1
|
Kiani I, Aarabi MH, Cattarinussi G, Sambataro F, Favalli V, Moltrasio C, Delvecchio G. White matter changes in paediatric bipolar disorder: A systematic review of diffusion magnetic resonance imaging studiesA systematic review of diffusion magnetic resonance imaging studies. J Affect Disord 2025; 373:67-79. [PMID: 39689732 DOI: 10.1016/j.jad.2024.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Paediatric bipolar disorder (PBD) is characterized by severe mood fluctuations that deviate from typical childhood emotional development. Despite the efforts, the pathophysiology of this disorder is not well understood yet. In this review, we aimed to synthesize existing diffusion magnetic resonance imaging (dMRI) research findings in PBD. METHODS A literature search was conducted using PubMed, Embase, Scopus, and Web of Science databases to identify relevant studies published before April 2024. RESULTS A total of 23 studies were included in the review. The findings showed variations of fractional anisotropy (FA), axial diffusivity, radial diffusivity, and apparent diffusion coefficient in PBD compared to healthy controls (HCs). Key findings included decreased FA in the anterior cingulate, anterior corona radiata, and corpus callosum, particularly the genu, which correlated with clinical symptoms. Furthermore, longitudinal studies emphasized the significance of the uncinate fasciculus as having atypical developmental trajectories in PBD compared to HCs. In addition, graph analysis revealed widespread changes in structural connectivity, especially affecting the orbitofrontal cortex, frontal gyrus, and basal ganglia. Lastly, machine learning models showed promising results in differentiating PBD from HCs. LIMITATIONS Cross-sectional design of the studies, small sample sizes, and different imaging protocols preclude integration of the findings. CONCLUSION PBD seems to be associated with widespread structural changes compared to HC. Understanding these changes, which might account for the clinical manifestations of this disorder, increase our knowledge of the neurobiological underpinnings of PBD. This, in turn, may help develop more effective treatments for this disorder.
Collapse
Affiliation(s)
- Iman Kiani
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Aarabi
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Giulia Cattarinussi
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fabio Sambataro
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Virginia Favalli
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Moltrasio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
2
|
Panizzutti B, Bortolasci CC, Spolding B, Kidnapillai S, Connor T, Truong TT, Liu ZS, Hernández D, Gray L, Kim JH, Dean OM, Berk M, Walder K. Effect of antipsychotics on the focal adhesion pathway. World J Biol Psychiatry 2025:1-7. [PMID: 39846496 DOI: 10.1080/15622975.2025.2453181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
Focal adhesions and their dynamic nature are essential for various physiological processes, including the formation of neurites, synaptic function and plasticity. Alterations in these processes have been associated with schizophrenia and bipolar disorder. OBJECTIVES This study aimed to explore the impact of pharmacological treatments used for bipolar disorder and schizophrenia on the expression of genes involved in the focal adhesion pathway, addressing a gap in understanding the interaction between medication effects and disease pathophysiology. METHODS NT2-N (neuron-like) cells were exposed to treatment with amisulpride, aripiprazole, chlorpromazine, clozapine, haloperidol, olanzapine, quetiapine, risperidone, or vehicle for 24 h. Genome-wide mRNA expression was analysed using gene set enrichment analysis. RESULTS The analysis revealed that seven out of the eight drugs widely prescribed for bipolar disorder and schizophrenia downregulate the expression of genes associated with the focal adhesions pathway. Focal adhesion was the pathway with the most negative normalised enrichment score across all treatments. CONCLUSIONS Our results support the hypothesis that focal adhesion pathways may play a role in the pathophysiology of bipolar disorder and schizophrenia. Moreover, the data underscore the importance of differentiating medication effects from disease mechanisms in psychiatric research, a challenge compounded by the medicated state of most study participants.
Collapse
Affiliation(s)
- Bruna Panizzutti
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Chiara C Bortolasci
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Briana Spolding
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Srisaiyini Kidnapillai
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Timothy Connor
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Trang Tt Truong
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Zoe Sj Liu
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Damián Hernández
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Laura Gray
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Deakin University, Geelong, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Jee Hyun Kim
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Deakin University, Geelong, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Olivia M Dean
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Deakin University, Geelong, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Michael Berk
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Deakin University, Geelong, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
- Centre of Youth Mental Health, University of Melbourne, Parkville, Australia
- Orygen Youth Health Research Centre, Parkville, Australia
| | - Ken Walder
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Deakin University, Geelong, Australia
| |
Collapse
|
3
|
Kachel M, Dola A, Kubiak M, Majewska W, Nowakowska J, Langwiński W, Hryhorowicz S, Szczepankiewicz A. MicroRNA Expression Profile Is Altered by Short-Term and Chronic Lithium Treatment in a Rat Model of Depression. J Mol Neurosci 2024; 74:116. [PMID: 39674983 DOI: 10.1007/s12031-024-02298-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Depression is a common disease that affects 3.8% of the global population. Despite various antidepressant treatments, one-third of patients do not respond to antidepressants, therefore augmentation with mood stabilizers such as lithium may be required in this group. One of the suggested pathomechanisms of depression is the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and recent reports showed that microRNAs (miRNA) can impact its activity by epigenetic regulation. We aimed to explore the miRNA expression profile in the depression model and its changes upon short-term and chronic lithium treatment in the rat brain (pituitary, hypothalamus, and hippocampus). We used a chronic mild stress rat model of depression and short- and long-term lithium treatment. The behavior was assessed by an open-field test. The miRNA expression profile in the pituitary was estimated by sequencing and validated in the hypothalamus and hippocampus with qPCR. We found several miRNAs in the pituitary that were significantly altered between CMS-exposed and control rats as well as after short- and long-term lithium treatment. MicroRNAs chosen for validation in the hypothalamus and hippocampus (rno-miR-146a-5p, rno-miR-127-3p) showed no significant changes in expression. We performed in silico analysis and estimated potential pathways involved in lithium action for miRNAs differentially expressed in the pituitary at different time points. Specific microRNA subsets showed altered expression in the pituitary in depression model upon short- and long-term lithium treatment. We identified that biological pathways of target genes for these altered miRNAs differ, with the Foxo pathway potentially involved in disease development.
Collapse
Affiliation(s)
- Maria Kachel
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Antonina Dola
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Mikołaj Kubiak
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Wiktoria Majewska
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Nowakowska
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Langwiński
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | | | | |
Collapse
|
4
|
Huzayyin AAS, Ibrahim MK, Hassanein NMA, Ahmed HMS. Vitamin D3 and zinc supplements augment the antimanic efficacy of lithium and olanzapine treatments in an animal model of mania. Nutr Neurosci 2024; 27:1391-1404. [PMID: 38635860 DOI: 10.1080/1028415x.2024.2338344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Objective: Bipolar disorder (BD) is a challenging psychiatric disorder and a complex disease. The associated reduction in serum vitamin D3 (VitD3) levels in BD patients and the contribution of zinc (Zn) to the treatment, along with the severe side effects of lithium (Li) treatment, were encouraging to assess the efficacy of different correlated combinations of therapeutic/nutraceutical treatments such as olanzapine (Oln), VitD3, and Zn against Li. Methods: Mania was induced in C57BL/6 mice by administering methylphenidate (MPH) for 14 consecutive days. On the 8th day of MPH injection, different treatment regimens were administered, Li, Oln, VitD3/Zn, VitD3/Zn/Oln, VitD3 + Zn + Oln + Li50mg/kg (C50), and VitD3 + Zn + Oln + Li100mg/kg (C100). Both VitD3 (850 IU/kg) and Zn (180 mg/kg) were supplied with food for 2 weeks before starting the induction of mania, which continued until the end of MPH administration. Behavioral, brain oxidative stress, thyroid hormones, VitD3, Zn, GsK-3β, and Bcl2 levels, as well as brain histopathological alterations, were assessed. Results: Manic mice exhibited alterations in all tested parameters, and the histopathological examination of the cortex and hippocampus confirmed these results. The VitD3/Zn/Oln, C50, and C100 treatment regimens reversed most of the behavioral and pathophysiological alterations; however, the C50 treatment regimen was the most efficient. Conclusions: This study emphasizes the importance of combining different antimanic medications like Li and Oln with nutraceutical supplements to increase their antimanic efficacy, reduce their adverse effects, and, ideally, improve the BD patient's quality of life.
Collapse
Affiliation(s)
- Aya A S Huzayyin
- Central Administration of Drug Control, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Michael K Ibrahim
- Central Administration of Biological and Innovative Products and Clinical Studies, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Nahed M A Hassanein
- Developmental Pharmacology and Acute Toxicity Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Helmy M S Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy-Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Chaves-Filho A, Eyres C, Blöbaum L, Landwehr A, Tremblay MÈ. The emerging neuroimmune hypothesis of bipolar disorder: An updated overview of neuroimmune and microglial findings. J Neurochem 2024; 168:1780-1816. [PMID: 38504593 DOI: 10.1111/jnc.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
Bipolar disorder (BD) is a severe and multifactorial disease, with onset usually in young adulthood, which follows a progressive course throughout life. Replicated epidemiological studies have suggested inflammatory mechanisms and neuroimmune risk factors as primary contributors to the onset and development of BD. While not all patients display overt markers of inflammation, significant evidence suggests that aberrant immune signaling contributes to all stages of the disease and seems to be mood phase dependent, likely explaining the heterogeneity of findings observed in this population. As the brain's immune cells, microglia orchestrate the brain's immune response and play a critical role in maintaining the brain's health across the lifespan. Microglia are also highly sensitive to environmental changes and respond to physiological and pathological events by adapting their functions, structure, and molecular expression. Recently, it has been highlighted that instead of a single population of cells, microglia comprise a heterogeneous community with specialized states adjusted according to the local molecular cues and intercellular interactions. Early evidence has highlighted the contribution of microglia to BD neuropathology, notably for severe outcomes, such as suicidality. However, the roles and diversity of microglial states in this disease are still largely undermined. This review brings an updated overview of current literature on the contribution of neuroimmune risk factors for the onset and progression of BD, the most prominent neuroimmune abnormalities (including biomarker, neuroimaging, ex vivo studies) and the most recent findings of microglial involvement in BD neuropathology. Combining these different shreds of evidence, we aim to propose a unifying hypothesis for BD pathophysiology centered on neuroimmune abnormalities and microglia. Also, we highlight the urgent need to apply novel multi-system biology approaches to characterize the diversity of microglial states and functions involved in this enigmatic disorder, which can open bright perspectives for novel biomarkers and therapeutic discoveries.
Collapse
Affiliation(s)
- Adriano Chaves-Filho
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
| | - Capri Eyres
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leonie Blöbaum
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Antonia Landwehr
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Quebec, Canada
- Department of Molecular Medicine, Université Laval, Québec City, Quebec, Canada
| |
Collapse
|
6
|
Mishra HK, Wei H, LeRoux M, Ko I, Rohr KE, Nievergelt CM, Maihofer AX, Shilling P, Alda M, Berrettini WH, Calabrese JR, Coryell WH, Frye M, Gershon E, McInnis MG, Nurnberger J, Oedegaard KJ, Zandi PP, Kelsoe JR, McCarthy MJ. Differential contributions of circadian clock genes to cell survival in bipolar disorder patient derived neuronal progenitor cells distinguishes lithium responders and non-responders. RESEARCH SQUARE 2024:rs.3.rs-4331810. [PMID: 38746315 PMCID: PMC11092846 DOI: 10.21203/rs.3.rs-4331810/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Bipolar disorder (BD) is characterized by disrupted circadian rhythms and neuronal loss. Lithium is neuroprotective and used to treat BD, but outcomes are variable. Past research identified that circadian rhythms in BD patient neurons are associated with lithium response (Li-R) or non-response (Li-NR). However, the underlying cellular mechanisms remain unknown. To study interactions among circadian clock genes and cell survival, and their role in BD and predicting lithium response, we tested selected genes (PER1, BMAL1 and REV-ERBα) and small molecule modulators of ROR/REV-ERB nuclear receptors in models of cell survival using mouse neurons and stem-cell derived neuronal progenitor cells (NPC) from BD patients and controls. In apoptosis assays using staurosporine (STS), lithium was neuroprotective. Knockdown of PER1, BMAL1 and REV-ERBα modified cell survival across models. In NPCs, reduced expression of PER1 and BMAL1 led to more extensive cell death in Li-NR vs. Li-R. Reduced REV-ERBα expression caused more extensive cell death in BD vs. control NPCs, without distinguishing Li-R and Li-NR. In IMHN, The REV-ERB agonist GSK4112 had strong effects on circadian rhythm amplitude, and was neuroprotective in mouse neurons and control NPCs, but not in BD NPCs. Expression of cell survival genes following STS and GSK4112 treatments revealed BD-associated, and Li-R associated differences in expression profiles. We conclude that the neuroprotective response to lithium is similar in NPCs from Li-R and Li-NR. However, knockdown of circadian clock genes or stimulation of REV-ERBs reveal distinct contributions to cell death in BD patient NPCs, some of which distinguish Li-R and Li-NR.
Collapse
|
7
|
Fedoreyeva LI, Lazareva EM, Kononenko NV. Features of the Effect of Quercetin on Different Genotypes of Wheat under Hypoxia. Int J Mol Sci 2024; 25:4487. [PMID: 38674072 PMCID: PMC11050432 DOI: 10.3390/ijms25084487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Hypoxia is one of the common abiotic stresses that negatively affects the development and productivity of agricultural crops. Quercetin is used to protect plants from oxidative stress when exposed to environmental stressors. O2 deficiency leads to impaired development and morphometric parameters in wheat varieties Orenburgskaya 22 (Triticum aestivum L.) and varieties Zolotaya (Triticum durum Desf.). Cytological analysis revealed various types of changes in the cytoplasm under conditions of hypoxia and treatment with quercetin. The most critical changes in the cytoplasm occur in the Zolotaya variety during pretreatment with quercetin followed by hypoxia, and in the Orenburgskaya 22 variety during hypoxia. Quercetin has a protective effect only on the Orenburgskaya 22 variety, and also promotes a more effective recovery after exposure to low O2 content. Hypoxia causes an increase in reactive oxygen species and activates the antioxidant system. It has been shown that the most active components of the antioxidant system in the Orenburgskaya 22 variety are MnSOD and Cu/ZnSOD, and in the Zolotaya variety GSH. We have shown that quercetin provides resistance only to the wheat genotype Orenburgskaya 22, as a protective agent against abiotic stress, which indicates the need for a comprehensive study of the effects of exogenous protectors before use in agriculture.
