1
|
Wang R, Ren Y, Javad HU, Zhou Z, Jiang W, Shu X. Dietary Dihydromyricetin Zinc Chelate Supplementation Improves the Intestinal Health of Magang Geese. Biol Trace Elem Res 2024; 202:5219-5234. [PMID: 38263355 DOI: 10.1007/s12011-024-04065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
To fulfill the nutritional requirements of poultry, effective Zn supplementation is required due to Zn deficiency in basic feed. In this study, we investigated the effects of DMY-Zn (dihydromyricetin zinc chelate) on the growth performance, morphology, and biochemical indices; the expression of intestinal barrier-related genes; the intestinal microflora; and the cecum metabolome of Magang geese. A total of 300 14-day-old Magang geese (equal number of males and females) with an average body weight of 0.82 ± 0.08 kg were randomly divided into five groups and fed a basal diet; these groups were given DMY-Zn (low, medium, or high level of DMY-Zn with 30, 55, or 80 mg/kg Zn added to the basal diet) or ZnSO4 (80 mg/kg Zn added) for 4 weeks. Our results revealed that DMY-Zn significantly impacts growth and biochemical indices and plays a significant role in regulating the intestinal barrier and microflora. DMY-Zn is involved in the upregulation of intestinal barrier gene (ZO1 and MUC2) expression, as well as upregulated Zn-related gene expression (ZIP5). On the other hand, a low concentration of DMY-Zn increased the ɑ diversity index and the abundance of Lactobacillus and Faecalibacterium. Additionally, a cecal metabolomics study showed that the main metabolic pathways affected by DMY-Zn were the pentose phosphate pathway, the biosynthesis of different alkaloids, and the metabolism of sphingolipids. In conclusion, DMY-Zn can reduce feed intake, increase the expression of intestinal barrier-related genes, help maintain the intestinal microflora balance, and increase the abundance of beneficial bacteria in the intestine to improve intestinal immunity.
Collapse
Affiliation(s)
- Renkai Wang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yanli Ren
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hafiz Umer Javad
- College of Chemistry and Chemical Engineering, Zhongkai University of Agricultural Engineering, 24 East Sand Street, Guangzhou, 510225, China
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou, China
| | - Zhiqing Zhou
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Weiyin Jiang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xugang Shu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agricultural Engineering, 24 East Sand Street, Guangzhou, 510225, China.
| |
Collapse
|
2
|
Yang Y, Shu X, Javed HU, Wu Q, Liu H, Han J, Zhou H. Dietary supplementation of poly-dihydromyricetin-fused zinc nanoparticles alleviates fatty liver hemorrhagic syndrome by improving antioxidant capacity, intestinal health and lipid metabolism of laying hens. Poult Sci 2024; 103:104301. [PMID: 39306955 PMCID: PMC11447411 DOI: 10.1016/j.psj.2024.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 10/06/2024] Open
Abstract
Fatty liver hemorrhagic syndrome is the main cause of noninfectious death of laying hens and results in substantial economic losses to the poultry industry. This study focused on evaluating the effects of Poly-dihydromyricetin-fused zinc nanoparticles (PDMY-Zn NPs) on antioxidant capacity, liver lipid metabolism, and intestinal health in laying hens. A total of 288 Jingfen laying hens (52 wk old) with similar body weights were randomly divided into 4 dietary groups with 6 replicates in each group for 8 wk. The control group received a basal diet, while the treatment groups were supplemented with PDMY-Zn NPs at levels of 200, 400, and 600 mg/kg, respectively. The results indicate that PDMY-Zn NPs supplementation can enhance antioxidant parameters (P < 0.05) in the blood and liver of laying hens. Simultaneously, it can mitigate vacuolar degeneration and inflammatory necrosis in hepatocytes, improve the relative expression level of related parameters associated with liver lipid metabolism and key regulatory genes (P < 0.05). Furthermore, it has been observed to reshape the composition and diversity of cecum microbes by increasing beneficial probiotics such as Lactobacillus and Prevotella, while also enhancing villi height and villi/crypt ratio in the duodenum and ileum (P < 0.05). Additionally, it elevates liver bile acid content along with the relative expression of key genes involved in liver synthesis (P < 0.05). In summary, PDMY-Zn NPs showed potential to alleviate fatty liver hemorrhagic syndrome by enhancing antioxidant capacity, regulating liver lipid metabolism, and maintaining intestinal health.
Collapse
Affiliation(s)
- Yuanting Yang
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Xugang Shu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agricultural Engineering, Guangzhou 510225, China
| | - Hafiz Umer Javed
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Qun Wu
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Hu Liu
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Jiancheng Han
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Hanlin Zhou
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China.
| |
Collapse
|
3
|
Mahato A, Chatterjee PN, Sarkar S, Sen AR, Pal A, Roy S, Patra AK. Effects of Chemically and Green Synthesized Zinc Oxide Nanoparticles on Shelf Life and Sensory Quality of Minced Fish ( Pangasius hypophthalmus). Foods 2024; 13:2810. [PMID: 39272575 PMCID: PMC11394675 DOI: 10.3390/foods13172810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
The purpose of this study was to investigate the effect of chemically and green synthesized zinc oxide nanoparticles (ZnO-NPs) on the shelf life and sensory quality of fish meat. In this study, ZnO-NPs were synthesized by employing the colloidal chemistry (CZnO-NPs) and green synthesis (GZnO-NPs) methods, and they were also characterized to assess their morphology. The synthesized ZnO-NPs, ZnO, and zinc acetate (ZnA) were used for the preservation and fortification of fish (Pangasius hypophthalmus) meat at 20 mg/kg of Zn. In a six-day storage study at 4 °C, the fish samples were evaluated for their sensory attributes (color and odor), physicochemical quality (pH and total volatile base nitrogen), oxidative changes (thiobarbituric acid-reactive substances and peroxide value), and microbial loads at 0, 3, and 6 days of storage. The fortification of raw fish with the synthesized CZnO-NPs produced better sensory attributes (color and odor) and maintained a pH non-conducive to microbial growth throughout the entire storage period compared with the control, ZnO, and ZnA-fortified samples. The GZnO-NPs largely did not provide any added advantage over CZnO-NPs but sometimes responded better than the control, ZnO, and ZnA samples. Oxidative status and total volatile base nitrogen were lower for CZnO-NPs in refrigerated fish compared with the other treatments. The ZnO-NP-fortified fish had the lowest counts of total viable bacteria, coliforms, Staphylococcus spp., and Vibrio spp. Hence, the fortification of fish with synthesized CZnO-NPs is promising as a food additive to reduce microbial spoilage and lipid peroxidation of fish in storage.
Collapse
Affiliation(s)
- Achinta Mahato
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata 730037, India
| | - Paresh Nath Chatterjee
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata 730037, India
- Department of Fish Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata 700094, India
| | - Sougata Sarkar
- Ramakrishna Mission Vivekananda Centenary College, Rahara, Khardaha 700118, India
| | - Arup Ratan Sen
- ICAR-Central Institute of Fisheries Education, Kolkata 700091, India
| | - Aruna Pal
- Department of Livestock Farm Complex, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Sovan Roy
- West Bengal State Council of Science and Technology, Department of Science & Technology and Biotechnology, Vigyan Chetna Bhavan, Salt Lake, Kolkata 700064, India
| | - Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata 730037, India
- American Institute for Goat Research, Langston University, Langston, OK 73050, USA
| |
Collapse
|
4
|
Alirezaei Shahraki P, Kheiri F, Amanlou H, Faghani M, Jalali SMA. Determining the optimal level and the effect of different zinc sources on performance, egg quality and the immune system of laying hens at the end of the production period. Vet Med Sci 2024; 10:e70035. [PMID: 39258517 PMCID: PMC11388059 DOI: 10.1002/vms3.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/11/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Trace elements, such as zinc, magnesium and copper, are essential for improving the performance and health of broiler breeders and the development of chicken embryos. These elements are integral to various proteins involved in metabolism, hormone secretion and the immune system, necessitating their inclusion in small amounts in poultry diets. OBJECTIVES This study aimed to determine the optimal level and effect of different zinc sources on performance, egg quality and the immune system of laying hens at the end of the production period. METHODS The experiment involved 520 Lohmann LSL laying hens, aged 80 weeks, divided into 13 treatments with 5 replications and 8 birds per replication. The hens were fed diets supplemented with 40, 60 and 80 mg/kg of zinc from various sources: mineral zinc oxide, mineral zinc sulphate, organic zinc chelated with glycine and organic zinc chelated with an organic acid. Key parameters measured included body weight, egg weight and immune response. RESULTS The basal diet contained 63.58 mg/kg of zinc, with the requirement per the Lohmann LSL guideline being 80 mg/kg. Zinc supplementation significantly increased body weight in the second month, with 80 mg/kg being the optimal dose. Zinc oxide notably increased egg weight compared to the control. The hens utilized zinc from all sources, resulting in weight gain and improved parameters such as egg quality. Immune parameters were also positively influenced by zinc supplementation. CONCLUSIONS Zinc supplementation at appropriate levels enhances the performance and egg quality of laying hens, particularly at the end of the production period. It improves bioavailability, enriches eggs and mitigates age-related declines in productivity.
