1
|
Li YJ, Liu H, Zhang YD, Li A, Pu LX, Gao Y, Zhang SR, Otecko NO, Liu L, Liu YY, Peng MS, Irwin DM, Yi C, Xie W, Qin Y, Wang Z, Wei HJ, Zhou ZY, Zhang YP. Genome wide analysis of allele-specific circular RNAs in mammals and their role in cell proliferation. Gene 2025; 946:149317. [PMID: 39921049 DOI: 10.1016/j.gene.2025.149317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Circular RNAs (circRNAs) are a large class of widely expressed RNAs with covalently closed continuous structures. However, it is currently unknown if circRNAs shows allele-specific expression, as are the consequences of genetic variation on their circularization efficiency and subsequent biological function. Here, we propose a novel pipeline, ASE-circRNA, to accurately quantify both circRNA and their related linear RNA for each allele, and then assess the allele-specificity of the expression of a circular RNA. We identified and analyzed allele-specific circRNAs from human tissue, as well as brains from reciprocal crosses between pairs of highly divergent strains of both mice and pigs by next generation sequencing. Droplet digital PCR (ddPCR) was used to confirm the circularization efficiency measured by next generation sequencing. We found that variation in intron sequences affect the circularization efficiency of circRNAs. Furthermore, we demonstrate that a circRNA, circHK1, regulates the expression of POLR2A to influence the rate of cell proliferation. Our study provides new insight into the molecular mechanisms impacted by variation in genome sequence in the origin of human disease and phenotype.
Collapse
Affiliation(s)
- Ying-Ju Li
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan, Yunnan University, Kunming 650091, Yunnan, China; School of Life Science, Yunnan University, Kunming 650091, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Hang Liu
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Yue-Dong Zhang
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan, Yunnan University, Kunming 650091, Yunnan, China; School of Life Science, Yunnan University, Kunming 650091, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Aimin Li
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| | - Li-Xia Pu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Yun Gao
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Shu-Run Zhang
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Newton O Otecko
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Lu Liu
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China
| | - Yu-Yan Liu
- State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan, Yunnan University, Kunming 650091, Yunnan, China; School of Life Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada
| | - Chungen Yi
- Beijing Geneway Technology Co., Ltd, Beijing 100007, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Qin
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Zefeng Wang
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong-Jiang Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650251, China; College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650251, China.
| | - Zhong-Yin Zhou
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
2
|
Tabatabaei M, Williams LN. Heterogeneity in cranial dura mater at the microscale: An In-situ and ex-vivo structural and mechanical investigation of sulcus and gyrus Dura. Acta Biomater 2025:S1742-7061(25)00150-3. [PMID: 40015354 DOI: 10.1016/j.actbio.2025.02.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
This study examines cranial dura mater's structural and mechanical heterogeneity, focusing on the distinct properties between the sulcus and gyrus regions. Microscale analyses using two-photon microscopy and atomic force microscopy (AFM) revealed significant regional differences in thickness (p < 0.05), with sulcus dura being 1.34 times thicker than gyrus dura. Differences in effective Young's modulus were observed, with values of 6.75 ± 5.12 kPa in the sulcus and 10.48 ± 7.13 kPa in the gyrus. These findings highlight the dura mater's pronounced variability in stiffness and anisotropy, with the periosteal layer being substantially stiffer than the meningeal layer. These results underscore the critical role of collagenous architecture in determining dura's mechanical behavior, particularly in the transfer of loads across the brain. This study provides valuable insights into the functional heterogeneity of the dura mater and emphasizes the importance of these variations in the design of biomimetic dural grafts. The quantitative data generated in this study has significant implications for enhancing the biofidelity of computational models used in brain biomechanics and advancing tissue engineering strategies to develop dural substitutes. STATEMENT OF SIGNIFICANCE: This study presents a comprehensive analysis of the structural and mechanical heterogeneity of cranial dura mater at the nanoscale, focusing on the differences between sulcus and gyrus regions. By employing advanced techniques such as atomic force microscopy (AFM) and two photon microscopies, the findings are crucial for understanding the dura's protective functions and its role in load transfer across the brain. The implications of this study are significant for the development of biomimetic dural grafts, as it offers detailed quantitative data necessary for designing grafts that closely mimic the native dura's structural and mechanical. Additionally, this research could help develop more accurate finite element models (FEM) to study traumatic brain injuries (TBI) and brain dynamics.
Collapse
Affiliation(s)
- Mohammad Tabatabaei
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States.
| | - Lakiesha N Williams
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Meijs S, Andreis FR, Janjua TAM, Graven-Nielsen T, Jensen W. High-frequency electrical stimulation increases cortical excitability and mechanical sensitivity in a chronic large animal model. Pain 2025; 166:e18-e26. [PMID: 39133034 DOI: 10.1097/j.pain.0000000000003354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/12/2024] [Indexed: 08/13/2024]
Abstract
ABSTRACT Translational models of the sensitized pain system are needed to progress the understanding of involved mechanisms. In this study, long-term potentiation was used to develop a mechanism-based large-animal pain model. Event-related potentials to electrical stimulation of the ulnar nerve were recorded by intracranial recordings in pigs, 3 weeks before, immediately before and after, and 3 weeks after peripheral high-frequency stimulation (HFS) applied to the ulnar nerve in the right forelimb (7 pigs) or in control animals (5 pigs). Event-related potential recordings and peripheral HFS were done during anesthesia. Two weeks before and after the HFS, behavioral responses reflecting mechanical and thermal sensitivity were collected using brush, noxious limb-mounted pressure algometer, and noxious laser stimuli. The HFS intervention limb was progressively sensitized to noxious mechanical stimulation in week 1 and 2 compared with baseline ( P = 0.045) and the control group ( P < 0.034) but not significantly to laser or brush stimulation. The first negative (N1) peak of the event-related potential was increased 30 minutes after HFS compared with before ( P < 0.05). The N1 peak was also larger compared with control pigs 20 to 40 minutes after HFS ( P < 0.031) but not significantly increased 3 weeks after. The relative increase in N1 30 minutes after HFS and the degree of mechanical hyperalgesia 2 weeks post-HFS was correlated ( P < 0.033). These results show for the first time that the pig HFS model resembles the human HFS model closely where the profile of sensitization is comparable. Interestingly, the degree of sensitization was associated with the cortical signs of hyperexcitability at HFS induction.
Collapse
Affiliation(s)
- Suzan Meijs
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | | | | | | | | |
Collapse
|
4
|
Hoffe B, Hebert L, Petel OE, Holahan MR. Characterization of the Porcine Cingulate Sulcus Cytoarchitecture. J Comp Neurol 2025; 533:e70025. [PMID: 39912370 PMCID: PMC11800179 DOI: 10.1002/cne.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/13/2025] [Accepted: 01/19/2025] [Indexed: 02/07/2025]
Abstract
Cortical folding (gyrification) is a unique process by which the brain can expand and increase surface area while confined by the boundaries of the inner wall of the skull. Although there is still much debate about the exact mechanisms concerning the genetic and cellular factors involved in this process, gyrification results in a heterogenous organization of neuronal layering and cell types not seen in the smooth, lissencephalic brain of rodents. In this article, we describe differences in neuronal density and supporting cells within the depths (fundus) and adjacent walls of the cingulate sulcus of the porcine brain. We also measured the distance between pyramidal neurons within Layers III and V to investigate if the observed increase in density of neurons within the cingulate fundus is associated with a decrease in distance between neurons in these layers. We also identify the presence of the gigantopyramidal neuron within the fundus of the porcine cingulate sulcus, a pyramidal neuron subtype seen in nonhuman primates and human brains. Taken together, this article provides evidence that further supports the heterogeneous composition of the gyrified brain by describing the cellular organization of the porcine cingulate sulcus.
Collapse
Affiliation(s)
- Brendan Hoffe
- Department of NeuroscienceCarleton UniversityOttawaOntarioCanada
| | - Lisa Hebert
- Department of NeuroscienceCarleton UniversityOttawaOntarioCanada
- University of Ottawa Institute of Mental Health Research at the RoyalOttawaOntarioCanada
| | - Oren E. Petel
- Department of Mechanical and Aerospace EngineeringCarleton UniversityOttawaOntarioCanada
| | | |
Collapse
|
5
|
Mazhari-Jensen DS, Jensen W, Muhammadee Janjua TA, Meijs S, Nørgaard Dos Santos Nielsen TG, Andreis FR. Pigs as a translational animal model for the study of peak alpha frequency. Neuroscience 2025; 565:567-576. [PMID: 39694317 DOI: 10.1016/j.neuroscience.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/20/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
The most characteristic feature of the human electroencephalogram is the peak alpha frequency (PAF). While PAF has been proposed as a biomarker in several diseases and disorders, the disease mechanisms modulating PAF, as well as its physiological substrates, remain elusive. This has partly been due to challenges related to experimental manipulation and invasive procedures in human neuroscience, as well as the scarcity of animal models where PAF is consistently present in resting-state. With the potential inclusion of PAF in clinical screening and decision-making, advancing the mechanistic understanding of PAF is warranted. In this paper, we propose the female Danish Landrace pig as a suitable animal model to probe the mechanisms of PAF and its feature as a biomarker. We show that somatosensory alpha oscillations are present in anesthetized pigs using electrocorticography and intracortical electrodes located at the sensorimotor cortex. This was evident when looking at the time-domain as well as the spectral morphology of spontaneous recordings. We applied the FOOOF-algorithm to extract the spectral characteristics and implemented a robustness threshold for any periodic component. Using this conservative threshold, PAF was present in 18/20 pigs with a normal distribution of the peak frequency between 8-12 Hz, producing similar findings to human recordings. We show that PAF was present in 69.6 % of epochs of approximately six-minute-long resting-state recordings. In sum, we propose that the pig is a suitable candidate for investigating the neural mechanisms of PAF as a biomarker for disease and disorders such as pain, neuropsychiatric disorders, and response to pharmacotherapy.
Collapse
Affiliation(s)
- Daniel Skak Mazhari-Jensen
- Neural Engineering and Neurophysiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| | - Winnie Jensen
- Neural Engineering and Neurophysiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark; Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Taha Al Muhammadee Janjua
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Suzan Meijs
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Felipe Rettore Andreis
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
6
|
Melchionna M, Castiglione S, Girardi G, Profico A, Mondanaro A, Sansalone G, Chatar N, Pérez Ramos A, Fernández-Monescillo M, Serio C, Pandolfi L, Dembitzer J, Di Febbraro M, Caliendo MM, Di Costanzo A, Morvillo L, Esposito A, Raia P. Cortical areas associated to higher cognition drove primate brain evolution. Commun Biol 2025; 8:80. [PMID: 39827196 PMCID: PMC11742917 DOI: 10.1038/s42003-025-07505-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Although intense research effort is seeking to address which brain areas fire and connect to each other to produce complex behaviors in a few living primates, little is known about their evolution, and which brain areas or facets of cognition were favored by natural selection. By developing statistical tools to study the evolution of the brain cortex at the fine scale, we found that rapid cortical expansion in the prefrontal region took place early on during the evolution of primates. In anthropoids, fast-expanding cortical areas extended to the posterior parietal cortex. In Homo, further expansion affected the medial temporal lobe and the posteroinferior region of the parietal lobe. Collectively, the fast-expanding cortical areas in anthropoids are known to form a brain network producing mind reading abilities and other higher-order cognitive functions. These results indicate that pursuing complex cognition drove the evolution of Primate brains.
Collapse
Affiliation(s)
| | | | | | | | | | - Gabriele Sansalone
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Narimane Chatar
- Evolution and Diversity Dynamics Lab, Université de Liège, Liège, Belgium
| | | | | | - Carmela Serio
- DiSTAR, Università di Napoli Federico II, Naples, Italy
| | - Luca Pandolfi
- Dipartimento di Scienze, Università della Basilicata, Potenza, Italy
| | | | - Mirko Di Febbraro
- Department of Biosciences and Territory, University of Molise, Isernia, Italy
| | | | | | | | | | - Pasquale Raia
- DiSTAR, Università di Napoli Federico II, Naples, Italy.
| |
Collapse
|
7
|
Lin Y, Li C, Chen Y, Gao J, Li J, Huang C, Liu Z, Wang W, Zheng X, Song X, Wu J, Wu J, Luo OJ, Tu Z, Li S, Li XJ, Lai L, Yan S. RNA-Targeting CRISPR/CasRx system relieves disease symptoms in Huntington's disease models. Mol Neurodegener 2025; 20:4. [PMID: 39806441 PMCID: PMC11727607 DOI: 10.1186/s13024-024-00794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/22/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND HD is a devastating neurodegenerative disorder caused by the expansion of CAG repeats in the HTT. Silencing the expression of mutated proteins is a therapeutic direction to rescue HD patients, and recent advances in gene editing technology such as CRISPR/CasRx have opened up new avenues for therapeutic intervention. METHODS The CRISPR/CasRx system was employed to target human HTT exon 1, resulting in an efficient knockdown of HTT mRNA. This therapeutic effect was substantiated in various models: HEK 293 T cell, the HD 140Q-KI mouse, and the HD-KI pig model. The efficiency of the knockdown was analyzed through Western blot and RT-qPCR. Additionally, neuropathological changes were examined using Western blot, immunostaining, and RNA sequencing. The impact on motor abilities was assessed via behavioral experiments, providing a comprehensive evaluation of the treatment's effectiveness. RESULTS CRISPR/CasRx system can significantly reduce HTT mRNA levels across various models, including HEK 293 T cells, HD 140Q-KI mice at various disease stages, and HD-KI pigs, and resulted in decreased expression of mHTT. Utilizing the CRISPR/CasRx system to knock down HTT RNA has shown to ameliorate gliosis in HD 140Q-KI mice and delay neurodegeneration in HD pigs. CONCLUSIONS These findings highlight the effectiveness of the RNA-targeting CRISPR/CasRx as a potential therapeutic strategy for HD. Furthermore, the success of this approach provides valuable insights and novel avenues for the treatment of other genetic disorders caused by gene mutations.
