1
|
Gell M, Eickhoff SB, Omidvarnia A, Küppers V, Patil KR, Satterthwaite TD, Müller VI, Langner R. How measurement noise limits the accuracy of brain-behaviour predictions. Nat Commun 2024; 15:10678. [PMID: 39668158 PMCID: PMC11638260 DOI: 10.1038/s41467-024-54022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/30/2024] [Indexed: 12/14/2024] Open
Abstract
Major efforts in human neuroimaging strive to understand individual differences and find biomarkers for clinical applications by predicting behavioural phenotypes from brain imaging data. To identify generalisable and replicable brain-behaviour prediction models, sufficient measurement reliability is essential. However, the selection of prediction targets is predominantly guided by scientific interest or data availability rather than psychometric considerations. Here, we demonstrate the impact of low reliability in behavioural phenotypes on out-of-sample prediction performance. Using simulated and empirical data from four large-scale datasets, we find that reliability levels common across many phenotypes can markedly limit the ability to link brain and behaviour. Next, using 5000 participants from the UK Biobank, we show that only highly reliable data can fully benefit from increasing sample sizes from hundreds to thousands of participants. Our findings highlight the importance of measurement reliability for identifying meaningful brain-behaviour associations from individual differences and underscore the need for greater emphasis on psychometrics in future research.
Collapse
Affiliation(s)
- Martin Gell
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany.
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Amir Omidvarnia
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vincent Küppers
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Veronika I Müller
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Robert Langner
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
2
|
Son JJ, Arif Y, Okelberry HJ, Johnson HJ, Willett MP, Wiesman AI, Wilson TW. Aging modulates the impact of cognitive interference subtypes on dynamic connectivity across a distributed motor network. NPJ AGING 2024; 10:54. [PMID: 39580466 PMCID: PMC11585575 DOI: 10.1038/s41514-024-00182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 11/09/2024] [Indexed: 11/25/2024]
Abstract
Research has shown age-related declines in cognitive control in the context of interference, but these studies have focused on frontoparietal networks and less is known about impacts on motor response-related dynamics in the face of distractors. Thus, we examined whether healthy aging affected connectivity between attention networks and motor circuitry using a multisource interference task and magnetoencephalography in 72 healthy-aging participants (28-63 years-old). Our results indicated stronger beta connectivity with increasing age between bilateral primary motor (M1) and occipital cortices, as well as stronger gamma fronto-motor connectivity during flanker-type interference. Regarding Simon-type interference, stronger beta interactions were observed between left M1 and right temporal and right M1 and left parietal with increasing age. Finally, the superadditivity effect (flanker + Simon presented simultaneously) indicated weaker beta connectivity between right M1 and left premotor with increasing age. These findings suggest exhaustion of age-related compensatory adaptations in the fronto-parieto-motor network with greater interference.
Collapse
Affiliation(s)
- Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA.
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
3
|
Rappaport BI, Shankman SA, Glazer JE, Buchanan SN, Weinberg A, Letkiewicz AM. Psychometrics of drift-diffusion model parameters derived from the Eriksen flanker task: Reliability and validity in two independent samples. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024:10.3758/s13415-024-01222-8. [PMID: 39443415 DOI: 10.3758/s13415-024-01222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
The flanker task is a widely used measure of cognitive control abilities. Drift-diffusion modeling of flanker task behavior can yield separable parameters of cognitive control-related subprocesses, but the parameters' psychometrics are not well-established. We examined the reliability and validity of four behavioral measures: (1) raw accuracy, (2) reaction time (RT) interference, (3) NIH Toolbox flanker score, and (4) two drift-diffusion model (DDM) parameters-drift rate and boundary separation-capturing evidence accumulation efficiency and speed-accuracy trade-off, respectively. Participants from two independent studies - one cross-sectional (N = 381) and one with three timepoints (N = 83) - completed the flanker task while electroencephalography data were collected. Across both studies, drift rate and boundary separation demonstrated comparable split-half and test-retest reliability to accuracy, RT interference, and NIH Toolbox flanker score, but better incremental convergent validity with psychophysiological measures (i.e., the error-related negativity; ERN) and neuropsychological measures of cognitive control than the other behavioral indices. Greater drift rate (i.e., faster and more accurate responses) to congruent and incongruent stimuli, and smaller boundary separation to incongruent stimuli were related to 1) larger ERN amplitudes (in both studies) and 2) faster and more accurate inhibition and set-shifting over and above raw accuracy, reaction time, and NIH Toolbox flanker scores (in Study 1). Computational models, such as DDM, can parse behavioral performance into subprocesses that exhibit comparable reliability to other scoring approaches, but more meaningful relationships with other measures of cognitive control. The application of these computational models may be applied to existing data and enhance the identification of cognitive control deficits in psychiatric disorders.
Collapse
Affiliation(s)
- Brent Ian Rappaport
- Department of Psychiatry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Stewart A Shankman
- Department of Psychiatry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - James E Glazer
- Department of Psychiatry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Savannah N Buchanan
- Department of Psychiatry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Anna Weinberg
- Department of Psychology, McGill University, Montreal, Canada
| | - Allison M Letkiewicz
- Department of Psychiatry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
4
|
Kojima K, Lin L, Petley L, Clevenger N, Perdew A, Bodik M, Blankenship CM, Motlagh Zadeh L, Hunter LL, Moore DR. Childhood Listening and Associated Cognitive Difficulties Persist Into Adolescence. Ear Hear 2024; 45:1252-1263. [PMID: 38764146 PMCID: PMC11333188 DOI: 10.1097/aud.0000000000001517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
OBJECTIVE Listening difficulty (LiD) refers to the challenges individuals face when trying to hear and comprehend speech and other sounds. LiD can arise from various sources, such as hearing sensitivity, language comprehension, cognitive function, or auditory processing. Although some children with LiD have hearing loss, many have clinically normal audiometric thresholds. To determine the impact of hearing and cognitive factors on LiD in children with a clinically normal audiogram, we conducted a longitudinal study. The Evaluation of Children's Listening & Processing Skills (ECLiPS), a validated and standardized caregiver evaluation tool, was used to group participants as either LiD or typically developing (TD). Our previous study aimed to characterize LiD in 6- to 13-year-old children during the project's baseline, cross-sectional phase. We found that children with LiD needed a higher signal-to-noise ratio during speech-in-speech tests and scored lower on all assessed components of the NIH Cognition Toolbox than TD children. The primary goal of this study was to examine if the differences between LiD and TD groups are temporary or enduring throughout childhood. DESIGN This longitudinal study had three data collection waves for children with LiD and TD aged 6 to 13 years at Wave 1, followed by assessments at 2-year (Wave 2) and 4-year (Wave 3) intervals. Primary analysis focused on data from Waves 1 and 2. Secondary analysis encompassed all three waves despite high attrition at Wave 3. Caregivers completed the ECLiPS, while participants completed the Listening in Spatialized Noise-Sentences (LiSN-S) test and the NIH-Toolbox Cognition Battery during each wave. The analysis consisted of (1) examining longitudinal differences between TD and LiD groups in demographics, listening, auditory, and cognitive function; (2) identifying functional domains contributing to LiD; and (3) test-retest reliability of measures across waves. Mixed-effect models were employed to analyze longitudinal data. RESULTS The study enrolled 169 participants, with 147, 100, and 31 children completing the required testing during Waves 1, 2, and 3, respectively. The mean ages at these waves were 9.5, 12.0, and 14.0 years. On average, children with LiD consistently underperformed TD children in auditory and cognitive tasks across all waves. Maternal education, auditory, and cognitive abilities independently predicted caregiver-reported listening skills. Significant correlations between Waves 1 and 2 confirmed high, long-term reliability. Secondary analysis of Wave 3 was consistent with the primary analyses of Waves 1 and 2, reinforcing the enduring nature of listening difficulties. CONCLUSION Children with LiD and clinically normal audiograms experience persistent auditory, listening, and cognitive challenges through at least adolescence. The degree of LiD can be independently predicted by maternal education, cognitive processing, and spatial listening skills. This study underscores the importance of early detection and intervention for childhood LiD and highlights the role of socioeconomic factors as contributors to these challenges.