Collapse
Affiliation(s)
- Larisa Ivanovna Fedoreyeva
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (E.M.L.); (N.V.K.)
| | - Elena Michailovna Lazareva
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (E.M.L.); (N.V.K.)
- Biological Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Neonila Vasilievna Kononenko
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (E.M.L.); (N.V.K.)
| |
Collapse
|
8
|
Phalnikar K, Srividya M, Mythri SV, Vasavi NS, Ganguly A, Kumar A, S P, Kalia K, Mishra SS, Dhanya SK, Paul P, Holla B, Ganesh S, Reddy PC, Sud R, Viswanath B, Muralidharan B. Altered neuroepithelial morphogenesis and migration defects in iPSC-derived cerebral organoids and 2D neural stem cells in familial bipolar disorder. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae007. [PMID: 38638145 PMCID: PMC11024480 DOI: 10.1093/oons/kvae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 04/20/2024]
Abstract
Bipolar disorder (BD) is a severe mental illness that can result from neurodevelopmental aberrations, particularly in familial BD, which may include causative genetic variants. In the present study, we derived cortical organoids from BD patients and healthy (control) individuals from a clinically dense family in the Indian population. Our data reveal that the patient organoids show neurodevelopmental anomalies, including organisational, proliferation and migration defects. The BD organoids show a reduction in both the number of neuroepithelial buds/cortical rosettes and the ventricular zone size. Additionally, patient organoids show a lower number of SOX2-positive and EdU-positive cycling progenitors, suggesting a progenitor proliferation defect. Further, the patient neurons show abnormal positioning in the ventricular/intermediate zone of the neuroepithelial bud. Transcriptomic analysis of control and patient organoids supports our cellular topology data and reveals dysregulation of genes crucial for progenitor proliferation and neuronal migration. Lastly, time-lapse imaging of neural stem cells in 2D in vitro cultures reveals abnormal cellular migration in BD samples. Overall, our study pinpoints a cellular and molecular deficit in BD patient-derived organoids and neural stem cell cultures.
Collapse
Affiliation(s)
- Kruttika Phalnikar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - M Srividya
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - S V Mythri
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - N S Vasavi
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Archisha Ganguly
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Aparajita Kumar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Padmaja S
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Kishan Kalia
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Srishti S Mishra
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Sreeja Kumari Dhanya
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Pradip Paul
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Bharath Holla
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Suhas Ganesh
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Puli Chandramouli Reddy
- Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, India-201314
| | - Reeteka Sud
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Biju Viswanath
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Bhavana Muralidharan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| |
Collapse
|
9
|
Ou AH, Rosenthal SB, Adli M, Akiyama K, Akula N, Alda M, Amare AT, Ardau R, Arias B, Aubry JM, Backlund L, Bauer M, Baune BT, Bellivier F, Benabarre A, Bengesser S, Bhattacharjee AK, Biernacka JM, Cervantes P, Chen GB, Chen HC, Chillotti C, Cichon S, Clark SR, Colom F, Cousins DA, Cruceanu C, Czerski PM, Dantas CR, Dayer A, Del Zompo M, Degenhardt F, DePaulo JR, Étain B, Falkai P, Fellendorf FT, Ferensztajn-Rochowiak E, Forstner AJ, Frisén L, Frye MA, Fullerton JM, Gard S, Garnham JS, Goes FS, Grigoroiu-Serbanescu M, Grof P, Gruber O, Hashimoto R, Hauser J, Heilbronner U, Herms S, Hoffmann P, Hofmann A, Hou L, Jamain S, Jiménez E, Kahn JP, Kassem L, Kato T, Kittel-Schneider S, König B, Kuo PH, Kusumi I, Lackner N, Laje G, Landén M, Lavebratt C, Leboyer M, Leckband SG, Jaramillo CAL, MacQueen G, Maj M, Manchia M, Marie-Claire C, Martinsson L, Mattheisen M, McCarthy MJ, McElroy SL, McMahon FJ, Mitchell PB, Mitjans M, Mondimore FM, Monteleone P, Nievergelt CM, Nöthen MM, Novák T, Ösby U, Ozaki N, Papiol S, Perlis RH, Pisanu C, Potash JB, Pfennig A, Reich-Erkelenz D, Reif A, Reininghaus EZ, Rietschel M, Rouleau GA, Rybakowski JK, Schalling M, Schofield PR, Schubert KO, Schulze TG, Schweizer BW, Seemüller F, Severino G, Shekhtman T, Shilling PD, Shimoda K, Simhandl C, Slaney CM, Squassina A, Stamm T, Stopkova P, Tighe SK, Tortorella A, Turecki G, Vieta E, Volkert J, Witt S, Wray NR, Wright A, Young LT, Zandi PP, Kelsoe JR. Lithium response in bipolar disorder is associated with focal adhesion and PI3K-Akt networks: a multi-omics replication study. Transl Psychiatry 2024; 14:109. [PMID: 38395906 PMCID: PMC10891068 DOI: 10.1038/s41398-024-02811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/06/2023] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Lithium is the gold standard treatment for bipolar disorder (BD). However, its mechanism of action is incompletely understood, and prediction of treatment outcomes is limited. In our previous multi-omics study of the Pharmacogenomics of Bipolar Disorder (PGBD) sample combining transcriptomic and genomic data, we found that focal adhesion, the extracellular matrix (ECM), and PI3K-Akt signaling networks were associated with response to lithium. In this study, we replicated the results of our previous study using network propagation methods in a genome-wide association study of an independent sample of 2039 patients from the International Consortium on Lithium Genetics (ConLiGen) study. We identified functional enrichment in focal adhesion and PI3K-Akt pathways, but we did not find an association with the ECM pathway. Our results suggest that deficits in the neuronal growth cone and PI3K-Akt signaling, but not in ECM proteins, may influence response to lithium in BD.
Collapse
Affiliation(s)
- Anna H Ou
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Sara B Rosenthal
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mazda Adli
- Department of Psychiatry and Psychotherapy, Charité- Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
- Fliedner Klinik Berlin, Center for Psychiatry, Psychotherapy and Psychosomatic Medicine, Berlin, Germany
| | - Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Nirmala Akula
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- National Institute of Mental Health, Klecany, Czech Republic
| | - Azmeraw T Amare
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, Hospital University Agency of Cagliari, Cagliari, Italy
| | - Bárbara Arias
- Department of Evolutive Biology, Ecology and Environmental Sciences, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER de Salud Mental, ISCIII, Madrid, Barcelona, Catalonia, Spain
| | - Jean-Michel Aubry
- Department of Mental Health and Psychiatry, Mood Disorders Unit-Geneva University Hospitals, Geneva, Switzerland
| | - Lena Backlund
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Bernhard T Baune
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Frank Bellivier
- INSERM UMR-S 1144-Université Paris Cité Département de Psychiatrie et de Médecine Addictologique, AP-HP, Groupe Hospitalier Lariboisière-F Widal, Paris, France
| | - Antonio Benabarre
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, ISCIII, Barcelona, Catalonia, Spain
| | - Susanne Bengesser
- Neurobiological Background and Anthropometrics in Bipolar Affective Disorder, Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | | | - Joanna M Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Pablo Cervantes
- The Neuromodulation Unit, McGill University Health Centre, Montreal, QC, Canada
| | - Guo-Bo Chen
- The Neuromodulation Unit, McGill University Health Centre, Montreal, QC, Canada
| | - Hsi-Chung Chen
- Department of Psychiatry & Center of Sleep Disorders, National Taiwan University Hospital, Taipei, Taiwan
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, Hospital University Agency of Cagliari, Cagliari, Italy
| | - Sven Cichon
- Institute of Human Genetics, University of Bonn and Department of Genomics, Life & Brain Center, Bonn, Germany
- Human Genomics Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Scott R Clark
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Francesc Colom
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, ISCIII, Barcelona, Catalonia, Spain
| | - David A Cousins
- Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Cristiana Cruceanu
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Piotr M Czerski
- Psychiatric Genetic Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Clarissa R Dantas
- Department of Psychiatry, University of Campinas (Unicamp), Campinas, Brazil
| | - Alexandre Dayer
- Department of Mental Health and Psychiatry, Mood Disorders Unit-Geneva University Hospitals, Geneva, Switzerland
| | - Maria Del Zompo
- Unit of Clinical Pharmacology, Hospital University Agency of Cagliari, Cagliari, Italy
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn and Department of Genomics, Life & Brain Center, Bonn, Germany
| | - J Raymond DePaulo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Bruno Étain
- INSERM UMR-S 1144-Université Paris Cité Département de Psychiatrie et de Médecine Addictologique, AP-HP, Groupe Hospitalier Lariboisière-F Widal, Paris, France
| | - Peter Falkai
- Institute of Psychiatric Phenomics and Genomics (IPPG) and Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Frederike Tabea Fellendorf
- Neurobiological Background and Anthropometrics in Bipolar Affective Disorder, Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | | | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn and Department of Genomics, Life & Brain Center, Bonn, Germany
| | - Louise Frisén
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Child and Adolescent Psychiatry Research Center, Stockholm, Sweden
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Janice M Fullerton
- Mental Illness Research Theme, Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sébastien Gard
- Pôle de Psychiatrie Générale Universitaire, Centre Hospitalier Charles Perrens, Bordeaux, France
| | - Julie S Garnham
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Maria Grigoroiu-Serbanescu
- Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Psychiatric Hospital, Bucharest, Romania
| | - Paul Grof
- Mood Disorders Center of Ottawa, Ottawa, ON, Canada
| | - Oliver Gruber
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August University Göttingen, Göttingen, Germany
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Joanna Hauser
- Psychiatric Genetic Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG) and Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Stefan Herms
- Institute of Human Genetics, University of Bonn and Department of Genomics, Life & Brain Center, Bonn, Germany
- Human Genomics Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn and Department of Genomics, Life & Brain Center, Bonn, Germany
- Human Genomics Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Andrea Hofmann
- Institute of Human Genetics, University of Bonn and Department of Genomics, Life & Brain Center, Bonn, Germany
| | - Liping Hou
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | | | - Esther Jiménez
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, ISCIII, Barcelona, Catalonia, Spain
| | - Jean-Pierre Kahn
- Service de Psychiatrie et Psychologie Clinique, Centre Psychothérapique de Nancy-Laxou-Université de Lorraine, Nancy, France
| | - Layla Kassem
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt-Goethe University, Frankfurt am Main, Germany
| | - Barbara König
- Department of Psychiatry and Psychotherapeutic Medicine, Landesklinikum Neunkirchen, Neunkirchen, Austria
| | - Po-Hsiu Kuo
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nina Lackner
- Neurobiological Background and Anthropometrics in Bipolar Affective Disorder, Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Gonzalo Laje
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | - Mikael Landén
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the Gothenburg University, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Marion Leboyer
- Assistance Publique-Hôpitaux de Paris, Hôpital Albert Chenevier-Henri Mondor, Pôle de Psychiatrie, Créteil, France
| | - Susan G Leckband
- Department of Pharmacy, VA San Diego Healthcare System, La Jolla, CA, USA
| | | | - Glenda MacQueen
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Mario Maj
- Department of Psychiatry, University of Naples SUN, Naples, Italy
| | - Mirko Manchia
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Cynthia Marie-Claire
- INSERM UMR-S 1144-Université Paris Cité Département de Psychiatrie et de Médecine Addictologique, AP-HP, Groupe Hospitalier Lariboisière-F Widal, Paris, France
| | - Lina Martinsson
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | | | - Michael J McCarthy
- Department of Psychiatry, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Susan L McElroy
- Department of Psychiatry, Lindner Center of Hope, University of Cincinnati, Mason, OH, USA
| | - Francis J McMahon
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, and Black Dog Institute, Sydney, NSW, Australia
| | - Marina Mitjans
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, CIBER de Salud Mental, ISCIII, Madrid, Spain
| | - Francis M Mondimore
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Palmiero Monteleone
- Neurosciences Section, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | | | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn and Department of Genomics, Life & Brain Center, Bonn, Germany
| | - Tomas Novák
- National Institute of Mental Health, Klecany, Czech Republic
| | - Urban Ösby
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sergi Papiol
- Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Roy H Perlis
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Claudia Pisanu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - James B Potash
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Andrea Pfennig
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Daniela Reich-Erkelenz
- Institute of Psychiatric Phenomics and Genomics (IPPG) and Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt-Goethe University, Frankfurt am Main, Germany
| | - Eva Z Reininghaus
- Neurobiological Background and Anthropometrics in Bipolar Affective Disorder, Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Peter R Schofield
- Mental Illness Research Theme, Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - K Oliver Schubert
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Thomas G Schulze
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
- Institute of Psychiatric Phenomics and Genomics (IPPG) and Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August University Göttingen, Göttingen, Germany
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Barbara W Schweizer
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Florian Seemüller
- Institute of Psychiatric Phenomics and Genomics (IPPG) and Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Giovanni Severino
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Administration, San Diego Healthcare System, San Diego, CA, USA
| | - Paul D Shilling
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Kazutaka Shimoda
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Mibu, Japan
| | | | - Claire M Slaney
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Alessio Squassina
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Thomas Stamm
- Department of Psychiatry and Psychotherapy, Charité- Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Pavla Stopkova
- National Institute of Mental Health, Klecany, Czech Republic
| | - Sarah K Tighe
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- University of Iowa Carver College of Medicine and University of Iowa College of Public Health, VA Quality Scholars Program, Iowa City VA Hospital, Iowa City, IA, USA
| | | | - Gustavo Turecki
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, ISCIII, Barcelona, Catalonia, Spain
| | - Julia Volkert
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt-Goethe University, Frankfurt am Main, Germany
| | - Stephanie Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Naomi R Wray
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD, Australia
| | - Adam Wright
- School of Psychiatry, University of New South Wales, and Black Dog Institute, Sydney, NSW, Australia
| | - L Trevor Young
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Peter P Zandi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - John R Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Veterans Administration, San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
10
|
Niemsiri V, Rosenthal SB, Nievergelt CM, Maihofer AX, Marchetto MC, Santos R, Shekhtman T, Alliey-Rodriguez N, Anand A, Balaraman Y, Berrettini WH, Bertram H, Burdick KE, Calabrese JR, Calkin CV, Conroy C, Coryell WH, DeModena A, Eyler LT, Feeder S, Fisher C, Frazier N, Frye MA, Gao K, Garnham J, Gershon ES, Goes FS, Goto T, Harrington GJ, Jakobsen P, Kamali M, Kelly M, Leckband SG, Lohoff FW, McCarthy MJ, McInnis MG, Craig D, Millett CE, Mondimore F, Morken G, Nurnberger JI, Donovan CO, Øedegaard KJ, Ryan K, Schinagle M, Shilling PD, Slaney C, Stapp EK, Stautland A, Tarwater B, Zandi PP, Alda M, Fisch KM, Gage FH, Kelsoe JR. Focal adhesion is associated with lithium response in bipolar disorder: evidence from a network-based multi-omics analysis. Mol Psychiatry 2024; 29:6-19. [PMID: 36991131 PMCID: PMC11078741 DOI: 10.1038/s41380-022-01909-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 11/14/2022] [Accepted: 12/02/2022] [Indexed: 03/31/2023]
Abstract
Lithium (Li) is one of the most effective drugs for treating bipolar disorder (BD), however, there is presently no way to predict response to guide treatment. The aim of this study is to identify functional genes and pathways that distinguish BD Li responders (LR) from BD Li non-responders (NR). An initial Pharmacogenomics of Bipolar Disorder study (PGBD) GWAS of lithium response did not provide any significant results. As a result, we then employed network-based integrative analysis of transcriptomic and genomic data. In transcriptomic study of iPSC-derived neurons, 41 significantly differentially expressed (DE) genes were identified in LR vs NR regardless of lithium exposure. In the PGBD, post-GWAS gene prioritization using the GWA-boosting (GWAB) approach identified 1119 candidate genes. Following DE-derived network propagation, there was a highly significant overlap of genes between the top 500- and top 2000-proximal gene networks and the GWAB gene list (Phypergeometric = 1.28E-09 and 4.10E-18, respectively). Functional enrichment analyses of the top 500 proximal network genes identified focal adhesion and the extracellular matrix (ECM) as the most significant functions. Our findings suggest that the difference between LR and NR was a much greater effect than that of lithium. The direct impact of dysregulation of focal adhesion on axon guidance and neuronal circuits could underpin mechanisms of response to lithium, as well as underlying BD. It also highlights the power of integrative multi-omics analysis of transcriptomic and genomic profiling to gain molecular insights into lithium response in BD.
