1
|
Lv S, Luo C. Ferroptosis in schizophrenia: Mechanisms and therapeutic potentials (Review). Mol Med Rep 2025; 31:37. [PMID: 39611491 PMCID: PMC11613623 DOI: 10.3892/mmr.2024.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Schizophrenia, a complex psychiatric disorder, presents with multifaceted symptoms and important challenges in treatment, primarily due to its pathophysiological complexity, which involves oxidative stress and aberrant iron metabolism. Recent insights into ferroptosis, a unique form of iron‑dependent cell death characterized by lipid peroxidation and antioxidant system failures, open new avenues for understanding the neurobiological foundation of schizophrenia. The present review explores the interplay between ferroptosis and schizophrenia, emphasizing the potential contributions of disrupted iron homeostasis and oxidative mechanisms to the pathology and progression of this disease. The emerging evidence linking ferroptosis with the oxidative stress observed in schizophrenia provides a compelling narrative for re‑evaluating current therapeutic strategies and exploring novel interventions targeting these molecular pathways, such as the glutathione peroxidase 4 pathway and the ferroptosis suppressor protein 1 pathway. By integrating recent advances in ferroptosis research, the current review highlights innovative therapeutic potentials, including N‑acetylcysteine, selenium, omega‑3 fatty acids and iron chelation therapy, which could address the limitations of existing treatments and improve clinical outcomes for individuals with schizophrenia.
Collapse
Affiliation(s)
- Shuang Lv
- Department of Psychiatry, Guangzhou Kangning Hospital (The Psychiatric Hospital of Guangzhou Civil Administration Bureau), Guangzhou, Guangdong 510430, P.R. China
| | - Chunxia Luo
- Department of Psychiatry, Guangzhou Kangning Hospital (The Psychiatric Hospital of Guangzhou Civil Administration Bureau), Guangzhou, Guangdong 510430, P.R. China
| |
Collapse
|
2
|
Ni P, Ma Y, Chung S. Mitochondrial dysfunction in psychiatric disorders. Schizophr Res 2024; 273:62-77. [PMID: 36175250 DOI: 10.1016/j.schres.2022.08.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
Psychiatric disorders are a heterogeneous group of mental disorders with abnormal mental or behavioral patterns, which severely distress or disable affected individuals and can have a grave socioeconomic burden. Growing evidence indicates that mitochondrial function plays an important role in developing psychiatric disorders. This review discusses the neuropsychiatric consequences of mitochondrial abnormalities in both animal models and patients. We also discuss recent studies associated with compromised mitochondrial function in various psychiatric disorders, such as schizophrenia (SCZ), major depressive disorder (MD), and bipolar disorders (BD). These studies employ various approaches including postmortem studies, imaging studies, genetic studies, and induced pluripotent stem cells (iPSCs) studies. We also summarize the evidence from animal models and clinical trials to support mitochondrial function as a potential therapeutic target to treat various psychiatric disorders. This review will contribute to furthering our understanding of the metabolic etiology of various psychiatric disorders, and help guide the development of optimal therapies.
Collapse
Affiliation(s)
- Peiyan Ni
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.
| | - Yao Ma
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Sangmi Chung
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
3
|
Tang M, Zhao T, Liu T, Dang R, Cai H, Wang Y. Nutrition and schizophrenia: associations worthy of continued revaluation. Nutr Neurosci 2024; 27:528-546. [PMID: 37565574 DOI: 10.1080/1028415x.2023.2233176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
BACKGROUND Accumulating evidence have shown that diet and nutrition play significant roles in mental illness, such as depression, anxiety and bipolar disorder. However, comprehensive evaluation of the relationship between nutrition and schizophrenia is lacking. OBJECTIVE The present review aims to synthetic elaborate the associations between nutrition and schizophrenia. Relevant studies on dietary patterns, macronutrients, micronutrients were performed through a literature search to synthesize the extracted data. SUMMARY Dietary interventions may help prevent the occurrence of schizophrenia, or delay symptoms: Healthy diets like nutritious plant-based foods and high-quality protein, have been linked to reducing the risk or symptoms of schizophrenia. Moreover, diet high in saturated fat and sugar is linked to more serious outcomes of schizophrenia. Additionally, when N-acetylcysteine acts as an adjuvant therapy, the overall symptoms of schizophrenia are significantly reduced. Also nascent evidence showed mental disorders may be related to intestinal microbiota dysfunction. Our study offered important insights into the dietary habits of patients with schizophrenia and the potential impact of nutritional factors on the disease. We also emphasized the need for further research, particularly in the form of large randomized double-blind controlled trials, to better understand the effects of nutrients on schizophrenia symptoms in different populations and disease types.
Collapse
Affiliation(s)
- Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Tingyu Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ting Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ruili Dang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, People's Republic of China
| | - Ying Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, People's Republic of China
| |
Collapse
|
4
|
Wasserthal S, Muthesius A, Hurlemann R, Ruhrmann S, Schmidt SJ, Hellmich M, Schultze-Lutter F, Klosterkötter J, Müller H, Meyer-Lindenberg A, Poeppl TB, Walter H, Hirjak D, Koutsouleris N, Fallgatter AJ, Bechdolf A, Brockhaus-Dumke A, Mulert C, Philipsen A, Kambeitz J. N-Acetylcysteine and a Specialized Preventive Intervention for Individuals at High Risk for Psychosis: A Randomized Double-Blind Multicenter Trial. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgae005. [PMID: 39144108 PMCID: PMC11207905 DOI: 10.1093/schizbullopen/sgae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background and Hypothesis Clinical high risk for psychosis (CHR-P) offers a window of opportunity for early intervention and recent trials have shown promising results for the use of N-acetylcysteine (NAC) in schizophrenia. Moreover, integrated preventive psychological intervention (IPPI), applies social-cognitive remediation to aid in preventing the transition to the psychosis of CHR-P patients. Study Design In this double-blind, randomized, controlled multicenter trial, a 2 × 2 factorial design was applied to investigate the effects of NAC compared to placebo (PLC) and IPPI compared to psychological stress management (PSM). The primary endpoint was the transition to psychosis or deterioration of CHR-P symptoms after 18 months. Study Results While insufficient recruitment led to early trial termination, a total of 48 participants were included in the study. Patients receiving NAC showed numerically higher estimates of event-free survival probability (IPPI + NAC: 72.7 ± 13.4%, PSM + NAC: 72.7 ± 13.4%) as compared to patients receiving PLC (IPPI + PLC: 56.1 ± 15.3%, PSM + PLC: 39.0 ± 17.4%). However, a log-rank chi-square test in Kaplan-Meier analysis revealed no significant difference of survival probability for NAC vs control (point hazard ratio: 0.879, 95% CI 0.281-2.756) or IPPI vs control (point hazard ratio: 0.827, 95% CI 0.295-2.314). The number of adverse events (AE) did not differ significantly between the four groups. Conclusions The superiority of NAC or IPPI in preventing psychosis in patients with CHR-P compared to controls could not be statistically validated in this trial. However, results indicate a consistent pattern that warrants further testing of NAC as a promising and well-tolerated intervention for CHR patients in future trials with adequate statistical power.
Collapse
Affiliation(s)
- Sven Wasserthal
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital of Bonn, Bonn, Germany
| | - Ana Muthesius
- Department of Psychiatry and Psychotherapy, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - René Hurlemann
- Department of Psychiatry, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Stefanie J Schmidt
- Division of Clinical Child and Adolescent Psychology, University of Bern, Bern, Switzerland
| | - Martin Hellmich
- Faculty of Medicine and University Hospital Cologne, Institute of Medical Statistics and Computational Biology, University of Cologne, Cologne, Germany
| | - Frauke Schultze-Lutter
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Department of Psychology, Faculty of Psychology, Airlangga University, Surabaya, Indonesia
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Joachim Klosterkötter
- Department of Psychiatry and Psychotherapy, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Hendrik Müller
- Department of Psychiatry and Psychotherapy, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Timm B Poeppl
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Partner Site Tübingen, Tübingen, Germany
| | - Andreas Bechdolf
- Department of Psychiatry and Psychotherapy CCM, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine with Early Intervention and Recognition Center (FRITZ), Vivantes Klinikum Am Urban, Berlin, Germany
| | | | - Christoph Mulert
- Center of Psychiatry, Justus-Liebig University, Giessen, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital of Bonn, Bonn, Germany
| | - Joseph Kambeitz
- Department of Psychiatry and Psychotherapy, University of Cologne and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
5
|
Górny M, Bilska-Wilkosz A, Iciek M, Rogóż Z, Lorenc-Koci E. Treatment with aripiprazole and N-acetylcysteine affects anaerobic cysteine metabolism in the hippocampus and reverses schizophrenia-like behavior in the neurodevelopmental rat model of schizophrenia. FEBS J 2023; 290:5773-5793. [PMID: 37646112 DOI: 10.1111/febs.16944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/25/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
Preclinical and clinical studies have shown that the antipsychotic drug aripiprazole and the antioxidant N-acetylcysteine have unique biological properties. The aim of the study was to investigate, in a rat model of schizophrenia, the effects of chronic administration of these drugs on schizophrenia-like behaviors and anaerobic cysteine metabolism in the hippocampus (HIP). The schizophrenia-type changes were induced in Sprague-Dawley rats by repeated administration of the glutathione synthesis inhibitor l-butionine-(S,R)-sulfoximine in combination with the dopamine reuptake inhibitor GBR 12909 in the early postnatal period. Adult model rats were chronically treated with aripiprazole (0.3 mg·kg-1 , i.p.) or N-acetylcysteine (30 mg·kg-1 , orally), and their effects on schizophrenia-like behaviors were assessed using the social interaction test and novel object recognition test. In the HIP, the level of anaerobic cysteine metabolites, H2 S, and bound sulfane sulfur were determined by a fluorescence method, while the expression of H2 S-synthetizing enzymes: cystathionine β-synthase (CBS) and mercaptopyruvate sulfurtransferase (MST) by western blot. Long-term treatment with aripiprazole or N-acetylcysteine reversed social and cognitive deficits and reduced the exploratory behaviors. In the HIP of 16-day-old model pups, H2 S levels and MST protein expression were significantly decreased. In adult model rats, H2 S levels remained unchanged, bound sulfane sulfur significantly increased, and the expression of CBS and MST slightly decreased. The studied drugs significantly reduced the level of bound sulfane sulfur and the expression of tested enzymes. The reduction in bound sulfane sulfur level coincided with the attenuation of exploratory behavior, suggesting that modulation of anaerobic cysteine metabolism in the HIP may have therapeutic potential in schizophrenia.
Collapse
Affiliation(s)
- Magdalena Górny
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Bilska-Wilkosz
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Małgorzata Iciek
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Zofia Rogóż
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | |
Collapse
|
6
|
Carletti B, Banaj N, Piras F, Bossù P. Schizophrenia and Glutathione: A Challenging Story. J Pers Med 2023; 13:1526. [PMID: 38003841 PMCID: PMC10672475 DOI: 10.3390/jpm13111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Schizophrenia (SZ) is a devastating mental illness with a complex and heterogeneous clinical state. Several conditions like symptoms, stage and severity of the disease are only some of the variables that have to be considered to define the disorder and its phenotypes. SZ pathophysiology is still unclear, and the diagnosis is currently relegated to the analysis of clinical symptoms; therefore, the search for biomarkers with diagnostic relevance is a major challenge in the field, especially in the era of personalized medicine. Though the mechanisms implicated in SZ are not fully understood, some processes are beginning to be elucidated. Oxidative stress, and in particular glutathione (GSH) dysregulation, has been demonstrated to play a crucial role in SZ pathophysiology. In fact, glutathione is a leading actor of oxidative-stress-mediated damage in SZ and appears to reflect the heterogeneity of the disease. The literature reports differing results regarding the levels of glutathione in SZ patients. However, each GSH state may be a sign of specific symptoms or groups of symptoms, candidating glutathione as a biomarker useful for discriminating SZ phenotypes. Here, we summarize the literature about the levels of glutathione in SZ and analyze the role of this molecule and its potential use as a biomarker.
Collapse
Affiliation(s)
- Barbara Carletti
- Laboratory of Neuropsychiatry, Clinical Neuroscience and Neurorehabilitation Department, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy; (N.B.); (F.P.)
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Clinical Neuroscience and Neurorehabilitation Department, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy; (N.B.); (F.P.)