Collapse
Affiliation(s)
| | - Farshid Kheiri
- Department of Animal ScienceShahrekord BranchIslamic Azad UniversityShahrekordIran
| | - Hamid Amanlou
- Department of Animal Science, Faculty of AgricultureUniversity of ZanjanZanjanIran
| | - Mostafa Faghani
- Department of Animal ScienceShahrekord BranchIslamic Azad UniversityShahrekordIran
| | - Sayed Mohammad Ali Jalali
- Research Center of Nutrition and Organic Products (RCNOP)Shahrekord Branch, Islamic Azad UniversityShahrekordIran
| |
Collapse
|
5
|
Shi Y, Hao R, Ji H, Gao L, Yang J. Dietary zinc supplements: beneficial health effects and application in food, medicine and animals. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5660-5674. [PMID: 38415843 DOI: 10.1002/jsfa.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
Zinc, a crucial trace element is vital for the growth and development of humans. It is frequently described as 'the flower of life' and 'the source of intelligence'. Zinc supplements play a pivotal role in addressing zinc deficiency by serving as a vital source of this essential micronutrients, effectively replenishing depleted zinc levels in the body. In this paper, we first described the biological behavior of zinc in the human body and briefly described the physiological phenomena associated with zinc levels. The benefits and drawbacks of various zinc supplement forms are then discussed, with emphasis on the most recent zinc supplement formulations. Finally, the application of zinc supplements in food, medicine, and animal husbandry is further summarized. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Shi
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, China
| | - Rui Hao
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, China
| | - Haixia Ji
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, China
| | - Li Gao
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, China
| | - Junyan Yang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
Ren Y, Sun Y, Javad HU, Wang R, Zhou Z, Huang Y, Shu X, Li C. Growth Performance of and Liver Function in Heat-Stressed Magang Geese Fed the Antioxidant Zinc Ascorbate and Its Potential Mechanism of Action. Biol Trace Elem Res 2024:10.1007/s12011-024-04220-6. [PMID: 38914726 DOI: 10.1007/s12011-024-04220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/03/2024] [Indexed: 06/26/2024]
Abstract
The aim of this study was to investigate the in vitro antioxidant activity of zinc ascorbate (AsA-Zn), its effects on the growth performance of and liver function in Magang geese under heat stress, and its potential mechanism. At AsA-Zn concentrations of 7.5, 15, 30, and 60 µmol/L, the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS·+) radical scavenging rate increased significantly by 120.85%, 53.43%, 36.12%, and 0.99%, respectively, compared with that of ascorbic acid (AsA), indicating that AsA-Zn had better antioxidant performance in vitro. In this study, Magang geese were divided into a control group (basal diet, CON) and experimental groups, who received the basal diet supplemented with 400 mg/kg AsA or 30 (AsA-Zn30), 60 (AsA-Zn60), or 90 (AsA-Zn90) mg/kg AsA-Zn. AsA-Zn supplementation considerably reduced the feed-to-gain ratio, whereas both AsA and AsA-Zn significantly increased the thymus index. Moreover, AsA-Zn supplementation improved serum protein levels, lipid metabolism, liver function, and antioxidant capacity while reducing hepatocyte vacuolar degeneration. Furthermore, supplementation with AsA-Zn60 significantly increased the total antioxidant capacity, glutathione peroxidase activity, and superoxide dismutase activity and decreased the malondialdehyde content in the serum, liver, and hepatic mitochondria (P < 0.05), with more pronounced effects in the AsA-Zn60 group. Moreover, supplementation with ASA-Zn regulated the Nrf 2 signaling pathway and significantly increased the expression of genes encoding antioxidant-related factors in the liver. In conclusion, AsA-Zn has good antioxidant activity, and AsA-Zn supplementation may improve the antioxidant capacity of heat-stressed geese and promote their growth. Supplementation with 30 mg/kg AsA-Zn is recommended.
Collapse
Affiliation(s)
- Yanli Ren
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, China
| | - Yunan Sun
- College of Chemistry and Chemical Engineering, Zhongkai University of Agricultural Engineering, Guangzhou, China
| | - Hafiz Umer Javad
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou, China
| | - Renkai Wang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhiqing Zhou
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yunmao Huang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xugang Shu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, China.
- College of Chemistry and Chemical Engineering, Zhongkai University of Agricultural Engineering, Guangzhou, China.
| | - Cuijin Li
- College of Chemistry and Chemical Engineering, Zhongkai University of Agricultural Engineering, Guangzhou, China.
| |
Collapse
|
7
|
Lalhriatpuii M, Chatterjee A, Das AK, Satapathy D, Dutta TK, Patra AK. Influence of Dietary Supplementation of Inorganic and Organic Chromium on Body Conformation, Carcass Traits, and Nutrient Composition in Muscle and Internal Organs of Black Bengal Goats. Biol Trace Elem Res 2024; 202:2062-2074. [PMID: 37592074 DOI: 10.1007/s12011-023-03811-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
The effect of dietary inorganic and organic chromium (Cr) on body morphometry, carcass traits, and nutrient composition, including different minerals and fatty acids in meat and internal organs of Black Bengal goats, was studied. Thirty weaned Black Bengal kids of 3-5 months (5.40 ± 0.34 kg body weight) were assigned randomly into five groups and fed additional Cr for 150 days. The experimental diets comprised a basal diet supplemented with Cr at the rate of 0 (control; without Cr supplementation), 1.0 and 1.5 mg/kg of inorganic Cr (Cr(III)-chloride), and 1.0 and 1.5 mg/kg of organic Cr (Cr-yeast). The body morphometry such as body length, heart girth, paunch girth, loin width, leg circumference, and the carcass traits, namely, slaughter body weight, dressing percentage, hind quarter and forequarter weight, and rib eye area of goats, were not significantly (P < 0.05) changed due to inorganic and organic Cr supplementation. However, organic Cr supplementation (1.0 and 1.5 mg/kg) resulted in a reduction of breast and back fat thickness (P < 0.05) compared with the control group. The weights of internal organs including liver, lungs, spleen, kidney, testes, and heart and their weights as a percentage of slaughter weight were similar (P > 0.05) among different experimental groups. Dry matter, ether extract, and total ash concentrations of muscle and internal organs of Cr-supplemented groups were not affected (P > 0.05) by Cr supplementation. However, crude protein contents in the liver, muscle, kidney, and lungs were greater (P < 0.05) in the organic Cr groups than in the control and inorganic Cr groups. In meat (longissimus dorsi muscle), total saturated fatty acid concentration was lower (P < 0.05; 59.4% versus 55.7%) and the unsaturated fatty acid concentration was greater (P < 0.05; 40.6% versus 44.3%) including palmitoleic acid, heptadecenoic acid, elaidic acid, and arachidonic acid in the organic or inorganic Cr-supplemented groups than in the basal diet group. In conclusion, dietary supplementation of organic Cr in Black Bengal goats has no influence on the carcass traits, but may improve the meat quality with greater protein content, lean, and healthier fatty acids for human consumption.
Collapse
Affiliation(s)
- Melody Lalhriatpuii
- National Dairy Research Institute-Eastern Regional Station, Kalyani, West Bengal, India
| | - Anupam Chatterjee
- National Dairy Research Institute-Eastern Regional Station, Kalyani, West Bengal, India
| | - Arun Kumar Das
- Indian Veterinary Research Institute-Eastern Regional Station, Kolkata, West Bengal, India
| | - Debasish Satapathy
- National Dairy Research Institute-Eastern Regional Station, Kalyani, West Bengal, India
| | - Tapas Kumar Dutta
- National Dairy Research Institute-Eastern Regional Station, Kalyani, West Bengal, India
| | - Amlan Kumar Patra
- American Institute for Goat Research, Langston University, Langston, OK, USA.
| |
Collapse
|
8
|
Zhang S, Gao W, Xie L, Zhang G, Wei Z, Li J, Song C, Chang M. Malonic acid shapes bacterial community dynamics in compost to promote carbon sequestration and humic substance synthesis. CHEMOSPHERE 2024; 350:141092. [PMID: 38169202 DOI: 10.1016/j.chemosphere.2023.141092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/06/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
The incorporation of malonic acid (MA) into compost as a regulator of the tricarboxylic acid (TCA) cycle has the potential to increase carbon sequestration. However, the influence of MA on the transformation of the microbial community during the composting process remains unclear. In this investigation, MA was introduced at different stages of chicken manure (CM) composting to characterize the bacterial community within the compost using high-throughput sequencing. We assess the extent of increased carbon sequestration by comparing the concentration of total organic carbon (TOC). At the same time, this study examines whether increased carbon sequestration contributes to humus formation, which was elucidated by evaluating the content and composition of humus. Our results show that the addition of MA significantly improved carbon sequestration within the compost, reducing the carbon loss rate (C loss (%)) from 64.70% to 52.94%, while increasing HS content and stability. High throughput sequencing and Random Forest (RF) analysis show that the introduction of MA leads to a reduction in the diversity of the bacterial communities, but enhanced the ability of bacterial communities to synthesize humus. Furthermore, the addition of MA favors the proliferation of Firmicutes. Also, the hub of operational taxonomic units (OTUs) within the community co-occurrence network shifts from Proteobacteria to Firmicutes. Remarkably, our study finds a significant decrease in negative correlations between bacteria, potentially mitigating substrate consumption due to negative interactions such as competition. This phenomenon contributes to the improved retention of TOC in the compost. This research provides new insights into the mechanisms by which MA regulates bacterial communities in compost, and provides a valuable theoretical basis for the adoption of this innovative composting strategy.
Collapse
Affiliation(s)
- Shubo Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China; College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Lina Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Guogang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Jie Li
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Mingkai Chang
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
9
|
Sarhan MH, Felemban SG, Alelwani W, Sharaf HM, Abd El-Latif YA, Elgazzar E, Kandil AM, Tellez-Isaias G, Mohamed AA. Zinc Oxide and Magnesium-Doped Zinc Oxide Nanoparticles Ameliorate Murine Chronic Toxoplasmosis. Pharmaceuticals (Basel) 2024; 17:113. [PMID: 38256946 PMCID: PMC10819917 DOI: 10.3390/ph17010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Toxoplasma gondii causes a global parasitic disease. Therapeutic options for eradicating toxoplasmosis are limited. In this study, ZnO and Mg-doped ZnO NPs were prepared, and their structural and morphological chrematistics were investigated. The XRD pattern revealed that Mg-doped ZnO NPs have weak crystallinity and a small crystallite size. FTIR and XPS analyses confirmed the integration of Mg ions into the ZnO framework, producing the high-purity Mg-doped ZnO nanocomposite. TEM micrographs determined the particle size of un-doped ZnO in the range of 29 nm, reduced to 23 nm with Mg2+ replacements. ZnO and Mg-doped ZnO NPs significantly decreased the number of brain cysts (p < 0.05) by 29.30% and 35.08%, respectively, compared to the infected untreated group. The administration of ZnO and Mg-doped ZnO NPs revealed a marked histopathological improvement in the brain, liver, and spleen. Furthermore, ZnO and Mg-doped ZnO NPs reduced P53 expression in the cerebral tissue while inducing CD31 expression, which indicated a protective effect against the infection-induced apoptosis and the restoration of balance between free radicals and antioxidant defense activity. In conclusion, the study proved these nanoparticles have antiparasitic, antiapoptotic, and angiogenetic effects. Being nontoxic compounds, these nanoparticles could be promising adjuvants in treating chronic toxoplasmosis.