Collapse
Affiliation(s)
- Katsuaki Kojima
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Li Lin
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lauren Petley
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Psychology, Clarkson University, Potsdam, New York
| | - Nathan Clevenger
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Audrey Perdew
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mark Bodik
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Cornell University, Ithaca, New York
| | - Chelsea M Blankenship
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lina Motlagh Zadeh
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lisa L Hunter
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- College of Allied Health, Communication Sciences and Disorders, University of Cincinnati, Cincinnati, Ohio
- Departments of Otolaryngology and Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David R Moore
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Departments of Otolaryngology and Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Bjork JM, Reisweber J, Perrin PB, Plonski PE, Dismuke-Greer CE. Neurocognitive function and medical care utilization in Veterans treated for substance use disorder. Subst Abuse Treat Prev Policy 2024; 19:39. [PMID: 39215320 PMCID: PMC11363532 DOI: 10.1186/s13011-024-00621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Veterans with substance use disorder (SUD) are at high risk for cognitive problems due to neurotoxic effects of chronic drug and alcohol use coupled in many cases with histories of traumatic brain injury (TBI). These problems may in turn result in proneness to SUD relapse and reduced adherence to medical self-care regimens and therefore reliance on health care systems. However, the direct relationship between cognitive function and utilization of Veterans Health Administration (VHA) SUD and other VHA health care services has not been evaluated. We sought initial evidence as to whether neurocognitive performance relates to repeated health care engagement in Veterans as indexed by estimated VHA care costs. METHODS Neurocognitive performance in 76 Veterans being treated for SUD was assessed using CNS-Vital Signs, a commercial computerized cognitive testing battery, and related to histories of outpatient and inpatient/residential care costs as estimated by the VHA Health Economics Resource Center. RESULTS After controlling for age, an aggregate metric of overall neurocognitive performance (Neurocognition Index) correlated negatively with total VHA health care costs, particularly with SUD-related outpatient care costs but also with non-mental health-related care costs. Barratt Impulsiveness Scale scores also correlated positively with total VHA care costs. CONCLUSIONS In Veterans receiving SUD care, higher impulsivity and lower cognitive performance were associated with greater health care utilization within the VHA system. This suggests that veterans with SUD who show lower neurocognitive performance are at greater risk for continued health problems that require healthcare engagement. Cognitive rehabilitation programs developed for brain injury and other neurological conditions could be tried in Veterans with SUD to improve their health outcomes.
Collapse
Affiliation(s)
- James M Bjork
- Mental Health Service, Central Virginia Veterans Affairs Health Care System, 1201 Broad Rock Blvd, Richmond, VA, 23249, USA.
- Virginia Commonwealth University, Richmond, VA, USA.
| | - Jarrod Reisweber
- Mental Health Service, Central Virginia Veterans Affairs Health Care System, 1201 Broad Rock Blvd, Richmond, VA, 23249, USA
| | - Paul B Perrin
- Mental Health Service, Central Virginia Veterans Affairs Health Care System, 1201 Broad Rock Blvd, Richmond, VA, 23249, USA
- University of Virginia, Charlottesville, VA, USA
| | | | | |
Collapse
|
6
|
Young SR, Novack MA, Dworak EM, Kaat AJ, Hosseinian Z, Gershon RC. Using the Mobile Toolbox in child and adolescent samples: A feasibility study. Child Dev 2024; 95:1416-1424. [PMID: 38217474 PMCID: PMC11223986 DOI: 10.1111/cdev.14066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/15/2024]
Abstract
Cognitive research with developmental samples requires improved methods that support large-scale, diverse, and open science. This paper offers initial evidence to support the Mobile Toolbox (MTB), a self-administered remote smartphone-based cognitive battery, in youth populations, from a pilot sample of 99 children (Mage = 11.79 years; 36% female; 53% White, 33% Black or African American, 9% Asian, and 15% Hispanic). Completion rates (95%-99%), practice performance (96%-100%), internal consistency (0.60-0.98), and correlations with similar NIHTB measures (0.55-0.77) provide the first evidence to support the MTB in a youth sample, although there were some inconsistencies across measures. Preliminary findings provide promising evidence of the MTB in developmental populations, and further studies are encouraged.
Collapse
Affiliation(s)
- Stephanie Ruth Young
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Miriam Alana Novack
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elizabeth M Dworak
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Aaron J Kaat
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Zahra Hosseinian
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Richard C Gershon
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
7
|
Wei X, Franke N, Alsweiler JM, Brown GTL, Gamble GD, McNeill A, Rogers J, Thompson B, Turuwhenua J, Wouldes TA, Harding JE, McKinlay CJD. Dextrose gel prophylaxis for neonatal hypoglycaemia and neurocognitive function at early school age: a randomised dosage trial. Arch Dis Child Fetal Neonatal Ed 2024; 109:421-427. [PMID: 38307710 PMCID: PMC11186727 DOI: 10.1136/archdischild-2023-326452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/07/2023] [Indexed: 02/04/2024]
Abstract
OBJECTIVE To investigate the effect of different doses of prophylactic dextrose gel on neurocognitive function and health at 6-7 years. DESIGN Early school-age follow-up of the pre-hPOD (hypoglycaemia Prevention with Oral Dextrose) study. SETTING Schools and communities. PATIENTS Children born at ≥35 weeks with ≥1 risk factor for neonatal hypoglycaemia: maternal diabetes, small or large for gestational age, or late preterm. INTERVENTIONS Four interventions commencing at 1 hour of age: dextrose gel (40%) 200 mg/kg; 400 mg/kg; 200 mg/kg and 200 mg/kg repeated before three feeds (800 mg/kg); 400 mg/kg and 200 mg/kg before three feeds (1000 mg/kg); compared with equivolume placebo (combined for analysis). MAIN OUTCOMES MEASURES Toolbox cognitive and motor batteries, as well as tests of motion perception, numeracy and cardiometabolic health, were used. The primary outcome was neurocognitive impairment, defined as a standard score of more than 1 SD below the age-corrected mean on one or more Toolbox tests. FINDINGS Of 392 eligible children, 309 were assessed for the primary outcome. There were no significant differences in the rate of neurocognitive impairment between those randomised to placebo (56%) and dextrose gel (200 mg/kg 46%: adjusted risk difference (aRD)=-14%, 95% CI -35%, 7%; 400 mg/kg 48%: aRD=-7%, 95% CI -27%, 12%; 800 mg/kg 45%: aRD=-14%, 95% CI -36%, 9%; 1000 mg/kg 50%: aRD=-8%, 95% CI -29%, 13%). Children exposed to any dose of dextrose gel (combined), compared with placebo, had a lower risk of motor impairment (3% vs 14%, aRD=-11%, 95% CI -19%, -3%) and higher mean (SD) cognitive scores (106.0 (15.3) vs 101.1 (15.7), adjusted mean difference=5.4, 95% CI 1.8, 8.9). CONCLUSIONS Prophylactic neonatal dextrose gel did not alter neurocognitive impairment at early school age but may have motor and cognitive benefits. Further school-age follow-up studies are needed.
Collapse
Affiliation(s)
- Xingyu Wei
- Liggins Institute, The University of Auckland, Auckland, New Zealand, Auckland, New Zealand
| | - Nike Franke
- Liggins Institute, The University of Auckland, Auckland, New Zealand, Auckland, New Zealand
| | - Jane M Alsweiler
- Paediatrics: Child and Youth Health, The University of Auckland Faculty of Medical and Health Sciences, Auckland, New Zealand
| | - Gavin T L Brown
- Learning, Development and Professional Practice, The University of Auckland, Auckland, New Zealand
| | - Gregory D Gamble
- Liggins Institute, The University of Auckland, Auckland, New Zealand, Auckland, New Zealand
| | - Alicia McNeill
- Liggins Institute, The University of Auckland, Auckland, New Zealand, Auckland, New Zealand
| | - Jenny Rogers
- Liggins Institute, The University of Auckland, Auckland, New Zealand, Auckland, New Zealand
| | - Benjamin Thompson
- Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
- Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - Jason Turuwhenua
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Trecia A Wouldes
- Department of Psychological Medicine, The University of Auckland, Auckland, New Zealand
| | - Jane E Harding
- Liggins Institute, The University of Auckland, Auckland, New Zealand, Auckland, New Zealand
| | - Christopher J D McKinlay
- Paediatrics: Child and Youth Health, The University of Auckland Faculty of Medical and Health Sciences, Auckland, New Zealand
| |
Collapse
|
8
|
Matuska E, Carney A, Sepeta LN, Zelleke T, Pasupuleti A, Berl MM. Clinical Validation of Selected NIH Cognitive Toolbox Tasks in Pediatric Epilepsy. Epilepsy Behav 2024; 153:109684. [PMID: 38401414 DOI: 10.1016/j.yebeh.2024.109684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/26/2024]
Abstract
The NIH Toolbox Cognition Battery (NIHTB-CB) is designed to assess cognitive functioning across the lifespan. We aimed to evaluate the clinical validity of two NIHTB-CB tasks as cognitive screening tools in pediatric epilepsy by comparing them to standard neuropsychological measures and their association with epilepsy characteristics. Forty-seven patients with epilepsy ages 5-18, including ten repeat evaluations, were assessed. Correlational analyses and agreement statistics were conducted to validate NIHTB-CB tasks (Flanker Inhibitory Control and Attention test (Flanker) and Pattern Comparison Processing Speed test (Pattern Comparison)) with standard clinical measures. We also examined if performance was related to epilepsy characteristics, including polytherapy, age of seizure onset, seizure type, and history of Electrical Status Epilepticus in Sleep (ESES). The NIHTB-CB tests had moderate to strong correlations with neuropsychological measures of executive functioning, processing speed, and intelligence. Agreement statistics indicated better sensitivity than specificity. Polytherapy and later age of seizure onset were associated with lower performance on Pattern Comparison. ESES patients did not significantly differ in performance on the tests compared to non-ESES patients. Pilot data from a subset of repeated measures indicated a good range of change scores. These two NIHTB tasks are feasible as a screening tool in a clinic given their correlation with clinical measures that assess executive function, processing speed, and IQ. This study supports the use of these tasks as brief, easily accessible screener tools to identify cognitive dysfunction in domains commonly impacted in patients with epilepsy and potential use for monitoring over time.
