1
|
Lee VY, Nils AVM, Arruda BP, Xavier GF, Nogueira MI, Motta-Teixeira LC, Takada SH. Spontaneous running wheel exercise during pregnancy prevents later neonatal-anoxia-induced somatic and neurodevelopmental alterations. IBRO Neurosci Rep 2024; 17:263-279. [PMID: 39310269 PMCID: PMC11414703 DOI: 10.1016/j.ibneur.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction About 15-20 % of babies that suffer perinatal asphyxia die and around 25 % of the survivors exhibit permanent neural outcomes. Minimization of this global health problem has been warranted. This study investigated if the offspring of pregnant female rats allowed to spontaneously exercise on running wheels along a 11-day pregnancy period were protected for somatic and neurodevelopmental disturbs that usually follow neonatal anoxia. Methods spontaneous exercise was applied to female rats which were housed in cages allowing free access to running wheels along a 11-day pregnancy period. Their offspring were submitted to anoxia 24-36 h after birth. Somatic and sensory-motor development of the pups were recorded until postnatal day 21 (P21). Myelin basic protein (MBP)-stained areas of sensory and motor cortices were measured at P21. Neuronal nuclei (NeuN)-immunopositive cells and synapsin-I levels in hippocampal formation were estimated at P21 and P75. Results gestational exercise and / or neonatal anoxia increased the weight and the size of the pups. In addition, gestational exercise accelerated somatic and sensory-motor development of the pups and protected them against neonatal-anoxia-induced delay in development. Further, neonatal anoxia reduced MBP stained area in the secondary motor cortex and decreased hippocampal neuronal estimates and synapsin-I levels at P21; gestational exercise prevented these effects. Therefore, spontaneous exercise along pregnancy is a valuable strategy to prevent neonatal-anoxia-induced disturbs in the offspring. Conclusion spontaneous gestational running wheel exercise protects against neonatal anoxia-induced disturbs in the offspring, including (1) physical and neurobehavioral developmental impairments, and (2) hippocampal and cortical changes. Thus, spontaneous exercise during pregnancy may represent a valuable strategy to prevent disturbs which usually follow neonatal anoxia.
Collapse
Affiliation(s)
- Vitor Yonamine Lee
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
| | - Aline Vilar Machado Nils
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, R. do Matão, Travessa 14, 101, Sao Paulo 05508-900, Brazil
| | - Bruna Petrucelli Arruda
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Alameda da Universidade, s/n, Bloco Delta, São Bernardo do Campo, SP 09606-070, Brazil
| | - Gilberto Fernando Xavier
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, R. do Matão, Travessa 14, 101, Sao Paulo 05508-900, Brazil
| | - Maria Inês Nogueira
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
| | - Lívia Clemente Motta-Teixeira
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, R. do Matão, Travessa 14, 101, Sao Paulo 05508-900, Brazil
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, R. Jaguaribe, 155 - Vila Buarque, Sao Paulo, SP 01224-001, Brazil
| | - Silvia Honda Takada
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Alameda da Universidade, s/n, Bloco Delta, São Bernardo do Campo, SP 09606-070, Brazil
| |
Collapse
|
2
|
Leslie E, Gonzalez Bosc LV, Specht J, McKenna ZJ, Gridley R, Luna V, Jones DT, Lantz BJ, Moriwaki M, Hsiao YY, Gibson AL, Mermier C, Wilson SM, Deyhle MR. Impact of Maternal Exercise on Mice Offspring Development, Pulmonary Hypertension, and Vascular Remodeling in Chronic Hypoxia. Med Sci Sports Exerc 2024; 56:1867-1881. [PMID: 38768014 DOI: 10.1249/mss.0000000000003479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
PURPOSE Chronic, high-altitude hypoxic exposure increases the risk of high-altitude pulmonary hypertension (PH). Emerging evidence shows maternal exercise may improve offspring resistance to disease throughout life. The purpose of this study is to determine if maternal exercise mitigates chronic hypoxic-induced changes in the offspring indicative of high-altitude PH development. METHODS Female adult C57BL/6J mice were randomly allocated to nonexercise or exercise conditions. Exercise consisted of voluntary running wheel exercise for 4 wk during the perinatal period. Three days after birth, the pups remained at low altitude (normoxia) or were exposed to hypobaric hypoxia of 450 mm Hg to simulate ~4500 m of altitude exposure until 8 wk of age. The study consisted of four groups: hypoxia + nonexercise pregnancy, hypoxia + exercise, or the respective normoxia conditions (normoxia + nonexercise or normoxia + exercise). Offspring body size, motor function, right ventricular systolic pressure (RVSP), and cardiopulmonary morphology were assessed after 8 wk in normoxia or hypoxia. RESULTS Both hypoxic groups had smaller body sizes, reduced motor function, increased hematocrit, RVSP, muscularization in medium-sized pulmonary arteries, as well as right ventricular hypertrophy and contractility compared with the normoxic groups ( P < 0.05). CONCLUSIONS Chronic hypoxia simulating 4500 m attenuated growth, lowered motor function, and elicited PH development. Voluntary maternal exercise did not significantly decrease RVSP in the offspring, which aligned with a lack of effect to attenuate abnormal body size and cardiopulmonary development due to chronic hypoxia. These findings are preliminary in nature, and more powered studies through larger group sizes are required to generalize the results to the population.
