1
|
Butz MV, Mittenbühler M, Schwöbel S, Achimova A, Gumbsch C, Otte S, Kiebel S. Contextualizing predictive minds. Neurosci Biobehav Rev 2025; 168:105948. [PMID: 39580009 DOI: 10.1016/j.neubiorev.2024.105948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/13/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
The structure of human memory seems to be optimized for efficient prediction, planning, and behavior. We propose that these capacities rely on a tripartite structure of memory that includes concepts, events, and contexts-three layers that constitute the mental world model. We suggest that the mechanism that critically increases adaptivity and flexibility is the tendency to contextualize. This tendency promotes local, context-encoding abstractions, which focus event- and concept-based planning and inference processes on the task and situation at hand. As a result, cognitive contextualization offers a solution to the frame problem-the need to select relevant features of the environment from the rich stream of sensorimotor signals. We draw evidence for our proposal from developmental psychology and neuroscience. Adopting a computational stance, we present evidence from cognitive modeling research which suggests that context sensitivity is a feature that is critical for maximizing the efficiency of cognitive processes. Finally, we turn to recent deep-learning architectures which independently demonstrate how context-sensitive memory can emerge in a self-organized learning system constrained by cognitively-inspired inductive biases.
Collapse
Affiliation(s)
- Martin V Butz
- Cognitive Modeling, Faculty of Science, University of Tübingen, Sand 14, Tübingen 72076, Germany.
| | - Maximilian Mittenbühler
- Cognitive Modeling, Faculty of Science, University of Tübingen, Sand 14, Tübingen 72076, Germany
| | - Sarah Schwöbel
- Cognitive Computational Neuroscience, Faculty of Psychology, TU Dresden, School of Science, Dresden 01062, Germany
| | - Asya Achimova
- Cognitive Modeling, Faculty of Science, University of Tübingen, Sand 14, Tübingen 72076, Germany
| | - Christian Gumbsch
- Cognitive Modeling, Faculty of Science, University of Tübingen, Sand 14, Tübingen 72076, Germany; Chair of Cognitive and Clinical Neuroscience, Faculty of Psychology, TU Dresden, Dresden 01069, Germany
| | - Sebastian Otte
- Cognitive Modeling, Faculty of Science, University of Tübingen, Sand 14, Tübingen 72076, Germany; Adaptive AI Lab, Institute of Robotics and Cognitive Systems, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
| | - Stefan Kiebel
- Cognitive Computational Neuroscience, Faculty of Psychology, TU Dresden, School of Science, Dresden 01062, Germany
| |
Collapse
|
2
|
Raz I, Gamoran A, Nir-Cohen G, Trzewik M, Salti M, Sadeh T, Gilead M. The future, before, and after: Bayesian and multivariate analyses reveal shared and unique neural mechanisms of imagining and remembering the same unique event. Cereb Cortex 2024; 34:bhae469. [PMID: 39656650 DOI: 10.1093/cercor/bhae469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
Research shows that the brain regions that subserve our ability to remember the past are also involved in imagining the future. Given this similarity in brain activity, it remains unclear how brain activity distinguishes imagination from memory. In the current work, we scanned participants using functional magnetic resonance imaging before and after they performed a highly unique and elaborate activity wherein they went skydiving for the first time in their lives. Multivariate pattern analysis, Bayesian inference, and a tightly controlled experimental design were used to identify the neural activity that differentiates between memory and imagination of the same events. The results showed that large swaths of the default mode network exhibited identical patterns of activity in recollection and imagination; several frontal areas were involved in imagination (but not in recollection). Representational similarity analysis revealed that the left ventral precuneus exhibited different patterns of memory and imagination. Further examination revealed that this subarea may be especially important for recollection of specific episodes. These results advance our understanding of how the critical distinction between the past and future might be manifested in the brain.
Collapse
Affiliation(s)
- Inon Raz
- Department of Psychology, Ben Gurion University, P.O.B. 653, Beer-Sheva 8410501, Israel
| | - Avi Gamoran
- Department of Psychology, Ben Gurion University, P.O.B. 653, Beer-Sheva 8410501, Israel
| | - Gal Nir-Cohen
- The School of Brain Sciences and Cognition, Ben Gurion University, P.O.B. 653, Beer-Sheva 8410501, Israel
| | - Maayan Trzewik
- School of Psychological Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Moti Salti
- The School of Brain Sciences and Cognition, Ben Gurion University, P.O.B. 653, Beer-Sheva 8410501, Israel
- Brain Imaging Research Center (BIRC), P.O.B. 653, Beer-Sheva 8410501, Israel
| | - Talya Sadeh
- Department of Psychology, Ben Gurion University, P.O.B. 653, Beer-Sheva 8410501, Israel
- The School of Brain Sciences and Cognition, Ben Gurion University, P.O.B. 653, Beer-Sheva 8410501, Israel
| | - Michael Gilead
- The School of Brain Sciences and Cognition, Ben Gurion University, P.O.B. 653, Beer-Sheva 8410501, Israel
- Sagol School of Neuroscience, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Friedrich J, Fischer MH, Raab M. Invariant representations in abstract concept grounding - the physical world in grounded cognition. Psychon Bull Rev 2024; 31:2558-2580. [PMID: 38806790 PMCID: PMC11680661 DOI: 10.3758/s13423-024-02522-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
Grounded cognition states that mental representations of concepts consist of experiential aspects. For example, the concept "cup" consists of the sensorimotor experiences from interactions with cups. Typical modalities in which concepts are grounded are: The sensorimotor system (including interoception), emotion, action, language, and social aspects. Here, we argue that this list should be expanded to include physical invariants (unchanging features of physical motion; e.g., gravity, momentum, friction). Research on physical reasoning consistently demonstrates that physical invariants are represented as fundamentally as other grounding substrates, and therefore should qualify. We assess several theories of concept representation (simulation, conceptual metaphor, conceptual spaces, predictive processing) and their positions on physical invariants. We find that the classic grounded cognition theories, simulation and conceptual metaphor theory, have not considered physical invariants, while conceptual spaces and predictive processing have. We conclude that physical invariants should be included into grounded cognition theories, and that the core mechanisms of simulation and conceptual metaphor theory are well suited to do this. Furthermore, conceptual spaces and predictive processing are very promising and should also be integrated with grounded cognition in the future.
Collapse
Affiliation(s)
- Jannis Friedrich
- German Sport University Cologne, Germany, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
| | - Martin H Fischer
- Psychology Department, University of Potsdam, Karl-Liebknecht-Strasse 24-25, House 14 D - 14476, Potsdam-Golm, Germany
| | - Markus Raab
- German Sport University Cologne, Germany, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| |
Collapse
|
4
|
Zarzeczna N, Bertlich T, Rutjens BT, Gerstner I, von Hecker U. Space as a mental toolbox in the representation of meaning. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240985. [PMID: 39507995 PMCID: PMC11537764 DOI: 10.1098/rsos.240985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024]
Abstract
The experience of meaning has been found to be mapped onto spatial proximity whereby coherent-in contrast to incoherent-elements in a set are mentally represented as closer together in physical space. In a series of four experiments, we show that spatial representation of coherence is malleable and can employ other meaningful concrete dimensions of space that are made salient. When given task instructions cueing verticality, participants represented coherence in the upper vertical location when making judgements about the logical validity of realistic (Experiments 1 and 4) and unrealistic syllogistic scenarios (Experiment 3). When the task instruction made the spatial proximity between the stimuli materials and the participant salient (subjective proximity), participants represented coherence as spatially close to themselves (Experiment 2). We also found that being accurate in judging the validity of syllogisms was associated with representing coherence in the upper visual field or close to oneself. Overall, our findings show that identifying semantic links between an abstract concept and a given spatial dimension involves using that dimension to create spatial metaphoric mappings of the concept.
Collapse
Affiliation(s)
| | - Tisa Bertlich
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | | | | | | |
Collapse
|
5
|
Law KF, Syropoulos S, Coleman M, Gainsburg I, O'Connor BB. Moral Future-Thinking: Does the Moral Circle Stand the Test of Time? PERSONALITY AND SOCIAL PSYCHOLOGY BULLETIN 2024:1461672241284324. [PMID: 39470223 DOI: 10.1177/01461672241284324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Humanity's long-term welfare may lie in the hands of those who are presently living, raising the question of whether people today hold the generations of tomorrow in their moral circles. Five studies (NTotal = 1652; Prolific) reveal present-oriented bias in the moral standing of future generations, with greater perceived moral obligation, moral concern, and prosocial intentions for proximal relative to distal future targets. Yet, present-oriented bias appears stronger for socially close compared with socially distant targets and for human targets relative to non-human animals and entities in nature. Individual differences, including longtermism beliefs and subjective imaginative vividness, predict greater concern for and obligation to the future. Likewise, concern and obligation predict greater future-oriented generosity. Our studies are among the first to explore moral considerations for targets across deep temporal expanses, reconcile conflicting evidence in the extant literature on moral judgment and future-thinking, and offer practical implications for bettering the shared societal future.
Collapse
Affiliation(s)
- Kyle Fiore Law
- Department of Psychology, University at Albany, State University of New York, Albany, NY, USA
| | - Stylianos Syropoulos
- The Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, MA, USA
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA
| | - Matthew Coleman
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Izzy Gainsburg
- Ash Center of Harvard Kennedy School, Harvard University
| | - Brendan Bo O'Connor
- Department of Psychology, University at Albany, State University of New York, Albany, NY, USA
| |
Collapse
|
6
|
Ram H, Grinfeld G, Liberman N. Anticipated variability increases generalization of predictive learning. NPJ SCIENCE OF LEARNING 2024; 9:55. [PMID: 39244561 PMCID: PMC11380665 DOI: 10.1038/s41539-024-00269-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/23/2024] [Indexed: 09/09/2024]
Abstract
We show that learners generalized more broadly around the learned stimulus when they expected more variability between the learning set and the generalization set, as well as within the generalization set. Experiments 1 and 3 used a predictive learning task and demonstrated border perceptual generalization both when expected variability was manipulated explicitly via instructions (Experiment 1), and implicitly by increasing temporal distance to the anticipated application of learning (Experiment 3). Experiment 2 showed that expecting to apply learning in the more distant future increases expected variability in the generalization set. We explain the relation between expected variability and generalization as an accuracy-applicability trade-off: when learners anticipate more variable generalization targets, they "cast a wider net" during learning, by attributing the outcome to a broader range of stimuli. The use of more abstract, broader categories when anticipating a more distant future application aligns with Construal Level Theory of psychological distance.
Collapse
Affiliation(s)
- Hadar Ram
- Bar-Ilan University, Tel Aviv, Israel.
| | | | - Nira Liberman
- Tel Aviv University, Tel Aviv, Israel
- International Faculty, Key Profile Area II: Behavioral Economic Engineering and Social Cognition, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Bausenhart KM, Ulrich R, Kaup B. Association between abstraction level and time: Are future and past more abstract than the present? Q J Exp Psychol (Hove) 2024; 77:1595-1609. [PMID: 37981747 PMCID: PMC11295401 DOI: 10.1177/17470218231217732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 08/03/2023] [Accepted: 09/08/2023] [Indexed: 11/21/2023]
Abstract
Construal level theory suggests that objects or events are represented differently depending on their psychological distance from ourselves. Specifically, objects and events should be represented more abstractly the farther they are removed from direct experience through distance in the spatial, temporal, social, or hypotheticality domains. Bar-Anan et al. reported a key finding supporting this assumed association of the various distance dimensions and abstraction level. In their study, participants responded faster in an Implicit Association Task when temporally near and concrete concepts, as well as temporally far and abstract concepts, were mapped to the same rather than different response keys. In this study, we conceptually replicated this basic finding when employing temporal adverbs relating to present versus future time, and nouns referring to concrete versus abstract concepts (Experiment 1). Evidence for such an association, however, was largely absent (and significantly weaker than in Experiment 1) when temporal adverbs relating to the past were employed as instances of the large temporal distance category (Experiment 2). We propose that the uncertainty associated with the future, as opposed to the past, might play an important role in this temporal asymmetry by increasing psychological distance.
Collapse
|
8
|
Grossmann I, Peetz J, Dorfman A, Rotella A, Buehler R. The Wise Mind Balances the Abstract and the Concrete. Open Mind (Camb) 2024; 8:826-858. [PMID: 38974582 PMCID: PMC11226238 DOI: 10.1162/opmi_a_00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/17/2024] [Indexed: 07/09/2024] Open
Abstract
We explored how individuals' mental representations of complex and uncertain situations impact their ability to reason wisely. To this end, we introduce situated methods to capture abstract and concrete mental representations and the switching between them when reflecting on social challenges. Using these methods, we evaluated the alignment of abstractness and concreteness with four integral facets of wisdom: intellectual humility, open-mindedness, perspective-taking, and compromise-seeking. Data from North American and UK participants (N = 1,151) revealed that both abstract and concrete construals significantly contribute to wise reasoning, even when controlling for a host of relevant covariates and potential response bias. Natural language processing of unstructured texts among high (top 25%) and low (bottom 25%) wisdom participants corroborated these results: semantic networks of the high wisdom group reveal greater use of both abstract and concrete themes compared to the low wisdom group. Finally, employing a repeated strategy-choice method as an additional measure, our findings demonstrated that individuals who showed a greater balance and switching between these construal types exhibited higher wisdom. Our findings advance understanding of individual differences in mental representations and how construals shape reasoning across contexts in everyday life.