Collapse
Affiliation(s)
| | | | - Leigh N Sepeta
- Children's National Hospital, United States; National Institutes of Health, United States.
| | | | | | - Madison M Berl
- Children's National Hospital, United States; George Washington University, United States.
| |
Collapse
|
9
|
Bignardi G, Mareva S, Astle DE. Parental socioeconomic status weakly predicts specific cognitive and academic skills beyond general cognitive ability. Dev Sci 2024; 27:e13451. [PMID: 37853931 DOI: 10.1111/desc.13451] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/21/2023] [Accepted: 09/01/2023] [Indexed: 10/20/2023]
Abstract
Parental socioeconomic status (SES) is a well-established predictor of children's neurocognitive development. Several theories propose that specific cognitive skills are particularly vulnerable. However, this can be challenging to test, because cognitive assessments are not pure measures of distinct neurocognitive processes, and scores across different tests are often highly correlated. Aside from one previous study by Tucker-Drob, little research has tested if associations between SES and cognition are explained by differences in general cognitive ability rather than specific cognitive skills. Using structural equation modelling (SEM), we tested if parental SES is associated with individual cognitive test scores after controlling for latent general cognitive ability. Data from three large-scale cohorts totalling over 16,360 participants from the UK and USA (ages 6-19) were used. Associations between SES and cognitive test scores are mainly (but not entirely) explained through general cognitive ability. Socioeconomic advantage was associated with particularly strong vocabulary performance, unexplained by general ability. When controlling for general cognitive ability, socioeconomic disadvantage was associated with better executive functions. Better characterizing relationships between cognition and adversity is a crucial first step toward designing interventions to narrow socioeconomic gaps. RESEARCH HIGHLIGHTS: Understanding environmental influences on cognitive development is a crucial goal for developmental science-parental socioeconomic status (SES) is one of the strongest predictors. Several theories have proposed that specific cognitive skills, such as language or certain executive functions, are particularly susceptible to socioeconomic adversity. Using structural equation modelling, we tested whether SES predicts specific cognitive and academic tests after controlling for latent general cognitive ability across three large-scale cohorts. SES moderately predicted latent general cognitive ability, but associations with specific cognitive skills were mainly small, with a few exceptions.
Collapse
Affiliation(s)
- Giacomo Bignardi
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Silvana Mareva
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Duncan E Astle
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Wallace J, Ceschin R, Lee VK, Beluk NH, Burns C, Beers S, Lo C, Panigrahy A, Badaly D. Psychometric properties of the NIH Toolbox Cognition and Emotion Batteries among children and adolescents with congenital heart defects. Child Neuropsychol 2024:1-20. [PMID: 38247350 PMCID: PMC11260899 DOI: 10.1080/09297049.2024.2302690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/26/2023] [Indexed: 01/23/2024]
Abstract
The NIH Toolbox offers brief, computerized measures of cognitive and psychosocial functioning. However, its psychometric properties were established among typically developing children and adolescents. The current study provides the first comprehensive assessment of its psychometric properties among young patients with congenital heart defects (CHD). We prospectively recruited 58 patients with CHD and 80 healthy controls between the ages of 6 and 17. Participants completed the NIH Toolbox Cognition and Emotion Batteries, a battery of clinician-administered neuropsychological tests, and ratings of their quality of life. Their parents also completed ratings of their functioning. On the Cognition Battery, we found expectable group differences and developmentally expected gains across ages. For the most part, composites and subtests were significantly correlated with neuropsychological measures of similar constructs. Higher scores were generally associated with ratings of better day-to-day functioning among children with CHD. On the Emotion Battery, we found no significant group differences, echoing prior research. For the most part, scales showed acceptable internal consistency among both groups. There was adequate construct coherence for most of questionnaires among healthy control but not participants with CHD. Correlations with a comparison tool were largely within expectable directions. The NIH Toolbox may provide a valid and useful assessment of cognitive functioning among youths with CHD. While it may offer reliable and valid scales of psychosocial functioning, further research is needed to understand the meaningfulness of the scales for participants with CHD.
Collapse
Affiliation(s)
- Julia Wallace
- Department of Radiology, University of Pittsburgh School of Medicine
| | - Rafael Ceschin
- Department of Radiology, University of Pittsburgh School of Medicine
- Department of Biomedical Informatics, University of Pittsburgh
| | - Vince K. Lee
- Department of Radiology, University of Pittsburgh School of Medicine
- Department of Bioengineering, University of Pittsburgh School of Medicine
| | - Nancy H. Beluk
- Department of Radiology, University of Pittsburgh School of Medicine
| | - Cheryl Burns
- Department of Psychiatry, University of Pittsburgh Medical Center
| | - Sue Beers
- Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Cecilia Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine
| | - Ashok Panigrahy
- Department of Radiology, University of Pittsburgh School of Medicine
- Department of Biomedical Informatics, University of Pittsburgh
| | | |
Collapse
|
11
|
Schachar RJ. Fifty years of executive control research in attention-deficit/hyperactivity disorder:What we have learned and still need to know. Neurosci Biobehav Rev 2023; 155:105461. [PMID: 37949153 DOI: 10.1016/j.neubiorev.2023.105461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
For 50 years, attention-deficit/hyperactivity disorder (ADHD) has been considered a disorder of executive control (EC), the higher-order, cognitive skills that support self-regulation, goal attainment and what we generally call "attention." This review surveys our current understanding of the nature of EC as it pertains to ADHD and considers the evidence in support of eight hypotheses that can be derived from the EC theory of ADHD. This paper provides a resource for practitioners to aid in clinical decision-making. To support theory building, I draw a parallel between the EC theory of ADHD and the common gene-common variant model of complex traits such as ADHD. The conclusion offers strategies for advancing collaborative research.
Collapse
Affiliation(s)
- Russell J Schachar
- Department of Psychiatry, The Hospital for Sick Children and University of Toronto, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G1X8, Canada.
| |
Collapse
|
12
|
McHenry MS, Roose A, Abuonji E, Nyalumbe M, Ayuku D, Ayodo G, Tran TM, Kaat AJ. A psychometric evaluation of the NIH Toolbox fluid cognition tests adapted for Swahili and Dholuo languages in Kenyan children and adolescents. J Int Neuropsychol Soc 2023; 29:933-942. [PMID: 37989561 PMCID: PMC10669767 DOI: 10.1017/s1355617723000632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
OBJECTIVE Our objective was to evaluate the psychometric properties of the culturally adapted NIH Toolbox African Languages® when used in Swahili and Dholuo-speaking children in western Kenya. METHOD Swahili-speaking participants were recruited from Eldoret and Dholuo-speaking participants from Ajigo; all were <14 years of age and enrolled in primary school. Participants completed a demographics questionnaire and five fluid cognition tests of the NIH Toolbox® African Languages program, including Flanker, Dimensional Change Card Sort (DCCS), Picture Sequence Memory, Pattern Comparison, and List Sorting tests. Statistical analyses examined aspects of reliability, including internal consistency (in both languages) and test-retest reliability (in Dholuo only). RESULTS Participants included 479 children (n = 239, Swahili-speaking; n = 240, Dholuo-speaking). Generally, the tests had acceptable psychometric properties for research use within Swahili- and Dholuo-speaking populations (mean age = 10.5; SD = 2.3). Issues related to shape identification and accuracy over speed limited the utility of DCCS for many participants, with approximately 25% of children unable to match based on shape. These cultural differences affected outcomes of reliability testing among the Dholuo-speaking cohort, where accuracy improved across all five tests, including speed. CONCLUSIONS There is preliminary evidence that the NIH Toolbox ® African Languages potentially offers a valid assessment of development and performance using tests of fluid cognition in Swahili and Dholuo among research settings. With piloting underway across other diverse settings, future research should gather additional evidence on the clinical utility and acceptability of these tests, specifically through the establishment of norming data among Kenyan regions and evaluating these psychometric properties.