Collapse
Affiliation(s)
- Yingqi Lin
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Caijuan Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Yizhi Chen
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jiale Gao
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jiawei Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Chunhui Huang
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Zhaoming Liu
- China-New Zealand Joint Laboratory On Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, Institutes of Biomedicine and Health , Chinese Academy of Sciences, Guangzhou, China
| | - Wei Wang
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao Zheng
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xichen Song
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jianhao Wu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jiaxi Wu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhuchi Tu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Liangxue Lai
- China-New Zealand Joint Laboratory On Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, Institutes of Biomedicine and Health , Chinese Academy of Sciences, Guangzhou, China
| | - Sen Yan
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
- Department of Neurology, Faculty of Medical Science, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
8
|
Qiu S, Jia J, Xu B, Wu N, Cao H, Xie S, Cui J, Ma J, Pan YH, Yuan XB. Development and evaluation of an autism pig model. Lab Anim (NY) 2024; 53:376-386. [PMID: 39533118 PMCID: PMC11599057 DOI: 10.1038/s41684-024-01475-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Developing cost-effective and disease-relevant animal models is essential for advancing biomedical research into human disorders. Here we investigate the feasibility of a pig model for autism spectrum disorder (ASD) using embryonic exposure to valproic acid (VPA), an antiepileptic drug known to increase ASD risk. We established experimental paradigms to assess the behavioral characteristics of these pig models. Administration of VPA to Bama miniature pigs (Sus scrofa domestica) during critical embryonic stages resulted in abnormal gait, increased anxiety levels, reduced learning capabilities and altered social patterns, while largely preserving social preference of treated piglets. Notably, we detected significant neuroanatomical changes in cortical regions associated with ASD in the VPA-treated pigs, including cortical malformation, increased neuronal soma size, decreased dendritic complexity and reduced dendritic spine maturation. Transcriptome analysis of the prefrontal cortex of VPA-treated pigs further revealed substantial alterations in the expression of genes linked to ASD, especially genes of the dopamine signaling pathway, highlighting the model's relevance and potential for shedding light on ASD's underlying neuropathological and molecular mechanisms. These findings suggest that pig models could serve as a promising alternative to traditional rodent models and provide a more ethical substitute for the use of primates in translational research on neurodevelopmental disorders.
Collapse
Affiliation(s)
- Shuai Qiu
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Jingyan Jia
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Benlei Xu
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Nan Wu
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Huaqiang Cao
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Shuangyi Xie
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Jialong Cui
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Ji Ma
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China.
| | - Xiao-Bing Yuan
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China.
| |
Collapse
|
9
|
Lin HC, Wu YH, Ker MD. Modulation of Local Field Potentials in the Deep Brain of Minipigs Through Transcranial Temporal Interference Stimulation. Neuromodulation 2024:S1094-7159(24)01192-9. [PMID: 39520456 DOI: 10.1016/j.neurom.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/24/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Transcranial temporal interference stimulation (tTIS) is a novel, noninvasive neuromodulation technique to modulate deep brain neural activity. Despite its potential, direct electrophysiological evidence of tTIS effects remains limited. This study investigates the impact of tTIS on local field potentials (LFPs) in the deep brain using minipigs implanted with deep brain electrodes. MATERIALS AND METHODS Three minipigs were implanted with electrodes in the subthalamic nucleus, and tTIS was applied using patch electrode pairs positioned on both sides of the scalp. Stimulation was delivered in sinewave voltage mode with intensities ≤2V. We evaluated the stimulus-response relationship, effects of different carrier frequencies, the range of entrained envelope oscillations, and changes resulting from adjusting the left-right stimulation intensity ratio. RESULTS The results indicated that tTIS modulates deep-brain LFPs in an intensity-dependent manner. Carrier frequencies of 1 or 2 kHz were most effective in influencing LFP. Envelope oscillations <200 Hz were effectively entrained into deep-brain LFPs. Adjustments to the stimulation intensity ratio between the left and right sides yielded inconsistent responses, with right-sided stimulation playing a dominant role. CONCLUSION These findings indicate that tTIS can regulate LFP changes in the deep brain, highlighting its potential as a promising tool for future noninvasive neuromodulation applications.
Collapse
Affiliation(s)
- Hsiao-Chun Lin
- Biomedical Electronics Translational Research Center, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Hui Wu
- Biomedical Electronics Translational Research Center, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ming-Dou Ker
- Biomedical Electronics Translational Research Center, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
10
|
Hoppstädter M, Linka K, Kuhl E, Schmicke M, Böl M. Machine learning reveals correlations between brain age and mechanics. Acta Biomater 2024:S1742-7061(24)00586-5. [PMID: 39490463 DOI: 10.1016/j.actbio.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024]
Abstract
Our brain undergoes significant micro- and macroscopic changes throughout its life cycle. It is therefore crucial to understand the effect of aging on the mechanical properties of the brain in order to develop accurate personalized simulations and diagnostic tools. Here we systematically probed the mechanical behavior of n=439 brain tissue samples in tension and compression, in different anatomical regions, for different axon orientations, across five age groups. We used Bayesian statistics to characterize the relation between brain age and mechanical properties and quantify uncertainties. Our results, based on our experimental data and material parameters for the isotropic Ogden and the anisotropic Gasser-Ogden-Holzapfel models, reveal a non-linear relationship between age and mechanics across the life cycle of the porcine brain. Both tensile and compressive shear moduli reached peak values ranging from 0.4-1.0 kPa in tension to 0.16-0.32 kPa in compression at three years of age. Anisotropy was most pronounced at six months, and then decreased. These results represent an important step in understanding age-dependent changes in the mechanical properties of brain tissue and provide the scientific basis for more accurate and realistic computational brain simulations. STATEMENT OF SIGNIFICANCE: In this paper, we investigate the age-dependent mechanical properties of brain tissue based on different deformation modes, anatomical regions, and axon orientations. Hierarchical Bayesian modeling was used to identify isotropic and anisotropic material parameters. The study reveals a nonlinear relationship between shear modulus, degree of anisotropy, and tension-compression asymmetry over the life cycle of the brain. By demonstrating the non-linearity of these relationships, the study fills a significant knowledge gap in current research. This work is a fundamental step in accurately characterizing the complex relationship between brain aging and mechanical properties.
Collapse
Affiliation(s)
- Mayra Hoppstädter
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Kevin Linka
- Institute of Continuum and Material Mechanics, Hamburg University of Technology, Hamburg D-21073, Germany
| | - Ellen Kuhl
- Departments of Mechanical Engineering and Bioengineering, Wu Tsai Neurosciences Institute, Stanford University, Stanford, California USA
| | - Marion Schmicke
- Clinic for Cattle, University of Veterinary Medicine Hannover, Hannover D-30559, Germany
| | - Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany.
| |
Collapse
|
11
|
Rettore Andreis F, Meijs S, Nielsen TGNDS, Janjua TAM, Jensen W. Comparison of Subdural and Intracortical Recordings of Somatosensory Evoked Responses. SENSORS (BASEL, SWITZERLAND) 2024; 24:6847. [PMID: 39517744 PMCID: PMC11548369 DOI: 10.3390/s24216847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Micro-electrocorticography (µECoG) electrodes have emerged to balance the trade-off between invasiveness and signal quality in brain recordings. However, its large-scale applicability is still hindered by a lack of comparative studies assessing the relationship between ECoG and traditional recording methods such as penetrating electrodes. This study aimed to compare somatosensory evoked potentials (SEPs) through the lenses of a µECoG and an intracortical microelectrode array (MEA). The electrodes were implanted in the pig's primary somatosensory cortex, while SEPs were generated by applying electrical stimulation to the ulnar nerve. The SEP amplitude, signal-to-noise ratio (SNR), power spectral density (PSD), and correlation structure were analysed. Overall, SEPs resulting from MEA recordings had higher amplitudes and contained significantly more spectral power, especially at higher frequencies. However, the SNRs were similar between the interfaces. These results demonstrate the feasibility of using µECoG to decode SEPs with wide-range applications in physiology monitoring and brain-computer interfaces.
Collapse
Affiliation(s)
- Felipe Rettore Andreis
- Center for Neuroplasticity and Pain, Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, 9260 Aalborg, Denmark; (S.M.); (T.G.N.d.S.N.); (T.A.M.J.); (W.J.)
| | | | | | | | | |
Collapse
|
12
|
Meijs S, Hayward AJ, Gomes Nørgaard Dos Santos Nielsen T, Reidies Bjarkam C, Jensen W. Spared ulnar nerve injury results in increased layer III-VI excitability in the pig somatosensory cortex. Lab Anim (NY) 2024; 53:287-293. [PMID: 39349800 PMCID: PMC11442301 DOI: 10.1038/s41684-024-01440-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/21/2024] [Indexed: 10/04/2024]
Abstract
This study describes cortical recordings in a large animal nerve injury model. We investigated differences in primary somatosensory cortex (S1) hyperexcitability when stimulating injured and uninjured nerves and how different cortical layers contribute to S1 hyperexcitability after spared ulnar nerve injury. We used a multielectrode array to record single-neuron activity in the S1 of ten female Danish landrace pigs. Electrical stimulation of the injured and uninjured nerve evoked brain activity up to 3 h after injury. The peak amplitude and latency of early and late peristimulus time histogram responses were extracted for statistical analysis. Histological investigations determined the layer of the cortex in which each electrode contact was placed. Nerve injury increased the early peak amplitude compared with that of the control group. This difference was significant immediately after nerve injury when the uninjured nerve was stimulated, while it was delayed for the injured nerve. The amplitude of the early peak was increased in layers III-VI after nerve injury compared with the control. In layer III, S1 excitability was also increased compared with preinjury for the early peak. Furthermore, the late peak was significantly larger in layer III than in the other layers in the intervention and control group before and after injury. Thus, the most prominent increase in excitability occurred in layer III, which is responsible for the gain modulation of cortical output through layer V. Therefore, layer III neurons seem to have an important role in altered brain excitability after nerve injury.
Collapse
Affiliation(s)
- Suzan Meijs
- Center for Neuroplasticity and Pain, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| | - Andrew J Hayward
- Center for Neuroplasticity and Pain, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Carsten Reidies Bjarkam
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Neurosurgery, Aalborg University Hospital, Aalborg, Denmark
| | - Winnie Jensen
- Center for Neuroplasticity and Pain, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
13
|
Almansouri A, Abou Hamdan N, Yilmaz R, Tee T, Pachchigar P, Eskandari M, Agu C, Giglio B, Balasubramaniam N, Bierbrier J, Collins DL, Gueziri HE, Del Maestro RF. Continuous Instrument Tracking in a Cerebral Corticectomy Ex Vivo Calf Brain Simulation Model: Face and Content Validation. Oper Neurosurg (Hagerstown) 2024; 27:106-113. [PMID: 39813069 DOI: 10.1227/ons.0000000000001044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Subpial corticectomy involving complete lesion resection while preserving pial membranes and avoiding injury to adjacent normal tissues is an essential bimanual task necessary for neurosurgical trainees to master. We sought to develop an ex vivo calf brain corticectomy simulation model with continuous assessment of surgical instrument movement during the simulation. A case series study of skilled participants was performed to assess face and content validity to gain insights into the utility of this training platform, along with determining if skilled and less skilled participants had statistical differences in validity assessment. METHODS An ex vivo calf brain simulation model was developed in which trainees performed a subpial corticectomy of three defined areas. A case series study assessed face and content validity of the model using 7-point Likert scale questionnaires. RESULTS Twelve skilled and 11 less skilled participants were included in this investigation. Overall median scores of 6.0 (range 4.0-6.0) for face validity and 6.0 (range 3.5-7.0) for content validity were determined on the 7-point Likert scale, with no statistical differences between skilled and less skilled groups identified. CONCLUSION A novel ex vivo calf brain simulator was developed to replicate the subpial resection procedure and demonstrated face and content validity.