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Clinical Neuroscience and Neurorehabilitation Department, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy; (N.B.); (F.P.)
| | - Paola Bossù
- Laboratory of Experimental Neuropsychobiology, Clinical Neuroscience and Neurorehabilitation Department, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| |
Collapse
|
7
|
De Simone G, Mazza B, Vellucci L, Barone A, Ciccarelli M, de Bartolomeis A. Schizophrenia Synaptic Pathology and Antipsychotic Treatment in the Framework of Oxidative and Mitochondrial Dysfunction: Translational Highlights for the Clinics and Treatment. Antioxidants (Basel) 2023; 12:antiox12040975. [PMID: 37107350 PMCID: PMC10135787 DOI: 10.3390/antiox12040975] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Schizophrenia is a worldwide mental illness characterized by alterations at dopaminergic and glutamatergic synapses resulting in global dysconnectivity within and between brain networks. Impairments in inflammatory processes, mitochondrial functions, energy expenditure, and oxidative stress have been extensively associated with schizophrenia pathophysiology. Antipsychotics, the mainstay of schizophrenia pharmacological treatment and all sharing the common feature of dopamine D2 receptor occupancy, may affect antioxidant pathways as well as mitochondrial protein levels and gene expression. Here, we systematically reviewed the available evidence on antioxidants' mechanisms in antipsychotic action and the impact of first- and second-generation compounds on mitochondrial functions and oxidative stress. We further focused on clinical trials addressing the efficacy and tolerability of antioxidants as an augmentation strategy of antipsychotic treatment. EMBASE, Scopus, and Medline/PubMed databases were interrogated. The selection process was conducted in respect of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Several mitochondrial proteins involved in cell viability, energy metabolism, and regulation of oxidative systems were reported to be significantly modified by antipsychotic treatment with differences between first- and second-generation drugs. Finally, antioxidants may affect cognitive and psychotic symptoms in patients with schizophrenia, and although the evidence is only preliminary, the results indicate that further studies are warranted.
Collapse
Affiliation(s)
- Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
- UNESCO Chair on Health Education and Sustainable Development, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
8
|
Hess EM, Kassel SN, Simandl G, Raddatz N, Maunze B, Hurley MM, Grzybowski M, Klotz J, Geurts A, Liu QS, Choi S, Twining RC, Baker DA. Genetic Disruption of System xc-Mediated Glutamate Release from Astrocytes Increases Negative-Outcome Behaviors While Preserving Basic Brain Function in Rat. J Neurosci 2023; 43:2349-2361. [PMID: 36788029 PMCID: PMC10072291 DOI: 10.1523/jneurosci.1525-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/04/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
The importance of neuronal glutamate to synaptic transmission throughout the brain illustrates the immense therapeutic potential and safety risks of targeting this system. Astrocytes also release glutamate, the clinical relevance of which is unknown as the range of brain functions reliant on signaling from these cells hasn't been fully established. Here, we investigated system xc- (Sxc), which is a glutamate release mechanism with an in vivo rodent expression pattern that is restricted to astrocytes. As most animals do not express Sxc, we first compared the expression and sequence of the obligatory Sxc subunit xCT among major classes of vertebrate species. We found xCT to be ubiquitously expressed and under significant negative selective pressure. Hence, Sxc likely confers important advantages to vertebrate brain function that may promote biological fitness. Next, we assessed brain function in male genetically modified rats (MSxc) created to eliminate Sxc activity. Unlike other glutamatergic mechanisms, eliminating Sxc activity was not lethal and didn't alter growth patterns, telemetry measures of basic health, locomotor activity, or behaviors reliant on simple learning. However, MSxc rats exhibited deficits in tasks used to assess cognitive behavioral control. In a pavlovian conditioned approach, MSxc rats approached a food-predicted cue more frequently than WT rats, even when this response was punished. In attentional set shifting, MSxc rats displayed cognitive inflexibility because of an increased frequency of perseverative errors. MSxc rats also displayed heightened cocaine-primed drug seeking. Hence, a loss of Sxc-activity appears to weaken control over nonreinforced or negative-outcome behaviors without altering basic brain function.SIGNIFICANCE STATEMENT Glutamate is essential to synaptic activity throughout the brain, which illustrates immense therapeutic potential and risk. Notably, glutamatergic mechanisms are expressed by most types of brain cells. Hence, glutamate likely encodes multiple forms of intercellular signaling. Here, we hypothesized that the selective manipulation of astrocyte to neuron signaling would alter cognition without producing widespread brain impairments. First, we eliminated activity of the astrocytic glutamate release mechanism, Sxc, in rat. This impaired cognitive flexibility and increased expression of perseverative, maladaptive behaviors. Notably, eliminating Sxc activity did not alter metrics of health or noncognitive brain function. These data add to recent evidence that the brain expresses cognition-specific molecular mechanisms that could lead to highly precise, safe medications for impaired cognition.
Collapse
Affiliation(s)
- Evan M Hess
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Sara N Kassel
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Gregory Simandl
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Nicholas Raddatz
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Brian Maunze
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Matthew M Hurley
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | | | | | | | - Qing-Song Liu
- Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - SuJean Choi
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Robert C Twining
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - David A Baker
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| |
Collapse
|
9
|
Kim M, Kim T, Hwang WJ, Lho SK, Moon SY, Lee TY, Kwon JS. Forecasting prognostic trajectories with mismatch negativity in early psychosis. Psychol Med 2023; 53:1489-1499. [PMID: 36315242 PMCID: PMC10009395 DOI: 10.1017/s0033291721003068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Prognostic heterogeneity in early psychosis patients yields significant difficulties in determining the degree and duration of early intervention; this heterogeneity highlights the need for prognostic biomarkers. Although mismatch negativity (MMN) has been widely studied across early phases of psychotic disorders, its potential as a common prognostic biomarker in early periods, such as clinical high risk (CHR) for psychosis and first-episode psychosis (FEP), has not been fully studied. METHODS A total of 104 FEP patients, 102 CHR individuals, and 107 healthy controls (HCs) participated in baseline MMN recording. Clinical outcomes were assessed; 17 FEP patients were treatment resistant, 73 FEP patients were nonresistant, 56 CHR individuals were nonremitters (15 transitioned to a psychotic disorder), and 22 CHR subjects were remitters. Baseline MMN amplitudes were compared across clinical outcome groups and tested for utility prognostic biomarkers using binary logistic regression. RESULTS MMN amplitudes were greatest in HCs, intermediate in CHR subjects, and smallest in FEP patients. In the clinical outcome groups, MMN amplitudes were reduced from the baseline in both FEP and CHR patients with poor prognostic trajectories. Reduced baseline MMN amplitudes were a significant predictor of later treatment resistance in FEP patients [Exp(β) = 2.100, 95% confidence interval (CI) 1.104-3.993, p = 0.024] and nonremission in CHR individuals [Exp(β) = 1.898, 95% CI 1.065-3.374, p = 0.030]. CONCLUSIONS These findings suggest that MMN could be used as a common prognostic biomarker across early psychosis periods, which will aid clinical decisions for early intervention.
Collapse
Affiliation(s)
- Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Taekwan Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Wu Jeong Hwang
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Silvia Kyungjin Lho
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun-Young Moon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Neuropsychiatry, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| |
Collapse
|
10
|
Xu H, Yang F. The interplay of dopamine metabolism abnormalities and mitochondrial defects in the pathogenesis of schizophrenia. Transl Psychiatry 2022; 12:464. [PMID: 36344514 PMCID: PMC9640700 DOI: 10.1038/s41398-022-02233-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Dopamine (DA) is a major monoamine neurotransmitter in the brain and has essential roles in higher functions of the brain. Malfunctions of dopaminergic signaling have been implicated in various mental disorders such as addiction, attention deficit/hyperactivity disorder, Huntington's disease, Parkinson's disease (PD), and schizophrenia. The pathogenesis of PD and schizophrenia involves the interplay of mitochondrial defect and DA metabolism abnormalities. This article focuses on this issue in schizophrenia. It started with the introduction of metabolism, behavioral action, and physiology of DA, followed by reviewing evidence for malfunctions of dopaminergic signaling in patients with schizophrenia. Then it provided an overview of multiple facets of mitochondrial physiology before summarizing mitochondrial defects reported in clinical studies with schizophrenia patients. Finally, it discussed the interplay between DA metabolism abnormalities and mitochondrial defects and outlined some clinical studies showing effects of combination therapy of antipsychotics and antioxidants in treating patients with schizophrenia. The update and integration of these lines of information may advance our understanding of the etiology, pathogenesis, phenomenology, and treatment of schizophrenia.
Collapse
Affiliation(s)
- Haiyun Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China.
- Zhejiang Provincial Clinical Research Center for Mental Illness, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China.
- Mental Health Center, Shantou University Medical College, Shantou, China.
| | - Fan Yang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Maroney M. Management of cognitive and negative symptoms in schizophrenia. Ment Health Clin 2022; 12:282-299. [DOI: 10.9740/mhc.2022.10.282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract
Currently available antipsychotics provide only modest benefit in managing the cognitive and negative symptoms of schizophrenia even though these symptoms are often the most impairing in patients' daily lives. Certain antipsychotics may have slight benefits over others, and several nonpharmacologic and pharmacologic adjunctive treatments have been evaluated in recent clinical trials. Recently published meta-analyses and clinical studies of such treatments are reviewed. Potential strategies to manage cognitive and negative symptoms, including deprescribing of medications that may exacerbate these symptoms, are described using theoretical case examples.
Collapse
Affiliation(s)
- Megan Maroney
- 1 (Corresponding author) Clinical Associate Professor, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey; Clinical Psychiatric Pharmacist, Monmouth Medical Center, Long Branch, New Jersey,
| |
Collapse
|
12
|
Methamphetamine induced neurotoxic diseases, molecular mechanism, and current treatment strategies. Biomed Pharmacother 2022; 154:113591. [PMID: 36007276 DOI: 10.1016/j.biopha.2022.113591] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Methamphetamine (MA) is a extremely addictive psychostimulant drug with a significant abuse potential. Long-term MA exposure can induce neurotoxic effects through oxidative stress, mitochondrial functional impairment, endoplasmic reticulum stress, the activation of astrocytes and microglial cells, axonal transport barriers, autophagy, and apoptosis. However, the molecular and cellular mechanisms underlying MA-induced neurotoxicity remain unclear. MA abuse increases the chances of developing neurotoxic conditions such as Parkinson's disease (PD), Alzheimer's disease (AD) and other neurotoxic diseases. MA increases the risk of PD by increasing the expression of alpha-synuclein (ASYN). Furthermore, MA abuse is linked to high chances of developing AD and subsequent neurodegeneration due to biological variations in the brain region or genetic and epigenetic variations. To date, there is no Food and Drug Administration (FDA)-approved therapy for MA-induced neurotoxicity, although many studies are being conducted to develop effective therapeutic strategies. Most current studies are now focused on developing therapies to diminish the neurotoxic effects of MA, based on the underlying mechanism of neurotoxicity. This review article highlights current research on several therapeutic techniques targeting multiple pathways to reduce the neurotoxic effects of MA in the brain, as well as the putative mechanism of MA-induced neurotoxicity.
Collapse
|
13
|
Baek SH, Kim H, Kim JW, Ryu S, Lee JY, Kim JM, Shin IS, Kim SW. Association between Peripheral Inflammatory Cytokines and Cognitive Function in Patients with First-Episode Schizophrenia. J Pers Med 2022; 12:jpm12071137. [PMID: 35887634 PMCID: PMC9317024 DOI: 10.3390/jpm12071137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, we investigated the impact of inflammatory cytokines on the cognitive performance of patients with schizophrenia. The included patients met the criteria for schizophrenia spectrum disorder and were aged between 15 and 40 years, with a duration of illness ≤1 year. Plasma tumor necrosis factor (TNF)-α; interferon-γ; and interleukin (IL)-1β, IL-6, IL-8, IL-10, and IL-12 levels were measured. A computerized neurocognitive battery, measures for social cognitive function, and clinical measures were administered. A total of 174 patients with first-episode psychosis were enrolled. The TNF-α level was negatively correlated with scores on the digit span, verbal learning, and Wisconsin card sorting tests, and the number of correct responses on the continuous performance test (CR-CPT), whereas a positive correlation was detected with the trail making test (TMT)-B time. The interferon-γ level was negatively correlated with performance on the false belief and visual learning tests. The IL-1β level was positively correlated with the TMT-A time and CPT reaction time, whereas it was negatively correlated with the CR-CPT and performance on the visual learning and social cognitive tests. The IL-12 level was negatively correlated with the CR-CPT and false belief test. Our results suggest that proinflammatory cytokines are associated with cognitive impairment in patients with schizophrenia.
Collapse
Affiliation(s)
- Seon-Hwa Baek
- Department of Psychiatry, Chonnam National University Medical School, Gwangju 61419, Korea; (S.-H.B.); (H.K.); (J.-W.K.); (S.R.); (J.-Y.L.); (J.-M.K.); (I.-S.S.)
| | - Honey Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju 61419, Korea; (S.-H.B.); (H.K.); (J.-W.K.); (S.R.); (J.-Y.L.); (J.-M.K.); (I.-S.S.)
| | - Ju-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju 61419, Korea; (S.-H.B.); (H.K.); (J.-W.K.); (S.R.); (J.-Y.L.); (J.-M.K.); (I.-S.S.)
| | - Seunghyong Ryu
- Department of Psychiatry, Chonnam National University Medical School, Gwangju 61419, Korea; (S.-H.B.); (H.K.); (J.-W.K.); (S.R.); (J.-Y.L.); (J.-M.K.); (I.-S.S.)
| | - Ju-Yeon Lee
- Department of Psychiatry, Chonnam National University Medical School, Gwangju 61419, Korea; (S.-H.B.); (H.K.); (J.-W.K.); (S.R.); (J.-Y.L.); (J.-M.K.); (I.-S.S.)
| | - Jae-Min Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju 61419, Korea; (S.-H.B.); (H.K.); (J.-W.K.); (S.R.); (J.-Y.L.); (J.-M.K.); (I.-S.S.)
| | - Il-Seon Shin
- Department of Psychiatry, Chonnam National University Medical School, Gwangju 61419, Korea; (S.-H.B.); (H.K.); (J.-W.K.); (S.R.); (J.-Y.L.); (J.-M.K.); (I.-S.S.)