Collapse
Affiliation(s)
- Megan S. McHenry
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Academic Model Providing Access to Health (AMPATH), Eldoret, Kenya
| | - Anna Roose
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Emily Abuonji
- Academic Model Providing Access to Health (AMPATH), Eldoret, Kenya
| | - Mark Nyalumbe
- College of Health Sciences, Moi University, Eldoret, Kenya
| | - David Ayuku
- College of Health Sciences, Moi University, Eldoret, Kenya
| | - George Ayodo
- Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Tuan M. Tran
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | |
Collapse
|
13
|
Kulisch LK, Arumäe K, Briley DA, Vainik U. Triangulating causality between childhood obesity and neurobehavior: Behavioral genetic and longitudinal evidence. Dev Sci 2023; 26:e13392. [PMID: 36950909 DOI: 10.1111/desc.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/24/2023]
Abstract
Childhood obesity is a serious health concern that is not yet fully understood. Previous research has linked obesity with neurobehavioral factors such as behavior, cognition, and brain morphology. The causal directions of these relationships remain mostly untested. We filled this gap by using the Adolescent Brain Cognitive Development study cohort comprising 11,875 children aged 9-10. First, correlations between the age- and sex-specific 95th BMI percentile (%BMIp95) and neurobehavioral measures were cross-sectionally analyzed. Effects were then aggregated by neurobehavioral domain for causal analyses. Behavioral genetic Direction of Causation modeling was used to test the direction of each relationship. Findings were validated by longitudinal cross-lagged panel modeling. %BMIp95 correlated with impulsivity, motivation, psychopathology, eating behavior, and cognitive tests (executive functioning, language, memory, perception, working memory). Greater %BMIp95 was also associated with reduced cortical thickness in frontal and temporal brain areas but with increased thickness in parietal and occipital areas. Similar although weaker patterns emerged for cortical surface area and volume. Behavioral genetic modeling suggested causal effects of %BMIp95 on eating behavior (β = 0.26), cognition (β = 0.05), cortical thickness (β = 0.15), and cortical surface area (β = 0.07). Personality/psychopathology (β = 0.09) and eating behavior (β = 0.16) appeared to influence %BMIp95. Longitudinal evidence broadly supported these findings. Results regarding cortical volume were inconsistent. Results supported causal effects of obesity on brain functioning and morphology. The present study highlights the importance of physical health for brain development and may inform interventions aimed at preventing or reducing pediatric obesity. RESEARCH HIGHLIGHTS: A continuous measure related to obesity, %BMIp95, has correlations with various measures of brain functioning and structure Behavioral genetic and longitudinal modeling suggest causal links from personality, psychopathology, and eating behavior to %BMIp95 Results also indicate directional links from %BMIp95 to eating behavior, cognition, cortical thickness, and cortical surface area Obesity may play a role for healthy brain development during childhood.
Collapse
Affiliation(s)
- Leonard Konstantin Kulisch
- Institute of Psychology, University of Tartu, Tartu, Estonia
- Wilhem Wundt Institute for Pschology, Leipzig University, Leipzig, Germany
| | - Kadri Arumäe
- Institute of Psychology, University of Tartu, Tartu, Estonia
| | - Daniel A Briley
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Uku Vainik
- Institute of Psychology, University of Tartu, Tartu, Estonia
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Son JJ, Arif Y, Schantell M, Willett MP, Johnson HJ, Okelberry HJ, Embury CM, Wilson TW. Oscillatory dynamics serving visual selective attention during a Simon task. Brain Commun 2023; 5:fcad131. [PMID: 37151223 PMCID: PMC10162684 DOI: 10.1093/braincomms/fcad131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/08/2023] [Accepted: 04/19/2023] [Indexed: 05/09/2023] Open
Abstract
Selective attention is an important component of cognitive control and is essential for day-to-day functioning. The Simon task is a common test of visual selective attention that has been widely used to probe response selection, inhibition and cognitive control. However, to date, there is a dearth of literature that has focused on the oscillatory dynamics serving task performance in the selective attention component of this task. In this study, 32 healthy adults (mean age: 33.09 years, SD: 7.27 years) successfully completed a modified version of the Simon task during magnetoencephalography. All magnetoencephalographic data were pre-processed and transformed into the time-frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach, and peak task-related neural activity was extracted to examine the temporal dynamics. Across both congruent and Simon conditions, our results indicated robust decreases in alpha (8-12 Hz) activity in the bilateral occipital regions and cuneus during task performance, while increases in theta (3-6 Hz) oscillatory activity were detected in regions of the dorsal frontoparietal attention network, including the dorsolateral prefrontal cortex, frontal eye fields and insula. Lastly, whole-brain condition-wise analyses showed Simon interference effects in the theta range in the superior parietal region and the alpha range in the posterior cingulate and inferior frontal cortices. These findings provide network-specific insights into the oscillatory dynamics serving visual selective attention.
Collapse
Affiliation(s)
- Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Interdisciplinary Graduate Program in Biomedical Sciences (IGPBS), College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Interdisciplinary Graduate Program in Biomedical Sciences (IGPBS), College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Interdisciplinary Graduate Program in Biomedical Sciences (IGPBS), College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
15
|
Wallace J, Ceschin R, Lee VK, Beluk NH, Burns C, Beers S, Lo C, Panigrahy A, Badaly D. Psychometric Properties of the NIH Toolbox Cognition and Emotion Batteries Among Children and Adolescents with Congenital Heart Defects. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.11.23285800. [PMID: 36824875 PMCID: PMC9949204 DOI: 10.1101/2023.02.11.23285800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Objective The NIH Toolbox offers brief, computerized measures of cognitive and psychosocial functioning. However, its psychometric properties were established among typically developing children and adolescents. The current study provides the first comprehensive assessment of its psychometric properties among young patients with congenital heart defects (CHD). Study Design We prospectively recruited 58 patients with CHD and 80 healthy controls between the ages of 6 and 17. Participants completed the NIH Toolbox Cognition and Emotion Batteries, a battery of clinician-administered neuropsychological tests, and ratings of their quality of life. Their parents also completed ratings of their functioning. Results On the Cognition Battery, we found expectable group differences and developmentally expected gains across ages. For the most part, composites and subtests were significantly correlated with neuropsychological measures of similar constructs. Higher scores were generally associated with ratings of better day-to-day functioning among children with CHD. On the Emotion Battery, we found no significant group differences, echoing prior research. For the most part, scales showed acceptable internal consistency among both groups. There was adequate construct coherence for most of questionnaires among healthy control but not participants with CHD. Correlations with a comparison tool were largely within expectable directions. Conclusion The NIH Toolbox may provide a valid and useful assessment of cognitive functioning among children and adolescents with CHD. While it may offer reliable and valid scales of psychosocial functioning, further research is needed to understand the meaningfulness of the scales for participants with CHD.