Collapse
Affiliation(s)
- Abdulrahman Almansouri
- Neurosurgical Simulation and Artificial Intelligence Learning Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal , Quebec , Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal , Quebec , Canada
| | - Nour Abou Hamdan
- Neurosurgical Simulation and Artificial Intelligence Learning Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal , Quebec , Canada
| | - Recai Yilmaz
- Neurosurgical Simulation and Artificial Intelligence Learning Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal , Quebec , Canada
| | - Trisha Tee
- Neurosurgical Simulation and Artificial Intelligence Learning Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal , Quebec , Canada
| | - Puja Pachchigar
- Neurosurgical Simulation and Artificial Intelligence Learning Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal , Quebec , Canada
| | | | - Chinyelum Agu
- Neurosurgical Simulation and Artificial Intelligence Learning Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal , Quebec , Canada
| | - Bianca Giglio
- Neurosurgical Simulation and Artificial Intelligence Learning Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal , Quebec , Canada
| | - Neevya Balasubramaniam
- Neurosurgical Simulation and Artificial Intelligence Learning Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal , Quebec , Canada
| | - Joshua Bierbrier
- Department of Biomedical Engineering, McGill University, Montreal , Quebec , Canada
| | - D Louis Collins
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal , Quebec , Canada
- Department of Biomedical Engineering, McGill University, Montreal , Quebec , Canada
| | - Houssem-Eddine Gueziri
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal , Quebec , Canada
| | - Rolando F Del Maestro
- Neurosurgical Simulation and Artificial Intelligence Learning Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal , Quebec , Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal , Quebec , Canada
| |
Collapse
|
14
|
Jung T, Zeng N, Fabbri JD, Eichler G, Li Z, Willeke K, Wingel KE, Dubey A, Huq R, Sharma M, Hu Y, Ramakrishnan G, Tien K, Mantovani P, Parihar A, Yin H, Oswalt D, Misdorp A, Uguz I, Shinn T, Rodriguez GJ, Nealley C, Gonzales I, Roukes M, Knecht J, Yoshor D, Canoll P, Spinazzi E, Carloni LP, Pesaran B, Patel S, Youngerman B, Cotton RJ, Tolias A, Shepard KL. Stable, chronic in-vivo recordings from a fully wireless subdural-contained 65,536-electrode brain-computer interface device. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594333. [PMID: 38798494 PMCID: PMC11118429 DOI: 10.1101/2024.05.17.594333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Minimally invasive, high-bandwidth brain-computer-interface (BCI) devices can revolutionize human applications. With orders-of-magnitude improvements in volumetric efficiency over other BCI technologies, we developed a 50-μm-thick, mechanically flexible micro-electrocorticography (μECoG) BCI, integrating 256×256 electrodes, signal processing, data telemetry, and wireless powering on a single complementary metal-oxide-semiconductor (CMOS) substrate containing 65,536 recording and 16,384 stimulation channels, from which we can simultaneously record up to 1024 channels at a given time. Fully implanted below the dura, our chip is wirelessly powered, communicating bi-directionally with an external relay station outside the body. We demonstrated chronic, reliable recordings for up to two weeks in pigs and up to two months in behaving non-human primates from somatosensory, motor, and visual cortices, decoding brain signals at high spatiotemporal resolution.
Collapse
|
15
|
Alberti G, Amico MD, Caruso Bavisotto C, Rappa F, Marino Gammazza A, Bucchieri F, Cappello F, Scalia F, Szychlinska MA. Speeding up Glioblastoma Cancer Research: Highlighting the Zebrafish Xenograft Model. Int J Mol Sci 2024; 25:5394. [PMID: 38791432 PMCID: PMC11121320 DOI: 10.3390/ijms25105394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a very aggressive and lethal primary brain cancer in adults. The multifaceted nature of GBM pathogenesis, rising from complex interactions between cells and the tumor microenvironment (TME), has posed great treatment challenges. Despite significant scientific efforts, the prognosis for GBM remains very poor, even after intensive treatment with surgery, radiation, and chemotherapy. Efficient GBM management still requires the invention of innovative treatment strategies. There is a strong necessity to complete cancer in vitro studies and in vivo studies to properly evaluate the mechanisms of tumor progression within the complex TME. In recent years, the animal models used to study GBM tumors have evolved, achieving highly invasive GBM models able to provide key information on the molecular mechanisms of GBM onset. At present, the most commonly used animal models in GBM research are represented by mammalian models, such as mouse and canine ones. However, the latter present several limitations, such as high cost and time-consuming management, making them inappropriate for large-scale anticancer drug evaluation. In recent years, the zebrafish (Danio rerio) model has emerged as a valuable tool for studying GBM. It has shown great promise in preclinical studies due to numerous advantages, such as its small size, its ability to generate a large cohort of genetically identical offspring, and its rapid development, permitting more time- and cost-effective management and high-throughput drug screening when compared to mammalian models. Moreover, due to its transparent nature in early developmental stages and genetic and anatomical similarities with humans, it allows for translatable brain cancer research and related genetic screening and drug discovery. For this reason, the aim of the present review is to highlight the potential of relevant transgenic and xenograft zebrafish models and to compare them to the traditionally used animal models in GBM research.
Collapse
Affiliation(s)
- Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Maria Denise Amico
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
- The Institute of Translational Pharmacology, National Research Council of Italy (CNR), 90146 Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Federica Scalia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Marta Anna Szychlinska
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
16
|
Nielsen TGNDS, Dancause N, Janjua TAM, Andreis FR, Kjærgaard B, Jensen W. Porcine Model of Cerebral Ischemic Stroke Utilizing Intracortical Recordings for the Continuous Monitoring of the Ischemic Area. SENSORS (BASEL, SWITZERLAND) 2024; 24:2967. [PMID: 38793822 PMCID: PMC11124877 DOI: 10.3390/s24102967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
PURPOSE Our aim was to use intracortical recording to enable the tracking of ischemic infarct development over the first few critical hours of ischemia with a high time resolution in pigs. We employed electrophysiological measurements to obtain quick feedback on neural function, which might be useful for screening, e.g., for the optimal dosage and timing of agents prior to further pre-clinical evaluation. METHODS Micro-electrode arrays containing 16 (animal 1) or 32 electrodes (animal 2-7) were implanted in the primary somatosensory cortex of seven female pigs, and continuous electrical stimulation was applied at 0.2 Hz to a cuff electrode implanted on the ulnar nerve. Ischemic stroke was induced after 30 min of baseline recording by injection of endothelin-1 onto the cortex adjacent to the micro-electrode array. Evoked responses were extracted over a moving window of 180 s and averaged across channels as a measure of cortical excitability. RESULTS Across the animals, the cortical excitability was significantly reduced in all seven 30 min segments following endothelin-1 injection, as compared to the 30 min preceding this intervention. This difference was not explained by changes in the anesthesia, ventilation, end-tidal CO2, mean blood pressure, heart rate, blood oxygenation, or core temperature, which all remained stable throughout the experiment. CONCLUSIONS The animal model may assist in maturing neuroprotective approaches by testing them in an accessible model of resemblance to human neural and cardiovascular physiology and body size. This would constitute an intermediate step for translating positive results from rodent studies into human application, by more efficiently enabling effective optimization prior to chronic pre-clinical studies in large animals.
Collapse
Affiliation(s)
| | - Numa Dancause
- Département de Neurosciences, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Taha Al Muhammadee Janjua
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Denmark
| | - Felipe Rettore Andreis
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Denmark
| | - Benedict Kjærgaard
- Department of Cardiothoracic Surgery, Aalborg University Hospital, Hobrovej 18, 9000 Aalborg, Denmark
| | - Winnie Jensen
- Bevica Center, Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Denmark
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Denmark
| |
Collapse
|
17
|
Li Y, Zhang Q, Zhao J, Wang Z, Zong X, Yang L, Zhang C, Zhao H. Mechanical behavior and microstructure of porcine brain tissues under pulsed electric fields. Biomech Model Mechanobiol 2024; 23:241-254. [PMID: 37861916 DOI: 10.1007/s10237-023-01771-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/29/2023] [Indexed: 10/21/2023]
Abstract
Pulsed electric fields are extensively utilized in clinical treatments, such as subthalamic deep brain stimulation, where electric field loading is in direct contact with brain tissue. However, the alterations in brain tissue's mechanical properties and microstructure due to changes in electric field parameters have not received adequate attention. In this study, the mechanical properties and microstructure of the brain tissue under pulsed electric fields were focused on. Herein, a custom indentation device was equipped with a module for electric field loading. Parameters such as pulse amplitude and frequency were adjusted. The results demonstrated that following an indentation process lasting 5 s and reaching a depth of 1000 μm, and a relaxation process of 175 s, the average shear modulus of brain tissue was reduced, and viscosity decreased. At the same amplitude, high-frequency pulsed electric fields had a smaller effect on brain tissue than low-frequency ones. Furthermore, pulsed electric fields induced cell polarization and reduced the proteoglycan concentration in brain tissue. As pulse frequency increased, cell polarization diminished, and proteoglycan concentration decreased significantly. High-frequency pulsed electric fields applied to brain tissue were found to reduce impedance fluctuation amplitude. This study revealed the effect of pulsed electric fields on the mechanical properties and microstructure of ex vivo brain tissue, providing essential information to promote the advancement of brain tissue electrotherapy in clinical settings.
Collapse
Affiliation(s)
- Yiqiang Li
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun, 130025, People's Republic of China
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun, 130025, People's Republic of China
| | - Qixun Zhang
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun, 130025, People's Republic of China
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun, 130025, People's Republic of China
- Chongqing Research Institute, Jilin University, Chongqing, 401100, People's Republic of China
| | - Jiucheng Zhao
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun, 130025, People's Republic of China
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun, 130025, People's Republic of China
| | - Zhaoxin Wang
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun, 130025, People's Republic of China
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun, 130025, People's Republic of China
| | - Xiangyu Zong
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun, 130025, People's Republic of China
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun, 130025, People's Republic of China
| | - Li Yang
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun, 130025, People's Republic of China
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Chi Zhang
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun, 130025, People's Republic of China.
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun, 130025, People's Republic of China.
| | - Hongwei Zhao
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun, 130025, People's Republic of China.
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun, 130025, People's Republic of China.
| |
Collapse
|
18
|
Ahmed I, Reeves WD, Sun W, Dubrof ST, Zukaitis JG, West FD, Park HJ, Zhao Q. Nutritional supplement induced modulations in the functional connectivity of a porcine brain. Nutr Neurosci 2024; 27:147-158. [PMID: 36657164 DOI: 10.1080/1028415x.2023.2166803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Functional connectivity (FC) measures statistical dependence between cortical brain regions. Studies of FC facilitate understanding of the brain's function and architecture that underpin normal cognition, behavior, and changes associated with various factors (e.g. nutritional supplements) at a large scale. OBJECTIVE We aimed to identify modifications in FC patterns and targeted brain anatomies in piglets following perinatal intake of different nutritional diets using a graph theory based approach. METHODS Forty-four piglets from four groups of pregnant sows, who were treated with nutritional supplements, including control diet, docosahexaenoic acid (DHA), egg yolk (EGG), and DHA + EGG, went through resting-state functional magnetic resonance imaging (rs-fMRI). We introduced the use of differential degree test (DDT) to identify differentially connected edges (DCEs). Simulation studies were first conducted to compare the DDT with permutation test, using three network structures at different noise levels. DDT was then applied to rs-fMRI data acquired from piglets. RESULTS In simulations, the DDT showed a greater accuracy in detecting DCEs when compared with the permutation test. For empirical data, we found that the strength of internodal connectivity is significantly increased for more than 6% of edges in the EGG group and more than 8% of edges in the DHA and DHA + EGG groups, all compared to the control group. Moreover, differential wiring diagrams between group comparisons provided means to pinpoint brain hubs affected by nutritional supplements. CONCLUSION DDT showed a greater accuracy of detection of DCEs and demonstrated EGG, DHA, and DHA + EGG supplemented diets lead to an improved internodal connectivity in the developing piglet brain.
Collapse
Affiliation(s)
- Ishfaque Ahmed
- Department of Physics and Astronomy, University of Georgia, Athens, GA, USA
- Institute of Physics, University of Sindh, Jamshoro, Pakistan
| | - William D Reeves
- Department of Physics and Astronomy, University of Georgia, Athens, GA, USA
| | - Wenwu Sun
- Department of Physics and Astronomy, University of Georgia, Athens, GA, USA
| | - Stephanie T Dubrof
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA
| | - Jillien G Zukaitis
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA
| | - Franklin D West
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, Athens, GA, USA
| | - Hea Jin Park
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA
| | - Qun Zhao
- Department of Physics and Astronomy, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, Athens, GA, USA
| |
Collapse
|
19
|
Hoopes PJ, Tavakkoli AD, Moodie KA, Maurer KJ, Meehan KR, Wallin DJ, Aulwes E, Duval KEA, Chen KL, -Burney MAC, Li C, Fan X, Evans LT, Paulsen KD. Porcine-human glioma xenograft model. Immunosuppression and model reproducibility. Cancer Treat Res Commun 2024; 38:100789. [PMID: 38262125 PMCID: PMC11026118 DOI: 10.1016/j.ctarc.2024.100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/19/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Glioblastoma is the most common primary malignant and treatment-resistant human brain tumor. Rodent models have played an important role in understanding brain cancer biology and treatment. However, due to their small cranium and tumor volume mismatch, relative to human disease, they have been less useful for translational studies. Therefore, development of a consistent and simple large animal glioma xenograft model would have significant translational benefits. METHODS Immunosuppression was induced in twelve standard Yucatan minipigs. 3 pigs received cyclosporine only, while 9 pigs received a combined regimen including cyclosporine (55 mg/kg q12 h), prednisone (25 mg, q24 h) and mycophenolate (500 mg q24 h). U87 cells (2 × 106) were stereotactically implanted into the left frontal cortex. The implanted brains were imaged by MRI for monitoring. In a separate study, tumors were grown in 5 additional pigs using the combined regimen, and pigs underwent tumor resection with intra-operative image updating to determine if the xenograft model could accurately capture the spatial tumor resection challenges seen in humans. RESULTS Tumors were successfully implanted and grown in 11 pigs. One animal in cyclosporine only group failed to show clinical tumor growth. Clinical tumor growth, assessed by MRI, progressed slowly over the first 10 days, then rapidly over the next 10 days. The average tumor growth latency period was 20 days. Animals were monitored twice daily and detailed records were kept throughout the experimental period. Pigs were sacrificed humanely when the tumor reached 1 - 2 cm. Some pigs experienced decreased appetite and activity, however none required premature euthanasia. In the image updating study, all five pigs demonstrated brain shift after craniotomy, consistent with what is observed in humans. Intraoperative image updating was able to accurately capture and correct for this shift in all five pigs. CONCLUSION This report demonstrates the development and use of a human intracranial glioma model in an immunosuppressed, but nongenetically modified pig. While the immunosuppression of the model may limit its utility in certain studies, the model does overcome several limitations of small animal or genetically modified models. For instance, we demonstrate use of this model for guiding surgical resection with intraoperative image-updating technologies. We further report use of a surrogate extracranial tumor that indicates growth of the intracranial tumor, allowing for relative growth assessment without radiological imaging.