Collapse
Grants
- R01 MH095741 NIMH NIH HHS
- UL1 TR001442 NCATS NIH HHS
- I01 BX003431 BLRD VA
- U19 MH106434 NIMH NIH HHS
- U01 MH092758 NIMH NIH HHS
- T32 MH018399 NIMH NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- Department of Veterans Affairs | Veterans Affairs San Diego Healthcare System (VA San Diego Healthcare System)
- The Halifax group (MA, CVC, JG, CO, and CS) is supported by grants from Canadian Institutes of Health Research (#166098), ERA PerMed project PLOT-BD, Research Nova Scotia, Genome Atlantic, Nova Scotia Health Authority and Dalhousie Medical Research Foundation (Lindsay Family Fund).
- U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS)
- U19MH106434, part of the National Cooperative Reprogrammed Cell Research Groups (NCRCRG) to Study Mental Illness. AHA-Allen Initiative in Brain Health and Cognitive Impairment Award (19PABH134610000). The JPB Foundation, Bob and Mary Jane Engman, Annette C Merle-Smith, R01 MH095741, and Lynn and Edward Streim.
Collapse
Affiliation(s)
- Vipavee Niemsiri
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, University of California, San Diego, La Jolla, CA, USA
| | | | - Adam X Maihofer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Maria C Marchetto
- Department of Anthropology, University of California, San Diego, La Jolla, CA, USA
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Renata Santos
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
- University of Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1261266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Ney Alliey-Rodriguez
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, Northwestern University, Chicago, IL, USA
| | - Amit Anand
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yokesh Balaraman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wade H Berrettini
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Holli Bertram
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Katherine E Burdick
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph R Calabrese
- Mood Disorders Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Mood Disorders Program, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Cynthia V Calkin
- Department of Psychiatry and Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Carla Conroy
- Mood Disorders Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Mood Disorders Program, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | | | - Anna DeModena
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Lisa T Eyler
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Scott Feeder
- Department of Psychiatry, The Mayo Clinic, Rochester, MN, USA
| | - Carrie Fisher
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicole Frazier
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Mark A Frye
- Department of Psychiatry, The Mayo Clinic, Rochester, MN, USA
| | - Keming Gao
- Mood Disorders Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Mood Disorders Program, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Julie Garnham
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Toyomi Goto
- Mood Disorders Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Petter Jakobsen
- Norment, Division of Psychiatry, Haukeland University Hospital and Department of Clinical medicine, University of Bergen, Bergen, Norway
| | - Masoud Kamali
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Marisa Kelly
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Susan G Leckband
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Falk W Lohoff
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J McCarthy
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - David Craig
- Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - Caitlin E Millett
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francis Mondimore
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Gunnar Morken
- Division of Mental Health Care, St Olavs University Hospital, and Department of Mental Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - John I Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Ketil J Øedegaard
- Norment, Division of Psychiatry, Haukeland University Hospital and Department of Clinical medicine, University of Bergen, Bergen, Norway
| | - Kelly Ryan
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Martha Schinagle
- Mood Disorders Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Paul D Shilling
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Claire Slaney
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Emma K Stapp
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Andrea Stautland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Bruce Tarwater
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Peter P Zandi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- National Institute of Mental Health, Klecany, Czech Republic
| | - Kathleen M Fisch
- Center for Computational Biology and Bioinformatics, University of California, San Diego, La Jolla, CA, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - John R Kelsoe
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Mishra HK, Wei H, Rohr KE, Ko I, Nievergelt CM, Maihofer AX, Shilling PD, Alda M, Berrettini WH, Brennand KJ, Calabrese JR, Coryell WH, Frye M, Gage F, Gershon E, McInnis MG, Nurnberger J, Oedegaard KJ, Zandi PP, Kelsoe JR, McCarthy MJ. Contributions of circadian clock genes to cell survival in fibroblast models of lithium-responsive bipolar disorder. Eur Neuropsychopharmacol 2023; 74:1-14. [PMID: 37126998 PMCID: PMC11801370 DOI: 10.1016/j.euroneuro.2023.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Bipolar disorder (BD) is characterized by mood episodes, disrupted circadian rhythms and gray matter reduction in the brain. Lithium is an effective pharmacotherapy for BD, but not all patients respond to treatment. Lithium has neuroprotective properties and beneficial effects on circadian rhythms that may distinguish lithium responders (Li-R) from non-responders (Li-NR). The circadian clock regulates molecular pathways involved in apoptosis and cell survival, but how this overlap impacts BD and/or lithium responsiveness is unknown. In primary fibroblasts from Li-R/Li-NR BD patients and controls, we found patterns of co-expression among circadian clock and cell survival genes that distinguished BD vs. control, and Li-R vs. Li-NR cells. In cellular models of apoptosis using staurosporine (STS), lithium preferentially protected fibroblasts against apoptosis in BD vs. control samples, regardless of Li-R/Li-NR status. When examining the effects of lithium treatment of cells in vitro, caspase activation by lithium correlated with period alteration, but the relationship differed in control, Li-R and Li-NR samples. Knockdown of Per1 and Per3 in mouse fibroblasts altered caspase activity, cell death and circadian rhythms in an opposite manner. In BD cells, genetic variation in PER1 and PER3 predicted sensitivity to apoptosis in a manner consistent with knockdown studies. We conclude that distinct patterns of coordination between circadian clock and cell survival genes in BD may help predict lithium response.
Collapse
Affiliation(s)
- Himanshu K Mishra
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Heather Wei
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Kayla E Rohr
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Insu Ko
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Adam X Maihofer
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Paul D Shilling
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Martin Alda
- Department of Psychiatry, Dalhousie University Halifax, Canada
| | - Wade H Berrettini
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristen J Brennand
- Departments of Neuroscience and Psychiatry, Icahn School of Medicine at Mt Sinai, USA
| | - Joseph R Calabrese
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
| | | | - Mark Frye
- Department of Psychiatry, Mayo Clinic Rochester, MN, USA
| | - Fred Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Elliot Gershon
- Department of Psychiatry, University of Chicago, Chicago, IL, USA
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - John Nurnberger
- Department of Psychiatry, Indiana University, Indianapolis, IN, USA
| | - Ketil J Oedegaard
- Section for Psychiatry, University of Bergen and Norment and KG Jebsen Centre for Neuropsychiatry, Division of Psychiatry Haukeland University Hospital, Bergen, Norway
| | - Peter P Zandi
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - John R Kelsoe
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Michael J McCarthy
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Nascimento C, Kyunghee Kim H, Villela Nunes P, Paraiso Leite RE, Katia Cristina DO, Barbosa A, Bernardi Bertonha F, Moreira-Filho CA, Jacob-Filho W, Nitrini R, Pasqualucci CA, Tenenholz Grinberg L, Kimie Suemoto C, Brentani HP, Lafer B. Gene expression alterations in the postmortem hippocampus from older patients with bipolar disorder - A hypothesis generating study. J Psychiatr Res 2023; 164:329-334. [PMID: 37393798 DOI: 10.1016/j.jpsychires.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
Bipolar disorder (BD) presents with a progressive course in a subset of patients. However, our knowledge of molecular changes in older BD is limited. In this study, we examined gene expression changes in the hippocampus of BD from the Biobank of Aging Studies to identify genes of interest that warrant further exploration. RNA was extracted from the hippocampus from 11 subjects with BD and 11 age and sex-matched controls. Gene expression data was generated using the SurePrint G3 Human Gene Expression v3 microarray. Rank feature selection was performed to identify a subset of features that can optimally differentiate BD and controls. Genes ranked in the top 0.1% with log2 fold change >1.2 were identified as genes of interest. Average age of the subjects was 64 years old; duration of disease was 21 years and 82% were female. Twenty-five genes were identified, of which all but one was downregulated in BD. Of these, CNTNAP4, MAP4, SLC4A1, COBL, and NEURL4 had been associated with BD and other psychiatric conditions in previous studies. We believe our findings have identified promising targets to inform future studies aiming to understand the pathophysiology of BD in later life.
Collapse
Affiliation(s)
- Camila Nascimento
- Bipolar Disorder Program, Department of Psychiatry, University of Sao Paulo Medical School, SP, Brazil; Department of Psychiatry, University of Sao Paulo Medical School, SP, Brazil.
| | | | - Paula Villela Nunes
- Bipolar Disorder Program, Department of Psychiatry, University of Sao Paulo Medical School, SP, Brazil; Department of Psychiatry, University of Sao Paulo Medical School, SP, Brazil.
| | | | | | - André Barbosa
- Department of Psychiatry, University of Sao Paulo Medical School, SP, Brazil.
| | | | | | - Wilson Jacob-Filho
- Division of Geriatrics, University of Sao Paulo Medical School, SP, Brazil.
| | - Ricardo Nitrini
- Department of Neurology, University of Sao Paulo Medical School, SP, Brazil.
| | | | - Lea Tenenholz Grinberg
- Department of Pathology, University of Sao Paulo Medical School, SP, Brazil; Memory and Aging Center University of California, San Francisco, USA.
| | | | | | - Beny Lafer
- Bipolar Disorder Program, Department of Psychiatry, University of Sao Paulo Medical School, SP, Brazil; Department of Psychiatry, University of Sao Paulo Medical School, SP, Brazil.
| |
Collapse
|
13
|
Lam XJ, Xu B, Yeo PL, Cheah PS, Ling KH. Mitochondria dysfunction and bipolar disorder: From pathology to therapy. IBRO Neurosci Rep 2023; 14:407-418. [PMID: 37388495 PMCID: PMC10300489 DOI: 10.1016/j.ibneur.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 04/08/2023] [Indexed: 07/01/2023] Open
Abstract
Bipolar disorder (BD) is one of the major psychiatric diseases in which the impairment of mitochondrial functions has been closely connected or associated with the disease pathologies. Different lines of evidence of the close connection between mitochondria dysfunction and BD were discussed with a particular focus on (1) dysregulation of energy metabolism, (2) effect of genetic variants, (3) oxidative stress, cell death and apoptosis, (4) dysregulated calcium homeostasis and electrophysiology, and (5) current as well as potential treatments targeting at restoring mitochondrial functions. Currently, pharmacological interventions generally provide limited efficacy in preventing relapses or recovery from mania or depression episodes. Thus, understanding mitochondrial pathology in BD will lead to novel agents targeting mitochondrial dysfunction and formulating new effective therapy for BD.
Collapse
Affiliation(s)
- Xin-Jieh Lam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Unversiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Bingzhe Xu
- School of Biomedical Engineering, Sun Yat-sen University, 132 Daxuecheng Outer Ring E Rd, Panyu Qu, Guangzhou Shi, Guangdong 511434, People's Republic of China
| | - Pei-Ling Yeo
- School of Postgraduate Studies and Research, International Medical University, 126, Jalan Jalil Perkasa 19, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Unversiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Unversiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
14
|
Rodkin S, Nwosu C, Sannikov A, Tyurin A, Chulkov VS, Raevskaya M, Ermakov A, Kirichenko E, Gasanov M. The Role of Gasotransmitter-Dependent Signaling Mechanisms in Apoptotic Cell Death in Cardiovascular, Rheumatic, Kidney, and Neurodegenerative Diseases and Mental Disorders. Int J Mol Sci 2023; 24:ijms24076014. [PMID: 37046987 PMCID: PMC10094524 DOI: 10.3390/ijms24076014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
Cardiovascular, rheumatic, kidney, and neurodegenerative diseases and mental disorders are a common cause of deterioration in the quality of life up to severe disability and death worldwide. Many pathological conditions, including this group of diseases, are based on increased cell death through apoptosis. It is known that this process is associated with signaling pathways controlled by a group of gaseous signaling molecules called gasotransmitters. They are unique messengers that can control the process of apoptosis at different stages of its implementation. However, their role in the regulation of apoptotic signaling in these pathological conditions is often controversial and not completely clear. This review analyzes the role of nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and sulfur dioxide (SO2) in apoptotic cell death in cardiovascular, rheumatic, kidney, and neurodegenerative diseases. The signaling processes involved in apoptosis in schizophrenia, bipolar, depressive, and anxiety disorders are also considered. The role of gasotransmitters in apoptosis in these diseases is largely determined by cell specificity and concentration. NO has the greatest dualism; scales are more prone to apoptosis. At the same time, CO, H2S, and SO2 are more involved in cytoprotective processes.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Chizaram Nwosu
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Alexander Sannikov
- Department of Psychiatry, Rostov State Medical University, Rostov-on-Don 344022, Russia
| | - Anton Tyurin
- Internal Medicine Department, Bashkir State Medical University, Ufa 450008, Russia
| | | | - Margarita Raevskaya
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Alexey Ermakov
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Evgeniya Kirichenko
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Mitkhat Gasanov
- Department of Internal Diseases #1, Rostov State Medical University, Rostov-on-Don 344022, Russia
| |
Collapse
|
15
|
Neural progenitor cells derived from lithium responsive and non-responsive bipolar disorder patients exhibit distinct sensitivity to cell death following methamphetamine. Neuropharmacology 2023; 226:109410. [PMID: 36608815 DOI: 10.1016/j.neuropharm.2022.109410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023]
Abstract
Bipolar disorder (BD) is characterized by manic and depressive mood episodes and loss of brain gray matter. Lithium has antimanic and neuroprotective properties, but only 30% BD patients respond to lithium pharmacotherapy. Dopamine signaling has been implicated in BD and may contribute to lithium response. Methamphetamine (METH) stimulates dopamine release and models the clinical features of mania but has never been used to study cell death in BD patient neurons. We used BD patient derived neuronal progenitor cells (NPCs) to determine whether the vulnerability to cell death differed in samples from lithium responder (Li-R) and non-responder (Li-NR) BD patients and healthy controls following METH exposure in vitro. We hypothesized that NPCs from Li-R and Li-NR would differ in vulnerability to METH, dopamine signaling and neuroprotection from lithium. Following METH, NPCs from controls and Li-NR showed significantly greater cell loss compared to Li-R. Pre-treatment of NPCs with the D1 dopamine receptor antagonist SCH 23390 reversed the neurotoxic effects of METH. In Li-R NPCs, expression of phosho-ERK1/2 was significantly increased. In Li-NR NPCs, phospho-AKT, D1 and D2 dopamine receptor proteins were significantly increased. Pre-treatment of NPCs with lithium before METH reversed the neurotoxic effects of METH in control NPCs, whereas Li-NR showed less protective benefit. Li-R cells showed decreased levels of cell death after METH and comparatively high viability, and lithium treatment did not increase viability any further. This novel NPC model of mania reveals differences in cell death that could help identify mechanisms of lithium response in BD.
