1
|
Ghasemi M, Mehranfard N. Neuroprotective actions of norepinephrine in neurological diseases. Pflugers Arch 2024; 476:1703-1725. [PMID: 39136758 DOI: 10.1007/s00424-024-02999-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 07/24/2024] [Indexed: 10/09/2024]
Abstract
Precise control of norepinephrine (NE) levels and NE-receptor interaction is crucial for proper function of the brain. Much evidence for this view comes from experimental studies that indicate an important role for NE in the pathophysiology and treatment of various conditions, including cognitive dysfunction, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and sleep disorders. NE provides neuroprotection against several types of insults in multiple ways. It abrogates oxidative stress, attenuates neuroinflammatory responses in neurons and glial cells, reduces neuronal and glial cell activity, promotes autophagy, and ameliorates apoptotic responses to a variety of insults. It is beneficial for the treatment of neurodegenerative diseases because it improves the generation of neurotrophic factors, promotes neuronal survival, and plays an important role in the regulation of adult neurogenesis. This review aims to present the evidence supporting a principal role for NE in neuroprotection, and molecular mechanisms of neuroprotection.
Collapse
Affiliation(s)
- Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Mehranfard
- Nanokadeh Darooee Samen Private Joint Stock Company, Shafa Street, Urmia, 5715793731, Iran.
| |
Collapse
|
2
|
Chou CC, Lu YA, Weng CH, Lin HJ, Wang IJ, Jou TS, Wang CY, Tsai FJ, Cheng YD, Hsu TJ, Hung YT, Huang YH, Tien PT. The association between antiglaucomatous agents and Alzheimer's disease. Eye (Lond) 2024:10.1038/s41433-024-03348-y. [PMID: 39341977 DOI: 10.1038/s41433-024-03348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 08/03/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVES To estimate the risk of Alzheimer's disease (AD) associated with long-term use of topical glaucoma medications among middle-aged and older glaucoma patients, and compare the AD risk among various glaucoma subtypes. METHODS This nationwide population-based cohort study utilized insurance claims data from Taiwan's National Health Insurance Research Database between 2008 and 2019. Participants were adults aged 45 years or older either with a diagnosis of glaucoma or without. Those with glaucoma must have received single antiglaucomatous medication (including α2-adrenergic agonists, cholinergic agonists, beta-blockers, prostaglandin analogs, and pilocarpine) for over 90 days. Those with pre-existing AD diagnoses prior to the index date were excluded. RESULTS A total of 202,000 participants were included in the study, with 101,000 in each group (glaucoma and control groups). Glaucoma patients on topical alpha-2 adrenergic agonist monotherapy exhibited a significantly higher AD risk (aHR 1.15, 95% CI = 1.01-1.31) compared to those on beta-blockers. Glaucoma was further categorized into primary open-angle glaucoma (POAG), normal-tension glaucoma (NTG), primary angle-closure glaucoma (PACG), and unspecified glaucoma. Irrespective of the type of glaucoma, individuals with glaucoma had a significantly higher risk of AD compared to those without glaucoma (POAG: aHR 1.23, 95% CI = 1.08-1.40; NTG: aHR 1.49, 95% CI = 1.19-1.85; PACG: aHR 1.35, 95% CI = 1.19-1.52; unspecified glaucoma: aHR 1.36, 95% CI = 1.23-1.50). CONCLUSIONS Topical alpha-2 adrenergic agonists might pose increased AD risk in individuals with glaucoma compared to beta-blockers. Accordingly, their utilization should be undertaken judiciously, especially in middle-aged and older populations. Our findings also indicate glaucoma may increase the risk of AD regardless of glaucoma subtype.
Collapse
Affiliation(s)
- Chien-Chih Chou
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taichung Veterans General Hospital, Taichung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yi-An Lu
- Department of Ophthalmology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chien-Hsiang Weng
- Department of Family Medicine, Brown University Warren Alpert Medical School, Providence, RI, USA
- Coastal Medical Lifespan, Providence, RI, USA
| | - Hui-Ju Lin
- Eye Center, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - I-Jong Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzuu-Shuh Jou
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Yuan Wang
- Department of Ophthalmology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Division of Medical Genetics, China Medical University Children's Hospital, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Yih-Dih Cheng
- Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Tzu-Ju Hsu
- Management Office for Health Data, Clinical Trial Research Center, China Medical University Hospital, Taichung, Taiwan
- Master's Program in Statistics and Actuarial Science, Department of Statistics, Feng Chia University, Taichung, Taiwan
| | - Yu-Tung Hung
- Management Office for Health Data, Clinical Trial Research Center, China Medical University Hospital, Taichung, Taiwan
- Institute of Public Health, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Han Huang
- Management Office for Health Data, Clinical Trial Research Center, China Medical University Hospital, Taichung, Taiwan
- Institute of Public Health, National Cheng Kung University, Tainan, Taiwan
| | - Peng-Tai Tien
- Eye Center, China Medical University Hospital, Taichung, Taiwan.
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
3
|
Saggu S, Bai A, Aida M, Rehman H, Pless A, Ware D, Deak F, Jiao K, Wang Q. Monoamine alterations in Alzheimer's disease and their implications in comorbid neuropsychiatric symptoms. GeroScience 2024:10.1007/s11357-024-01359-x. [PMID: 39331291 DOI: 10.1007/s11357-024-01359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by relentless cognitive decline and the emergence of profoundly disruptive neuropsychiatric symptoms. As the disease progresses, it unveils a formidable array of neuropsychiatric manifestations, including debilitating depression, anxiety, agitation, and distressing episodes of psychosis. The intricate web of the monoaminergic system, governed by serotonin, dopamine, and norepinephrine, significantly influences our mood, cognition, and behavior. Emerging evidence suggests that dysregulation and degeneration of this system occur early in AD, leading to notable alterations in these critical neurotransmitters' levels, metabolism, and receptor function. However, how the degeneration of monoaminergic neurons and subsequent compensatory changes contribute to the presentation of neuropsychiatric symptoms observed in Alzheimer's disease remains elusive. This review synthesizes current findings on monoamine alterations in AD and explores how these changes contribute to the neuropsychiatric symptomatology of the disease. By elucidating the biological underpinnings of AD-related psychiatric symptoms, we aim to underscore the complexity and inform innovative approaches for treating neuropsychiatric symptoms in AD.
Collapse
Affiliation(s)
- Shalini Saggu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| | - Ava Bai
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Mae Aida
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Hasibur Rehman
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Andrew Pless
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Destany Ware
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Ferenc Deak
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Kai Jiao
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
4
|
Lauko K, Nesterowicz M, Trocka D, Dańkowska K, Żendzian-Piotrowska M, Zalewska A, Maciejczyk M. Novel Properties of Old Propranolol-Assessment of Antiglycation Activity through In Vitro and In Silico Approaches. ACS OMEGA 2024; 9:27559-27577. [PMID: 38947802 PMCID: PMC11209686 DOI: 10.1021/acsomega.4c03025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
Hypertension has earned the "silent killer" nickname since it may lead to a number of comorbidities, including diabetes and cardiovascular diseases. Oxidative stress and protein glycation play vital roles in the pathogenesis of hypertension. Several studies have shown that they profoundly account for vascular dysfunction, endothelial damage, and disruption of blood pressure regulatory mechanisms. Of particular note are advanced glycation end products (AGEs). AGEs alter vascular tissues' functional and mechanical properties by binding to receptors for advanced glycation end products (RAGE), stimulating inflammation and free radical-mediated pathways. Propranolol, a nonselective beta-adrenergic receptor antagonist, is one of the most commonly used drugs to treat hypertension and cardiovascular diseases. Our study is the first to analyze propranolol's effects on protein glycoxidation through in vitro and in silico approaches. Bovine serum albumin (BSA) was utilized to evaluate glycoxidation inhibition by propranolol. Propranolol (1 mM) and BSA (0.09 mM) were incubated with different glycating (0.5 M glucose, fructose, and galactose for 6 days and 2.5 mM glyoxal and methylglyoxal for 12 h) or oxidizing agents (chloramine T for 1 h). Biomarkers of protein glycation (Amadori products (APs), β-amyloid (βA), and advanced glycation end products (AGEs)), protein glycoxidation (dityrosine (DT), kynurenine (KYN), and N-formylkynurenine (NFK)), protein oxidation (protein carbonyls (PCs), and advanced oxidation protein products (AOPPs)) were measured by means of colorimetric and fluorimetric methods. The scavenging of reactive oxygen species (hydrogen peroxide, hydroxyl radical, and nitric oxide) and the antioxidant capacity (2,2-diphenyl-1-picrylhydrazyl radical and ferrous ion chelating (FIC) assays)) of propranolol were also evaluated. Additionally, in silico docking was performed to showcase propranolol's interaction with BSA, glycosides, and AGE/RAGE pathway proteins. The products of protein glycation (↓APs, ↓βA, ↓AGEs), glycoxidation (↓DT, ↓KYN, ↓NFK), and oxidation (↓PCs, ↓AOPPs) prominently decreased in the BSA samples with both glycating/oxidizing factors and propranolol. The antiglycoxidant properties of propranolol were similar to those of aminoguanidine, a known protein oxidation inhibitor, and captopril, which is an established antioxidant. Propranolol showed a potent antioxidant activity in the FIC and H2O2 scavenging assays, comparable to aminoguanidine and captopril. In silico analysis indicated propranolol's antiglycative properties during its interaction with BSA, glycosidases, and AGE/RAGE pathway proteins. Our results confirm that propranolol may decrease protein oxidation and glycoxidation in vitro. Additional studies on human and animal models are vital for in vivo verification of propranolol's antiglycation activity, as this discovery might hold the key to the prevention of diabetic complications among cardiology-burdened patients.
Collapse
Affiliation(s)
- Kamil
Klaudiusz Lauko
- ‘Biochemistry
of Civilisation Diseases’ Students’ Scientific Club
at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Miłosz Nesterowicz
- ‘Biochemistry
of Civilisation Diseases’ Students’ Scientific Club
at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Daria Trocka
- ‘Biochemistry
of Civilisation Diseases’ Students’ Scientific Club
at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Karolina Dańkowska
- ‘Biochemistry
of Civilisation Diseases’ Students’ Scientific Club
at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Małgorzata Żendzian-Piotrowska
- Department of Hygiene, Epidemiology and
Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Anna Zalewska
- Independent Laboratory of Experimental
Dentistry, Medical University of Bialystok, 24a M. Sklodowskiej-Curie Street , Bialystok 15-274, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and
Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| |
Collapse
|
5
|
Mohamed RMSM, Ahmad Ahmad E, Amin DM, Abdo SA, Ibrahim IAAEH, Mahmoud MF, Abdelaal S. Adrenergic receptors blockade alleviates dexamethasone-induced neurotoxicity in adult male Wistar rats: Distinct effects on β-arrestin2 expression and molecular markers of neural injury. Daru 2024; 32:97-108. [PMID: 37966585 PMCID: PMC11087427 DOI: 10.1007/s40199-023-00490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/05/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Dexamethasone-induced neurotoxicity has been previously reported. However, the molecular mechanisms are still not completely understood. OBJECTIVES The current work aimed to investigate the modulatory effects of α- and β-adrenergic receptors on dexamethasone-induced neurotoxicity in rats focused on changes in β-arrestin2 and molecular markers of neural injury in cerebral cortex. METHODS Male Wistar rats were subcutaneously injected with dexamethasone (10 mg/kg/day) for 7 days to induce neural injury in the cerebral cortex. The experiment involved 5 groups: control, dexamethasone, carvedilol, propranolol, and doxazosin. In the last 3 groups, drugs were given 2 hours before dexamethasone injection. At the end of experiment, brain samples were collected for measurement of brain derived neurotrophic factor (BDNF), glial fibrillary acidic protein (GFAP), kinase activity of protein kinase B (Akt), diacylglycerol (DAG), α-smooth muscle actin (α-SMA), Smad3, β-amyloid and phospho-tau protein levels in addition to histopathological examination of brain tissue using hematoxylin-eosin, Nissl, and Sirius red stains. Moreover, β-arrestin2 levels in the cerebral cortex were measured using immunohistochemical examination. RESULTS Dexamethasone slightly reduced brain weight and significantly decreased BDNF, Akt kinase activity and β-arrestin2 but markedly induced degeneration of cortical neurons and significantly increased GFAP, DAG, α-SMA, Smad3, β-amyloid and phospho-tau protein levels compared to controls. Carvedilol, propranolol, and doxazosin reversed all dexamethasone-induced molecular changes and slightly ameliorated the histopathological changes. Carvedilol significantly increased brain weight and β-arrestin2 levels compared to dexamethasone, propranolol, and doxazosin groups. CONCLUSION blocking α- and/or β-adrenergic receptors alleviate dexamethasone-induced neurotoxicity despite their distinct effects on β-arrestin2 levels in the cerebral cortex.