Collapse
Affiliation(s)
- Igor Grossmann
- Department of Psychology, University of Waterloo, Waterloo, ON, Canada
| | - Johanna Peetz
- Psychology Department, Carleton University, Ottawa, ON, Canada
| | - Anna Dorfman
- Department of Psychology, Bar-Ilan University, Ramat Gan, Israel
| | - Amanda Rotella
- Department of Psychology, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Roger Buehler
- Psychology Department, Wilfrid Laurier University, Waterloo, ON, Canada
| |
Collapse
|
9
|
Hackel LM, Kalkstein DA, Mende-Siedlecki P. Simplifying social learning. Trends Cogn Sci 2024; 28:428-440. [PMID: 38331595 DOI: 10.1016/j.tics.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
Social learning is complex, but people often seem to navigate social environments with ease. This ability creates a puzzle for traditional accounts of reinforcement learning (RL) that assume people negotiate a tradeoff between easy-but-simple behavior (model-free learning) and complex-but-difficult behavior (e.g., model-based learning). We offer a theoretical framework for resolving this puzzle: although social environments are complex, people have social expertise that helps them behave flexibly with low cognitive cost. Specifically, by using familiar concepts instead of focusing on novel details, people can turn hard learning problems into simpler ones. This ability highlights social learning as a prototype for studying cognitive simplicity in the face of environmental complexity and identifies a role for conceptual knowledge in everyday reward learning.
Collapse
Affiliation(s)
- Leor M Hackel
- University of Southern California, Los Angeles, CA 90089, USA.
| | | | | |
Collapse
|
10
|
O'Brien B, Rodriguez M, Gallitto E, Atance CM. Tomorrow versus a year from now: Do children represent the near and distant future differently? J Exp Child Psychol 2024; 241:105878. [PMID: 38354446 DOI: 10.1016/j.jecp.2024.105878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/23/2023] [Accepted: 01/20/2024] [Indexed: 02/16/2024]
Abstract
Adults represent the near future more concretely and vividly than the distant future, with important implications for future-oriented behavior (e.g., planning, self-control). Although children are adept at describing future events at around 5 years of age, we know little about how temporal distance (i.e., "near" vs "distant") affects their future event representations. In a series of three experiments, we sought to determine the effects of temporal distance, age, and event frequency on children's future event representations. Participants, 5- to 9-year-olds, were asked to describe frequent (e.g., snack) and infrequent (e.g., party) events, with half of children imagining that these events would happen in the near future and the other half imagining that they would happen in the distant future. We investigated the effect of temporal distance on numerous event representation indicators (e.g., clarity, details, pronouns), all theoretically grounded in previous literature. Although children perceived near events as closer in time than distant events (Experiments 2 and 2b) and temporal distance affected the clarity of event representations (Experiment 2), most indicators were not affected by temporal distance. In contrast, event frequency (examined in Experiment 1) played an important role in children's event representations, with infrequent events being described more concretely than frequent events. Results suggest that young children may begin perceiving differences in temporal distance but that this does not translate to their event representations (e.g., clarity, pronouns) until later in development. Implications for children's future thinking and future research are discussed.
Collapse
Affiliation(s)
- Bronwyn O'Brien
- School of Psychology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Michela Rodriguez
- School of Psychology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Elena Gallitto
- School of Psychology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Cristina M Atance
- School of Psychology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
11
|
Kaup B, Ulrich R, Bausenhart KM, Bryce D, Butz MV, Dignath D, Dudschig C, Franz VH, Friedrich C, Gawrilow C, Heller J, Huff M, Hütter M, Janczyk M, Leuthold H, Mallot H, Nürk HC, Ramscar M, Said N, Svaldi J, Wong HY. Modal and amodal cognition: an overarching principle in various domains of psychology. PSYCHOLOGICAL RESEARCH 2024; 88:307-337. [PMID: 37847268 PMCID: PMC10857976 DOI: 10.1007/s00426-023-01878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/17/2023] [Indexed: 10/18/2023]
Abstract
Accounting for how the human mind represents the internal and external world is a crucial feature of many theories of human cognition. Central to this question is the distinction between modal as opposed to amodal representational formats. It has often been assumed that one but not both of these two types of representations underlie processing in specific domains of cognition (e.g., perception, mental imagery, and language). However, in this paper, we suggest that both formats play a major role in most cognitive domains. We believe that a comprehensive theory of cognition requires a solid understanding of these representational formats and their functional roles within and across different domains of cognition, the developmental trajectory of these representational formats, and their role in dysfunctional behavior. Here we sketch such an overarching perspective that brings together research from diverse subdisciplines of psychology on modal and amodal representational formats so as to unravel their functional principles and their interactions.
Collapse
Affiliation(s)
- Barbara Kaup
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany.
| | - Rolf Ulrich
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany.
| | - Karin M Bausenhart
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
| | - Donna Bryce
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
- Department of Psychology, University of Augsburg, Augsburg, Germany
| | - Martin V Butz
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - David Dignath
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
| | - Carolin Dudschig
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
| | - Volker H Franz
- Department of Computer Science, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Claudia Friedrich
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
| | - Caterina Gawrilow
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
| | - Jürgen Heller
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
| | - Markus Huff
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
- Leibniz-Institut für Wissensmedien, Tübingen, Germany
| | - Mandy Hütter
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
| | - Markus Janczyk
- Department of Psychology, University of Bremen, Bremen, Germany
| | - Hartmut Leuthold
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
| | - Hanspeter Mallot
- Department of Biology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Hans-Christoph Nürk
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
| | - Michael Ramscar
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
| | - Nadia Said
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
| | - Jennifer Svaldi
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
- German Center for Mental Health (DZPG), partner site, Tübingen, Germany
| | - Hong Yu Wong
- Department of Philosophy, University of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Schiller D, Yu ANC, Alia-Klein N, Becker S, Cromwell HC, Dolcos F, Eslinger PJ, Frewen P, Kemp AH, Pace-Schott EF, Raber J, Silton RL, Stefanova E, Williams JHG, Abe N, Aghajani M, Albrecht F, Alexander R, Anders S, Aragón OR, Arias JA, Arzy S, Aue T, Baez S, Balconi M, Ballarini T, Bannister S, Banta MC, Barrett KC, Belzung C, Bensafi M, Booij L, Bookwala J, Boulanger-Bertolus J, Boutros SW, Bräscher AK, Bruno A, Busatto G, Bylsma LM, Caldwell-Harris C, Chan RCK, Cherbuin N, Chiarella J, Cipresso P, Critchley H, Croote DE, Demaree HA, Denson TF, Depue B, Derntl B, Dickson JM, Dolcos S, Drach-Zahavy A, Dubljević O, Eerola T, Ellingsen DM, Fairfield B, Ferdenzi C, Friedman BH, Fu CHY, Gatt JM, de Gelder B, Gendolla GHE, Gilam G, Goldblatt H, Gooding AEK, Gosseries O, Hamm AO, Hanson JL, Hendler T, Herbert C, Hofmann SG, Ibanez A, Joffily M, Jovanovic T, Kahrilas IJ, Kangas M, Katsumi Y, Kensinger E, Kirby LAJ, Koncz R, Koster EHW, Kozlowska K, Krach S, Kret ME, Krippl M, Kusi-Mensah K, Ladouceur CD, Laureys S, Lawrence A, Li CSR, Liddell BJ, Lidhar NK, Lowry CA, Magee K, Marin MF, Mariotti V, Martin LJ, Marusak HA, Mayer AV, Merner AR, Minnier J, Moll J, Morrison RG, Moore M, Mouly AM, Mueller SC, Mühlberger A, Murphy NA, Muscatello MRA, Musser ED, Newton TL, Noll-Hussong M, Norrholm SD, Northoff G, Nusslock R, Okon-Singer H, Olino TM, Ortner C, Owolabi M, Padulo C, Palermo R, Palumbo R, Palumbo S, Papadelis C, Pegna AJ, Pellegrini S, Peltonen K, Penninx BWJH, Pietrini P, Pinna G, Lobo RP, Polnaszek KL, Polyakova M, Rabinak C, Helene Richter S, Richter T, Riva G, Rizzo A, Robinson JL, Rosa P, Sachdev PS, Sato W, Schroeter ML, Schweizer S, Shiban Y, Siddharthan A, Siedlecka E, Smith RC, Soreq H, Spangler DP, Stern ER, Styliadis C, Sullivan GB, Swain JE, Urben S, Van den Stock J, Vander Kooij MA, van Overveld M, Van Rheenen TE, VanElzakker MB, Ventura-Bort C, Verona E, Volk T, Wang Y, Weingast LT, Weymar M, Williams C, Willis ML, Yamashita P, Zahn R, Zupan B, Lowe L. The Human Affectome. Neurosci Biobehav Rev 2024; 158:105450. [PMID: 37925091 PMCID: PMC11003721 DOI: 10.1016/j.neubiorev.2023.105450] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Over the last decades, theoretical perspectives in the interdisciplinary field of the affective sciences have proliferated rather than converged due to differing assumptions about what human affective phenomena are and how they work. These metaphysical and mechanistic assumptions, shaped by academic context and values, have dictated affective constructs and operationalizations. However, an assumption about the purpose of affective phenomena can guide us to a common set of metaphysical and mechanistic assumptions. In this capstone paper, we home in on a nested teleological principle for human affective phenomena in order to synthesize metaphysical and mechanistic assumptions. Under this framework, human affective phenomena can collectively be considered algorithms that either adjust based on the human comfort zone (affective concerns) or monitor those adaptive processes (affective features). This teleologically-grounded framework offers a principled agenda and launchpad for both organizing existing perspectives and generating new ones. Ultimately, we hope the Human Affectome brings us a step closer to not only an integrated understanding of human affective phenomena, but an integrated field for affective research.