Collapse
Affiliation(s)
- P Jack Hoopes
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA; Center for Comparative Medicine and Research, Dartmouth College, Lebanon, NH, USA; Dartmouth Cancer Center, Lebanon, NH, USA.
| | | | - Karen A Moodie
- Center for Comparative Medicine and Research, Dartmouth College, Lebanon, NH, USA; Dartmouth Cancer Center, Lebanon, NH, USA
| | - Kirk J Maurer
- Center for Comparative Medicine and Research, Dartmouth College, Lebanon, NH, USA; Dartmouth Cancer Center, Lebanon, NH, USA
| | - Kenneth R Meehan
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA; Dartmouth Cancer Center, Lebanon, NH, USA
| | | | - Ethan Aulwes
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Kayla E A Duval
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Kristen L Chen
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Margaret A Crary -Burney
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA; Center for Comparative Medicine and Research, Dartmouth College, Lebanon, NH, USA
| | - Chen Li
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Xiaoyao Fan
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Linton T Evans
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA; Dartmouth Cancer Center, Lebanon, NH, USA
| | - Keith D Paulsen
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA; Dartmouth Cancer Center, Lebanon, NH, USA
| |
Collapse
|
20
|
Olney KC, de Ávila C, Todd KT, Tallant LE, Barnett JH, Gibson KA, Hota P, Pandiane AS, Durgun PC, Serhan M, Wang R, Lind ML, Forzani E, Gades NM, Thomas LF, Fryer JD. Commonly disrupted pathways in brain and kidney in a pig model of systemic endotoxemia. J Neuroinflammation 2024; 21:9. [PMID: 38178237 PMCID: PMC10765757 DOI: 10.1186/s12974-023-03002-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
Sepsis is a life-threatening state that arises due to a hyperactive inflammatory response stimulated by infection and rarely other insults (e.g., non-infections tissue injury). Although changes in several proinflammatory cytokines and signals are documented in humans and small animal models, far less is known about responses within affected tissues of large animal models. We sought to understand the changes that occur during the initial stages of inflammation by administering intravenous lipopolysaccharide (LPS) to Yorkshire pigs and assessing transcriptomic alterations in the brain, kidney, and whole blood. Robust transcriptional alterations were found in the brain, with upregulated responses enriched in inflammatory pathways and downregulated responses enriched in tight junction and blood vessel functions. Comparison of the inflammatory response in the pig brain to a similar mouse model demonstrated some overlapping changes but also numerous differences, including oppositely dysregulated genes between species. Substantial changes also occurred in the kidneys following LPS with several enriched upregulated pathways (cytokines, lipids, unfolded protein response, etc.) and downregulated gene sets (tube morphogenesis, glomerulus development, GTPase signal transduction, etc.). We also found significant dysregulation of genes in whole blood that fell into several gene ontology categories (cytokines, cell cycle, neutrophil degranulation, etc.). We observed a strong correlation between the brain and kidney responses, with significantly shared upregulated pathways (cytokine signaling, cell death, VEGFA pathways) and downregulated pathways (vasculature and RAC1 GTPases). In summary, we have identified a core set of shared genes and pathways in a pig model of systemic inflammation.
Collapse
Affiliation(s)
- Kimberly C Olney
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
| | - Camila de Ávila
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
| | - Kennedi T Todd
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
| | - Lauren E Tallant
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ, USA
| | - J Hudson Barnett
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ, USA
- MD/PhD Training Program, Mayo Clinic, Scottsdale, AZ, USA
| | - Katelin A Gibson
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
| | - Piyush Hota
- Division of Nephrology & Hypertension, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
| | | | - Pinar Cay Durgun
- School of Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, USA
| | - Michael Serhan
- School of Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, USA
| | - Ran Wang
- School of Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, USA
| | - Mary Laura Lind
- School of Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, USA
| | - Erica Forzani
- School of Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, USA
| | - Naomi M Gades
- Department of Comparative Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Leslie F Thomas
- Division of Nephrology & Hypertension, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA.
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA.
- Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ, USA.
- MD/PhD Training Program, Mayo Clinic, Scottsdale, AZ, USA.
| |
Collapse
|
21
|
Andreis FR, Metcalfe B, Janjua TAM, Fazan VPS, Jensen W, Meijs S, Nielsen TGNDS. Morphology and morphometry of the ulnar nerve in the forelimb of pigs. Anat Histol Embryol 2024; 53:e12972. [PMID: 37715494 DOI: 10.1111/ahe.12972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/24/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
The knowledge of the morphology and morphometry of peripheral nerves is essential for developing neural interfaces and understanding nerve regeneration in basic and applied research. Currently, the most adopted animal model is the rat, even though recent studies have suggested that the neuroanatomy of large animal models is more comparable to humans. The present knowledge of the morphological structure of large animal models is limited; therefore, the present study aims to describe the morphological characteristics of the Ulnar Nerve (UN) in pigs. UN cross-sections were taken from seven Danish landrace pigs at three distinct locations: distal UN, proximal UN and at the dorsal cutaneous branch of the UN (DCBUN). The nerve diameter, fascicle diameter and number, number of fibres and fibre size were quantified. The UN diameter was larger in the proximal section compared to the distal segment and the DCBUN. The proximal branch also had a more significant number of fascicles (median: 15) than the distal (median: 10) and the DCBUN (median: 11) segments. Additionally, the mean fascicle diameter was smaller at the DCBUN (mean: 165 μm) than at the distal (mean: 197 μm) and proximal (mean: 199 μm) segments of the UN. Detailed knowledge of the microscopical structure of the UN in pigs is critical for further studies investigating neural interface designs and computational models of the peripheral nervous system.
Collapse
Affiliation(s)
- Felipe Rettore Andreis
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | - Benjamin Metcalfe
- Bath Institute for the Augmented Human, University of Bath, Bath, UK
| | - Taha Al Muhammadee Janjua
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | - Valéria Paula Sassoli Fazan
- Department of Surgery and Anatomy, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Winnie Jensen
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | - Suzan Meijs
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
22
|
Yu DY, Cringle SJ, Darcey D, Tien LYH, Vukmirovic AJ, Yu PK, Mehnert A, Morgan WH. Posture-Induced Changes in Intraocular, Orbital, Cranial, Jugular Vein, and Arterial Pressures in a Porcine Model. Invest Ophthalmol Vis Sci 2023; 64:22. [PMID: 38108688 PMCID: PMC10732089 DOI: 10.1167/iovs.64.15.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose The purpose of this study was to determine posture-induced changes in arterial blood pressure (ABP), intraocular pressure (IOP), orbital pressure (Porb), intracranial pressure (ICP), and jugular vein pressure (JVP) at various tilt angles in an in vivo pig. Methods Anesthetized and ventilated pigs (n = 8) were placed prone on a tiltable operating table. ABP, IOP, Porb, ICP, and JVP were monitored while the table was tilted at various angles between 15 degrees head up tilt (HUT) and 25 degrees head down tilt (HDT) either in stepwise changes (5 degrees per step) or continuously. The mean pressure was calculated from digitized pressure waveforms from each compartment. For stepwise changes in tilt angle the pressures were plotted as a function of tilt angle. For continuous tilt changes, the pressures were plotted as a function of time. Results In the case of stepwise changes, ABP remained relatively stable whilst IOP, Porb, ICP, and JVP demonstrated significant differences between most angles (typically P < 0.0001). The difference was greatest for IOP (P < 0.0001) where the average IOP increased from 13.1 ± 1.23 mm Hg at 15 degrees HUT to 46.3 ± 2.03 mm Hg at 25 degrees HDT. The relationship between pressure and tilt angle was almost linear for ICP and JVP, and sigmoidal for IOP and Porb. Interestingly, the effect of changes in tilt angle occurred very rapidly, within a few seconds. Conclusions Our results in a pig model demonstrate that changes in posture (tilt angle) induce rapid changes in IOP, Porb, ICP, and JVP, with IOP affected most severely.
Collapse
Affiliation(s)
- Dao-Yi Yu
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
- Lions Eye Institute, The University of Western Australia, Perth, Australia
| | - Stephen J. Cringle
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
- Lions Eye Institute, The University of Western Australia, Perth, Australia
| | - Dean Darcey
- Lions Eye Institute, The University of Western Australia, Perth, Australia
| | - Liam Y. H. Tien
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
| | - Aleksandar J. Vukmirovic
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
- Lions Eye Institute, The University of Western Australia, Perth, Australia
| | - Paula K. Yu
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
- Lions Eye Institute, The University of Western Australia, Perth, Australia
| | - Andrew Mehnert
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
- Lions Eye Institute, The University of Western Australia, Perth, Australia
| | - William H. Morgan
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
- Lions Eye Institute, The University of Western Australia, Perth, Australia
| |
Collapse
|
23
|
Tatemoto P, Pértille F, Bernardino T, Zanella R, Guerrero-Bosagna C, Zanella AJ. An enriched maternal environment and stereotypies of sows differentially affect the neuro-epigenome of brain regions related to emotionality in their piglets. Epigenetics 2023; 18:2196656. [PMID: 37192378 DOI: 10.1080/15592294.2023.2196656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 05/18/2023] Open
Abstract
Epigenetic mechanisms are important modulators of neurodevelopmental outcomes in the offspring of animals challenged during pregnancy. Pregnant sows living in a confined environment are challenged with stress and lack of stimulation which may result in the expression of stereotypies (repetitive behaviours without an apparent function). Little attention has been devoted to the postnatal effects of maternal stereotypies in the offspring. We investigated how the environment and stereotypies of pregnant sows affected the neuro-epigenome of their piglets. We focused on the amygdala, frontal cortex, and hippocampus, brain regions related to emotionality, learning, memory, and stress response. Differentially methylated regions (DMRs) were investigated in these brain regions of male piglets born from sows kept in an enriched vs a barren environment. Within the latter group of piglets, we compared the brain methylomes of piglets born from sows expressing stereotypies vs sows not expressing stereotypies. DMRs emerged in each comparison. While the epigenome of the hippocampus and frontal cortex of piglets is mainly affected by the maternal environment, the epigenome of the amygdala is mainly affected by maternal stereotypies. The molecular pathways and mechanisms triggered in the brains of piglets by maternal environment or stereotypies are different, which is reflected on the differential gene function associated to the DMRs found in each piglets' brain region . The present study is the first to investigate the neuro-epigenomic effects of maternal enrichment in pigs' offspring and the first to investigate the neuro-epigenomic effects of maternal stereotypies in the offspring of a mammal.
Collapse
Affiliation(s)
- Patricia Tatemoto
- Center for Comparative Studies in Sustainability, Health and Welfare, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, FMVZ, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Fábio Pértille
- Avian Behavioral Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
- Animal Biotechnology Laboratory, Animal Science Department, University of São Paulo - Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
- Physiology and Environmental Toxicology Program, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Thiago Bernardino
- Center for Comparative Studies in Sustainability, Health and Welfare, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, FMVZ, University of São Paulo, Pirassununga, São Paulo, Brazil
- Graduation Program in One Health, University of Santo Amaro, São Paulo Brazil
| | - Ricardo Zanella
- Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Carlos Guerrero-Bosagna
- Avian Behavioral Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
- Physiology and Environmental Toxicology Program, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Adroaldo José Zanella
- Center for Comparative Studies in Sustainability, Health and Welfare, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, FMVZ, University of São Paulo, Pirassununga, São Paulo, Brazil
| |
Collapse
|
24
|
Slika H, Karimov Z, Alimonti P, Abou-Mrad T, De Fazio E, Alomari S, Tyler B. Preclinical Models and Technologies in Glioblastoma Research: Evolution, Current State, and Future Avenues. Int J Mol Sci 2023; 24:16316. [PMID: 38003507 PMCID: PMC10671665 DOI: 10.3390/ijms242216316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma is the most common malignant primary central nervous system tumor and one of the most debilitating cancers. The prognosis of patients with glioblastoma remains poor, and the management of this tumor, both in its primary and recurrent forms, remains suboptimal. Despite the tremendous efforts that are being put forward by the research community to discover novel efficacious therapeutic agents and modalities, no major paradigm shifts have been established in the field in the last decade. However, this does not mirror the abundance of relevant findings and discoveries made in preclinical glioblastoma research. Hence, developing and utilizing appropriate preclinical models that faithfully recapitulate the characteristics and behavior of human glioblastoma is of utmost importance. Herein, we offer a holistic picture of the evolution of preclinical models of glioblastoma. We further elaborate on the commonly used in vitro and vivo models, delving into their development, favorable characteristics, shortcomings, and areas of potential improvement, which aids researchers in designing future experiments and utilizing the most suitable models. Additionally, this review explores progress in the fields of humanized and immunotolerant mouse models, genetically engineered animal models, 3D in vitro models, and microfluidics and highlights promising avenues for the future of preclinical glioblastoma research.