Collapse
Affiliation(s)
- Rasha M S M Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Enssaf Ahmad Ahmad
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Dalia M Amin
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Samar Ahmed Abdo
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Islam A A E-H Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Shimaa Abdelaal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
6
|
Deryusheva EI, Shevelyova MP, Rastrygina VA, Nemashkalova EL, Vologzhannikova AA, Machulin AV, Nazipova AA, Permyakova ME, Permyakov SE, Litus EA. In Search for Low-Molecular-Weight Ligands of Human Serum Albumin That Affect Its Affinity for Monomeric Amyloid β Peptide. Int J Mol Sci 2024; 25:4975. [PMID: 38732194 PMCID: PMC11084196 DOI: 10.3390/ijms25094975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
An imbalance between production and excretion of amyloid β peptide (Aβ) in the brain tissues of Alzheimer's disease (AD) patients leads to Aβ accumulation and the formation of noxious Aβ oligomers/plaques. A promising approach to AD prevention is the reduction of free Aβ levels by directed enhancement of Aβ binding to its natural depot, human serum albumin (HSA). We previously demonstrated the ability of specific low-molecular-weight ligands (LMWLs) in HSA to improve its affinity for Aβ. Here we develop this approach through a bioinformatic search for the clinically approved AD-related LMWLs in HSA, followed by classification of the candidates according to the predicted location of their binding sites on the HSA surface, ranking of the candidates, and selective experimental validation of their impact on HSA affinity for Aβ. The top 100 candidate LMWLs were classified into five clusters. The specific representatives of the different clusters exhibit dramatically different behavior, with 3- to 13-fold changes in equilibrium dissociation constants for the HSA-Aβ40 interaction: prednisone favors HSA-Aβ interaction, mefenamic acid shows the opposite effect, and levothyroxine exhibits bidirectional effects. Overall, the LMWLs in HSA chosen here provide a basis for drug repurposing for AD prevention, and for the search of medications promoting AD progression.
Collapse
Affiliation(s)
- Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Marina P. Shevelyova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Victoria A. Rastrygina
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Ekaterina L. Nemashkalova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Alisa A. Vologzhannikova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pr. Nauki, 5, Pushchino 142290, Moscow Region, Russia;
| | - Alija A. Nazipova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Maria E. Permyakova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Ekaterina A. Litus
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| |
Collapse
|
7
|
Sanz P, Rubio T, Garcia-Gimeno MA. Neuroinflammation and Epilepsy: From Pathophysiology to Therapies Based on Repurposing Drugs. Int J Mol Sci 2024; 25:4161. [PMID: 38673747 PMCID: PMC11049926 DOI: 10.3390/ijms25084161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroinflammation and epilepsy are different pathologies, but, in some cases, they are so closely related that the activation of one of the pathologies leads to the development of the other. In this work, we discuss the three main cell types involved in neuroinflammation, namely (i) reactive astrocytes, (ii) activated microglia, and infiltration of (iii) peripheral immune cells in the central nervous system. Then, we discuss how neuroinflammation and epilepsy are interconnected and describe the use of different repurposing drugs with anti-inflammatory properties that have been shown to have a beneficial effect in different epilepsy models. This review reinforces the idea that compounds designed to alleviate seizures need to target not only the neuroinflammation caused by reactive astrocytes and microglia but also the interaction of these cells with infiltrated peripheral immune cells.
Collapse
Affiliation(s)
- Pascual Sanz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Teresa Rubio
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
- Faculty of Health Science, Universidad Europea de Valencia, 46010 Valencia, Spain
| | - Maria Adelaida Garcia-Gimeno
- Department of Biotechnology, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural, Universitat Politécnica de València, 46022 Valencia, Spain;
| |
Collapse
|
8
|
Dhami P, Alagiakrishnan K, Senthilselvan A. Association between use of antihypertensives and cognitive decline in the elderly-A retrospective observational study. PLoS One 2023; 18:e0295658. [PMID: 38117779 PMCID: PMC10732389 DOI: 10.1371/journal.pone.0295658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/24/2023] [Indexed: 12/22/2023] Open
Abstract
AIM Mild cognitive impairment (MCI) is the prodromal phase of dementia. The objective of this study was to determine whether specific antihypertensives were associated with conversion from MCI to dementia. METHODS In this retrospective study, a chart review was conducted on 335 older adults seen at the University of Alberta Hospital, Kaye Edmonton Seniors Clinic who were diagnosed with MCI. At the point of diagnosis, data was collected on demographic and lifestyle characteristics, measures of cognitive function, blood pressure measurements, use of antihypertensives, and other known or suspected risk factors for cognitive decline. Patients were followed for 5.5 years for dementia diagnoses. A logistic regression analysis was then conducted to determine the factors associated with conversion from MCI to dementia. RESULTS Mean age (± standard deviation) of the study participants was 76.5 ± 7.3 years. Patients who converted from MCI to dementia were significantly older and were more likely to have a family history of dementia. After controlling for potential confounders including age, sex, Mini Mental Status Exam scores and family history of dementia, patients who were on beta-blockers (BBs) had a 57% reduction in the odds of converting to dementia (OR: 0.43, 95% CI: 0.23, 0.81). CONCLUSIONS In this study, BB use was protective against conversion from MCI to dementia. Further studies are required to confirm the findings of our study and to elucidate the effect of BBs on cognitive decline.
Collapse
Affiliation(s)
- Prabhpaul Dhami
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Kannayiram Alagiakrishnan
- Division of Geriatric Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
9
|
Jin M, Wei Z, Ramalingam N, Xiao M, Xu A, Yu X, Song Q, Liu W, Zhao J, Zhang D, Selkoe DJ, Li S. Activation of β 2-adrenergic receptors prevents AD-type synaptotoxicity via epigenetic mechanisms. Mol Psychiatry 2023; 28:4877-4888. [PMID: 37365243 DOI: 10.1038/s41380-023-02145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
We previously reported that prolonged exposure to an enriched environment (EE) enhances hippocampal synaptic plasticity, with one of the significant mechanistic pathways being activation of β2-adrenergic receptor (β2-AR) signaling, thereby mitigating the synaptotoxic effects of soluble oligomers of amyloid β-protein (oAβ). However, the detailed mechanism remained elusive. In this work, we recorded field excitatory postsynaptic potentials (fEPSP) in the CA1 region of mouse hippocampal slices treated with or without toxic Aβ-species. We found that pharmacological activation of β2-AR, but not β1-AR, selectively mimicked the effects of EE in enhancing LTP and preventing oAβ-induced synaptic dysfunction. Mechanistic analyses showed that certain histone deacetylase (HDAC) inhibitors mimicked the benefits of EE, but this was not seen in β2-AR knockout mice, suggesting that activating β2-AR prevents oAβ-mediated synaptic dysfunction via changes in histone acetylation. EE or activation of β-ARs each decreased HDAC2, whereas Aβ oligomers increased HDAC2 levels in the hippocampus. Further, oAβ-induced inflammatory effects and neurite degeneration were prevented by either β2-AR agonists or certain specific HDAC inhibitors. These preclinical results suggest that activation of β2-AR is a novel potential therapeutic strategy to mitigate oAβ-mediated features of AD.
Collapse
Affiliation(s)
- Ming Jin
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Zhiyun Wei
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Meng Xiao
- Department of Neurology, Xinxiang Medical University, Xinxiang, 453100, China
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, 518172, China
| | - Anqi Xu
- Department of Neurology, Xinxiang Medical University, Xinxiang, 453100, China
| | - Xiaohan Yu
- Department of Neurology, Xinxiang Medical University, Xinxiang, 453100, China
| | - Qingyang Song
- Department of Neurology, Xinxiang Medical University, Xinxiang, 453100, China
| | - Wen Liu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Jianhua Zhao
- Department of Neurology, Xinxiang Medical University, Xinxiang, 453100, China
- Henan Key Laboratory of Neurorestoratology, Xinxiang, Henan, 453100, China
| | - Dainan Zhang
- Department of Neurology, Xinxiang Medical University, Xinxiang, 453100, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Dridi H, Liu Y, Reiken S, Liu X, Argyrousi EK, Yuan Q, Miotto MC, Sittenfeld L, Meddar A, Soni RK, Arancio O, Lacampagne A, Marks AR. Heart failure-induced cognitive dysfunction is mediated by intracellular Ca 2+ leak through ryanodine receptor type 2. Nat Neurosci 2023; 26:1365-1378. [PMID: 37429912 PMCID: PMC10400432 DOI: 10.1038/s41593-023-01377-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/12/2023] [Indexed: 07/12/2023]
Abstract
Cognitive dysfunction (CD) in heart failure (HF) adversely affects treatment compliance and quality of life. Although ryanodine receptor type 2 (RyR2) has been linked to cardiac muscle dysfunction, its role in CD in HF remains unclear. Here, we show in hippocampal neurons from individuals and mice with HF that the RyR2/intracellular Ca2+ release channels were subjected to post-translational modification (PTM) and were leaky. RyR2 PTM included protein kinase A phosphorylation, oxidation, nitrosylation and depletion of the stabilizing subunit calstabin2. RyR2 PTM was caused by hyper-adrenergic signaling and activation of the transforming growth factor-beta pathway. HF mice treated with a RyR2 stabilizer drug (S107), beta blocker (propranolol) or transforming growth factor-beta inhibitor (SD-208), or genetically engineered mice resistant to RyR2 Ca2+ leak (RyR2-p.Ser2808Ala), were protected against HF-induced CD. Taken together, we propose that HF is a systemic illness driven by intracellular Ca2+ leak that includes cardiogenic dementia.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA.
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Xiaoping Liu
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Elentina K Argyrousi
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Marco C Miotto
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | | | | | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Alain Lacampagne
- PHYMEDEXP, University of Montpellier, CNRS, INSERM, CHU Montpellier, Montpellier, France
- LIA1185 CNRS, Montpellier, France
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA.
| |
Collapse
|
11
|
Seidel M, Rajkumar S, Steffke C, Noeth V, Agarwal S, Roger K, Lipecka J, Ludolph A, Guerrera CI, Boeckers T, Catanese A. Propranolol reduces the accumulation of cytotoxic aggregates in C9orf72-ALS/FTD in vitro models. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100105. [PMID: 37576491 PMCID: PMC10412779 DOI: 10.1016/j.crneur.2023.100105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/23/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023] Open
Abstract
Mutations in the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The pathogenetic mechanisms linked to this gene are a direct consequence of an aberrant intronic expansion of a GGGGCC hexanucleotide located between the 1a and 1b non-coding exons, which can be transcribed to form cytotoxic RNA foci or even translated into aggregation-prone dipeptide repeat proteins. Importantly, the abnormal length of these repeats affects also the expression levels of C9orf72 itself, which suggests haploinsufficiency as additional pathomechanism. Thus, it appears that both toxic gain of function and loss of function are distinct but still coexistent features contributing to the insurgence of the disease in case of C9orf72 mutations. In this study, we aimed at identifying a strategy to address both aspects of the C9orf72-related pathobiochemistry and provide proof-of-principle information for a better understanding of the mechanisms leading to neuronal loss. By using primary neurons overexpressing toxic poly(GA), the most abundant protein product of the GGGGCC repeats, we found that the antiarrhythmic drug propranolol could efficiently reduce the accumulation of aberrant aggregates and increase the survival of C9orf72-related cultures. Interestingly, the improved catabolism appeared to not depend on major degradative pathways such as autophagy and the proteasome. By analyzing the proteome of poly(GA)-expressing neurons after exposure to propranolol, we found that the drug increased lysosomal degradation through a mechanism directly involving C9orf72 protein, whose levels were increased after treatment. Further confirmation of the beneficial effect of the beta blocker on aggregates' accumulation and survival of hiPSC-derived C9orf72-mutant motoneurons strengthened the finding that addressing both facets of C9orf72 pathology might represent a valid strategy for the treatment of these ALS/FTD cases.