Collapse
Affiliation(s)
| | - Laura V Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM
| | - Jonathan Specht
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM
| | - Zachary J McKenna
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX
| | - Rebekah Gridley
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM
| | - Vincent Luna
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM
| | - David T Jones
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM
| | - Benjamin J Lantz
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM
| | - Mika Moriwaki
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM
| | - Yu-Yu Hsiao
- Department of Individual, Family, and Community Education, University of New Mexico, Albuquerque, NM
| | - Ann L Gibson
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM
| | - Christine Mermier
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM
| | - Sean M Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA
| | | |
Collapse
|
3
|
Weber VMR, Queiroga MR, Puranda JL, Semeniuk K, Macdonald ML, Dantas DB, da Silva DF, Adamo KB. Role of Cardiorespiratory Fitness, Aerobic, Exercise and Sports Participation in Female Cognition: A Scoping Review : Sports, Fitness, and Cognition. SPORTS MEDICINE - OPEN 2024; 10:103. [PMID: 39333320 PMCID: PMC11436514 DOI: 10.1186/s40798-024-00776-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND The impact of cardiorespiratory fitness (CRF) on cognition is thought to be mediated by brain-derived neurotrophic factor. Aerobic exercise can increase CRF through various activities, including sports participation. The relationship between these factors in females has yet to be elucidated. OBJECTIVE This review aims to map the current literature on the effects of aerobic exercise, sports participation, and CRF in healthy adult females, with sub-topics of pregnancy and menstrual cycle periodicity. METHODS A scoping review of the literature was conducted following PRISMA guidelines and the PCC mnemonic (population, concept, and context). The following five databases were screened: CINAHL, Medline, Web of Science, SPORTDiscus, and Scopus. Eligible articles included healthy adult females, investigated aerobic exercise, sports participation or CRF, and linked outcomes to cognition. Data from included manuscripts was extracted and analyzed. Two sub-population groupings (pregnant individuals and menstrual cycle) were established to further aid the interpretation of the findings. RESULTS Of the 300 titles and abstracts screened, 74 were eligible for full-text screening, and 28 were included in the scoping review. Of the 28 included, 14 did not control for or report on menstrual cycle phase or sex hormones. CONCLUSION This scoping review found an inverse 'U' relationship between aerobic exercise and cognition, demonstrating an optimal dose of aerobic exercise to benefit cognitive functions. As estrogen may impact the relationship between CRF and neural growth factors, more research is needed on this pathway, independent of the menstrual cycle, to determine potential beneficial effects. It is currently unknown whether sports participation can independently impact cognition.
Collapse
Affiliation(s)
- Vinicius Muller Reis Weber
- Laboratory of Experimental and Applied Physiology to Physical Activity, UNICENTRO, Street Alameda Elio Antonio Dalla Vecchia, 838, Vila Carli, Guarapuava, Paraná, 85040-167, Brazil.
- Associated Graduate Program in Physical Education UEM/UEL, Londrina, Brazil.
- Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada.
| | - Marcos Roberto Queiroga
- Laboratory of Experimental and Applied Physiology to Physical Activity, UNICENTRO, Street Alameda Elio Antonio Dalla Vecchia, 838, Vila Carli, Guarapuava, Paraná, 85040-167, Brazil
- Associated Graduate Program in Physical Education UEM/UEL, Londrina, Brazil
| | - Jessica L Puranda
- Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Kevin Semeniuk
- Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | | | - Diego Bessa Dantas
- Laboratory of Experimental and Applied Physiology to Physical Activity, UNICENTRO, Street Alameda Elio Antonio Dalla Vecchia, 838, Vila Carli, Guarapuava, Paraná, 85040-167, Brazil
- Associated Graduate Program in Physical Education UEM/UEL, Londrina, Brazil
| | | | - Kristi Bree Adamo
- Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Roland CB, Seyedhosseini P, Knudsen SDP, Jessen AD, Jensen IKB, Bendix JM, van Hall G, Molsted S, Alomairah SA, Løkkegaard E, Stallknecht B, Clausen TD. Effects of prenatal exercise interventions on maternal body composition: A secondary analysis of the FitMum randomized controlled trial. PLoS One 2024; 19:e0308214. [PMID: 39088510 PMCID: PMC11293652 DOI: 10.1371/journal.pone.0308214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024] Open
Abstract
The main objective of the study was to investigate the effects of prenatal exercise interventions on maternal body composition at 28 weeks gestation and 7-14 days after delivery. We also explored associations between physical activity (PA) per se and body composition. This study presents secondary outcomes of the FitMum randomized controlled trial, which included healthy inactive pregnant women at gestational age ≤ 15+0 weeks. They were randomized to structured supervised exercise training, motivational counselling on PA, or standard care. Maternal body composition was measured by doubly labeled water at 28 weeks gestation (n = 134) and by dual-energy X-ray absorptiometry scan 7-14 days after delivery (n = 117). PA, including moderate-to-vigorous-intensity PA (MVPA), active kilocalories, and steps, were measured continuously from inclusion to delivery by a wrist-worn activity tracker. One hundred fifty pregnant women were included with a median pre-pregnancy body mass index (BMI) of 24.1 (21.6-27.9) kg/m2. We found no differences between groups in fat mass, fat percentage or fat-free mass at 28 weeks gestation or 7-14 days after delivery. Visceral adipose tissue mass and bone mineral density measured 7-14 days after delivery did not differ between groups either. Linear regression analyses adjusted for pre-pregnancy BMI showed that a higher number of daily steps was associated with lower fat mass, fat percentage, and visceral adipose tissue mass at 28 weeks gestation and 7-14 days after delivery. Active kilocalories during pregnancy was positively associated with fat-free mass 7-14 days after delivery. Neither structured supervised exercise training nor motivational counselling on PA during pregnancy affected maternal body composition at 28 weeks gestation or 7-14 days after delivery compared to standard care. Interestingly, when adjusted for pre-pregnancy BMI, higher number of daily steps was associated with lower fat content during pregnancy and after delivery, whereas MVPA and active kilocalories were not. Trial registration: ClinicalTrials.gov; NCT03679130; 20/09/2018.