Collapse
|
16
|
Kraguljac NV, Guerreri M, Strickland MJ, Zhang H. Neurite Orientation Dispersion and Density Imaging in Psychiatric Disorders: A Systematic Literature Review and a Technical Note. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:10-21. [PMID: 36712566 PMCID: PMC9874146 DOI: 10.1016/j.bpsgos.2021.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 02/01/2023] Open
Abstract
While major psychiatric disorders lack signature diagnostic neuropathologies akin to dementias, classic postmortem studies have established microstructural involvement, i.e., cellular changes in neurons and glia, as a key pathophysiological finding. Advanced magnetic resonance imaging techniques allow mapping of cellular tissue architecture and microstructural abnormalities in vivo, which holds promise for advancing our understanding of the pathophysiology underlying psychiatric disorders. Here, we performed a systematic review of case-control studies using neurite orientation dispersion and density imaging (NODDI) to assess brain microstructure in psychiatric disorders and a selective review of technical considerations in NODDI. Of the 584 potentially relevant articles, 18 studies met the criteria to be included in this systematic review. We found a general theme of abnormal gray and white matter microstructure across the diagnostic spectrum. We also noted significant variability in patterns of neurite density and fiber orientation within and across diagnostic groups, as well as associations between brain microstructure and phenotypical variables. NODDI has been successfully used to detect subtle microstructure abnormalities in patients with psychiatric disorders. Given that NODDI indices may provide a more direct link to pathophysiological processes, this method may not only contribute to advancing our mechanistic understanding of disease processes, it may also be well positioned for next-generation biomarker development studies.
Collapse
Affiliation(s)
- Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michele Guerreri
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - Molly Jordan Strickland
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hui Zhang
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| |
Collapse
|
17
|
Lorkiewicz P, Waszkiewicz N. Is SARS-CoV-2 a Risk Factor of Bipolar Disorder?-A Narrative Review. J Clin Med 2022; 11:6060. [PMID: 36294388 PMCID: PMC9604904 DOI: 10.3390/jcm11206060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
For 2.5 years we have been facing the coronavirus disease (COVID-19) and its health, social and economic effects. One of its known consequences is the development of neuropsychiatric diseases such as anxiety and depression. However, reports of manic episodes related to COVID-19 have emerged. Mania is an integral part of the debilitating illness-bipolar disorder (BD). Due to its devastating effects, it is therefore important to establish whether SARS-CoV-2 infection is a causative agent of this severe mental disorder. In this narrative review, we discuss the similarities between the disorders caused by SARS-CoV-2 and those found in patients with BD, and we also try to answer the question of whether SARS-CoV-2 infection may be a risk factor for the development of this affective disorder. Our observation shows that disorders in COVID-19 showing the greatest similarity to those in BD are cytokine disorders, tryptophan metabolism, sleep disorders and structural changes in the central nervous system (CNS). These changes, especially intensified in severe infections, may be a trigger for the development of BD in particularly vulnerable people, e.g., with family history, or cause an acute episode in patients with a pre-existing BD.
Collapse
Affiliation(s)
- Piotr Lorkiewicz
- Department of Psychiatry, Medical University of Bialystok, Wołodyjowskiego 2, 15-272 Białystok, Poland
| | | |
Collapse
|
18
|
Husain SF, McIntyre RS, Tang TB, Abd Latif MH, Tran BX, Linh VG, Thao TPN, Ho CS, Ho RC. Functional near-infrared spectroscopy during the verbal fluency task of English-Speaking adults with mood disorders: A preliminary study. J Clin Neurosci 2021; 94:94-101. [PMID: 34863469 DOI: 10.1016/j.jocn.2021.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/10/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) provides a direct and objective assessment of cerebral cortex function. It may be used to determine neurophysiological differences between psychiatric disorders with overlapping symptoms, such as major depressive disorder (MDD) and bipolar disorder (BD). Therefore, this preliminary study aimed to compare fNIRS signals during the verbal fluency task (VFT) of English-speaking healthy controls (HC), patients with MDD and patients with BD. Fifteen HCs, 15 patients with MDD and 15 patients with BD were recruited. Groups were matched for age, gender, ethnicity and education. Relative oxy-haemoglobin and deoxy-haemoglobin changes in the frontotemporal cortex was monitored with a 52-channel fNIRS system. Integral values of the frontal and temporal regions were derived as a measure cortical haemodynamic response magnitude. Both patient groups had lower frontal and temporal region integral values than HCs, and patients with MDD had lower frontal region integral value than patients with BD. Moreover, patients could be differentiated from HCs using the frontal and temporal integral values, and patient groups could be differentiated using the frontal region integral values. VFT performance, clinical history and symptom severity were not associated with integral values. These results suggest that prefrontal cortex haemodynamic dysfunction occurs in mood disorders, and it is more extensive in MDD than BD. The fNIRS-VFT paradigm may be a potential tool for differentiating MDD from BD in clinical settings, and these findings need to be verified in a larger sample of English-speaking patients with mood disorders.
Collapse
Affiliation(s)
- Syeda Fabeha Husain
- Institute of Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore; Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Tong-Boon Tang
- Centre for Intelligent Signal and Imaging Research (CISIR), University Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Muhamad Hafiz Abd Latif
- Centre for Intelligent Signal and Imaging Research (CISIR), University Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Bach X Tran
- Institute for Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Viet Nam; Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Vu Gia Linh
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Viet Nam
| | - Thi Phuong Nguyen Thao
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Viet Nam
| | - Cyrus S Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Roger C Ho
- Institute of Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore; Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
19
|
Jiménez-Fernández S, Gurpegui M, Garrote-Rojas D, Gutiérrez-Rojas L, Carretero MD, Correll CU. Oxidative stress parameters and antioxidants in patients with bipolar disorder: Results from a meta-analysis comparing patients, including stratification by polarity and euthymic status, with healthy controls. Bipolar Disord 2021; 23:117-129. [PMID: 32780547 DOI: 10.1111/bdi.12980] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/12/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To investigate oxidative stress markers and antioxidants in bipolar disorder (BD). METHODS Electronic MEDLINE/PubMed/Cochrane-Library/Scopus/TripDatabase search until 06/30/2019 for studies comparing antioxidant or oxidative stress markers between BD and healthy controls (HCs). Standardized mean differences (SMD) and 95% confidence intervals (CIs) were calculated for ≥3 studies. RESULTS Forty-four studies (n = 3,767: BD = 1,979; HCs = 1,788) reported on oxidative stress markers malondialdehyde (MDA), thiobarbituric acid reactive substances (TBARS), and total nitrites; antioxidants glutathione (GSH), uric acid, and zinc; or antioxidantenhancing enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and GSH-transferase (GST). Compared with HCs, BD was associated with higher GST (P = .01), CAT (P = .02), nitrites (P < .0001), TBARS (P < .0001), MDA (P = .01), uric acid (P < .0001), and lower GSH (P = .006), without differences in SOD, GPX, and zinc. Compared to HCs, levels were higher in BD-mania for TBARS (P < .0001) and uric acid (P < .0001); in BD-depression for TBARS (P = .02); and BD-euthymia for uric acid (P = .03). Uric acid levels were higher in BD-mania vs BD-depression (P = .002), but not vs BD euthymia. TBARS did not differ between BD-mania and BD-depression. Medication-free BD-mania patients had higher SOD (P = .02) and lower GPX (P < .0001) than HCs. After treatment, BD did not differ from HCs regarding SOD and GPX. CONCLUSIONS Beyond a single biomarker of oxidative stress, the combination of several parameters appears to be more informative for BD in general and taking into account illness polarity. BD is associated with an imbalance in oxidative stress with some phase-specificity for uric acid and TBARS and possible treatment benefits for SOD and GPX. Future studies should take into account confounding factors that can modify oxidative stress status and simultaneously measure oxidative stress markers and antioxidants including different blood sources.
Collapse
Affiliation(s)
- Sara Jiménez-Fernández
- CTS-549 Research Group, Institute of Neurosciences, University of Granada, Granada, Spain.,Child and Adolescent Mental Health Unit, Jaén Medical Center, Jaén, Spain
| | - Manuel Gurpegui
- CTS-549 Research Group, Institute of Neurosciences, University of Granada, Granada, Spain.,Department of Psychiatry, University of Granada, Granada, Spain
| | | | - Luis Gutiérrez-Rojas
- CTS-549 Research Group, Institute of Neurosciences, University of Granada, Granada, Spain.,Department of Psychiatry, University of Granada, Granada, Spain.,Psychiatry Service, San Cecilio University Hospital, Granada, Spain
| | | | - Christoph U Correll
- Department of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA.,Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA.,Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
20
|
Neuroprogression as an Illness Trajectory in Bipolar Disorder: A Selective Review of the Current Literature. Brain Sci 2021; 11:brainsci11020276. [PMID: 33672401 PMCID: PMC7926350 DOI: 10.3390/brainsci11020276] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 01/29/2023] Open
Abstract
Bipolar disorder (BD) is a chronic and disabling psychiatric condition that is linked to significant disability and psychosocial impairment. Although current neuropsychological, molecular, and neuroimaging evidence support the existence of neuroprogression and its effects on the course and outcome of this condition, whether and to what extent neuroprogressive changes may impact the illness trajectory is still poorly understood. Thus, this selective review was aimed toward comprehensively and critically investigating the link between BD and neurodegeneration based on the currently available evidence. According to the most relevant findings of the present review, most of the existing neuropsychological, neuroimaging, and molecular evidence demonstrates the existence of neuroprogression, at least in a subgroup of BD patients. These studies mainly focused on the most relevant effects of neuroprogression on the course and outcome of BD. The main implications of this assumption are discussed in light of specific shortcomings/limitations, such as the inability to carry out a meta-analysis, the inclusion of studies with small sample sizes, retrospective study designs, and different longitudinal investigations at various time points.
Collapse
|
21
|
Wollenhaupt-Aguiar B, Kapczinski F, Pfaffenseller B. Biological Pathways Associated with Neuroprogression in Bipolar Disorder. Brain Sci 2021; 11:brainsci11020228. [PMID: 33673277 PMCID: PMC7918818 DOI: 10.3390/brainsci11020228] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
There is evidence suggesting clinical progression in a subset of patients with bipolar disorder (BD). This progression is associated with worse clinical outcomes and biological changes. Molecular pathways and biological markers of clinical progression have been identified and may explain the progressive changes associated with this disorder. The biological basis for clinical progression in BD is called neuroprogression. We propose that the following intertwined pathways provide the biological basis of neuroprogression: inflammation, oxidative stress, impaired calcium signaling, endoplasmic reticulum and mitochondrial dysfunction, and impaired neuroplasticity and cellular resilience. The nonlinear interaction of these pathways may worsen clinical outcomes, cognition, and functioning. Understanding neuroprogression in BD is crucial for identifying novel therapeutic targets, preventing illness progression, and ultimately promoting better outcomes.
Collapse
Affiliation(s)
- Bianca Wollenhaupt-Aguiar
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON L8N 3K7, Canada; (B.W.-A.); (F.K.)
- Mood Disorders Program, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 3K7, Canada
| | - Flavio Kapczinski
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON L8N 3K7, Canada; (B.W.-A.); (F.K.)
- Mood Disorders Program, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 3K7, Canada
- Neuroscience Graduate Program, McMaster University, Hamilton, ON L8S 4L8, Canada
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, Brazil
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Brazil
| | - Bianca Pfaffenseller
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON L8N 3K7, Canada; (B.W.-A.); (F.K.)
- Mood Disorders Program, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 3K7, Canada
- Correspondence:
| |
Collapse
|
22
|
Kuang L, Gao W, Long Z, Cao W, Cui D, Guo Y, Jiao Q, Qiu J, Su L, Lu G. Common and Specific Characteristics of Adolescent Bipolar Disorder Types I and II: A Combined Cortical Thickness and Structural Covariance Analysis. Front Psychiatry 2021; 12:750798. [PMID: 35126192 PMCID: PMC8814452 DOI: 10.3389/fpsyt.2021.750798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND By calculating cortical thickness (CT) and cortical structural covariance (SC), we aimed to investigate cortical morphology and cortical inter-regional correlation alterations in adolescent bipolar disorder type I (BD-I) and type II (BD-II) patients. METHODS T1-weighted images from 36 BD-I and 22 BD-II patients and 19 healthy controls (HCs) were processed to estimate CT. CT values of the whole brain were compared among three groups. Cortical regions showing CT differences in groups were regarded as seeds for analyzing cortical SC differences between groups. The relationship between CT and clinical indices was further assessed. RESULTS Both BD groups showed cortical thinning in several frontal and temporal areas vs. HCs, and CT showed no significant difference between two BD subtypes. Compared to HCs, both BD groups exhibited reduced SC connections between left superior frontal gyrus (SFG) and right postcentral gyrus (PCG), left superior temporal gyrus (STG) and right pars opercularis, and left STG and right PCG. Compared with HCs, decreased SC connections between left STG and right inferior parietal gyrus (IPG) and right pars opercularis and right STG were only observed in the BD-I group, and left PCG and left SFG only in the BD-II group. CT of right middle temporal gyrus was negatively correlated with number of episodes in BD-II patients. CONCLUSIONS Adolescent BD-I and BD-II showed commonly decreased CT while presenting commonly and distinctly declined SC connections. This study provides a better understanding of cortical morphology and cortical inter-regional correlation alterations in BD and crucial insights into neuroanatomical mechanisms and pathophysiology of different BD subtypes.