Collapse
Affiliation(s)
- Hasan Slika
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| | - Ziya Karimov
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
- Faculty of Medicine, Ege University, 35100 Izmir, Turkey
| | - Paolo Alimonti
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy; (P.A.); (E.D.F.)
| | - Tatiana Abou-Mrad
- Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon;
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Emerson De Fazio
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy; (P.A.); (E.D.F.)
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| |
Collapse
|
25
|
Primiani CT, Lee JK, O’Brien CE, Chen MW, Perin J, Kulikowicz E, Santos P, Adams S, Lester B, Rivera-Diaz N, Olberding V, Niedzwiecki MV, Ritzl EK, Habela CW, Liu X, Yang ZJ, Koehler RC, Martin LJ. Hypothermic Protection in Neocortex Is Topographic and Laminar, Seizure Unmitigating, and Partially Rescues Neurons Depleted of RNA Splicing Protein Rbfox3/NeuN in Neonatal Hypoxic-Ischemic Male Piglets. Cells 2023; 12:2454. [PMID: 37887298 PMCID: PMC10605428 DOI: 10.3390/cells12202454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
The effects of hypothermia on neonatal encephalopathy may vary topographically and cytopathologically in the neocortex with manifestations potentially influenced by seizures that alter the severity, distribution, and type of neuropathology. We developed a neonatal piglet survival model of hypoxic-ischemic (HI) encephalopathy and hypothermia (HT) with continuous electroencephalography (cEEG) for seizures. Neonatal male piglets received HI-normothermia (NT), HI-HT, sham-NT, or sham-HT treatments. Randomized unmedicated sham and HI piglets underwent cEEG during recovery. Survival was 2-7 days. Normal and pathological neurons were counted in different neocortical areas, identified by cytoarchitecture and connectomics, using hematoxylin and eosin staining and immunohistochemistry for RNA-binding FOX-1 homolog 3 (Rbfox3/NeuN). Seizure burden was determined. HI-NT piglets had a reduced normal/total neuron ratio and increased ischemic-necrotic/total neuron ratio relative to sham-NT and sham-HT piglets with differing severities in the anterior and posterior motor, somatosensory, and frontal cortices. Neocortical neuropathology was attenuated by HT. HT protection was prominent in layer III of the inferior parietal cortex. Rbfox3 immunoreactivity distinguished cortical neurons as: Rbfox3-positive/normal, Rbfox3-positive/ischemic-necrotic, and Rbfox3-depleted. HI piglets had an increased Rbfox3-depleted/total neuron ratio in layers II and III compared to sham-NT piglets. Neuronal Rbfox3 depletion was partly rescued by HT. Seizure burdens in HI-NT and HI-HT piglets were similar. We conclude that the neonatal HI piglet neocortex has: (1) suprasylvian vulnerability to HI and seizures; (2) a limited neuronal cytopathological repertoire in functionally different regions that engages protective mechanisms with HT; (3) higher seizure burden, insensitive to HT, that is correlated with more panlaminar ischemic-necrotic neurons in the somatosensory cortex; and (4) pathological RNA splicing protein nuclear depletion that is sensitive to HT. This work demonstrates that HT protection of the neocortex in neonatal HI is topographic and laminar, seizure unmitigating, and restores neuronal depletion of RNA splicing factor.
Collapse
Affiliation(s)
- Christopher T. Primiani
- Department of Neurology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| | - Jennifer K. Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Caitlin E. O’Brien
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - May W. Chen
- Department Pediatrics, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| | - Jamie Perin
- Department of Biostatistics and Epidemiology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| | - Ewa Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Polan Santos
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Shawn Adams
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Bailey Lester
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Natalia Rivera-Diaz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Valerie Olberding
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Mark V. Niedzwiecki
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Eva K. Ritzl
- Department of Neurology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| | - Christa W. Habela
- Department of Neurology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| | - Xiuyun Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Zeng-Jin Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Lee J. Martin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
- Department of Pathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
- The Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| |
Collapse
|
26
|
Al Thani NA, Hasan M, Yalcin HC. Use of Animal Models for Investigating Cardioprotective Roles of SGLT2 Inhibitors. J Cardiovasc Transl Res 2023; 16:975-986. [PMID: 37052784 PMCID: PMC10615955 DOI: 10.1007/s12265-023-10379-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/14/2023] [Indexed: 04/14/2023]
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors represent one type of new-generation type 2 diabetes (T2DM) drug treatment. The mechanism of action of an SGLT2 inhibitor (SGLT2i) in treating T2DM depends on lowering blood glucose levels effectively via increasing the glomerular excretion of glucose. A good number of randomized clinical trials revealed that SGLT2is significantly prevented heart failure (HF) and cardiovascular death in T2DM patients. Despite ongoing clinical trials in HF patients without T2DM, there have been a limited number of translational studies on the cardioprotective properties of SGLT2is. As the cellular mechanism behind the cardiac benefits of SGLT2is is still to be elucidated, animal models are used to better understand the pathways behind the cardioprotective mechanism of SGLT2i. In this review, we summarize the animal models constructed to study the cardioprotective mechanisms of SGLT2is to help deliver a more comprehensive understanding of the in vivo work that has been done in this field and to help select the most optimal animal model to use when studying the different cardioprotective effects of SGLT2is.
Collapse
Affiliation(s)
- Najlaa A Al Thani
- Research and Development Department, Barzan Holdings, P. O. Box 7178, Doha, Qatar
| | - Maram Hasan
- Biomedical Research Center, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Huseyin C Yalcin
- Biomedical Research Center, Qatar University, P. O. Box 2713, Doha, Qatar.
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar.
| |
Collapse
|
27
|
Costine-Bartell BA, Martinez-Ramirez L, Normoyle K, Stinson T, Staley KJ, Lillis KP. 2-Photon imaging of fluorescent proteins in living swine. Sci Rep 2023; 13:14158. [PMID: 37644074 PMCID: PMC10465491 DOI: 10.1038/s41598-023-40638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
A common point of failure in translation of preclinical neurological research to successful clinical trials comes in the giant leap from rodent models to humans. Non-human primates are phylogenetically close to humans, but cost and ethical considerations prohibit their widespread usage in preclinical trials. Swine have large, gyrencencephalic brains, which are biofidelic to human brains. Their classification as livestock makes them a readily accessible model organism. However, their size has precluded experiments involving intravital imaging with cellular resolution. Here, we present a suite of techniques and tools for in vivo imaging of porcine brains with subcellular resolution. Specifically, we describe surgical techniques for implanting a synthetic, flexible, transparent dural window for chronic optical access to the neocortex. We detail optimized parameters and methods for injecting adeno-associated virus vectors through the cranial imaging window to express fluorescent proteins. We introduce a large-animal 2-photon microscope that was constructed with off-the shelf components, has a gantry design capable of accommodating animals > 80 kg, and is equipped with a high-speed digitizer for digital fluorescence lifetime imaging. Finally, we delineate strategies developed to mitigate the substantial motion artifact that complicates high resolution imaging in large animals, including heartbeat-triggered high-speed image stack acquisition. The effectiveness of this approach is demonstrated in sample images acquired from pigs transduced with the chloride-sensitive fluorescent protein SuperClomeleon.
Collapse
Affiliation(s)
- Beth A Costine-Bartell
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Luis Martinez-Ramirez
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kieran Normoyle
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tawny Stinson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kevin J Staley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Kyle P Lillis
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Qiu B, Shu C, Huang Z. Development of a multi-needle fiberoptic Raman spectroscopy technique for simultaneous multi-site deep tissue Raman measurements in the brain. OPTICS LETTERS 2023; 48:4396-4399. [PMID: 37582041 DOI: 10.1364/ol.498232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/23/2023] [Indexed: 08/17/2023]
Abstract
We report on the development of a multi-needle fiberoptic Raman spectroscopy (MNF-RS) technique for simultaneous multi-site deep Raman measurements in brain tissue. The multi-needle fiberoptic Raman probe is designed and fabricated using a number of 100 µm core diameter, aluminum-coated fibers under a coaxial laser excitation and Raman collection scheme, enabling simultaneous collection of deep tissue Raman spectra from a number of tissue sites. We have also developed a Raman retrieval algorithm based on the transformation matrix of each individual needle fiber probe projected to different pixels of a charge-coupled device (CCD) for recovering the tissue Raman spectra collected by each needle fiber probe, allowing simultaneous multi-channel detection by a single Raman spectrometer. High-quality tissue Raman spectra of different tissue types (e.g., muscle, fat, gray matter, and white matter in porcine brain) can be acquired in both the fingerprint (900-1800 cm-1) and high-wavenumber (2800-3300 cm-1) regions within sub-second times using the MNF-RS technique. We also demonstrate that by advancing the multi-needle fiberoptic Raman probe into deep porcine brain, tissue Raman spectra can be acquired simultaneously from different brain regions (e.g., cortex, thalamus, midbrain, and cerebellum). The significant biochemical differences across different brain tissues can also be distinguished, suggesting the promising potential of the MNF-RS technique for label-free neuroscience study at the molecular level.
Collapse
|
29
|
Zhang C, Li Y, Yang L, Zhao H. Regulation of local alternating electric fields on synaptic plasticity in brain tissue. Biomed Eng Lett 2023; 13:391-396. [PMID: 37519881 PMCID: PMC10382455 DOI: 10.1007/s13534-023-00287-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 08/01/2023] Open
Abstract
Purpose External electric fields can regulate the neural network and change the excitability of the in-vivo cerebral cortex. Here, to prove the effect of alternating electric fields on the synaptic plasticity of ex-vivo tissues, the regular changes in the synaptic structure under alternating electric fields were studied. Methods This study applied alternating electric fields with a peak voltage of 20 V and frequencies of 5, 20, 50, and 80 Hz to the porcine cerebral cortex. Relying on transmission electron microscopy (TEM), the ultrastructure of synapses was observed, and the curvature radius of post-synaptic density (PSD) and the synaptic gap distance was quantified. Results The results indicated that under alternating electric fields, the average synaptic curvature of the PSD decreased by 30-59% with increasing frequency, and the average synaptic gap distance became narrower. Conclusion In ex-vivo brain tissue, synaptic plasticity can be regulated by alternating electric fields of different frequencies. This study can provide reference data for the storage and regulation of ex-vivo organs, as well as comparable data for in-vivo studies.
Collapse
Affiliation(s)
- Chi Zhang
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun, 130025 P. R. China
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun, 130025 P. R. China
| | - Yiqiang Li
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun, 130025 P. R. China
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun, 130025 P. R. China
| | - Li Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062 P. R. China
| | - Hongwei Zhao
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun, 130025 P. R. China
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun, 130025 P. R. China
| |
Collapse
|
30
|
Hilgart DR, Iversen MM, Peters AY, Zabriskie MS, Hoareau GL, Vapniarsky N, Clark GA, Shah LM, Rieke V. Non-invasive central nervous system assessment of a porcine model of neuropathic pain demonstrates increased latency of somatosensory-evoked potentials. J Neurosci Methods 2023; 396:109934. [PMID: 37524248 PMCID: PMC10530261 DOI: 10.1016/j.jneumeth.2023.109934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/01/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND The study of chronic pain and its treatments requires a robust animal model with objective and quantifiable metrics. Porcine neuropathic pain models have been assessed with peripheral pain recordings and behavioral responses, but thus far central nervous system electrophysiology has not been investigated. This work aimed to record non-invasive, somatosensory-evoked potentials (SEPs) via electroencephalography in order to quantitatively assess chronic neuropathic pain induced in a porcine model. NEW METHOD Peripheral neuritis trauma (PNT) was induced unilaterally in the common peroneal nerve of domestic farm pigs, with the contralateral leg serving as the control for each animal. SEPs were generated by stimulation of the peripheral nerves distal to the PNT and were recorded non-invasively using transcranial electroencephalography (EEG). The P30 wave of the SEP was analyzed for latency changes. RESULTS P30 SEPs were successfully recorded with non-invasive EEG. PNT resulted in significantly longer P30 SEP latencies (p < 0.01 [n = 8]) with a median latency increase of 14.3 [IQR 5.0 - 17.5] ms. Histological results confirmed perineural inflammatory response and nerve damage around the PNT nerves. COMPARISON WITH EXISTING METHOD(S) Control P30 SEPs were similar in latency and amplitude to those previously recorded invasively in healthy pigs. Non-invasive recordings have numerous advantages over invasive measures. CONCLUSIONS P30 SEP latency can serve as a quantifiable neurological measure that reflects central nervous system processing in a porcine model of chronic pain. Advancing the development of a porcine chronic pain model will facilitate the translation of experimental therapies into human clinical trials.