Collapse
Affiliation(s)
- Caroline Borup Roland
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Gynaecology and Obstetrics, Copenhagen University Hospital–North Zealand, Hilleroed, Denmark
| | - Parisa Seyedhosseini
- Department of Nuclear Medicine and Clinical Physiology, Copenhagen University Hospital–North Zealand, Hilleroed, Denmark
| | - Signe de Place Knudsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Gynaecology and Obstetrics, Copenhagen University Hospital–North Zealand, Hilleroed, Denmark
| | - Anne Dsane Jessen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Gynaecology and Obstetrics, Copenhagen University Hospital–North Zealand, Hilleroed, Denmark
| | - Ida Karoline Bach Jensen
- Department of Gynaecology and Obstetrics, Copenhagen University Hospital–North Zealand, Hilleroed, Denmark
| | - Jane M. Bendix
- Department of Gynaecology and Obstetrics, Copenhagen University Hospital–North Zealand, Hilleroed, Denmark
- Department of Clinical Research, Copenhagen University Hospital–North Zealand, Hilleroed, Denmark
| | - Gerrit van Hall
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Biochemistry, Clinical Metabolomics Core Facility, Rigshospitalet, Copenhagen, Denmark
| | - Stig Molsted
- Department of Clinical Research, Copenhagen University Hospital–North Zealand, Hilleroed, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Saud Abdulaziz Alomairah
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Mental Health, John Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Ellen Løkkegaard
- Department of Gynaecology and Obstetrics, Copenhagen University Hospital–North Zealand, Hilleroed, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Bente Stallknecht
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tine D. Clausen
- Department of Gynaecology and Obstetrics, Copenhagen University Hospital–North Zealand, Hilleroed, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Gynecology, Fertility and Obstetrics, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
5
|
Pahlavani HA, Laher I, Weiss K, Knechtle B, Zouhal H. Physical exercise for a healthy pregnancy: the role of placentokines and exerkines. J Physiol Sci 2023; 73:30. [PMID: 37964253 PMCID: PMC10718036 DOI: 10.1186/s12576-023-00885-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Complications such as diabetes and preeclampsia can occur during pregnancy. Moderate-intensity exercise can prevent such complications by releasing placentokines and exerkines, such as apelin, adiponectin, leptin, irisin, and chemerin. Exercise and apelin increase thermogenesis and glucose uptake in pregnancy by activating AMPK, PI3K, PGC-1α, AKT1, UCP3, and sarcolipin. Exercise increases apelin levels to reduce preeclampsia symptoms by increasing eNOS, NO, placental growth factor (PlGF), and VEGF and decreasing levels of fms-like tyrosine kinase 1 (sFlt-1), soluble endoglin (sEng), and oxidative stress. A negative relationship has been reported between plasma leptin and VO2peak/kg and VO2peak in women with gestational diabetes. In active women, decreases in leptin levels reduce the risk of preeclampsia by ~ 40%. Higher adiponectin levels are associated with greater physical activity and lead to increased insulin sensitivity. Increased adiponectin levels in preeclampsia and exercise counteract inflammatory and atherogenic activities while also having vascular protective effects. Exercise increases irisin levels that correlate negatively with fasting glucose, insulin concentration, and glycosylated hemoglobin levels. Irisin augments mRNA expression levels of UCP1 and cell death-inducing DNA fragmentation factor-like effector A (cidea) to cause browning of adipose tissue, increased thermogenesis, and increased energy consumption. Irisin concentrations in mothers with preeclampsia in the third trimester negatively correlate with systolic and diastolic blood pressure. Expression levels of chemerin, IL-6, and TNF-α are increased in gestational diabetes, and the increases in chemerin in late pregnancy positively correlate with the ratio of sFlt-1 to PlGF as a marker of preeclampsia. The effects of physical exercise on placentokines and exerkines in women at various stages of pregnancy remain poorly understood.
Collapse
Affiliation(s)
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Katja Weiss
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland.
- Medbase St Gallen Am Vadianplatz, Vadianstrasse 26, 9001, St. Gallen, Switzerland.
| | - Hassane Zouhal
- Movement Sport, Health and Sciences Laboratory (M2S) UFR-STAPS, University of Rennes 2-ENS Cachan, Charles Tillon, France.
- Institut International Des Sciences Du Sport (2IS), Irodouer, France.
| |
Collapse
|
6
|
Ferrari N, Schmidt N, Bae-Gartz I, Vohlen C, Alcazar MAA, Brockmeier K, Dötsch J, Mahabir E, Joisten C. Maternal Exercise during Pregnancy Impacts Motor Performance in 9-Year-Old Children: A Pilot Study. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1797. [PMID: 38002888 PMCID: PMC10670111 DOI: 10.3390/children10111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023]
Abstract
The benefits of maternal physical activity during pregnancy are well documented, but long-term effects on the child have been less studied. Therefore, we conducted a pilot follow-up study of a lifestyle intervention during pregnancy that aimed to investigate whether exercise (endurance and strength training) during pregnancy affects motor performance and body composition of children up to 9 years of age, as well as possible influencing factors like brain-derived neurotrophic factor (BDNF) and lifestyle. Eleven mother-child pairs from the intervention and eight mother-child pairs from the control group were included. From birth up to 9 years of age, no differences in body mass index (BMI) or body mass index standard deviation scores (BMI-SDS) were found between the groups. Lifestyle intervention was one of the influencing factors for children's cardiorespiratory endurance capacity and coordination. Moreover, maternal BDNF in the last trimester was significantly associated with running performance, which may be due to better neuronal development. This is the first study evaluating the effects of a lifestyle intervention during pregnancy on the motor performance 9 years after birth. Children's participation in exercise programs over the past 9 years was not continuously recorded and therefore not included in the analysis. Even a cautious interpretation of these results indicates that a healthy lifestyle during pregnancy is essential in promoting child health. Larger studies and randomized control trials are necessary to confirm our results, especially those pertaining to the role of BDNF.