Collapse
Affiliation(s)
- Mohamed H. Sarhan
- Microbiology Section, Basic Medical Sciences Department, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Shatha G. Felemban
- Medical Laboratory Science Department, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia;
| | - Walla Alelwani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 23890, Saudi Arabia;
| | - Hesham M. Sharaf
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (Y.A.A.E.-L.); (A.A.M.)
| | - Yasmin A. Abd El-Latif
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (Y.A.A.E.-L.); (A.A.M.)
| | - Elsayed Elgazzar
- Physics Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmad M. Kandil
- Pathology Department, Faculty of Medicine, Al-Azhar University, Cairo 11651, Egypt;
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Aya A. Mohamed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (Y.A.A.E.-L.); (A.A.M.)
| |
Collapse
|
10
|
Hu P, Li K, Peng X, Yao T, Zhu C, Gu H, Liu HY, Sun MA, Hu Y, Ennab W, Luo X, Cai D. Zinc intake ameliorates intestinal morphology and oxidative stress of broiler chickens under heat stress. Front Immunol 2024; 14:1308907. [PMID: 38259441 PMCID: PMC10800777 DOI: 10.3389/fimmu.2023.1308907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Zinc (Zn), an essential trace element for poultry, plays a crucial role in promoting growth, improving feed conversion efficiency, enhancing antioxidant activity, and preventing disease. This study investigated the impact of different levels and sources of dietary Zn supplementation on the growth performance, intestinal morphology and antioxidant activity of broiler chickens under heat stress conditions. In this experiment, 1024 Xueshan chickens were divided into eight groups and subjected to heat stress conditions with different levels of Zn supplementation (30 mg/kg, 60 mg/kg, and 90 mg/kg) using organic or inorganic sources. Our findings indicated that dietary Zn supplementation significantly increased the feed-to-weight ratio of broilers during the experimental period under heat stress. Moreover, Zn supplementation positively increased the villus height and villus width in the jejunum and ileum at 74 and 88 days old, with the 60 and 90 mg/kg groups outperforming other groups, and organic Zn was more effective than inorganic Zn. Furthermore, Zn supplementation significantly increased serum antioxidant levels, with higher superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-px) activities, and organic Zn was more effective than inorganic Zn. This study concludes that Zn supplementation is beneficial in mitigating the detrimental impacts of heat stress on broilers. The findings suggest that employing Zn as a strategy can enhance productivity in the poultry industry by positively influencing intestinal morphology and bolstering antioxidant activity to counteract potential stress.
Collapse
Affiliation(s)
- Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaoxu Peng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tongjia Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chuyang Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haotian Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Ming-an Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yun Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wael Ennab
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Department of Veterinary Biomedical Sciences, Botswana University of Agriculture and Agriculture and Natural Resources, Gaborone, Botswana
| | - Xugang Luo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Hassan FA, Elkassas NEM, El-Bltagy EA, Mohamed MS, Mobarez S, Salim IH, Abdel-Aal MM. Dietary zinc-chitosan nanoparticles addition influences on growth performance, apparent total tract digestibility, carcass indices, and immune function in weaned rabbits. Anim Biotechnol 2023; 34:4819-4827. [PMID: 37051844 DOI: 10.1080/10495398.2023.2197467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The aim of this study was to study the effect of zinc oxide-chitosan nanoparticles (Zn-CNPs) on growth performance, plasma constituents, carcass indices, and immune function in rabbit diets. Eighty weaned V-line males rabbits at 5 weeks of age were divided into four dietary groups of control diet; 50 Zn-CNPs; 75 Zn-CNPs;100 Zn-CNPs. Supplementation of Zn-CNPs did not affect final live body weight and average daily weight gain. 100 ppm Zn-CNPs recorded (p < 0.05) higher digestibility of DM, OM, CP, EE, and NFE. Dietary groups of 75 and 100 ppm were higher (p < 0.05) in DCP, TDN (%), and DE (kcal/kg). Zn-CNPs supplementation was higher (p < 0.05) in hot carcass and spleen weights %. The addition of Zn-CNPs in diets promoted dressing%. Significant increases (p < 0.05) in plasma total protein and albumin levels for 75 and 100 Zn-CNPs. Zn-CNPs decreased (p < 0.05) glucose, total cholesterol, LDL concentrations and increased (p < 0.05) plasma zinc levels, IgG, IgM. Plasma HDL level increased (p < 0.05) with 75 and 100 ppm Zn-CNPs. In conclusion, Zn-CNPs supplementations can use safely as a zinc source in rabbits diets without any detrimental effects on growth performance, plasma constituents, and carcass indices. Moreover, 50, 75, and 100 ppm Zn-CNPs enhanced the immune functions.
Collapse
Affiliation(s)
- Fawzia A Hassan
- Department of By-products Utilization Research, Animal Production Research Institute, Agricultural Research Center, Giza, Egypt
| | - Nabila E M Elkassas
- Departement of Rabbit Breeding, Animal Production Research Institute, Agricultural Research Center, Giza, Egypt
| | - E A El-Bltagy
- Department of By-products Utilization Research, Animal Production Research Institute, Agricultural Research Center, Giza, Egypt
| | - Manal S Mohamed
- Department of Poultry Nutrition Research, Animal Production Research Institute, Agricultural Research Center, Giza, Egypt
| | - Samia Mobarez
- Department of Poultry Nutrition Research, Animal Production Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ibrahim H Salim
- Department of Poultry Nutrition Research, Animal Production Research Institute, Agricultural Research Center, Giza, Egypt
| | - M M Abdel-Aal
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
12
|
El-Kholy MS, El-Mekkawy MM, Madkour M, Abd El-Azeem N, Di Cerbo A, Mohamed LA, Alagawany M, Selim DA. The role of different dietary Zn sources in modulating heat stress-related effects on some thermoregulatory parameters of New Zealand white rabbit bucks. Anim Biotechnol 2023; 34:1273-1282. [PMID: 34941468 DOI: 10.1080/10495398.2021.2019757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The present work was conducted to assess the effect of diets supplementation to heat-stressed buck rabbits with different zinc (Zn) sources on the thermoregulatory and hematobiochemical parameters, and antioxidant status. A total of 24 mature buck rabbits (32-36 weeks of age) were randomly distributed into four groups (6 each). Group 1, non-heat-stressed control (NHSC), was reared in the absence of heat stress (HS) conditions and received the basal diet only. The other three groups (groups 2, 3 and 4) were kept in HS conditions. Group 2, heat-stressed control (HSC), received the basal diet only. The diet supplemented with 75 mg Zn/kg diet either in the inorganic form (Zn sulfate) or in the organic form (Zn picolinate) for groups 3 and 4, respectively. Zn supplementation to rabbits' diets lowered the heat stress-related increase of serum urea, alanine transaminase and malondialdehyde (MDA) concentration. These supplementations also increased the concentration of testosterone under HS conditions. Zn picolinate was more effective than Zn sulfate in restoring serum concentrations of urea, testosterone, and MDA. In conclusion, Zn addition to rabbits' diets from different sources, especially Zn picolinate, exhibits an ameliorative effect against the harmful impact of HS on hematobiochemical parameters and antioxidant status.
Collapse
Affiliation(s)
- Mohamed S El-Kholy
- Faculty of Agriculture, Department of Poultry, Zagazig University, Zagazig, Egypt
| | - Mohamed M El-Mekkawy
- Faculty of Agriculture, Department of Poultry, Zagazig University, Zagazig, Egypt
| | - Mahmoud Madkour
- Animal Production Department, National Research Centre, Dokki, Egypt
| | | | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Laila A Mohamed
- Faculty of Agriculture, Department of Poultry, Zagazig University, Zagazig, Egypt
| | - Mahmoud Alagawany
- Faculty of Agriculture, Department of Poultry, Zagazig University, Zagazig, Egypt
| | - Dina A Selim
- Faculty of Agriculture, Poultry and Fish Production Department, Menoufia University, Shibin El-Kom, Egypt
| |
Collapse
|
13
|
Tella M, Legros S, Monteiro ANTR, Forouzandeh A, Penen F, Durosoy S, Doelsch E. Unexpected Cu and Zn speciation patterns in the broiler feed-animal-excreta system revealed by XAS spectroscopy. CHEMOSPHERE 2023; 340:139684. [PMID: 37532201 DOI: 10.1016/j.chemosphere.2023.139684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Trace minerals such as copper (Cu) and zinc (Zn) are animal nutrition supplements necessary for livestock health and breeding performance, yet they also have environmental impacts via animal excretion. Here we investigated changes in Cu and Zn speciation from the feed additive to the broiler excreta stages. The aim of this study was to assess whether different Cu and Zn feed additives induce different Cu and Zn speciation patterns, and to determine the extent to which this speciation is preserved throughout the feed-animal-excreta system. Synchrotron-based X-ray absorption spectroscopy (XAS) was used for this investigation. The principal findings were: (i) in feed, Cu and Zn speciation changed rapidly from the feed additive signature (Cu and Zn oxides or Cu and Zn sulfates) to Cu and Zn organic complexes (Cu phytate and Zn phytate). (ii) in the digestive tract, we showed that Cu and Zn phytate were major Cu and Zn species; Cu sulfide and Zn amorphous phosphate species were detected but remained minor species. (iii) in fresh excreta, Cu sulfide and Zn amorphous phosphate were major species. These results should help to: (i) enhance the design of future research studies comparing different feed additive performances; (ii) assess Cu and Zn bioavailability in the digestive tract; (iii) gain further insight into the fate of Cu and Zn in cultivated soils when poultry manure is used as fertilizer.
Collapse
Affiliation(s)
- Marie Tella
- US 49 Analyses, CIRAD, F-34398, Montpellier, France; Analyses, Univ. Montpellier, CIRAD, Montpellier, France
| | - Samuel Legros
- UPR Recyclage et Risque, CIRAD, F-34398, Montpellier, France; Recyclage et Risque, Univ. Montpellier, CIRAD, Montpellier, France
| | | | - Asal Forouzandeh
- Animal Nutrition and Welfare Service (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | - Emmanuel Doelsch
- UPR Recyclage et Risque, CIRAD, F-34398, Montpellier, France; Recyclage et Risque, Univ. Montpellier, CIRAD, Montpellier, France.
| |
Collapse
|
14
|
Ogbuewu IP, Mbajiorgu CA. Potentials of Dietary Zinc Supplementation in Improving Growth Performance, Health Status, and Meat Quality of Broiler Chickens. Biol Trace Elem Res 2023; 201:1418-1431. [PMID: 35368228 DOI: 10.1007/s12011-022-03223-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023]
Abstract
The demand for chicken meat is on the rise, necessitating high level of production and efficient feed conversion which to a certain extent can be actualized by the use of specific trace minerals like zinc (Zn). Zn is a part of several enzymes involved in the metabolism of protein, fat, carbohydrates, and nucleic acids. In addition, Zn has antioxidant properties and is vital for hormone function, including growth, pancreatic, and sex hormones. Its deficiency in animals is characterized by poor fertility, decreased feed intake, poor growth, testicular atrophy, and weakened immunity. Nano-Zn sources have been shown to be more bioavailable than conventional zinc (organic and inorganic) sources. Zn from organic sources, on the other hand, has higher bioavailability than Zn from inorganic sources. Furthermore, Zn supplementation promotes growth, enhances antioxidant capacity, modulates the immunity, and improves health indices in broiler chickens. Published studies have demonstrated that Zn supplementation has the potential to improve carcass yield and meat quality in broilers with various research contradictions. However, a clear understanding of the role of Zn in broiler nutrition is still lacking, necessitating further research. As a result, the purpose of this review was to highlight the influence of Zn (organic or inorganic) supplementation on growth, blood characteristics, antioxidant status, immune responses, Zn tissue/fecal concentrations, intestinal villus histomorphology, and meat quality of broiler chickens as well as Zn bioavailability to understand the role of Zn in broiler nutrition, resolve contradictory research results, and identify knowledge gaps. Understanding the role of dietary Zn in broiler chicken nutrition and meat quality will avail important suggestion on policy advancements and sustainable use of Zn in the broiler chicken industry.