Collapse
Affiliation(s)
- Liangfeng Kuang
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Weijia Gao
- Department of Child Psychology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiliang Long
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Weifang Cao
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Dong Cui
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Yongxin Guo
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Qing Jiao
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Linyan Su
- Mental Health Institute of The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| |
Collapse
|
23
|
Damme KSF, Alloy LB, Young CB, Kelley NJ, Chein J, Ng TH, Titone MK, Black CL, Nusslock R. Amygdala subnuclei volume in bipolar spectrum disorders: Insights from diffusion-based subsegmentation and a high-risk design. Hum Brain Mapp 2020; 41:3358-3369. [PMID: 32386113 PMCID: PMC7375099 DOI: 10.1002/hbm.25021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 12/31/2022] Open
Abstract
Amygdala abnormalities are widely documented in bipolar spectrum disorders (BSD). Amygdala volume typically is measured after BSD onset; thus, it is not known whether amygdala abnormalities predict BSD risk or relate to the disorder. Additionally, past literature often treated the amygdala as a homogeneous structure, and did not consider its distinct subnuclei and their differential connectivity to other brain regions. To address these issues, we used a behavioral high‐risk design and diffusion‐based subsegmentation to examine amygdala subnuclei among medication‐free individuals with, and at risk for, BSD. The behavioral high‐risk design (N = 114) included low‐risk (N = 37), high‐risk (N = 47), and BSD groups (N = 30). Diffusion‐based subsegmentation of the amygdala was conducted to determine whether amygdala volume differences related to particular subnuclei. Individuals with a BSD diagnosis showed greater whole, bilateral amygdala volume compared to Low‐Risk individuals. Examination of subnuclei revealed that the BSD group had larger volumes compared to the High‐Risk group in both the left medial and central subnuclei, and showed larger volume in the right lateral subnucleus compared to the Low‐Risk group. Within the BSD group, specific amygdala subnuclei volumes related to time since first episode onset and number of lifetime episodes. Taken together, whole amygdala volume analyses replicated past findings of enlargement in BSD, but did not detect abnormalities in the high‐risk group. Examination of subnuclei volumes detected differences in volume between the high‐risk and BSD groups that were missed in the whole amygdala volume. Results have implications for understanding amygdala abnormalities among individuals with, and at risk for, a BSD.
Collapse
Affiliation(s)
| | - Lauren B Alloy
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Christina B Young
- Department of Psychology, Northwestern University, Evanston, Illinois, USA.,Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Nicholas J Kelley
- Department of Psychology, Northwestern University, Evanston, Illinois, USA.,School of Psychology, University of Southampton, Southampton, UK
| | - Jason Chein
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Tommy H Ng
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Madison K Titone
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Chelsea L Black
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA.,Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Robin Nusslock
- Department of Psychology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
24
|
Mansur RB, Lee Y, McIntyre RS, Brietzke E. What is bipolar disorder? A disease model of dysregulated energy expenditure. Neurosci Biobehav Rev 2020; 113:529-545. [PMID: 32305381 DOI: 10.1016/j.neubiorev.2020.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 12/24/2022]
Abstract
Advances in the understanding and management of bipolar disorder (BD) have been slow to emerge. Despite notable recent developments in neurosciences, our conceptualization of the nature of this mental disorder has not meaningfully progressed. One of the key reasons for this scenario is the continuing lack of a comprehensive disease model. Within the increasing complexity of modern research methods, there is a clear need for an overarching theoretical framework, in which findings are assimilated and predictions are generated. In this review and hypothesis article, we propose such a framework, one in which dysregulated energy expenditure is a primary, sufficient cause for BD. Our proposed model is centered on the disruption of the molecular and cellular network regulating energy production and expenditure, as well its potential secondary adaptations and compensatory mechanisms. We also focus on the putative longitudinal progression of this pathological process, considering its most likely periods for onset, such as critical periods that challenges energy homeostasis (e.g. neurodevelopment, social isolation), and the resulting short and long-term phenotypical manifestations.
Collapse
Affiliation(s)
- Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Elisa Brietzke
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Kingston General Hospital, Providence Care Hospital, Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| |
Collapse
|
25
|
Hess JL, Tylee DS, Barve R, de Jong S, Ophoff RA, Kumarasinghe N, Tooney P, Schall U, Gardiner E, Beveridge NJ, Scott RJ, Yasawardene S, Perera A, Mendis J, Carr V, Kelly B, Cairns M, Tsuang MT, Glatt SJ. Transcriptomic abnormalities in peripheral blood in bipolar disorder, and discrimination of the major psychoses. Schizophr Res 2020; 217:124-135. [PMID: 31391148 PMCID: PMC6997041 DOI: 10.1016/j.schres.2019.07.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
We performed a transcriptome-wide meta-analysis and gene co-expression network analysis to identify genes and gene networks dysregulated in the peripheral blood of bipolar disorder (BD) cases relative to unaffected comparison subjects, and determined the specificity of the transcriptomic signatures of BD and schizophrenia (SZ). Nineteen genes and 4 gene modules were significantly differentially expressed in BD cases. Thirteen gene modules were shown to be differentially expressed in a combined case-group of BD and SZ subjects called "major psychosis", including genes biologically linked to apoptosis, reactive oxygen, chromatin remodeling, and immune signaling. No modules were differentially expressed between BD and SZ cases. Machine-learning classifiers trained to separate diagnostic classes based solely on gene expression profiles could distinguish BD cases from unaffected comparison subjects with an area under the curve (AUC) of 0.724, as well as BD cases from SZ cases with AUC = 0.677 in withheld test samples. We introduced a novel and straightforward method called "polytranscript risk scoring" that could distinguish BD cases from unaffected subjects (AUC = 0.672) and SZ cases (AUC = 0.607) significantly better than expected by chance. Taken together, our results highlighted gene expression alterations common to BD and SZ that involve biological processes of inflammation, oxidative stress, apoptosis, and chromatin regulation, and highlight disorder-specific changes in gene expression that discriminate the major psychoses.
Collapse
Affiliation(s)
- Jonathan L Hess
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Daniel S Tylee
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rahul Barve
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Simone de Jong
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Roel A Ophoff
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Behavior, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nishantha Kumarasinghe
- School of Medicine & Public Health, The University of Newcastle, Callaghan, Newcastle, Australia.; Department of Anatomy, Faculty of Medical Sciences, University of Sri Jayawardenepura, Nugegoda, Sri Lanka; Faculty of Medicine, Sir John Kotelawala Defence University, Ratmalana, Sri Lanka
| | - Paul Tooney
- School of Biomedical Sciences & Pharmacy, Faculty of Health, The University of Newcastle, New South Wales, Australia; Hunter Medical Research Institute, Newcastle, Australia
| | - Ulrich Schall
- School of Medicine & Public Health, The University of Newcastle, Callaghan, Newcastle, Australia.; Priority Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, Newcastle, Australia
| | - Erin Gardiner
- School of Biomedical Sciences & Pharmacy, Faculty of Health, The University of Newcastle, New South Wales, Australia; Priority Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, Newcastle, Australia
| | - Natalie Jane Beveridge
- School of Medicine & Public Health, The University of Newcastle, Callaghan, Newcastle, Australia.; Hunter Medical Research Institute, Newcastle, Australia; Priority Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, Newcastle, Australia
| | - Rodney J Scott
- School of Biomedical Sciences & Pharmacy, Faculty of Health, The University of Newcastle, New South Wales, Australia; Hunter Medical Research Institute, Newcastle, Australia
| | - Surangi Yasawardene
- Department of Anatomy, Faculty of Medical Sciences, University of Sri Jayawardenepura, Nugegoda, Sri Lanka
| | - Antionette Perera
- Department of Anatomy, Faculty of Medical Sciences, University of Sri Jayawardenepura, Nugegoda, Sri Lanka
| | - Jayan Mendis
- Department of Anatomy, Faculty of Medical Sciences, University of Sri Jayawardenepura, Nugegoda, Sri Lanka
| | - Vaughan Carr
- School of Psychiatry, University of New South Wales, Kensington, New South Wales, Australia
| | - Brian Kelly
- School of Medicine & Public Health, The University of Newcastle, Callaghan, Newcastle, Australia.; Hunter Medical Research Institute, Newcastle, Australia; Priority Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, Newcastle, Australia
| | - Murray Cairns
- School of Biomedical Sciences & Pharmacy, Faculty of Health, The University of Newcastle, New South Wales, Australia; Hunter Medical Research Institute, Newcastle, Australia; Priority Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, Newcastle, Australia
| | - Ming T Tsuang
- Center for Behavioral Genomics, Department of Psychiatry, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA; Harvard Institute of Psychiatric Epidemiology and Genetics, Boston, USA
| | - Stephen J Glatt
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
26
|
Nascimento C, Nunes VP, Diehl Rodriguez R, Takada L, Suemoto CK, Grinberg LT, Nitrini R, Lafer B. A review on shared clinical and molecular mechanisms between bipolar disorder and frontotemporal dementia. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:269-283. [PMID: 31014945 PMCID: PMC6994228 DOI: 10.1016/j.pnpbp.2019.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022]
Abstract
Mental disorders are highly prevalent and important causes of medical burden worldwide. Co-occurrence of neurological and psychiatric symptoms are observed among mental disorders, representing a challenge for their differential diagnosis. Psychiatrists and neurologists have faced challenges in diagnosing old adults presenting behavioral changes. This is the case for early frontotemporal dementia (FTD) and bipolar disorder. In its initial stages, FTD is characterized by behavioral or language disturbances in the absence of cognitive symptoms. Consequently, patients with the behavioral subtype of FTD (bv-FTD) can be initially misdiagnosed as having a psychiatric disorder, typically major depression disorder (MDD) or bipolar disorder (BD). Bipolar disorder is associated with a higher risk of dementia in older adults and with cognitive impairment, with a subset of patients presents a neuroprogressive pattern during the disease course. No mendelian mutations were identified in BD, whereas three major genetic causes of FTD have been identified. Clinical similarities between BD and bv-FTD raise the question whether common molecular pathways might explain shared clinical symptoms. Here, we reviewed existing data on clinical and molecular similarities between BD and FTD to propose biological pathways that can be further investigated as common or specific markers of BD and FTD.
Collapse
Affiliation(s)
- Camila Nascimento
- Bipolar Disorder Program (PROMAN), Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.
| | - Villela Paula Nunes
- Bipolar Disorder Program (PROMAN), Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.
| | - Roberta Diehl Rodriguez
- Behavioral and Cognitive Neurology Unit, Department of Neurology and LIM 22, University of São Paulo, São Paulo 05403-900, Brazil
| | - Leonel Takada
- Behavioral and Cognitive Neurology Unit, Department of Neurology, University of São Paulo, São Paulo 05403-900, Brazil
| | - Cláudia Kimie Suemoto
- Division of Geriatrics, LIM-22, University of São Paulo Medical School, São Paulo 01246-90, Brazil
| | - Lea Tenenholz Grinberg
- Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo 01246-90, Brazil; Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143-120, USA.
| | - Ricardo Nitrini
- Behavioral and Cognitive Neurology Unit, Department of Neurology, University of São Paulo, São Paulo 05403-900, Brazil
| | - Beny Lafer
- Bipolar Disorder Program (PROMAN), Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
27
|
Valvassori SS, Gava FF, Dal-Pont GC, Simões HL, Damiani-Neves M, Andersen ML, Boeck CR, Quevedo J. Effects of lithium and valproate on ERK/JNK signaling pathway in an animal model of mania induced by amphetamine. Heliyon 2019; 5:e01541. [PMID: 31193305 PMCID: PMC6525279 DOI: 10.1016/j.heliyon.2019.e01541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Bipolar disorder (BD) is a severe and chronic psychiatric disorder, characterized by recurrent mood episodes of depression and mania. Some studies have indicated that there are ERK and JNK pathways alterations in the brain from bipolar patients. The animal model of mania induced by dextroamphetamine (d-AMPH) has been considered an excellent model to study intracellular alterations related to BD. The present study aimed to evaluate the effects of lithium (Li) and valproate (VPA) on the behavioral and ERK1/2/JNK1/2 signaling pathway in an animal model of mania induced by d-AMPH. Wistar rats were first given d-AMPH or saline (Sal) for 14 days, and then, between the 8th and 14th days, the rats were treated with Li, VPA, or Sal. The open-field test was used to evaluate the locomotion and exploration behaviors of rats. The levels of phosphorylated ERK1/2 and JNK1/2 were assessed in the hippocampus and frontal cortex of the rats. Li and VPA reversed the increased of locomotion and exploration induced by d-AMPH. The treatment with VPA or AMPH per se decreased the levels of pERK1 in the hippocampus. The treatment with VPA in the animals submitted to the administration of d-AMPH decreased the levels of ERK1, JNK-1, and JNK-2 phosphorylated in the hippocampus of the animals. The treatment with Li decreased the JNK-1 phosphorylated in the hippocampus of the animals submitted to the animal model of mania induced by d-AMPH. Although the association of VPA plus amphetamine alters some proteins involved in the JNK pathway in the hippocampus, these alterations were very random and seemed that were not related to the d-AMPH-induced manic-like behavior. These results suggest that the manic-like effects induced by d-AMPH and the antimanic effects of mood stabilizers, Li and VPA, are not related to the alteration on ERK1/2 and JNK1/2 pathways.