Collapse
Affiliation(s)
- Daniela Schiller
- Department of Psychiatry, the Nash Family Department of Neuroscience, and the Friedman Brain Institute, at the Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Alessandra N C Yu
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Nelly Alia-Klein
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Susanne Becker
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany; Integrative Spinal Research Group, Department of Chiropractic Medicine, University Hospital Balgrist, University of Zurich, Balgrist Campus, Lengghalde 5, 8008 Zurich, Switzerland
| | - Howard C Cromwell
- J.P. Scott Center for Neuroscience, Mind and Behavior, Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, United States
| | - Florin Dolcos
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Paul J Eslinger
- Departments of Neurology, Neural & Behavioral Science, Radiology, and Public Health Sciences, Penn State Hershey Medical Center and College of Medicine, Hershey, PA, United States
| | - Paul Frewen
- Departments of Psychiatry, Psychology and Neuroscience at the University of Western Ontario, London, Ontario, Canada
| | - Andrew H Kemp
- School of Psychology, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, United Kingdom
| | - Edward F Pace-Schott
- Harvard Medical School and Massachusetts General Hospital, Department of Psychiatry, Boston, MA, United States; Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Departments of Neurology, Radiation Medicine, Psychiatry, and Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, United States
| | - Rebecca L Silton
- Department of Psychology, Loyola University Chicago, Chicago, IL, United States
| | - Elka Stefanova
- Faculty of Medicine, University of Belgrade, Serbia; Neurology Clinic, Clinical Center of Serbia, Serbia
| | - Justin H G Williams
- Griffith University, Gold Coast Campus, 1 Parklands Dr, Southport, QLD 4215, Australia
| | - Nobuhito Abe
- Institute for the Future of Human Society, Kyoto University, 46 Shimoadachi-cho, Yoshida Sakyo-ku, Kyoto, Japan
| | - Moji Aghajani
- Institute of Education & Child Studies, Section Forensic Family & Youth Care, Leiden University, the Netherlands; Department of Psychiatry, Amsterdam UMC, Location VUMC, GGZ InGeest Research & Innovation, Amsterdam Neuroscience, the Netherlands
| | - Franziska Albrecht
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany; Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Karolinska University Hospital, Women's Health and Allied Health Professionals Theme, Medical unit Occupational Therapy & Physiotherapy, Stockholm, Sweden
| | - Rebecca Alexander
- Neuroscience Research Australia, Randwick, Sydney, NSW, Australia; Australian National University, Canberra, ACT, Australia
| | - Silke Anders
- Department of Neurology, University of Lübeck, Lübeck, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Oriana R Aragón
- Yale University, 2 Hillhouse Ave, New Haven, CT, United States; Cincinnati University, Marketing Department, 2906 Woodside Drive, Cincinnati, OH 45221-0145, United States
| | - Juan A Arias
- School of Psychology, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, United Kingdom; Department of Statistics, Mathematical Analysis, and Operational Research, Universidade de Santiago de Compostela, Spain; The Galician Center for Mathematical Research and Technology (CITMAga), 15782 Santiago de Compostela, Spain
| | - Shahar Arzy
- Department of Medical Neurobiology, Hebrew University, Jerusalem, Israel
| | - Tatjana Aue
- Institute of Psychology, University of Bern, Fabrikstr. 8, 3012 Bern, Switzerland
| | | | - Michela Balconi
- International Research Center for Cognitive Applied Neuroscience, Catholic University of Milan, Milan, Italy
| | - Tommaso Ballarini
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Scott Bannister
- Durham University, Palace Green, DH1 RL3 Durham, United Kingdom
| | | | - Karen Caplovitz Barrett
- Department of Human Development & Family Studies, Colorado State University, Fort Collins, CO, United States; Department of Community & Behavioral Health, Colorado School of Public Health, Denver, CO, United States
| | | | - Moustafa Bensafi
- Research Center in Neurosciences of Lyon, CNRS UMR5292, INSERM U1028, Claude Bernard University Lyon 1, Lyon, Centre Hospitalier Le Vinatier, 95 bd Pinel, 69675 Bron Cedex, France
| | - Linda Booij
- Department of Psychology, Concordia University, Montreal, Canada; CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | - Jamila Bookwala
- Department of Psychology, Lafayette College, Easton, PA, United States
| | - Julie Boulanger-Bertolus
- Department of Anesthesiology and Center for Consciousness Science, University of Michigan, Ann Arbor, MI, United States
| | - Sydney Weber Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States
| | - Anne-Kathrin Bräscher
- Department of Clinical Psychology, Psychotherapy and Experimental Psychopathology, University of Mainz, Wallstr. 3, 55122 Mainz, Germany; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Antonio Bruno
- Department of Biomedical, Dental Sciences and Morpho-Functional Imaging - University of Messina, Italy
| | - Geraldo Busatto
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Lauren M Bylsma
- Departments of Psychiatry and Psychology; and the Center for Neural Basis of Cognition, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health, and Wellbeing, Australian National University, Canberra, ACT, Australia
| | - Julian Chiarella
- Department of Psychology, Concordia University, Montreal, Canada; CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | - Pietro Cipresso
- Applied Technology for Neuro-Psychology Lab., Istituto Auxologico Italiano (IRCCS), Milan, Italy; Department of Psychology, University of Turin, Turin, Italy
| | - Hugo Critchley
- Psychiatry, Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Sussex, United Kingdom
| | - Denise E Croote
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai and Friedman Brain Institute, New York, NY 10029, United States; Hospital Universitário Gaffrée e Guinle, Universidade do Rio de Janeiro, Brazil
| | - Heath A Demaree
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas F Denson
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Brendan Depue
- Departments of Psychological and Brain Sciences and Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States
| | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| | - Joanne M Dickson
- Edith Cowan University, Psychology Discipline, School of Arts and Humanities, 270 Joondalup Dr, Joondalup, WA 6027, Australia
| | - Sanda Dolcos
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Anat Drach-Zahavy
- The Faculty of Health and Welfare Sciences, University of Haifa, Haifa, Israel
| | - Olga Dubljević
- Neurology Clinic, Clinical Center of Serbia, Serbia; Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Belgrade, Serbia
| | - Tuomas Eerola
- Durham University, Palace Green, DH1 RL3 Durham, United Kingdom
| | - Dan-Mikael Ellingsen
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Beth Fairfield
- Department of Humanistic Studies, University of Naples Federico II, Naples, Italy; UniCamillus, International Medical University, Rome, Italy
| | - Camille Ferdenzi
- Research Center in Neurosciences of Lyon, CNRS UMR5292, INSERM U1028, Claude Bernard University Lyon 1, Lyon, Centre Hospitalier Le Vinatier, 95 bd Pinel, 69675 Bron Cedex, France
| | - Bruce H Friedman
- Department of Psychology, Virginia Tech, Blacksburg, VA, United States
| | - Cynthia H Y Fu
- School of Psychology, University of East London, United Kingdom; Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Justine M Gatt
- Neuroscience Research Australia, Randwick, Sydney, NSW, Australia; School of Psychology, University of New South Wales, Randwick, Sydney, NSW, Australia
| | - Beatrice de Gelder
- Department of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Guido H E Gendolla
- Geneva Motivation Lab, University of Geneva, FPSE, Section of Psychology, CH-1211 Geneva 4, Switzerland
| | - Gadi Gilam
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Systems Neuroscience and Pain Laboratory, Stanford University School of Medicine, CA, United States
| | - Hadass Goldblatt
- Department of Nursing, Faculty of Social Welfare & Health Sciences, University of Haifa, Haifa, Israel
| | | | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness & Centre du Cerveau2, University and University Hospital of Liege, Liege, Belgium
| | - Alfons O Hamm
- Department of Biological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany
| | - Jamie L Hanson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15206, United States
| | - Talma Hendler
- Tel Aviv Center for Brain Function, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; School of Psychological Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Cornelia Herbert
- Department of Applied Emotion and Motivation Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Stefan G Hofmann
- Department of Clinical Psychology, Philipps University Marburg, Germany
| | - Agustin Ibanez
- Universidad de San Andres, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), United States and Trinity Collegue Dublin (TCD), Ireland
| | - Mateus Joffily
- Groupe d'Analyse et de Théorie Economique (GATE), 93 Chemin des Mouilles, 69130 Écully, France
| | - Tanja Jovanovic
- Department of Psychiatry and Behavaioral Neurosciences, Wayne State University, Detroit, MI, United States
| | - Ian J Kahrilas
- Department of Psychology, Loyola University Chicago, Chicago, IL, United States
| | - Maria Kangas
- Department of Psychology, Macquarie University, Sydney, Australia
| | - Yuta Katsumi
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, United States; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Elizabeth Kensinger
- Department of Psychology and Neuroscience, Boston College, Boston, MA, United States
| | - Lauren A J Kirby
- Department of Psychology and Counseling, University of Texas at Tyler, Tyler, TX, United States
| | - Rebecca Koncz
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, Australia; Specialty of Psychiatry, The University of Sydney, Concord, New South Wales, Australia
| | - Ernst H W Koster
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | | | - Sören Krach
- Social Neuroscience Lab, Translational Psychiatry Unit, University of Lübeck, Lübeck, Germany
| | - Mariska E Kret
- Leiden University, Cognitive Psychology, Pieter de la Court, Waassenaarseweg 52, Leiden 2333 AK, the Netherlands
| | - Martin Krippl
- Faculty of Natural Sciences, Department of Psychology, Otto von Guericke University Magdeburg, Universitätsplatz 2, Magdeburg, Germany
| | - Kwabena Kusi-Mensah
- Department of Psychiatry, Komfo Anokye Teaching Hospital, P. O. Box 1934, Kumasi, Ghana; Department of Psychiatry, University of Cambridge, Darwin College, Silver Street, CB3 9EU Cambridge, United Kingdom; Behavioural Sciences Department, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Cecile D Ladouceur
- Departments of Psychiatry and Psychology and the Center for Neural Basis of Cognition (CNBC), University of Pittsburgh, Pittsburgh, PA, United States
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness & Centre du Cerveau2, University and University Hospital of Liege, Liege, Belgium
| | - Alistair Lawrence
- Scotland's Rural College, King's Buildings, Edinburgh, Scotland; The Roslin Institute, University of Edinburgh, Easter Bush, Scotland
| | - Chiang-Shan R Li
- Connecticut Mental Health Centre, Yale University, New Haven, CT, United States
| | - Belinda J Liddell
- School of Psychology, University of New South Wales, Randwick, Sydney, NSW, Australia
| | - Navdeep K Lidhar
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Kelsey Magee
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Marie-France Marin
- Department of Psychology, Université du Québec à Montréal, Montreal, Canada; Research Center, Institut universitaire en santé mentale de Montréal, Montreal, Canada
| | - Veronica Mariotti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Loren J Martin
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Hilary A Marusak
- Department of Psychiatry and Behavaioral Neurosciences, Wayne State University, Detroit, MI, United States; Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, MI, United States
| | - Annalina V Mayer
- Social Neuroscience Lab, Translational Psychiatry Unit, University of Lübeck, Lübeck, Germany
| | - Amanda R Merner
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Jessica Minnier
- School of Public Health, Oregon Health & Science University, Portland, OR, United States
| | - Jorge Moll
- Cognitive Neuroscience and Neuroinformatics Unit, D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Robert G Morrison
- Department of Psychology, Loyola University Chicago, Chicago, IL, United States
| | - Matthew Moore
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, United States; War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, CNRS-UMR 5292, INSERM U1028, Universite Lyon, Lyon, France
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Andreas Mühlberger
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany
| | - Nora A Murphy
- Department of Psychology, Loyola Marymount University, Los Angeles, CA, United States
| | | | - Erica D Musser
- Center for Children and Families, Department of Psychology, Florida International University, Miami, FL, United States
| | - Tamara L Newton
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, United States
| | - Michael Noll-Hussong
- Psychosomatic Medicine and Psychotherapy, TU Muenchen, Langerstrasse 3, D-81675 Muenchen, Germany
| | - Seth Davin Norrholm
- Department of Psychiatry and Behavaioral Neurosciences, Wayne State University, Detroit, MI, United States
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa Institute of Mental Health Research, Royal Ottawa Mental Health Centre, Canada
| | - Robin Nusslock
- Department of Psychology and Institute for Policy Research, Northwestern University, 2029 Sheridan Road, Evanston, IL, United States
| | - Hadas Okon-Singer
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Thomas M Olino
- Department of Psychology, Temple University, 1701N. 13th St, Philadelphia, PA, United States
| | - Catherine Ortner
- Thompson Rivers University, Department of Psychology, 805 TRU Way, Kamloops, BC, Canada
| | - Mayowa Owolabi
- Department of Medicine and Center for Genomic and Precision Medicine, College of Medicine, University of Ibadan; University College Hospital, Ibadan, Oyo State, Nigeria; Blossom Specialist Medical Center Ibadan, Oyo State, Nigeria
| | - Caterina Padulo
- Department of Psychological, Health and Territorial Sciences, University of Chieti, Chieti, Italy
| | - Romina Palermo
- School of Psychological Science, University of Western Australia, Perth, WA, Australia
| | - Rocco Palumbo
- Department of Psychological, Health and Territorial Sciences, University of Chieti, Chieti, Italy
| | - Sara Palumbo
- Department of Surgical, Medical and Molecular Pathology and of Critical Care, University of Pisa, Pisa, Italy
| | - Christos Papadelis
- Jane and John Justin Neuroscience Center, Cook Children's Health Care System, Fort Worth, TX, United States; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Alan J Pegna
- School of Psychology, University of Queensland, Saint Lucia, Queensland, Australia
| | - Silvia Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Kirsi Peltonen
- Research Centre for Child Psychiatry, University of Turku, Turku, Finland; INVEST Research Flagship, University of Turku, Turku, Finland
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC, Location VUMC, GGZ InGeest Research & Innovation, Amsterdam Neuroscience, the Netherlands
| | | | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Rosario Pintos Lobo
- Center for Children and Families, Department of Psychology, Florida International University, Miami, FL, United States
| | - Kelly L Polnaszek
- Department of Psychology, Loyola University Chicago, Chicago, IL, United States
| | - Maryna Polyakova
- Neurology Department, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christine Rabinak
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, United States
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Badestraße 13, Münster, Germany
| | - Thalia Richter
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Giuseppe Riva
- Applied Technology for Neuro-Psychology Lab., Istituto Auxologico Italiano (IRCCS), Milan, Italy; Humane Technology Lab., Università Cattolica del Sacro Cuore, Milan, Italy
| | - Amelia Rizzo
- Department of Biomedical, Dental Sciences and Morpho-Functional Imaging - University of Messina, Italy
| | | | - Pedro Rosa
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, Australia; Neuropsychiatric Institute, The Prince of Wales Hospital, Sydney, Australia
| | - Wataru Sato
- Psychological Process Research Team, Guardian Robot Project, RIKEN, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Susanne Schweizer
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom; School of Psychology, University of New South Wales, Sydney, Australia
| | - Youssef Shiban
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany; Department of Psychology (Clinical Psychology and Psychotherapy Research), PFH - Private University of Applied Sciences, Gottingen, Germany
| | - Advaith Siddharthan
- Knowledge Media Institute, The Open University, Milton Keynes MK7 6AA, United Kingdom
| | - Ewa Siedlecka
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Robert C Smith
- Departments of Medicine and Psychiatry, Michigan State University, East Lansing, MI, United States
| | - Hermona Soreq
- Department of Biological Chemistry, Edmond and Lily Safra Center of Brain Science and The Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Derek P Spangler
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, United States
| | - Emily R Stern
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States; New York University School of Medicine, New York, NY, United States
| | - Charis Styliadis
- Neuroscience of Cognition and Affection group, Lab of Medical Physics and Digital Innovation, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - James E Swain
- Departments of Psychiatry & Behavioral Health, Psychology, Obstetrics, Gynecology & Reproductive Medicine, and Program in Public Health, Renaissance School of Medicine at Stony Brook University, New York, United States
| | - Sébastien Urben
- Division of Child and Adolescent Psychiatry, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Jan Van den Stock
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Michael A Vander Kooij
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Universitatsmedizin der Johannes Guttenberg University Medical Center, Mainz, Germany
| | | | - Tamsyn E Van Rheenen
- University of Melbourne, Melbourne Neuropsychiatry Centre, Department of Psychiatry, 161 Barry Street, Carlton, VIC, Australia
| | - Michael B VanElzakker
- Division of Neurotherapeutics, Massachusetts General Hospital, Boston, MA, United States
| | - Carlos Ventura-Bort
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| | - Edelyn Verona
- Department of Psychology, University of South Florida, Tampa, FL, United States
| | - Tyler Volk
- Professor Emeritus of Biology and Environmental Studies, New York University, New York, NY, United States
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Leah T Weingast
- Department of Social Work and Human Services and the Department of Psychological Sciences, Center for Young Adult Addiction and Recovery, Kennesaw State University, Kennesaw, GA, United States
| | - Mathias Weymar
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany; Faculty of Health Sciences Brandenburg, University of Potsdam, Germany
| | - Claire Williams
- School of Psychology, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, United Kingdom; Elysium Neurological Services, Elysium Healthcare, The Avalon Centre, United Kingdom
| | - Megan L Willis
- School of Behavioural and Health Sciences, Australian Catholic University, Sydney, NSW, Australia
| | - Paula Yamashita
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Roland Zahn
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Barbra Zupan
- Central Queensland University, School of Health, Medical and Applied Sciences, Bruce Highway, Rockhampton, QLD, Australia
| | - Leroy Lowe
- Neuroqualia (NGO), Truro, Nova Scotia, Canada.