Collapse
Affiliation(s)
- David R Hilgart
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Marta M Iversen
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA
| | - Angela Y Peters
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Matthew S Zabriskie
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Guillaume L Hoareau
- Department of Emergency Medicine, University of Utah, Salt Lake City, UT, USA
| | - Natalia Vapniarsky
- Department of Pathology Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Gregory A Clark
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Lubdha M Shah
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Viola Rieke
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
31
|
Pavlichenko M, Lafrenaye AD. The Central Fluid Percussion Brain Injury in a Gyrencephalic Pig Brain: Scalable Diffuse Injury and Tissue Viability for Glial Cell Immunolabeling following Long-Term Refrigerated Storage. Biomedicines 2023; 11:1682. [PMID: 37371777 PMCID: PMC10295711 DOI: 10.3390/biomedicines11061682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Traumatic brain injury (TBI) affects millions of people annually; however, our knowledge of the diffuse pathologies associated with TBI is limited. As diffuse pathologies, including axonal injury and neuroinflammatory changes, are difficult to visualize in the clinical population, animal models are used. In the current study, we used the central fluid percussion injury (CFPI) model in a micro pig to study the potential scalability of these diffuse pathologies in a gyrencephalic brain of a species with inflammatory systems very similar to humans. We found that both axonal injury and microglia activation within the thalamus and corpus callosum are positively correlated with the weight-normalized pressure pulse, while subtle changes in blood gas and mean arterial blood pressure are not. We also found that the majority of tissue generated up to 10 years previously is viable for immunofluorescent labeling after long-term refrigeration storage. This study indicates that a micro pig CFPI model could allow for specific investigations of various degrees of diffuse pathological burdens following TBI.
Collapse
Affiliation(s)
- Mark Pavlichenko
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709, USA
| | - Audrey D. Lafrenaye
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709, USA
- Richmond Veterans Affairs Medical Center, Richmond, VA 23249-4915, USA
| |
Collapse
|
32
|
Song S, Fallegger F, Trouillet A, Kim K, Lacour SP. Deployment of an electrocorticography system with a soft robotic actuator. Sci Robot 2023; 8:eadd1002. [PMID: 37163609 DOI: 10.1126/scirobotics.add1002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Electrocorticography (ECoG) is a minimally invasive approach frequently used clinically to map epileptogenic regions of the brain and facilitate lesion resection surgery and increasingly explored in brain-machine interface applications. Current devices display limitations that require trade-offs among cortical surface coverage, spatial electrode resolution, aesthetic, and risk consequences and often limit the use of the mapping technology to the operating room. In this work, we report on a scalable technique for the fabrication of large-area soft robotic electrode arrays and their deployment on the cortex through a square-centimeter burr hole using a pressure-driven actuation mechanism called eversion. The deployable system consists of up to six prefolded soft legs, and it is placed subdurally on the cortex using an aqueous pressurized solution and secured to the pedestal on the rim of the small craniotomy. Each leg contains soft, microfabricated electrodes and strain sensors for real-time deployment monitoring. In a proof-of-concept acute surgery, a soft robotic electrode array was successfully deployed on the cortex of a minipig to record sensory cortical activity. This soft robotic neurotechnology opens promising avenues for minimally invasive cortical surgery and applications related to neurological disorders such as motor and sensory deficits.
Collapse
Affiliation(s)
- Sukho Song
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
- Laboratory of Sustainability Robotics, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Dübendorf, Switzerland
| | - Florian Fallegger
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Alix Trouillet
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Kyungjin Kim
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Stéphanie P Lacour
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| |
Collapse
|
33
|
Fu C, Wang D, Wang L, Zhu L, Li Z, Chen T, Feng H, Li F. Diffuse optical detection of global cerebral ischemia in an adult porcine model. JOURNAL OF BIOPHOTONICS 2023; 16:e202200168. [PMID: 36397661 DOI: 10.1002/jbio.202200168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Rapid screening for ischemic strokes in prehospital settings may improve patient outcomes by allowing early deployment of vascular recanalization therapies. However, there are no low-cost and convenient methods that can assess ischemic strokes in such a setting. Diffuse correlation spectroscopy (DCS) is a promising method for continuous, noninvasive transcranial monitoring of cerebral blood flow. In this study, we used a DCS system to detect cerebral hemodynamics before and after acute ischemic stroke in pigs. Seven adult porcines were chosen to establish ischemic stroke models via bilateral common carotid artery ligation (n = 5) or air emboli (n = 2). The results showed a significant difference in blood flow index (BFI) between the normal and ischemic groups. Relative blood flow index (rBFI) exhibited excellent results. Therefore, the diffuse optical method can assess the hemodynamic changes in acute cerebral ischemic stroke onset in pigs, and rBFI may be a promising biomarker for identifying cerebral ischemic stroke.
Collapse
Affiliation(s)
- Chuhua Fu
- Department of Neurosurgery of Southwest Hospital, Army Medical University, Chong Qing, People's Republic of China
- Department of Neurosurgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, People's Republic of China
| | - Detian Wang
- Department of Neurosurgery of Southwest Hospital, Army Medical University, Chong Qing, People's Republic of China
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, People's Republic of China
| | - Long Wang
- Department of Neurosurgery of Southwest Hospital, Army Medical University, Chong Qing, People's Republic of China
| | - Liguo Zhu
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, People's Republic of China
| | - Zeren Li
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, People's Republic of China
| | - Tunan Chen
- Department of Neurosurgery of Southwest Hospital, Army Medical University, Chong Qing, People's Republic of China
| | - Hua Feng
- Department of Neurosurgery of Southwest Hospital, Army Medical University, Chong Qing, People's Republic of China
| | - Fei Li
- Department of Neurosurgery of Southwest Hospital, Army Medical University, Chong Qing, People's Republic of China
| |
Collapse
|
34
|
Cas9-mediated replacement of expanded CAG repeats in a pig model of Huntington's disease. Nat Biomed Eng 2023; 7:629-646. [PMID: 36797418 DOI: 10.1038/s41551-023-01007-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/20/2023] [Indexed: 02/18/2023]
Abstract
The monogenic nature of Huntington's disease (HD) and other neurodegenerative diseases caused by the expansion of glutamine-encoding CAG repeats makes them particularly amenable to gene therapy. Here we show the feasibility of replacing expanded CAG repeats in the mutant HTT allele with a normal CAG repeat in genetically engineered pigs mimicking the selective neurodegeneration seen in patients with HD. A single intracranial or intravenous injection of adeno-associated virus encoding for Cas9, a single-guide RNA targeting the HTT gene, and donor DNA containing the normal CAG repeat led to the depletion of mutant HTT in the animals and to substantial reductions in the dysregulated expression and neurotoxicity of mutant HTT and in neurological symptoms. Our findings support the further translational development of virally delivered Cas9-based gene therapies for the treatment of genetic neurodegenerative diseases.
Collapse
|
35
|
Pupillary Light Response Deficits in 4-Week-Old Piglets and Adolescent Children after Low-Velocity Head Rotations and Sports-Related Concussions. Biomedicines 2023; 11:biomedicines11020587. [PMID: 36831121 PMCID: PMC9952885 DOI: 10.3390/biomedicines11020587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Neurological disorders and traumatic brain injury (TBI) are among the leading causes of death and disability. The pupillary light reflex (PLR) is an emerging diagnostic tool for concussion in humans. We compared PLR obtained with a commercially available pupillometer in the 4 week old piglet model of the adolescent brain subject to rapid nonimpact head rotation (RNR), and in human adolescents with and without sports-related concussion (SRC). The 95% PLR reference ranges (RR, for maximum and minimum pupil diameter, latency, and average and peak constriction velocities) were established in healthy piglets (N = 13), and response reliability was validated in nine additional healthy piglets. PLR assessments were obtained in female piglets allocated to anesthetized sham (N = 10), single (sRNR, N = 13), and repeated (rRNR, N = 14) sagittal low-velocity RNR at pre-injury, as well as days 1, 4, and 7 post injury, and evaluated against RRs. In parallel, we established human PLR RRs in healthy adolescents (both sexes, N = 167) and compared healthy PLR to values obtained <28 days from a SRC (N = 177). In piglets, maximum and minimum diameter deficits were greater in rRNR than sRNR. Alterations peaked on day 1 post sRNR and rRNR, and remained altered at day 4 and 7. In SRC adolescents, the proportion of adolescents within the RR was significantly lower for maximum pupil diameter only (85.8%). We show that PLR deficits may persist in humans and piglets after low-velocity head rotations. Differences in timing of assessment after injury, developmental response to injury, and the number and magnitude of impacts may contribute to the differences observed between species. We conclude that PLR is a feasible, quantifiable involuntary physiological metric of neurological dysfunction in pigs, as well as humans. Healthy PLR porcine and human reference ranges established can be used for neurofunctional assessments after TBI or hypoxic exposures (e.g., stroke, apnea, or cardiac arrest).
Collapse
|
36
|
Costine-Bartell BA, Martinez-Ramirez L, Normoyle K, Stinson T, Staley KJ, Lillis KP. 2-Photon imaging of fluorescent proteins in living swine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528533. [PMID: 36824934 PMCID: PMC9949062 DOI: 10.1101/2023.02.14.528533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A common point of failure in translation of preclinical neurological research to successful clinical trials comes in the giant leap from rodent models to humans. Non-human primates are phylogenetically close to humans, but cost and ethical considerations prohibit their widespread usage in preclinical trials. Swine have large, gyrencencephalic brains, which are biofidelic to human brains. Their classification as livestock makes them a readily accessible model organism. However, their size has precluded experiments involving intravital imaging with cellular resolution. Here, we present a suite of techniques and tools for in vivo imaging of porcine brains with subcellular resolution. Specifically, we describe surgical techniques for implanting a synthetic, flexible, transparent dural window for chronic optical access to the neocortex. We detail optimized parameters and methods for injecting adeno-associated virus vectors through the cranial imaging window to express fluorescent proteins. We introduce a large-animal 2-photon microscope that was constructed with off-the shelf components, has a gantry design capable of accommodating animals > 80 kg, and is equipped with a high-speed digitizer for digital fluorescence lifetime imaging. Finally, we delineate strategies developed to mitigate the substantial motion artifact that complicates high resolution imaging in large animals, including heartbeat-triggered high-speed image stack acquisition. The effectiveness of this approach is demonstrated in sample images acquired from pigs transduced with the chloride-sensitive fluorescent protein SuperClomeleon.
Collapse
|
37
|
Terek J, Hebb MO, Flynn LE. Development of Brain-Derived Bioscaffolds for Neural Progenitor Cell Culture. ACS Pharmacol Transl Sci 2023; 6:320-333. [PMID: 36798475 PMCID: PMC9926525 DOI: 10.1021/acsptsci.2c00232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Indexed: 01/19/2023]
Abstract
Biomaterials derived from brain extracellular matrix (ECM) have the potential to promote neural tissue regeneration by providing instructive cues that can direct cell survival, proliferation, and differentiation. This study focused on the development and characterization of microcarriers derived from decellularized brain tissue (DBT) as a platform for neural progenitor cell culture. First, a novel detergent-free decellularization protocol was established that effectively reduced the cellular content of porcine and rat brains, with a >97% decrease in the dsDNA content, while preserving collagens (COLs) and glycosaminoglycans (GAGs). Next, electrospraying methods were applied to generate ECM-derived microcarriers incorporating the porcine DBT that were stable without chemical cross-linking, along with control microcarriers fabricated from commercially sourced bovine tendon COL. The DBT microcarriers were structurally and biomechanically similar to the COL microcarriers, but compositionally distinct, containing a broader range of COL types and higher sulfated GAG content. Finally, we compared the growth, phenotype, and neurotrophic factor gene expression levels of rat brain-derived progenitor cells (BDPCs) cultured on the DBT or COL microcarriers within spinner flask bioreactors over 2 weeks. Both microcarrier types supported BDPC attachment and expansion, with immunofluorescence staining results suggesting that the culture conditions promoted BDPC differentiation toward the oligodendrocyte lineage, which may be favorable for cell therapies targeting remyelination. Overall, our findings support the further investigation of the ECM-derived microcarriers as a platform for neural cell derivation for applications in regenerative medicine.
Collapse
Affiliation(s)
- Julia
C. Terek
- School
of Biomedical Engineering, The University
of Western Ontario, London, OntarioN6A 5B9, Canada
| | - Matthew O. Hebb
- Department
of Clinical Neurological Sciences, Schulich School of Medicine &
Dentistry, The University of Western Ontario, London, OntarioN6A 5A5, Canada
- Department
of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, OntarioN6A 5C1, Canada
| | - Lauren E. Flynn
- School
of Biomedical Engineering, The University
of Western Ontario, London, OntarioN6A 5B9, Canada
- Department
of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, OntarioN6A 5C1, Canada
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, London, OntarioN6A 5B9, Canada
| |
Collapse
|
38
|
Li J, Guan D, Halstead MM, Islas-Trejo AD, Goszczynski DE, Ernst CW, Cheng H, Ross P, Zhou H. Transcriptome annotation of 17 porcine tissues using nanopore sequencing technology. Anim Genet 2023; 54:35-44. [PMID: 36385508 DOI: 10.1111/age.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022]
Abstract
The annotation of animal genomes plays an important role in elucidating molecular mechanisms behind the genetic control of economically important traits. Here, we employed long-read sequencing technology, Oxford Nanopore Technology, to annotate the pig transcriptome across 17 tissues from two Yorkshire littermate pigs. More than 9.8 million reads were obtained from a single flow cell, and 69 781 unique transcripts at 50 108 loci were identified. Of these transcripts, 16 255 were found to be novel isoforms, and 22 344 were found at loci that were novel and unannotated in the Ensembl (release 102) and NCBI (release 106) annotations. Novel transcripts were mostly expressed in cerebellum, followed by lung, liver, spleen, and hypothalamus. By comparing the unannotated transcripts to existing databases, there were 21 285 (95.3%) transcripts matched to the NT database (v5) and 13 676 (61.2%) matched to the NR database (v5). Moreover, there were 4324 (19.4%) transcripts matched to the SwissProt database (v5), corresponding to 11 356 proteins. Tissue-specific gene expression analyses showed that 9749 transcripts were highly tissue-specific, and cerebellum contained the most tissue-specific transcripts. As the same samples were used for the annotation of cis-regulatory elements in the pig genome, the transcriptome annotation generated by this study provides an additional and complementary annotation resource for the Functional Annotation of Animal Genomes effort to comprehensively annotate the pig genome.