Collapse
Affiliation(s)
- Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Fernanda F Gava
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Henio Leonardo Simões
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Marcela Damiani-Neves
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Monica Levy Andersen
- Master's Degree in Health and Life Sciences, Postgraduate Program in Nanosciences, Franciscan University, Santa Maria, RS, Brazil
| | | | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
28
|
Fries GR, Walss-Bass C, Bauer ME, Teixeira AL. Revisiting inflammation in bipolar disorder. Pharmacol Biochem Behav 2019; 177:12-19. [DOI: 10.1016/j.pbb.2018.12.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/05/2018] [Accepted: 12/20/2018] [Indexed: 01/11/2023]
|
29
|
Fedoce ADG, Ferreira F, Bota RG, Bonet-Costa V, Sun PY, Davies KJA. The role of oxidative stress in anxiety disorder: cause or consequence? Free Radic Res 2018; 52:737-750. [PMID: 29742940 PMCID: PMC6218334 DOI: 10.1080/10715762.2018.1475733] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Anxiety disorders are the most common mental illness in the USA affecting 18% of the population. The cause(s) of anxiety disorders is/are not completely clear, and research in the neurobiology of anxiety at the molecular level is still rather limited. Although mounting clinical and preclinical evidence now indicates that oxidative stress may be a major component of anxiety pathology, whether oxidative stress is the cause or consequence remains elusive. Studies conducted over the past few years suggest that anxiety disorders may be characterised by lowered antioxidant defences and increased oxidative damage to proteins, lipids, and nucleic acids. In particular, oxidative modifications to proteins have actually been proposed as a potential factor in the onset and progression of several psychiatric disorders, including anxiety and depressive disorders. Oxidised proteins are normally degraded by the proteasome proteolytic complex in the cell cytoplasm, nucleus, and endoplasmic reticulum. The Lon protease performs a similar protective function inside mitochondria. Impairment of the proteasome and/or the Lon protease results in the accumulation of toxic oxidised proteins in the brain, which can cause severe neuronal trauma. Recent evidence points to possible proteolytic dysfunction and accumulation of damaged, oxidised proteins as factors that may determine the appearance and severity of psychotic symptoms in mood disorders. Thus, critical interactions between oxidative stress, proteasome, and the Lon protease may provide keys to the molecular mechanisms involved in emotional regulation, and may also be of great help in designing and screening novel anxiolytics and antidepressants.
Collapse
Affiliation(s)
- Alessandra das Graças Fedoce
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Frederico Ferreira
- Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Laboratory on Thymus Research, Rio de Janeiro, Brazil
| | - Robert G. Bota
- Department of Psychiatry, University of California, Irvine, Orange, CA 92868
| | - Vicent Bonet-Costa
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Patrick Y. Sun
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Kelvin J. A. Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, & Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA
| |
Collapse
|
30
|
Sani G, Simonetti A, Janiri D, Banaj N, Ambrosi E, De Rossi P, Ciullo V, Arciniegas DB, Piras F, Spalletta G. Association between duration of lithium exposure and hippocampus/amygdala volumes in type I bipolar disorder. J Affect Disord 2018; 232:341-348. [PMID: 29510351 DOI: 10.1016/j.jad.2018.02.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/17/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Prior studies on the effects of lithium on limbic and subcortical gray matter volumes are mixed. It is possible that discrepant findings may be explained by the duration of lithium exposure. We investigated this issue in individuals with type I bipolar disorder (BP-I). METHODS Limbic and subcortical gray matter volume was measured using FreeSurfer in 60 subjects: 15 with BP-I without prior lithium exposure [no-exposure group (NE)]; 15 with BP-I and lithium exposure < 24 months [short-exposure group (SE)]; 15 with BP-I and lithium exposure > 24 months [long-exposure group (LE)]; and 15 healthy controls (HC). RESULTS No differences in limbic and subcortical gray matter volumes were found between LE and HC. Hippocampal and amygdalar volumes were larger bilaterally in both LE and HC when compared to NE. Amygdalar volumes were larger bilaterally in SE when compared to NE but did not differ from LE. Hippocampal volumes were smaller bilaterally in SE when compared to LE and HC but did not differ from NE. No between-group differences on subcortical gray matter or other limbic structure volumes were observed. LIMITATIONS Cross-sectional design and concurrent treatment with other medications limit attribution of between-group differences to lithium exposure alone. CONCLUSIONS The effect of lithium exposure on limbic and subcortical gray matter volumes appears to be time-dependent and relatively specific to the hippocampus and the amygdala, with short-term effects on the amygdala and long-term effects on both structures. These results support the clinical importance of long-term lithium treatment in BP-I.
Collapse
Affiliation(s)
- Gabriele Sani
- NESMOS Department (Neurosciences, Mental Health, and Sensory Organs), Sapienza University of Rome, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy; Centro Lucio Bini, Rome, Italy; School of Medicine, Mood Disorder Program, Tufts University, Boston, MA, USA
| | - Alessio Simonetti
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy; Centro Lucio Bini, Rome, Italy; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Delfina Janiri
- Psychiatry Residency Training Program, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - Nerisa Banaj
- IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy
| | - Elisa Ambrosi
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy
| | - Pietro De Rossi
- NESMOS Department (Neurosciences, Mental Health, and Sensory Organs), Sapienza University of Rome, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy; Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Valentina Ciullo
- IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy; Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Italy
| | - David B Arciniegas
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Departments of Neurology and Psychiatry, University of Colorado School of Medicine, Aurora, CO, USA
| | - Fabrizio Piras
- IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy
| | - Gianfranco Spalletta
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy.
| |
Collapse
|
31
|
Soeiro-de-Souza MG, Otaduy MCG, Machado-Vieira R, Moreno RA, Nery FG, Leite C, Lafer B. Anterior Cingulate Cortex Glutamatergic Metabolites and Mood Stabilizers in Euthymic Bipolar I Disorder Patients: A Proton Magnetic Resonance Spectroscopy Study. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:985-991. [PMID: 29789269 DOI: 10.1016/j.bpsc.2018.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Bipolar disorder is a chronic and recurrent illness characterized by depressive and manic episodes. Proton magnetic resonance spectroscopy (1H-MRS) studies have demonstrated glutamate (Glu) system abnormalities in BD, but it is unclear how Glu varies among mood states and how medications modulate it. The objective of this study was to investigate the influence of mood stabilizers on anterior cingulate cortex Glu levels using 1H-MRS during euthymia. METHODS One hundred twenty-eight bipolar I disorder (BDI) euthymic subjects and 80 healthy control subjects underwent 3T brain 1H-MRS imaging examination including acquisition of an anterior cingulate cortex single voxel (8 cm3) 1H-MRS, based on a point resolved spectroscopy (PRESS) sequence with an echo time of 80 ms and a repetition time of 1500 ms (BIPUSP MRS study). The Glu system was described by measuring Glu and the sum of Glu and glutamine (Glx) using creatine (Cre) as a reference. RESULTS Euthymic BDI subjects presented with higher ratios of Glu/Cre and Glx/Cre compared to healthy control subjects. Glu/Cre ratios were lower among patients using anticonvulsants, while Glx/Cre did not differ between the two groups. Lithium, antipsychotics, and antidepressants did not influence Glu/Cre or Glx/Cre. CONCLUSIONS We reported Glu/Cre and Glx abnormalities in the largest sample of euthymic BDI patients studied by 1H-MRS to date. Our data indicate that both Glu/Cre and Glx/Cre are elevated in BDI during euthymia regardless of medication effects, reinforcing the hypothesis of glutamatergic abnormalities in BD. Furthermore, we found an effect of anticonvulsants on Glu/Cre during euthymia, which might indicate a mechanism of mood stabilization in BD.
Collapse
Affiliation(s)
- Marcio Gerhardt Soeiro-de-Souza
- Mood Disorders Unit, Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil; Genetics and Pharmacogenetics Unit, Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil.
| | | | | | - Ricardo Alberto Moreno
- Mood Disorders Unit, Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Fabiano G Nery
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Claudia Leite
- Laboratory of Magnetic Resonance, Department and Institute of Radiology, University of São Paulo, São Paulo, Brazil
| | - Beny Lafer
- Bipolar Disorders Program, Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
DNA redox modulations and global DNA methylation in bipolar disorder: Effects of sex, smoking and illness state. Psychiatry Res 2018; 261:589-596. [PMID: 29407727 DOI: 10.1016/j.psychres.2017.12.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 11/22/2017] [Accepted: 12/18/2017] [Indexed: 01/20/2023]
Abstract
DNA redox modulations and methylation have been associated with bipolar disorder (BD) pathophysiology. We aimed to investigate DNA redox modulation and global DNA methylation and demethylation levels in patients with BD during euthymia, mania or depression in comparison to non-psychiatric controls. The roles of sex and smoking as susceptibility factors for DNA redox modulations and global DNA methylation and demethylation were also explored. Levels of 5-methylcytosine (5-mC), 5-hydroxymethylcytosine (5-hmC) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were assessed in DNA samples of 75 patients with DSM-IV BD type I (37 euthymic, 18 manic, 20 depressive) in comparison to 60 non-psychiatric controls. Levels of 5-mC and 5-hmC were assessed using Dot Blot as a screening process, and verified using ELISA. Levels of 8-OHdG were assessed using ELISA. The levels of 8-OHdG significantly differed among non-psychiatric control, euthymia, mania and depression groups [F (3,110) = 2.771, p = 0.046], whereas there were no alterations in the levels of 5-hmC and 5-mC. Linear regression analyses revealed the significant effects of smoking (p = 0.031) and sex (p = 0.012) as well as state of illness on the levels of 8-OHdG (p = 0.025) in patients with BD. Our results suggest that levels of 8-OHdG may be affected by sex, illness states and smoking in BD.
Collapse
|
33
|
Coccaro EF, Cremers H, Fanning J, Nosal E, Lee R, Keedy S, Jacobson KC. Reduced frontal grey matter, life history of aggression, and underlying genetic influence. Psychiatry Res Neuroimaging 2018; 271:126-134. [PMID: 29174436 DOI: 10.1016/j.pscychresns.2017.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 11/06/2017] [Accepted: 11/11/2017] [Indexed: 11/28/2022]
Abstract
Physically healthy, adult, same-sexed twins (n = 287) from a population-based twin cohort underwent high-resolution magnetic resonance imaging (MRI) to identify fronto-limbic brain regions significantly associated with lifetime history of aggression. MRI scans used a 3D magnetization-prepared rapid acquisition gradient-echo (MP-RAGE) sequence, for voxel-based morphometry (VBM) and history of aggressive behavior was assessed using the Life History of Aggression measure. Aggression had modest, inverse associations with grey matter volume (GMV) in medial prefrontal cortex (mPFC, b = -0.20, se = 0.05, p < 0.001) and lateral prefrontal cortex (lPFC, b = -0.23, se = 0.06, p < 0.001). These associations were not confounded by other demographic, psychiatric, or personality factors. Biometrical twin analyses revealed significant heritabilities of 0.57 for GMV in the mPFC cluster and 0.36 for GMV in the lPFC cluster. Genetic factors accounted for the majority of the phenotypic correlations between aggression and mPFC GMV (85.3%) and between aggression and lPFC GMV (63.7%). Reduced GMV of prefrontal brain regions may be a neuronal characteristic of individuals with substantial histories of aggressive behavior regardless of psychiatric diagnosis. As such, these data suggest an anatomical correlate, with a possible genetic etiology, associated with functional deficits in social-emotional information processing.
Collapse
Affiliation(s)
- Emil F Coccaro
- Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral Neuroscience, Pritzker School of Medicine, The University of Chicago, Chicago 60637, IL, USA
| | - Henk Cremers
- Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral Neuroscience, Pritzker School of Medicine, The University of Chicago, Chicago 60637, IL, USA
| | - Jennifer Fanning
- Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral Neuroscience, Pritzker School of Medicine, The University of Chicago, Chicago 60637, IL, USA
| | - Eryka Nosal
- Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral Neuroscience, Pritzker School of Medicine, The University of Chicago, Chicago 60637, IL, USA
| | - Royce Lee
- Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral Neuroscience, Pritzker School of Medicine, The University of Chicago, Chicago 60637, IL, USA
| | - Sarah Keedy
- Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral Neuroscience, Pritzker School of Medicine, The University of Chicago, Chicago 60637, IL, USA
| | - Kristen C Jacobson
- Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral Neuroscience, Pritzker School of Medicine, The University of Chicago, Chicago 60637, IL, USA
| |
Collapse
|
34
|
An Oldie but Goodie: Lithium in the Treatment of Bipolar Disorder through Neuroprotective and Neurotrophic Mechanisms. Int J Mol Sci 2017; 18:ijms18122679. [PMID: 29232923 PMCID: PMC5751281 DOI: 10.3390/ijms18122679] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022] Open
Abstract
Lithium has been used for the treatment of bipolar disorder (BD) for the last sixty or more years, and recent studies with more reliable designs and updated guidelines have recommended lithium to be the treatment of choice for acute manic, mixed and depressive episodes of BD, along with long-term prophylaxis. Lithium’s specific mechanism of action in mood regulation is progressively being clarified, such as the direct inhibition on glycogen synthase kinase 3β, and its various effects on neurotrophic factors, neurotransmitters, oxidative metabolism, apoptosis, second messenger systems, and biological systems are also being revealed. Furthermore, lithium has been proposed to exert its treatment effects through mechanisms associated with neuronal plasticity. In this review, we have overviewed the clinical aspects of lithium use for BD, and have focused on the neuroprotective and neurotrophic effects of lithium.
Collapse
|
35
|
Fries GR, Colpo GD, Monroy-Jaramillo N, Zhao J, Zhao Z, Arnold JG, Bowden CL, Walss-Bass C. Distinct lithium-induced gene expression effects in lymphoblastoid cell lines from patients with bipolar disorder. Eur Neuropsychopharmacol 2017; 27:1110-1119. [PMID: 28939162 PMCID: PMC5685885 DOI: 10.1016/j.euroneuro.2017.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/08/2017] [Accepted: 09/07/2017] [Indexed: 12/12/2022]
Abstract
Lithium is the most commonly prescribed medication for the treatment of bipolar disorder (BD), yet the mechanisms underlying its beneficial effects are still unclear. We aimed to compare the effects of lithium treatment in lymphoblastoid cell lines (LCLs) from BD patients and controls. LCLs were generated from sixty-two BD patients (based on DSM-IV) and seventeen healthy controls matched for age, sex, and ethnicity. Patients were recruited from outpatient clinics from February 2012 to October 2014. LCLs were treated with 1mM lithium for 7 days followed by microarray gene expression assay and validation by real-time quantitative PCR. Baseline differences between groups, as well as differences between vehicle- and lithium-treated cells within each group were analyzed. The biological significance of differentially expressed genes was examined by pathway enrichment analysis. No significant differences in baseline gene expression (adjusted p-value < 0.05) were detected between groups. Lithium treatment of LCLs from controls did not lead to any significant differences. However, lithium altered the expression of 236 genes in LCLs from patients; those genes were enriched for signaling pathways related to apoptosis. Among those genes, the alterations in the expression of PIK3CG, SERP1 and UPP1 were validated by real-time PCR. A significant correlation was also found between circadian functioning and CEBPG and FGF2 expression levels. In summary, our results suggest that lithium treatment induces expression changes in genes associated with the apoptosis pathway in BD LCLs. The more pronounced effects of lithium in patients compared to controls suggest a disease-specific effect of this drug.