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju 61419, Korea; (S.-H.B.); (H.K.); (J.-W.K.); (S.R.); (J.-Y.L.); (J.-M.K.); (I.-S.S.)
- Mindlink, Gwangju Bukgu Mental Health Center, Gwangju 61220, Korea
- Correspondence: ; Tel.: +82-62-220-6148
| |
Collapse
|
14
|
Cuenod M, Steullet P, Cabungcal JH, Dwir D, Khadimallah I, Klauser P, Conus P, Do KQ. Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol Psychiatry 2022; 27:1886-1897. [PMID: 34759358 PMCID: PMC9126811 DOI: 10.1038/s41380-021-01374-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
A growing body of evidence has emerged demonstrating a pathological link between oxidative stress and schizophrenia. This evidence identifies oxidative stress as a convergence point or "central hub" for schizophrenia genetic and environmental risk factors. Here we review the existing experimental and translational research pinpointing the complex dynamics of oxidative stress mechanisms and their modulation in relation to schizophrenia pathophysiology. We focus on evidence supporting the crucial role of either redox dysregulation, N-methyl-D-aspartate receptor hypofunction, neuroinflammation or mitochondria bioenergetics dysfunction, initiating "vicious circles" centered on oxidative stress during neurodevelopment. These processes would amplify one another in positive feed-forward loops, leading to persistent impairments of the maturation and function of local parvalbumin-GABAergic neurons microcircuits and myelinated fibers of long-range macrocircuitry. This is at the basis of neural circuit synchronization impairments and cognitive, emotional, social and sensory deficits characteristic of schizophrenia. Potential therapeutic approaches that aim at breaking these different vicious circles represent promising strategies for timely and safe interventions. In order to improve early detection and increase the signal-to-noise ratio for adjunctive trials of antioxidant, anti-inflammatory and NMDAR modulator drugs, a reverse translation of validated circuitry approach is needed. The above presented processes allow to identify mechanism based biomarkers guiding stratification of homogenous patients groups and target engagement required for successful clinical trials, paving the way towards precision medicine in psychiatry.
Collapse
Affiliation(s)
- Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland.
| |
Collapse
|
15
|
Wake R, Araki T, Fukushima M, Matsuda H, Inagaki T, Hayashida M, Hashioka S, Horiguchi J, Inagaki M, Miyaoka T, Oh-Nishi A. Urinary biopyrrins and free immunoglobin light chains are biomarker candidates for screening at-risk mental state in adolescents. Early Interv Psychiatry 2022; 16:272-280. [PMID: 33966347 DOI: 10.1111/eip.13154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/23/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Early diagnosis of individuals' at-risk mental state (ARMS) is important for preventing their pathogenesis or, at least, delaying onset of overt psychosis. Traditional diagnosis of ARMS subjects is mainly based on structured interviews, but future diagnosis would be carried out together with biomarkers. AIM In this study, we report urinary biopyrrins and free immunoglobin light chains κ and λ (κFLC and λFLC) as novel diagnostic biomarker candidates for screening ARMS subjects. METHODS Nineteen ARMS subjects and 21 age- and sex-matched healthy controls were enrolled in this study. Inclusion criteria of the ARMS subjects were based on a comprehensive assessment of Structured Interview for Prodromal Syndromes. We compared oxidative stress and immunological markers in the urine of ARMS subjects with those of healthy controls by ELISA protocol. RESULTS Augmentation of biopyrrins and reduction of κFLC and λFLC were found in the ARMS samples, and their diagnostic performance was evaluated by receiver operating characteristic analysis, of which area under the curve was as large as 0.915 in combination. CONCLUSION Our findings suggest that the ARMS subjects were under higher oxidative stress but lower in B cell activation, and that the combined assay of urinary biopyrrins and free immunoglobulin light chains would be useful for the early detection and screening of ARMS subjects among adolescents.
Collapse
Affiliation(s)
- Rei Wake
- Department of Human Science, Shimane University Faculty of Human Science, Matsue, Shimane, Japan.,Department of Psychiatry, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Tomoko Araki
- Department of Psychiatry, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Michiyo Fukushima
- Department of Immune-Neuropsychiatry, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Hiroyuki Matsuda
- Department of Psychiatry, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Takuji Inagaki
- Department of Psychology and Special Support Education, Shimane University Faculty of Education, Matsue, Shimane, Japan
| | - Maiko Hayashida
- Department of Psychiatry, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Sadayuki Hashioka
- Department of Psychiatry, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Jun Horiguchi
- Department of Psychiatry, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Masatoshi Inagaki
- Department of Psychiatry, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Tsuyoshi Miyaoka
- Department of Psychiatry, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Arata Oh-Nishi
- Department of Immune-Neuropsychiatry, Shimane University Faculty of Medicine, Izumo, Shimane, Japan.,Department of Neuroscience Research, RESVO Inc., Kawasaki, Kanagawa, Japan
| |
Collapse
|
16
|
Rogóż Z, Kamińska K, Lech MA, Lorenc-Koci E. N-Acetylcysteine and Aripiprazole Improve Social Behavior and Cognition and Modulate Brain BDNF Levels in a Rat Model of Schizophrenia. Int J Mol Sci 2022; 23:ijms23042125. [PMID: 35216241 PMCID: PMC8877560 DOI: 10.3390/ijms23042125] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Treatment of negative symptoms and cognitive disorders in patients with schizophrenia is still a serious clinical problem. The aim of our study was to compare the efficacy of chronic administration of the atypical antipsychotic drug aripiprazole (7-{4-[4-(2,3-dichlorophenyl)-1-piperazinyl] butoxy}-3,4-dihydro-2(1H)-quinolinone; ARI) and the well-known antioxidant N-acetylcysteine (NAC) both in alleviating schizophrenia-like social and cognitive deficits and in reducing the decreases in the levels of the brain-derived neurotrophic factor (BDNF) in the prefrontal cortex (PFC) and hippocampus (HIP) of adult Sprague-Dawley rats, that have been induced by chronic administration of the model compound L-buthionine-(S, R)-sulfoximine (BSO) during the early postnatal development (p5–p16). ARI was administered at doses of 0.1 and 0.3 mg/kg while NAC at doses of 10 and 30 mg/kg, alone or in combination. Administration of higher doses of ARI or NAC alone, or co-treatment with lower, ineffective doses of these drugs significantly improved social and cognitive performance as assessed in behavioral tests. Both doses of NAC and 0.3 mg/kg of ARI increased the expression of BDNF mRNA in the PFC, while all doses of these drugs and their combinations enhanced the levels of BDNF protein in this brain structure. In the HIP, only 0,3 mg/kg ARI increased the levels of both BDNF mRNA and its protein. These data show that in the rat BSO-induced neurodevelopmental model of schizophrenia, ARI and NAC differently modulated BDNF levels in the PFC and HIP.
Collapse
Affiliation(s)
- Zofia Rogóż
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (Z.R.); (K.K.); (M.A.L.)
| | - Kinga Kamińska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (Z.R.); (K.K.); (M.A.L.)
| | - Marta Anna Lech
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (Z.R.); (K.K.); (M.A.L.)
| | - Elżbieta Lorenc-Koci
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
- Correspondence: ; Tel.: +48-126-623-272
| |
Collapse
|
17
|
Beeraka NM, Avila-Rodriguez MF, Aliev G. Recent Reports on Redox Stress-Induced Mitochondrial DNA Variations, Neuroglial Interactions, and NMDA Receptor System in Pathophysiology of Schizophrenia. Mol Neurobiol 2022; 59:2472-2496. [PMID: 35083660 DOI: 10.1007/s12035-021-02703-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
Schizophrenia (SZ) is a chronic psychiatric disorder affecting several people worldwide. Mitochondrial DNA (mtDNA) variations could invoke changes in the OXPHOS system, calcium buffering, and ROS production, which have significant implications for glial cell survival during SZ. Oxidative stress has been implicated in glial cells-mediated pathogenesis of SZ; the brain comparatively more prone to oxidative damage through NMDAR. A confluence of scientific evidence points to mtDNA alterations, Nrf2 signaling, dynamic alterations in dorsolateral prefrontal cortex (DLPFC), and provocation of oxidative stress that enhance pathophysiology of SZ. Furthermore, the alterations in excitatory signaling related to NMDAR signaling were particularly reported for SZ pathophysiology. Current review reported the recent evidence for the role of mtDNA variations and oxidative stress in relation to pathophysiology of SZ, NMDAR hypofunction, and glutathione deficiency. NMDAR system is influenced by redox dysregulation in oxidative stress, inflammation, and antioxidant mediators. Several studies have demonstrated the relationship of these variables on severity of pathophysiology in SZ. An extensive literature search was conducted using Medline, PubMed, PsycINFO, CINAHL PLUS, BIOSIS Preview, Google scholar, and Cochrane databases. We summarize consistent evidence pointing out a plausible model that may elucidate the crosstalk between mtDNA alterations in glial cells and redox dysregulation during oxidative stress and the perturbation of NMDA neurotransmitter system during current therapeutic modalities for the SZ treatment. This review can be beneficial for the development of promising novel diagnostics, and therapeutic modalities by ascertaining the mtDNA variations, redox state, and efficacy of pharmacological agents to mitigate redox dysregulation and augment NMDAR function to treat cognitive and behavioral symptoms in SZ.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Department of Human Anatomy, I M Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia.
| | - Marco F Avila-Rodriguez
- Faculty of Health Sciences, Department of Clinical Sciences, Barrio Santa Helena, University of Tolima, 730006, Ibagué, Colombia
| | - Gjumrakch Aliev
- Department of Human Anatomy, I M Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia.,Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia.,Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russia.,GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA
| |
Collapse
|
18
|
Yang M, Li J, Yang H, Yan L, Liu D, Zhu L, Zhang X. Cognitive Impairment and Psychopathology Are Related to Plasma Oxidative Stress in Long Term Hospitalized Patients With Chronic Schizophrenia. Front Psychiatry 2022; 13:896694. [PMID: 35757215 PMCID: PMC9226302 DOI: 10.3389/fpsyt.2022.896694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The present study aimed to examine whether plasma oxidative stress is associated with cognitive impairment in long term hospitalized patients with chronic schizophrenia. METHOD Ninety-six chronic schizophrenia patients and 94 healthy unaffected subjects were enrolled. Plasma markers of oxidative stress, including malondialdehyde (MDA), manganese superoxide dismutase (MnSOD), catalase (CAT), and glutathione peroxidase (GSH-Px), were measured. Psychiatric symptoms and cognitive function were assessed with the Positive and Negative Syndrome Scale (PANSS) and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), respectively. RESULTS Plasma MDA levels and MnSOD and GSH-Px activities were significantly lower in schizophrenia patients than in healthy controls (P < 0.001), while plasma CAT activity was higher than in healthy controls (P < 0.005). Cognitive scores on the RBANS and all of its five subscales (all P < 0.001) were significantly lower in schizophrenia patients than in healthy unaffected subjects. CAT and GSH-Px activities were positively correlated with the cognitive function scores corresponding to Visuospatial/Constructional abilities in the patient group (r = 0.298, 0.213, respectively, P < 0.05). Also, the multiple regression analysis revealed that CAT and GSH-Px activities were independent and separate contributors to the Visuospatial/Constructional index of the RBANS. Meanwhile, CAT activity was negatively correlated with general pathological symptoms (r = -0.307, Bonferroni corrected P = 0.008) and the total score of the PANSS domains (r = -0.299, Bonferroni corrected P = 0.012). CONCLUSION Our results that the reduced of MDA level and the increased CAT activity in plasma in male patients with chronic schizophrenia suggest that redox imbalance may be associated with the pathophysiology of schizophrenia, and it can induce impaired cognition and psychiatric symptoms.