Collapse
Affiliation(s)
- Mira Seidel
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Sandeep Rajkumar
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Christina Steffke
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Vivien Noeth
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
- International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | - Shreya Agarwal
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
- International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | - Kevin Roger
- Proteomics Platform Necker, Université Paris Cité - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Paris, France
| | - Joanna Lipecka
- Proteomics Platform Necker, Université Paris Cité - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Paris, France
| | - Albert Ludolph
- Department of Neurology, Ulm University School of Medicine, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm site, Ulm, Germany
| | - Chiara Ida Guerrera
- Proteomics Platform Necker, Université Paris Cité - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Paris, France
| | - Tobias Boeckers
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm site, Ulm, Germany
| | - Alberto Catanese
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm site, Ulm, Germany
| |
Collapse
|
12
|
Min J, Rouanet J, Martini AC, Nashiro K, Yoo HJ, Porat S, Cho C, Wan J, Cole SW, Head E, Nation DA, Thayer JF, Mather M. Modulating heart rate oscillation affects plasma amyloid beta and tau levels in younger and older adults. Sci Rep 2023; 13:3967. [PMID: 36894565 PMCID: PMC9998394 DOI: 10.1038/s41598-023-30167-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
Slow paced breathing via heart rate variability (HRV) biofeedback stimulates vagus-nerve pathways that counter noradrenergic stress and arousal pathways that can influence production and clearance of Alzheimer's disease (AD)-related proteins. Thus, we examined whether HRV biofeedback intervention affects plasma Αβ40, Αβ42, total tau (tTau), and phosphorylated tau-181 (pTau-181) levels. We randomized healthy adults (N = 108) to use slow-paced breathing with HRV biofeedback to increase heart rate oscillations (Osc+) or to use personalized strategies with HRV biofeedback to decrease heart rate oscillations (Osc-). They practiced 20-40 min daily. Four weeks of practicing the Osc+ and Osc- conditions produced large effect size differences in change in plasma Aβ40 and Aβ42 levels. The Osc+ condition decreased plasma Αβ while the Osc- condition increased Αβ. Decreases in Αβ were associated with decreases in gene transcription indicators of β-adrenergic signaling, linking effects to the noradrenergic system. There were also opposing effects of the Osc+ and Osc- interventions on tTau for younger adults and pTau-181 for older adults. These results provide novel data supporting a causal role of autonomic activity in modulating plasma AD-related biomarkers.Trial registration: NCT03458910 (ClinicalTrials.gov); first posted on 03/08/2018.
Collapse
Affiliation(s)
- Jungwon Min
- University of Southern California, Los Angeles, CA, USA
| | | | | | - Kaoru Nashiro
- University of Southern California, Los Angeles, CA, USA
| | - Hyun Joo Yoo
- University of Southern California, Los Angeles, CA, USA
| | - Shai Porat
- University of Southern California, Los Angeles, CA, USA
| | - Christine Cho
- University of Southern California, Los Angeles, CA, USA
| | - Junxiang Wan
- University of Southern California, Los Angeles, CA, USA
| | - Steve W Cole
- University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | | | - Mara Mather
- University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Singer KE, McGlone ED, Collins SM, Wallen TE, Morris MC, Schuster RM, England LG, Robson MJ, Goodman MD. Propranolol Reduces p-tau Accumulation and Improves Behavior Outcomes in a Polytrauma Murine Model. J Surg Res 2023; 282:183-190. [PMID: 36308901 DOI: 10.1016/j.jss.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/20/2022] [Accepted: 09/18/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Traumatic brain injury (TBI) can lead to neurocognitive decline, in part due to phosphorylated tau (p-tau). Whether p-tau accumulation worsens in the setting of polytrauma remains unknown. Propranolol has shown clinical benefit in head injuries; however, the underlying mechanism is also unknown. We hypothesize that hemorrhagic shock would worsen p-tau accumulation but that propranolol would improve functional outcomes on behavioral studies. METHODS A murine polytrauma model was developed to examine the accumulation of p-tau and whether it can be mitigated by early administration of propranolol. TBI was induced using a weight-drop model and hemorrhagic shock was achieved via controlled hemorrhage for 1 h. Mice were given intraperitoneal propranolol 4 mg/kg or saline control. The animals underwent behavioral testing at 30 d postinjury and were sacrificed for cerebral histological analysis. These studies were completed in male and female mice. RESULTS TBI alone led to increased p-tau generation compared to sham on both immunohistochemistry and immunofluorescence (P < 0.05). The addition of hemorrhage led to greater accumulation of p-tau in the hippocampus (P < 0.007). In male mice, p-tau accumulation decreased with propranolol administration for both polytrauma and TBI alone (P < 0.0001). Male mice treated with propranolol also outperformed saline-control mice on the hippocampal-dependent behavioral assessment (P = 0.0013). These results were not replicated in female mice; the addition of hemorrhage did not increase p-tau accumulation and propranolol did not demonstrate a therapeutic effect. CONCLUSIONS Polytrauma including TBI generates high levels of hippocampal p-tau, but propranolol may help prevent this accumulation to improve both neuropathological and functional outcomes in males.
Collapse
Affiliation(s)
- Kathleen E Singer
- Department of General Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Emily D McGlone
- Department of General Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Sean M Collins
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Taylor E Wallen
- Department of General Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Mackenzie C Morris
- Department of General Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Rebecca M Schuster
- Department of General Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Lisa G England
- Department of General Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Matthew J Robson
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Michael D Goodman
- Department of General Surgery, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
14
|
Carey A, Fossati S. Hypertension and hyperhomocysteinemia as modifiable risk factors for Alzheimer's disease and dementia: New evidence, potential therapeutic strategies, and biomarkers. Alzheimers Dement 2023; 19:671-695. [PMID: 36401868 PMCID: PMC9931659 DOI: 10.1002/alz.12871] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022]
Abstract
This review summarizes recent evidence on how mid-life hypertension, hyperhomocysteinemia (HHcy) and blood pressure variability, as well as late-life hypotension, exacerbate Alzheimer's disease (AD) and dementia risk. Intriguingly, HHcy also increases the risk for hypertension, revealing the importance of understanding the relationship between comorbid cardiovascular risk factors. Hypertension-induced dementia presents more evidently in women, highlighting the relevance of sex differences in the impact of cardiovascular risk. We summarize each major antihypertensive drug class's effects on cognitive impairment and AD pathology, revealing how carbonic anhydrase inhibitors, diuretics modulating cerebral blood flow, have recently gained preclinical evidence as promising treatment against AD. We also report novel vascular biomarkers for AD and dementia risk, highlighting those associated with hypertension and HHcy. Importantly, we propose that future studies should consider hypertension and HHcy as potential contributors to cognitive impairment, and that uncovering the underlying molecular mechanisms and biomarkers would aid in the identification of preventive strategies.
Collapse
Affiliation(s)
- Ashley Carey
- Alzheimer’s Center at Temple, Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia
| | - Silvia Fossati
- Alzheimer’s Center at Temple, Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia
| |
Collapse
|
15
|
Nian Y, Hu X, Zhang R, Feng J, Du J, Li F, Bu L, Zhang Y, Chen Y, Tao C. Mining on Alzheimer's diseases related knowledge graph to identity potential AD-related semantic triples for drug repurposing. BMC Bioinformatics 2022; 23:407. [PMID: 36180861 PMCID: PMC9523633 DOI: 10.1186/s12859-022-04934-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To date, there are no effective treatments for most neurodegenerative diseases. Knowledge graphs can provide comprehensive and semantic representation for heterogeneous data, and have been successfully leveraged in many biomedical applications including drug repurposing. Our objective is to construct a knowledge graph from literature to study the relations between Alzheimer's disease (AD) and chemicals, drugs and dietary supplements in order to identify opportunities to prevent or delay neurodegenerative progression. We collected biomedical annotations and extracted their relations using SemRep via SemMedDB. We used both a BERT-based classifier and rule-based methods during data preprocessing to exclude noise while preserving most AD-related semantic triples. The 1,672,110 filtered triples were used to train with knowledge graph completion algorithms (i.e., TransE, DistMult, and ComplEx) to predict candidates that might be helpful for AD treatment or prevention. RESULTS Among three knowledge graph completion models, TransE outperformed the other two (MR = 10.53, Hits@1 = 0.28). We leveraged the time-slicing technique to further evaluate the prediction results. We found supporting evidence for most highly ranked candidates predicted by our model which indicates that our approach can inform reliable new knowledge. CONCLUSION This paper shows that our graph mining model can predict reliable new relationships between AD and other entities (i.e., dietary supplements, chemicals, and drugs). The knowledge graph constructed can facilitate data-driven knowledge discoveries and the generation of novel hypotheses.
Collapse
Affiliation(s)
- Yi Nian
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030 USA
| | - Xinyue Hu
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030 USA
| | - Rui Zhang
- Department of Pharmaceutical Care & Health System (PCHS) and the Institute for Health Informatics (IHI), University of Minnesota, 7-115A Weaver-Densford Hall, Minneapolis, MN 55455 USA
| | - Jingna Feng
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030 USA
| | - Jingcheng Du
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030 USA
| | - Fang Li
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030 USA
| | - Larry Bu
- University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD 21201 USA
| | - Yuji Zhang
- University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD 21201 USA
| | - Yong Chen
- Department of Biostatistics, Epidemiology and Informatics (DBEI), the Perelman School of Medicine, University of Pennsylvania, 602 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - Cui Tao
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030 USA
| |
Collapse
|
16
|
Maroofi A, Moro T, Agrimi J, Safari F. Cognitive decline in heart failure: Biomolecular mechanisms and benefits of exercise. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166511. [PMID: 35932891 DOI: 10.1016/j.bbadis.2022.166511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022]
Abstract
By definition, heart failure (HF) is a human pathological condition affecting the structure and function of all organs in the body, and the brain is not an exception to that. Failure of the heart to pump enough blood centrally and peripherally is at the foundation of HF patients' inability to attend even the most ordinary daily activities and progressive deterioration of their cognitive capacity. What is more, between heart and brain exists a bidirectional relationship that goes well beyond hemodynamics and concerns bioelectric and endocrine signaling. This increasingly consolidated evidence makes the scenario even more complex. Studies have mainly chased how HF impairs cognition without focusing much on preventive measures, notably cardio-cerebral health proxies. Here, we aim to provide a brief account of known and hypothetical factors that may explain how exercise can help obviate cognitive dysfunction associated with HF in its different forms. As we shall see, there is a stringent need for a deeper grasp of such mechanisms. Indeed, gaining this new knowledge will automatically shed new light on the inner workings of HF itself, thus resulting in more effective prevention and treatment of this escalating syndrome.
Collapse
Affiliation(s)
- Abdulbaset Maroofi
- Department of Exercise Physiology, Faculty of Physical Education & Sport Sciences, University of Guilan, Rasht, Iran
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Jacopo Agrimi
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy.
| | - Fatemeh Safari
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
17
|
Baucom MR, Wallen TE, Singer KE, Youngs J, Schuster RM, Blakeman TC, McGuire JL, Strilka R, Goodman MD. Postinjury Treatment to Mitigate the Effects of Aeromedical Evacuation After TBI in a Porcine Model. J Surg Res 2022; 279:352-360. [PMID: 35810552 DOI: 10.1016/j.jss.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/14/2022] [Accepted: 05/21/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Early aeromedical evacuation after traumatic brain injury (TBI) has been associated with worse neurologic outcomes in murine studies and military populations. The goal of this study was to determine if commonly utilized medications, including allopurinol, propranolol, or tranexamic acid (TXA), could mitigate the secondary traumatic brain injury experienced during the hypobaric and hypoxic environment of aeromedical evacuation. METHODS Porcine TBI was induced via controlled cortical injury. Twenty nonsurvival pigs were separated into four groups (n = 5 each): TBI+25 mL normal saline (NS), TBI+4 mg propranolol, TBI+100 mg allopurinol, and TBI+1g TXA. The pigs then underwent simulated AE to an altitude of 8000 ft for 4 h with an SpO2 of 82-85% and were sacrificed 4 h later. Hemodynamics, serum cytokines, and hippocampal p-tau accumulation were assessed. An additional survival cohort was partially completed with TBI/NS (n = 5), TBI/propranolol (n = 2) and TBI/allopurinol groups (n = 2) survived to postinjury day 7. RESULTS There were no significant differences in hemodynamics, tissue oxygenation, cerebral blood flow, or physiologic markers between treatment groups and saline controls. Transient differences in IL-1b and IL-6 were noted but did not persist. Neurological Severity Score (NSS) was significantly lower in the TBI + allopurinol group on POD one compared to NS and propranolol groups. P-tau accumulation was decreased in the nonsurvival animals treated with allopurinol and TXA compared to the TBI/NS group. CONCLUSIONS Allopurinol, propranolol, and TXA, following TBI, do not induce adverse changes in systemic or cerebral hemodynamics during or after a simulated postinjury flight. While transient changes were noted in systemic cytokines and p-tau accumulation, further investigation will be needed to determine any persistent neurological effects of injury, flight, and pharmacologic treatment.