Collapse
Affiliation(s)
- Gabriel R Fries
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, United States
| | - Gabriela D Colpo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, United States
| | - Nancy Monroy-Jaramillo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, United States; Department of Genetics, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Insurgentes Sur 3877 Col. La Fama, Tlalpan, C.P. 14269 Mexico City, Mexico
| | - Junfei Zhao
- Bioinformatics and Systems Medicine Laboratory (BSML), Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX 77030, United States
| | - Zhongming Zhao
- Bioinformatics and Systems Medicine Laboratory (BSML), Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX 77030, United States; Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, 1200 Pressler Street, Houston, TX 77030, United States
| | - Jodi G Arnold
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Charles L Bowden
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Consuelo Walss-Bass
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, United States.
| |
Collapse
|
36
|
Saxena A, Scaini G, Bavaresco DV, Leite C, Valvassori SS, Carvalho AF, Quevedo J. Role of Protein Kinase C in Bipolar Disorder: A Review of the Current Literature. MOLECULAR NEUROPSYCHIATRY 2017; 3:108-124. [PMID: 29230399 DOI: 10.1159/000480349] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Abstract
Bipolar disorder (BD) is a major health problem. It causes significant morbidity and imposes a burden on the society. Available treatments help a substantial proportion of patients but are not beneficial for an estimated 40-50%. Thus, there is a great need to further our understanding the pathophysiology of BD to identify new therapeutic avenues. The preponderance of evidence pointed towards a role of protein kinase C (PKC) in BD. We reviewed the literature pertinent to the role of PKC in BD. We present recent advances from preclinical and clinical studies that further support the role of PKC. Moreover, we discuss the role of PKC on synaptogenesis and neuroplasticity in the context of BD. The recent development of animal models of BD, such as stimulant-treated and paradoxical sleep deprivation, and the ability to intervene pharmacologically provide further insights into the involvement of PKC in BD. In addition, the effect of PKC inhibitors, such as tamoxifen, in the resolution of manic symptoms in patients with BD further points in that direction. Furthermore, a wide variety of growth factors influence neurotransmission through several molecular pathways that involve downstream effects of PKC. Our current understanding identifies the PKC pathway as a potential therapeutic avenue for BD.
Collapse
Affiliation(s)
- Ashwini Saxena
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Giselli Scaini
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Daniela V Bavaresco
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Camila Leite
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Samira S Valvassori
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - André F Carvalho
- Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| |
Collapse
|
37
|
Perturbations in the apoptotic pathway and mitochondrial network dynamics in peripheral blood mononuclear cells from bipolar disorder patients. Transl Psychiatry 2017; 7:e1111. [PMID: 28463235 PMCID: PMC5534951 DOI: 10.1038/tp.2017.83] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/24/2022] Open
Abstract
Bipolar disorder (BD) is a severe psychiatric disorder characterized by phasic changes of mood and can be associated with progressive structural brain change and cognitive decline. The numbers and sizes of glia and neurons are reduced in several brain areas, suggesting the involvement of apoptosis in the pathophysiology of BD. Because the changes in mitochondrial dynamics are closely related with the early process of apoptosis and the specific processes of apoptosis and mitochondrial dynamics in BD have not been fully elucidated, we measured the apoptotic pathway and the expression of mitochondrial fission/fusion proteins from BD patients and healthy controls. We recruited 16 patients with BD type I and sixteen well-matched healthy controls and investigated protein levels of several pro-apoptotic and anti-apoptotic factors, as well as the expression of mitochondrial fission/fusion proteins in peripheral blood mononuclear cells (PBMCs). Our results showed that the levels of the anti-apoptotic proteins Bcl-xL, survivin and Bcl-xL/Bak dimer were significantly decreased, while active caspase-3 protein levels were significantly increased in PBMCs from BD patients. Moreover, we observed the downregulation of the mitochondrial fusion-related proteins Mfn2 and Opa1 and the upregulation of the fission protein Fis1 in PBMCs from BD patients, both in terms of gene expression and protein levels. We also showed a significantly decrease in the citrate synthase activity. Finally, we found a positive correlation between Mfn2 and Opa1 with mitochondrial content markers, as well as a negative correlation between mitochondrial fission/fusion proteins and apoptotic markers. Overall, data reported here are consistent with the working hypothesis that apoptosis may contribute to cellular dysfunction, brain volume loss and progressive cognitive in BD. Moreover, we show an important relationship between mitochondrial dynamics and the cell death pathway activation in BD patients, supporting the link between mitochondrial dysfunction and the pathophysiology of BD.
Collapse
|
38
|
Data-Franco J, Singh A, Popovic D, Ashton M, Berk M, Vieta E, Figueira ML, Dean OM. Beyond the therapeutic shackles of the monoamines: New mechanisms in bipolar disorder biology. Prog Neuropsychopharmacol Biol Psychiatry 2017; 72:73-86. [PMID: 27616052 DOI: 10.1016/j.pnpbp.2016.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/31/2016] [Accepted: 09/06/2016] [Indexed: 02/08/2023]
Abstract
Multiple novel biological mechanisms putatively involved in the etiology of bipolar disorders are being explored. These include oxidative stress, altered glutamatergic neurotransmission, mitochondrial dysfunction, inflammation, cell signaling, apoptosis and impaired neurogenesis. Important clinical translational potential exists for such mechanisms to help underpin development of novel therapeutics - much needed given limitations of current therapies. These new mechanisms also help improve our understanding of how current therapeutics might exert their effects. Lithium, for example, appears to have antioxidant, immunomodulatory, signaling, anti-apoptotic and neuroprotective properties. Similar properties have been attributed to other mood stabilizers such as valproate, lamotrigine, and quetiapine. Perhaps of greatest translational value has been the recognition of such mechanisms leading to the emergence of novel therapeutics for bipolar disorders. These include the antioxidant N-acetylcysteine, the anti-inflammatory celecoxib, and ketamine - with effects on the glutamatergic system and microglial inhibition. We review these novel mechanisms and emerging therapeutics, and comment on next steps in this space.
Collapse
Affiliation(s)
- João Data-Franco
- Psychiatric Department, Hospital Beatriz Ângelo, Loures, Portugal; University of Lisbon, Faculty of Medicine, Lisbon, Portugal.
| | - Ajeet Singh
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, VIC, Australia
| | - Dina Popovic
- Bipolar Disorders Program, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain; Psychiatry Division, The Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Melanie Ashton
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, VIC, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, VIC, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia; Orygen Youth Health Research Centre, Parkville, VIC, Australia
| | - Eduard Vieta
- Bipolar Disorders Program, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - M L Figueira
- University of Lisbon, Faculty of Medicine, Lisbon, Portugal
| | - Olivia M Dean
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, VIC, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
39
|
da Costa SC, Passos IC, Lowri C, Soares JC, Kapczinski F. Refractory bipolar disorder and neuroprogression. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:103-10. [PMID: 26368941 DOI: 10.1016/j.pnpbp.2015.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 08/28/2015] [Accepted: 09/08/2015] [Indexed: 01/08/2023]
Abstract
Immune activation and failure of physiologic compensatory mechanisms over time have been implicated in the pathophysiology of illness progression in bipolar disorder. Recent evidence suggests that such changes are important contributors to neuroprogression and may mediate the cross-sensitization of episode recurrence, trauma exposure and substance use. The present review aims to discuss the potential factors related to bipolar disorder refractoriness and neuroprogression. In addition, we will discuss the possible impacts of early therapeutic interventions as well as the alternative approaches in late stages of the disorder.
Collapse
Affiliation(s)
- Sabrina C da Costa
- UT Center of Excellence on Mood Disorder, Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Ives C Passos
- UT Center of Excellence on Mood Disorder, Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA; Bipolar Disorder Program and Laboratory of Molecular Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Caroline Lowri
- UT Center of Excellence on Mood Disorder, Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Jair C Soares
- UT Center of Excellence on Mood Disorder, Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Flavio Kapczinski
- UT Center of Excellence on Mood Disorder, Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA; Bipolar Disorder Program and Laboratory of Molecular Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
40
|
Sabernia T, Piri H, Rajaei F. The Effects of Different Types of Chronic Stress on Morphometric Changes and Apoptosis of Betz Cells in the Internal Pyramidal Layer of the Cerebral Cortex of Rats. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2016. [DOI: 10.17795/ajmb-33530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
41
|
Jacoby AS, Vinberg M, Poulsen HE, Kessing LV, Munkholm K. Increased DNA and RNA damage by oxidation in patients with bipolar I disorder. Transl Psychiatry 2016; 6:e867. [PMID: 27505230 PMCID: PMC5022087 DOI: 10.1038/tp.2016.141] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 12/15/2022] Open
Abstract
The mechanisms underlying bipolar disorder (BD) and the associated medical burden are unclear. Damage generated by oxidation of nucleosides may be implicated in BD pathophysiology; however, evidence from in vivo studies is limited and the extent of state-related alterations is unclear. This prospective study investigated for we believe the first time the damage generated by oxidation of DNA and RNA strictly in patients with type I BD in a manic or mixed state and subsequent episodes and remission compared with healthy control subjects. Urinary excretion of 8-oxo-deoxyguanosine (8-oxodG) and 8-oxo-guanosine (8-oxoGuo), valid markers of whole-body DNA and RNA damage by oxidation, respectively, was measured in 54 patients with BD I and in 35 healthy control subjects using a modified ultraperformance liquid chromatography and mass spectrometry assay. Repeated measurements were evaluated in various affective phases during a 6- to 12-month period and compared with repeated measurements in healthy control subjects. Independent of lifestyle and demographic variables, a 34% (P<0.0001) increase in RNA damage by oxidation across all affective states, including euthymia, was found in patients with BD I compared with healthy control subjects. Increases in DNA and RNA oxidation of 18% (P<0.0001) and 8% (P=0.02), respectively, were found in manic/hypomanic states compared with euthymia, and levels of 8-oxodG decreased 15% (P<0.0001) from a manic or mixed episode to remission. The results indicate a role for DNA and RNA damage by oxidation in BD pathophysiology and a potential for urinary 8-oxodG and 8-oxoGuo to function as biological markers of diagnosis, state and treatment response in BD.
Collapse
Affiliation(s)
- A S Jacoby
- Psychiatric Center Copenhagen, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Vinberg
- Psychiatric Center Copenhagen, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - H E Poulsen
- Laboratory of Clinical Pharmacology Q7642, Rigshospitalet and Department of Clinical Pharmacology, Bispebjerg Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - L V Kessing
- Psychiatric Center Copenhagen, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - K Munkholm
- Psychiatric Center Copenhagen, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
Woodward ND, Heckers S. Mapping Thalamocortical Functional Connectivity in Chronic and Early Stages of Psychotic Disorders. Biol Psychiatry 2016; 79:1016-25. [PMID: 26248537 PMCID: PMC4698230 DOI: 10.1016/j.biopsych.2015.06.026] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/21/2015] [Accepted: 06/18/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND There is considerable evidence that the thalamus is abnormal in psychotic disorders. Resting-state functional magnetic resonance imaging has revealed an intriguing pattern of thalamic dysconnectivity in psychosis characterized by reduced prefrontal cortex (PFC) connectivity and increased somatomotor-thalamic connectivity. However, critical knowledge gaps remain with respect to the onset, anatomical specificity, and clinical correlates of thalamic dysconnectivity in psychosis. METHODS Resting-state functional magnetic resonance imaging was collected on 105 healthy subjects and 148 individuals with psychosis, including 53 early-stage psychosis patients. Using all 253 subjects, the thalamus was parceled into functional regions of interest (ROIs) on the basis of connectivity with six a priori defined cortical ROIs covering most of the cortical mantle. Functional connectivity between each cortical ROI and its corresponding thalamic ROI was quantified and compared across groups. Significant differences in the ROI-to-ROI analysis were followed up with voxelwise seed-based analyses to further localize thalamic dysconnectivity. RESULTS ROI analysis revealed reduced PFC-thalamic connectivity and increased somatomotor-thalamic connectivity in both chronic and early-stage psychosis patients. PFC hypoconnectivity and motor cortex hyperconnectivity correlated in patients, suggesting that they result from a common pathophysiological mechanism. Seed-based analyses revealed thalamic hypoconnectivity in psychosis localized to dorsolateral PFC, medial PFC, and cerebellar areas of the well-described executive control network. Across all subjects, thalamic connectivity with areas of the fronto-parietal network correlated with cognitive functioning, including verbal learning and memory. CONCLUSIONS Thalamocortical dysconnectivity is present in both chronic and early stages of psychosis, includes reduced thalamic connectivity with the executive control network, and is related to cognitive impairment.
Collapse
|
43
|
Regulators of mitochondrial complex I activity: A review of literature and evaluation in postmortem prefrontal cortex from patients with bipolar disorder. Psychiatry Res 2016; 236:148-157. [PMID: 26723136 DOI: 10.1016/j.psychres.2015.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 12/28/2022]
Abstract
Phenomenologically, bipolar disorder (BD) is characterized by biphasic increases and decreases in energy. As this is a state-related phenomenon, identifying regulators responsible for this phasic dysregulation has the potential to uncover key elements in the pathophysiology of BD. Given the evidence suggesting mitochondrial complex I dysfunction in BD, we aimed to identify the main regulators of complex I in BD by reviewing the literature and using the published microarray data to examine their gene expression profiles. We also validated protein expression levels of the main complex I regulators by immunohistochemistry. Upon reviewing the literature, we found PARK-7, STAT-3, SIRT-3 and IMP-2 play an important role in regulating complex I activity. Published microarray studies however revealed no significant direction of regulation of STAT-3, SIRT-3, and IMP-2, but a trend towards downregulation of PARK-7 was observed in BD. Immunocontent of DJ-1 (PARK-7-encoded protein) were not elevated in post mortem prefrontal cortex from patients with BD. We also found a trend towards upregulation of DJ-1 expression with age. Our results suggest that DJ-1 is not significantly altered in BD subjects, however further studies are needed to examine DJ-1 expression levels in a cohort of older patients with BD.