Collapse
Affiliation(s)
- Julia Wallace
- Department of Radiology, University of Pittsburgh School of Medicine
| | - Rafael Ceschin
- Department of Radiology, University of Pittsburgh School of Medicine
- Department of Biomedical Informatics, University of Pittsburgh
| | - Vince K. Lee
- Department of Radiology, University of Pittsburgh School of Medicine
- Department of Bioengineering, University of Pittsburgh School of Medicine
| | - Nancy H. Beluk
- Department of Radiology, University of Pittsburgh School of Medicine
| | - Cheryl Burns
- Department of Psychiatry, University of Pittsburgh Medical Center
| | - Sue Beers
- Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Cecilia Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine
| | - Ashok Panigrahy
- Department of Radiology, University of Pittsburgh School of Medicine
- Department of Biomedical Informatics, University of Pittsburgh
| | | |
Collapse
|
16
|
Hall PA, Best JR, Beaton EA, Sakib MN, Danckert J. Morphology of the prefrontal cortex predicts body composition in early adolescence: cognitive mediators and environmental moderators in the ABCD Study. Soc Cogn Affect Neurosci 2023; 18:nsab104. [PMID: 34471927 PMCID: PMC11305164 DOI: 10.1093/scan/nsab104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 11/14/2022] Open
Abstract
Morphological features of the lateral prefrontal cortex (PFC) in late childhood and early adolescence may provide important clues as to the developmental etiology of clinical conditions such as obesity. Body composition measurements and structural brain imaging were performed on 11 226 youth at baseline (age 9 or 10 years) and follow-up (age 11 or 12 years). Baseline morphological features of the lateral PFC were examined as predictors of body composition. Findings revealed reliable associations between middle frontal gyrus volume, thickness and surface area and multiple indices of body composition. These findings were consistent across both time points and remained significant after covariate adjustment. Cortical thicknesses of the inferior frontal gyrus and lateral orbitofrontal cortex were also reliable predictors. Morphology effects on body composition were mediated by performance on a non-verbal reasoning task. Modest but reliable moderation effects were observed with respect to environmental self-regulatory demand after controlling for sex, race/ethnicity, income and methodological variables. Overall findings suggest that PFC morphology is a reliable predictor of body composition in early adolescence, as mediated through select cognitive functions and partially moderated by environmental characteristics.
Collapse
Affiliation(s)
- Peter A Hall
- School of Public Health Sciences, University of
Waterloo, Waterloo, ON N2L 3G1, Canada
| | - John R Best
- Gerontology Research Centre, Simon Fraser
University, Burnaby, BC V6B 5K3, Canada
| | - Elliott A Beaton
- Department of Psychology, University of New
Orleans, New Orleans, LA 70148, USA
| | - Mohammad N Sakib
- School of Public Health Sciences, University of
Waterloo, Waterloo, ON N2L 3G1, Canada
| | - James Danckert
- Department of Psychology, University of
Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
17
|
Maes HHM, Lapato DM, Schmitt JE, Luciana M, Banich MT, Bjork JM, Hewitt JK, Madden PA, Heath AC, Barch DM, Thompson WK, Iacono WG, Neale MC. Genetic and Environmental Variation in Continuous Phenotypes in the ABCD Study®. Behav Genet 2023; 53:1-24. [PMID: 36357558 PMCID: PMC9823057 DOI: 10.1007/s10519-022-10123-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 10/11/2022] [Indexed: 11/12/2022]
Abstract
Twin studies yield valuable insights into the sources of variation, covariation and causation in human traits. The ABCD Study® (abcdstudy.org) was designed to take advantage of four universities known for their twin research, neuroimaging, population-based sampling, and expertise in genetic epidemiology so that representative twin studies could be performed. In this paper we use the twin data to: (i) provide initial estimates of heritability for the wide range of phenotypes assessed in the ABCD Study using a consistent direct variance estimation approach, assuring that both data and methodology are sound; and (ii) provide an online resource for researchers that can serve as a reference point for future behavior genetic studies of this publicly available dataset. Data were analyzed from 772 pairs of twins aged 9-10 years at study inception, with zygosity determined using genotypic data, recruited and assessed at four twin hub sites. The online tool provides twin correlations and both standardized and unstandardized estimates of additive genetic, and environmental variation for 14,500 continuously distributed phenotypic features, including: structural and functional neuroimaging, neurocognition, personality, psychopathology, substance use propensity, physical, and environmental trait variables. The estimates were obtained using an unconstrained variance approach, so they can be incorporated directly into meta-analyses without upwardly biasing aggregate estimates. The results indicated broad consistency with prior literature where available and provided novel estimates for phenotypes without prior twin studies or those assessed at different ages. Effects of site, self-identified race/ethnicity, age and sex were statistically controlled. Results from genetic modeling of all 53,172 continuous variables, including 38,672 functional MRI variables, will be accessible via the user-friendly open-access web interface we have established, and will be updated as new data are released from the ABCD Study. This paper provides an overview of the initial results from the twin study embedded within the ABCD Study, an introduction to the primary research domains in the ABCD study and twin methodology, and an evaluation of the initial findings with a focus on data quality and suitability for future behavior genetic studies using the ABCD dataset. The broad introductory material is provided in recognition of the multidisciplinary appeal of the ABCD Study. While this paper focuses on univariate analyses, we emphasize the opportunities for multivariate, developmental and causal analyses, as well as those evaluating heterogeneity by key moderators such as sex, demographic factors and genetic background.
Collapse
Affiliation(s)
- Hermine H M Maes
- Department of Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, PO Box 980033, Richmond, VA, 23298-0033, USA.
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| | - Dana M Lapato
- Department of Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, PO Box 980033, Richmond, VA, 23298-0033, USA
| | - J Eric Schmitt
- Departments of Radiology and Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Monica Luciana
- Department of Psychology, University of Minnesota, Minneapolis, USA
| | - Marie T Banich
- Department of Psychology and Neuroscience, University of Colorado, Boulder, USA
- Institute of Cognitive Science, University of Colorado, Boulder, USA
| | - James M Bjork
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - John K Hewitt
- Institute of Cognitive Science, University of Colorado, Boulder, USA
- Institute for Behavioral Genetics, University of Colorado, Boulder, USA
| | - Pamela A Madden
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Andrew C Heath
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Wes K Thompson
- Division of Biostatistics and Department of Radiology, Population Neuroscience and Genetics Lab, University of California at San Diego, La Jolla, CA, USA
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, USA
| | - Michael C Neale
- Department of Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, PO Box 980033, Richmond, VA, 23298-0033, USA
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
18
|
O'Connor PJ, Chen X, Coheley LM, Yu M, Laing EM, Oshri A, Marand A, Lance J, Kealey K, Lewis RD. The effects of 9 months of formulated whole-egg or milk powder food products as meal or snack replacements on executive function in preadolescents: A randomized, placebo-controlled trial. Am J Clin Nutr 2022; 116:1663-1671. [PMID: 36173384 DOI: 10.1093/ajcn/nqac281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/27/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Elevated brain choline is associated with better executive functions in preadolescents. Manipulating dietary choline prospectively in preadolescents using egg supplementation could improve executive functions via effects on brain cellular and neurotransmitter functions. OBJECTIVES We tested the 9-month impacts of egg supplementation on executive functions. It was hypothesized that preadolescents who consumed meal or snack replacement products containing powder made from whole eggs would have the largest improvements in executive functions after 9 months compared to those consuming similar products with either added milk powder or gelatin as a placebo. METHODS A randomized, parallel-group, double-blinded, placebo-controlled trial design was used. The executive functions of 122 preadolescents (58 females) aged 9-13 were analyzed before and after the 9-month intervention. The primary outcomes were 3 NIH Toolbox-Cognitive Battery measures of executive function: mental flexibility, working memory, and selective attention and inhibitory control. Participants were randomized to consume food products with either: 1) whole egg powder; 2) milk powder; or 3) gelatin as a placebo, all matched on macronutrient content and used as replacements for commonly consumed foods (i.e., waffles, pancakes, macaroni and cheese, ice cream, and brownies). Hypothesis testing used mixed-effects models that included physical activity and sleep scores as covariates. RESULTS A statistically significant group × time interaction for selective attention and inhibitory control was found (P = 0.049) for the milk group. This interaction resulted from no change for the placebo group and an improvement in selective attention and inhibitory control performance for the milk group by a T-score of 5.8; the effect size (d) was 0.44 SD units. Other comparisons were statistically insignificant. CONCLUSIONS Consumption of foods with added milk powder as a replacement for snacks or meals for 9 months improves selective attention and inhibitory control in preadolescents. Replacement of foods with added whole egg powder does not impact 9-month changes in preadolescent executive functions. This trial was registered at clinicaltrials.gov as NCT03739424.