Collapse
Affiliation(s)
- Matthew R Baucom
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Taylor E Wallen
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | | - Jackie Youngs
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | | | | | | - Richard Strilka
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | |
Collapse
|
18
|
Gutiérrez IL, Dello Russo C, Novellino F, Caso JR, García-Bueno B, Leza JC, Madrigal JLM. Noradrenaline in Alzheimer's Disease: A New Potential Therapeutic Target. Int J Mol Sci 2022; 23:ijms23116143. [PMID: 35682822 PMCID: PMC9181823 DOI: 10.3390/ijms23116143] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 12/13/2022] Open
Abstract
A growing body of evidence demonstrates the important role of the noradrenergic system in the pathogenesis of many neurodegenerative processes, especially Alzheimer’s disease, due to its ability to control glial activation and chemokine production resulting in anti-inflammatory and neuroprotective effects. Noradrenaline involvement in this disease was first proposed after finding deficits of noradrenergic neurons in the locus coeruleus from Alzheimer’s disease patients. Based on this, it has been hypothesized that the early loss of noradrenergic projections and the subsequent reduction of noradrenaline brain levels contribute to cognitive dysfunctions and the progression of neurodegeneration. Several studies have focused on analyzing the role of noradrenaline in the development and progression of Alzheimer’s disease. In this review we summarize some of the most relevant data describing the alterations of the noradrenergic system normally occurring in Alzheimer’s disease as well as experimental studies in which noradrenaline concentration was modified in order to further analyze how these alterations affect the behavior and viability of different nervous cells. The combination of the different studies here presented suggests that the maintenance of adequate noradrenaline levels in the central nervous system constitutes a key factor of the endogenous defense systems that help prevent or delay the development of Alzheimer’s disease. For this reason, the use of noradrenaline modulating drugs is proposed as an interesting alternative therapeutic option for Alzheimer’s disease.
Collapse
Affiliation(s)
- Irene L. Gutiérrez
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
| | - Cinzia Dello Russo
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool L69 3GL, UK
| | - Fabiana Novellino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council, 88100 Catanzaro, Italy
| | - Javier R. Caso
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
| | - Juan C. Leza
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
| | - José L. M. Madrigal
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Correspondence: ; Tel.: +34-91-394-1463
| |
Collapse
|
19
|
Hutten DR, Bos JHJ, de Vos S, Hak E. Targeting the Beta-2-Adrenergic Receptor and the Risk of Developing Alzheimer's Disease: A Retrospective Inception Cohort Study. J Alzheimers Dis 2022; 87:1089-1101. [PMID: 35466934 PMCID: PMC9198755 DOI: 10.3233/jad-215057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background: Animal studies suggested that β2-Adrenergic receptors (β2AR) may be a potential target for the treatment of Alzheimer’s disease (AD). Objective: This retrospective inception cohort study aimed to assess the association between antagonists and agonists of the β2AR and the risk of starting treatment for AD in older adults. Methods: A retrospective inception cohort study was conducted among older adults who initiated either non-selective βAR antagonists or selective β2AR agonists using the University Groningen IADB.nl prescription database (study period 1994–2019). For each exposed cohort, two reference cohorts (A and B) were matched on age at index date. The main outcome was defined as at least two prescriptions for cholinesterase inhibitors (rivastigmine, galantamine, and donepezil) and/or memantine. Cox proportional hazard regression models were used to estimate hazard ratios (HR). Results: The risk of developing AD was elevated among patients exposed to non-selective βAR antagonists (A: aHR 3.303, 95% CI 1.230–8.869, B: aHR 1.569, 95% CI 0.560–4.394) and reduced among patients exposed to selective β2AR agonists (A: aHR 0.049, 95% CI 0.003–0.795, B: aHR 0.834, 95% CI 0.075–9.273) compared to reference patients. Conclusion: These findings suggest that exposure to non-selective βAR antagonists is associated with an increased risk for developing AD whereas there may be a decreased risk for developing AD after exposure to selective β2AR agonists.
Collapse
Affiliation(s)
- Danique R Hutten
- Groningen Research Institute of Pharmacy, PharmacoTherapy, -Epidemiology & -Economics, University of Groningen, Groningen, The Netherlands
| | - Jens H J Bos
- Groningen Research Institute of Pharmacy, PharmacoTherapy, -Epidemiology & -Economics, University of Groningen, Groningen, The Netherlands
| | - Stijn de Vos
- Groningen Research Institute of Pharmacy, PharmacoTherapy, -Epidemiology & -Economics, University of Groningen, Groningen, The Netherlands
| | - Eelko Hak
- Groningen Research Institute of Pharmacy, PharmacoTherapy, -Epidemiology & -Economics, University of Groningen, Groningen, The Netherlands.,Department of Epidemiology, University Medical Center Groningen, Groningen, University of Groningen, The Netherlands
| |
Collapse
|
20
|
Woo JA, Yan Y, Kee TR, Cazzaro S, McGill Percy KC, Wang X, Liu T, Liggett SB, Kang DE. β-arrestin1 promotes tauopathy by transducing GPCR signaling, disrupting microtubules and autophagy. Life Sci Alliance 2021; 5:5/3/e202101183. [PMID: 34862271 PMCID: PMC8675912 DOI: 10.26508/lsa.202101183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 01/14/2023] Open
Abstract
GPCRs regulator, β-arrestin1, is increased in FTLD-tau patients, is required for β2-adrenergic receptor and metabotropic glutamate receptor 2-induced tau phosphorylation, promotes tau aggregation by impairing autophagy, and destabilizes microtubule dynamics, whereas genetic reduction in β-arrestin1 mitigates tauopathy and cognitive impairments. G protein–coupled receptors (GPCRs) have been shown to play integral roles in Alzheimer’s disease pathogenesis. However, it is unclear how diverse GPCRs similarly affect Aβ and tau pathogenesis. GPCRs share a common mechanism of action via the β-arrestin scaffolding signaling complexes, which not only serve to desensitize GPCRs by internalization, but also mediate multiple downstream signaling events. As signaling via the GPCRs, β2-adrenergic receptor (β2AR), and metabotropic glutamate receptor 2 (mGluR2) promotes hyperphosphorylation of tau, we hypothesized that β-arrestin1 represents a point of convergence for such pathogenic activities. Here, we report that β-arrestins are not only essential for β2AR and mGluR2-mediated increase in pathogenic tau but also show that β-arrestin1 levels are increased in brains of Frontotemporal lobar degeneration (FTLD-tau) patients. Increased β-arrestin1 in turn drives the accumulation of pathogenic tau, whereas reduced ARRB1 alleviates tauopathy and rescues impaired synaptic plasticity and cognitive impairments in PS19 mice. Biochemical and cellular studies show that β-arrestin1 drives tauopathy by destabilizing microtubules and impeding p62/SQSTM1 autophagy flux by interfering with p62 body formation, which promotes pathogenic tau accumulation.
Collapse
Affiliation(s)
- Jung-Aa Woo
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Yan Yan
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.,Department of Molecular Medicine, University of South Florida, College of Medicine, Tampa, FL, USA
| | - Teresa R Kee
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.,Department of Molecular Medicine, University of South Florida, College of Medicine, Tampa, FL, USA
| | - Sara Cazzaro
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.,Department of Molecular Medicine, University of South Florida, College of Medicine, Tampa, FL, USA
| | - Kyle C McGill Percy
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Xinming Wang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Tian Liu
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Stephen B Liggett
- Department of Molecular Pharmacology and Physiology, University of South Florida, College of Medicine, Tampa, FL, USA
| | - David E Kang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.,Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| |
Collapse
|
21
|
Sousa L, Guarda M, Meneses MJ, Macedo MP, Vicente Miranda H. Insulin-degrading enzyme: an ally against metabolic and neurodegenerative diseases. J Pathol 2021; 255:346-361. [PMID: 34396529 DOI: 10.1002/path.5777] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 11/11/2022]
Abstract
Insulin-degrading enzyme (IDE) function goes far beyond its known proteolytic role as a regulator of insulin levels. IDE has a wide substrate promiscuity, degrading several proteins such as amyloid-β peptide, glucagon, islet amyloid polypeptide (IAPP) and insulin-like growth factors, that have diverse physiological and pathophysiological functions. Importantly, IDE plays other non-proteolytical functions such as a chaperone/dead-end chaperone, an E1-ubiquitin activating enzyme, and a proteasome modulator. It also responds as a heat shock protein, regulating cellular proteostasis. Notably, amyloidogenic proteins such as IAPP, amyloid-β and α-synuclein have been reported as substrates for IDE chaperone activity. This is of utmost importance as failure of IDE may result in increased protein aggregation, a key hallmark in the pathogenesis of beta cells in type 2 diabetes mellitus and of neurons in neurodegenerative diseases such as Alzheimer's and Parkinson's disease. In this review, we focus on the biochemical and biophysical properties of IDE and the regulation of its physiological functions. We further raise the hypothesis that IDE plays a central role in the pathological context of dysmetabolic and neurodegenerative diseases and discuss its potential as a therapeutic target. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Luís Sousa
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
| | - Mariana Guarda
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
| | - Maria João Meneses
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal.,APDP-Diabetes Portugal Education and Research Center (APDP-ERC), Lisbon, Portugal
| | - M Paula Macedo
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal.,APDP-Diabetes Portugal Education and Research Center (APDP-ERC), Lisbon, Portugal.,Departamento de Ciências Médicas, Instituto de Biomedicina - iBiMED, Universidade de Aveiro, Aveiro, Portugal
| | - Hugo Vicente Miranda
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
| |
Collapse
|
22
|
Mather M. Noradrenaline in the aging brain: Promoting cognitive reserve or accelerating Alzheimer's disease? Semin Cell Dev Biol 2021; 116:108-124. [PMID: 34099360 PMCID: PMC8292227 DOI: 10.1016/j.semcdb.2021.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
Many believe that engaging in novel and mentally challenging activities promotes brain health and prevents Alzheimer's disease in later life. However, mental stimulation may also have risks as well as benefits. As neurons release neurotransmitters, they often also release amyloid peptides and tau proteins into the extracellular space. These by-products of neural activity can aggregate into the tau tangle and amyloid plaque signatures of Alzheimer's disease. Over time, more active brain regions accumulate more pathology. Thus, increasing brain activity can have a cost. But the neuromodulator noradrenaline, released during novel and mentally stimulating events, may have some protective effects-as well as some negative effects. Via its inhibitory and excitatory effects on neurons and microglia, noradrenaline sometimes prevents and sometimes accelerates the production and accumulation of amyloid-β and tau in various brain regions. Both α2A- and β-adrenergic receptors influence amyloid-β production and tau hyperphosphorylation. Adrenergic activity also influences clearance of amyloid-β and tau. Furthermore, some findings suggest that Alzheimer's disease increases noradrenergic activity, at least in its early phases. Because older brains clear the by-products of synaptic activity less effectively, increased synaptic activity in the older brain risks accelerating the accumulation of Alzheimer's pathology more than it does in the younger brain.
Collapse
Affiliation(s)
- Mara Mather
- Leonard Davis School of Gerontology, Department of Psychology, & Department of Biomedical Engineering, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089, United States.
| |
Collapse
|
23
|
Mollá B, Heredia M, Sanz P. Modulators of Neuroinflammation Have a Beneficial Effect in a Lafora Disease Mouse Model. Mol Neurobiol 2021; 58:2508-2522. [PMID: 33447969 PMCID: PMC8167455 DOI: 10.1007/s12035-021-02285-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/07/2021] [Indexed: 12/22/2022]
Abstract
Lafora disease (LD; OMIM#274780) is a fatal rare neurodegenerative disorder characterized by generalized epileptic seizures and the presence of polyglucosan inclusions (PGs), called Lafora bodies (LBs), typically in the brain. LD is caused by mutations in two genes EPM2A or EPM2B, which encode respectively laforin, a glucan phosphatase, and malin, an E3-ubiquitin ligase. Much remains unknown about the molecular bases of LD and, unfortunately, appropriate treatment is still missing; therefore patients die within 10 years from the onset of the disease. Recently, we have identified neuroinflammation as one of the initial determinants in LD. In this work, we have investigated anti-inflammatory treatments as potential therapies in LD. With this aim, we have performed a preclinical study in an Epm2b-/- mouse model with propranolol, a β-adrenergic antagonist, and epigallocatechin gallate (EGCG), an antioxidant from green tea extract, both of which displaying additional anti-inflammatory properties. In vivo motor and cognitive behavioral tests and ex vivo histopathological brain analyses were used as parameters to assess the therapeutic potential of propranolol and EGCG. After 2 months of treatment, we observed an improvement not only in attention defects but also in neuronal disorganization, astrogliosis, and microgliosis present in the hippocampus of Epm2b-/- mice. In general, propranolol intervention was more effective than EGCG in preventing the appearance of astrocyte and microglia reactivity. In summary, our results confirm the potential therapeutic effectiveness of the modulators of inflammation as novel treatments in Lafora disease.