| |
Collapse
|
13
|
Chowdhury A, van Lutterveld R, Laukkonen RE, Slagter HA, Ingram DM, Sacchet MD. Investigation of advanced mindfulness meditation "cessation" experiences using EEG spectral analysis in an intensively sampled case study. Neuropsychologia 2023; 190:108694. [PMID: 37777153 PMCID: PMC10843092 DOI: 10.1016/j.neuropsychologia.2023.108694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
Mindfulness meditation is a contemplative practice informed by Buddhism that targets the development of present-focused awareness and non-judgment of experience. Interest in mindfulness is burgeoning, and it has been shown to be effective in improving mental and physical health in clinical and non-clinical contexts. In this report, for the first time, we used electroencephalography (EEG) combined with a neurophenomenological approach to examine the neural signature of "cessation" events, which are dramatic experiences of complete discontinuation in awareness similar to the loss of consciousness, which are reported to be experienced by very experienced meditators, and are proposed to be evidence of mastery of mindfulness meditation. We intensively sampled these cessations as experienced by a single advanced meditator (with over 23,000 h of meditation training) and analyzed 37 cessation events collected in 29 EEG sessions between November 12, 2019, and March 11, 2020. Spectral analyses of the EEG data surrounding cessations showed that these events were marked by a large-scale alpha-power decrease starting around 40 s before their onset, and that this alpha-power was lowest immediately following a cessation. Region-of-interest (ROI) based examination of this finding revealed that this alpha-suppression showed a linear decrease in the occipital and parietal regions of the brain during the pre-cessation time period. Additionally, there were modest increases in theta power for the central, parietal, and right temporal ROIs during the pre-cessation timeframe, whereas power in the Delta and Beta frequency bands were not significantly different surrounding cessations. By relating cessations to objective and intrinsic measures of brain activity (i.e., EEG power) that are related to consciousness and high-level psychological functioning, these results provide evidence for the ability of experienced meditators to voluntarily modulate their state of consciousness and lay the foundation for studying these unique states using a neuroscientific approach.
Collapse
Affiliation(s)
- Avijit Chowdhury
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Remko van Lutterveld
- Brain Research and Innovation Centre, Dutch Ministry of Defence and Department of Psychiatry, University Medical Center, Utrecht, the Netherlands.
| | - Ruben E Laukkonen
- Faculty of Health, Southern Cross University, Gold Coast, QLD, Australia.
| | - Heleen A Slagter
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, the Netherlands; Institute for Brain and Behavior, Vrije Universiteit Amsterdam, the Netherlands.
| | | | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Muzik O, Diwadkar VA. Depth and hierarchies in the predictive brain: From reaction to action. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1664. [PMID: 37518831 DOI: 10.1002/wcs.1664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/18/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
The human brain is a prediction device, a view widely accepted in neuroscience. Prediction is a rational and efficient response that relies on the brain's ability to create and employ generative models to optimize actions over unpredictable time horizons. We argue that extant predictive frameworks while compelling, have not explicitly accounted for the following: (a) The brain's generative models must incorporate predictive depth (i.e., rely on degrees of abstraction to enable predictions over different time horizons); (b) The brain's implementation scheme to account for varying predictive depth relies on dynamic predictive hierarchies formed using the brain's functional networks. We show that these hierarchies incorporate the ascending processes (driven by reaction), and the descending processes (related to prediction), eventually driving action. Because they are dynamically formed, predictive hierarchies allow the brain to address predictive challenges in virtually any domain. By way of application, we explain how this framework can be applied to heretofore poorly understood processes of human behavioral thermoregulation. Although mammalian thermoregulation has been closely tied to deep brain structures engaged in autonomic control such as the hypothalamus, this narrow conception does not translate well to humans. In addition to profound differences in evolutionary history, the human brain is bestowed with substantially increased functional complexity (that itself emerged from evolutionary differences). We argue that behavioral thermoregulation in humans is possible because, (a) ascending signals shaped by homeostatic sub-networks, interject with (b) descending signals related to prediction (implemented in interoceptive and executive sub-networks) and action (implemented in executive sub-networks). These sub-networks cumulatively form a predictive hierarchy for human thermoregulation, potentiating a range of viable responses to known and unknown thermoregulatory challenges. We suggest that our proposed extensions to the predictive framework provide a set of generalizable principles that can further illuminate the many facets of the predictive brain. This article is categorized under: Neuroscience > Behavior Philosophy > Action Psychology > Prediction.
Collapse
Affiliation(s)
- Otto Muzik
- Department of Pediatrics, Wayne State University School of Medicine, Children's Hospital of Michigan, Michigan, USA
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
15
|
Abstract
Humans often generalize rewarding experiences across abstract social roles. Theories of reward learning suggest that people generalize through model-based learning, but such learning is cognitively costly. Why do people seem to generalize across social roles with ease? Humans are social experts who easily recognize social roles that reflect familiar semantic concepts (e.g., "helper" or "teacher"). People may associate these roles with model-free reward (e.g., learning that helpers are rewarding), allowing them to generalize easily (e.g., interacting with novel individuals identified as helpers). In four online experiments with U.S. adults (N = 577), we found evidence that social concepts ease complex learning (people generalize more and at faster speed) and that people attach reward directly to abstract roles (they generalize even when roles are unrelated to task structure). These results demonstrate how familiar concepts allow complex behavior to emerge from simple strategies, highlighting social interaction as a prototype for studying cognitive ease in the face of environmental complexity.
Collapse
Affiliation(s)
- Leor M Hackel
- Department of Psychology, University of Southern California
| | | |
Collapse
|
16
|
Assis DM, Medeiros-Sarmento PS, Tavares-Martins AC, Godoy BS. Are perceptions of climate change in Amazonian coastal communities influenced by socioeconomic and cultural factors? Heliyon 2023; 9:e18392. [PMID: 37520952 PMCID: PMC10382285 DOI: 10.1016/j.heliyon.2023.e18392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023] Open
Abstract
Climate changes have become undisputed, as have their consequences for global ecosystems and mankind. The coastal areas are among the most affected areas on the planet due to their geographical location. The effects suffered by coastal areas can render the residing populations homeless, as well as compromise the continuity of the history and culture of these environments. The Marine Extractive Reserve of the city of Soure (coastal area of eastern Amazonia) stands out for housing populations that have developed an intimate relationship with nature and have knowledge that can explain people's perception of climate changes. In this context, this study investigated how local residents perceive climate change and its consequences considering different temporal and spatial scales. To this end, questionnaires were developed and applied using a 5-point Likert scale. Our results indicate that perception is shaped by socioeconomic and demographic factors, and that they are perceived on different time scales and geographic space. These findings reflect the awareness-raising efforts of the management body of this Conservation Unit and the local knowledge, derived from the relationship of the residents with the natural environment, which, together, provided the population with assertive information that favor a better understanding of this phenomenon.
Collapse
Affiliation(s)
- Davison M.S. Assis
- Environmental Science Graduate Program, Federal University of Pará, Belém, Brazil
| | | | | | - Bruno S. Godoy
- Centre of Aquatic Ecology and Fishery, Federal University of Pará, Belém, Brazil
- Amazonian Institute of Familiar Agriculture, Federal University of Pará, Belém, Brazil
| |
Collapse
|
17
|
Orr RI, Gilead M. Development and validation of the Mental-Physical Verb Norms (MPVN): A text analysis measure of mental state attribution. Behav Res Methods 2023; 55:2501-2521. [PMID: 35879502 DOI: 10.3758/s13428-022-01911-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 11/08/2022]
Abstract
Attribution of mental states to self and others, i.e., mentalizing, is central to human life. Current measures are lacking in the ability to directly gauge the extent to which individuals engage in spontaneous mentalizing. Focusing on natural language use as an expression of inner psychological processes, we developed the Mental-Physical Verb Norms (MPVN). These norms are participant-derived ratings of the extent to which common verbs reflect mental (vs physical) activities and occurrences, covering a majority of verbs appearing in a given English text. Content validity was assessed against existing expert-compiled dictionaries of mental states and cognitive processes, as well as against normative ratings of verb concreteness. Criterion Validity was assessed through natural text analysis of both experimental data, and natural language use in a real-world online setting. Finally, incremental validity was assessed through a classification analysis. Results indicate the unique contribution of the MPVN ratings as a measure of the degree to which individuals adopt the intentional stance in describing targets, by describing both self and others in mental, opposite physical, terms. We discuss potential uses for future research across various psychological and neurocognitive disciplines, as well as theoretical implications regarding the use of mentalizing language within spontaneous contexts.
Collapse
|
18
|
G-Guzmán E, Perl YS, Vohryzek J, Escrichs A, Manasova D, Türker B, Tagliazucchi E, Kringelbach M, Sitt JD, Deco G. The lack of temporal brain dynamics asymmetry as a signature of impaired consciousness states. Interface Focus 2023; 13:20220086. [PMID: 37065259 PMCID: PMC10102727 DOI: 10.1098/rsfs.2022.0086] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/17/2023] [Indexed: 04/18/2023] Open
Abstract
Life is a constant battle against equilibrium. From the cellular level to the macroscopic scale, living organisms as dissipative systems require the violation of their detailed balance, i.e. metabolic enzymatic reactions, in order to survive. We present a framework based on temporal asymmetry as a measure of non-equilibrium. By means of statistical physics, it was discovered that temporal asymmetries establish an arrow of time useful for assessing the reversibility in human brain time series. Previous studies in human and non-human primates have shown that decreased consciousness states such as sleep and anaesthesia result in brain dynamics closer to the equilibrium. Furthermore, there is growing interest in the analysis of brain symmetry based on neuroimaging recordings and since it is a non-invasive technique, it can be extended to different brain imaging modalities and applied at different temporo-spatial scales. In the present study, we provide a detailed description of our methodological approach, paying special attention to the theories that motivated this work. We test, for the first time, the reversibility analysis in human functional magnetic resonance imaging data in patients suffering from disorder of consciousness. We verify that the tendency of a decrease in the asymmetry of the brain signal together with the decrease in non-stationarity are key characteristics of impaired consciousness states. We expect that this work will open the way for assessing biomarkers for patients' improvement and classification, as well as motivating further research on the mechanistic understanding underlying states of impaired consciousness.