Collapse
Affiliation(s)
- Nina Ferrari
- Cologne Center for Prevention in Childhood, Youth/Heart Center Cologne, University Hospital of Cologne, 50937 Cologne, Germany
- Department for Physical Activity in Public Health, Institute of Movement and Neurosciences, German Sport University Cologne, 50933 Cologne, Germany
- Department for Pediatric Cardiology, Heart Center, University of Cologne, 50937 Cologne, Germany
| | - Nikola Schmidt
- Department for Physical Activity in Public Health, Institute of Movement and Neurosciences, German Sport University Cologne, 50933 Cologne, Germany
| | - Inga Bae-Gartz
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Christina Vohlen
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics-Experimental Pulmonology, Cologne Excellence Cluster on Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Miguel A Alejandre Alcazar
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics-Experimental Pulmonology, Cologne Excellence Cluster on Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- The German Centre for Lung Research (DZL), Institute for Lung Health (ILH), Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Centre (UGMLC), Justus-Liebig University Gießen, 35392 Gießen, Germany
| | - Konrad Brockmeier
- Cologne Center for Prevention in Childhood, Youth/Heart Center Cologne, University Hospital of Cologne, 50937 Cologne, Germany
- Department for Pediatric Cardiology, Heart Center, University of Cologne, 50937 Cologne, Germany
| | - Jörg Dötsch
- Cologne Center for Prevention in Childhood, Youth/Heart Center Cologne, University Hospital of Cologne, 50937 Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Esther Mahabir
- Comparative Medicine, Center for Molecular Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Christine Joisten
- Cologne Center for Prevention in Childhood, Youth/Heart Center Cologne, University Hospital of Cologne, 50937 Cologne, Germany
- Department for Physical Activity in Public Health, Institute of Movement and Neurosciences, German Sport University Cologne, 50933 Cologne, Germany
| |
Collapse
|
7
|
Ding L, Liu J, Zhou L, Xiao X. Maternal Exercise Impacts Offspring Metabolic Health in Adulthood: A Systematic Review and Meta-Analysis of Animal Studies. Nutrients 2023; 15:2793. [PMID: 37375697 DOI: 10.3390/nu15122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/27/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Maternal exercise benefits offspring's metabolic health with long-term repercussions. Here, we systematically reviewed the effects of maternal exercise on offspring obesity outcomes in adulthood. The primary outcome is body weight. The secondary outcomes are glucose and lipid profiles. Two independent authors performed a search in the databases PubMed, EMBASE, and Web of Science. A total of nine studies with 17 different cohorts consisting of 369 animals (two species) were included. Study quality was assessed using the SYRCLE risk of bias. The PRISMA statement was used to report this systematic review. The results showed that maternal exercise contributes to improved glucose tolerance, reduced insulin concentration, and lower total cholesterol and low density lipoprotein levels in adult offspring in mice, which are independent of maternal body weight and offspring dietary condition. Additionally, in rats, maternal exercise leads to a higher body weight in adult offspring, which might be attributed to the high-fat diet of offspring after weaning. These findings further support the metabolic beneficial role of maternal exercise on offspring in adulthood, although the issue of translating the results to the human population is still yet to be addressed.
Collapse
Affiliation(s)
- Lu Ding
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Xin-Hua Xiao, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing 100730, China
| | - Jieying Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Xin-Hua Xiao, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing 100730, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Liyuan Zhou
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Xin-Hua Xiao, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing 100730, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Xin-Hua Xiao, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing 100730, China
| |
Collapse
|
8
|
Roland CB, Knudsen SDP, Alomairah SA, Jessen AD, Jensen IKB, Brændstrup N, Molsted S, Jensen AK, Stallknecht B, Bendix JM, Clausen TD, Løkkegaard E. Effects of prenatal exercise on gestational weight gain, obstetric and neonatal outcomes: FitMum randomized controlled trial. BMC Pregnancy Childbirth 2023; 23:214. [PMID: 36991380 DOI: 10.1186/s12884-023-05507-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND To investigate the effects of two different exercise interventions during pregnancy on gestational weight gain (GWG) and obstetric and neonatal outcomes compared to standard care. Additionally, we aimed to improve standardization of GWG measurements by developing a model to estimate GWG for a standardized pregnancy period of 40 weeks and 0 days accounting for individual differences in gestational age (GA) at delivery. METHODS In a randomized controlled trial we compared the effects of structured supervised exercise training (EXE) three times per week throughout pregnancy versus motivational counselling on physical activity (MOT) seven times during pregnancy with standard care (CON) on GWG and obstetric and neonatal outcomes. Uniquely, to estimate GWG for a standardized pregnancy period, we developed a novel model to predict GWG based on longitudinally observed body weights during pregnancy and at admission for delivery. Observed weights were fitted to a mixed effects model that was used to predict maternal body weight and estimate GWG at different gestational ages. Obstetric and neonatal outcomes, among them gestational diabetes mellitus (GDM) and birth weight, were obtained after delivery. GWG and the investigated obstetric and neonatal outcomes are secondary outcomes of the randomized controlled trial, which might be underpowered to detect intervention effects on these outcomes. RESULTS From 2018-2020, 219 healthy, inactive pregnant women with median pre-pregnancy BMI of 24.1 (21.8-28.7) kg/m2 were included at median GA 12.9 (9.4-13.9) weeks and randomized to EXE (n = 87), MOT (n = 87) or CON (n = 45). In total 178 (81%) completed the study. GWG at GA 40 weeks and 0 days did not differ between groups (CON: 14.9 kg [95% CI, 13.6;16.1]; EXE: 15.7 kg [14.7;16.7]; MOT: 15.0 kg [13.6;16.4], p = 0.538), neither did obstetric nor neonatal outcomes. For example, there were no differences between groups in the proportions of participants developing GDM (CON: 6%, EXE: 7%, MOT: 7%, p = 1.000) or in birth weight (CON: 3630 (3024-3899), EXE: 3768 (3410-4069), MOT: 3665 (3266-3880), p = 0.083). CONCLUSIONS Neither structured supervised exercise training nor motivational counselling on physical activity during pregnancy affected GWG or obstetric and neonatal outcomes compared to standard care. TRIAL REGISTRATION ClinicalTrials.gov; NCT03679130; 20/09/2018.