Collapse
Affiliation(s)
- Ifeanyichukwu Princewill Ogbuewu
- Department of Animal Science and Technology, Federal University of Technology, Imo State, P.M.B. 1526, Owerri, Nigeria.
- Department of Agriculture and Animal Health, University of South Africa, Florida Science Campus, Private Bag X6, Florida, 1710, South Africa.
| | - Christian Anayo Mbajiorgu
- Department of Agriculture and Animal Health, University of South Africa, Florida Science Campus, Private Bag X6, Florida, 1710, South Africa
| |
Collapse
|
15
|
Zha P, Chen Y, Zhou Y. Effects of dietary supplementation with different levels of palygorskite-based composite on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poult Sci 2023; 102:102651. [PMID: 37068353 PMCID: PMC10130497 DOI: 10.1016/j.psj.2023.102651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
This study was conducted to investigate the effects of different levels of palygorskite-based composite (PBC) on growth performance, antioxidant status, and meat quality of broilers. A total of 320 one-day-old mixed-sex Ross 308 broiler chicks were allocated to 1 of 5 groups with 8 replicates of 8 birds each, and given a basal diet supplemented with 0, 250, 500, 1,000, and 2,000 mg/kg PBC for a 42-day trial, respectively. PBC quadratically increased feed efficiency during the late and overall experimental periods (P < 0.05). Compared with the control group, 1,000 mg/kg PBC increased feed efficiency during the overall period (P < 0.05). PBC linearly increased serum total superoxide dismutase (T-SOD) activity at 21 d and glutathione peroxidase (GSH-Px) activity at both 21 d and 42 d (P < 0.05). Compared with the control group, PBC supplementation, regardless of its level, increased 21-day serum SOD activity (P < 0.05). The 21-day serum GSH-Px activity was increased by PBC when its level exceeded 250 mg/kg (P < 0.05). PBC linearly increased 42-day total antioxidant capacity (T-AOC) activity, but linearly decreased 42-day malondialdehyde level in liver (P < 0.05). An addition of PBC, irrespective of its level, increased 42-day hepatic T-AOC activity (P < 0.05). PBC quadratically increased 45-min yellowness value and linearly increased 24-h pH value, but quadratically decreased 24-h lightness value and linearly and quadratically reduced 24-h drip loss in breast muscle (P < 0.05). Compared with the control group, the 24-h drip loss of breast muscle was decreased by PBC, regardless of its dosage (P < 0.05). An addition of PBC linearly increased 42-day T-AOC and T-SOD activities of breast muscle (P < 0.05). Compared with the control group, muscle T-SOD activity was increased by PBC, regardless of its administration level (P < 0.05). These results suggested that PBC could improve growth performance, antioxidant capacity, and meat quality of broilers, and its recommended dosage is 1,000 mg/kg.
Collapse
|
16
|
El-Shobokshy SA, Abo-Samaha MI, Sahwan FM, El-Rheem SMA, Emam M, Khafaga AF. Implication of apoptosis and oxidative stress in mitigation of ivermectin long-term hazards by zinc nanoparticles in male rabbits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26982-26997. [PMID: 36372859 PMCID: PMC9995419 DOI: 10.1007/s11356-022-24095-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Ivermectin is the medication of choice for treating human onchocerciasis and is used in veterinary medicine to treat a variety of ectoparasites and endoparasites. This study was designed to investigate the effects of zinc nanoparticles (ZnNPs) on the fertility of male rabbits exposed to experimental ivermectin (IVM) intoxication. A total of 72 mature male rabbits were equally divided into 4 groups (n = 18). The first group (CTR) served as control; the second group (IVM) received subcutaneous injection of IVM (0.2 mg/kg body weight); the third group (ZnNPs) fed on zinc nanoparticles (60 mg/kg diet); and the fourth group (ZnNPs + IVM) were administered IVM and zinc nanoparticles at the same doses. The experiment lasted for 9 weeks. Results revealed that IVM-intoxicated rabbits showed impaired growth performance parameters, including body weight, total body weight gain (TBWG), total feed intake (TFI), and feed conversion ratio (FCR). Moreover, carcass characteristic and fertility parameters (including semen quality parameters and testosterone levels) were also impaired after IVM administration. Additionally, testicular malondialdehyde (MDA) and antioxidant (reduced glutathione, superoxide dismutase, catalase) levels as well as the histopathology and immunohistochemical expression of caspase 3 and PCNA in the testes and epididymis were detrimentally affected. On the contrary, ZnNP administration efficiently improved most of these parameters in IVM-intoxicated rabbits. In conclusion, ZnNPs exhibited promising ability for improving the growth and fertility status of rabbits and reducing the deleterious effects of IVM possibly through the suppression of apoptotic and oxidative pathways.
Collapse
Affiliation(s)
- Set A El-Shobokshy
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Magda I Abo-Samaha
- Poultry Breeding and Production, Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Ferial M Sahwan
- Animal Breeding and Production, Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Samia M Abd El-Rheem
- Department of Theriogenology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Emam
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, P. O. Box, Edfina, 22758, Alexandria, Egypt.
| |
Collapse
|
17
|
Kim JH, Kim HW, Kwon CH, Kwon SH, Kil DY. Effects of dietary organic or inorganic iron concentrations on productive performance, egg quality, blood measurements, and tissue iron concentrations in aged laying hens. Anim Sci J 2023; 94:e13817. [PMID: 36810838 DOI: 10.1111/asj.13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/01/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023]
Abstract
The objective of the current experiment was to investigate the effects of dietary organic or inorganic iron (Fe) concentrations on productive performance, egg quality, blood measurements, and tissue Fe concentrations in aged laying hens. A total of three hundred fifty 60-week-old Hy-Line Brown laying hens were allotted to one of five dietary treatments with seven replicates. Each replicate had 10 consecutive cages. Organic Fe (Fe-Gly) or inorganic Fe (FeSO4 ) was added to the basal diet at the levels of 100 or 200 mg/kg Fe. Diets were fed on an ad libitum basis for 6 weeks. Results indicated that supplementation of organic or inorganic Fe in diets increased (p < 0.05) eggshell color and feather Fe concentrations compared with no supplementation of Fe in diets. An interaction was found (p < 0.05) between Fe sources and supplemental levels in diets for egg weight, eggshell strength, and Haugh unit. Hens fed diets supplemented with organic Fe had greater (p < 0.05) eggshell color and hematocrit than those fed diets supplemented with inorganic Fe. In conclusion, dietary supplementation of organic Fe increases the eggshell color of aged laying hens. High supplemental levels of organic Fe in diets improve egg weight in aged laying hens.
Collapse
Affiliation(s)
- Jong Hyuk Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyun Woo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Chan Ho Kwon
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Sung Hoon Kwon
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
18
|
Antimicrobial impacts of zinc oxide nanoparticles on shiga toxin-producing Escherichia coli (serotype O26). ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
The antibacterial activity of zinc oxide nanoparticles (ZnO NPs) has received significant attention worldwide due to the emergence of multidrug-resistant microorganisms. Shiga toxin-producing Escherichia coli is a major foodborne pathogen that causes gastroenteritis that may be complicated by hemorrhagic colitis or hemolytic uremic syndrome. Therefore, this study aimed to evaluate the antimicrobial effect of ZnO NPs against E. coli O26 and its Shiga toxin type 2 (Stx2). Multidrug resistance phenotype was observed in E. coli O26, with co-resistance to several unrelated families of antimicrobial agents. Different concentrations of ZnO NPs nanoparticles (20 nm) were tested against different cell densities of E. coli O26 (108, 106 and 105 CFU/ml). The minimum inhibitory concentration (MIC) value was 1 mg/ml. Minimum bactericidal concentration (MBC) was 1.5 mg/ml, 2.5 mg/ml and 3 mg/ml, respectively, depending on ZnO NPs concentrations and bacterial cell density. Results showed a significant (P≤0.05) decrease in Stx2 level in a response to ZnO NPs treatment. As detected by quantitative real-time PCR, ZnO NPs down-regulated the expression of the Stx2 gene (P≤0.05). Moreover, various concentrations of ZnO NPs considerably reduced the total protein content in E. coli O26. There was a significant reduction in protein expression with increased ZnO NPs concentration compared to the non-treated control. Scanning electron micrographs (SEM) of the treated bacteria showed severe disruptive effects on E. coli O26 with increasing ZnO NPs concentration. The results revealed a strong correlation between the antibacterial effect and ZnO NPs concentrations. ZnO NPs exert their antibacterial activities through various mechanisms and could be used as a potent antibacterial agent against E. coli O26.