Collapse
Affiliation(s)
- Belén Mollá
- Laboratory of Nutrient Signaling, Institute of Biomedicine of Valencia (CSIC), Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010, Valencia, Spain.
| | - Miguel Heredia
- Laboratory of Nutrient Signaling, Institute of Biomedicine of Valencia (CSIC), Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010, Valencia, Spain
| | - Pascual Sanz
- Laboratory of Nutrient Signaling, Institute of Biomedicine of Valencia (CSIC), Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010, Valencia, Spain
| |
Collapse
|
24
|
Law CSW, Yeong KY. Repurposing Antihypertensive Drugs for the Management of Alzheimer's Disease. Curr Med Chem 2021; 28:1716-1730. [PMID: 32164502 DOI: 10.2174/0929867327666200312114223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that has affected millions of people worldwide. However, currently, there is no treatment to cure the disease. The AD drugs available in the market only manage the disease symptomatically and the effects are usually short-term. Thus, there is a need to look at alternatives AD therapies. This literature review aims to shed some light on the potential of repurposing antihypertensives to treat AD. Mid-life hypertension has not only been recognised as a risk factor for AD, but its relation with AD has also been well established. Hence, antihypertensives were postulated to be beneficial in managing AD. Four classes of antihypertensives, as well as their potential limitations and prospects in being utilised as AD therapeutics, were discussed in this review.
Collapse
Affiliation(s)
- Christine Shing Wei Law
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| |
Collapse
|
25
|
Targeting impaired nutrient sensing with repurposed therapeutics to prevent or treat age-related cognitive decline and dementia: A systematic review. Ageing Res Rev 2021; 67:101302. [PMID: 33609776 DOI: 10.1016/j.arr.2021.101302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dementia is a debilitating syndrome that significantly impacts individuals over the age of 65 years. There are currently no disease-modifying treatments for dementia. Impairment of nutrient sensing pathways has been implicated in the pathogenesis of dementia, and may offer a novel treatment approach for dementia. AIMS This systematic review collates all available evidence for Food and Drug Administration (FDA)-approved therapeutics that modify nutrient sensing in the context of preventing cognitive decline or improving cognition in ageing, mild cognitive impairment (MCI), and dementia populations. METHODS PubMed, Embase and Web of Science databases were searched using key search terms focusing on available therapeutics such as 'metformin', 'GLP1', 'insulin' and the dementias including 'Alzheimer's disease' and 'Parkinson's disease'. Articles were screened using Covidence systematic review software (Veritas Health Innovation, Melbourne, Australia). The risk of bias was assessed using the Cochrane Risk of Bias tool v 2.0 for human studies and SYRCLE's risk of bias tool for animal studies. RESULTS Out of 2619 articles, 114 were included describing 31 different 'modulation of nutrient sensing pathway' therapeutics, 13 of which specifically were utilized in human interventional trials for normal ageing or dementia. Growth hormone secretagogues improved cognitive outcomes in human mild cognitive impairment, and potentially normal ageing populations. In animals, all investigated therapeutic classes exhibited some cognitive benefits in dementia models. While the risk of bias was relatively low in human studies, this risk in animal studies was largely unclear. CONCLUSIONS Modulation of nutrient sensing pathway therapeutics, particularly growth hormone secretagogues, have the potential to improve cognitive outcomes. Overall, there is a clear lack of translation from animal models to human populations.
Collapse
|
26
|
Chami M, Checler F. Alterations of the Endoplasmic Reticulum (ER) Calcium Signaling Molecular Components in Alzheimer's Disease. Cells 2020; 9:cells9122577. [PMID: 33271984 PMCID: PMC7760721 DOI: 10.3390/cells9122577] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Sustained imbalance in intracellular calcium (Ca2+) entry and clearance alters cellular integrity, ultimately leading to cellular homeostasis disequilibrium and cell death. Alzheimer’s disease (AD) is the most common cause of dementia. Beside the major pathological features associated with AD-linked toxic amyloid beta (Aβ) and hyperphosphorylated tau (p-tau), several studies suggested the contribution of altered Ca2+ handling in AD development. These studies documented physical or functional interactions of Aβ with several Ca2+ handling proteins located either at the plasma membrane or in intracellular organelles including the endoplasmic reticulum (ER), considered the major intracellular Ca2+ pool. In this review, we describe the cellular components of ER Ca2+ dysregulations likely responsible for AD. These include alterations of the inositol 1,4,5-trisphosphate receptors’ (IP3Rs) and ryanodine receptors’ (RyRs) expression and function, dysfunction of the sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) activity and upregulation of its truncated isoform (S1T), as well as presenilin (PS1, PS2)-mediated ER Ca2+ leak/ER Ca2+ release potentiation. Finally, we highlight the functional consequences of alterations of these ER Ca2+ components in AD pathology and unravel the potential benefit of targeting ER Ca2+ homeostasis as a tool to alleviate AD pathogenesis.
Collapse
Affiliation(s)
- Mounia Chami
- Correspondence: ; Tel.: +33-4939-53457; Fax: +33-4939-53408
| | | |
Collapse
|
27
|
Lyons CE, Bartolomucci A. Stress and Alzheimer's disease: A senescence link? Neurosci Biobehav Rev 2020; 115:285-298. [PMID: 32461080 PMCID: PMC7483955 DOI: 10.1016/j.neubiorev.2020.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 04/11/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
Chronic stress has been shown to promote numerous aging-related diseases, and to accelerate the aging process itself. Of particular interest is the impact of stress on Alzheimer's disease (AD), the most prevalent form of dementia. The vast majority of AD cases have no known genetic cause, making it vital to identify the environmental factors involved in the onset and progression of the disease. Age is the greatest risk factor for AD, and measures of biological aging such as shorter telomere length, significantly increase likelihood for developing AD. Stress is also considered a crucial contributor to AD, as indicated by a formidable body of research, although the mechanisms underlying this association remain unclear. Here we review human and animal literature on the impact of stress on AD and discuss the mechanisms implicated in the interaction. In particular we will focus on the burgeoning body of research demonstrating that senescent cells, which accumulate with age and actively drive a number of aging-related diseases, may be a key mechanism through which stress drives AD.
Collapse
Affiliation(s)
- Carey E Lyons
- Department of Integrative Biology and Physiology, University of Minnesota, United States; Graduate Program in Neuroscience, University of Minnesota, United States.
| | | |
Collapse
|
28
|
Ciprés-Flores FJ, Farfán-García ED, Andrade-Jorge E, Cuevas-Hernández RI, Tamay-Cach F, Martínez-Archundia M, Trujillo-Ferrara JG, Soriano-Ursúa MA. Identification of two arylimides as cholinesterase inhibitors and testing of propranolol addition on impaired rat memory. Drug Dev Res 2020; 81:256-266. [PMID: 31875337 DOI: 10.1002/ddr.21633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/08/2019] [Accepted: 12/12/2019] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is clearly linked to the decline of acetylcholine (ACh) effects in the brain. These effects are regulated by the hydrolytic action of acetylcholinesterase (AChE). Therefore, a central palliative treatment of AD is the administration of AChE inhibitors although additional mechanisms are currently described and tested for generating advantageous therapeutic strategies. In this work, we tested new arylamides and arylimides as potential inhibitors of AChE using in silico tools. Then, these compounds were tested in vitro, and two selected compounds, C7 and C8, as well as propranolol showed inhibition of AChE. In addition, they demonstrated an advantageous acute toxicity profile compared to that of galantamine as a reference AChE inhibitor. in vivo evaluation of memory performance enhancement was performed in an animal model of cognitive disturbance with each of these compounds and propranolol individually as well as each compound combined with propranolol. Memory improvement was observed in each case, but without a significant additive effect with the combinations.
Collapse
Affiliation(s)
- Fabiola J Ciprés-Flores
- Academia de Fisiología Humana and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - Eunice D Farfán-García
- Academia de Fisiología Humana and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
- Departamento de Bioquímica and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - Erik Andrade-Jorge
- Departamento de Bioquímica and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - Roberto I Cuevas-Hernández
- Departamento de Bioquímica and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - Feliciano Tamay-Cach
- Departamento de Bioquímica and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - Marlet Martínez-Archundia
- Laboratorio de Modelado Molecular, Bioinformática y diseño de fármacos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - José G Trujillo-Ferrara
- Departamento de Bioquímica and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología Humana and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| |
Collapse
|
29
|
Lebouvier T, Chen Y, Duriez P, Pasquier F, Bordet R. Antihypertensive agents in Alzheimer's disease: beyond vascular protection. Expert Rev Neurother 2019; 20:175-187. [PMID: 31869274 DOI: 10.1080/14737175.2020.1708195] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Introduction: Midlife hypertension has been consistently linked with increased risk of cognitive decline and Alzheimer's disease (AD). Observational studies and randomized trials show that the use of antihypertensive therapy is associated with a lesser incidence or prevalence of cognitive impairment and dementia. However, whether antihypertensive agents specifically target the pathological process of AD remains elusive.Areas covered: This review of literature provides an update on the clinical and preclinical arguments supporting anti-AD properties of antihypertensive drugs. The authors focused on validated all classes of antihypertensive treatments such as angiotensin-converting enzyme inhibitors (ACEi), angiotensin receptor blockers (ARB), calcium channel blockers (CCB), β-blockers, diuretics, neprilysin inhibitors, and other agents. Three main mechanisms can be advocated: action on the concurrent vascular pathology, action on the vascular component of Alzheimer's pathophysiology, and action on nonvascular targets.Expert opinion: In 2019, while there is no doubt that hypertension should be treated in primary prevention of vascular disease and in secondary prevention of stroke and mixed dementia, the place of antihypertensive agents in the secondary prevention of 'pure' AD remains an outstanding question.
Collapse
Affiliation(s)
- Thibaud Lebouvier
- Inserm URM_S1172, University of Lille, Lille, France.,DISTALZ, University of Lille, Lille, France
| | - Yaohua Chen
- DISTALZ, University of Lille, Lille, France.,Inserm, CHU Lille, University of Lille, Lille, France
| | | | - Florence Pasquier
- DISTALZ, University of Lille, Lille, France.,Inserm, CHU Lille, University of Lille, Lille, France
| | - Régis Bordet
- Inserm, CHU Lille, University of Lille, Lille, France
| |
Collapse
|
30
|
Sugama S, Takenouchi T, Hashimoto M, Ohata H, Takenaka Y, Kakinuma Y. Stress-induced microglial activation occurs through β-adrenergic receptor: noradrenaline as a key neurotransmitter in microglial activation. J Neuroinflammation 2019; 16:266. [PMID: 31847911 PMCID: PMC6916186 DOI: 10.1186/s12974-019-1632-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
Background The involvement of microglia in neuroinflammatory responses has been extensively demonstrated. Recent animal studies have shown that exposure to either acute or chronic stress induces robust microglial activation in the brain. In the present study, we investigated the underlying mechanism of brain microglial activation by acute stress. Methods We first looked at the spatial distribution of the noradrenaline (NA)-synthesizing enzyme, DBH (dopamine β-hydroxylase), in comparison with NA receptors—β1, β2, and β3 adrenergic receptors (β1-AR, β2-AR, and β3-AR)—after which we examined the effects of the β-blocker propranolol and α-blockers prazosin and yohimbine on stress-induced microglial activation. Finally, we compared stress-induced microglial activation between wild-type (WT) mice and double-knockout (DKO) mice lacking β1-AR and β2-AR. Results The results demonstrated that (1) microglial activation occurred in most studied brain regions, including the hippocampus (HC), thalamus (TM), and hypothalamus (HT); (2) within these three brain regions, the NA-synthesizing enzyme DBH was densely stained in the neuronal fibers; (3) β1-AR and β2-AR, but not β3-AR, are detected in the whole brain, and β1-AR and β2-AR are co-localized with microglial cells, as observed by laser scanning microscopy; (4) β-blocker treatment inhibited microglial activation in terms of morphology and count through the whole brain; α-blockers did not show such effect; (5) unlike WT mice, DKO mice exhibited substantial inhibition of stress-induced microglial activation in the brain. Conclusions We demonstrate that neurons/microglia may interact with NA via β1-AR and β2-AR.