Collapse
Affiliation(s)
- Jinghui Li
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Dailu Guan
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Michelle M Halstead
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Alma D Islas-Trejo
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Daniel E Goszczynski
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Catherine W Ernst
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| | - Hao Cheng
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Pablo Ross
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Huaijun Zhou
- Department of Animal Science, University of California Davis, Davis, California, USA
| |
Collapse
|
39
|
Shih BB, Brown SM, Barrington J, Lefevre L, Mabbott NA, Priller J, Thompson G, Lawrence AB, McColl BW. Defining the pig microglial transcriptome reveals its core signature, regional heterogeneity, and similarity with human and rodent microglia. Glia 2023; 71:334-349. [PMID: 36120803 PMCID: PMC10087207 DOI: 10.1002/glia.24274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022]
Abstract
Microglia play key roles in brain homeostasis as well as responses to neurodegeneration and neuroinflammatory processes caused by physical disease and psychosocial stress. The pig is a physiologically relevant model species for studying human neurological disorders, many of which are associated with microglial dysfunction. Furthermore, pigs are an important agricultural species, and there is a need to understand how microglial function affects their welfare. As a basis for improved understanding to enhance biomedical and agricultural research, we sought to characterize pig microglial identity at genome-wide scale and conduct inter-species comparisons. We isolated pig hippocampal tissue and microglia from frontal cortex, hippocampus, and cerebellum, as well as alveolar macrophages from the lungs and conducted RNA-sequencing (RNAseq). By comparing the transcriptomic profiles between microglia, macrophages, and hippocampal tissue, we derived a set of 239 highly enriched genes defining the porcine core microglial signature. We found brain regional heterogeneity based on 150 genes showing significant (adjusted p < 0.01) regional variations and that cerebellar microglia were most distinct. We compared normalized gene expression for microglia from human, mice and pigs using microglia signature gene lists derived from each species and demonstrated that a core microglial marker gene signature is conserved across species, but that species-specific expression subsets also exist. Our data provide a valuable resource defining the pig microglial transcriptome signature that validates and highlights pigs as a useful large animal species bridging between rodents and humans in which to study the role of microglia during homeostasis and disease.
Collapse
Affiliation(s)
- Barbara B Shih
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Sarah M Brown
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Jack Barrington
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh Medical School, The Chancellor's Building, Edinburgh, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Lucas Lefevre
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh Medical School, The Chancellor's Building, Edinburgh, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Neil A Mabbott
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Josef Priller
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh Medical School, The Chancellor's Building, Edinburgh, UK.,Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.,DZNE, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gerard Thompson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Alistair B Lawrence
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.,Scotland's Rural College (SRUC), Edinburgh, UK
| | - Barry W McColl
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh Medical School, The Chancellor's Building, Edinburgh, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
40
|
Zhu F, Wang H, Li L, Bragin A, Cao D, Cheng Y. Intracranial electrophysiological recordings on a swine model of mesial temporal lobe epilepsy. Front Neurol 2023; 14:1077702. [PMID: 37139062 PMCID: PMC10150775 DOI: 10.3389/fneur.2023.1077702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/20/2023] [Indexed: 05/05/2023] Open
Abstract
Objective To test the feasibility and reliability of intracranial electrophysiological recordings in an acute status epilepticus model on laboratory swine. Method Intrahippocampal injection of kainic acid (KA) was performed on 17 male Bama pigs (Sus scrofa domestica) weighing between 25 and 35 kg. Two stereoelectroencephalography (SEEG) electrodes with a total of 16 channels were implanted bilaterally along the sensorimotor cortex to the hippocampus. Brain electrical activity was recorded 2 h daily for 9-28 days. Three KA dosages were tested to evaluate the quantities capable of evoking status epilepticus. Local field potentials (LFPs) were recorded and compared before and after the KA injection. We quantified the epileptic patterns, including the interictal spikes, seizures, and high-frequency oscillations (HFOs), up to 4 weeks after the KA injection. Test-retest reliability using intraclass correlation coefficients (ICCs) were performed on interictal HFO rates to evaluate the recording stability of this model. Results The KA dosage test suggested that a 10 μl (1.0 μg/μl) intrahippocampal injection could successfully evoke status epilepticus lasting from 4 to 12 h. At this dosage, eight pigs (50% of total) had prolonged epileptic events (tonic-chronic seizures + interictal spikes n = 5, interictal spikes alone n = 3) in the later 4 weeks of the video-SEEG recording period. Four pigs (25% of total) had no epileptic activities, and another four (25%) had lost the cap or did not complete the experiments. Animals that showed epileptiform events were grouped as E + (n = 8) and the four animals showing no signs of epileptic events were grouped as E- (n = 4). A total of 46 electrophysiological seizures were captured in the 4-week post-KA period from 4 E + animals, with the earliest onset on day 9. The seizure durations ranged from 12 to 45 s. A significant increase of hippocampal HFOs rate (num/min) was observed in the E+ group during the post-KA period (weeks 1, 2,4, p < 0.05) compared to the baseline. But the E-showed no change or a decrease (in week 2, p = 0.43) compared to their baseline rate. The between-group comparison showed much higher HFO rates in E + vs. E - (F = 35, p < 0.01). The high ICC value [ICC (1, k) = 0.81, p < 0.05] quantified from the HFO rate suggested that this model had a stable measurement of HFOs during the four-week post-KA periods. Significance This study measured intracranial electrophysiological activity in a swine model of KA-induced mesial temporal lobe epilepsy (mTLE). Using the clinical SEEG electrode, we distinguished abnormal EEG patterns in the swine brain. The high test-retest reliability of HFO rates in the post-KA period suggests the utility of this model for studying mechanisms of epileptogenesis. The use of swine may provide satisfactory translational value for clinical epilepsy research.
Collapse
Affiliation(s)
- Fengjun Zhu
- Department of Neurosurgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
- Department of Neurosurgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, United States
| | - Hanwen Wang
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, United States
| | - Lin Li
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, United States
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | - Anatol Bragin
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, United States
| | - Dezhi Cao
- Department of Neurosurgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
- *Correspondence: Dezhi Cao,
| | - Yuan Cheng
- Department of Neurosurgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Yuan Cheng,
| |
Collapse
|
41
|
Zhang C, Li Y, Huang S, Yang L, Zhao H. Effects of Different Types of Electric Fields on Mechanical Properties and Microstructure of Ex Vivo Porcine Brain Tissues. ACS Biomater Sci Eng 2022; 8:5349-5360. [PMID: 36346997 DOI: 10.1021/acsbiomaterials.2c00456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Electrotherapy plays a crucial role in regulating neuronal activity. Nevertheless, the relevant therapeutic mechanisms are still unclear; thus, the effects of electric fields on brain tissue's mechanical properties and microstructure need to be explored. In this study, focusing on the changes in mechanical properties and microstructure of ex vivo porcine brain tissues under different types of electric fields, directional and alternating electric fields (frequencies of 5, 20, 50, and 80 Hz, respectively) integrate with a custom-designed indentation device. The experimental results showed that for the ex vivo brain tissue, the directional electric field (DEF) can reduce the elastic properties of brain tissue. Simultaneously, the DEF can increase the cell spacing and reduce the proteoglycan content. The transmission electron microscope (TEM) analysis observed that the DEF can reduce the integrity of the plasma membrane, the endoplasmic reticulum's stress response, and the myelin lamella's separation. The alternating electric field (AEF) can accelerate the stress relaxation process of brain tissue and change the time-dependent mechanical properties of brain tissue. Meanwhile, with the increase in frequency, the cell spacing decreased, and the proteoglycan content gradually approached the control group without electric fields. TEM analysis observed that with the increase in frequency, the integrity of the plasma membrane increases, and the separation of the myelin lamella gradually disappears. Understanding the changes in the mechanical properties and microstructure of brain tissue under AEF and DEF enables a preliminary exploration of the therapeutic mechanism of electrotherapy. Simultaneously, the essential data was provided to support the development of embedded electrodes. In addition, the ex vivo experiments build a solid foundation for future in vivo experiments.
Collapse
Affiliation(s)
- Chi Zhang
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun130025, P. R. China.,Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun130025, P. R. China
| | - Yiqiang Li
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun130025, P. R. China.,Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun130025, P. R. China
| | - Sai Huang
- School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun130024, P. R. China
| | - Li Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun130062, P. R. China
| | - Hongwei Zhao
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun130025, P. R. China.,Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun130025, P. R. China
| |
Collapse
|
42
|
Mirra A, Casoni D, Barge P, Hight D, Levionnois O, Spadavecchia C. Usability of the SedLine® electroencephalographic monitor of depth of anaesthesia in pigs: a pilot study. J Clin Monit Comput 2022; 36:1635-1646. [PMID: 35059913 PMCID: PMC9637619 DOI: 10.1007/s10877-022-00807-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/05/2022] [Indexed: 02/08/2023]
Abstract
To investigate the usability of the SedLine® monitor in anaesthetized pigs. Five juvenile healthy pigs underwent balanced isoflurane-based general anaesthesia for surgical placement of a subcutaneous jugular venous port. The SedLine® was applied to continuously monitor electroencephalographic (EEG) activity and its modulation during anaesthesia. Computer tomography and magnetic resonance were performed to investigate the relationship between electrodes' positioning and anatomical structures. The pediatric SedLine® EEG-sensor could be easily applied and SedLine®-generated variables collected. An EEG Density Spectral Array (DS) was displayed over the whole procedure. During surgery, the EEG signal was dominated by elevated power in the delta range (0.5-4 Hz), with an underlying broadband signal (where power decreased with increasing frequency). The emergence period was marked by a decrease in delta power, and a more evenly distributed power over the 4-40 Hz frequency range. From incision to end of surgery, mean SedLine®-generated values (± standard deviation) were overall stable [23.0 (± 2.8) Patient State Index (PSI), 1.0% (± 3.8%) Suppression Ratio (SR), 8.8 Hz (± 2.5 Hz) Spectral Edge Frequency 95% (SEF) left, 7.7 Hz (± 2.4 Hz) SEF right], quickly changing during emergence [75.3 (± 11.1) PSI, 0.0 (± 0.0) SR, 12.5 (± 6.6) SEF left 10.4 (± 6.6) SEF right]. Based on the imaging performed, the sensor does not record EEG signals from the same brain areas as in humans. SedLine®-DSA and -generated variables seemed to reflect variations in depth of anaesthesia in pigs. Further studies are needed to investigate this correlation, as well as to define the species-specific brain structures monitored by the EEG-sensor.
Collapse
Affiliation(s)
- A Mirra
- Section of Anaesthesiology and Pain Therapy, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - D Casoni
- Department for Biomedical Research, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - P Barge
- Division of Clinical Radiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - D Hight
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - O Levionnois
- Section of Anaesthesiology and Pain Therapy, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - C Spadavecchia
- Section of Anaesthesiology and Pain Therapy, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
43
|
Lin HC, Wu YH, Huang CW, Ker MD. Verification of the beta oscillations in the subthalamic nucleus of the MPTP-induced parkinsonian minipig model. Brain Res 2022; 1798:148165. [DOI: 10.1016/j.brainres.2022.148165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/14/2022]
|
44
|
Chien CY, Xu L, Pacia CP, Yue Y, Chen H. Blood-brain barrier opening in a large animal model using closed-loop microbubble cavitation-based feedback control of focused ultrasound sonication. Sci Rep 2022; 12:16147. [PMID: 36167747 PMCID: PMC9515082 DOI: 10.1038/s41598-022-20568-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Focused ultrasound (FUS) in combination with microbubbles has been established as a promising technique for noninvasive and localized Blood-brain barrier (BBB) opening. Real-time passive cavitation detection (PCD)-based feedback control of the FUS sonication is critical to ensure effective BBB opening without causing hemorrhage. This study evaluated the performance of a closed-loop feedback controller in a porcine model. Calibration of the baseline cavitation level was performed for each targeted brain location by a FUS sonication in the presence of intravenously injected microbubbles at a low acoustic pressure without inducing BBB opening. The target cavitation level (TCL) was defined for each target based on the baseline cavitation level. FUS treatment was then performed under real-time PCD-based feedback controller to maintain the cavitation level at the TCL. After FUS treatment, contrast-enhanced MRI and ex vivo histological staining were performed to evaluate the BBB permeability and safety. Safe and effective BBB opening was achieved with the BBB opening volume increased from 3.8 ± 0.7 to 53.6 ± 23.3 mm3 as the TCL was increased from 0.25 to 1 dB. This study validated that effective and safe FUS-induced BBB opening in a large animal model can be achieved with closed-loop feedback control of the FUS sonication.