Collapse
Affiliation(s)
- Elvira G-Guzmán
- Department of Information and Communication Technologies, Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Yonatan Sanz Perl
- Department of Information and Communication Technologies, Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm Physiological Investigation of Clinically Normal and Impaired Cognition Team, CNRS, 75013, Paris, France
| | - Jakub Vohryzek
- Department of Information and Communication Technologies, Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
| | - Anira Escrichs
- Department of Information and Communication Technologies, Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Dragana Manasova
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm Physiological Investigation of Clinically Normal and Impaired Cognition Team, CNRS, 75013, Paris, France
- Université Paris Cité, Paris, France
| | - Başak Türker
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm Physiological Investigation of Clinically Normal and Impaired Cognition Team, CNRS, 75013, Paris, France
| | - Enzo Tagliazucchi
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires, Argentina
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Morten Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Jutland, Denmark
| | - Jacobo D. Sitt
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm Physiological Investigation of Clinically Normal and Impaired Cognition Team, CNRS, 75013, Paris, France
| | - Gustavo Deco
- Department of Information and Communication Technologies, Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Department of Neuropsychology, Max Planck Institute for human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
19
|
Hadar B, Katzir M, Pumpian S, Karelitz T, Liberman N. Psychological proximity improves reasoning in academic aptitude tests. NPJ SCIENCE OF LEARNING 2023; 8:10. [PMID: 37120420 PMCID: PMC10148871 DOI: 10.1038/s41539-023-00158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Performance on standardized academic aptitude tests (AAT) can determine important life outcomes. However, it is not clear whether and which aspects of the content of test questions affect performance. We examined the effect of psychological distance embedded in test questions. In Study 1 (N = 41,209), we classified the content of existing AAT questions as invoking proximal versus distal details. We found better performance with proximal compared to distal questions, especially for low-achieving examinees. Studies 2 and 3 manipulated the distance of questions adapted from AATs and examined three moderators: overall AAT score, working-memory capacity, and presence of irrelevant information. In Study 2 (N = 129), proximity (versus distance) improved the performance of low-achieving participants. In Study 3 (N = 1744), a field study, among low-achieving examinees, proximity improved performance on questions that included irrelevant information. Together, these results suggest that the psychological distance that is invoked by the content of test questions has important consequences for performance in real-life high-stakes tests.
Collapse
Affiliation(s)
- Britt Hadar
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel.
- Department of Psychology, Princeton University, Princeton, NJ, USA.
| | | | - Sephi Pumpian
- The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tzur Karelitz
- The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nira Liberman
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
20
|
de la Fuente LA, Zamberlan F, Bocaccio H, Kringelbach M, Deco G, Perl YS, Pallavicini C, Tagliazucchi E. Temporal irreversibility of neural dynamics as a signature of consciousness. Cereb Cortex 2023; 33:1856-1865. [PMID: 35512291 DOI: 10.1093/cercor/bhac177] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/14/2022] Open
Abstract
Dissipative systems evolve in the preferred temporal direction indicated by the thermodynamic arrow of time. The fundamental nature of this temporal asymmetry led us to hypothesize its presence in the neural activity evoked by conscious perception of the physical world, and thus its covariance with the level of conscious awareness. We implemented a data-driven deep learning framework to decode the temporal inversion of electrocorticography signals acquired from non-human primates. Brain activity time series recorded during conscious wakefulness could be distinguished from their inverted counterparts with high accuracy, both using frequency and phase information. However, classification accuracy was reduced for data acquired during deep sleep and under ketamine-induced anesthesia; moreover, the predictions obtained from multiple independent neural networks were less consistent for sleep and anesthesia than for conscious wakefulness. Finally, the analysis of feature importance scores highlighted transitions between slow ($\approx$20 Hz) and fast frequencies (>40 Hz) as the main contributors to the temporal asymmetry observed during conscious wakefulness. Our results show that a preferred temporal direction is manifest in the neural activity evoked by conscious mentation and in the phenomenology of the passage of time, establishing common ground to tackle the relationship between brain and subjective experience.
Collapse
Affiliation(s)
- Laura Alethia de la Fuente
- Department of Physics, University of Buenos Aires 1428, Argentina.,Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, Buenos Aires 1058, Argentina.,National Scientific and Technical Research Council, Buenos Aires 1425, Argentina
| | - Federico Zamberlan
- Department of Physics, University of Buenos Aires 1428, Argentina.,National Scientific and Technical Research Council, Buenos Aires 1425, Argentina.,Cognitive Science and Artificial Intelligence Department, Tilburg University, Tilburg 5000, The Netherlands
| | - Hernán Bocaccio
- Department of Physics, University of Buenos Aires 1428, Argentina.,National Scientific and Technical Research Council, Buenos Aires 1425, Argentina
| | - Morten Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford OX1, UK.,Department of Psychiatry, University of Oxford, Oxford OX3, UK.,Center for Music in the Brain, Department of Clinical Medicine, Aarhus University 8000, DK
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona 08018, Spain.,Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.,School of Psychological Sciences, Monash University, Melbourne, Clayton VIC 3800, Australia
| | - Yonatan Sanz Perl
- Department of Physics, University of Buenos Aires 1428, Argentina.,Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona 08018, Spain
| | - Carla Pallavicini
- Department of Physics, University of Buenos Aires 1428, Argentina.,National Scientific and Technical Research Council, Buenos Aires 1425, Argentina
| | - Enzo Tagliazucchi
- Department of Physics, University of Buenos Aires 1428, Argentina.,National Scientific and Technical Research Council, Buenos Aires 1425, Argentina.,Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago 7910000, Chile
| |
Collapse
|
21
|
Levenstein D, Alvarez VA, Amarasingham A, Azab H, Chen ZS, Gerkin RC, Hasenstaub A, Iyer R, Jolivet RB, Marzen S, Monaco JD, Prinz AA, Quraishi S, Santamaria F, Shivkumar S, Singh MF, Traub R, Nadim F, Rotstein HG, Redish AD. On the Role of Theory and Modeling in Neuroscience. J Neurosci 2023; 43:1074-1088. [PMID: 36796842 PMCID: PMC9962842 DOI: 10.1523/jneurosci.1179-22.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 02/18/2023] Open
Abstract
In recent years, the field of neuroscience has gone through rapid experimental advances and a significant increase in the use of quantitative and computational methods. This growth has created a need for clearer analyses of the theory and modeling approaches used in the field. This issue is particularly complex in neuroscience because the field studies phenomena that cross a wide range of scales and often require consideration at varying degrees of abstraction, from precise biophysical interactions to the computations they implement. We argue that a pragmatic perspective of science, in which descriptive, mechanistic, and normative models and theories each play a distinct role in defining and bridging levels of abstraction, will facilitate neuroscientific practice. This analysis leads to methodological suggestions, including selecting a level of abstraction that is appropriate for a given problem, identifying transfer functions to connect models and data, and the use of models themselves as a form of experiment.
Collapse
Affiliation(s)
- Daniel Levenstein
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892
| | - Asohan Amarasingham
- Departments of Mathematics and Biology, City College and the Graduate Center, City University of New York, New York, New York 10032
| | - Habiba Azab
- Department of Neuroscience, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455
| | - Zhe S Chen
- Department of Psychiatry, Neuroscience & Physiology, New York University School of Medicine, New York, New York, 10016
| | - Richard C Gerkin
- School of Life Sciences, Arizona State University, Tempe, Arizona 85281
| | - Andrea Hasenstaub
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California 94115
| | | | - Renaud B Jolivet
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, The Netherlands
| | - Sarah Marzen
- W. M. Keck Science Department, Pitzer, Scripps, and Claremont McKenna Colleges, Claremont, California 91711
| | - Joseph D Monaco
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218
| | - Astrid A Prinz
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Salma Quraishi
- Neuroscience, Developmental and Regnerative Biology Department, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Fidel Santamaria
- Neuroscience, Developmental and Regnerative Biology Department, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Sabyasachi Shivkumar
- Brain and Cognitive Sciences, University of Rochester, Rochester, New York 14627
| | - Matthew F Singh
- Department of Psychological & Brain Sciences, Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63112
| | - Roger Traub
- IBM T.J. Watson Research Center, AI Foundations, Yorktown Heights, New York 10598
| | - Farzan Nadim
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California 94115
| | - Horacio G Rotstein
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California 94115
| | - A David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
22
|
Hoey J, Schröder T. Disruption of Social Orders in Societal Transitions as Affective Control of Uncertainty. THE AMERICAN BEHAVIORAL SCIENTIST 2023; 67:311-331. [PMID: 36620307 PMCID: PMC9814019 DOI: 10.1177/00027642211066055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bayesian affect control theory is a model of affect-driven social interaction under conditions of uncertainty. In this paper, we investigate how the operationalization of uncertainty in the model can be related to the disruption of social orders-societal pressures to adapt to ongoing environmental and technological change. First, we study the theoretical tradeoffs between three kinds of uncertainty as groups navigate external problems: validity (the predictability of the environment, including of other agents), coherence (the predictability of interpersonal affective dynamics), and dependence (the predictability of affective meanings). Second, we discuss how these uncertainty tradeoffs are related to contemporary political conflict and polarization in the context of societal transitions. To illustrate the potential of our model to analyze the socio-emotional consequences of uncertainty, we present a simulation of diverging individual affective meanings of occupational identities under uncertainty in a climate change mitigation scenario based on events in Germany. Finally, we sketch a possible research agenda to substantiate the novel, but yet mostly conjectural, ideas put forward in this paper.
Collapse
Affiliation(s)
- Jesse Hoey
- University of Waterloo, Waterloo, ON, Canada
| | | |
Collapse
|
23
|
Rosenbaum RS, Halilova JG, Kwan D, Beneventi S, Craver CF, Gilboa A, Ciaramelli E. Temporal Construal Effects Are Independent of Episodic Future Thought. Psychol Sci 2023; 34:75-86. [PMID: 36287189 DOI: 10.1177/09567976221120001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Human thought is prone to biases. Some biases serve as beneficial heuristics to free up limited cognitive resources or improve well-being, but their neurocognitive basis is unclear. One such bias is a tendency to construe events in the distant future in abstract, general terms and events in the near future in concrete, detailed terms. Temporal construal may rely on our capacity to orient toward and/or imagine context-rich future events. We tested 21 individuals with impaired episodic future thinking resulting from lesions to the hippocampus or ventromedial prefrontal cortex (vmPFC) and 57 control participants (aged 45-76 years) from Canada and Italy on measures sensitive to temporal construal. We found that temporal construal persisted in most patients, even those with impaired episodic future thinking, but was abolished in some vmPFC cases, possibly in relation to difficulties forming and maintaining future intentions. The results confirm the fractionation of future thinking and that parts of vmPFC might critically support our ability to flexibly conceive and orient ourselves toward future events.
Collapse
Affiliation(s)
- R Shayna Rosenbaum
- Department of Psychology, York University.,Rotman Research Institute, Baycrest, Toronto, Canada
| | - J G Halilova
- Department of Psychology, York University.,Rotman Research Institute, Baycrest, Toronto, Canada
| | - D Kwan
- Department of Psychology, York University.,Rotman Research Institute, Baycrest, Toronto, Canada
| | - S Beneventi
- Dipartimento di Psicologia, Università di Bologna
| | - C F Craver
- Department of Philosophy, Washington University in St. Louis
| | - A Gilboa
- Rotman Research Institute, Baycrest, Toronto, Canada.,Department of Psychology, University of Toronto
| | - E Ciaramelli
- Dipartimento di Psicologia, Università di Bologna.,Centro Studi e Ricerche in Neuroscienze Cognitive, Università di Bologna
| |
Collapse
|
24
|
Fitzgibbon L, Murayama K. Counterfactual curiosity: motivated thinking about what might have been. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210340. [PMID: 36314158 PMCID: PMC9620751 DOI: 10.1098/rstb.2021.0340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/30/2022] [Indexed: 11/05/2022] Open
Abstract
Counterfactual information, information about what might have been, forms the content of counterfactual thoughts and emotions like regret and relief. Recent research suggests that human adults and children, as well as rhesus monkeys, demonstrate 'counterfactual curiosity': they are motivated to seek out counterfactual information after making decisions. Based on contemporary theories of curiosity and information seeking and a broad range of empirical literature, we suggest multiple heterogeneous psychological processes that contribute to people's motivation for counterfactual information. This includes processes that are identified in the curiosity literature more generally-the potential use of counterfactual information for adaptive decision making (its long-term instrumental value) and the drive to reduce uncertainty. Additionally, we suggest that counterfactual information may be particularly alluring because of its role in causal reasoning; its relationship with prediction and decision making; and its potential to fulfil emotion regulation and self-serving goals. Some future directions have been suggested, including investigating the role of individual differences in counterfactual curiosity on learning and wellbeing. This article is part of the theme issue 'Thinking about possibilities: mechanisms, ontogeny, functions and phylogeny'.