Collapse
Affiliation(s)
- Man Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, China
| | - Jin Li
- Department of Psychiatry, Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, China
| | - Linya Yan
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, China
| | - Dongliang Liu
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, China
| | - Lin Zhu
- Department of Clinical Laboratory, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, China
| | - Xiaobin Zhang
- Department of Psychiatry, Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| |
Collapse
|
19
|
Menon V, Balasubramanian I, Rajkumar R. Association between markers of oxidative stress and cognitive functioning in schizophrenia. ANNALS OF INDIAN PSYCHIATRY 2022. [DOI: 10.4103/aip.aip_174_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
20
|
Ansari Z, Pawar S, Seetharaman R. Neuroinflammation and oxidative stress in schizophrenia: are these opportunities for repurposing? Postgrad Med 2021; 134:187-199. [PMID: 34766870 DOI: 10.1080/00325481.2021.2006514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Purpose: To summarize the main findings on the subject of neuroinflammation and oxidative stress in patients with Schizophrenia (SCZ).Methods: A narrative review of all the relevant papers known to the authors was conducted.Results: SCZ is a chronic, debilitating, neuropsychiatric disorder associated with an immense and adverse impact on both the patient and the caregiver, and impairs the overall quality of life. The current modality of treatment involves the use of antipsychotics to balance the disturbances in the neurotransmitters in the dopaminergic and serotonin pathways in the brain, which have a role to play in SCZ. Contemporary management of SCZ focuses mainly on symptomatic control due to the lack of effective curative treatments.Despite the optimum use of antipsychotics, there is a considerable proportion of the patient population who are poor responders. This has necessitated the exploration of new etiopathologies in order to evolve new modalities of treatment. This narrative review, conducted over a period of 3 months, throws light on the large-scale evidence pointing toward neuroinflammation and oxidative stress as key etiopathological markers that merit further consideration in SCZ, and may even be the basis for devising novel pharmacotherapies for SCZ.Conclusions: This review discusses the various plausible hypotheses, viz., cytokine hypothesis of peripheral inflammation, acute-phase reactants in SCZ, microglial hypothesis of central inflammation, neurogenesis in relation to neuroinflammation, and oxidative stress in SCZ. It also highlights the many opportunities available for repurposing already marketed drugs with anti-inflammatory and antioxidant properties with a view to devising more effective and comprehensive therapies to manage SCZ.
Collapse
Affiliation(s)
- Zarrin Ansari
- Department of Pharmacology, Lokmanya Tilak Municipal Medical College and General Hospital, Mumbai, India
| | - Sudhir Pawar
- Department of Pharmacology, Lokmanya Tilak Municipal Medical College and General Hospital, Mumbai, India
| | - Rajmohan Seetharaman
- Department of Pharmacology, Lokmanya Tilak Municipal Medical College and General Hospital, Mumbai, India
| |
Collapse
|
21
|
Chen WY, Liu HC, Cheng YC, Li H, Huang CC, Ding YW, Huang MC, Chiu CC, Tu YK, Kuo PH. Effect of Pharmacological and Neurostimulation Interventions for Cognitive Domains in Patients with Bipolar Disorder: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Clin Epidemiol 2021; 13:1039-1049. [PMID: 34744458 PMCID: PMC8565895 DOI: 10.2147/clep.s335584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/20/2021] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION The priority of interventions to alleviate cognitive deficits in patients with bipolar disorder (BD) is inconclusive. We systematically evaluate the efficacy of pharmacological or neurostimulation interventions for cognitive function in BD through a network meta-analysis. METHODS The PubMed, PsycINFO, Embase, and Cochrane Library databases were searched from database inception to September 30, 2021. Following PRISMA guidelines, all eligible studies were randomized controlled trials of adult bipolar patients that provided detailed cognitive outcomes. Studies were excluded if participants limited to comorbid substance use disorder or the intervention was a psychotherapy. Network meta-analysis comparing different interventions was conducted for 8 cognitive domains. Partially ordered set with Hasse diagram was used to resolve conflicting rankings between outcomes. The study was preregistered on PROSPERO database (CRD42020152044). RESULTS Total 21 RCTs including 42 tests for assessing intervention effects on cognition were retrieved. Adjunctive erythropoietin (SMD = 0.61, 95% CI = 0.00-1.23), Withania somnifera (SMD = 0.58, 95% CI = 0.03-1.13), and galantamine (SMD = 1.22, 95% CI = 0.10-2.35) was more beneficial for attention, working memory, and verbal learning in euthymic BD patients than treatment as usual, respectively. Hasse diagram suggested ranking of choice when multiple domains were combined. CONCLUSION Considerable variability in measurements of cognitive domains in BD was observed, and no intervention resulted in superior benefits across all domains. We suggested interventions priority can be tailored according to individual patients' cognitive deficits. As current findings from relatively small and heterogeneous dataset, future trials with consensus should be applied for building further evidence.
Collapse
Affiliation(s)
- Wen-Yin Chen
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hsing-Cheng Liu
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chih Cheng
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Psychiatry, China Medical University Hsinchu Hospital, China Medical University, Hsinchu, Taiwan
| | - Hua Li
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chi-Chieh Huang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yu-Wei Ding
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ming-Chyi Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chiang Chiu
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Kang Tu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
22
|
Bortolasci CC, Turner A, Mohebbi M, Liu ZS, Ashton M, Gray L, Marx W, Walker AJ, Kowalski GM, Jacka F, Berk M, Dean OM, Walder K. Baseline serum amino acid levels predict treatment response to augmentation with N-acetylcysteine (NAC) in a bipolar disorder randomised trial. J Psychiatr Res 2021; 142:376-383. [PMID: 34438354 DOI: 10.1016/j.jpsychires.2021.08.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/14/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
N-acetylcysteine (NAC) acts on glutamatergic and redox systems, two systems implicated in the pathophysiology of bipolar disorder (BD). This has led to the investigation of NAC as a potential candidate for the treatment of BD. The aim of this study was to investigate metabolomic markers to identify predictors of NAC response in a cohort of BD participants. This study is a secondary analysis of a 16-week, multi-site, randomized, double-blinded, parallel-group, placebo-controlled trial in BD participants with a current acute depressive episode. This study included trial participants who received either NAC 2000 mg/day, or placebo. Participants (NAC: n = 31, placebo: n = 29) were assessed at baseline and week 16 using the Montgomery Åsberg Depression Rating Scale (MADRS) and were dichotomised into "responders" (MADRS at week 16 < 50% of MADRS at baseline) and "non-responders" (MADRS at week 16 > 50% at baseline). Untargeted gas chromatography-mass spectrometry analysis was performed to analyse baseline levels of 68 serum metabolites. Of the nine metabolites that differentiated placebo and NAC groups, five were amino acids with lower levels in the NAC responder group compared with the NAC non-responders. Further analysis generated a predictive model of MADRS improvement including glycine, norleucine, threonine, proline, phenylalanine, tyrosine, glutamic acid, lysine and leucine (R2 = 0.853; adjusted R2 = 0.733). This prediction model predicted 85% of the variance in MADRS outcome after adjunctive treatment with NAC. BD participants with lower serum levels of free amino acids at baseline may be more likely to respond to adjunctive treatment with NAC.
Collapse
Affiliation(s)
- Chiara C Bortolasci
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia.
| | - Alyna Turner
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia; School of Medicine and Public Health, Faculty of Health and Medicine, The University of Newcastle, Callaghan, Australia; Department of Psychiatry, University of Melbourne, Parkville, Australia
| | | | - Zoe Sj Liu
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Melanie Ashton
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Laura Gray
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia; Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Wolfgang Marx
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia; Department of Rehabilitation, Nutrition and Sport, School of Allied Health, College of Science, Health and Engineering, La Trobe University, Bundoora, Australia
| | - Adam J Walker
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Greg M Kowalski
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Felice Jacka
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia; Black Dog Institute, Sydney, Australia
| | - Michael Berk
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia; Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia; Centre of Youth Mental Health, University of Melbourne, Parkville, Australia; Orygen Youth Health Research Centre, Parkville, Australia
| | - Olivia M Dean
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia; Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Ken Walder
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia.
| |
Collapse
|
23
|
Cognitive Deficit in Schizophrenia: From Etiology to Novel Treatments. Int J Mol Sci 2021; 22:ijms22189905. [PMID: 34576069 PMCID: PMC8468549 DOI: 10.3390/ijms22189905] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/09/2023] Open
Abstract
Schizophrenia is a major mental illness characterized by positive and negative symptoms, and by cognitive deficit. Although cognitive impairment is disabling for patients, it has been largely neglected in the treatment of schizophrenia. There are several reasons for this lack of treatments for cognitive deficit, but the complexity of its etiology-in which neuroanatomic, biochemical and genetic factors concur-has contributed to the lack of effective treatments. In the last few years, there have been several attempts to develop novel drugs for the treatment of cognitive impairment in schizophrenia. Despite these efforts, little progress has been made. The latest findings point to the importance of developing personalized treatments for schizophrenia which enhance neuroplasticity, and of combining pharmacological treatments with non-pharmacological measures.
Collapse
|
24
|
Millett CE, Perez-Rodriguez M, Shanahan M, Larsen E, Yamamoto HS, Bukowski C, Fichorova R, Burdick KE. C-reactive protein is associated with cognitive performance in a large cohort of euthymic patients with bipolar disorder. Mol Psychiatry 2021; 26:4096-4105. [PMID: 31740754 DOI: 10.1038/s41380-019-0591-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/31/2019] [Accepted: 08/19/2019] [Indexed: 01/09/2023]
Abstract
Data support the notion that 40-60% of patients with bipolar disorder (BD) have neurocognitive deficits. It is increasingly accepted that functioning in BD is negatively impacted by these deficits, yet they have not been a successful target for treatment. The biomarkers that predict cognitive deficits in BD are largely unknown, however recent evidence suggests that inflammation may be associated with poorer cognitive outcomes in BD. We measured C-reactive protein (CRP), a marker of systemic inflammation and risk of inflammatory disease, in 222 euthymic BD patients and 52 healthy controls. Within the patient sample, using multivariate analyses of covariance (MANCOVA) we compared cognitive performance of those with high CRP (≥5 mg/L) versus the remaining subjects (<5 mg/L) on a battery of cognitive tests. We evaluated relationships with several other relevant clinical features. We also examined the role of CRP in cognitive decline using a proxy cognitive decline metric, defined as the difference between premorbid and current IQ estimates, in a logistic regression analysis. Approximately 80% of our sample were BD-I, and the remainder were BD-II and 42.6% of our sample had a history of psychosis. We found a statistically significant effect of CRP on cognitive performance on a broad range of tests; participants with CRP ≥ 5 mg/L had worse performance on several measures of executive functioning, MATRICS processing speed and MATRICS reasoning and problem solving relative to those with lower CRP. We also identified CRP as a significant positive predictor of proxy cognitive decline. Our results indicate that elevated CRP is associated with a broad cognitive dysfunction in affectively remitted BD patients. These results may point to a subgroup of patients who might benefit from treatments to reduce inflammation.
Collapse
Affiliation(s)
- C E Millett
- Mood and Psychosis Research Program, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | | | - M Shanahan
- Mood and Psychosis Research Program, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA.,James J. Peters Veterans Administration Hospital, Bronx, NY, USA
| | - E Larsen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - H S Yamamoto
- Laboratory of Genital Tract Biology, Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - C Bukowski
- Laboratory of Genital Tract Biology, Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - R Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - K E Burdick
- Mood and Psychosis Research Program, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA. .,Department of Psychiatry, Harvard Medical School, Boston, MA, USA. .,Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,James J. Peters Veterans Administration Hospital, Bronx, NY, USA.
| |
Collapse
|
25
|
Smaga I, Frankowska M, Filip M. N-acetylcysteine as a new prominent approach for treating psychiatric disorders. Br J Pharmacol 2021; 178:2569-2594. [PMID: 33760228 DOI: 10.1111/bph.15456] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/26/2021] [Accepted: 03/14/2021] [Indexed: 12/17/2022] Open
Abstract
N-acetylcysteine (NAC) is a well-known and safe mucolytic agent, also used in patients with paracetamol overdose. In addition to these effects, recent preclinical and clinical studies have shown that NAC exerts beneficial effects on different psychiatric disorders. Many potential mechanisms have been proposed to underlie the therapeutic effects of NAC, including the regulation of several neurotransmitters, oxidative homeostasis, and inflammatory mediators. In this paper, we summarize the current knowledge on the ability of NAC to ameliorate symptoms and neuropathologies related to different psychiatric disorders, including attention deficit hyperactivity disorder, anxiety, bipolar disorder, depression, obsessive-compulsive disorder, obsessive-compulsive-related disorder, posttraumatic stress disorder, and schizophrenia. Although preclinical studies have shown a positive effect of NAC on animal models of psychiatric disorders, the clinical efficacy of NAC is not fully established. NAC remains a strong candidate for adjunct treatment for many psychiatric disorders, but additional preclinical and clinical studies are needed.
Collapse
Affiliation(s)
- Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Małgorzata Frankowska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
26
|
Antioxidant treatment ameliorates prefrontal hypomyelination and cognitive deficits in a rat model of schizophrenia. Neuropsychopharmacology 2021; 46:1161-1171. [PMID: 33564104 PMCID: PMC8115238 DOI: 10.1038/s41386-021-00964-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/31/2023]
Abstract
Cognitive dysfunction in schizophrenia (SZ) is thought to arise from neurodevelopmental abnormalities that include interneuron hypomyelination in the prefrontal cortex (PFC). Here we report that RNA-sequencing of the medial (m)PFC of the APO-SUS rat model with SZ-relevant cognitive inflexibility revealed antioxidant metabolism as the most-enriched differentially expressed pathway. Antioxidant-related gene expression was altered throughout postnatal development and preceded hypomyelination. Furthermore, reduced glutathione levels and increased mitochondria numbers were observed in the mPFC. Strikingly, chronic treatment with the glutathione precursor N-acetylcysteine (NAC) from postnatal days 5-90 restored not only antioxidant-related mRNA expression and mitochondria numbers, but also myelin-related mRNA expression and mPFC-dependent cognitive dysfunction, while blood glutathione levels remained unaffected. The promyelinating effect of NAC was at least partly due to a positive effect on oligodendrocyte lineage progression. Together, our findings highlight that oxidative stress may contribute to cognitive symptoms in the APO-SUS rat model of SZ and encourage antioxidant therapy in early phases of SZ.