Collapse
Affiliation(s)
- Caroline B Roland
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Gynaecology and Obstetrics, Copenhagen University Hospital - North Zealand, Hilleroed, Denmark.
| | - Signe dP Knudsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Gynaecology and Obstetrics, Copenhagen University Hospital - North Zealand, Hilleroed, Denmark
| | - Saud A Alomairah
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- College of Health Sciences, Public Health Department, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Anne D Jessen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Gynaecology and Obstetrics, Copenhagen University Hospital - North Zealand, Hilleroed, Denmark
| | - Ida K B Jensen
- Department of Gynaecology and Obstetrics, Copenhagen University Hospital - North Zealand, Hilleroed, Denmark
| | - Nina Brændstrup
- Department of Gynaecology and Obstetrics, Copenhagen University Hospital - North Zealand, Hilleroed, Denmark
| | - Stig Molsted
- Department of Clinical Research, Copenhagen University Hospital - North Zealand, Hilleroed, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Andreas K Jensen
- Department of Clinical Research, Copenhagen University Hospital - North Zealand, Hilleroed, Denmark
- Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Bente Stallknecht
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jane M Bendix
- Department of Gynaecology and Obstetrics, Copenhagen University Hospital - North Zealand, Hilleroed, Denmark
- Department of Clinical Research, Copenhagen University Hospital - North Zealand, Hilleroed, Denmark
| | - Tine D Clausen
- Department of Gynaecology and Obstetrics, Copenhagen University Hospital - North Zealand, Hilleroed, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ellen Løkkegaard
- Department of Gynaecology and Obstetrics, Copenhagen University Hospital - North Zealand, Hilleroed, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Ferrari N, Schmidt N, Schmidt L, Merz WM, Brockmeier K, Dötsch J, Bae-Gartz I, Mahabir E, Joisten C. Effect of Lifestyle Interventions during Pregnancy on Maternal Leptin, Resistin and Offspring Weight at Birth and One Year of Life. Biomedicines 2023; 11:447. [PMID: 36830983 PMCID: PMC9953512 DOI: 10.3390/biomedicines11020447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Lifestyle during pregnancy impacts the health of the mother and child. However, the extent to which physical activity affects maternal biomarkers and factors that might influence birth weight remains unclear. We analysed data from two lifestyle interventions in which the effects of an exercise programme (2x/week, 60-90 min) on the course of pregnancy with regard to adipokines and offspring were evaluated. A total of 70 women participated in this study (45, intervention group; 25, control group). Anthropometric data and maternal fasting serum leptin and resistin levels were measured at three time points (approximately 14th (T1), 24th (T2), and 36th (T3) weeks of gestation). Neonatal/child data were retrieved from screening examinations. Independent of the intervention, we found a positive correlation between the fat mass at T1 and both leptin and resistin levels at all time points. Leptin level was significantly higher in the control group at T3; however, no differences between the groups were found for resistin. The birth weight was influenced by the birth length, fat mass at T1/T3, and resistin level at T2. The BMI-SDS at one year of age was influenced by maternal fat-free mass at T3 and resistin at T1/T2. Even if these results can only be interpreted cautiously, lifestyle interventions during pregnancy are important in promoting maternal and child health. Further randomised controlled trials and translational studies are warranted to clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Nina Ferrari
- Cologne Center for Prevention in Childhood, Youth/Heart Center Cologne, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Department for Physical Activity in Public Health, Institute of Movement and Neurosciences, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
- Department for Pediatric Cardiology, Heart Center, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Nikola Schmidt
- Department for Physical Activity in Public Health, Institute of Movement and Neurosciences, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Lisa Schmidt
- Department for Physical Activity in Public Health, Institute of Movement and Neurosciences, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Waltraut M. Merz
- Department of Obstetrics and Prenatal Medicine, Venusberg-Campus 1, University Bonn Medical School, 53127 Bonn, Germany
| | - Konrad Brockmeier
- Cologne Center for Prevention in Childhood, Youth/Heart Center Cologne, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Department for Pediatric Cardiology, Heart Center, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Jörg Dötsch
- Cologne Center for Prevention in Childhood, Youth/Heart Center Cologne, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany
| | - Inga Bae-Gartz
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany
| | - Esther Mahabir
- Comparative Medicine, Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - Christine Joisten
- Cologne Center for Prevention in Childhood, Youth/Heart Center Cologne, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Department for Physical Activity in Public Health, Institute of Movement and Neurosciences, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| |
Collapse
|
10
|
The intergenerational effects of parental physical activity on offspring brain and neurocognition in humans: a scoping review. Neurosci Biobehav Rev 2022; 143:104953. [DOI: 10.1016/j.neubiorev.2022.104953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/19/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
|
11
|
Gestational Exercise Increases Male Offspring's Maximal Workload Capacity Early in Life. Int J Mol Sci 2022; 23:ijms23073916. [PMID: 35409278 PMCID: PMC8999565 DOI: 10.3390/ijms23073916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Mothers’ antenatal strategies to improve the intrauterine environment can positively decrease pregnancy-derived intercurrences. By challenging the mother–fetus unit, gestational exercise (GE) favorably modulates deleterious stimuli, such as high-fat, high-sucrose (HFHS) diet-induced adverse consequences for offspring. We aimed to analyze whether GE alters maternal HFHS-consumption effects on male offspring’s maximal workload performance (MWP) and in some skeletal muscle (the soleus—SOL and the tibialis anterior—TA) biomarkers associated with mitochondrial biogenesis and oxidative fitness. Infant male Sprague-Dawley rats were divided into experimental groups according to mothers’ dietary and/or exercise conditions: offspring of sedentary control diet-fed or HFHS-fed mothers (C–S or HFHS–S, respectively) and of exercised HFHS-fed mothers (HFHS–E). Although maternal HFHS did not significantly alter MWP, offspring from GE dams exhibited increased MWP. Lower SOL AMPk levels in HFHS–S were reverted by GE. SOL PGC-1α, OXPHOS C-I and C-IV subunits remained unaltered by maternal diet, although increased in HFHS–E offspring. Additionally, GE prevented maternal diet-related SOL miR-378a overexpression, while upregulated miR-34a expression. Decreased TA C-IV subunit expression in HFHS–S was reverted in HFHS–E, concomitantly with the downregulation of miR-338. In conclusion, GE in HFHS-fed dams increases the offspring’s MWP, which seems to be associated with the intrauterine modulation of SM mitochondrial density and functional markers.