Collapse
Affiliation(s)
- Chih-Yen Chien
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Lu Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Christopher Pham Pacia
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave., Saint Louis, MO, 63108, USA.
| |
Collapse
|
45
|
The Sheep as a Large Animal Model for the Investigation and Treatment of Human Disorders. BIOLOGY 2022; 11:biology11091251. [PMID: 36138730 PMCID: PMC9495394 DOI: 10.3390/biology11091251] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary We review the value of large animal models for improving the translation of biomedical research for human application, focusing primarily on sheep. Abstract An essential aim of biomedical research is to translate basic science information obtained from preclinical research using small and large animal models into clinical practice for the benefit of humans. Research on rodent models has enhanced our understanding of complex pathophysiology, thus providing potential translational pathways. However, the success of translating drugs from pre-clinical to clinical therapy has been poor, partly due to the choice of experimental model. The sheep model, in particular, is being increasingly applied to the field of biomedical research and is arguably one of the most influential models of human organ systems. It has provided essential tools and insights into cardiovascular disorder, orthopaedic examination, reproduction, gene therapy, and new insights into neurodegenerative research. Unlike the widely adopted rodent model, the use of the sheep model has an advantage over improving neuroscientific translation, in particular due to its large body size, gyrencephalic brain, long lifespan, more extended gestation period, and similarities in neuroanatomical structures to humans. This review aims to summarise the current status of sheep to model various human diseases and enable researchers to make informed decisions when considering sheep as a human biomedical model.
Collapse
|
46
|
Hoppstädter M, Püllmann D, Seydewitz R, Kuhl E, Böl M. Correlating the microstructural architecture and macrostructural behaviour of the brain. Acta Biomater 2022; 151:379-395. [PMID: 36002124 DOI: 10.1016/j.actbio.2022.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
The computational simulation of pathological conditions and surgical procedures, for example the removal of cancerous tissue, can contribute crucially to the future of medicine. Especially for brain surgery, these methods can be important, as the ultra-soft tissue controls vital functions of the body. However, the microstructural interactions and their effects on macroscopic material properties remain incompletely understood. Therefore, we investigated the mechanical behaviour of brain tissue under three different deformation modes, axial tension, compression, and semi-confined compression, in different anatomical regions, and for varying axon orientation. In addition, we characterised the underlying microstructure in terms of myelin, cells, glial cells and neuron area fraction, and density. The correlation of these quantities with the material parameters of the anisotropic Ogden model reveals a decrease in shear modulus with increasing myelin area fraction. Strikingly, the tensile shear modulus correlates positively with cell and neuronal area fraction (Spearman's correlation coefficient of rs=0.40 and rs=0.33), whereas the compressive shear modulus decreases with increasing glial cell area (rs=-0.33). Our study finds that tissue non-linearity significantly depends on the myelin area fraction (rs=0.47), cell density (rs=0.41) and glial cell area (rs=0.49). Our results provide an important step towards understanding the micromechanical load transfer that leads to the non-linear macromechanical behaviour of the brain. STATEMENT OF SIGNIFICANCE: Within this article, we investigate the mechanical behaviour of brain tissue under three different deformation modes, in different anatomical regions, and for varying axon orientation. Further, we characterise the underlying microstructure in terms of various constituents. The correlation of these quantities with the material parameters of the anisotropic Ogden model reveals a decrease in shear modulus with increasing myelin area fraction. Strikingly, the tensile shear modulus correlates positively with cell and neuronal area fraction, whereas the compressive shear modulus decreases with increasing glial cell area. Our study finds that tissue non-linearity significantly depends on the myelin area fraction, cell density, and glial cell area. Our results provide an important step towards understanding the micromechanical load transfer that leads to the non-linear macromechanical behaviour of the brain.
Collapse
Affiliation(s)
- Mayra Hoppstädter
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Denise Püllmann
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Robert Seydewitz
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Ellen Kuhl
- Departments of Mechanical Engineering and Bioengineering, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
| | - Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany.
| |
Collapse
|
47
|
Onoda K, Fujiwara R, Sashida R, Hirokawa Y, Wakamiya T, Michiwaki Y, Tanaka T, Shimoji K, Suehiro E, Yamane F, Kawashima M, Matsuno A. In vivo goat brain model for neurosurgical training. Surg Neurol Int 2022; 13:344. [PMID: 36128158 PMCID: PMC9479650 DOI: 10.25259/sni_494_2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022] Open
Abstract
Background: Novice neurosurgeons require neurosurgical technique training, but the current method is demanding and time consuming. Therefore, it is crucial to perform training using an appropriate and informative method. In this report, we describe our attempts to provide training in neurosurgical techniques using goat in vivo brain model and to demonstrate the effectiveness of this model. Methods: Under general anesthesia, the surgery was performed on a male goat in the prone position. A midline liner skin incision was made in the scalp, six burr holes were drilled, a craniectomy was performed, and the dura was incised in an arcuate fashion. We attempted the interhemispheric approach and a retrosigmoid approach. Results: It was confirmed that common neurosurgical approaches are achievable in this model. Furthermore, anatomical structures such as nerves and blood vessels were similar to those of humans. Moreover, the goat brain was similar in color and texture to that of humans. Conclusion: Unlike a cadaver brain, in vivo brain requires hemostasis and careful dissection, which provides the surgeons a realistic experience of actual neurosurgery.
Collapse
Affiliation(s)
- Keisuke Onoda
- Department of Neurosurgery, International University of Health and Welfare, Narita Hospital,
| | - Ren Fujiwara
- Department of Neurosurgery, International University of Health and Welfare, Graduate School of Medicine, Narita, Japan
| | - Ryohei Sashida
- Department of Neurosurgery, International University of Health and Welfare, Graduate School of Medicine, Narita, Japan
| | - Yu Hirokawa
- Department of Neurosurgery, International University of Health and Welfare, Graduate School of Medicine, Narita, Japan
| | - Tomihiro Wakamiya
- Department of Neurosurgery, International University of Health and Welfare, Narita Hospital,
| | - Yuhei Michiwaki
- Department of Neurosurgery, International University of Health and Welfare, Narita Hospital,
| | - Tatsuya Tanaka
- Department of Neurosurgery, International University of Health and Welfare, Narita Hospital,
| | - Kazuaki Shimoji
- Department of Neurosurgery, International University of Health and Welfare, Narita Hospital,
| | - Eiichi Suehiro
- Department of Neurosurgery, International University of Health and Welfare, Narita Hospital,
| | - Fumitaka Yamane
- Department of Neurosurgery, International University of Health and Welfare, Narita Hospital,
| | - Masatou Kawashima
- Department of Neurosurgery, International University of Health and Welfare, Narita Hospital,
| | - Akira Matsuno
- Department of Neurosurgery, International University of Health and Welfare, Narita Hospital,
| |
Collapse
|
48
|
Sutkus LT, Joung S, Hirvonen J, Jensen HM, Ouwehand AC, Mukherjea R, Donovan SM, Dilger RN. Influence of 2'-Fucosyllactose and Bifidobacterium longum Subspecies infantis Supplementation on Cognitive and Structural Brain Development in Young Pigs. Front Neurosci 2022; 16:860368. [PMID: 35546890 PMCID: PMC9081927 DOI: 10.3389/fnins.2022.860368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022] Open
Abstract
Development of the gut-brain axis during early-life is an important contributor of brain structural and functional development. Human milk oligosaccharides and gut microbiota have potential beneficial effects on various aspects of development; however, the effects of 2′-fucosyllactose (2′-FL) and Bifidobacterium longum subsp. infantis Bi-26 (Bi-26) administration during infancy separately and combined are still not clear. Therefore, we investigated the effects of early administration of dietary 2′-FL and Bi-26 on brain structural and functional development in the young pig. From postnatal day (PND) 2–34 or 35, fifty-two intact male pigs were randomly assigned to treatment groups in a 2 × 2 factorial arrangement and provided ad libitum access to a nutritionally adequate milk replacer without or with 1.0 g of 2′-FL/L of reconstituted liquid. Pigs within each diet group were further stratified to receive a daily oral dose of glycerol stock without or with Bi-26 (109 CFU). Pigs were subjected to the novel object recognition (NOR) task from PND 27–31 to assess recognition memory and subsequently underwent magnetic resonance imaging procedures at PND 32 or 33 to assess brain macrostructure and microstructure. Pigs that received Bi-26 had smaller absolute brain volumes for 9 of 27 brain regions of interest, and smaller relative volumes for 2 regions associated with kinesthesia (P < 0.05). Synbiotic administration of 2′-FL and Bi-26 elicited interactive effects (P < 0.05) on several microstructural brain components, where dual supplementation negated the effects of each test article alone. Behavioral outcomes indicated that pigs did not express novelty preference, regardless of treatment group, demonstrating no effects of 2′-FL and Bi-26 on recognition memory when supplemented alone or in combination. Interactive effects (P < 0.05) were observed for the number of all object visits, latency to the first object visit, and number of familiar object visits. Pigs that did not receive Bi-26 supplementation exhibited less time interacting with the familiar object in total (P = 0.002) and on average (P = 0.005). In conclusion, supplementation of 2′-FL and/or Bi-26 elicited some alterations in object exploratory behaviors and macro/micro-structures of the brain, but changes in recognition memory were not observed. Specifically in brain microstructure, synbiotic administration of 2′-FL and Bi-26 appeared to negate effects observed when each dietary article was supplemented separately.
Collapse
Affiliation(s)
- Loretta T Sutkus
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Sangyun Joung
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | | | - Henrik Max Jensen
- IFF R&D-Enabling Technologies, Advanced Analytical, Brabrand, Denmark
| | | | | | - Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Ryan N Dilger
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
49
|
Bushby EV, Cotter SC, Wilkinson A, Friel M, Collins LM. Judgment Bias During Gestation in Domestic Pigs. Front Vet Sci 2022; 9:881101. [PMID: 35647100 PMCID: PMC9133791 DOI: 10.3389/fvets.2022.881101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
In humans and rats, changes in affect are known to occur during pregnancy, however it is unknown how gestation may influence mood in other non-human mammals. This study assessed changes in pigs' judgment bias as a measure of affective state throughout gestation. Pigs were trained to complete a spatial judgment bias task with reference to positive and negative locations. We tested gilts before mating, and during early and late gestation, by assessing their responses to ambiguous probe locations. Pigs responded increasingly negatively to ambiguous probes as gestation progressed and there were consistent inter-individual differences in baseline optimism. This suggests that the pigs' affective state may be altered during gestation, although as a non-pregnant control group was not tested, an effect of learning cannot be ruled out. These results suggest that judgment bias is altered during gestation in domestic pigs, consequently raising novel welfare considerations for captive multiparous species.
Collapse
Affiliation(s)
- Emily V. Bushby
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena C. Cotter
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Anna Wilkinson
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Mary Friel
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Lisa M. Collins
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- *Correspondence: Lisa M. Collins
| |
Collapse
|
50
|
Faber J, Hinrichsen J, Greiner A, Reiter N, Budday S. Tissue-Scale Biomechanical Testing of Brain Tissue for the Calibration of Nonlinear Material Models. Curr Protoc 2022; 2:e381. [PMID: 35384412 DOI: 10.1002/cpz1.381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Brain tissue is one of the most complex and softest tissues in the human body. Due to its ultrasoft and biphasic nature, it is difficult to control the deformation state during biomechanical testing and to quantify the highly nonlinear, time-dependent tissue response. In numerous experimental studies that have investigated the mechanical properties of brain tissue over the last decades, stiffness values have varied significantly. One reason for the observed discrepancies is the lack of standardized testing protocols and corresponding data analyses. The tissue properties have been tested on different length and time scales depending on the testing technique, and the corresponding data have been analyzed based on simplifying assumptions. In this review, we highlight the advantage of using nonlinear continuum mechanics based modeling and finite element simulations to carefully design experimental setups and protocols as well as to comprehensively analyze the corresponding experimental data. We review testing techniques and protocols that have been used to calibrate material model parameters and discuss artifacts that might falsify the measured properties. The aim of this work is to provide standardized procedures to reliably quantify the mechanical properties of brain tissue and to more accurately calibrate appropriate constitutive models for computational simulations of brain development, injury and disease. Computational models can not only be used to predictively understand brain tissue behavior, but can also serve as valuable tools to assist diagnosis and treatment of diseases or to plan neurosurgical procedures. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Jessica Faber
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Applied Mechanics, Egerlandstraße 5, 91058 Erlangen, Germany
| | - Jan Hinrichsen
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Applied Mechanics, Egerlandstraße 5, 91058 Erlangen, Germany
| | - Alexander Greiner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Applied Mechanics, Egerlandstraße 5, 91058 Erlangen, Germany
| | - Nina Reiter
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Applied Mechanics, Egerlandstraße 5, 91058 Erlangen, Germany
| | - Silvia Budday
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Applied Mechanics, Egerlandstraße 5, 91058 Erlangen, Germany
| |
Collapse
|