Collapse
|
27
|
Ioannou M, Foiselle M, Mallet J, Stam EL, Godin O, Dubertret C, Terro E, Sommer IEC, Haarman BCM, Leboyer M, Schoevers RA. Towards precision medicine: What are the stratification hypotheses to identify homogeneous inflammatory subgroups. Eur Neuropsychopharmacol 2021; 45:108-121. [PMID: 33189523 DOI: 10.1016/j.euroneuro.2020.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/13/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022]
Abstract
Diverse lines of research testify a link, presumably causal, between immune dysregulation and the development, course and clinical outcome of psychiatric disorders. However, there is a large heterogeneity among the patients' individual immune profile and this heterogeneity prevents the development of precise diagnostic tools and the identification of therapeutic targets. The aim of this review was to delineate possible subgroups of patients on the basis of clinical dimensions, investigating whether they could lead to particular immune signatures and tailored treatments. We discuss six clinical entry points; genetic liability to immune dysregulation, childhood maltreatment, metabolic syndrome, cognitive dysfunction, negative symptoms and treatment resistance. We describe the associated immune signature and outline the effects of anti-inflammatory drugs so far. Finally, we discuss advantages of this approach, challenges and future research directions.
Collapse
Affiliation(s)
- M Ioannou
- University of Groningen, University Medical Center Groningen, Research School of Behavioral and Cognitive Neurosciences (BCN), Groningen, The Netherlands; University of Groningen, University Medical Centre Groningen, Department of Psychiatry, Groningen, The Netherlands; University of Groningen, University Medical Centre Groningen, Department of Biomedical Sciences, Cells and Systems, Groningen, The Netherlands.
| | - M Foiselle
- Hôpitaux de Paris, Université Paris Est Créteil DMU Impact, Department of Addictology and Psychiatry, Mondor University Hospitals, Créteil, France; INSERM U955, IMRB, Team 15, "Translational NeuroPsychiatry", Créteil, France; Fondation FondaMental, Créteil, France
| | - J Mallet
- Hôpitaux de Paris Department of Psychiatry, Louis-Mourier Hospital, Colombes, France; INSERM UMR1266, Institute of Psychiatry and Neuroscience of Paris, France; Université de Paris, Faculté de médecine, Paris, France; Fondation FondaMental, Créteil, France
| | - E L Stam
- University of Groningen, University Medical Center Groningen, Research School of Behavioral and Cognitive Neurosciences (BCN), Groningen, The Netherlands; University of Groningen, University Medical Centre Groningen, Department of Psychiatry, Groningen, The Netherlands
| | - O Godin
- INSERM U955, IMRB, Team 15, "Translational NeuroPsychiatry", Créteil, France; Fondation FondaMental, Créteil, France
| | - C Dubertret
- Hôpitaux de Paris Department of Psychiatry, Louis-Mourier Hospital, Colombes, France; INSERM UMR1266, Institute of Psychiatry and Neuroscience of Paris, France; Université de Paris, Faculté de médecine, Paris, France
| | - E Terro
- INSERM U955, IMRB, Team 15, "Translational NeuroPsychiatry", Créteil, France
| | - I E C Sommer
- University of Groningen, University Medical Centre Groningen, Department of Biomedical Sciences, Cells and Systems, Groningen, The Netherlands; University of Groningen, University Medical Centre Groningen, Department of Psychiatry, Groningen, The Netherlands
| | - B C M Haarman
- University of Groningen, University Medical Center Groningen, Research School of Behavioral and Cognitive Neurosciences (BCN), Groningen, The Netherlands; University of Groningen, University Medical Centre Groningen, Department of Psychiatry, Groningen, The Netherlands
| | - M Leboyer
- Hôpitaux de Paris, Université Paris Est Créteil DMU Impact, Department of Addictology and Psychiatry, Mondor University Hospitals, Créteil, France; INSERM U955, IMRB, Team 15, "Translational NeuroPsychiatry", Créteil, France; Fondation FondaMental, Créteil, France
| | - R A Schoevers
- University of Groningen, University Medical Center Groningen, Research School of Behavioral and Cognitive Neurosciences (BCN), Groningen, The Netherlands; University of Groningen, University Medical Centre Groningen, Department of Psychiatry, Groningen, The Netherlands
| |
Collapse
|
28
|
Ermakov EA, Dmitrieva EM, Parshukova DA, Kazantseva DV, Vasilieva AR, Smirnova LP. Oxidative Stress-Related Mechanisms in Schizophrenia Pathogenesis and New Treatment Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8881770. [PMID: 33552387 PMCID: PMC7847339 DOI: 10.1155/2021/8881770] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/15/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Schizophrenia is recognized to be a highly heterogeneous disease at various levels, from genetics to clinical manifestations and treatment sensitivity. This heterogeneity is also reflected in the variety of oxidative stress-related mechanisms contributing to the phenotypic realization and manifestation of schizophrenia. At the molecular level, these mechanisms are supposed to include genetic causes that increase the susceptibility of individuals to oxidative stress and lead to gene expression dysregulation caused by abnormal regulation of redox-sensitive transcriptional factors, noncoding RNAs, and epigenetic mechanisms favored by environmental insults. These changes form the basis of the prooxidant state and lead to altered redox signaling related to glutathione deficiency and impaired expression and function of redox-sensitive transcriptional factors (Nrf2, NF-κB, FoxO, etc.). At the cellular level, these changes lead to mitochondrial dysfunction and metabolic abnormalities that contribute to aberrant neuronal development, abnormal myelination, neurotransmitter anomalies, and dysfunction of parvalbumin-positive interneurons. Immune dysfunction also contributes to redox imbalance. At the whole-organism level, all these mechanisms ultimately contribute to the manifestation and development of schizophrenia. In this review, we consider oxidative stress-related mechanisms and new treatment perspectives associated with the correction of redox imbalance in schizophrenia. We suggest that not only antioxidants but also redox-regulated transcription factor-targeting drugs (including Nrf2 and FoxO activators or NF-κB inhibitors) have great promise in schizophrenia. But it is necessary to develop the stratification criteria of schizophrenia patients based on oxidative stress-related markers for the administration of redox-correcting treatment.
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena M. Dmitrieva
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | - Daria A. Parshukova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | | | | | - Liudmila P. Smirnova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| |
Collapse
|
29
|
Abstract
BACKGROUND Given the wide implications of cognitive impairment for prognosis and outcome in schizophrenia, the research on pharmacological approaches aimed at addressing dysfunctional cognition has been extensive; nevertheless, there are no currently available licensed drugs, and the evidence in this field is still unimpressive. Vortioxetine is a multimodal antidepressant, which has been proposed as a suitable treatment option for cognitive symptoms in depression. METHODS Twenty schizophrenia outpatients (mean age ± SD, 40.7 ±10.6 years) on stable clozapine treatment, assessed by neuropsychological (Wisconsin Card Sorting Test, Verbal Fluency, and Stroop task) and psychodiagnostic instruments (Positive and Negative Syndrome Scale [PANSS] and Calgary Depression Scale for Schizophrenia), received vortioxetine at the single daily dose of 10 mg/d until week 12; the dose was increased at 20 mg/d afterward, and this dosage was maintained unchanged until week 24. A physical examination, electrocardiogram with QTc measurement, and laboratory tests were also performed. RESULTS Vortioxetine supplementation significantly improved Stroop test (P = 0.013) at week 12 and Stroop test (P = 0.031) and Semantic Fluency (P = 0.002) at end point. Moreover, a significantly reduction of PANSS domains "positive" (P = 0.019) at week 12 and of PANSS domains positive (P = 0.019) and total score (P = 0.041) and of depressive symptoms (Calgary Depression Scale for Schizophrenia, P = 0.032) at end point. There was no significant change in clinical, metabolic, and safety parameters, and no subject spontaneously reported adverse effects. CONCLUSIONS Despite the limitations (open design, lack of a control group, small sample size, and short intervention period), our findings suggest for the first time that vortioxetine augmentation of clozapine may be a promising therapeutic strategy for addressing cognitive deficits in patients with schizophrenia.
Collapse
|
30
|
Subchronic N-acetylcysteine Treatment Decreases Brain Kynurenic Acid Levels and Improves Cognitive Performance in Mice. Antioxidants (Basel) 2021; 10:antiox10020147. [PMID: 33498402 PMCID: PMC7909398 DOI: 10.3390/antiox10020147] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/06/2021] [Accepted: 01/16/2021] [Indexed: 11/17/2022] Open
Abstract
The tryptophan (Trp) metabolite kynurenic acid (KYNA) is an α7-nicotinic and N-methyl-d-aspartate receptor antagonist. Elevated brain KYNA levels are commonly seen in psychiatric disorders and neurodegenerative diseases and may be related to cognitive impairments. Recently, we showed that N-acetylcysteine (NAC) inhibits kynurenine aminotransferase II (KAT II), KYNA's key biosynthetic enzyme, and reduces KYNA neosynthesis in rats in vivo. In this study, we examined if repeated systemic administration of NAC influences brain KYNA and cognitive performance in mice. Animals received NAC (100 mg/kg, i.p.) daily for 7 days. Redox markers, KYNA levels, and KAT II activity were determined in the brain. We also assessed the effect of repeated NAC treatment on Trp catabolism using brain tissue slices ex vivo. Finally, learning and memory was evaluated with and without an acute challenge with KYNA's bioprecursor L-kynurenine (Kyn; 100 mg/kg). Subchronic NAC administration protected against an acute pro-oxidant challenge, decreased KYNA levels, and lowered KAT II activity and improved memory both under basal conditions and after acute Kyn treatment. In tissue slices from these mice, KYNA neosynthesis from Trp or Kyn was reduced. Together, our data indicate that prolonged treatment with NAC may enhance memory at least in part by reducing brain KYNA levels.
Collapse
|
31
|
Pardhi VP, Flora S. Stable solid dispersion of lurasidone hydrochloride with augmented physicochemical properties for the treatment of schizophrenia and bipolar disorder. Biopharm Drug Dispos 2020; 41:334-351. [PMID: 33080060 DOI: 10.1002/bdd.2252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/08/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022]
Abstract
Crystalline solid dispersion of lurasidone hydrochloride (LH) was made with various polar and non-polar small molecules to overcome the poor aqueous solubility issue. LH-Glutathione (GSH) solid dispersion in 1:1 ratio was prepared by co-grinding method and characterized by using differential scanning calorimetry (DSC), powder X-ray diffraction, Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. GSH acts as antioxidant and reported for anti-schizophrenic activity may provide synergistic action with LH or reduce the side effects. LH in LH-GSH solid dispersion (SD) has shown improvement in solubility by 7.9 folds than plain drug which translated in terms of improved dissolution rate by two-folds. The in vitro dissolution results showed maximum dissolution rate with LH-GSH SD (97.85 ± 2.40%) compared to plain drug (50.5 ± 3.02%) at 15 min (t15 min, %) and thus, satisfying criteria of immediate release dosage form. DSC and FTIR data confirmed the stability of LH-GSH SD for 3 months at accelerated stability condition (40 ± 2°C and 75 ± 5% RH). The prepared LH-GSH SD can be used as a tool to target dual problems that is, enhanced physicochemical properties along with possible management of disorder which could be due to synergism with co-administered GSH. This approach is thought to be efficiently providing the relief to the psychological patients.
Collapse
Affiliation(s)
- Vishwas P Pardhi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, India
| | - Swaran Flora
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, India
| |
Collapse
|
32
|
Pyatoykina AS, Zhilyaeva TV, Semennov IV, Mishanov GA, Blagonravova AS, Mazo GE. [The double-blind randomized placebo-controlled trial of N-acetylcysteine use in schizophrenia: preliminary results]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:66-71. [PMID: 33081449 DOI: 10.17116/jnevro202012009166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Currently, oxidative stress as part of the pathogenesis of schizophrenia attracts much attention. In this regard, it becomes relevant to assess the level of redox imbalance in patients with schizophrenia, its impact on existing symptoms and the possibility of its treatment. The antioxidant N-acetylcysteine is one of the potential drugs that affects oxidative stress. OBJECTIVE To study the possibilities of the use of N-acetylcysteine in patients with schizophrenia. MATERIAL AND METHODS The study included 20 patients diagnosed with paranoid schizophrenia with the disease duration of less than 3 years, randomly assigned to the main group (taking N-acetylcysteine at a dose of 2000 mg per day for 60 days) and a comparison group (placebo) in a double-blinded manner. At the beginning and end of the study, cognitive functions were evaluated using the specialized instrument BACS, the severity of psychopathological symptoms was evaluated using PANSS, and blood was collected to determine the level of glutathione (GSH), which is a metabolite of N-acetylcysteine. RESULTS There was a significant decrease in positive PANSS score (p=0.013), negative PANSS score (p=0.002) and the general pathology PANSS score (p=0.004) in the main group. Compared with the comparison group, the dynamics of the negative PANSS score (p=0.005) and the general psychopathology PANSS score (p=0.004) was significantly different. When assessing the dynamics of cognitive functions in the main group, a significant improvement in indicators was established in the task for a sequence of numbers that characterizes working memory (p=0.037). The level of GSH significantly increased in the main group (p=0.01), however, there were no statistically significant differences between groups at the final visit. CONCLUSION N-acetylcysteine has a positive effect on the negative, general psychopathology PANSS scores, some cognitive functions, in particular, working memory, that allows considering this drug as a promising method of augmentation of schizophrenia therapy and requires further attentive study.