Collapse
|
12
|
A Delphi Study to Identify Research Priorities Regarding Physical Activity, Sedentary Behavior and Sleep in Pregnancy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052909. [PMID: 35270601 PMCID: PMC8909963 DOI: 10.3390/ijerph19052909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 12/10/2022]
Abstract
This study aimed to produce a list of the top 10 research priorities regarding physical activity, sedentary behavior, and sleep in pregnancy. Using the Delphi methodology, pregnant/postpartum individuals (N = 118), exercise professionals and healthcare providers (N = 55) listed up to 10 questions perceived as unanswered regarding physical activity, sedentary behavior, and sleep in pregnancy (Round 1). Respondents rated the proposed questions on a Likert importance scale (Round 2), and the sum of ratings received were totaled. Questions of priority regarding physical activity among pregnant/postpartum individuals (N = 67), healthcare providers and exercise professionals (N = 22) pertained to exercise prescription, impact of exercise on maternal and fetal outcomes and impact of exercise on pregnancy conditions, special population groups and clinical education and access to information. Sedentary behavior priorities included the impact of sedentary behavior on maternal and fetal outcomes, sedentary recommendations and exercise and sedentary positioning. Sleep research priorities included the impact of pregnancy on sleep, safety, sleeping aids and the effect of exercise on sleep. Pregnant/postpartum women, healthcare providers and exercise professionals prioritized questions that have in part been addressed by existing research, highlighting a need for improved knowledge translation from research to practice. They have also identified novel questions that warrant prioritization within future research.
Collapse
|
13
|
Beleza J, Stevanović-Silva J, Coxito P, Costa RC, Ascensão A, Torrella JR, Magalhães J. Building-up fit muscles for the future: Transgenerational programming of skeletal muscle through physical exercise. Eur J Clin Invest 2021; 51:e13515. [PMID: 33580562 DOI: 10.1111/eci.13515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/19/2022]
Abstract
'Special issue - In Utero and Early Life Programming of Aging and Disease'. Skeletal muscle (SM) adaptations to physical exercise (PE) have been extensively studied due, not only to the relevance of its in situ plasticity, but also to the SM endocrine-like effects in noncontractile tissues, such as brain, liver or adipocytes. Regular PE has been considered a pleiotropic nonpharmacological strategy to prevent and counteract the deleterious consequences of several metabolic, cardiovascular, oncological and neurodegenerative disorders. Additionally, PE performed by parents seems to have a direct impact in the offspring through the transgenerational programming of different tissues, such as SM. In fact, SM offspring programming mechanisms seems to be orchestrated, at least in part, by epigenetic machinery conditioning transcriptional or post-transcriptional processes. Ultimately, PE performed in the early in life is also a critical window of opportunity to positively modulate the juvenile and adult phenotype. Parental PE has a positive impact in several health-related offspring outcomes, such as SM metabolism, differentiation, morphology and ultimately in offspring exercise volition and endurance. Also, early-life PE counteracts conceptional-related adverse effects and induces long-lasting healthy benefits throughout adulthood. Additionally, epigenetics mechanisms seem to play a key role in the PE-induced SM adaptations. Despite the undoubtedly positive role of parental and early-life PE on SM phenotype, a strong research effort is still needed to better understand the mechanisms that positively regulate PE-induced SM programming.
Collapse
Affiliation(s)
- Jorge Beleza
- Department of Cell Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jelena Stevanović-Silva
- Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Pedro Coxito
- Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Rui Carlos Costa
- Department of Communication and Art, Research Institute for Design, Media and Culture (ID+), Aveiro University, Aveiro, Portugal
| | - António Ascensão
- Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Joan Ramon Torrella
- Department of Cell Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - José Magalhães
- Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| |
Collapse
|
14
|
Renzini A, Riera CS, Minic I, D’Ercole C, Lozanoska-Ochser B, Cedola A, Gigli G, Moresi V, Madaro L. Metabolic Remodeling in Skeletal Muscle Atrophy as a Therapeutic Target. Metabolites 2021; 11:517. [PMID: 34436458 PMCID: PMC8398298 DOI: 10.3390/metabo11080517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is a highly responsive tissue, able to remodel its size and metabolism in response to external demand. Muscle fibers can vary from fast glycolytic to slow oxidative, and their frequency in a specific muscle is tightly regulated by fiber maturation, innervation, or external causes. Atrophic conditions, including aging, amyotrophic lateral sclerosis, and cancer-induced cachexia, differ in the causative factors and molecular signaling leading to muscle wasting; nevertheless, all of these conditions are characterized by metabolic remodeling, which contributes to the pathological progression of muscle atrophy. Here, we discuss how changes in muscle metabolism can be used as a therapeutic target and review the evidence in support of nutritional interventions and/or physical exercise as tools for counteracting muscle wasting in atrophic conditions.
