA neurons relates to fasting and hormone-regulated feeding behavior.
Collapse
Affiliation(s)
- Christian Peters
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Songwei He
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Federica Fermani
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Hansol Lim
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Wenyu Ding
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Christian Mayer
- Laboratory of Neurogenomics, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Rüdiger Klein
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| |
Collapse
|
17
|
Zhao ZD, Zhang L, Xiang X, Kim D, Li H, Cao P, Shen WL. Neurocircuitry of Predatory Hunting. Neurosci Bull 2023; 39:817-831. [PMID: 36705845 PMCID: PMC10170020 DOI: 10.1007/s12264-022-01018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/26/2022] [Indexed: 01/28/2023] Open
Abstract
Predatory hunting is an important type of innate behavior evolutionarily conserved across the animal kingdom. It is typically composed of a set of sequential actions, including prey search, pursuit, attack, and consumption. This behavior is subject to control by the nervous system. Early studies used toads as a model to probe the neuroethology of hunting, which led to the proposal of a sensory-triggered release mechanism for hunting actions. More recent studies have used genetically-trackable zebrafish and rodents and have made breakthrough discoveries in the neuroethology and neurocircuits underlying this behavior. Here, we review the sophisticated neurocircuitry involved in hunting and summarize the detailed mechanism for the circuitry to encode various aspects of hunting neuroethology, including sensory processing, sensorimotor transformation, motivation, and sequential encoding of hunting actions. We also discuss the overlapping brain circuits for hunting and feeding and point out the limitations of current studies. We propose that hunting is an ideal behavioral paradigm in which to study the neuroethology of motivated behaviors, which may shed new light on epidemic disorders, including binge-eating, obesity, and obsessive-compulsive disorders.
Collapse
Affiliation(s)
- Zheng-Dong Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Li Zhang
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Xinkuan Xiang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Daesoo Kim
- Department of Cognitive Brain Science, Korea Advanced Institute of Science & Technology, Daejeon, 34141, South Korea.
| | - Haohong Li
- MOE Frontier Research Center of Brain & Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China.
- Affiliated Mental Health Centre and Hangzhou Seventh People`s Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China.
| | - Peng Cao
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China.
| | - Wei L Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
18
|
Bodas DS, Maduskar A, Kaniganti T, Wakhloo D, Balasubramanian A, Subhedar N, Ghose A. Convergent Energy State-Dependent Antagonistic Signaling by Cocaine- and Amphetamine-Regulated Transcript (CART) and Neuropeptide Y (NPY) Modulates the Plasticity of Forebrain Neurons to Regulate Feeding in Zebrafish. J Neurosci 2023; 43:1089-1110. [PMID: 36599680 PMCID: PMC9962846 DOI: 10.1523/jneurosci.2426-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 11/28/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Dynamic reconfiguration of circuit function subserves the flexibility of innate behaviors tuned to physiological states. Internal energy stores adaptively regulate feeding-associated behaviors and integrate opposing hunger and satiety signals at the level of neural circuits. Across vertebrate lineages, the neuropeptides cocaine- and amphetamine-regulated transcript (CART) and neuropeptide Y (NPY) have potent anorexic and orexic functions, respectively, and show energy-state-dependent expression in interoceptive neurons. However, how the antagonistic activities of these peptides modulate circuit plasticity remains unclear. Using behavioral, neuroanatomical, and activity analysis in adult zebrafish of both sexes, along with pharmacological interventions, we show that CART and NPY activities converge on a population of neurons in the dorsomedial telencephalon (Dm). Although CART facilitates glutamatergic neurotransmission at the Dm, NPY dampens the response to glutamate. In energy-rich states, CART enhances NMDA receptor (NMDAR) function by protein kinase A/protein kinase C (PKA/PKC)-mediated phosphorylation of the NR1 subunit of the NMDAR complex. Conversely, starvation triggers NPY-mediated reduction in phosphorylated NR1 via calcineurin activation and inhibition of cAMP production leading to reduced responsiveness to glutamate. Our data identify convergent integration of CART and NPY inputs by the Dm neurons to generate nutritional state-dependent circuit plasticity that is correlated with the behavioral switch induced by the opposing actions of satiety and hunger signals.SIGNIFICANCE STATEMENT Internal energy needs reconfigure neuronal circuits to adaptively regulate feeding behavior. Energy-state-dependent neuropeptide release can signal energy status to feeding-associated circuits and modulate circuit function. CART and NPY are major anorexic and orexic factors, respectively, but the intracellular signaling pathways used by these peptides to alter circuit function remain uncharacterized. We show that CART and NPY-expressing neurons from energy-state interoceptive areas project to a novel telencephalic region, Dm, in adult zebrafish. CART increases the excitability of Dm neurons, whereas NPY opposes CART activity. Antagonistic signaling by CART and NPY converge onto NMDA-receptor function to modulate glutamatergic neurotransmission. Thus, opposing activities of anorexic CART and orexic NPY reconfigure circuit function to generate flexibility in feeding behavior.