Collapse
Affiliation(s)
- A S Pyatoykina
- Clinical Psychiatric Hospital No. 1, Nizhny Novgorod, Russia
| | - T V Zhilyaeva
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - I V Semennov
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - G A Mishanov
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - A S Blagonravova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - G E Mazo
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| |
Collapse
|
33
|
Cao X, Cao L, Zhang W, Lu R, Bian JS, Nie X. Therapeutic potential of sulfur-containing natural products in inflammatory diseases. Pharmacol Ther 2020; 216:107687. [PMID: 32966837 DOI: 10.1016/j.pharmthera.2020.107687] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
Owing to the prevalence of chronic inflammation and its related disorders, there is a demand for novel therapeutic agents capable of preventing or suppressing inflammation. Natural products (NPs) are well established as an important resource for drug development and provide an almost infinite array of molecular entities. Sulfur-containing NPs (i.e., NPs containing one or more sulfur atoms) are abundant throughout nature, from bacteria to animals. The aim of this review was to survey the emerging evidence on role of sulfur-containing NPs, such as glutathione, garlic-derived sulfur compounds, Epipolythiodioxopiperazines (EPTs), Isothiocyanates (ITCs), and Ergothioneine (EGT), in the control of inflammation and to determine the possible underlying mechanisms. A discussion of how hydrogen sulfide (H2S), an endogenous gaseous signaling molecule, links sulfur-containing NPs and their anti-inflammatory action is also performed. This review may help to further the development of sulfur-based compounds by providing a guide for structure-activity relationship-based modification for use in modern medicinal chemistry. However, as this field is still in its infancy, the review is concluded by an overview of the progression of these promising entities as therapeutic agents.
Collapse
Affiliation(s)
- Xu Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Republic of Singapore
| | - Lei Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Republic of Singapore
| | - Wencan Zhang
- Food Science and Technology Program, Department of Chemistry, National University of Singapore, Singapore 117600, Republic of Singapore
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Jin-Song Bian
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, PR China; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Republic of Singapore.
| | - Xiaowei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Republic of Singapore; Institute of Hepatology, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
34
|
Perkins DO, Jeffries CD, Do KQ. Potential Roles of Redox Dysregulation in the Development of Schizophrenia. Biol Psychiatry 2020; 88:326-336. [PMID: 32560962 PMCID: PMC7395886 DOI: 10.1016/j.biopsych.2020.03.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/03/2020] [Accepted: 03/22/2020] [Indexed: 12/20/2022]
Abstract
Converging evidence implicates redox dysregulation as a pathological mechanism driving the emergence of psychosis. Increased oxidative damage and decreased capacity of intracellular redox modulatory systems are consistent findings in persons with schizophrenia as well as in persons at clinical high risk who subsequently developed frank psychosis. Levels of glutathione, a key regulator of cellular redox status, are reduced in the medial prefrontal cortex, striatum, and thalamus in schizophrenia. In humans with schizophrenia and in rodent models recapitulating various features of schizophrenia, redox dysregulation is linked to reductions of parvalbumin containing gamma-aminobutyric acid (GABA) interneurons and volumes of their perineuronal nets, white matter abnormalities, and microglia activation. Importantly, the activity of transcription factors, kinases, and phosphatases regulating diverse aspects of neurodevelopment and synaptic plasticity varies according to cellular redox state. Molecules regulating interneuron function under redox control include NMDA receptor subunits GluN1 and GluN2A as well as KEAP1 (regulator of transcription factor NRF2). In a rodent schizophrenia model characterized by impaired glutathione synthesis, the Gclm knockout mouse, oxidative stress activated MMP9 (matrix metalloprotease 9) via its redox-responsive regulatory sites, causing a cascade of molecular events leading to microglia activation, perineural net degradation, and impaired NMDA receptor function. Molecular pathways under redox control are implicated in the etiopathology of schizophrenia and are attractive drug targets for individualized drug therapy trials in the contexts of prevention and treatment of psychosis.
Collapse
Affiliation(s)
- Diana O. Perkins
- corresponding author: CB 7160, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, Office: 919-962-1401, Cell: 919-360-1602,
| | - Clark D. Jeffries
- Renaissance Computing Institute, University of North Carolina, Chapel Hill NC
| | - Kim Q. Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland
| |
Collapse
|
35
|
Blanco-Ayala T, Sathyasaikumar KV, Uys JD, Pérez-de-la-Cruz V, Pidugu LS, Schwarcz R. N-Acetylcysteine Inhibits Kynurenine Aminotransferase II. Neuroscience 2020; 444:160-169. [PMID: 32768617 DOI: 10.1016/j.neuroscience.2020.07.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/08/2020] [Accepted: 07/28/2020] [Indexed: 12/22/2022]
Abstract
The tryptophan metabolite kynurenic acid (KYNA) may play an important role in normal and abnormal cognitive processes, most likely by interfering with α7 nicotinic and NMDA receptor function. KYNA is formed from its immediate precursor kynurenine either by non-enzymatic oxidation or through irreversible transamination by kynurenine aminotransferases. In the mammalian brain, kynurenine aminotransferase II (KAT II) is the principal enzyme responsible for the neosynthesis of rapidly mobilizable KYNA, and therefore constitutes an attractive target for pro-cognitive interventions. N-acetylcysteine (NAC), a brain-penetrant drug with pro-cognitive efficacy in humans, has been proposed to exert its actions by increasing the levels of the anti-oxidant glutathione (GSH) in the brain. We report here that NAC, but not GSH, inhibits KAT II activity in brain tissue homogenates from rats and humans with IC50 values in the high micromolar to low millimolar range. With similar potency, the drug interfered with the de novo formation of KYNA in rat brain slices, and NAC was a competitive inhibitor of recombinant human KAT II (Ki: 450 μM). Furthermore, GSH failed to S-glutathionylate recombinant human KAT II treated with the dithiocarbamate drug disulfiram. Shown by microdialysis in the prefrontal cortex of rats treated with kynurenine (50 mg/kg, i.p.), peripheral administration of NAC (500 mg/kg, i.p., 120 and 60 min before the application of kynurenine) reduced KYNA neosynthesis by ∼50%. Together, these results suggest that NAC exerts its neurobiological effects at least in part by reducing cerebral KYNA formation via KAT II inhibition.
Collapse
Affiliation(s)
- T Blanco-Ayala
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - K V Sathyasaikumar
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - J D Uys
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - V Pérez-de-la-Cruz
- Laboratorio de Neurobioquimica y Conducta, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A. Ciudad de México, Mexico
| | - L S Pidugu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - R Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
36
|
Mongan D, Ramesar M, Föcking M, Cannon M, Cotter D. Role of inflammation in the pathogenesis of schizophrenia: A review of the evidence, proposed mechanisms and implications for treatment. Early Interv Psychiatry 2020; 14:385-397. [PMID: 31368253 DOI: 10.1111/eip.12859] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/13/2019] [Accepted: 07/14/2019] [Indexed: 12/28/2022]
Abstract
AIM Over the past several decades, there has been a growing research interest in the role of inflammation in the pathogenesis of schizophrenia. This review aims to summarize evidence in support of this relationship, to discuss biological mechanisms that might explain it, and to explore the translational impact by examining evidence from trials of anti-inflammatory and immunomodulatory agents in the treatment of schizophrenia. METHODS This narrative review of the literature summarizes evidence from observational studies, clinical trials and meta-analyses to evaluate the role of inflammation in the pathogenesis of schizophrenia and to discuss associated implications for treatment. RESULTS Epidemiological evidence and animal models support a hypothesis of maternal immune activation during pregnancy, which increases the risk of schizophrenia in the offspring. Several biomarker studies have found associations between classical pro-inflammatory cytokines and schizophrenia. The precise biological mechanisms by which inflammatory processes might contribute to the pathogenesis of schizophrenia remain unclear, but likely include the actions of microglia and the complement system. Importantly, several trials provide evidence that certain anti-inflammatory and immunomodulatory agents show beneficial effects in the treatment of schizophrenia. Nevertheless, there is a need for further precision-focused basic science and translational research. CONCLUSIONS Increasing our understanding of the role of inflammation in schizophrenia will enable novel opportunities for therapeutic and preventative interventions that are informed by the underlying pathogenesis of this complex disorder.
Collapse
Affiliation(s)
- David Mongan
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | - Mary Cannon
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David Cotter
- Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
37
|
Yolland CO, Hanratty D, Neill E, Rossell SL, Berk M, Dean OM, Castle DJ, Tan EJ, Phillipou A, Harris AW, Barreiros AR, Hansen A, Siskind D. Meta-analysis of randomised controlled trials with N-acetylcysteine in the treatment of schizophrenia. Aust N Z J Psychiatry 2020; 54:453-466. [PMID: 31826654 DOI: 10.1177/0004867419893439] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE There is accumulating evidence that adjunctive treatment with N-acetylcysteine may be effective for schizophrenia. This study aimed to conduct a comprehensive meta-analysis examining the efficacy of randomised control trials investigating N-acetylcysteine as an adjunct treatment for schizophrenia and the first to investigate cognition as an outcome. METHODS We systematically reviewed Medline, EmCare, PsycINFO, Embase, CINAHL Complete, China Knowledge Resource Integrated Database and the Cochrane Clinical Trials online registry for randomised control trials of N-acetylcysteine for schizophrenia. We undertook pairwise meta-analyses of N-acetylcysteine vs placebo for psychosis symptoms and cognition. RESULTS Seven studies, including n = 220 receiving N-acetylcysteine and n = 220 receiving placebo, met inclusion criteria for the pairwise meta-analyses. Positive and Negative Syndrome Scale negative and total scores were significantly improved in the N-acetylcysteine group after 24 weeks of treatment. The cognitive domain of working memory improved with N-acetylcysteine supplementation. CONCLUSION Evidence supports the notion that N-acetylcysteine may be a useful adjunct to standard treatment for the improvement of schizophrenia symptoms, as well as the cognitive domain of working memory. Treatment effects were observed at the later time point (⩾24 weeks), suggesting that longer interventions are required for the success of N-acetylcysteine treatment.
Collapse
Affiliation(s)
- Caitlin Ob Yolland
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Donal Hanratty
- Department of Psychiatry, St. Vincent's Hospital Melbourne, Melbourne, VIC, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Erica Neill
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, VIC, Australia.,Department of Psychiatry, St. Vincent's Hospital Melbourne, Melbourne, VIC, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Susan L Rossell
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, VIC, Australia.,Department of Psychiatry, St. Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Michael Berk
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia.,IMPACT Strategic Research Centre, Barwon Health, Deakin University, Geelong, VIC, Australia.,Orygen Youth Health Research Centre, Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Olivia M Dean
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia.,IMPACT Strategic Research Centre, Barwon Health, Deakin University, Geelong, VIC, Australia.,Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - David J Castle
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, VIC, Australia.,Department of Psychiatry, St. Vincent's Hospital Melbourne, Melbourne, VIC, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Eric J Tan
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, VIC, Australia.,Department of Psychiatry, St. Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Andrea Phillipou
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, VIC, Australia.,Department of Psychiatry, St. Vincent's Hospital Melbourne, Melbourne, VIC, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Anthony Wf Harris
- Discipline of Psychiatry, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Brain Dynamics Centre, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Ana Rita Barreiros
- Brain Dynamics Centre, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Abigail Hansen
- Brain Dynamics Centre, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Dan Siskind
- Metro South Addiction and Mental Health Service, Mobile Intensive Rehabilitation Team, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
38
|
Ni P, Chung S. Mitochondrial Dysfunction in Schizophrenia. Bioessays 2020; 42:e1900202. [PMID: 32338416 DOI: 10.1002/bies.201900202] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/29/2020] [Indexed: 02/05/2023]
Abstract
Schizophrenia (SCZ) is a severe neurodevelopmental disorder affecting 1% of populations worldwide with a grave disability and socioeconomic burden. Current antipsychotic medications are effective treatments for positive symptoms, but poorly address negative symptoms and cognitive symptoms, warranting the development of better treatment options. Further understanding of SCZ pathogenesis is critical in these endeavors. Accumulating evidence has pointed to the role of mitochondria and metabolic dysregulation in SCZ pathogenesis. This review critically summarizes recent studies associating a compromised mitochondrial function with people with SCZ, including postmortem studies, imaging studies, genetic studies, and induced pluripotent stem cell studies. This review also discusses animal models with mitochondrial dysfunction resulting in SCZ-relevant neurobehavioral abnormalities, as well as restoration of mitochondrial function as potential therapeutic targets. Further understanding of mitochondrial dysfunction in SCZ may open the door to develop novel therapeutic strategies that can address the symptoms that cannot be adequately addressed by current antipsychotics alone.