Collapse
Affiliation(s)
- Shuei Sugama
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Makoto Hashimoto
- Division of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-0057, Japan
| | - Hisayuki Ohata
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yasuhiro Takenaka
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yoshihiko Kakinuma
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo, 113-8602, Japan
| |
Collapse
|
31
|
Nasrouei S, Rattel JA, Liedlgruber M, Marksteiner J, Wilhelm FH. Fear acquisition and extinction deficits in amnestic mild cognitive impairment and early Alzheimer's disease. Neurobiol Aging 2019; 87:26-34. [PMID: 31843256 DOI: 10.1016/j.neurobiolaging.2019.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 10/16/2019] [Accepted: 11/01/2019] [Indexed: 11/30/2022]
Abstract
Impaired learning and memory functioning are prime markers for Alzheimer's disease (AD). Although initial evidence points to impaired fear acquisition in later AD, no study has investigated fear conditioning in early stages and amnestic mild cognitive impairment (aMCI), a condition often preceding AD. The present study examined if fear conditioning gradually decays from healthy elderly to patients with aMCI, to patients with AD. Patients with AD (n = 43), patients with aMCI (n = 43), and matched healthy controls (n = 40) underwent a classical fear conditioning paradigm. During acquisition, a neutral face (conditioned stimulus, CS+) was paired with an electrical stimulus, whereas another face (unconditioned stimulus, CS-) was unpaired. Conditioned responses were measured by unconditioned stimulus expectancy, valence, and skin conductance. Compared to healthy controls, both patient groups showed less differential (CS+ vs. CS-) fear acquisition across all measures. Patients further displayed slowed extinction indexed by higher unconditioned stimulus expectancy and reduced positive valence for CS+, declining from aMCI to AD. Groups did not differ in responses during a preconditioning habituation phase and in unconditioned responding. Diminished differential fear acquisition and slowed extinction could represent prognostic markers for AD onset.
Collapse
Affiliation(s)
- Sarah Nasrouei
- Division of Clinical Psychology, Psychotherapy, and Health Psychology, Department of Psychology, University of Salzburg, Salzburg, Austria; Department of Psychiatry and Psychotherapy A, State Hospital Hall, Hall, Austria.
| | - Julina A Rattel
- Division of Clinical Psychology, Psychotherapy, and Health Psychology, Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Michael Liedlgruber
- Division of Clinical Psychology, Psychotherapy, and Health Psychology, Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Josef Marksteiner
- Department of Psychiatry and Psychotherapy A, State Hospital Hall, Hall, Austria
| | - Frank H Wilhelm
- Division of Clinical Psychology, Psychotherapy, and Health Psychology, Department of Psychology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
32
|
Kim DH, Jang YS, Jeon WK, Han JS. Assessment of Cognitive Phenotyping in Inbred, Genetically Modified Mice, and Transgenic Mouse Models of Alzheimer's Disease. Exp Neurobiol 2019; 28:146-157. [PMID: 31138986 PMCID: PMC6526110 DOI: 10.5607/en.2019.28.2.146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 01/03/2023] Open
Abstract
Genetically modified mouse models are being used predominantly to understand brain functions and diseases. Well-designed and controlled behavioral analyses of genetically modified mice have successfully led to the identification of gene functions, understanding of brain diseases, and development of treatments. Recently, complex and higher cognitive functions have been examined in mice with genetic mutations. Therefore, research strategies for cognitive phenotyping should be sophisticated and evolve to convey the exact meaning of the findings and provide robust translational tools for testing hypotheses and developing treatments. This review addresses issues of experimental design and discusses studies that have examined cognitive function using mouse strain differences, genetically modified mice, and transgenic mice for Alzheimer's disease.
Collapse
Affiliation(s)
- Dong-Hee Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Yoon-Sun Jang
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Won Kyung Jeon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Jung-Soo Han
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
33
|
Farfán-García ED, Márquez-Gómez R, Barrón-González M, Pérez-Capistran T, Rosales-Hernández MC, Pinto-Almazán R, Soriano-Ursúa MA. Monoamines and their Derivatives on GPCRs: Potential Therapy for Alzheimer's Disease. Curr Alzheimer Res 2019; 16:871-894. [PMID: 30963972 DOI: 10.2174/1570159x17666190409144558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/18/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
Albeit cholinergic depletion remains the key event in Alzheimer's Disease (AD), recent information describes stronger links between monoamines (trace amines, catecholamines, histamine, serotonin, and melatonin) and AD than those known in the past century. Therefore, new drug design strategies focus efforts to translate the scope on these topics and to offer new drugs which can be applied as therapeutic tools in AD. In the present work, we reviewed the state-of-art regarding genetic, neuropathology and neurochemistry of AD involving monoamine systems. Then, we compiled the effects of monoamines found in the brain of mammals as well as the reported effects of their derivatives and some structure-activity relationships. Recent derivatives have triggered exciting effects and pharmacokinetic properties in both murine models and humans. In some cases, the mechanism of action is clear, essentially through the interaction on G-protein-coupled receptors as revised in this manuscript. Additional mechanisms are inhibition of enzymes for their biotransformation, regulation of free-radicals in the central nervous system and others for the effects on Tau phosphorylation or amyloid-beta accumulation. All these data make the monoamines and their derivatives attractive potential elements for AD therapy.
Collapse
Affiliation(s)
- Eunice D Farfán-García
- Departamento de Fisiologia y Bioquimica. Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| | - Ricardo Márquez-Gómez
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, OX1 3TH, Oxford, United Kingdom
| | - Mónica Barrón-González
- Departamento de Fisiologia y Bioquimica. Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| | - Teresa Pérez-Capistran
- Departamento de Fisiologia y Bioquimica. Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| | - Martha C Rosales-Hernández
- Laboratorio de Biofisica y Biocatalisis, Seccion de Estudios de Posgrado e Investigacion Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| | - Rodolfo Pinto-Almazán
- Unidad de Investigacion Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal Mexico-Puebla km 34.5, C.P. 56530. Ixtapaluca, State of Mexico, Mexico
| | - Marvin A Soriano-Ursúa
- Departamento de Fisiologia y Bioquimica. Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| |
Collapse
|
34
|
Complex noradrenergic dysfunction in Alzheimer's disease: Low norepinephrine input is not always to blame. Brain Res 2019; 1702:12-16. [PMID: 29307592 PMCID: PMC6855395 DOI: 10.1016/j.brainres.2018.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/13/2017] [Accepted: 01/02/2018] [Indexed: 11/24/2022]
Abstract
The locus coeruleus-noradrenergic (LC-NA) system supplies the cerebral cortex with norepinephrine, a key modulator of cognition. Neurodegeneration of the LC is an early hallmark of Alzheimer's disease (AD). In this article, we analyze current literature to understand whether NA degeneration in AD simply leads to a loss of norepinephrine input to the cortex. With reported adaptive changes in the LC-NA system at the anatomical, cellular, and molecular levels in AD, existing evidence support a seemingly sustained level of extracellular NE in the cortex, at least at early stages of the long course of AD. We postulate that loss of the integrity of the NA system, rather than mere loss of NE input, is a key contributor to AD pathogenesis. A thorough understanding of NA dysfunction in AD has a large impact on both our comprehension and treatment of this devastating disease.
Collapse
|
35
|
Abstract
Population-based clinic-pathological studies have established that the most common pathological substrate of dementia in community-dwelling elderly people is mixed, especially Alzheimer's disease (AD) and cerebrovascular ischemic disease (CVID), rather than pure AD. While these could be just two frequent unrelated comorbidities in the elderly, epidemiological research has reinforced the idea that mid-life (age <65 years) vascular risk factors increase the risk of late-onset (age ≥ 65 years) dementia, and specifically AD. By contrast, healthy lifestyle choices such as leisure activities, physical exercise, and Mediterranean diet are considered protective against AD. Remarkably, several large population-based longitudinal epidemiological studies have recently indicated that the incidence and prevalence of dementia might be decreasing in Western countries. Although it remains unclear whether these positive trends are attributable to neuropathologically definite AD versus CVID, based on these epidemiological data it has been estimated that a sizable proportion of AD cases could be preventable. In this review, we discuss the current evidence about modifiable risk factors for AD derived from epidemiological, preclinical, and interventional studies, and analyze the opportunities for therapeutic and preventative interventions.
Collapse
Affiliation(s)
- Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - John H. Growdon
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Xu H, Rajsombath MM, Weikop P, Selkoe DJ. Enriched environment enhances β-adrenergic signaling to prevent microglia inflammation by amyloid-β. EMBO Mol Med 2018; 10:emmm.201808931. [PMID: 30093491 PMCID: PMC6127891 DOI: 10.15252/emmm.201808931] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Environmental enrichment (EE) is a rodent behavioral paradigm that can model the cognitive benefits to humans associated with intellectual activity and exercise. We recently discovered EE's anti-inflammatory protection of brain microglia against soluble oligomers of human amyloid β-protein (oAβ). Mechanistically, we report that the key factor in microglial protection by EE is chronically enhanced β-adrenergic signaling. Quantifying microglial morphology and inflammatory RNA profiles revealed that mice in standard housing (SH) fed the β-adrenergic agonist isoproterenol experienced similar protection of microglia against oAβ-induced inflammation as did mice in EE Conversely, mice in EE fed the β-adrenergic antagonist propranolol lost microglial protection against oAβ. Mice lacking β1/β2-adrenergic receptors showed no protection of microglia by EE In SH mice, quantification of norepinephrine in hippocampus and interstitial fluid showed that oAβ disrupted norepinephrine homeostasis, and microglial-specific analysis of β2-adrenergic receptors indicated a decreased receptor level. Both features were rescued by EE Thus, enhanced β-adrenergic signaling at the ligand and receptor levels mediates potent benefits of EE on microglial inflammation induced by human Aβ oligomers in vivo.
Collapse
Affiliation(s)
- Huixin Xu
- Ann Romney Center for Neurologic DiseasesBrigham and Women's Hospital & Harvard Medical SchoolBostonMAUSA
| | - Molly M Rajsombath
- Ann Romney Center for Neurologic DiseasesBrigham and Women's Hospital & Harvard Medical SchoolBostonMAUSA
| | - Pia Weikop
- Center for Translational NeuromedicineUniversity of CopenhagenCopenhagenDenmark
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic DiseasesBrigham and Women's Hospital & Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
37
|
Yang SJ, Kim J, Lee SE, Ahn JY, Choi SY, Cho SW. Anti-inflammatory and anti-oxidative effects of 3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride on β-amyloid-induced microglial activation. BMB Rep 2018; 50:634-639. [PMID: 29065971 PMCID: PMC5749910 DOI: 10.5483/bmbrep.2017.50.12.189] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Indexed: 12/22/2022] Open
Abstract
We aimed to assess the anti-inflammatory and antioxidative properties of KHG26792, a novel azetidine derivative, in amyloid β (Aβ)-treated primary microglial cells. KHG26792 attenuated the Aβ-induced production of inflammatory mediators such as IL-6, IL-1β, TNF-α, and nitric oxide. The levels of protein oxidation, lipid peroxidation, ROS, and NADHP oxidase enhanced by Aβ were also downregulated by KHG26792 treatment. The effects of KHG26792 against the Aβ-induced increases in inflammatory cytokine levels and oxidative stress were achieved by increasing the phosphorylation of Akt/GSK-3β signaling and by decreasing the Aβ-induced translocation of NF-κB. Our results provide novel insights into the use of KHG26792 as a potential agent against Aβ toxicity, including its role in the reduction of inflammation and oxidative stress. Nevertheless, further investigations of cellular signaling are required to clarify the in vivo effects of KHG26792 against Aβ-induced toxicity.
Collapse
Affiliation(s)
- Seung-Ju Yang
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea
| | - Jiae Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sang Eun Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
38
|
Farr SA, Sandoval KE, Niehoff ML, Witt KA, Kumar VB, Morley JE. Peripheral Administration of GSK-3β Antisense Oligonucleotide Improves Learning and Memory in SAMP8 and Tg2576 Mouse Models of Alzheimer's Disease. J Alzheimers Dis 2018; 54:1339-1348. [PMID: 27589526 DOI: 10.3233/jad-160416] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Glycogen synthase kinase (GSK)-3β is a multifunctional protein that has been implicated in the pathological characteristics of Alzheimer's disease (AD), including the heightened levels of neurofibrillary tangles, amyloid-beta (Aβ), and neurodegeneration. We have previously shown that an antisense oligonucleotide directed at the Tyr 216 site on GSK-3β (GAO) when injected centrally can decrease GSK-3β levels, improve learning and memory, and decrease oxidative stress. In addition, we showed that GAO can cross the blood-brain barrier. Herein the impact of peripherally administered GAO in both the non-transgenic SAMP8 and transgenic Tg2576 (APPswe) models of AD were examined respective to learning and memory. Brain tissues were then evaluated for expression changes in the phosphorylated-Tyr 216 residue, which leads to GSK-3β activation, and the phosphorylated-Ser9 residue, which reduces GSK-3β activity. SAMP8 GAO-treated mice showed improved acquisition and retention using aversive T-maze, and improved declarative memory as measured by the novel object recognition (NOR) test. Expression of the phosphorylated-Tyr 216 was decreased and the phosphorylated-Ser9 was increased in GAO-treated SAMP8 mice. Tg2576 GAO-treated mice improved acquisition and retention in both the T-maze and NOR tests, with an increased phosphorylated-Ser9 GSK-3β expression. Results demonstrate that peripheral administration of GAO improves learning and memory, corresponding with alterations in GSK-3β phosphorylation state. This study supports peripherally administered GAO as a viable means to mediate GSK-3β activity within the brain and a possible treatment for AD.