Collapse
|
44
|
The gene BRAF is underexpressed in bipolar subject olfactory neuroepithelial progenitor cells undergoing apoptosis. Psychiatry Res 2016; 236:130-135. [PMID: 26753950 DOI: 10.1016/j.psychres.2015.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/30/2015] [Accepted: 12/15/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Bipolar disorder is a devastating psychiatric condition that frequently results in various degrees of brain tissue loss, cognitive decline, and premature death. The documentation of brain tissue loss implicates apoptosis as the likely underlying degenerative process, but direct experimental demonstration is lacking. METHODS Olfactory neuroepithelial biopsies from individuals with and without bipolar I disorder yielded olfactory neuroepithelial progenitor cells (ONPs), which spontaneously differentiate into neurons and glia. Glutamate, 0.1M, for 3 and 6h was used to induce apoptosis. Genes involved in the apoptotic pathway were interrogated with micro-array analysis before and after glutamate treatment for 6h. Confirmation was accomplished with real-time PCR. Total and phospho-B-Raf protein levels were measured using Western blot analysis. RESULTS ONPs from bipolar individuals demonstrated significantly greater apoptosis than cells from non-bipolar subjects. Microarray results revealed 12 differentially expressed genes. Five genes were further examined. BRAF mRNA and protein levels were significantly reduced in bipolar ONPs. CONCLUSIONS ONPs with the genetic heritage of bipolar I disorder were more sensitive to glutamate induced apoptosis. Under expression of the BRAF gene and protein, which plays a role in regulating the pro-survival MEK/ERK signaling pathway, may contribute to this apoptotic sensitivity.
Collapse
|
45
|
Bellani M, Boschello F, Delvecchio G, Dusi N, Altamura CA, Ruggeri M, Brambilla P. DTI and Myelin Plasticity in Bipolar Disorder: Integrating Neuroimaging and Neuropathological Findings. Front Psychiatry 2016; 7:21. [PMID: 26973545 PMCID: PMC4771723 DOI: 10.3389/fpsyt.2016.00021] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/09/2016] [Indexed: 02/06/2023] Open
Abstract
Bipolar disorder (BD) is a major psychiatric illness with a chronic recurrent course, ranked among the worldwide leading disabling diseases. Its pathophysiology is still not completely understood and findings are still inconclusive, though a great interest on the topic has been constantly raised by magnetic resonance imaging, genetic and neuropathological studies. In recent years, diffusion tensor imaging (DTI) investigations have prompted interest in the key role of white matter (WM) abnormalities in BD. In this report, we summarize and comment recent findings from DTI studies in BD, reporting fractional anisotropy as putative measure of WM integrity, as well as recent data from neuropathological studies focusing on oligodendrocyte involvement in WM alterations in BD. DTI research indicates that BD is most commonly associated with a WM disruption within the fronto-limbic network, which may be accompanied by other WM changes spread throughout temporal and parietal regions. Neuropathological studies, mainly focused on the fronto-limbic network, have repeatedly shown a loss in cortical and subcortical oligodendrocyte cell count, although an increased subcortical oligodendrocyte density has been also documented suggesting a putative role in remyelination processes for oligodendrocytes in BD. According to our review, a greater integration between DTI and morphological findings is needed in order to elucidate processes affecting WM, either glial loss or myelin plasticity, on the basis of a more targeted research in BD.
Collapse
Affiliation(s)
- Marcella Bellani
- Section of Psychiatry, Azienda Ospedaliera Universitaria Integrata Verona , Verona , Italy
| | | | | | - Nicola Dusi
- Section of Psychiatry, Azienda Ospedaliera Universitaria Integrata Verona , Verona , Italy
| | - Carlo Alfredo Altamura
- Department of Neurosciences and Mental Health, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, University of Milan , Milan , Italy
| | - Mirella Ruggeri
- Section of Psychiatry, University of Verona , Verona , Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, University of Milan, Milan, Italy; Department of Psychiatry and Behavioural Neurosciences, University of Texas at Houston, Houston, TX, USA
| |
Collapse
|
46
|
Stertz L, Fries GR, Rosa AR, Kauer-Sant'anna M, Ferrari P, Paz AVC, Green C, Cunha ÂBM, Dal-Pizzol F, Gottfried C, Kapczinski F. Damage-associated molecular patterns and immune activation in bipolar disorder. Acta Psychiatr Scand 2015; 132:211-7. [PMID: 25891376 DOI: 10.1111/acps.12417] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/09/2015] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Immune activation in bipolar disorder (BD) has been frequently reported. Damage-associated molecular patterns (DAMPs) are key players in the immune activation reaction. The aim of this study was to assess DAMP levels in drug-free patients with BD during acute episodes. METHOD Serum levels of a predetermined set of DAMPs were assessed in drug-free patients with BD (n = 20) during an acute mood episode. We also included two control groups: healthy subjects, used as a negative control (n = 20); and patients with sepsis, used as a positive control for severe immune activation (n = 20). RESULTS Multivariate analysis using generalized linear mixed model indicated that all DAMPs differed as a function of group membership after controlling for age and addressing multiplicity (P < 0.0006 for all comparisons). Follow-up analyses showed higher levels in BD subjects of circulating cell-free (ccf) nuclear (n)DNA (P = 0.02), HSP70 (P = 0.03) and HSP90α (P = 0.02) as compared to healthy subjects. Also, patients with BD showed lower levels of ccf nDNA (P = 0.04), HSP60 (P = 0.03), HSP70 (P = 0.01), and HSP90α (P = 0.002) as compared to patients with sepsis and higher levels of ccf mitochondrial DNA (P < 0.0001). CONCLUSION The present findings may be linked to the inflammatory activity previously described among patients with BD and may help in the development of more targeted and personalized treatments for patients under acute episodes of BD.
Collapse
Affiliation(s)
- L Stertz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, BRA.,Bipolar Disorder Program & INCT Translational Medicine, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry and Behavioral Sciences, Center for Molecular Psychiatry, University of Texas Health Science Center, Houston, TX, USA
| | - G R Fries
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, BRA.,Bipolar Disorder Program & INCT Translational Medicine, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - A R Rosa
- Bipolar Disorder Program & INCT Translational Medicine, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Pharmacology, Basic Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - M Kauer-Sant'anna
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, BRA.,Bipolar Disorder Program & INCT Translational Medicine, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - P Ferrari
- Bipolar Disorder Program & INCT Translational Medicine, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - A V C Paz
- Bipolar Disorder Program & INCT Translational Medicine, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - C Green
- Department of Pediatrics, Center for Clinical Research and Evidence-Based Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Â B M Cunha
- Department of Pharmacology, Basic Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Neuropsychiatry, Centro de Ciências da Saude, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - F Dal-Pizzol
- Laboratorio de FisiopatologiaExperimental, Unidade Academica de Ciencias da Saude, Universidade do Extremo Sul Catarinense, Criciuma, SC, USA
| | - C Gottfried
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, BRA
| | - F Kapczinski
- Bipolar Disorder Program & INCT Translational Medicine, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry and Behavioral Sciences, Center for Molecular Psychiatry, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
47
|
Valvassori SS, Resende WR, Lopes-Borges J, Mariot E, Dal-Pont GC, Vitto MF, Luz G, de Souza CT, Quevedo J. Effects of mood stabilizers on oxidative stress-induced cell death signaling pathways in the brains of rats subjected to the ouabain-induced animal model of mania: Mood stabilizers exert protective effects against ouabain-induced activation of the cell death pathway. J Psychiatr Res 2015; 65:63-70. [PMID: 25959616 DOI: 10.1016/j.jpsychires.2015.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/01/2015] [Accepted: 04/09/2015] [Indexed: 01/04/2023]
Abstract
The present study aimed to investigate the effects of mood stabilizers, specifically lithium (Li) and valproate (VPA), on mitochondrial superoxide, lipid peroxidation, and proteins involved in cell death signaling pathways in the brains of rats subjected to the ouabain-induced animal model of mania. Wistar rats received Li, VPA, or saline twice a day for 13 days. On the 7th day of treatment, the animals received a single intracerebroventricular injection of ouabain or aCSF. After the ICV injection, the treatment with mood stabilizers continued for 6 additional days. The locomotor activity of rats was measured using the open-field test. In addition, we analyzed oxidative stress parameters, specifically levels of phosphorylated p53 (pp53), BAX and Bcl-2 in the brain of rats by immunoblot. Li and VPA reversed ouabain-related hyperactivity. Ouabain decreased Bcl-2 levels and increased the oxidative stress parameters BAX and pp53 in the brains of rats. Li and VPA improved these ouabain-induced cellular dysfunctions; however, the effects of the mood stabilizers were dependent on the protein and brain region analyzed. These findings suggest that the Na(+)/K(+)-ATPase can be an important link between oxidative damage and the consequent reduction of neuronal and glial density, which are both observed in BD, and that Li and VPA exert protective effects against ouabain-induced activation of the apoptosis pathway.
Collapse
Affiliation(s)
- Samira S Valvassori
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil.
| | - Wilson R Resende
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Jéssica Lopes-Borges
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Edemilson Mariot
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Gustavo C Dal-Pont
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Marcelo F Vitto
- Laboratory of Exercise Biochemistry and Physiology, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Gabrielle Luz
- Laboratory of Exercise Biochemistry and Physiology, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Claudio T de Souza
- Laboratory of Exercise Biochemistry and Physiology, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
48
|
Réus GZ, Fries GR, Stertz L, Badawy M, Passos IC, Barichello T, Kapczinski F, Quevedo J. The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience 2015; 300:141-54. [PMID: 25981208 DOI: 10.1016/j.neuroscience.2015.05.018] [Citation(s) in RCA: 446] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/22/2015] [Accepted: 05/07/2015] [Indexed: 12/30/2022]
Abstract
Psychiatric disorders, including major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia, affect a significant percentage of the world population. These disorders are associated with educational difficulties, decreased productivity and reduced quality of life, but their underlying pathophysiological mechanisms are not fully elucidated. Recently, studies have suggested that psychiatric disorders could be considered as inflammatory disorders, even though the exact mechanisms underlying this association are not known. An increase in inflammatory response and oxidative stress may lead to inflammation, which in turn can stimulate microglia in the brain. Microglial activation is roused by the M1 phenotype, which is associated with an increase in interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). On the contrary, M2 phenotype is associated with a release of anti-inflammatory cytokines. Thus, it is possible that the inflammatory response from microglial activation can contribute to brain pathology, as well as influence treatment responses. This review will highlight the role of inflammation in the pathophysiology of psychiatric disorders, such as MDD, BD, schizophrenia, and autism. More specifically, the role of microglial activation and associated molecular cascades will also be discussed as a means by which these neuroinflammatory mechanisms take place, when appropriate.
Collapse
Affiliation(s)
- G Z Réus
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.
| | - G R Fries
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Molecular Psychiatry Unit and National Science and Technology Institute for Translational Medicine (INCT-TM), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - L Stertz
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Molecular Psychiatry Unit and National Science and Technology Institute for Translational Medicine (INCT-TM), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - M Badawy
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - I C Passos
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Molecular Psychiatry Unit and National Science and Technology Institute for Translational Medicine (INCT-TM), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - T Barichello
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Laboratório de Microbiologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - F Kapczinski
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Molecular Psychiatry Unit and National Science and Technology Institute for Translational Medicine (INCT-TM), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - J Quevedo
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| |
Collapse
|
49
|
Munkholm K, Poulsen HE, Kessing LV, Vinberg M. Elevated levels of urinary markers of oxidatively generated DNA and RNA damage in bipolar disorder. Bipolar Disord 2015; 17:257-68. [PMID: 25118140 DOI: 10.1111/bdi.12245] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 04/15/2014] [Indexed: 01/15/2023]
Abstract
OBJECTIVES The pathophysiological mechanisms underlying bipolar disorder and its multi-system nature are unclear. Oxidatively generated damage to nucleosides has been demonstrated in metabolic disorders; however, the extent to which this occurs in bipolar disorder in vivo is unknown. We investigated oxidatively generated damage to DNA and RNA in patients with bipolar disorder and its relationship with the affective phase compared with healthy control subjects. METHODS Urinary excretion of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo), markers of oxidatively generated DNA and RNA damage, respectively, was measured in 37 rapid cycling patients with bipolar disorder and in 40 age- and gender-matched healthy control subjects. Employing a longitudinal design, repeated measurements of both markers were evaluated in various affective phases in patients with bipolar disorder during a six- to 12-month period and compared with repeated measurements in healthy control subjects. RESULTS In linear mixed models, adjusting for demographical, metabolic, and lifestyle factors, the excretion of 8-oxodG and 8-oxoGuo was significantly elevated in euthymic patients with bipolar disorder compared with healthy control subjects, with increases of 40% (p < 0.0005) and 43% (p < 0.0005), respectively. The increased oxidatively generated nucleoside damage was present through all affective phases of the illness, with no significant difference between affective states. CONCLUSIONS Our results indicate that bipolar disorder is associated with increased oxidatively generated damage to nucleosides. The findings could suggest a role for oxidatively generated damage to DNA and RNA as a molecular mechanism contributing to the increased risk of medical disorders, shortened life expectancy, and the progressive course of illness observed in bipolar disorder.
Collapse
Affiliation(s)
- Klaus Munkholm
- Psychiatric Center Copenhagen, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
50
|
Dwivedi T, Zhang H. Lithium-induced neuroprotection is associated with epigenetic modification of specific BDNF gene promoter and altered expression of apoptotic-regulatory proteins. Front Neurosci 2015; 8:457. [PMID: 25642163 PMCID: PMC4294125 DOI: 10.3389/fnins.2014.00457] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 12/25/2014] [Indexed: 01/19/2023] Open
Abstract
Bipolar disorder (BD), one of the most debilitating mental disorders, is associated with increased morbidity and mortality. Lithium is the first line of treatment option for BD and is often used for maintenance therapy. Recently, the neuroprotective action of lithium has gained tremendous attention, given that BD is associated with structural and functional abnormalities of the brain. However, the precise molecular mechanism by which lithium exerts its neuroprotective action is not clearly understood. In hippocampal neurons, the effects of lithium (1 and 2 mM) on neuronal viability against glutamate-induced cytotoxicity, dendritic length and number, and expression and methylation of BDNF promoter exons and expression of apoptotic regulatory genes were studied. In rat hippocampal neurons, lithium not only increased dendritic length and number, but also neuronal viability against glutamate-induced cytotoxicity. While lithium increased the expression of BDNF as well as genes associated with neuroprotection such as Bcl2 and Bcl-XL, it decreased the expression of pro-apoptotic genes Bax, Bad, and caspases 3. Interestingly, lithium activated transcription of specific exon IV to induce BDNF gene expression. This was accompanied by hypomethylation of BDNF exon IV promoter. This study delineates mechanisms by which lithium mediates its effects in protecting neurons.
Collapse
Affiliation(s)
- Tushar Dwivedi
- Department of Psychiatry, University of Illinois at Chicago Chicago, IL, USA
| | - Hui Zhang
- Department of Psychiatry, University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|