Collapse
Affiliation(s)
| | - Xianyan Chen
- Department of Statistics, University of Georgia, Athens, GA, USA
| | - Lauren M Coheley
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Mengyun Yu
- Department of Statistics, University of Georgia, Athens, GA, USA
| | - Emma M Laing
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA
| | - Assaf Oshri
- Department of Human Development & Family Science, University of Georgia, Athens, GA, USA
| | - Alicia Marand
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA
| | - Julia Lance
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA
| | - Kirk Kealey
- Food Product Innovation & Commercialization Center, University of Georgia, Griffin, GA, USA
| | - Richard D Lewis
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA
| |
Collapse
|
19
|
Doucet GE, Hamlin N, Kruse JA, Taylor BK, Poirel N. Link between fluid/crystallized intelligence and global/local visual abilities across adulthood. Conscious Cogn 2022; 106:103429. [PMID: 36306570 PMCID: PMC10481540 DOI: 10.1016/j.concog.2022.103429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 01/27/2023]
Abstract
Human visual processing involves the extraction of both global and local information from a visual stimulus. Such processing may be related to cognitive abilities, which is likely going to change over time as we age. We aimed to investigate the impact of healthy aging on the association between visual global vs local processing and intelligence. In this context, we collected behavioral data during a visual search task in 103 adults (50 younger/53 older). We extracted three metrics reflecting global advantage (faster global than local processing), and visual interference in detecting either local or global features (based on interfering visual distractors). We found that older, but not younger, adults with higher levels of fluid and crystallized intelligence showed stronger signs of global advantage and interference effects during local processing, respectively. The present findings also provide promising clues regarding how participants consider and process their visual world in healthy aging.
Collapse
Affiliation(s)
- Gaelle E Doucet
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA; Creighton University School of Medicine, Omaha, NE, USA.
| | - Noah Hamlin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Jordanna A Kruse
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA; Creighton University School of Medicine, Omaha, NE, USA
| | - Nicolas Poirel
- Université Paris Cité, LaPsyDÉ, CNRS, F-75005 Paris, France; GIP Cyceron, Caen, France; Institut Universitaire de France, Paris, France
| |
Collapse
|
20
|
Meredith WJ, Cardenas-Iniguez C, Berman MG, Rosenberg MD. Effects of the physical and social environment on youth cognitive performance. Dev Psychobiol 2022; 64:e22258. [PMID: 35452534 DOI: 10.1002/dev.22258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/05/2021] [Accepted: 01/03/2022] [Indexed: 01/19/2023]
Abstract
Individual differences in children's cognitive abilities impact life and health outcomes. What factors influence these individual differences during development? Here, we test whether children's environments predict cognitive performance, independent of well-characterized socioeconomic effects. We analyzed data from 9002 9- to 10-year olds from the Adolescent Brain Cognitive Development Study, an ongoing longitudinal study with community samples across the United States. Using youth- and caregiver-report questionnaires and national database registries (e.g., neighborhood crime, walkability), we defined principal components summarizing children's home, school, neighborhood, and cultural environments. In two independent samples (ns = 3475, 5527), environmental components explained unique variance in children's general cognitive ability, executive functioning, and learning/memory abilities. Furthermore, increased neighborhood enrichment was associated with an attenuated relationship between sociodemographics and general cognitive abilities. Thus, the environment accounts for unique variance in cognitive performance in children and should be considered alongside sociodemographic factors to better understand brain functioning and behavior across development.
Collapse
Affiliation(s)
- Wesley J Meredith
- Department of Psychology, University of Chicago, Chicago, Illinois, USA.,Department of Psychology, University of California, Los Angeles, California, USA
| | | | - Marc G Berman
- Department of Psychology, University of Chicago, Chicago, Illinois, USA.,Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Monica D Rosenberg
- Department of Psychology, University of Chicago, Chicago, Illinois, USA.,Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
21
|
Using large, publicly available data sets to study adolescent development: opportunities and challenges. Curr Opin Psychol 2022; 44:303-308. [PMID: 34837769 DOI: 10.1016/j.copsyc.2021.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022]
Abstract
Adolescence is a period of rapid change, with cognitive, mental wellbeing, environmental biological factors interacting to shape lifelong outcomes. Large, longitudinal phenotypically rich data sets available for reuse (secondary data) have revolutionized the way we study adolescence, allowing the field to examine these unfolding processes across hundreds or even thousands of individuals. Here, we outline the opportunities and challenges associated with such secondary data sets, provide an overview of particularly valuable resources available to the field, and recommend best practices to improve the rigor and transparency of analyses conducted on large, secondary data sets.
Collapse
|
22
|
Anokhin AP, Luciana M, Banich M, Barch D, Bjork JM, Gonzalez MR, Gonzalez R, Haist F, Jacobus J, Lisdahl K, McGlade E, McCandliss B, Nagel B, Nixon SJ, Tapert S, Kennedy JT, Thompson W. Age-related changes and longitudinal stability of individual differences in ABCD Neurocognition measures. Dev Cogn Neurosci 2022; 54:101078. [PMID: 35123342 PMCID: PMC9019835 DOI: 10.1016/j.dcn.2022.101078] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/23/2021] [Accepted: 01/26/2022] [Indexed: 01/18/2023] Open
Abstract
Temporal stability of individual differences is an important prerequisite for accurate tracking of prospective relationships between neurocognition and real-world behavioral outcomes such as substance abuse and psychopathology. Here we report age-related changes and longitudinal test-retest stability (TRS) for the Neurocognition battery of the Adolescent Brain and Cognitive Development (ABCD) study, which included the NIH Toolbox (TB) Cognitive Domain and additional memory and visuospatial processing tests administered at baseline (ages 9-11) and two-year follow-up. As expected, performance improved significantly with age, but the effect size varied broadly, with Pattern Comparison and the Crystallized Cognition Composite showing the largest age-related gain (Cohen's d:.99 and.97, respectively). TRS ranged from fair (Flanker test: r = 0.44) to excellent (Crystallized Cognition Composite: r = 0.82). A comparison of longitudinal changes and cross-sectional age-related differences within baseline and follow-up assessments suggested that, for some measures, longitudinal changes may be confounded by practice effects and differences in task stimuli or procedure between baseline and follow-up. In conclusion, a subset of measures showed good stability of individual differences despite significant age-related changes, warranting their use as prospective predictors. However, caution is needed in the interpretation of observed longitudinal changes as indicators of neurocognitive development.
Collapse
|
23
|
Tooley UA, Bassett DS, Mackey AP. Functional brain network community structure in childhood: Unfinished territories and fuzzy boundaries. Neuroimage 2022; 247:118843. [PMID: 34952233 PMCID: PMC8920293 DOI: 10.1016/j.neuroimage.2021.118843] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/01/2021] [Accepted: 12/19/2021] [Indexed: 12/23/2022] Open
Abstract
Adult cortex is organized into distributed functional communities. Yet, little is known about community architecture of children's brains. Here, we uncovered the community structure of cortex in childhood using fMRI data from 670 children aged 9-11 years (48% female, replication sample n=544, 56% female) from the Adolescent Brain and Cognitive Development study. We first applied a data-driven community detection approach to cluster cortical regions into communities, then employed a generative model-based approach called the weighted stochastic block model to further probe community interactions. Children showed similar community structure to adults, as defined by Yeo and colleagues in 2011, in early-developing sensory and motor communities, but differences emerged in transmodal areas. Children have more cortical territory in the limbic community, which is involved in emotion processing, than adults. Regions in association cortex interact more flexibly across communities, creating uncertainty for the model-based assignment algorithm, and perhaps reflecting cortical boundaries that are not yet solidified. Uncertainty was highest for cingulo-opercular areas involved in flexible deployment of cognitive control. Activation and deactivation patterns during a working memory task showed that both the data-driven approach and a set of adult communities statistically capture functional organization in middle childhood. Collectively, our findings suggest that community boundaries are not solidified by middle childhood.