Collapse
Affiliation(s)
- Susan A Farr
- Research & Development Service, VA Medical Center, St. Louis, Missouri, USA.,Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| | - Michael L Niehoff
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| | - Vijaya B Kumar
- Research & Development Service, VA Medical Center, St. Louis, Missouri, USA.,Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - John E Morley
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA.,Division of Endocrinology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
39
|
Lacampagne A, Liu X, Reiken S, Bussiere R, Meli AC, Lauritzen I, Teich AF, Zalk R, Saint N, Arancio O, Bauer C, Duprat F, Briggs CA, Chakroborty S, Stutzmann GE, Shelanski ML, Checler F, Chami M, Marks AR. Post-translational remodeling of ryanodine receptor induces calcium leak leading to Alzheimer's disease-like pathologies and cognitive deficits. Acta Neuropathol 2017. [PMID: 28631094 DOI: 10.1007/s00401-017-1733-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanisms underlying ryanodine receptor (RyR) dysfunction associated with Alzheimer disease (AD) are still not well understood. Here, we show that neuronal RyR2 channels undergo post-translational remodeling (PKA phosphorylation, oxidation, and nitrosylation) in brains of AD patients, and in two murine models of AD (3 × Tg-AD, APP +/- /PS1 +/-). RyR2 is depleted of calstabin2 (KFBP12.6) in the channel complex, resulting in endoplasmic reticular (ER) calcium (Ca2+) leak. RyR-mediated ER Ca2+ leak activates Ca2+-dependent signaling pathways, contributing to AD pathogenesis. Pharmacological (using a novel RyR stabilizing drug Rycal) or genetic rescue of the RyR2-mediated intracellular Ca2+ leak improved synaptic plasticity, normalized behavioral and cognitive functions and reduced Aβ load. Genetically altered mice with congenitally leaky RyR2 exhibited premature and severe defects in synaptic plasticity, behavior and cognitive function. These data provide a mechanism underlying leaky RyR2 channels, which could be considered as potential AD therapeutic targets.
Collapse
|
40
|
The Longevity of Hippocampus-Dependent Memory Is Orchestrated by the Locus Coeruleus-Noradrenergic System. Neural Plast 2017; 2017:2727602. [PMID: 28695015 PMCID: PMC5485371 DOI: 10.1155/2017/2727602] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/17/2017] [Accepted: 05/23/2017] [Indexed: 12/24/2022] Open
Abstract
The locus coeruleus is connected to the dorsal hippocampus via strong fiber projections. It becomes activated after arousal and novelty, whereupon noradrenaline is released in the hippocampus. Noradrenaline from the locus coeruleus is involved in modulating the encoding, consolidation, retrieval, and reversal of hippocampus-based memory. Memory storage can be modified by the activation of the locus coeruleus and subsequent facilitation of hippocampal long-term plasticity in the forms of long-term depression and long-term potentiation. Recent evidence indicates that noradrenaline and dopamine are coreleased in the hippocampus from locus coeruleus terminals, thus fostering neuromodulation of long-term synaptic plasticity and memory. Noradrenaline is an inductor of epigenetic modifications regulating transcriptional control of synaptic long-term plasticity to gate the endurance of memory storage. In conclusion, locus coeruleus activation primes the persistence of hippocampus-based long-term memory.
Collapse
|
41
|
Bussiere R, Lacampagne A, Reiken S, Liu X, Scheuerman V, Zalk R, Martin C, Checler F, Marks AR, Chami M. Amyloid β production is regulated by β2-adrenergic signaling-mediated post-translational modifications of the ryanodine receptor. J Biol Chem 2017; 292:10153-10168. [PMID: 28476886 PMCID: PMC5473221 DOI: 10.1074/jbc.m116.743070] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 05/02/2017] [Indexed: 11/06/2022] Open
Abstract
Alteration of ryanodine receptor (RyR)-mediated calcium (Ca2+) signaling has been reported in Alzheimer disease (AD) models. However, the molecular mechanisms underlying altered RyR-mediated intracellular Ca2+ release in AD remain to be fully elucidated. We report here that RyR2 undergoes post-translational modifications (phosphorylation, oxidation, and nitrosylation) in SH-SY5Y neuroblastoma cells expressing the β-amyloid precursor protein (βAPP) harboring the familial double Swedish mutations (APPswe). RyR2 macromolecular complex remodeling, characterized by depletion of the regulatory protein calstabin2, resulted in increased cytosolic Ca2+ levels and mitochondrial oxidative stress. We also report a functional interplay between amyloid β (Aβ), β-adrenergic signaling, and altered Ca2+ signaling via leaky RyR2 channels. Thus, post-translational modifications of RyR occur downstream of Aβ through a β2-adrenergic signaling cascade that activates PKA. RyR2 remodeling in turn enhances βAPP processing. Importantly, pharmacological stabilization of the binding of calstabin2 to RyR2 channels, which prevents Ca2+ leakage, or blocking the β2-adrenergic signaling cascade reduced βAPP processing and the production of Aβ in APPswe-expressing SH-SY5Y cells. We conclude that targeting RyR-mediated Ca2+ leakage may be a therapeutic approach to treat AD.
Collapse
Affiliation(s)
- Renaud Bussiere
- From the Université Côte d'Azur, CNRS, IPMC, France, "Labex Distalz," 660 route des Lucioles, 06560 Sophia-Antipolis, Valbonne, France
| | - Alain Lacampagne
- INSERM U1046, CNRS UMR9214, CNRS LIA1185, Université de Montpellier, CHRU Montpellier, 34295 Montpellier, France, and
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Xiaoping Liu
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Valerie Scheuerman
- INSERM U1046, CNRS UMR9214, CNRS LIA1185, Université de Montpellier, CHRU Montpellier, 34295 Montpellier, France, and
| | - Ran Zalk
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Cécile Martin
- From the Université Côte d'Azur, CNRS, IPMC, France, "Labex Distalz," 660 route des Lucioles, 06560 Sophia-Antipolis, Valbonne, France
| | - Frederic Checler
- From the Université Côte d'Azur, CNRS, IPMC, France, "Labex Distalz," 660 route des Lucioles, 06560 Sophia-Antipolis, Valbonne, France
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Mounia Chami
- From the Université Côte d'Azur, CNRS, IPMC, France, "Labex Distalz," 660 route des Lucioles, 06560 Sophia-Antipolis, Valbonne, France,
| |
Collapse
|
42
|
Abdelkader NF, Saad MA, Abdelsalam RM. Neuroprotective effect of nebivolol against cisplatin-associated depressive-like behavior in rats. J Neurochem 2017; 141:449-460. [DOI: 10.1111/jnc.13978] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/18/2017] [Accepted: 02/02/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Noha F. Abdelkader
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Cairo University; Cairo Egypt
| | - Muhammed A. Saad
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Cairo University; Cairo Egypt
| | - Rania M. Abdelsalam
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Cairo University; Cairo Egypt
| |
Collapse
|
43
|
Ontiveros-Torres MÁ, Labra-Barrios ML, Díaz-Cintra S, Aguilar-Vázquez AR, Moreno-Campuzano S, Flores-Rodríguez P, Luna-Herrera C, Mena R, Perry G, Florán-Garduño B, Luna-Muñoz J, Luna-Arias JP. Fibrillar Amyloid-β Accumulation Triggers an Inflammatory Mechanism Leading to Hyperphosphorylation of the Carboxyl-Terminal End of Tau Polypeptide in the Hippocampal Formation of the 3×Tg-AD Transgenic Mouse. J Alzheimers Dis 2017; 52:243-69. [PMID: 27031470 DOI: 10.3233/jad-150837] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a degenerative and irreversible disorder whose progressiveness is dependent on age. It is histopathologically characterized by the massive accumulation of insoluble forms of tau and amyloid-β (Aβ) asneurofibrillary tangles and neuritic plaques, respectively. Many studies have documented that these two polypeptides suffer several posttranslational modifications employing postmortem tissue sections from brains of patients with AD. In order to elucidate the molecular mechanisms underlying the posttranslational modifications of key players in this disease, including Aβ and tau, several transgenic mouse models have been developed. One of these models is the 3×Tg-AD transgenic mouse, carrying three transgenes encoding APPSWE, S1M146V, and TauP301L proteins. To further characterize this transgenicmouse, we determined the accumulation of fibrillar Aβ as a function of age in relation to the hyperphosphorylation patterns of TauP301L at both its N- and C-terminus in the hippocampal formation by immunofluorescence and confocal microscopy. Moreover, we searched for the expression of activated protein kinases and mediators of inflammation by western blot of wholeprotein extracts from hippocampal tissue sections since 3 to 28 months as well. Our results indicate that the presence of fibrillar Aβ deposits correlates with a significant activation of astrocytes and microglia in subiculum and CA1 regions of hippocampus. Accordingly, we also observed a significant increase in the expression of TNF-α associated to neuritic plaques and glial cells. Importantly, there is an overexpression of the stress activated protein kinases SAPK/JNK and Cdk-5 in pyramidal neurons, which might phosphorylate several residues at the C-terminus of TauP301L. Therefore, the accumulation of Aβ oligomers results in an inflammatory environment that upregulates kinases involved in hyperphosphorylation of TauP301L polypeptide.
Collapse
Affiliation(s)
- Miguel Ángel Ontiveros-Torres
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Col. San Pedro Zacatenco, Ciudad de México, México
| | - María Luisa Labra-Barrios
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Col. San Pedro Zacatenco, Ciudad de México, México
| | - Sofía Díaz-Cintra
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro, Qro., México
| | | | - Samadhi Moreno-Campuzano
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Col. San Pedro Zacatenco, Ciudad de México, México
| | - Paola Flores-Rodríguez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Col. San Pedro Zacatenco, Ciudad de México, México.,Present address: Departamento de Fisiología, Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Durango, Dgo., México
| | - Claudia Luna-Herrera
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Ciudad de México, México
| | - Raúl Mena
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Col. San Pedro Zacatenco, Ciudad de México, México
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Benjamín Florán-Garduño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Col. San Pedro Zacatenco, Ciudad de México, México
| | - José Luna-Muñoz
- Banco Nacional de Cerebros, Laboratorio Nacional de Servicios Experimentales, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Col. San Pedro Zacatenco, Ciudad de México, México
| | - Juan Pedro Luna-Arias
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Col. San Pedro Zacatenco, Ciudad de México, México
| |
Collapse
|
44
|
Pivovarova O, Höhn A, Grune T, Pfeiffer AFH, Rudovich N. Insulin-degrading enzyme: new therapeutic target for diabetes and Alzheimer's disease? Ann Med 2016; 48:614-624. [PMID: 27320287 DOI: 10.1080/07853890.2016.1197416] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Insulin-degrading enzyme (IDE) is a major enzyme responsible for insulin degradation. In addition to insulin, IDE degrades many targets including glucagon, atrial natriuretic peptide, and beta-amyloid peptide, regulates proteasomal degradation and other cell functions. IDE represents a pathophysiological link between type 2 diabetes (T2DM) and late onset Alzheimer's disease (AD). Potent and selective modulators of IDE activity are potential drugs for therapies of both diseases. Acute treatment with a novel IDE inhibitor was recently tested in a mouse study as a therapeutic approach for the treatment of T2DM. In contrast, effective IDE activators can be used for the AD treatment. However, because of the pleiotropic IDE action, the sustained treatment with systemic IDE modulators should be carefully tested in animal studies. Development of substrate-selective IDE modulators could overcome possible adverse effects of IDE modulators associated with multiplicity of IDE targets. KEY MESSAGES Insulin-degrading enzyme (IDE) represents a pathophysiological link between type 2 diabetes (T2DM) and Alzheimer's disease (AD). Selective modulators of IDE activity are potential drugs for both T2DM and AD treatment. Development of substrate-selective IDE modulators could overcome possible adverse effects of IDE modulators associated with multiplicity of IDE targets.