Collapse
Affiliation(s)
- Lily Fitzgibbon
- Division of Psychology, University of Stirling, Stirling, UK
| | - Kou Murayama
- Hector Research Institute of Education Sciences and Psychology, University of Tübingen, Tübingen, Germany
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
- Research Institute, Kochi University of Technology, Kochi, Japan
| |
Collapse
|
25
|
Borghi AM, Shaki S, Fischer MH. Abstract concepts: external influences, internal constraints, and methodological issues. PSYCHOLOGICAL RESEARCH 2022; 86:2370-2388. [PMID: 35788903 PMCID: PMC9674746 DOI: 10.1007/s00426-022-01698-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There is a longstanding and widely held misconception about the relative remoteness of abstract concepts from concrete experiences. This review examines the current evidence for external influences and internal constraints on the processing, representation, and use of abstract concepts, like truth, friendship, and number. We highlight the theoretical benefit of distinguishing between grounded and embodied cognition and then ask which roles do perception, action, language, and social interaction play in acquiring, representing and using abstract concepts. By reviewing several studies, we show that they are, against the accepted definition, not detached from perception and action. Focussing on magnitude-related concepts, we also discuss evidence for cultural influences on abstract knowledge and explore how internal processes such as inner speech, metacognition, and inner bodily signals (interoception) influence the acquisition and retrieval of abstract knowledge. Finally, we discuss some methodological developments. Specifically, we focus on the importance of studies that investigate the time course of conceptual processing and we argue that, because of the paramount role of sociality for abstract concepts, new methods are necessary to study concepts in interactive situations. We conclude that bodily, linguistic, and social constraints provide important theoretical limitations for our theories of conceptual knowledge.
Collapse
Affiliation(s)
- Anna M Borghi
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, 00185, Rome, Italy.
- Institute of Cognitive Sciences and Technologies, Italian National Research Council, 00185, Rome, Italy.
| | - Samuel Shaki
- Department of Behavioral Sciences, Ariel University, 44837, Ariel, Israel
| | | |
Collapse
|
26
|
Paoletti M, Fini C, Filippini C, Massari GM, D’Abundo E, Merla A, Bellagamba F, Borghi AM. Abstract words processing induces parasympathetic activation: A thermal imaging study. Front Psychol 2022; 13:932118. [PMID: 36389444 PMCID: PMC9652150 DOI: 10.3389/fpsyg.2022.932118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022] Open
Abstract
Abstract words (e.g., freedom) compose a significant part of speech. Despite this, learning them is complicated. Abstract concepts collect more heterogeneous exemplars and are more detached from sensory modalities than concrete concepts. Recent views propose that, because of their complexity, other people are pivotal for abstract concepts’ acquisition and use, e.g., to explain their meaning. We tested this hypothesis using a combined behavioral and thermal imaging paradigm. Twenty-one Italian children (10\F, mean age: 6 years) determined whether acoustic stimuli (concrete and abstract words; non-words) were or not correct Italian words (lexical decision). Concrete terms yielded faster responses than abstract ones: for the first time, this effect appears with response times in very young children. More crucially, the higher increase in temperature of the nasal tip (i.e., typically associated with parasympathetic dominance of the neurovegetative response) suggests that, with abstract concepts, children might be more socially and cognitively engaged.
Collapse
Affiliation(s)
- Melania Paoletti
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Rome, Italy
| | - Chiara Fini
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Rome, Italy
| | - Chiara Filippini
- Department of Neurosciences and Imaging, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Giovanna M. Massari
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Rome, Italy
| | - Emilia D’Abundo
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Rome, Italy
| | - Arcangelo Merla
- Department of Engineering and Geology, University G. d’Annunzio of Chieti-Pescara, Pescara, Italy
| | - Francesca Bellagamba
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Rome, Italy
| | - Anna M. Borghi
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Rome, Italy
- Institute of Cognitive Sciences and Technologies, National Research Council (CNR), Rome, Italy
- *Correspondence: Anna M. Borghi,
| |
Collapse
|
27
|
Herzog P, Kube T, Fassbinder E. How childhood maltreatment alters perception and cognition - the predictive processing account of borderline personality disorder. Psychol Med 2022; 52:2899-2916. [PMID: 35979924 PMCID: PMC9693729 DOI: 10.1017/s0033291722002458] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/24/2022] [Accepted: 07/18/2022] [Indexed: 01/05/2023]
Abstract
Borderline personality disorder (BPD) is a severe mental disorder, comprised of heterogeneous psychological and neurobiological pathologies. Here, we propose a predictive processing (PP) account of BPD to integrate these seemingly unrelated pathologies. In particular, we argue that the experience of childhood maltreatment, which is highly prevalent in BPD, leaves a developmental legacy with two facets: first, a coarse-grained, alexithymic model of self and others - leading to a rigidity and inflexibility concerning beliefs about self and others. Second, this developmental legacy leads to a loss of confidence or precision afforded beliefs about the consequences of social behavior. This results in an over reliance on sensory evidence and social feedback, with concomitant lability, impulsivity and hypersensitivity. In terms of PP, people with BPD show a distorted belief updating in response to new information with two opposing manifestations: rapid changes in beliefs and a lack of belief updating despite disconfirmatory evidence. This account of distorted information processing has the potential to explain both the instability (of affect, self-image, and interpersonal relationships) and the rigidity (of beliefs about self and others) which is typical of BPD. At the neurobiological level, we propose that enhanced levels of dopamine are associated with the increased integration of negative social feedback, and we also discuss the hypothesis of an impaired inhibitory control of the prefrontal cortex in the processing of negative social information. Our account may provide a new understanding not only of the clinical aspects of BPD, but also a unifying theory of the corresponding neurobiological pathologies. We conclude by outlining some directions for future research on the behavioral, neurobiological, and computational underpinnings of this model, and point to some clinical implications of it.
Collapse
Affiliation(s)
- Philipp Herzog
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany
- Department of Psychiatry and Psychotherapy, Christian-Albrechts-University of Kiel, Niemannsweg 147, D-24105 Kiel, Germany
- Department of Psychology, University of Koblenz-Landau, Ostbahnstr. 10, 76829 Landau, Germany
| | - Tobias Kube
- Department of Psychology, University of Koblenz-Landau, Ostbahnstr. 10, 76829 Landau, Germany
| | - Eva Fassbinder
- Department of Psychiatry and Psychotherapy, Christian-Albrechts-University of Kiel, Niemannsweg 147, D-24105 Kiel, Germany
| |
Collapse
|
28
|
Deane G. Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence. ARTIFICIAL LIFE 2022; 28:289-309. [PMID: 35881678 DOI: 10.1162/artl_a_00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
What role do affective feelings (feelings/emotions/moods) play in adaptive behaviour? What are the implications of this for understanding and developing artificial general intelligence? Leading theoretical models of brain function are beginning to shed light on these questions. While artificial agents have excelled within narrowly circumscribed and specialised domains, domain-general intelligence has remained an elusive goal in artificial intelligence research. By contrast, humans and nonhuman animals are characterised by a capacity for flexible behaviour and general intelligence. In this article I argue that computational models of mental phenomena in predictive processing theories of the brain are starting to reveal the mechanisms underpinning domain-general intelligence in biological agents, and can inform the understanding and development of artificial general intelligence. I focus particularly on approaches to computational phenomenology in the active inference framework. Specifically, I argue that computational mechanisms of affective feelings in active inference-affective self-modelling-are revealing of how biological agents are able to achieve flexible behavioural repertoires and general intelligence. I argue that (i) affective self-modelling functions to "tune" organisms to the most tractable goals in the environmental context; and (ii) affective and agentic self-modelling is central to the capacity to perform mental actions in goal-directed imagination and creative cognition. I use this account as a basis to argue that general intelligence of the level and kind found in biological agents will likely require machines to be implemented with analogues of affective self-modelling.
Collapse
Affiliation(s)
- George Deane
- University of Edinburgh, School of Philosophy, Psychology, and Language Sciences.
| |
Collapse
|
29
|
Lavi G, Rosenblatt J, Gilead M. A prediction-focused approach to personality modeling. Sci Rep 2022; 12:12650. [PMID: 35879357 PMCID: PMC9314364 DOI: 10.1038/s41598-022-16108-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/05/2022] [Indexed: 01/07/2023] Open
Abstract
In the current study, we set out to examine the viability of a novel approach to modeling human personality. Research in psychology suggests that people's personalities can be effectively described using five broad dimensions (the Five-Factor Model; FFM); however, the FFM potentially leaves room for improved predictive accuracy. We propose a novel approach to modeling human personality that is based on the maximization of the model's predictive accuracy. Unlike the FFM, which performs unsupervised dimensionality reduction, we utilized a supervised machine learning technique for dimensionality reduction of questionnaire data, using numerous psychologically meaningful outcomes as data labels (e.g., intelligence, well-being, sociability). The results showed that our five-dimensional personality summary, which we term the "Predictive Five" (PF), provides predictive performance that is better than the FFM on two independent validation datasets, and on a new set of outcome variables selected by an independent group of psychologists. The approach described herein has the promise of eventually providing an interpretable, low-dimensional personality representation, which is also highly predictive of behavior.
Collapse
Affiliation(s)
- Gal Lavi
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beersheba, Israel
| | | | - Michael Gilead
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
30
|
Mokady A, Reggev N. The Role of Predictions, Their Confirmation, and Reward in Maintaining the Self-Concept. Front Hum Neurosci 2022; 16:824085. [PMID: 35399356 PMCID: PMC8987106 DOI: 10.3389/fnhum.2022.824085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
The predictive processing framework posits that people continuously use predictive principles when interacting with, learning from, and interpreting their surroundings. Here, we suggest that the same framework may help explain how people process self-relevant knowledge and maintain a stable and positive self-concept. Specifically, we recast two prominent self-relevant motivations, self-verification and self-enhancement, in predictive processing (PP) terms. We suggest that these self-relevant motivations interact with the self-concept (i.e., priors) to create strong predictions. These predictions, in turn, influence how people interpret information about themselves. In particular, we argue that these strong self-relevant predictions dictate how prediction error, the deviation from the original prediction, is processed. In contrast to many implementations of the PP framework, we suggest that predictions and priors emanating from stable constructs (such as the self-concept) cultivate belief-maintaining, rather than belief-updating, dynamics. Based on recent findings, we also postulate that evidence supporting a predicted model of the self (or interpreted as such) triggers subjective reward responses, potentially reinforcing existing beliefs. Characterizing the role of rewards in self-belief maintenance and reframing self-relevant motivations and rewards in predictive processing terms offers novel insights into how the self is maintained in neurotypical adults, as well as in pathological populations, potentially pointing to therapeutic implications.
Collapse
Affiliation(s)
- Aviv Mokady
- Department of Psychology, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Niv Reggev
- Department of Psychology, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| |
Collapse
|
31
|
Ferber SG, Weller A. The Inanimate Third: Going Beyond Psychodynamic Approaches for Remote Psychotherapy during the
COVID
‐19 Pandemic. BRITISH JOURNAL OF PSYCHOTHERAPY 2022; 38:316-337. [PMID: 35601049 PMCID: PMC9111788 DOI: 10.1111/bjp.12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/13/2021] [Accepted: 01/16/2022] [Indexed: 11/29/2022]
Abstract
The COVID‐19 pandemic exposed the field of psychotherapy to the need to provide treatment remotely. We discuss the question of whether remote therapy can be curative and if the electronic device used to manage these sessions unites or separates the therapist and the patient. We term the electronic device as ‘the inanimate third’ in the therapeutic process and discuss the objectivity of the device as opposed to the subjective emotional processes involved. We deal with emotional themes relevant to the COVID‐19 pandemic and associated social distancing practices, such as longing, loneliness, the perception of the future and the lost past, and the efficacy of the therapeutic stimulation of fantasy and hope. We also evaluate the possibility of existing transference and countertransference processes while working remotely. We suggest the term ‘social paradox’ to describe the situation in which an objective entity such as the digital media symbolizes both distance and intimacy as well as separation and unity. We conclude by stating that containment of the social paradox by the therapeutic dialogue is possible as the existence of the dialogue eliminates elements of the paradox.
Collapse
|
32
|
Key B, Zalucki O, Brown DJ. A First Principles Approach to Subjective Experience. Front Syst Neurosci 2022; 16:756224. [PMID: 35250497 PMCID: PMC8888408 DOI: 10.3389/fnsys.2022.756224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/11/2022] [Indexed: 12/05/2022] Open
Abstract
Understanding the neural bases of subjective experience remains one of the great challenges of the natural sciences. Higher-order theories of consciousness are typically defended by assessments of neural activity in higher cortical regions during perception, often with disregard to the nature of the neural computations that these regions execute. We have sought to refocus the problem toward identification of those neural computations that are necessary for subjective experience with the goal of defining the sorts of neural architectures that can perform these operations. This approach removes reliance on behaviour and brain homologies for appraising whether non-human animals have the potential to subjectively experience sensory stimuli. Using two basic principles—first, subjective experience is dependent on complex processing executing specific neural functions and second, the structure-determines-function principle—we have reasoned that subjective experience requires a neural architecture consisting of stacked forward models that predict the output of neural processing from inputs. Given that forward models are dependent on appropriately connected processing modules that generate prediction, error detection and feedback control, we define a minimal neural architecture that is necessary (but not sufficient) for subjective experience. We refer to this framework as the hierarchical forward models algorithm. Accordingly, we postulate that any animal lacking this neural architecture will be incapable of subjective experience.