Collapse
Affiliation(s)
- Ursula A Tooley
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, Pennsylvania, US; Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, 19104, Pennsylvania, US
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, 19104, Pennsylvania, US; Department of Electrical & Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, 19104, Pennsylvania, US; Department of Physics & Astronomy, School of Arts and Sciences, University of Pennsylvania, Philadelphia, 19104, Pennsylvania,USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, Pennsylvania, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, Pennsylvania, USA; Santa Fe Institute, Santa Fe, 87501, New Mexico, USA
| | - Allyson P Mackey
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, 19104, Pennsylvania, US.
| |
Collapse
|
24
|
Petley L, Hunter LL, Zadeh LM, Stewart HJ, Sloat NT, Perdew A, Lin L, Moore DR. Listening Difficulties in Children With Normal Audiograms: Relation to Hearing and Cognition. Ear Hear 2021; 42:1640-1655. [PMID: 34261857 PMCID: PMC8545703 DOI: 10.1097/aud.0000000000001076] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Children presenting at audiology services with caregiver-reported listening difficulties often have normal audiograms. The appropriate approach for the further assessment and clinical management of these children is currently unclear. In this Sensitive Indicators of Childhood Listening Difficulties (SICLiD) study, we assessed listening ability using a reliable and validated caregiver questionnaire (the Evaluation of Children's Listening and Processing Skills [ECLiPS]) in a large (n = 146) and heterogeneous sample of 6- to 13-year-old children with normal audiograms. Scores on the ECLiPS were related to a multifaceted laboratory assessment of the children's audiological, psycho- and physiological-acoustic, and cognitive abilities. This report is an overview of the SICLiD study and focuses on the children's behavioral performance. The overall goals of SICLiD were to understand the auditory and other neural mechanisms underlying childhood listening difficulties and translate that understanding into clinical assessment and, ultimately, intervention. DESIGN Cross-sectional behavioral assessment of children with "listening difficulties" and an age-matched "typically developing" control group. Caregivers completed the ECLiPS, and the resulting total standardized composite score formed the basis of further descriptive statistics, univariate, and multivariate modeling of experimental data. RESULTS All scores of the ECLiPS, the SCAN-3:C, a standardized clinical test suite for auditory processing, and the National Institutes of Health (NIH) Cognition Toolbox were significantly lower for children with listening difficulties than for their typically developing peers using group comparisons via t-tests and Wilcoxon Rank-Sum tests. A similar effect was observed on the Listening in Spatialized Noise-Sentences (LiSN-S) test for speech sentence-in-noise intelligibility but only reached significance for the Low Cue and High Cue conditions and the Talker Advantage derived score. Stepwise regression to examine the factors contributing to the ECLiPS Total scaled score (pooled across groups) yielded a model that explained 42% of its variance based on the SCAN-3:C composite, LiSN-S Talker Advantage, and the NIH Toolbox Picture Vocabulary, and Dimensional Change Card Sorting scores (F[4, 95] = 17.35, p < 0.001). High correlations were observed between many test scores including the ECLiPS, SCAN-3:C, and NIH Toolbox composite measures. LiSN-S Advantage measures generally correlated weakly and nonsignificantly with non-LiSN-S measures. However, a significant interaction was found between extended high-frequency threshold and LiSN-S Talker Advantage. CONCLUSIONS Children with listening difficulties but normal audiograms have problems with the cognitive processing of auditory and nonauditory stimuli that include both fluid and crystallized reasoning. Analysis of poor performance on the LiSN-S Talker Advantage measure identified subclinical hearing loss as a minor contributing factor to talker segregation. Beyond auditory tests, evaluations of children with complaints of listening difficulties should include standardized caregiver observations and consideration of broad cognitive abilities.
Collapse
Affiliation(s)
- Lauren Petley
- Communication Sciences Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychology, Clarkson University, Potsdam, NY, USA
| | - Lisa L. Hunter
- Communication Sciences Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Lina Motlagh Zadeh
- Communication Sciences Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Hannah J. Stewart
- Communication Sciences Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Nicholette T. Sloat
- Communication Sciences Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Audrey Perdew
- Communication Sciences Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Li Lin
- Communication Sciences Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - David R. Moore
- Communication Sciences Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Otolaryngology, College of Medicine, University of Cincinnati
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, UK
| |
Collapse
|
25
|
Tomasi D, Volkow ND. Associations of family income with cognition and brain structure in USA children: prevention implications. Mol Psychiatry 2021; 26:6619-6629. [PMID: 33990770 PMCID: PMC8590701 DOI: 10.1038/s41380-021-01130-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
Poverty, as assessed by several socioeconomic (SES) factors, has been linked to worse cognitive performance and reduced cortical brain volumes in children. However, the relative contributions of the various SES factors on brain development and the mediating effects between cognition and brain morphometry have not been investigated. Here we used cross-sectional data from the ABCD Study to evaluate associations among various SES and demographic factors, brain morphometrics, and cognition and their reproducibility in two independent subsamples of 3892 children. Among the SES factors, family income (FI) best explained individual differences in cognitive test scores (stronger for crystallized than for fluid cognition), cortical volume (CV), and thickness (CT). Other SES factors that showed significant associations with cognition and brain morphometrics included parental education and neighborhood deprivation, but when controlling for FI, their effect sizes were negligible and their regional brain patterns were not reproducible. Mediation analyses showed that cognitive scores, which we used as surrogate markers of the children's level of cognitive stimulation, partially mediated the association of FI and CT, whereas the mediations of brain morphometrics on the association of FI and cognition were not significant. These results suggest that lack of supportive/educational stimulation in children from low-income families might drive the reduced CV and CT. Thus, strategies to enhance parental supportive stimulation and the quality of education for children in low-income families could help counteract the negative effects of poverty on children's brain development.
Collapse
Affiliation(s)
- Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
- National Institute on Drug Abuse, Bethesda, MD, USA
| |
Collapse
|
26
|
Taylor BK, Frenzel MR, Johnson HJ, Willett MP, White SF, Badura-Brack AS, Wilson TW. Increases in Stressors Prior to-Versus During the COVID-19 Pandemic in the United States Are Associated With Depression Among Middle-Aged Mothers. Front Psychol 2021; 12:706120. [PMID: 34305763 PMCID: PMC8292718 DOI: 10.3389/fpsyg.2021.706120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
Working parents in are struggling to balance the demands of their occupation with those of childcare and homeschooling during the COVID-19 pandemic. Moreover, studies show that women are shouldering more of the burden and reporting greater levels of psychological distress, anxiety, and depression relative to men. However, research has yet to show that increases in psychological symptoms are linked to changes in stress during the pandemic. Herein, we conduct a small-N study to explore the associations between stress and psychological symptoms during the pandemic among mothers using structural equation modeling, namely latent change score models. Thirty-three mothers completed questionnaires reporting current anxious and depressive symptoms (Beck Anxiety and Depression Index, respectively), as well as stressful life experiences prior to-versus during the pandemic (Social Readjustment Rating Scale). Women endorsed significantly more stressful events during the pandemic, relative to the pre-pandemic period. Additionally, 58% of mothers scored as moderate-to-high risk for developing a stress-related physical illness in the near future because of their pandemic-level stress. Depressive symptoms were associated with the degree of change in life stress, whereas anxiety symptoms were more related to pre-pandemic levels of stress. The present study preliminarily sheds light on the nuanced antecedents to mothers’ experiences of anxious and depressive symptoms during the COVID-19 pandemic. Although further work is needed in larger, more diverse samples of mothers, this study highlights the potential need for appropriate policies, and prevention and intervention programs to ameliorate the effects of pandemics on mothers’ mental health.