Collapse
Affiliation(s)
- Devika S Bodas
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Aditi Maduskar
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Tarun Kaniganti
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Debia Wakhloo
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | | | - Nishikant Subhedar
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Aurnab Ghose
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| |
Collapse
|
19
|
He X, Ji P, Guo R, Ming X, Zhang H, Yu L, Chen Z, Gao S, Guo F. Regulation of the central amygdala on intestinal motility and behavior via the lateral hypothalamus in irritable bowel syndrome model mice. Neurogastroenterol Motil 2023; 35:e14498. [PMID: 36408759 DOI: 10.1111/nmo.14498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Impaired bidirectional communication between the gastrointestinal tract and the central nervous system (CNS) is closely related to the development of irritable bowel syndrome (IBS). Studies in patients with IBS have also shown significant activation of the hypothalamus and amygdala. However, how neural circuits of the CNS participate in and process the emotional and intestinal disorders of IBS remains unclear. METHODS The GABAergic neural pathway projecting from the central amygdala (CeA) to the lateral hypothalamus (LHA) in mice was investigated by retrograde tracking combined with fluorescence immunohistochemistry. Anxiety, depression-like behavior, and intestinal motility were observed in the water-immersion restraint stress group and the control group. Furthermore, the effects of the chemogenetic activation of the GABAergic neural pathway of CeA-LHA on behavior and intestinal motility, as well as the co-expression of orexin-A and c-Fos in the LHA, were explored. KEY RESULTS In our study, Fluoro-Gold retrograde tracking combined with fluorescence immunohistochemistry showed that GABAergic neurons in the CeA were projected to the LHA. The microinjection of the gamma-aminobutyric acid (GABA) receptor antagonist into the LHA relieved anxiety, depression-like behavior, and intestinal motility disorder in the IBS mice. The chemogenetic activation of GABAergic neurons in the CeA-LHA pathway led to anxiety, depression-like behavior, and intestinal motility disorder. In addition, GABAergic neurons in the CeA-LHA pathway inhibited the expression of orexin-A in the LHA, and orexin-A was co-expressed with GABAA receptors. CONCLUSIONS & INFERENCES The CeA-LHA GABAergic pathway might participate in the occurrence and development of IBS by regulating orexin-A neurons.
Collapse
Affiliation(s)
- Xiaoman He
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Pengfei Ji
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ruixiao Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xing Ming
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hongfei Zhang
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Lizheng Yu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ziyi Chen
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shengli Gao
- Biomedical Center, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Feifei Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Shields CN, Gremel CM. Effects of central amygdala chemogenetic manipulation and prior chronic alcohol exposure on Pavlovian-to-instrumental transfer. Alcohol Clin Exp Res 2022; 46:1967-1979. [PMID: 36117381 PMCID: PMC9722516 DOI: 10.1111/acer.14948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/09/2022] [Accepted: 09/13/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Recent work suggests that a history of chronic alcohol exposure can enhance the influence of nondrug reward cues on ongoing actions. This is often modeled in Pavlovian-to-instrumental transfer (PIT) tasks that examine the interaction between Pavlovian and instrumental learning processes, usually reflected as an increase in action vigor during the presentation of a reward-associated cue. Though prior chronic alcohol exposure strengthens this type of cue-guided behavior, the neural mechanisms underlying such enhancements are not known. METHODS In the present work, we examined the contribution of the central amygdala (CeA), a region strongly implicated in PIT behaviors and functionally altered by chronic alcohol exposure. We utilized Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to examine the impact of inhibitory and excitatory CeA manipulation on PIT behaviors in alcohol-naïve mice and mice with a history of chronic intermittent ethano vapor exposure and withdrawal (CIE). RESULTS Replicating previous work, we found that a history of CIE strengthened baseline PIT, in the absence of any CeA manipulation. We also found that activation of both inhibitory and excitatory DREADDs expressed in CeA enhanced PIT in alcohol-naïve mice, though the latter markedly reduced response rates. However, in mice exposed to CIE, activation of excitatory DREADD receptors expressed in CeA appeared to weaken PIT. CONCLUSIONS These results suggest that alcohol-induced disruptions in amygdala function may contribute to changes in appetitive behaviors, such as cue-guided responding, following chronic exposure to alcohol. Better elucidating the neural mechanisms that underlie disrupted cue-guided behavior following chronic alcohol exposure may help to understand and treat deficits in adaptive behavior associated with chronic alcohol use in humans.
Collapse
Affiliation(s)
- Chloe N. Shields
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Christina M. Gremel
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
- The Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|