Collapse
|
19
|
Cufaoglu G, Cengiz G, Onaran Acar B, Yesilkaya B, Ayaz ND, Levent G, Goncuoglu M. Antibiotic, heavy metal, and disinfectant resistance in chicken, cattle, and sheep origin
E. coli
and whole‐genome sequencing analysis of a multidrug‐resistant
E. coli
O100:H25 strain. J Food Saf 2022. [DOI: 10.1111/jfs.12995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gizem Cufaoglu
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Kirikkale University Kirikkale Turkey
| | - Gorkem Cengiz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Ankara University Ankara Turkey
| | - Bahar Onaran Acar
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Ankara University Ankara Turkey
| | - Busra Yesilkaya
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Ankara University Ankara Turkey
| | - Naim Deniz Ayaz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Kirikkale University Kirikkale Turkey
| | - Gizem Levent
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station Texas USA
- School of Veterinary Medicine Texas Tech University Amarillo Texas USA
| | - Muammer Goncuoglu
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Ankara University Ankara Turkey
| |
Collapse
|
20
|
Chang Y, Tang H, Zhang Z, Yang T, Wu B, Zhao H, Liu G, Chen X, Tian G, Cai J, Wu F, Jia G. Zinc Methionine Improves the Growth Performance of Meat Ducks by Enhancing the Antioxidant Capacity and Intestinal Barrier Function. Front Vet Sci 2022; 9:774160. [PMID: 35174244 PMCID: PMC8841862 DOI: 10.3389/fvets.2022.774160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
This study was conducted to investigate the effects of zinc methionine (Zn-Met) on the growth performance, antioxidant capacity and intestinal barrier function of meat ducks. Three hundred and sixty 1-day-old male Cherry Valley ducks were randomly divided into 6 groups with 6 replicates (10 birds each), and fed diets with 0, 30, 60, 90, 120 or 150 mg/kg Zn for 35 d. The results indicated that dietary supplementation with Zn-Met substantially increased the average daily gain (ADG), and reduced the feed to gain ratio (F/G) during 1–35 d (P < 0.05). Dietary Zn-Met markedly increased the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH), and reduced the malondialdehyde (MDA) content in the jejunum (P < 0.05). The mRNA expression levels of critical antioxidant enzymes such as SOD, CAT, and nuclear factor erythroid 2-related factor 2 (Nrf2) were increased by Zn in the jejunum (P < 0.05). Supplementation with 60, 90, 120, and 150 mg/kg of Zn significantly reduced the diamine oxidase (DAO) activity in the serum (P < 0.05). Different levels of Zn can increase the mRNA expression of occluding (OCLN) and zonula occludens-1 (ZO-1) in the jejunum (P < 0.05). Diets supplemented with zinc significantly increased the content of mucin2 (MUC2), secretory immunoglobulin A (sIgA), immunoglobulin A (IgA) and immunoglobulin G (IgG) in the jejunum of meat ducks (P < 0.05). The 16S rRNA sequence analysis indicated that 150 mg/kg of Zn had a higher relative abundance of Verrucomicrobia and Akkermansia in cecal digesta (P < 0.05). In conclusion, Zn-Met improved the growth performance of meat ducks by enhancing intestinal antioxidant capacity and intestinal barrier function. This study provides data support for the application of Zn-Met in meat duck breeding.
Collapse
Affiliation(s)
- Yaqi Chang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Huangyao Tang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Zhenyu Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Institute of Animal Husbandry and Veterinary Medicine, Meishan Vocational Technical College, Meishan, China
| | - Ting Yang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Bing Wu
- Chelota Group, Guanghan, China
| | - Hua Zhao
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Guangmang Liu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Gang Tian
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jingyi Cai
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Fali Wu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Gang Jia
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Gang Jia ;
| |
Collapse
|
21
|
Dietary l-glutamic acid N,N-diacetic acid improves short-term maintenance of zinc homoeostasis in a model of subclinical zinc deficiency in weaned piglets. Br J Nutr 2022. [DOI: 10.1017/s000711452100489x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
This study compared the Zn response in selected tissues of weaned piglets fed L-glutamic acid, N,N-diacetic acid (GLDA), while challenged with short-term subclinical Zn deficiency (SZD). During a total experimental period of eight days, 96 piglets were fed restrictively (450 g/d) a high phytate (9 g/kg) diet containing added Zn at 0, 5, 10, 15, 20, 25, 45 and 75 mg/kg with and without 200 mg/kg of GLDA. No animals showed signs of clinical Zn deficiency and no phenotypical differences were observed. Broken line analysis of Zn status parameters such as liver Zn and apparently absorbed Zn indicated that the gross Zn requirement threshold was around 55 mg/kg diet. Supplementation of Zn above this threshold led to a saturation of the response in apparently absorbed Zn and linear increase in liver Zn. Bone and serum Zn responded to the dose in a linear fashion, likely due to the time-frame of Zn homoeostatic adaptation. Inclusion of GLDA into the diets yielded a higher intercept for bone Zn (P < 0·05). Liver Zn accumulation and MT1A gene expression was higher for piglets receiving GLDA (P < 0·05), indicating higher Zn influx. This study indicates that a strong chelator such as GLDA mitigates negative effects of phytate in plant-based diets, by sustaining Zn solubility, thereby improving nutritional Zn availability.
Collapse
|
22
|
Fan W, Shi J, Wang B, Zhang M, Kong M, Li W. Effects of zinc and Bacillus subtilis on the reproductive performance, egg quality, nutrient digestion, intestinal morphology, and serum antioxidant capacity of geese breeders. Poult Sci 2021; 101:101677. [PMID: 35051674 PMCID: PMC8883061 DOI: 10.1016/j.psj.2021.101677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/21/2021] [Accepted: 12/11/2021] [Indexed: 12/17/2022] Open
Abstract
The effects of zinc (Zn) and Bacillus subtilis (B. subtilis) on reproductive performance, egg quality, nutrient digestion, intestine morphology, and antioxidant capacity were explored in geese breeders. Geese breeders (n = 120, 46-wk of age) were randomly assigned into 6 groups with 4 replicates of 5 birds each (1 male and 4 female). Breeders were fed diets with 2 levels of B. subtilis (2.5 × 109 and 5 × 109 CFU/kg) crossed with three levels of Zn (25, 45, and 65 mg/kg) for duration of 10-wk. The results showed that the egg laying rate (P < 0.05), fertility rate (P < 0.01), hatchability rate (P < 0.05), yolk color (P < 0.05), and the retentions of crude protein (P < 0.05), ether extract (P < 0.05) and phosphorus of geese breeders were improved by dietary supplementation of 5 × 109 CFU/kg B. subtilis and 25 mg or 45 mg/kg Zn. The serum T-SOD (P < 0.05) was increased by 45 mg/kg Zn supplementation. The serum T-AOC (P < 0.05) and retention of Zn (P < 0.05) were increased by 5 × 109 CFU/kg B. subtilis supplementation. The birds fed with 5 × 109 CFU/kg B. subtilis and 25 mg or 45 mg/kg Zn showed improved villus length (P < 0.01) and villus length/ crypt depth (P < 0.01) in both the jejunum and ileum. In conclusion, the combination of B. subtilis and Zn may have synergistic effects on these parameters, and dietary inclusion of 5 × 109 CFU/kg B. subtilis and 45 mg/kg Zn is recommended for improving the reproductive performance of geese breeders.
Collapse
Affiliation(s)
- Wenlei Fan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Jing Shi
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Baowei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| | - Mingai Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Min Kong
- Institute of high quality waterfowl, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Wenli Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|
23
|
Xie Y, Wen M, Zhao H, Liu G, Chen X, Tian G, Cai J, Jia G. Effect of zinc supplementation on growth performance, intestinal development, and intestinal barrier function in Pekin ducks with lipopolysaccharide challenge. Poult Sci 2021; 100:101462. [PMID: 34731734 PMCID: PMC8567444 DOI: 10.1016/j.psj.2021.101462] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022] Open
Abstract
This study was conducted to investigate the influence of zinc (Zn) supplementation on growth performance, intestinal development and intestinal barrier function in Pekin ducks. A total of 480, one-day-old male Pekin ducks were divided into 6 groups with 8 replicates: 0 mg/kg Zn, 0 mg/kg Zn +0.5 mg/kg lipopolysaccharide (LPS), 30 mg/kg Zn, 30 mg/kg Zn +0.5 mg/kg LPS, 120 mg/kg Zn, 120 mg/kg Zn +0.5 mg/kg LPS. The duck primary intestinal epithelial cells (DIECs) were divided into 6 groups: D-Zn (Zinc deficiency, treated with 2 µmol/L zinc Chelator TPEN), A-Zn (Adequate Zinc, basal medium), H-Zn (High level of Zn, supplemented with 20 µmol/L Zn), D-Zn + 20 µg/mL LPS, A-Zn + 20 µg/mL LPS, H-Zn + 20 µg/mL LPS. The results were as follows: in vivo, with Zn supplementation of 120 mg/kg reduced LPS-induced decrease of growth performance and intestine damage (P < 0.05), and increased intestinal digestive enzyme activity of Pekin ducks (P < 0.05). In addition, Zn supplementation also attenuated LPS-induced intestinal epithelium permeability (P < 0.05), inhibited LPS-induced the expression of proinflammatory cytokines and apoptosis-related genes (P < 0.05), as well as reduced LPS-induced the intestinal stem cells mobilization of Pekin ducks (P < 0.05). In vitro, 20 µmol/L Zn inhibited LPS-induced expression of inflammatory factors and apoptosis-related genes (P < 0.05), promoted the expression of cytoprotection-related genes, and attenuated LPS-induced intestinal epithelium permeability in DIECs (P < 0.05). Mechanistically, 20 µmol/L Zn enhanced tight junction protein markers including CLDN-1, OCLD, and ZO-1 both at protein and mRNA levels (P < 0.05), and also increased the level of phosphorylation of TOR protein (P < 0.05) and activated the TOR signaling pathway. In conclusion, Zn improves growth performance, digestive enzyme activity, and intestinal barrier function of Pekin ducks. Importantly, Zn also reverses LPS-induced intestinal barrier damage via enhancing the expression of tight junction proteins and activating the TOR signaling pathway.
Collapse
Affiliation(s)
- Yueqin Xie
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Min Wen
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, 644000, China
| | - Hua Zhao
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Tian
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Jia
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
24
|
Flores KR, Fahrenholz A, Ferket PR, Biggs TJ, Grimes JL. Effect of methionine chelated Zn and Mn and corn particle size on Large White male turkey live performance and carcass yields. Poult Sci 2021; 100:101444. [PMID: 34547618 PMCID: PMC8463767 DOI: 10.1016/j.psj.2021.101444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/08/2021] [Accepted: 08/15/2021] [Indexed: 10/25/2022] Open
Abstract
Most turkey research has been conducted with a regular corn particle size set through phase-feeding programs. This study's first objective was to determine the effect of increasing corn particle size through the feed phases on performance, processing yield, and feed milling energy usage in Large White commercial male turkey production. Zinc (Zn) and manganese (Mn) are essential microminerals for animals' healthy growth. The source in which these elements are supplied to the bird will determine their bioavailability, effect on bird growth, and subsequent environmental impact. This study's second objective was to measure both inorganic and chelated Zn and Mn sources on turkey performance, turkey carcass processing yields, and subsequent litter residues. Twelve hundred Nicolas Select male poults were randomly assigned to 48 concrete; litter-covered floor pens. The experimental design was a completely randomized block design with a 2 × 2 factorial arrangement of 2 sources of minerals (organic blend vs. inorganic) formulated to match breeder recommendations and 2 types of corn mean particle size (coarse corn [1,000-3,500 µm] vs. fine corn [276 µm]). The ASABE S319.4 standard was used to measure corn mean particle size. Bird performance, carcass processing yield, litter content of Zn and Mn, and pellet mill energy consumption were analyzed in SAS 9.4 in a mixed model. There was a reduction of pellet mill energy usage of 36% when coarse corn was added post-pelleting. Birds fed increasing coarse corn mean particle size were 250 g lighter on average in body weight (BW) than birds fed a constant control mean particle size. No difference was found in feed intake (FI) or feed conversion ratio (FCR). Birds fed methionine chelated Zn and Mn blended with inorganic mineral sources were 250 g heavier on average than birds fed only an inorganic source of minerals. In addition, feeding an organic blend of Zn and Mn resulted in greater breast meat yield. Litter from birds fed the control corn mean particle size, and inorganic minerals had a higher concentration of Zn in the litter but were not different when the chelated Zn/Mn were fed. In conclusion, increasing the corn mean particle size and adding it post pellet could save money during feed milling; however, birds might have a slightly lower BW. A combination of inorganic and chelated Zn and Mn may improve performance and increase total breast meat yields.