Collapse
Affiliation(s)
- Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Carles Sánchez Riera
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Isidora Minic
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Chiara D’Ercole
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Biliana Lozanoska-Ochser
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Alessia Cedola
- Institute of Nanotechnology, c/o Dipartimento di Fisica, National Research Council (CNR-NANOTEC), Sapienza University of Rome, 00185 Rome, Italy;
| | - Giuseppe Gigli
- Institute of Nanotechnology, c/o Campus Ecotekne, National Research Council (CNR-NANOTEC), Monteroni, 73100 Lecce, Italy;
| | - Viviana Moresi
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
- Institute of Nanotechnology, c/o Dipartimento di Fisica, National Research Council (CNR-NANOTEC), Sapienza University of Rome, 00185 Rome, Italy;
| | - Luca Madaro
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| |
Collapse
|
15
|
Krassovskaia PM, Chaves AB, Houmard JA, Broskey NT. Exercise during Pregnancy: Developmental Programming Effects and Future Directions in Humans. Int J Sports Med 2021; 43:107-118. [PMID: 34344043 DOI: 10.1055/a-1524-2278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Epidemiological studies show that low birth weight is associated with mortality from cardiovascular disease in adulthood, indicating that chronic diseases could be influenced by hormonal or metabolic insults encountered in utero. This concept, now known as the Developmental Origins of Health and Disease hypothesis, postulates that the intrauterine environment may alter the structure and function of the organs of the fetus as well as the expression of genes that impart an increased vulnerability to chronic diseases later in life. Lifestyle interventions initiated during the prenatal period are crucial as there is the potential to attenuate progression towards chronic diseases. However, how lifestyle interventions such as physical activity directly affect human offspring metabolism and the potential mechanisms involved in regulating metabolic balance at the cellular level are not known. The purpose of this review is to highlight the effects of exercise during pregnancy on offspring metabolic health and emphasize gaps in the current human literature and suggestions for future research.
Collapse
Affiliation(s)
- Polina M Krassovskaia
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| | - Alec B Chaves
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| | - Joseph A Houmard
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| | - Nicholas T Broskey
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| |
Collapse
|
16
|
Andersson-Hall U, de Maré H, Askeli F, Börjesson M, Holmäng A. Physical activity during pregnancy and association with changes in fat mass and adipokines in women of normal-weight or with obesity. Sci Rep 2021; 11:12549. [PMID: 34131242 PMCID: PMC8206069 DOI: 10.1038/s41598-021-91980-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/03/2021] [Indexed: 11/20/2022] Open
Abstract
Adipose tissue and adipokine concentrations change markedly during pregnancy, but the effects of physical activity on these changes are rarely studied. We aimed to assess physical activity levels in pregnant women of normal-weight (NW) or with obesity (OB), and to determine the relation with changes in fat mass and adipokines. In each trimester, pregnant women (136 NW, 51 OB) were interviewed about their physical activity and had their body composition, leptin, soluble leptin receptor (sOB-R) and adiponectin determined. NW reported higher activity and more aerobic exercise than OB during early pregnancy. Both groups maintained training frequency but reduced overall activity as pregnancy progressed. NW women reporting aerobic and/or resistance exercise and OB women reporting aerobic exercise had greater sOB-R increases (independent of BMI or gestational weight gain). In NW, exercise also associated with lower fat mass and leptin increases. Higher activity levels associated with lower gestational weight gain in both groups. The relationship between physical activity and adiponectin differed between NW and OB. Maternal exercise may partly mediate its beneficial effects through regulation of leptin bioavailability, by enhancing pregnancy-induced increases in sOB-R. This could be of particular importance in OB with pre-gestational hyperleptinemia and leptin resistance.
Collapse
Affiliation(s)
- Ulrika Andersson-Hall
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30, Gothenburg, Sweden.
| | - Hanna de Maré
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30, Gothenburg, Sweden
| | - Freja Askeli
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30, Gothenburg, Sweden
| | - Mats Börjesson
- Department of Food and Nutrition, and Sport Science, Centre for Health and Performance, University of Gothenburg, Gothenburg, Sweden
- Department of Acute and Molecular Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of MGA, Sahlgrenska University Hospital, Region of Västra Götaland, Gothenburg, Sweden
| | - Agneta Holmäng
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30, Gothenburg, Sweden
| |
Collapse
|
17
|
Kasper P, Breuer S, Hoffmann T, Vohlen C, Janoschek R, Schmitz L, Appel S, Fink G, Hünseler C, Quaas A, Demir M, Lang S, Steffen HM, Martin A, Schramm C, Bürger M, Mahabir E, Goeser T, Dötsch J, Hucklenbruch-Rother E, Bae-Gartz I. Maternal Exercise Mediates Hepatic Metabolic Programming via Activation of AMPK-PGC1α Axis in the Offspring of Obese Mothers. Cells 2021; 10:1247. [PMID: 34069390 PMCID: PMC8158724 DOI: 10.3390/cells10051247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Maternal obesity is associated with an increased risk of hepatic metabolic dysfunction for both mother and offspring and targeted interventions to address this growing metabolic disease burden are urgently needed. This study investigates whether maternal exercise (ME) could reverse the detrimental effects of hepatic metabolic dysfunction in obese dams and their offspring while focusing on the AMP-activated protein kinase (AMPK), representing a key regulator of hepatic metabolism. In a mouse model of maternal western-style-diet (WSD)-induced obesity, we established an exercise intervention of voluntary wheel-running before and during pregnancy and analyzed its effects on hepatic energy metabolism during developmental organ programming. ME prevented WSD-induced hepatic steatosis in obese dams by alterations of key hepatic metabolic processes, including activation of hepatic ß-oxidation and inhibition of lipogenesis following increased AMPK and peroxisome-proliferator-activated-receptor-γ-coactivator-1α (PGC-1α)-signaling. Offspring of exercised dams exhibited a comparable hepatic metabolic signature to their mothers with increased AMPK-PGC1α-activity and beneficial changes in hepatic lipid metabolism and were protected from WSD-induced adipose tissue accumulation and hepatic steatosis in later life. In conclusion, this study demonstrates that ME provides a promising strategy to improve the metabolic health of both obese mothers and their offspring and highlights AMPK as a potential metabolic target for therapeutic interventions.