Collapse
Affiliation(s)
- Olga Pivovarova
- a Department of Clinical Nutrition , German Institute of Human Nutrition Potsdam-Rehbruecke , Nuthetal , Germany.,b Department of Endocrinology, Diabetes and Nutrition , Campus Benjamin Franklin, Charité University Medicine , Berlin , Germany.,c German Center for Diabetes Research (DZD) , München , Germany
| | - Annika Höhn
- c German Center for Diabetes Research (DZD) , München , Germany.,d Department of Molecular Toxicology , German Institute of Human Nutrition Potsdam-Rehbruecke , Nuthetal , Germany
| | - Tilman Grune
- c German Center for Diabetes Research (DZD) , München , Germany.,d Department of Molecular Toxicology , German Institute of Human Nutrition Potsdam-Rehbruecke , Nuthetal , Germany.,e German Center for Cardiovascular Research (DZHK) , Berlin , Germany
| | - Andreas F H Pfeiffer
- a Department of Clinical Nutrition , German Institute of Human Nutrition Potsdam-Rehbruecke , Nuthetal , Germany.,b Department of Endocrinology, Diabetes and Nutrition , Campus Benjamin Franklin, Charité University Medicine , Berlin , Germany.,c German Center for Diabetes Research (DZD) , München , Germany
| | - Natalia Rudovich
- a Department of Clinical Nutrition , German Institute of Human Nutrition Potsdam-Rehbruecke , Nuthetal , Germany.,b Department of Endocrinology, Diabetes and Nutrition , Campus Benjamin Franklin, Charité University Medicine , Berlin , Germany.,c German Center for Diabetes Research (DZD) , München , Germany
| |
Collapse
|
45
|
Synthesis and Biological Evaluation of Novel Multi-target-Directed Benzazepines Against Excitotoxicity. Mol Neurobiol 2016; 54:6697-6722. [PMID: 27744571 DOI: 10.1007/s12035-016-0184-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/30/2016] [Indexed: 12/31/2022]
Abstract
Excitotoxicty, a key pathogenic event is characteristic of the onset and development of neurodegeneration. The glutamatergic neurotransmission mediated through different glutamate receptor subtypes plays a pivotal role in the onset of excitotoxicity. The role of NMDA receptor (NMDAR), a glutamate receptor subtype, has been well established in the excitotoxicity pathogenesis. NMDAR overactivation triggers excessive calcium influx resulting in excitotoxic neuronal cell death. In the present study, a series of benzazepine derivatives, with the core structure of 3-methyltetrahydro-3H-benzazepin-2-one, were synthesised in our laboratory and their NMDAR antagonist activity was determined against NMDA-induced excitotoxicity using SH-SY5Y cells. In order to assess the multi-target-directed potential of the synthesised compounds, Aβ1-42 aggregation inhibitory activity of the most potent benzazepines was evaluated using thioflavin T (ThT) and Congo red (CR) binding assays as Aβ also imparts toxicity, at least in part, through NMDAR overactivation. Furthermore, neuroprotective, free radical scavenging, anti-oxidant and anti-apoptotic activities of the two potential test compounds (7 and 14) were evaluated using primary rat hippocampal neuronal culture against Aβ1-42-induced toxicity. Finally, in vivo neuroprotective potential of 7 and 14 was assessed using intracerebroventricular (ICV) rat model of Aβ1-42-induced toxicity. All of the synthesised benzazepines have shown significant neuroprotection against NMDA-induced excitotoxicity. The most potent compound (14) showed relatively higher affinity for the glycine binding site as compared with the glutamate binding site of NMDAR in the molecular docking studies. 7 and 14 have been shown experimentally to abrogate Aβ1-42 aggregation efficiently. Additionally, 7 and 14 showed significant neuroprotective, free radical scavenging, anti-oxidant and anti-apoptotic properties in different in vitro and in vivo experimental models. Finally, 7 and 14 attenuated Aβ1-42-induced tau phosphorylation by abrogating activation of tau kinases, i.e. MAPK and GSK-3β. Thus, the results revealed multi-target-directed potential of some of the synthesised novel benzazepines against excitotoxicity.
Collapse
|
46
|
Zhang SG, Wang XS, Zhang YD, Di Q, Shi JP, Qian M, Xu LG, Lin XJ, Lu J. Indirubin-3'-monoxime suppresses amyloid-beta-induced apoptosis by inhibiting tau hyperphosphorylation. Neural Regen Res 2016; 11:988-93. [PMID: 27482230 PMCID: PMC4962599 DOI: 10.4103/1673-5374.184500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Indirubin-3′-monoxime is an effective inhibitor of cyclin-dependent protein kinases, and may play an obligate role in neuronal apoptosis in Alzheimer's disease. Here, we found that indirubin-3′-monoxime improved the morphology and increased the survival rate of SH-SY5Y cells exposed to amyloid-beta 25–35 (Aβ25–35), and also suppressed apoptosis by reducing tau phosphorylation at Ser199 and Thr205. Furthermore, indirubin-3′-monoxime inhibited phosphorylation of glycogen synthase kinase-3β (GSK-3β). Our results suggest that indirubin-3′-monoxime reduced Aβ25–35-induced apoptosis by suppressing tau hyperphosphorylation via a GSK-3β-mediated mechanism. Indirubin-3′-monoxime is a promising drug candidate for Alzheimer's disease.
Collapse
Affiliation(s)
- Shu-Gang Zhang
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiao-Shan Wang
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying-Dong Zhang
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Neurology, Affiliated Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qing Di
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jing-Ping Shi
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Min Qian
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li-Gang Xu
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xing-Jian Lin
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jie Lu
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
47
|
Cai Z, Liu N, Wang C, Qin B, Zhou Y, Xiao M, Chang L, Yan LJ, Zhao B. Role of RAGE in Alzheimer's Disease. Cell Mol Neurobiol 2016; 36:483-95. [PMID: 26175217 DOI: 10.1007/s10571-015-0233-3] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/29/2015] [Indexed: 01/11/2023]
Abstract
Receptor for advanced glycation end products (RAGE) is a receptor of the immunoglobulin super family that plays various important roles under physiological and pathological conditions. Compelling evidence suggests that RAGE acts as both an inflammatory intermediary and a critical inducer of oxidative stress, underlying RAGE-induced Alzheimer-like pathophysiological changes that drive the process of Alzheimer's disease (AD). A critical role of RAGE in AD includes beta-amyloid (Aβ) production and accumulation, the formation of neurofibrillary tangles, failure of synaptic transmission, and neuronal degeneration. The steady-state level of Aβ depends on the balance between production and clearance. RAGE plays an important role in the Aβ clearance. RAGE acts as an important transporter via regulating influx of circulating Aβ into brain, whereas the efflux of brain-derived Aβ into the circulation via BBB is implemented by LRP1. RAGE could be an important contributor to Aβ generation via enhancing the activity of β- and/or γ-secretases and activating inflammatory response and oxidative stress. However, sRAGE-Aβ interactions could inhibit Aβ neurotoxicity and promote Aβ clearance from brain. Meanwhile, RAGE could be a promoting factor for the synaptic dysfunction and neuronal circuit dysfunction which are both the material structure of cognition, and the physiological and pathological basis of cognition. In addition, RAGE could be a trigger for the pathogenesis of Aβ and tau hyper-phosphorylation which both participate in the process of cognitive impairment. Preclinical and clinical studies have supported that RAGE inhibitors could be useful in the treatment of AD. Thus, an effective measure to inhibit RAGE may be a novel drug target in AD.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei Province, People's Republic of China.
| | - Nannuan Liu
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei Province, People's Republic of China
| | - Chuanling Wang
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei Province, People's Republic of China
| | - Biyong Qin
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei Province, People's Republic of China
| | - Yingjun Zhou
- Physical Examination Center, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, 442000, Hubei Province, People's Republic of China
| | - Ming Xiao
- Department of Anatomy, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Liying Chang
- Department of Neurology, Xiangyang Center Hospital, The First Affiliated Hospital, Hubei University of Arts and Science, Xiangyang, 441021, Hubei Province, People's Republic of China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences,UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Bin Zhao
- Department of Neurology, The Affiliated Hospital of Guangdong Medical College, Zhanjiang, 524001, Guangdong Province, People's Republic of China
| |
Collapse
|
48
|
Machhi J, Sinha A, Patel P, Kanhed AM, Upadhyay P, Tripathi A, Parikh ZS, Chruvattil R, Pillai PP, Gupta S, Patel K, Giridhar R, Yadav MR. Neuroprotective Potential of Novel Multi-Targeted Isoalloxazine Derivatives in Rodent Models of Alzheimer's Disease Through Activation of Canonical Wnt/β-Catenin Signalling Pathway. Neurotox Res 2016; 29:495-513. [PMID: 26797524 DOI: 10.1007/s12640-016-9598-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 01/04/2023]
Abstract
Previous reports suggest that Alzheimer's disease is protected by cholinesterase inhibitors. We synthesized some isoalloxazine derivatives and evaluated them using in vitro cholinesterase inhibition assay. Two of the compounds (7m and 7q) were figured out as potent cholinesterase inhibitors. They further showed anti-Aβ aggregatory activity in the in vitro assay. The current study deals with the evaluation of neuroprotective potentials of the potent compounds (7m and 7q) using different in vitro and in vivo experiments. The compounds were first assessed for their tendency to cross blood-brain barrier using in vitro permeation assay. They were evaluated using scopolamine-induced amnesic mice model. Additionally, ROS scavenging and anti-apoptotic properties of 7m and 7q were established against Aβ1-42-induced toxicity in rat hippocampal neuronal cells. 7m and 7q were also evaluated using Aβ1-42-induced Alzheimer's rat model. Lastly, their involvement in Wnt/β-catenin pathway was also demonstrated. The results indicated good CNS penetration for 7m and 7q. The neuroprotective effects of 7m and 7q were evidenced by improved cognitive ability in both scopolamine and Aβ1-42-induced Alzheimer's-like condition in rodents. The in vivo results also confirmed their anti-cholinesterase and anti-oxidant potential. Immunoblot results showed that treatment with 7m and 7q decreased Aβ1-42, p-tau, cleaved caspase-3, and cleaved PARP levels in Aβ1-42-induced Alzheimer's rat brain. Additionally, immunoblot results demonstrated that 7m and 7q activated the Wnt/β-catenin pathway as evidenced by increased p-GSK-3, β-catenin, and neuroD1 levels in Aβ1-42-induced Alzheimer's rat brain. These findings have shown that isoalloxazine derivatives (7m and 7q) could be the potential leads for developing effective drugs for the treatment of AD.
Collapse
Affiliation(s)
- Jatin Machhi
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Anshuman Sinha
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Pratik Patel
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Ashish M Kanhed
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Pragnesh Upadhyay
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Ashutosh Tripathi
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Zalak S Parikh
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Ragitha Chruvattil
- Department of Biochemistry, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Prakash P Pillai
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Sarita Gupta
- Department of Biochemistry, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Kirti Patel
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Rajani Giridhar
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Mange Ram Yadav
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India.
| |
Collapse
|
49
|
Jha NK, Jha SK, Kumar D, Kejriwal N, Sharma R, Ambasta RK, Kumar P. Impact of Insulin Degrading Enzyme and Neprilysin in Alzheimer’s Disease Biology: Characterization of Putative Cognates for Therapeutic Applications. J Alzheimers Dis 2015; 48:891-917. [DOI: 10.3233/jad-150379] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Niraj Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Saurabh Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Dhiraj Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Noopur Kejriwal
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Renu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Rashmi K. Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
- Department of Neurology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
50
|
Friedler B, Crapser J, McCullough L. One is the deadliest number: the detrimental effects of social isolation on cerebrovascular diseases and cognition. Acta Neuropathol 2015; 129:493-509. [PMID: 25537401 DOI: 10.1007/s00401-014-1377-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/14/2014] [Accepted: 12/17/2014] [Indexed: 12/27/2022]
Abstract
The deleterious effects of chronic social isolation (SI) have been recognized for several decades. Isolation is a major source of psychosocial stress and is associated with an increased prevalence of vascular and neurological diseases. In addition, isolation exacerbates morbidity and mortality following acute injuries such as stroke or myocardial infarction. In contrast, affiliative social interactions can improve organismal function and health. The molecular mechanisms underlying these effects are unknown. Recently, results from large epidemiological trials and pre-clinical studies have revealed several potential mediators of the detrimental effects of isolation. At least three major biological systems have been implicated: the neuroendocrine (HPA) axis, the immune system, and the autonomic nervous system. This review summarizes studies examining the relationship between isolation and mortality and the pathophysiological mechanisms underlying SI. Cardiovascular, cerebrovascular, and neurological diseases including atherosclerosis, myocardial infarction, ischemic stroke and Alzheimer's disease are given special emphasis in the context of SI. Sex differences are highlighted and studies are separated into clinical and basic science for clarity.
Collapse
Affiliation(s)
- Brett Friedler
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA,
| | | | | |
Collapse
|