Collapse
Affiliation(s)
- Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Michaela R Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Stuart F White
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Amy S Badura-Brack
- Department of Psychological Science, Creighton University, Omaha, NE, United States
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| |
Collapse
|
27
|
Uchitel J, Wallace K, Tran L, Abrahamsen T, Hunanyan A, Prange L, Jasien J, Caligiuri L, Pratt M, Rikard B, Fons C, De Grandis E, Vezyroglou A, Heinzen EL, Goldstein DB, Vavassori R, Papadopoulou MT, Cocco I, Moré R, Arzimanoglou A, Panagiotakaki E, Mikati MA. Alternating hemiplegia of childhood: evolution over time and mouse model corroboration. Brain Commun 2021; 3:fcab128. [PMID: 34396101 PMCID: PMC8361420 DOI: 10.1093/braincomms/fcab128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/05/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022] Open
Abstract
Alternating hemiplegia of childhood is a rare neurodevelopmental disorder caused by ATP1A3 mutations. Some evidence for disease progression exists, but there are few systematic analyses. Here, we evaluate alternating hemiplegia of childhood progression in humans and in the D801N knock-in alternating hemiplegia of childhood mouse, Mashlool, model. This study performed an ambidirectional (prospective and retrospective data) analysis of an alternating hemiplegia of childhood patient cohort (n = 42, age 10.24 ± 1.48 years) seen at one US centre. To investigate potential disease progression, we used linear mixed effects models incorporating early and subsequent visits, and Wilcoxon Signed Rank test comparing first and last visits. Potential early-life clinical predictors were determined via multivariable regression. We also compared EEG background at first encounter and at last follow-up. We then performed a retrospective confirmation study on a multicentre cohort of alternating hemiplegia of childhood patients from France (n = 52). To investigate disease progression in the Mashlool mouse, we performed behavioural testing on a cohort of Mashlool- mice at prepubescent and adult ages (n = 11). Results: US patients, over time, demonstrated mild worsening of non-paroxysmal disability index scores, but not of paroxysmal disability index scores. Increasing age was a predictor of worse scores: P < 0.0001 for the non-paroxysmal disability index, intellectual disability scale and gross motor scores. Earliest non-paroxysmal disability index score was a predictor of last visit non-paroxysmal disability index score (P = 0.022), and earliest intellectual disability score was a predictor of last intellectual disability score (P = 0.035). More patients with EEG background slowing were noted at last follow-up as compared to initial (P = 0.015). Similar worsening of disease with age was also noted in the French cohort: age was a significant predictor of non-paroxysmal disability index score (P = 0.001) and first and last non-paroxysmal disability index score scores significantly differed (P = 0.002). In animal studies, adult Mashlool mice had, as compared to younger Mashlool mice, (i) worse balance beam performance; (ii) wider base of support; (iii) higher severity of seizures and resultant mortality; and (iv) no increased predisposition to hemiplegic or dystonic spells. In conclusion, (i) non-paroxysmal alternating hemiplegia of childhood manifestations show, on average over time, progression associated with severity of early-life non-paroxysmal disability and age. (ii) Progression also occurs in Mashlool mice, confirming that ATP1A3 disease can lead to age-related worsening. (iii) Clinical findings provide a basis for counselling patients and for designing therapeutic trials. Animal findings confirm a mouse model for investigation of underlying mechanisms of disease progression, and are also consistent with known mechanisms of ATP1A3-related neurodegeneration.
Collapse
Affiliation(s)
- Julie Uchitel
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Keri Wallace
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Linh Tran
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Tavis Abrahamsen
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - Arsen Hunanyan
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Lyndsey Prange
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Joan Jasien
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Laura Caligiuri
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Milton Pratt
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Blaire Rikard
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Carmen Fons
- Department of Child Neurology, Sant Joan de Déu Children’s Hospital, Member of the ERN EpiCARE, Barcelona 08950, Spain
| | - Elisa De Grandis
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa 16147, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa 16147, Italy
| | - Aikaterini Vezyroglou
- Department of Developmental Neurosciences, UCL NIHR BRC Great Ormond Street Institute of Child Health, London WC1N 3JH, UK
| | - Erin L Heinzen
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David B Goldstein
- Institute of Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Rosaria Vavassori
- Euro Mediterranean Institute of Science and Technology I.E.ME.ST, Palermo 90139, Italy
| | - Maria T Papadopoulou
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon 69500, France
| | - Isabella Cocco
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon 69500, France
| | - Rebecca Moré
- Department of Paediatric Neurology Outpatient Clinic/Neonatal Paediatrics and Intensive Care, University Hospital of Rouen, Rouen 76000, France
| | | | | | - Alexis Arzimanoglou
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon 69500, France
| | - Eleni Panagiotakaki
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon 69500, France
| | - Mohamad A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| |
Collapse
|
28
|
Baranger DAA, Lindenmuth M, Nance M, Guyer AE, Keenan K, Hipwell AE, Shaw DS, Forbes EE. The longitudinal stability of fMRI activation during reward processing in adolescents and young adults. Neuroimage 2021; 232:117872. [PMID: 33609668 PMCID: PMC8238413 DOI: 10.1016/j.neuroimage.2021.117872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The use of functional neuroimaging has been an extremely fruitful avenue for investigating the neural basis of human reward function. This approach has included identification of potential neurobiological mechanisms of psychiatric disease and examination of environmental, experiential, and biological factors that may contribute to disease risk via effects on the reward system. However, a central and largely unexamined assumption of much of this research is that neural reward function is an individual difference characteristic that is relatively stable and trait-like over time. METHODS In two independent samples of adolescents and young adults studied longitudinally (Ns = 145 & 139, 100% female and 100% male, ages 15-21 and 20-22, 2-4 scans and 2 scans respectively), we tested within-person stability of reward-task BOLD activation, with a median of 1 and 2 years between scans. We examined multiple commonly used contrasts of active states and baseline in both the anticipation and feedback phases of a card-guessing reward task. We examined the effects of cortical parcellation resolution, contrast, network (reward regions and resting-state networks), region-size, and activation strength and variability on the stability of reward-related activation. RESULTS In both samples, contrasts of an active state relative to a baseline were more stable (ICC: intra-class correlation; e.g., Win>Baseline; mean ICC = 0.13 - 0.33) than contrasts of two active states (e.g., Win>Loss; mean ICC = 0.048 - 0.05). Additionally, activation in reward regions was less stable than in many non-task networks (e.g., dorsal attention), and activation in regions with greater between-subject variability showed higher stability in both samples. CONCLUSIONS These results show that some contrasts from functional neuroimaging activation during a card guessing reward task have partially trait-like properties in adolescent and young adult samples over 1-2 years. Notably, results suggest that contrasts intended to map cognitive function and show robust group-level effects (i.e. Win > Loss) may be less effective in studies of individual differences and disease risk. The robustness of group-level activation should be weighed against other factors when selecting regions of interest in individual difference fMRI studies.
Collapse
Affiliation(s)
- David A A Baranger
- University of Pittsburgh School of Medicine, Department of Psychiatry, 121 Meyran Avenue, Pittsburgh, PA 15213, United States.
| | - Morgan Lindenmuth
- University of Pittsburgh School of Medicine, Department of Psychiatry, 121 Meyran Avenue, Pittsburgh, PA 15213, United States
| | - Melissa Nance
- University of Pittsburgh School of Medicine, Department of Psychiatry, 121 Meyran Avenue, Pittsburgh, PA 15213, United States
| | - Amanda E Guyer
- Center for Mind and Brain, University of California Davis, Davis, CA, United States; Department of Human Ecology, University of California Davis, Davis, CA, United States
| | - Kate Keenan
- University of Chicago, Department of Psychiatry and Behavioral Neuroscience, Chicago, IL, United States
| | - Alison E Hipwell
- University of Pittsburgh School of Medicine, Department of Psychiatry, 121 Meyran Avenue, Pittsburgh, PA 15213, United States
| | - Daniel S Shaw
- University of Pittsburgh, Department of Psychology, Pittsburgh, PA, United States
| | - Erika E Forbes
- University of Pittsburgh School of Medicine, Department of Psychiatry, 121 Meyran Avenue, Pittsburgh, PA 15213, United States; University of Pittsburgh, Department of Psychology, Pittsburgh, PA, United States
| |
Collapse
|
29
|
Advancing our understanding of cognitive development and motor vehicle crash risk: A multiverse representation analysis. Cortex 2021; 138:90-100. [PMID: 33677330 DOI: 10.1016/j.cortex.2021.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/27/2022]
Abstract
Neurobiological and cognitive maturational models are the dominant theoretical account of adolescents' risk-taking behavior. Both the protracted development of working memory (WM) through adolescence, as well as individual differences in WM capacity have been theorized to be related to risk-taking behavior, including reckless driving. In a cohort study of 84 adolescent drivers Walshe et al. (2019) found adolescents who crashed had an attenuated trajectory of WM growth compared to adolescent drivers who never reported being in a crash, but observed no difference in WM capacity at baseline. The objectives of this report were to attempt to replicate these associations and to evaluate their robustness using a hybrid multiverse - specification curve analysis approach, henceforth called multiverse representation analysis (MRA). The authors of the original report provided their data: 84 adolescent drivers with annual evaluations of WM and other risk factors from 2005 to 2013, and of driving experiences in 2015. The original analysis was implemented as described in the original report. An MRA approach was used to evaluate the robustness of the association between developmental trajectories of WM and adolescents' risk-taking (indexed by motor vehicle crash involvement) to different reasonable methodological choices. We enumerated 6 reasonable choice points in data processing-analysis configurations: (1) model type: latent growth or multi-level regression, (2) treatment of WM data; (3) which waves are included; (4) covariate treatment; (5) how time is coded; and (6) link function/estimation method: weighted least squares means and variance estimation (WLSMV) with a linear link versus logistic regression with maximum likelihood estimation. This multiverse consists of 96 latent growth models and 18 multi-level regression models.
Collapse
|