Collapse
Affiliation(s)
- Brian Key
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Brian Key,
| | - Oressia Zalucki
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Deborah J. Brown
- School of Historical and Philosophical Inquiry, University of Queensland, Brisbane, QLD, Australia
- Deborah J. Brown,
| |
Collapse
|
33
|
Moran T, Eyal T. Emotion Regulation by Psychological Distance and Level of Abstraction: Two Meta-Analyses. PERSONALITY AND SOCIAL PSYCHOLOGY REVIEW 2022; 26:112-159. [PMID: 35100904 DOI: 10.1177/10888683211069025] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Self-reflection is suggested to attenuate feelings, yet researchers disagree on whether adopting a distant or near perspective, or processing the experience abstractly or concretely, is more effective. Given the relationship between psychological distance and level of abstraction, we suggest the "construal-matching hypothesis": Psychological distance and abstraction differently influence emotion intensity, depending on whether the emotion's appraisal involves low-level or high-level construal. Two meta-analyses tested the effects of psychological distance (k = 230) and level-of-abstraction (k = 98) manipulations on emotional experience. A distant perspective attenuated emotional experience (g = 0.52) but with weaker effects for high-level (g = 0.29; for example, self-conscious emotions) than low-level emotions (g= 0.64; for example, basic emotions). Level of abstraction only attenuated the experience of low-level emotions (g = 0.2) and showed a reverse (nonsignificant) effect for high-level emotions (g = -0.13). These results highlight differences between distancing and level-of-abstraction manipulations and the importance of considering the type of emotion experienced in emotion regulation.
Collapse
Affiliation(s)
- Tal Moran
- The Open University of Israel, Ra'anana, Israel.,Ghent University, Belgium
| | - Tal Eyal
- Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
34
|
Psychological closeness and concrete construal may underlie high-fidelity social emulation. Behav Brain Sci 2022; 45:e259. [DOI: 10.1017/s0140525x2200125x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
We compare bifocal stance theory's (BST) approach to social learning to construal level theory's (CLT) – a social-cognitive theory positing that psychological closeness to a model influences action-representation and thus modulates how concretely or abstractly observers emulate models. Whereas BST argues that social motives produce higher fidelity emulation, CLT argues that psychological closeness impacts cognitive construal and produces more concrete emulation across diverse motivations for emulation.
Collapse
|
35
|
Medvedev B. Overview of the Construal Level Theory: history of formation, main provisions and research potential. СОВРЕМЕННАЯ ЗАРУБЕЖНАЯ ПСИХОЛОГИЯ 2022. [DOI: 10.17759/jmfp.2022110312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper provides an overview of Construal Level Theory (CLT), which was founded by Nira Liberman and Yakov Trope. CLT describes the relationship between psychological distance (subjective experience of remoteness of a phenomenon) and the level of its construal (representation) in consciousness. According to this theory, phenomena perceived more distant, will be presented in a more abstract way in the mind of the subject. At the moment CLT is one of the most actively developing interdisciplinary psychological theories. At the same time, it remains virtually unknown within the Russian-speaking psychological community. The main purpose of the article is to help the reader get an idea of the history of CLT development, its main assumptions, and to demonstrate its high research potential. The first part presents the most significant works, which determined the direction of the theory’s development. The second part summarizes its key points. The last part considers the possibilities of CLT in building a deeper understanding of the nature of prediction, evaluation, choice, self-regulation, and a number of other processes.
Collapse
Affiliation(s)
- B.P. Medvedev
- National Research University Higher School of Economics
| |
Collapse
|
36
|
Framing is a motivated process. Behav Brain Sci 2022; 45:e221. [DOI: 10.1017/s0140525x22000991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Frames group choices into categories, thus modifying the incentives for them. This effect makes framing itself a motivated choice rather than a neutral cognition. In particular, framing an inferior choice with a high short-term payoff as part of a broad category of choices recruits incentive to reject it; but this must be motivated by its being a test case.
Collapse
|
37
|
Pittnauer S, Hohnisch M, Ostermaier A, Pfingsten A. Effects of Social Information on Risk Taking and Performance: Understanding Others’ Decisions vs. Comparing Oneself with Others in Short-Term Performance. ORGANIZATION SCIENCE 2021. [DOI: 10.1287/orsc.2021.1507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When a problem leaves decision makers uncertain as to how to approach it, observing others’ decisions can improve one’s own decisions by promoting more accurate judgments and a better insight into the problem. However, observing others’ decisions may also activate motives that prevent this potential from being realized, for instance, ego concerns that prompt excessive risk taking. Our experimental study investigates how two features of the social environment influence the effect of observing others’ decisions on individual risk taking and performance. We manipulated (1) the psychological distance to others whose decisions could be observed (and thereby the tendency to seek self-enhancing social comparison) and (2) the opportunity for interaction (and thereby for a cumulative effect of any such tendency on decisions over time and for an effect on social information itself). Because the two features covary in real-world settings, we designed two treatments corresponding to the two natural combinations. Both treatments provided participants with two other participants’ period decisions in a multiperiod problem under uncertainty. No new objective information about the problem could be inferred from these decisions. We predicted that participants who observed the decisions of distant others (who had solved the same problem earlier) would perform better than participants in a control sample without any information about others’ decisions and that participants who observed the decisions of proximal others (with whom interaction could arise) would take more risk and perform worse than those who observed distant others’ decisions. The data corroborate our predictions. We discuss implications for organizational learning.
Collapse
Affiliation(s)
- Sabine Pittnauer
- Faculty of Industrial Engineering and Management, Technion, Haifa 32000, Israel
| | - Martin Hohnisch
- Faculty of Industrial Engineering and Management, Technion, Haifa 32000, Israel
| | - Andreas Ostermaier
- Department of Business and Management, University of Southern Denmark, 5230 Odense, Denmark
| | | |
Collapse
|
38
|
Hoey J. Equality and Freedom as Uncertainty in Groups. ENTROPY 2021; 23:e23111384. [PMID: 34828082 PMCID: PMC8618786 DOI: 10.3390/e23111384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022]
Abstract
In this paper, I investigate a connection between a common characterisation of freedom and how uncertainty is managed in a Bayesian hierarchical model. To do this, I consider a distributed factorization of a group's optimization of free energy, in which each agent is attempting to align with the group and with its own model. I show how this can lead to equilibria for groups, defined by the capacity of the model being used, essentially how many different datasets it can handle. In particular, I show that there is a "sweet spot" in the capacity of a normal model in each agent's decentralized optimization, and that this "sweet spot" corresponds to minimal free energy for the group. At the sweet spot, an agent can predict what the group will do and the group is not surprised by the agent. However, there is an asymmetry. A higher capacity model for an agent makes it harder for the individual to learn, as there are more parameters. Simultaneously, a higher capacity model for the group, implemented as a higher capacity model for each member agent, makes it easier for a group to integrate a new member. To optimize for a group of agents then requires one to make a trade-off in capacity, as each individual agent seeks to decrease capacity, but there is pressure from the group to increase capacity of all members. This pressure exists because as individual agent's capacities are reduced, so too are their abilities to model other agents, and thereby to establish pro-social behavioural patterns. I then consider a basic two-level (dual process) Bayesian model of social reasoning and a set of three parameters of capacity that are required to implement such a model. Considering these three capacities as dependent elements in a free energy minimization for a group leads to a "sweet surface" in a three-dimensional space defining the triplet of parameters that each agent must use should they hope to minimize free energy as a group. Finally, I relate these three parameters to three notions of freedom and equality in human social organization, and postulate a correspondence between freedom and model capacity. That is, models with higher capacity, have more freedom as they can interact with more datasets.
Collapse
Affiliation(s)
- Jesse Hoey
- David R. Cheriton School of Computer Science, Univeristy of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
39
|
Rosenbaum D, Glickman M, Usher M. Extracting Summary Statistics of Rapid Numerical Sequences. Front Psychol 2021; 12:693575. [PMID: 34659010 PMCID: PMC8517333 DOI: 10.3389/fpsyg.2021.693575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
We examine the ability of observers to extract summary statistics (such as the mean and the relative-variance) from rapid numerical sequences of two digit numbers presented at a rate of 4/s. In four experiments (total N = 100), we find that the participants show a remarkable ability to extract such summary statistics and that their precision in the estimation of the sequence-mean improves with the sequence-length (subject to individual differences). Using model selection for individual participants we find that, when only the sequence-average is estimated, most participants rely on a holistic process of frequency based estimation with a minority who rely on a (rule-based and capacity limited) mid-range strategy. When both the sequence-average and the relative variance are estimated, about half of the participants rely on these two strategies. Importantly, the holistic strategy appears more efficient in terms of its precision. We discuss implications for the domains of two pathways numerical processing and decision-making.
Collapse
Affiliation(s)
- David Rosenbaum
- School of Psychological Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Moshe Glickman
- Department of Experimental Psychology, University College London, London, United Kingdom
- Max Planck Centre for Computational Psychiatry and Ageing Research, London, United Kingdom
| | - Marius Usher
- School of Psychological Sciences, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
40
|
Mazzuca C, Fini C, Michalland AH, Falcinelli I, Da Rold F, Tummolini L, Borghi AM. From Affordances to Abstract Words: The Flexibility of Sensorimotor Grounding. Brain Sci 2021; 11:1304. [PMID: 34679369 PMCID: PMC8534254 DOI: 10.3390/brainsci11101304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/18/2022] Open
Abstract
The sensorimotor system plays a critical role in several cognitive processes. Here, we review recent studies documenting this interplay at different levels. First, we concentrate on studies that have shown how the sensorimotor system is flexibly involved in interactions with objects. We report evidence demonstrating how social context and situations influence affordance activation, and then focus on tactile and kinesthetic components in body-object interactions. Then, we turn to word use, and review studies that have shown that not only concrete words, but also abstract words are grounded in the sensorimotor system. We report evidence that abstract concepts activate the mouth effector more than concrete concepts, and discuss this effect in light of studies on adults, children, and infants. Finally, we pinpoint possible sensorimotor mechanisms at play in the acquisition and use of abstract concepts. Overall, we show that the involvement of the sensorimotor system is flexibly modulated by context, and that its role can be integrated and flanked by that of other systems such as the linguistic system. We suggest that to unravel the role of the sensorimotor system in cognition, future research should fully explore the complexity of this intricate, and sometimes slippery, relation.
Collapse
Affiliation(s)
- Claudia Mazzuca
- Body Action Language Lab (BALLAB), Sapienza University of Rome and ISTC-CNR, 00185 Rome, Italy; (C.M.); (C.F.); (A.H.M.); (I.F.); (F.D.R.); (L.T.)
| | - Chiara Fini
- Body Action Language Lab (BALLAB), Sapienza University of Rome and ISTC-CNR, 00185 Rome, Italy; (C.M.); (C.F.); (A.H.M.); (I.F.); (F.D.R.); (L.T.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Arthur Henri Michalland
- Body Action Language Lab (BALLAB), Sapienza University of Rome and ISTC-CNR, 00185 Rome, Italy; (C.M.); (C.F.); (A.H.M.); (I.F.); (F.D.R.); (L.T.)
- Department of Psychology, Université Paul Valéry Montpellier, EPSYLON EA 4556, 34199 Montpellier, France
| | - Ilenia Falcinelli
- Body Action Language Lab (BALLAB), Sapienza University of Rome and ISTC-CNR, 00185 Rome, Italy; (C.M.); (C.F.); (A.H.M.); (I.F.); (F.D.R.); (L.T.)
| | - Federico Da Rold
- Body Action Language Lab (BALLAB), Sapienza University of Rome and ISTC-CNR, 00185 Rome, Italy; (C.M.); (C.F.); (A.H.M.); (I.F.); (F.D.R.); (L.T.)
| | - Luca Tummolini
- Body Action Language Lab (BALLAB), Sapienza University of Rome and ISTC-CNR, 00185 Rome, Italy; (C.M.); (C.F.); (A.H.M.); (I.F.); (F.D.R.); (L.T.)
- Institute of Cognitive Sciences and Technologies, National Research Council (CNR), 00185 Rome, Italy
| | - Anna M. Borghi
- Body Action Language Lab (BALLAB), Sapienza University of Rome and ISTC-CNR, 00185 Rome, Italy; (C.M.); (C.F.); (A.H.M.); (I.F.); (F.D.R.); (L.T.)