Collapse
Affiliation(s)
- Peiyan Ni
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Sangmi Chung
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| |
Collapse
|
39
|
Lotter J, Möller M, Dean O, Berk M, Harvey BH. Studies on Haloperidol and Adjunctive α-Mangostin or Raw Garcinia mangostana Linn Pericarp on Bio-Behavioral Markers in an Immune-Inflammatory Model of Schizophrenia in Male Rats. Front Psychiatry 2020; 11:121. [PMID: 32296347 PMCID: PMC7136492 DOI: 10.3389/fpsyt.2020.00121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/12/2020] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia is a severe brain disorder that is associated with neurodevelopmental insults, such as prenatal inflammation, that introduce redox-immune-inflammatory alterations and risk for psychotic symptoms later in life. Nutraceuticals may offer useful adjunctive benefits. The aim of this study was to examine the therapeutic effects of Garcinia mangostana Linn (GML) and one of its active constituents, α-mangostin (AM), alone and as adjunctive treatment with haloperidol (HAL) on schizophrenia related bio-behavioral alterations in a maternal immune-activation (MIA) model. Sprague-Dawley dams were exposed to lipopolysaccharide (LPS) (n = 18) or vehicle (n = 3) on gestational days 15 and 16. Male offspring (n = 72) were treated from PND 52-66 with either vehicle, HAL (2 mg/kg), GML (50 mg/kg), HAL + GML, AM (20 mg/kg), or HAL + AM. Control dams and control offspring were treated with vehicle. In order to cover the mood-psychosis continuum, prepulse inhibition (PPI) of startle, open field test (locomotor activity), and the forced swim test (depressive-like behavior) were assessed on PND's 64-65, followed by assay of frontal-cortical lipid peroxidation and plasma pro-inflammatory cytokines, viz. interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α). MIA-induced deficits in sensorimotor gating were reversed by HAL and HAL + GML, but not GML and AM alone. MIA-induced depressive-like behavior was reversed by AM and GML alone and both in combination with HAL, with the combinations more effective than HAL. MIA-induced cortical lipid peroxidation was reversed by HAL and AM, with elevated IL-6 levels restored by GML, AM, HAL, and HAL + GML. Elevated TNF-α was only reversed by GML and HAL + GML. Concluding, prenatal LPS-induced psychotic- and depressive-like bio-behavioral alterations in offspring are variably responsive to HAL, GML, and AM, with depressive (but not psychosis-like) manifestations responding to GML, AM, and combinations with HAL. AM may be a more effective antioxidant than GML in vivo, although this does not imply an improved therapeutic response, for which trials are required.
Collapse
Affiliation(s)
- Jana Lotter
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| | - Marisa Möller
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| | - Olivia Dean
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Michael Berk
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Department of Psychiatry, The Centre of Excellence in Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Brian H. Harvey
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| |
Collapse
|
40
|
Balanzá-Martínez V, Shansis FM, Tatay-Manteiga A, López-García P. Diet and Neurocognition in Mood Disorders - An Overview of the Overlooked. Curr Pharm Des 2020; 26:2353-2362. [PMID: 32188376 DOI: 10.2174/1381612826666200318152530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/27/2020] [Indexed: 01/02/2023]
Abstract
Bipolar disorder and major depression are associated with significant disability, morbidity, and reduced life expectancy. People with mood disorders have shown higher ratios of unhealthy lifestyle choices, including poor diet quality and suboptimal nutrition. Diet and nutrition impact on brain /mental health, but cognitive outcomes have been less researched in psychiatric disorders. Neurocognitive dysfunction is a major driver of social dysfunction and a therapeutic target in mood disorders, although effective cognitive-enhancers are currently lacking. This narrative review aimed to assess the potential cognitive benefits of dietary and nutritional interventions in subjects diagnosed with mood disorders. Eight clinical trials with nutrients were identified, whereas none involved dietary interventions. Efficacy to improve select cognitive deficits has been reported, but results are either preliminary or inconsistent. Methodological recommendations for future cognition trials in the field are advanced. Current evidence and future views are discussed from the perspectives of precision medicine, clinical staging, nutritional psychiatry, and the brain-gut-microbiota axis.
Collapse
Affiliation(s)
- Vicent Balanzá-Martínez
- Teaching Unit of Psychiatry, Department of Medicine, University of Valencia, Valencia, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Flavio M Shansis
- Centro de Pesquisa Translacional en Transtorno del Humor y Suicidio (CEPETTHS), Programa de Pos Grado en Ciencias Medicas, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| | | | - Pilar López-García
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Psychiatry. Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Princesa (IIS Princesa), Madrid, Spain
| |
Collapse
|
41
|
Oxidation-reduction mechanisms in psychiatric disorders: A novel target for pharmacological intervention. Pharmacol Ther 2020; 210:107520. [PMID: 32165136 DOI: 10.1016/j.pharmthera.2020.107520] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
While neurotransmitter dysfunction represents a key component in mental illnesses, there is now a wide agreement for a central pathophysiological hub that includes hormones, neuroinflammation, redox mechanisms as well as oxidative stress. With respect to oxidation-reduction (redox) mechanisms, preclinical and clinical evidence suggests that an imbalance in the pro/anti-oxidative homeostasis toward the increased production of substances with oxidizing potential may contribute to the etiology and manifestation of different psychiatric disorders. The substantial and continous demand for energy renders the brain highly susceptible to disturbances in its energy supply, especially following exposure to stressful events, which may lead to overproduction of reactive oxygen and nitrogen species under conditions of perturbed antioxidant defenses. This will eventually induce different molecular alterations, including extensive protein and lipid peroxidation, increased blood-brain barrier permeability and neuroinflammation, which may contribute to the changes in brain function and morphology observed in mental illnesses. This view may also reconcile different key concepts for psychiatric disorders, such as the neurodevelopmental origin of these diseases, as well as the vulnerability of selective cellular populations that are critical for specific functional abnormalities. The possibility to pharmacologically modulate the redox system is receiving increasing interest as a novel therapeutic strategy to counteract the detrimental effects of the unbalance in brain oxidative mechanisms. This review will describe the main mechanisms and mediators of the redox system and will examine the alterations of oxidative stress found in animal models of psychiatric disorders as well as in patients suffering from mental illnesses, such as schizophrenia and major depressive disorder. In addition, it will discuss studies that examined the effects of psychotropic drugs, including antipsychotics and antidepressants, on the oxidative balance as well as studies that investigated the effectiveness of a direct modulation of oxidative mechanisms in counteracting the behavioral and functional alterations associated with psychiatric disorders, which supports the promising role of the redox system as a novel therapeutic target for the improved treatment of brain disorders.
Collapse
|
42
|
Pharmacological enrichment of polygenic risk for precision medicine in complex disorders. Sci Rep 2020; 10:879. [PMID: 31964963 PMCID: PMC6972917 DOI: 10.1038/s41598-020-57795-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/03/2020] [Indexed: 12/29/2022] Open
Abstract
Individuals with complex disorders typically have a heritable burden of common variation that can be expressed as a polygenic risk score (PRS). While PRS has some predictive utility, it lacks the molecular specificity to be directly informative for clinical interventions. We therefore sought to develop a framework to quantify an individual’s common variant enrichment in clinically actionable systems responsive to existing drugs. This was achieved with a metric designated the pharmagenic enrichment score (PES), which we demonstrate for individual SNP profiles in a cohort of cases with schizophrenia. A large proportion of these had elevated PES in one or more of eight clinically actionable gene-sets enriched with schizophrenia associated common variation. Notable candidates targeting these pathways included vitamins, antioxidants, insulin modulating agents, and cholinergic drugs. Interestingly, elevated PES was also observed in individuals with otherwise low common variant burden. The biological saliency of PES profiles were observed directly through their impact on gene expression in a subset of the cohort with matched transcriptomic data, supporting our assertion that this gene-set orientated approach could integrate an individual’s common variant risk to inform personalised interventions, including drug repositioning, for complex disorders such as schizophrenia.
Collapse
|
43
|
Chakraborty S, Tripathi SJ, Srikumar B, Raju T, Shankaranarayana Rao B. N-acetyl cysteine ameliorates depression-induced cognitive deficits by restoring the volumes of hippocampal subfields and associated neurochemical changes. Neurochem Int 2020; 132:104605. [DOI: 10.1016/j.neuint.2019.104605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022]
|
44
|
Dempster K, Jeon P, MacKinley M, Williamson P, Théberge J, Palaniyappan L. Early treatment response in first episode psychosis: a 7-T magnetic resonance spectroscopic study of glutathione and glutamate. Mol Psychiatry 2020; 25:1640-1650. [PMID: 32205866 PMCID: PMC7387300 DOI: 10.1038/s41380-020-0704-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 01/07/2023]
Abstract
Early response to antipsychotic medications is one of the most important determinants of later symptomatic and functional outcomes in psychosis. Glutathione and glutamate have emerged as promising therapeutic targets for patients demonstrating inadequate response to dopamine-blocking antipsychotics. Nevertheless, the role of these neurochemicals in the mechanism of early antipsychotic response remains poorly understood. Using a longitudinal design and ultrahigh field 7-T magnetic resonance spectroscopy (MRS) protocol in 53 subjects, we report the association between dorsal anterior cingulate cortex glutamate and glutathione, with time to treatment response in drug naive (34.6% of the sample) or minimally medicated first episode patients with schizophreniform disorder, schizophrenia, and schizoaffective disorder. Time to response was defined as the number of weeks required to reach a 50% reduction in the PANSS-8 scores. Higher glutathione was associated with shorter time to response (F = 4.86, P = 0.017), while higher glutamate was associated with more severe functional impairment (F = 5.33, P = 0.008). There were no significant differences between patients and controls on measures of glutamate or glutathione. For the first time, we have demonstrated an association between higher glutathione and favorable prognosis in FEP. We propose that interventions that increase brain glutathione levels may improve outcomes of early intervention in psychosis.
Collapse
Affiliation(s)
- Kara Dempster
- 0000 0004 1936 8200grid.55602.34Department of Psychiatry, Dalhousie University, Halifax, NS Canada
| | - Peter Jeon
- 0000 0004 1936 8884grid.39381.30Department of Medical Biophysics, University of Western Ontario, London, ON Canada
| | - Michael MacKinley
- 0000 0004 1936 8884grid.39381.30Robarts Research Institute, London, ON Canada
| | - Peter Williamson
- 0000 0004 1936 8884grid.39381.30Robarts Research Institute, London, ON Canada ,0000 0004 1936 8884grid.39381.30Department of Psychiatry, University of Western Ontario, London, ON Canada ,0000 0001 0556 2414grid.415847.bLawson Health Research Institute, London, ON Canada
| | - Jean Théberge
- 0000 0004 1936 8884grid.39381.30Department of Medical Biophysics, University of Western Ontario, London, ON Canada ,0000 0004 1936 8884grid.39381.30Robarts Research Institute, London, ON Canada ,0000 0001 0556 2414grid.415847.bLawson Health Research Institute, London, ON Canada ,0000 0000 9674 4717grid.416448.bDepartment of Diagnostic Imaging, St. Joseph’s Health Care London, London, ON Canada
| | - Lena Palaniyappan
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada. .,Robarts Research Institute, London, ON, Canada. .,Department of Psychiatry, University of Western Ontario, London, ON, Canada. .,Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
45
|
Lho SK, Kim M, Park J, Hwang WJ, Moon SY, Oh S, Kwon JS. Progressive Impairment of Mismatch Negativity Is Reflective of Underlying Pathophysiological Changes in Patients With First-Episode Psychosis. Front Psychiatry 2020; 11:587. [PMID: 32625126 PMCID: PMC7314980 DOI: 10.3389/fpsyt.2020.00587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although mismatch negativity (MMN) is associated with the pathophysiology of schizophrenia, whether MMN progressively worsens during the initial years of psychotic disorder has not yet been sufficiently studied. We aimed to investigate whether longitudinal reduction of MMN occurs in patients with first-episode psychosis (FEP) and whether it is reflective of change in cognitive functioning or clinical status. METHODS MMN and the clinical status of 25 patients with FEP were measured and the Trail Making Test (TMT) was administered at baseline and reassessed after 1 year of usual treatment. The MMN of 25 matched healthy controls (HCs) was measured at baseline. Repeated-measures analysis of variance was used to compare MMNs at baseline among the groups, and paired t-test was utilized to compare the baseline and 1-year MMN amplitudes of FEP patients. To identify the association between changes in MMN and changes in cognitive, symptomatic, or functional status over 1 year, multiple regression analysis was used to control for other possible confounders. RESULTS MMN amplitudes at baseline were significantly attenuated in FEP patients compared to those in HC. The 1-year follow-up MMN amplitude decreased significantly at the Fz electrode site in the FEP group. Additionally, the decreased MMN amplitude significantly correlated with worsened TMT part B (TMT-B) performance over 1 year but did not correlate with symptomatic or functional improvement. CONCLUSIONS FEP patients with an MMN amplitude reduction showed worsening of cognitive functioning, which might reflect pathophysiological progression during the early years of a psychotic episode.