Collapse
Affiliation(s)
- K R Flores
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695-7608, USA
| | - A Fahrenholz
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695-7608, USA
| | - P R Ferket
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695-7608, USA
| | - T J Biggs
- Global Animal Products, Inc. Amarillo, TX 79118, USA
| | - J L Grimes
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695-7608, USA.
| |
Collapse
|
25
|
Nessabian S, Zarei A, Chamani M, Sadeghi AA, Seidavi A. Effects of different levels of zinc-glycine and zinc hydroxide on the performance, carcass quality, immunity and duodenum morphometric of the broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1953408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shahram Nessabian
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abolfazl Zarei
- Department of Animal Science, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammad Chamani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Asghar Sadeghi
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Seidavi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
26
|
Elsayed AAM, Abol-Ela SS, Askar AA, Mohamed LA, El-Sayed SAA, Ahmed SYA, Moustafa AA, Alagawany M. Supplementation of different zinc sources to low-CP diets and its effect on performance, carcass traits, liver and kidney functions, immunological, and antioxidant parameters of quail chicks. Poult Sci 2021; 100:101463. [PMID: 34619580 PMCID: PMC8498461 DOI: 10.1016/j.psj.2021.101463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/22/2021] [Indexed: 11/24/2022] Open
Abstract
The present study was performed to evaluate the influence of low crude protein (CP) levels, zinc sources (organic as zinc methionine-Zn-Met and inorganic as zinc oxide-ZnO) and their interactions on growth performance, carcass traits, and blood components of growing Japanese quail. A total of 450 one-wk-old Japanese quail with the same body weights were randomly distributed into 9 groups of 50 birds. The 9-diet treatments comprised 3 levels of CP (20, 22, and 24%) and 3 Zn source (0 g of Zn/kg diet, 0.1 g ZnO/kg diet, and 0.1 g Zn-Met/kg diet). The results obtained from this study showed that there were no significant differences among the groups, except for differences in body weight (BW) and body weight gain (BWG) at 3 to 5 – and 1 to 5 wk of age for quail supplemented with 24% and 20% CP. All the studied biochemical parameters were significantly influenced by different levels of CP and Zn, except urea and creatinine, which were affected by CP levels only. In conclusion, dietary protein level for growing Japanese quails could be reduced to 20% without negative effects on their performance, carcass traits, and blood metabolites.
Collapse
Affiliation(s)
- Aya A M Elsayed
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Salah S Abol-Ela
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ali A Askar
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Laila A Mohamed
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Sabry A A El-Sayed
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Sarah Y A Ahmed
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Amr A Moustafa
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| |
Collapse
|
27
|
Ligas B, Izydorczyk G, Mikula K, Skrzypczak D, Konkol D, Korczyński M, Witek-Krowiak A, Chojnacka K. Valorization of postextraction residues-analysis of the influence of new feed additives with micronutrients on eggs quality parameters. Poult Sci 2021; 100:101416. [PMID: 34607152 PMCID: PMC8493587 DOI: 10.1016/j.psj.2021.101416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/25/2021] [Accepted: 08/02/2021] [Indexed: 12/03/2022] Open
Abstract
This paper presents attempts to enrich hens eggs with ions of copper, manganese, and zinc through the use of new feed additives (19 mg Cu2+; 124 mg Mn2+ and 85 mg Zn2+) such as biomass of alfalfa and goldenrod after extraction with supercritical carbon dioxide enriched with microelements via biosorption. Mechanical parameters of eggs (shell thickness and strength, Haugh unite), hen's laying performance, microelements content in albumen and yolk were examined and the transfer factor from feed to eggs was determined. The highest transfer of microelements content in albumen occurred in the group of hens fed with enriched goldenrod in a 100% dose (daily dose of microelements from biomass; Cu2+ 106%; Mn2+ 104%; Zn2+ 104% more in comparison to the inorganic salt group), while the highest yolk enrichment with microelements manifested itself for hens fed with enriched goldenrod in a 50% dose (daily dose of microelements from biomass; Cu2+ 32%; Zn2+ 22% more in comparison to the inorganic salt group). These groups also had the highest total microelements concentration. Mechanical properties of eggs varied insignificantly during the trial. Production parameters did not differ statistically among all experimental group. Eggs produced with need additives had better organoleptic parameters than fed with conventional premixes, which is why they were preferred by the respondents. The presented technology allows obtaining low-cost feed materials characterized by high bioavailability of components. The produced feed additives can serve as potential material for biofortification of eggs with nutrients.
Collapse
Affiliation(s)
- Bartosz Ligas
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wroclaw, Poland.
| | - Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wroclaw, Poland
| | - Katarzyna Mikula
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wroclaw, Poland
| | - Dawid Skrzypczak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wroclaw, Poland
| | - Damian Konkol
- Department of Animal Nutrition and Feed Management, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 38C, 51-630 Wroclaw, Poland
| | - Mariusz Korczyński
- Department of Animal Nutrition and Feed Management, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 38C, 51-630 Wroclaw, Poland
| | - Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wroclaw, Poland
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wroclaw, Poland
| |
Collapse
|
28
|
Kar I, Patra AK. Tissue Bioaccumulation and Toxicopathological Effects of Cadmium and Its Dietary Amelioration in Poultry-a Review. Biol Trace Elem Res 2021; 199:3846-3868. [PMID: 33405085 DOI: 10.1007/s12011-020-02503-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022]
Abstract
Cadmium (Cd) has been recognized as one of the most toxic heavy metals, which is continuously discharged into environments through anthropogenic (industrial activities, fertilizer production, and waste disposal) and natural sources with anthropogenic sources contributing greater than the natural sources. Therefore, Cd concentration sometimes increases in feeds, fodders, water bodies, and tissues of livestock including poultry in the vicinity of the industrial areas, which causes metabolic, structural, and functional changes of different organs of all animals. In poultry, bioaccumulation of Cd occurs in several organs mainly in the liver, kidney, lung, and reproductive organs due to its continuous exposure. Intake of Cd reduces growth and egg laying performance and feed conversion efficiency in poultry. Chronic exposure of Cd at low doses can also alter the microscopic structures of tissues, particularly in the liver, kidney, brain, pancreas, intestine, and reproductive organs due to increased content of Cd in these tissues. Continuous Cd exposure causes increased oxidative stress at cellular levels due to over-production of reactive oxygen species, exhausting antioxidant defense mechanisms. This leads to disruption of biologically relevant molecules, particularly nucleic acid, protein and lipid, and subsequently apoptosis, cell damage, and necrotic cell death. The histopatholocal changes in the liver, kidneys, and other organs are adversely reflected in hemogram and serum biochemical and enzyme activities. The present review discusses about Cd bioaccumulation and histopathological alterations in different tissues, pathogenesis of Cd toxicity, blood-biochemical changes, and its different ameliorative measures in poultry.
Collapse
Affiliation(s)
- Indrajit Kar
- Department of Avian Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, 700037, India
| | - Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, 700037, India.
| |
Collapse
|
29
|
Intestinal digestibility of selected minerals, growth performance and meat quality in turkeys fed diets supplemented with different sources and levels of zinc. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aim of this study was to determine whether dietary supplementation with zinc oxide nanoparticales (NP-ZnO) as a substitute for the conventional ZnO affects the intestinal digestibility of selected minerals, growth performance and meat quality in turkeys. The replacement of ZnO with NP-ZnO had no effect on the intestinal digestibility of Zn, Cu, Fe and Ca, whereas the lowest dose of supplemental Zn reduced Zn digestibility. The applied inclusion levels and sources of Zn had no effect on the growth performance (except the feed intake) of turkeys, including liveability. No differences in the relative weights of the heart, spleen and bursa of Fabricius (except the liver), or the weights of the femur and tibia were found between the dietary treatments. Neither the dose nor the source of supplemental Zn influenced carcass dressing percentage or the share of breast, thigh and drumstick muscles in the carcass. In comparison with the highest and moderate doses of Zn, the lowest inclusion level of Zn contributed to increased yellowness of breast meat (P=0.005). The analyzed doses and sources of supplemental Zn exerted varied effects on the redox status of fresh and frozen breast meat. In conclusion, the growth performance of turkeys, carcass yield and composition as well as the redox status of fresh and frozen breast meat were generally similar, regardless of the dietary source and level of Zn. The beneficial effect of Zn addition at 100 mg/kg was improved Zn and Ca digestibility, and increased redness of breast meat.
Collapse
|
30
|
Kuttappan VA, Manangi M, Bekker M, Chen J, Vazquez-Anon M. Nutritional Intervention Strategies Using Dietary Antioxidants and Organic Trace Minerals to Reduce the Incidence of Wooden Breast and Other Carcass Quality Defects in Broiler Birds. Front Physiol 2021; 12:663409. [PMID: 33889089 PMCID: PMC8055936 DOI: 10.3389/fphys.2021.663409] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Wooden breast (WB) is a degenerative myopathy seen in modern broiler birds resulting in quality downgrade of breast fillets. Affected filets show increased toughness both before as well as after cooking and have decreased water holding capacity and marinade pick up compared to normal fillets. Although the exact etiology is unknown, the circulatory insufficiency and increased oxidative stress in the breast muscles of modern broiler birds could be resulting in damage and degeneration of muscle fibers leading to myopathies. Three independent experiments were conducted to evaluate the effect of various dietary interventions on the incidence of WB when birds are exposed to oxidative stress associated with feeding oxidized fat and mild heat stress. Feed additives such as dietary antioxidant [Ethoxyquin (ETX)], mineral methionine hydroxy analog chelate (MMHAC) of Zn, Cu, and Mn, and organic selenium (Org Se) were tested at recommended levels. In experiment 1, ETX reduced (P < 0.05) the incidence of severe WB induced by oxidized fat diet. The magnitude of improvement in percentage of normal (no WB) filets and reduction in muscle lipid peroxidation was greater (P < 0.05) when ETX and MMHAC were fed together as shown by experiment 2. In birds exposed to mild heat stress (Experiment 3), feeding MMHAC by itself reduced (P < 0.05) tissue damage by reducing incidence of tibial head lesions, skin scratches, breast blisters, in addition to increasing the incidence of normal (no WB) fillets. When MMHAC was combined with ETX and Org Se, further improvement (P < 0.05) in normal (no WB) filets was observed. In summary, under different oxidative stress conditions, dietary intervention programs that contain ETX, MMHA-Zn, -Cu, and -Mn and Org Se can improve performance and increase carcass integrity, reducing problems, such as WB, either independently or with additive effect. This effect is most likely attained by simultaneously improving the exogenous and endogenous antioxidant status, reducing oxidative stress, and improving tissue healing process of the bird.