- Institute of Cognitive Sciences and Technologies, National Research Council (CNR), 00185 Rome, Italy
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
41
|
Deane G. Consciousness in active inference: Deep self-models, other minds, and the challenge of psychedelic-induced ego-dissolution. Neurosci Conscious 2021; 2021:niab024. [PMID: 34484808 PMCID: PMC8408766 DOI: 10.1093/nc/niab024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
Predictive processing approaches to brain function are increasingly delivering promise for illuminating the computational underpinnings of a wide range of phenomenological states. It remains unclear, however, whether predictive processing is equipped to accommodate a theory of consciousness itself. Furthermore, objectors have argued that without specification of the core computational mechanisms of consciousness, predictive processing is unable to inform the attribution of consciousness to other non-human (biological and artificial) systems. In this paper, I argue that an account of consciousness in the predictive brain is within reach via recent accounts of phenomenal self-modelling in the active inference framework. The central claim here is that phenomenal consciousness is underpinned by 'subjective valuation'-a deep inference about the precision or 'predictability' of the self-evidencing ('fitness-promoting') outcomes of action. Based on this account, I argue that this approach can critically inform the distribution of experience in other systems, paying particular attention to the complex sensory attenuation mechanisms associated with deep self-models. I then consider an objection to the account: several recent papers argue that theories of consciousness that invoke self-consciousness as constitutive or necessary for consciousness are undermined by states (or traits) of 'selflessness'; in particular the 'totally selfless' states of ego-dissolution occasioned by psychedelic drugs. Drawing on existing work that accounts for psychedelic-induced ego-dissolution in the active inference framework, I argue that these states do not threaten to undermine an active inference theory of consciousness. Instead, these accounts corroborate the view that subjective valuation is the constitutive facet of experience, and they highlight the potential of psychedelic research to inform consciousness science, computational psychiatry and computational phenomenology.
Collapse
Affiliation(s)
- George Deane
- School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, 3 Charles Street, Edinburgh EH8 9AD, UK
| |
Collapse
|
42
|
Litwin P, Miłkowski M. Unification by Fiat: Arrested Development of Predictive Processing. Cogn Sci 2021; 44:e12867. [PMID: 32594580 PMCID: PMC7378938 DOI: 10.1111/cogs.12867] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/25/2020] [Accepted: 05/15/2020] [Indexed: 01/24/2023]
Abstract
Predictive processing (PP) has been repeatedly presented as a unificatory account of perception, action, and cognition. In this paper, we argue that this is premature: As a unifying theory, PP fails to deliver general, simple, homogeneous, and systematic explanations. By examining its current trajectory of development, we conclude that PP remains only loosely connected both to its computational framework and to its hypothetical biological underpinnings, which makes its fundamentals unclear. Instead of offering explanations that refer to the same set of principles, we observe systematic equivocations in PP‐based models, or outright contradictions with its avowed principles. To make matters worse, PP‐based models are seldom empirically validated, and they are frequently offered as mere just‐so stories. The large number of PP‐based models is thus not evidence of theoretical progress in unifying perception, action, and cognition. On the contrary, we maintain that the gap between theory and its biological and computational bases contributes to the arrested development of PP as a unificatory theory. Thus, we urge the defenders of PP to focus on its critical problems instead of offering mere re‐descriptions of known phenomena, and to validate their models against possible alternative explanations that stem from different theoretical assumptions. Otherwise, PP will ultimately fail as a unified theory of cognition.
Collapse
Affiliation(s)
- Piotr Litwin
- Faculty of Psychology, University of Warsaw.,Institute of Philosophy and Sociology, Polish Academy of Sciences
| | - Marcin Miłkowski
- Institute of Philosophy and Sociology, Polish Academy of Sciences
| |
Collapse
|
43
|
Van Lange PAM, Rand DG. Human Cooperation and the Crises of Climate Change, COVID-19, and Misinformation. Annu Rev Psychol 2021; 73:379-402. [PMID: 34339612 DOI: 10.1146/annurev-psych-020821-110044] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Contemporary society is facing many social dilemmas-including climate change, COVID-19, and misinformation-characterized by a conflict between short-term self-interest and longer-term collective interest. The climate crisis requires paying costs today to benefit distant others (and oneself) in the future. The COVID-19 crisis requires the less vulnerable to pay costs to benefit the more vulnerable in the face of great uncertainty. The misinformation crisis requires investing effort to assess truth and abstain from spreading attractive falsehoods. Addressing these crises requires an understanding of human cooperation. To that end, we present (a) an overview of mechanisms for the evolution of cooperation, including mechanisms based on similarity and interaction; (b) a discussion of how reputation can incentivize cooperation via conditional cooperation and signaling; and (c) a review of social preferences that undergird the proximate psychology of cooperation, including positive regard for others, parochialism, and egalitarianism. We discuss the three focal crises facing our society through the lens of cooperation, emphasizing how cooperation research can inform our efforts to address them. Expected final online publication date for the Annual Review of Psychology, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Paul A M Van Lange
- Department of Experimental and Applied Psychology, and Institute for Brain and Behavior Amsterdam (iBBA), Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands;
| | - David G Rand
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02138, USA;
| |
Collapse
|
44
|
Fini C, Era V, Da Rold F, Candidi M, Borghi AM. Abstract concepts in interaction: the need of others when guessing abstract concepts smooths dyadic motor interactions. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201205. [PMID: 34350007 PMCID: PMC8316795 DOI: 10.1098/rsos.201205] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 06/21/2021] [Indexed: 06/04/2023]
Abstract
concepts (ACs, e.g. 'justice') are more complex compared with concrete concepts (CCs) (e.g. 'table'). Indeed, they do not possess a single object as a referent, they assemble quite heterogeneous members and they are more detached from exteroceptive and more grounded in interoceptive experience. Recent views have hypothesized that interpersonal communication is particularly crucial to acquire and use ACs. The current study investigates the reliance of ACs/CCs representation on interpersonal behaviour. We asked participants to perform a motor interaction task with two avatars who embodied two real confederates. Before and after the motor interaction task, the two confederates provided participants with hints in a concept guessing task associated with visual stimuli: one helped in guessing ACs and the other, CCs. A control study we performed both with the materials employed in the main experiment and with other materials, confirmed that associating verbal concepts with visual images was more difficult with ACs than with CCs. Consistently, the results of the main experiment showed that participants asked for more hints with ACs than CCs and were more synchronous when interacting with the avatar corresponding to the AC's confederate. The results highlight an important role of sociality in grounding ACs.
Collapse
Affiliation(s)
- Chiara Fini
- Department of Dynamic and Clinical Psychology and Health Studies, ‘Sapienza’ University of Rome, Italy
| | - Vanessa Era
- SCNLab Department of Psychology, ‘Sapienza’ University of Rome, Italy
- IRCCS, Fondazione Santa Lucia, Rome, Italy
| | - Federico Da Rold
- Institute of Cognitive Sciences and Technologies, National Research Council (CNR), Rome, Italy
| | - Matteo Candidi
- SCNLab Department of Psychology, ‘Sapienza’ University of Rome, Italy
- IRCCS, Fondazione Santa Lucia, Rome, Italy
| | - Anna M. Borghi
- Department of Dynamic and Clinical Psychology and Health Studies, ‘Sapienza’ University of Rome, Italy
- Institute of Cognitive Sciences and Technologies, National Research Council (CNR), Rome, Italy
| |
Collapse
|
45
|
Sánchez AM, Coleman CW, Ledgerwood A. Does Temporal Distance Influence Abstraction? A Large Pre-Registered Experiment. SOCIAL COGNITION 2021. [DOI: 10.1521/soco.2021.39.3.352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Construal level theory has been extraordinarily generative both within and beyond social psychology, yet the individual effects that form the empirical foundation of the theory have yet to be carefully probed and precisely estimated using large samples and preregistered analysis plans. In a highly powered and preregistered study, we tested the effect of temporal distance on abstraction, using one of the most common operationalizations of temporal distance (thinking about a future point in time that is one day vs. one year from today) and one of the most common operationalizations of abstraction (preference for more abstract vs. concrete action representations, as assessed by the Behavioral Identification Form). Participants preferred significantly more abstract action representations in the distant (vs. near) future condition, with an effect size of d = .276, 95% CI [.097, .455]. We discuss implications, future directions, and constraints on the generality of these results.
Collapse
|
46
|
Van Lange PAM, Huckelba AL. Psychological distance: How to make climate change less abstract and closer to the self. Curr Opin Psychol 2021; 42:49-53. [PMID: 33910112 DOI: 10.1016/j.copsyc.2021.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/26/2021] [Indexed: 11/30/2022]
Abstract
Scientists have been warning the world of the threatening consequences of climate change for decades. Yet, only a few countries have made climate change mitigation a priority. One of the chief issues regarding climate change is its abstractness: consequences for the collective in the long-term are much more abstract than consequences for the self in the here-and-now. To combat climate change, individuals, communities, and governments must work together to reduce the psychological distance of climate change and designate the future of the planet as the prime concern.
Collapse
Affiliation(s)
- Paul A M Van Lange
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, the Netherlands.
| | | |
Collapse
|
47
|
Grounded separation: can the sensorimotor be grounded in the symbolic? Behav Brain Sci 2021; 44:e8. [PMID: 33599591 DOI: 10.1017/s0140525x2000062x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
According to Lee and Schwarz, the sensorimotor experience of cleansing involves separating one physical entity from another and grounds mental separation of one psychological entity from another. We propose that cleansing effects may result from symbolic cognition. Instead of viewing abstract meanings as emerging from concrete physical acts of cleansing, this physical act may be appended with pre-existing, symbolic meaning.
Collapse
|
48
|
Davis CP, Yee E. Building semantic memory from embodied and distributional language experience. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2021; 12:e1555. [PMID: 33533205 DOI: 10.1002/wcs.1555] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 09/07/2020] [Accepted: 01/10/2021] [Indexed: 01/06/2023]
Abstract
Humans seamlessly make sense of a rapidly changing environment, using a seemingly limitless knowledgebase to recognize and adapt to most situations we encounter. This knowledgebase is called semantic memory. Embodied cognition theories suggest that we represent this knowledge through simulation: understanding the meaning of coffee entails reinstantiating the neural states involved in touching, smelling, seeing, and drinking coffee. Distributional semantic theories suggest that we are sensitive to statistical regularities in natural language, and that a cognitive mechanism picks up on these regularities and transforms them into usable semantic representations reflecting the contextual usage of language. These appear to present contrasting views on semantic memory, but do they? Recent years have seen a push toward combining these approaches under a common framework. These hybrid approaches augment our understanding of semantic memory in important ways, but current versions remain unsatisfactory in part because they treat sensory-perceptual and distributional-linguistic data as interacting but distinct types of data that must be combined. We synthesize several approaches which, taken together, suggest that linguistic and embodied experience should instead be considered as inseparably entangled: just as sensory and perceptual systems are reactivated to understand meaning, so are experience-based representations endemic to linguistic processing; further, sensory-perceptual experience is susceptible to the same distributional principles as language experience. This conclusion produces a characterization of semantic memory that accounts for the interdependencies between linguistic and embodied data that arise across multiple timescales, giving rise to concept representations that reflect our shared and unique experiences. This article is categorized under: Psychology > Language Neuroscience > Cognition Linguistics > Language in Mind and Brain.
Collapse
Affiliation(s)
- Charles P Davis
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Eiling Yee
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
49
|
Trope Y, Ledgerwood A, Liberman N, Fujita K. Regulatory Scope and Its Mental and Social Supports. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2020; 16:204-224. [DOI: 10.1177/1745691620950691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adaptive functioning requires the ability to both immerse oneself in the here and now as well as to move beyond current experience. We leverage and expand construal-level theory to understand how individuals and groups regulate thoughts, feelings, and behavior to address both proximal and distal ends. To connect to distant versus proximal events in a way that meaningfully informs and guides responses in the immediate here and now, people must expand versus contract their regulatory scope. We propose that humans have evolved a number of mental and social tools that enable the modulation of regulatory scope and address the epistemic, emotive, and executive demands of regulation. Critically, across these tools, it is possible to distinguish a hierarchy that varies in abstractness. Whereas low-level tools enable contractive scope, high-level tools enable expansion. We review empirical results that support these assertions and highlight the novel insights that a regulatory-scope framework provides for understanding diverse phenomena.
Collapse
Affiliation(s)
| | | | - Nira Liberman
- School of Psychological Sciences, Tel Aviv University
| | | |
Collapse
|
50
|
Language as a mental travel guide-ERRATUM. Behav Brain Sci 2020; 43:e154. [PMID: 32662764 DOI: 10.1017/s0140525x2000031x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|