Collapse
Affiliation(s)
- Silvia Kyungjin Lho
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Minah Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Jihye Park
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea
| | - Wu Jeong Hwang
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea
| | - Sun-Young Moon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Sanghoon Oh
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea.,Institute of Human Behavioral Medicine, SNU-MRC, Seoul, South Korea
| |
Collapse
|
46
|
Harkness JH, Bushana PN, Todd RP, Clegern WC, Sorg BA, Wisor JP. Sleep disruption elevates oxidative stress in parvalbumin-positive cells of the rat cerebral cortex. Sleep 2019; 42:5145871. [PMID: 30371896 DOI: 10.1093/sleep/zsy201] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Indexed: 11/13/2022] Open
Abstract
We used a novel automated sleep disruption (SD) apparatus to determine the impact of SD on sleep and molecular markers of oxidative stress in parvalbumin (PV) neurons in the rat prefrontal cortex (PFC). Rats were subjected to two 6 hr SD sessions from zeitgeber time (ZT) 0 to ZT6, one by the gentle handling method and the other by an automated agitator running the length of the rat's home cage floor (a novel SD method). The same rats were later subjected to a 12 hr SD session from ZT0 to ZT12. Sleep was disrupted with both methods, although rats slept less during gentle handling than during the automated condition. Immediately after both SD sessions, rats displayed compensatory sleep characterized by elevated slow-wave activity. We measured in the prelimbic prefrontal cortex (prelimbic PFC; 6 and 12 hr SD) and orbital frontal cortex (12 hr SD) the intensity of the oxidative stress marker, 8-oxo-2'-deoxyguanosine (8-oxo-dG) as well as the staining intensity of PV and the PV cell-associated perineuronal net marker, Wisteria floribunda agglutinin (WFA). In the prelimbic PFC, 6 hr SD increased the intensity of 8-oxo-dG, PV, and WFA. After 12 hr SD, the intensity of 8-oxo-dG was elevated in all neurons. PV intensity was elevated only in neurons colabeled with 8-oxo-dG or WFA, and no changes were found in WFA intensity. We conclude that in association with SD-induced sleep drive, PV neurons in the prelimbic PFC exhibit oxidative stress.
Collapse
Affiliation(s)
- John H Harkness
- Department of Integrative Physiology and Neuroscience, Translational Addiction Research Center, Washington State University, Vancouver, WA
| | - Priyanka N Bushana
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Spokane, WA
| | - Ryan P Todd
- Department of Integrative Physiology and Neuroscience, Translational Addiction Research Center, Washington State University, Vancouver, WA
| | - William C Clegern
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Spokane, WA
| | - Barbara A Sorg
- Department of Integrative Physiology and Neuroscience, Translational Addiction Research Center, Washington State University, Vancouver, WA
| | - Jonathan P Wisor
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Spokane, WA
| |
Collapse
|
47
|
Schmidt SJ, Hurlemann R, Schultz J, Wasserthal S, Kloss C, Maier W, Meyer-Lindenberg A, Hellmich M, Muthesius-Digón A, Pantel T, Wiesner PS, Klosterkötter J, Ruhrmann S. Multimodal prevention of first psychotic episode through N-acetyl-l-cysteine and integrated preventive psychological intervention in individuals clinically at high risk for psychosis: Protocol of a randomized, placebo-controlled, parallel-group trial. Early Interv Psychiatry 2019; 13:1404-1415. [PMID: 30784233 DOI: 10.1111/eip.12781] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/27/2018] [Accepted: 12/26/2018] [Indexed: 01/22/2023]
Abstract
AIM Meta-analyses indicate positive effects of both antipsychotic and cognitive-behavioural interventions in subjects clinically at high risk (CHR) for psychosis in terms of a delay or prevention of psychotic disorders. However, these effects have been limited regarding social functioning and the relative efficacy of both types of interventions remains unclear. Furthermore, neuroprotective substances seem to be a promising alternative agent in psychosis-prevention as they are associated with few and weak side-effects. METHODS In this multi-centre randomized controlled trial (RCT), we investigate the effects of two interventions on transition to psychosis and social functioning: (a) an integrated preventive psychological intervention (IPPI) including stress-/symptom-management and social-cognitive remediation; (b) N-acetyl-l-cysteine (NAC) as a pharmacological intervention with glutamatergic, neuroprotective and anti-inflammatory capabilities. RESULTS This is a double-blind, placebo-controlled RCT with regard to NAC and a single-blind RCT with regard to IPPI using a 2 × 2-factorial design to investigate the individual and combined preventive effects of both interventions. To this aim, a total of 200 CHR subjects will be randomized stratified by site to one of four conditions: (a) IPPI and NAC; (b) IPPI and Placebo; (c) NAC and psychological stress management; (d) Placebo and psychological stress management. Interventions are delivered over 26 weeks with a follow-up period of 12 months. CONCLUSION This paper reports on the rationale and protocol of an indicated prevention trial to detect the most effective and tolerable interventions with regard to transition to psychosis as well as improvements in social functioning, and to evaluate the synergistic effects of these interventions.
Collapse
Affiliation(s)
- Stefanie J Schmidt
- Department of Clinical Psychology and Psychotherapy, University of Bern, Bern, Switzerland.,University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - René Hurlemann
- Department of Psychiatry, University Hospital Bonn, Bonn, Germany.,Division of Medical Psychology, University Hospital Bonn, Bonn, Germany
| | - Johannes Schultz
- Department of Psychiatry, University Hospital Bonn, Bonn, Germany.,Division of Medical Psychology, University Hospital Bonn, Bonn, Germany
| | - Sven Wasserthal
- Department of Psychiatry, University Hospital Bonn, Bonn, Germany.,Division of Medical Psychology, University Hospital Bonn, Bonn, Germany
| | - Christian Kloss
- Department of Psychiatry, University Hospital Bonn, Bonn, Germany.,Division of Medical Psychology, University Hospital Bonn, Bonn, Germany
| | - Wolfgang Maier
- Department of Psychiatry, University Hospital Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases, Bonn, Germany
| | | | - Martin Hellmich
- Institute of Medical Statistics and Computational Biology, University of Cologne, Cologne, Germany
| | - Ana Muthesius-Digón
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Tanja Pantel
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Pia-Sophie Wiesner
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | | | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | | |
Collapse
|
48
|
Acetylsalicylic acid and its metabolite gentisic acid may act as adjunctive agents in the treatment of psychiatric disorders. Behav Pharmacol 2019; 30:627-641. [DOI: 10.1097/fbp.0000000000000517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Cotton SM, Berk M, Watson A, Wood S, Allott K, Bartholomeusz CF, Bortolasci CC, Walder K, O'Donoghue B, Dean OM, Chanen A, Amminger GP, McGorry PD, Burnside A, Uren J, Ratheesh A, Dodd S. ENACT: a protocol for a randomised placebo-controlled trial investigating the efficacy and mechanisms of action of adjunctive N-acetylcysteine for first-episode psychosis. Trials 2019; 20:658. [PMID: 31779696 PMCID: PMC6883553 DOI: 10.1186/s13063-019-3786-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND First-episode psychosis (FEP) may lead to a progressive, potentially disabling and lifelong chronic illness; however, evidence suggests that the illness course can be improved if appropriate treatments are given at the early stages. Nonetheless, the efficacy of antipsychotic medications is suboptimal, particularly for negative and cognitive symptoms, and more efficacious and benign treatments are needed. Previous studies have shown that the antioxidant amino acid N-acetylcysteine (NAC) reduces negative symptoms and improves functioning in chronic schizophrenia and bipolar disorder. Research is scarce as to whether NAC is beneficial earlier in the course of illness. The primary aim of this study is to determine the efficacy of treatment with adjunctive NAC (2 g/day for 26 weeks) compared with placebo to improve psychiatric symptoms in young people experiencing FEP. Secondary aims are to explore the neurobiological mechanisms underpinning NAC and how they relate to various clinical and functional outcomes at 26- and 52-week follow-ups. METHODS/DESIGN ENACT is a 26-week, randomised controlled trial of adjunctive NAC versus placebo, with a 26-week non-treatment follow-up period, for FEP. We will be recruiting 162 young people aged 15-25 years who have recently presented to, and are being treated at, the Early Psychosis Prevention and Intervention Centre, Melbourne, Australia. The primary outcome is the Total Score on the Positive and Negative Syndrome Scale which will be administered at baseline, and weeks 4, 8, 12, 26 (primary endpoint), and 52 (end of study). Secondary outcomes include: symptomatology, functioning, quality of life, neurocognition, blood-derived measures of: inflammation, oxidative and nitrosative stress, and magnetic resonance spectroscopy measures of glutathione concentration. DISCUSSION Targeted drug development for FEP to date has generally not involved the exploration of neuroprotective agents. This study has the potential to offer a new, safe, and efficacious treatment for people with FEP, leading to better treatment outcomes. Additionally, the neuroprotective dimension of this study may lead to a better long-term prognosis for people with FEP. It has the potential to uncover a novel treatment that targets the neurobiological mechanisms of FEP and, if successful, will be a major advance for psychiatry. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry, ID: ACTRN12618000413224. Registered on 21 March 2018.
Collapse
Affiliation(s)
- S M Cotton
- Orygen the National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, University of Melbourne, Locked Bag 10 (35 Poplar Road), Parkville, VIC, 3052, Australia.
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| | - M Berk
- Orygen the National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, University of Melbourne, Locked Bag 10 (35 Poplar Road), Parkville, VIC, 3052, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, School of Medicine, Geelong, VIC, Australia
- The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - A Watson
- Orygen the National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, University of Melbourne, Locked Bag 10 (35 Poplar Road), Parkville, VIC, 3052, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - S Wood
- Orygen the National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, University of Melbourne, Locked Bag 10 (35 Poplar Road), Parkville, VIC, 3052, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- School of Psychology, University of Birmingham, Edgbaston, UK
| | - K Allott
- Orygen the National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, University of Melbourne, Locked Bag 10 (35 Poplar Road), Parkville, VIC, 3052, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - C F Bartholomeusz
- Orygen the National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, University of Melbourne, Locked Bag 10 (35 Poplar Road), Parkville, VIC, 3052, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - C C Bortolasci
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - K Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - B O'Donoghue
- Orygen the National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, University of Melbourne, Locked Bag 10 (35 Poplar Road), Parkville, VIC, 3052, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - O M Dean
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, School of Medicine, Geelong, VIC, Australia
- The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - A Chanen
- Orygen the National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, University of Melbourne, Locked Bag 10 (35 Poplar Road), Parkville, VIC, 3052, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - G P Amminger
- Orygen the National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, University of Melbourne, Locked Bag 10 (35 Poplar Road), Parkville, VIC, 3052, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - P D McGorry
- Orygen the National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, University of Melbourne, Locked Bag 10 (35 Poplar Road), Parkville, VIC, 3052, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - A Burnside
- Orygen the National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, University of Melbourne, Locked Bag 10 (35 Poplar Road), Parkville, VIC, 3052, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - J Uren
- Orygen the National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, University of Melbourne, Locked Bag 10 (35 Poplar Road), Parkville, VIC, 3052, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - A Ratheesh
- Orygen the National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, University of Melbourne, Locked Bag 10 (35 Poplar Road), Parkville, VIC, 3052, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - S Dodd
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, School of Medicine, Geelong, VIC, Australia
| |
Collapse
|
50
|
Robertson OD, Coronado NG, Sethi R, Berk M, Dodd S. Putative neuroprotective pharmacotherapies to target the staged progression of mental illness. Early Interv Psychiatry 2019; 13:1032-1049. [PMID: 30690898 DOI: 10.1111/eip.12775] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022]
Abstract
AIM Neuropsychiatric disorders including depression, bipolar and schizophrenia frequently exhibit a neuroprogressive course from prodrome to chronicity. There are a range of agents exhibiting capacity to attenuate biological mechanisms associated with neuroprogression. This review will update the evidence for putative neuroprotective agents including clinical efficacy, mechanisms of action and limitations in current assessment tools, and identify novel agents with neuroprotective potential. METHOD Data for this review were sourced from online databases PUBMED, Embase and Web of Science. Only data published since 2012 were included in this review, no data were excluded based on language or publication origin. RESULTS Each of the agents reviewed inhibit one or multiple pathways of neuroprogression including: inflammatory gene expression and cytokine release, oxidative and nitrosative stress, mitochondrial dysfunction, neurotrophin dysregulation and apoptotic signalling. Some demonstrate clinical efficacy in preventing neural damage or loss, relapse or cognitive/functional decline. Agents include: the psychotropic medications lithium, second generation antipsychotics and antidepressants; other pharmacological agents such as minocycline, aspirin, cyclooxygenase-2 inhibitors, statins, ketamine and alpha-2-delta ligands; and others such as erythropoietin, oestrogen, leptin, N-acetylcysteine, curcumin, melatonin and ebselen. CONCLUSIONS Signals of evidence of clinical neuroprotection are evident for a number of candidate agents. Adjunctive use of multiple agents may present a viable avenue to clinical realization of neuroprotection. Definitive prospective studies of neuroprotection with multimodal assessment tools are required.
Collapse
Affiliation(s)
- Oliver D Robertson
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia
| | - Nieves G Coronado
- Unidad de Gestión Clinica Salud Mental, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - Rickinder Sethi
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.,Mood Disorders Research Program, Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia.,Department of Psychiatry, Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Seetal Dodd
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.,Mood Disorders Research Program, Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| |
Collapse
|