Collapse
Affiliation(s)
| | | | - Matthew Bekker
- Novus International, Inc., St. Charles, MO, United States
| | - Juxing Chen
- Novus International, Inc., St. Charles, MO, United States
| | | |
Collapse
|
31
|
Jafari M, Irani M, Rezaeipour V. Effect of different dietary zinc sources on the semen quality, testicular histology and sex hormone concentration in broiler breeder roosters. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1893131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mehdi Jafari
- Department of Animal Science, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | - Mehrdad Irani
- Department of Animal Science, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | - Vahid Rezaeipour
- Department of Animal Science, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| |
Collapse
|
32
|
Reda FM, El-Saadony MT, El-Rayes TK, Attia AI, El-Sayed SA, Ahmed SY, Madkour M, Alagawany M. Use of biological nano zinc as a feed additive in quail nutrition: biosynthesis, antimicrobial activity and its effect on growth, feed utilisation, blood metabolites and intestinal microbiota. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1886001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Fayiz M. Reda
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Talaat K. El-Rayes
- Animal Production Department, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Adel I. Attia
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Sabry A.A El-Sayed
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Sarah Y.A Ahmed
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mahmoud Madkour
- Animal Production Department, National Research Centre, Giza, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
33
|
Alagawany M, Elnesr SS, Farag MR, Tiwari R, Yatoo MI, Karthik K, Michalak I, Dhama K. Nutritional significance of amino acids, vitamins and minerals as nutraceuticals in poultry production and health - a comprehensive review. Vet Q 2020; 41:1-29. [PMID: 33250002 PMCID: PMC7755404 DOI: 10.1080/01652176.2020.1857887] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/08/2023] Open
Abstract
Nutraceuticals have gained immense importance in poultry science recently considering the nutritional and beneficial health effects of their constituents. Besides providing nutritional requirements to birds, nutraceuticals have beneficial pharmacological effects, for example, they help in establishing normal physiological health status, prevent diseases and thereby improve production performance. Nutraceuticals include amino acids, vitamins, minerals, enzymes, etc. which are important for preventing oxidative stress, regulating the immune response and maintaining normal physiological, biochemical and homeostatic mechanisms. Nutraceuticals help in supplying nutrients in balanced amounts for supporting the optimal growth performance in modern poultry flocks, and as a dietary supplement can reduce the use of antibiotics. The application of antibiotic growth enhancers in poultry leads to the propagation of antibiotic-resistant microbes and drug residues; therefore, they have been restricted in many countries. Thus, there is a demand for natural feed additives that lead to the same growth enhancement without affecting the health. Nutraceuticals substances have an essential role in the development of the animals' normal physiological functions and in protecting them against infectious diseases. In this review, the uses of amino acids, vitamins and minerals as well as their mode of action in growth promotion and elevation of immune system are discussed.
Collapse
Affiliation(s)
- Mahmoud Alagawany
- Faculty of Agriculture, Department of Poultry, Zagazig University, Zagazig, Egypt
| | - Shaaban S. Elnesr
- Faculty of Agriculture, Department of Poultry Production, Fayoum University, Fayoum, Egypt
| | - Mayada R. Farag
- Faculty of Veterinary Medicine, Forensic Medicine and Toxicology Department, Zagazig University, Zagazig, Egypt
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mohd. Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
34
|
Alkhtib A, Scholey D, Carter N, Cave GW, Hanafy BI, Kempster SR, Mekapothula S, Roxborough ET, Burton EJ. Bioavailability of Methionine-Coated Zinc Nanoparticles as a Dietary Supplement Leads to Improved Performance and Bone Strength in Broiler Chicken Production. Animals (Basel) 2020; 10:E1482. [PMID: 32846875 PMCID: PMC7552270 DOI: 10.3390/ani10091482] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 01/18/2023] Open
Abstract
Recently, nanotechnology has been widely adopted in many fields. The goal of this study was to evaluate the potential for amino acid coated nano minerals as a supplement in broiler feed. Zinc was selected as a model mineral for this test and supplementation of nano zinc, both coated and uncoated was compared with organic and inorganic commercial forms of zinc. A total of 48 pens (8 birds each) were assigned to one of the following dietary treatments: Control, methionine-Zinc chelate (M-Zn), nano zinc oxide (Nano-ZnO), and methionine coated nano zinc oxide (M-Nano-ZnO). All experimental diets were formulated with the same total zinc, methionine, protein, and energy content with just the zinc source as a variable. Bird weight, feed intake and feed conversion ratios were recorded weekly, with three birds culled (sacrificed) at day 21 and day 35 for sampling measures. Ileal digestibility of zinc was determined at day 21 and day 35 using titanium dioxide as an inert marker. Blood serum, liver and spleen samples were collected at day 21 and day 35 and analysed for zinc content via inductively coupled plasma mass spectrometry (ICP-MS). Tibia strength and morphometrics were measured from both legs of three birds per pen at day 21 and day 35. The study was conducted at Nottingham Trent University Poultry Unit, UK. The novel method of producing nano minerals coated with amino acids was successfully tested with zinc and material produced to test in the feeding study. Methionine coated nano zinc oxide supplementation significantly improved bird weight gain and the increased feed intake of broilers compared to an inorganic zinc form. Ileal digestibility was also improved with this methionine-nano zinc. Moreover, this supplementation improved the tibia strength of broilers at the age of 21 days, though this was not observed at day 35. Therefore, M-Nano-ZnO could be used to supplement broilers to improve both performance and digestibility with a limited positive impact on bone strength. The results of the current study suggest that the amino acid coating of nano minerals can improve the digestibility of minerals which may have further implications for the field of mineral nutrition in animal feeds.
Collapse
Affiliation(s)
- Ashraf Alkhtib
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0QF, UK; (A.A.); (D.S.)
| | - Dawn Scholey
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0QF, UK; (A.A.); (D.S.)
| | - Nicholas Carter
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (N.C.); (B.I.H.); (S.R.J.K.); (S.M.); (E.T.R.)
| | - Gareth W.V. Cave
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (N.C.); (B.I.H.); (S.R.J.K.); (S.M.); (E.T.R.)
| | - Belal I. Hanafy
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (N.C.); (B.I.H.); (S.R.J.K.); (S.M.); (E.T.R.)
| | - Siani R.J. Kempster
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (N.C.); (B.I.H.); (S.R.J.K.); (S.M.); (E.T.R.)
| | - Subbareddy Mekapothula
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (N.C.); (B.I.H.); (S.R.J.K.); (S.M.); (E.T.R.)
| | - Eve T. Roxborough
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (N.C.); (B.I.H.); (S.R.J.K.); (S.M.); (E.T.R.)
| | - Emily J. Burton
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0QF, UK; (A.A.); (D.S.)
| |
Collapse
|
35
|
Hafez A, Nassef E, Fahmy M, Elsabagh M, Bakr A, Hegazi E. Impact of dietary nano-zinc oxide on immune response and antioxidant defense of broiler chickens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19108-19114. [PMID: 30715696 DOI: 10.1007/s11356-019-04344-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/22/2019] [Indexed: 05/21/2023]
Abstract
This study aimed to elucidate the response of broiler chickens to the dietary nano-zinc supplementation in terms of immune response and antioxidant activity. Ninety-one-day-old chicks (Ross 308) were randomly assigned to one of three dietary treatments in three replicates, in a feeding trial that lasted for 5 weeks. Birds were fed a basal diet supplemented with inorganic zinc oxide at 40 mg/kg diet (control), zinc oxide nanoparticles (ZnONPs) at 40 mg/kg diet (ZN1), or ZnONPs at 80 mg/kg diet (ZN2). Birds were injected with DNP-KLH at the 7th and 21st days from the beginning of the experiment, and blood samples were collected on days 7, 14, 21, 28, and 35 to determine the levels of immunoglobulin Y (IgY) and malondialdehyde as well as the antioxidant enzyme activities. Cellular immunity was assayed by estimation of phagocytic percentage and index of peripheral monocytes of blood and estimation of the T lymphocyte activity using a lymphocyte transformation test. The results showed that feeding broiler chickens a diet supplemented with ZnONPs increased (p < 0.05) the activity of superoxide dismutase and catalase and decreased the concentration of malondialdehyde compared to the control diet, without significant differences between NZ1 and NZ2 diets. Moreover, the chicks fed diets supplemented with ZnONPs showed a significant increase (p < 0.05) in serum IgY, total lymphocyte count, and macrophages compared to the control. A higher significant response for antibodies IgY concentration was observed in birds fed the NZ2 vs NZ1 diet. Also, there was a significant increase in phagocytic activity and phagocytic index in ZnONP-fed groups with a higher significance in the group fed NZ1 than with NZ2 diet as compared with the control. In conclusion, ZnONP application up to 80 mg/kg in the diet is safe for broiler chickens and could improve their antioxidant defense and cellular immunity.
Collapse
Affiliation(s)
- Azza Hafez
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Eldsokey Nassef
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Mohamed Fahmy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Mabrouk Elsabagh
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Abdelnasser Bakr
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Elsayed Hegazi
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
36
|
Huang L, Li X, Wang W, Yang L, Zhu Y. The Role of Zinc in Poultry Breeder and Hen Nutrition: an Update. Biol Trace Elem Res 2019; 192:308-318. [PMID: 30767181 DOI: 10.1007/s12011-019-1659-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
Abstract
Zinc (Zn) is an essential trace mineral in breeder hen diets and functions in diverse physiological processes, including reproduction, immunity, antioxidant ability, and epigenetic processes. In this paper, five main aspects of Zn nutrition in poultry breeder birds and hens, including semen quality, molting, egg production and egg quality, hatchability and embryonic development, and offspring performance, are reviewed. Zn deficiency in poultry breeder birds led to lower semen quality (reducing around 10% sperm motility) and egg production (lowering 3-10 g/day/bird egg mass) as well as poor offspring development and growth performance (increasing 9-10% weak chick ratio and 10% mortality of progeny). Adequate maternal or higher Zn supplementation was adopted not only to induce molting with a greater postmolt performance (rising 4-7% laying rate) but also to enhance progeny immune response and antioxidant ability via epigenetic mechanisms. Therefore, it is necessary to reevaluate the optimal Zn requirement for egg production as well as the embryonic development and offspring chick performance of breeder hens. In the last 10 years, greater attention has been focused on the effectiveness of organic Zn for improving the reproductive performance of breeders and progeny viability and immune status. In fact, organic Zn sources are not always beneficial to the above aspects. So far, it has been very important to know the exact mechanisms of greater bioavailability and the epigenetic role of organic Zn sources in the augmentation of immune status and antioxidant abilities in poultry breeder birds and offspring. Therefore, a comprehensive analysis of these key points will not only aid in maintaining the beneficial effects of Zn nutrition for breeders and their progeny under stable conditions but will also support birds under stressful conditions such as disease as well as provide a better understanding of the integrated nutrition of breeder-offspring.
Collapse
Affiliation(s)
- Liang Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xi Li
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
37
|
Abd El-Hack ME, Alagawany M, Chaudhry MT, Saeed M, Ahmad EAM, El-Sayed SAA. Does the gradual increase in dietary zinc oxide supplementation can affect egg quality, serum indices, and productive performance of laying hens? Trop Anim Health Prod 2019; 52:525-531. [PMID: 31392552 DOI: 10.1007/s11250-019-02038-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/01/2019] [Indexed: 12/29/2022]
Abstract
This study was conducted to evaluate the influence of increased supplementation of zinc oxide (ZnO) on performance, quality of egg, blood chemistry, and antioxidant ability in serum of laying chickens (Hisex Brown) reared from 22 to 34 weeks of age. Seventy-two 22-week-old laying hens (Hisex Brown) were haphazardly separated into 3 handling collections of 24 chickens (6 replicates per treatment and four laying hens per replicate). Dietary treatments included basal diet without zinc addition for control group while the 2nd and 3rd groups contained basal diet with 25 or 75 mg ZnO/kg diet. Results showed that the higher level of ZnO (75 mg ZnO/kg diet) elevated (P < 0.01) feed intake during all studied periods compared with the control group and other groups that contained ZnO. The handling groups supplied with 75 mg ZnO/kg diet gave the worst feed: egg ratio within the whole period and the intervals compared with the control and other ZnO levels. Supplementation of zinc decreased egg number and egg output when compared with the control groups. Egg quality traits were statistically differed due to dietary ZnO supplementation except egg shape index, yolk %, and albumin %. Supplementation of zinc decreased triglyceride (P = 0.001) of laying hens. The low-density lipoproteins (LDL) cholesterol level in serum was decreased with 75 mg ZnO/kg in comparison with all treatment groups. Zinc supplementation increased the level of serum zinc without differences in supplemented zinc levels. Dietary supplemental zinc did not affect antioxidant parameters in the serum. It is concluded that dietary zinc supplementation up to 75 mg/kg used as effective supplement to enhance zinc status and antioxidant ability and activities in laying hens.
Collapse
Affiliation(s)
- M E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - M Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - M T Chaudhry
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, China
| | - M Saeed
- Department of Poultry Science, Faculty of Animal Production &Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 6301, Pakistan
| | - E A M Ahmad
- Animal and Poultry Production Department, Faculty of Agriculture and Natural Resources, Aswan University, Aswan, 81528, Egypt
| | - S A A El-Sayed
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
38
|
Saliu EM, Eitinger M, Zentek J, Vahjen W. Nutrition Related Stress Factors Reduce the Transfer of Extended-Spectrum Beta-Lactamase Resistance Genes between an Escherichia coli Donor and a Salmonella Typhimurium Recipient In Vitro. Biomolecules 2019; 9:E324. [PMID: 31370208 PMCID: PMC6724058 DOI: 10.3390/biom9080324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/26/2022] Open
Abstract
The transfer of extended spectrum β-lactamase (ESBL)-genes occurs frequently between different bacteria species. The aim of this study was to investigate the impact of nutrition related stress factors on this transfer. Thus, an Escherichia coli donor and a Salmonella Typhimurium recipient were co-incubated for 4 h in media containing different levels of the stress factors' pH, osmolality, copper, zinc and acetic, propionic, lactic, and n-butyric acid, as well as subtherapeutic levels of cefotaxime, sulfamethoxazole/trimethoprim, and nitrofurantoin. Conjugation frequencies were calculated as transconjugants per donor, recipient, and total bacterial count. A correction factor for the stress impact on bacterial growth was used. Acetic, lactic, and n-butyric, acid, as well as pH, showed no significant impact. In contrast, increasing concentrations of propionate, zinc, copper, and nitrofurantoin, as well as increased osmolality reduced conjugation frequencies. Sulfamethoxazole/trimethoprim and cefotaxime showed increased transconjugants per donor, which decreased after correction for stress. This study showed, for the model mating pair, that conjugation frequencies decreased under different physiological stress conditions, and, thus, the hypothesis that stress factors may enhance conjugation should be viewed with caution. Furthermore, for studies on in vitro gene transfer, it is vital to consider the impact of studied stressors on bacterial growth.
Collapse
Affiliation(s)
- Eva-Maria Saliu
- Freie Universität Berlin, Institute of Animal Nutrition, Königin-Luise-Str. 49, 14195 Berlin, Germany.
| | - Marita Eitinger
- Freie Universität Berlin, Institute of Animal Nutrition, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - Jürgen Zentek
- Freie Universität Berlin, Institute of Animal Nutrition, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - Wilfried Vahjen
- Freie Universität Berlin, Institute of Animal Nutrition, Königin-Luise-Str. 49, 14195 Berlin, Germany
| |
Collapse
|
39
|
Wen M, Wu B, Zhao H, Liu G, Chen X, Tian G, Cai J, Jia G. Effects of Dietary Zinc on Carcass Traits, Meat Quality, Antioxidant Status, and Tissue Zinc Accumulation of Pekin Ducks. Biol Trace Elem Res 2019; 190:187-196. [PMID: 30343482 DOI: 10.1007/s12011-018-1534-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022]
Abstract
This study investigated the effects of dietary zinc on carcass traits, meat quality, antioxidant capacity, and tissue zinc accumulation of Pekin ducks. A total of 768 1-day-old Pekin ducks were randomly allocated to six dietary treatments and penned in groups of 16 with 8 pens per treatment. Ducks were fed a basal corn-soybean meal diet supplemented with graded levels of zinc sulfate (0, 15, 30, 60, 120, 240 mg zinc/kg) for 35 days. The slaughter weight, carcass weight, eviscerated weight, and breast and leg muscle weight of Pekin ducks were increased with increasing dietary zinc levels (P < 0.05). Zinc supplementation increased the pH value at 24-h postmortem and the intramuscular fat (IMF) (P < 0.05), but decreased the lightness value, drip loss, and shear force in breast meat of ducks (P < 0.05). Increasing dietary zinc increased the activity of superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione reductase (GR), catalase (CAT), and the content of glutathione (GSH), as well as decreased the malondialdehyde (MDA) level in breast muscle (P < 0.05). RT-qPCR analysis demonstrated that supplemental zinc notably enhanced the transcription of SOD, GPX, GR, CAT, and nuclear factor erythroid 2-related factor 2 (Nrf2) (P < 0.05). Meanwhile, zinc accumulation in plasma, breast muscle, liver, and tibia were linearly increased with increasing zinc supplementation (P < 0.05). These results indicated that zinc supplementation could improve carcass traits and meat quality and increase the activities and mRNA levels of antioxidant enzymes in breast muscle of Pekin duck. Base on broken-line regression analysis that 91.32 mg/kg of dietary zinc was suggested for optimal carcass traits, meat quality, antioxidant capacity, and zinc deposition of Pekin duck.
Collapse
Affiliation(s)
- Min Wen
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
- Tibet Vocational Technical College, Lasa, 850000, China
| | - Bing Wu
- Chelota Group, Guanghan, 618300, China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Guangmang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xiaoling Chen
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Jingyi Cai
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Gang Jia
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
40
|
The effect of the dietary inclusion levels and sources of zinc on the performance, metabolism, redox and immune status of turkeys. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Wang G, Liu L, Wang Z, Pei X, Tao W, Xiao Z, Liu B, Wang M, Lin G, Ao T. Comparison of Inorganic and Organically Bound Trace Minerals on Tissue Mineral Deposition and Fecal Excretion in Broiler Breeders. Biol Trace Elem Res 2019; 189:224-232. [PMID: 30062463 DOI: 10.1007/s12011-018-1460-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023]
Abstract
This study investigated the effects of replacement of inorganic trace minerals (ITMs) by organic trace minerals (OTMs) on tissue mineral retention and fecal excretion in "Zhen Ning" yellow feather broiler breeders. Six hundred hens (initial BW: 1.70 ± 0.07 kg) aged 40 weeks were randomly divided into five treatments, with four replicates of 30 broiler breeders each. Experimental treatments were as follows: (1) ITM (Cu, Zn, Fe, Mn, Se providing commercially recommended concentrations), (2) L-ITM (50% of the ITM, except for Se), (3) VL-OTM (37.5% of the ITM, except for Se), (4) L-OTM (equivalent to L-ITM), and (5) OTM (62.5% of the ITM, except for Se). The duration of the study was 10 weeks including 2 weeks for adaptation. Compared with the L-ITM treatment, high-level supplementation of minerals in ITM and OTM increased the concentration of serum Mn and Se, pectoral Fe and pancreas Cu, and Fe (P < 0.05). Birds fed with OTM dietary exhibited comparable mineral retention in muscle compared with ITM. Differences were observed between L-ITM and L-OTM in serum Mn and Se, pectoral Fe, Zn, and Se, and heart Se with L-OTM retaining higher mineral concentrations than L-ITM (P < 0.05). L-OTM retained identical concentration with ITM treatment, except for the pancreatic Fe. All three organic diets reduced the Zn in excreta compared with the two inorganic diets (P < 0.05). This study indicates that replacement of dietary ITMs by OTMs improved mineral deposition in tissues and reduced fecal mineral excretion in broiler breeders under the conditions of this study.
Collapse
Affiliation(s)
- Geng Wang
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Lujie Liu
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Zhongpei Wang
- Ninghai Animal Husbandry and Veterinary Bureau, Ninghai, Zhejiang, China
| | - Xun Pei
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Wenjing Tao
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Zhiping Xiao
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Bojing Liu
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Minqi Wang
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, China.
| | - Gang Lin
- Alltech Biological Products (china) Co., Ltd, Beijing, China
| | - Tuoying Ao
- Center for Animal Nutrigenomics & Applied Animal Nutrition, Alltech Inc, Nicholasville, KY, USA
| |
Collapse
|