Collapse
Affiliation(s)
- Philipp Kasper
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
| | - Saida Breuer
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Thorben Hoffmann
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Christina Vohlen
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Ruth Janoschek
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Lisa Schmitz
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Sarah Appel
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Gregor Fink
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Christoph Hünseler
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Alexander Quaas
- Department of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany;
| | - Münevver Demir
- Charité Campus Mitte and Campus Virchow Clinic, Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, D-13353 Berlin, Germany;
| | - Sonja Lang
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Hans-Michael Steffen
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
| | - Anna Martin
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
| | - Christoph Schramm
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
| | - Martin Bürger
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
| | - Esther Mahabir
- Comparative Medicine, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, D-50937 Cologne, Germany;
| | - Tobias Goeser
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Eva Hucklenbruch-Rother
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Inga Bae-Gartz
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| |
Collapse
|
18
|
Bhattacharjee J, Mohammad S, Adamo KB. Does exercise during pregnancy impact organs or structures of the maternal-fetal interface? Tissue Cell 2021; 72:101543. [PMID: 33940567 DOI: 10.1016/j.tice.2021.101543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 12/12/2022]
Abstract
Exercise during pregnancy has been shown to be associated with improved health outcomes both during and after pregnancy for mother and fetus across the lifespan. Increasing physical activity and reducing sedentary behaviour during pregnancy have been recommended by many researchers and clinicians-alike. It is thought that the placenta plays a central role in mediating any positive or negative pregnancy outcomes. The positive outcomes obtained through prenatal exercise are postulated to result from exercise-induced regulation of maternal physiology and placental development. Considerable research has been performed to understand the placenta's role in pregnancy-related diseases, such as preeclampsia, fetal growth restriction, and gestational diabetes mellitus. However, little research has examined the potential for healthy lifestyle and behavioural changes to improve placental growth, development, and function. While the placenta represents the critical maternal-fetal interface responsible for all gas, nutrient, and waste exchange between the mother and fetus, the impact of exercise during pregnancy on placental biology and function is not well known. This review will focus on prenatal exercise and its promising influence on the structures of the maternal-fetal interface, with particular emphasis on the placenta. Potential molecular mechanistic hypotheses are presented to aid future investigations of prenatal exercise and placental health.
Collapse
Affiliation(s)
- Jayonta Bhattacharjee
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Shuhiba Mohammad
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Kristi B Adamo
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
19
|
Treadmill Exercise during Pregnancy Decreased Vulnerability to Neonatal Hypoxia-Ischemia through Reducing Inflammation and Increasing Antiapoptotic Gene Expressions and Antioxidant Capacity in Rats. Stroke Res Treat 2021; 2021:5512745. [PMID: 33936582 PMCID: PMC8060122 DOI: 10.1155/2021/5512745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022] Open
Abstract
Background The purpose of present study was to assess the impact of maternal treadmill exercise during pregnancy on inflammation, oxidative stress, expression of Bax and Bcl-2 genes, and brain-derived neurotrophic factor (BDNF) level in neonatal rat brain after the hypoxia-ischemia injury. Material and Methods. A total of 24 female Wistar rats were utilized in this research. Two groups are randomly considered for rats: (1) not exercised through pregnancy and (2) exercised during pregnancy. Offsprings were divided into four groups including after delivery: (1) sham, (2) sham/exercise (sham/EX), (3) HI, and (4) HI+exercise. HI was induced in pups at postnatal day 8. Neurobehavioral tests were done seven days after HI induction. Then, the brain tissue was taken from the skull to estimate Bcl-2 and Bax gene expressions, BDNF, cerebral edema, infarct volume, inflammatory factors, oxidative stress, and neurological function. Results The BDNF level in the HI+exercise group was considerably higher than the HI, sham, and sham/EX groups. Tumor necrosis factor (TNF-α), C-reactive protein (CRP), and the whole oxidant capacity (TOC) levels in the HI group were significantly higher than the sham and sham/EX groups. TNF-α, CRP, and TOC levels in the HI+exercise group were significantly lower than the HI group. Total antioxidant capacity (TAC) level in the HI+exercise group was significantly higher than the HI group. Infarct volume and edema percent in the HI+exercise group were significantly lower than the HI group. Neurological function in the HI+exercise group was significantly better than the HI group. Bax expression in the HI+exercise group was significantly lower than the HI group. Bcl-2 expression in the HI+exercise group was significantly higher than the HI group. In the sham group, BDNF, TNF-α, CRP, TAC, TOC, edema levels, and neurological function had no significant difference with the sham/EX group. Conclusion It appears that the maternal treadmill exercise during pregnancy exerts a supportive impact against neonatal HI brain injury through increasing antioxidant capacity, Bcl-2 expression, and BDNF levels and decreasing inflammation that is resulted in the lower infarct volume and sensorimotor dysfunction.
Collapse
|
20
|
Yang Y, Lagisz M, Foo YZ, Noble DWA, Anwer H, Nakagawa S. Beneficial intergenerational effects of exercise on brain and cognition: a multilevel meta-analysis of mean and variance. Biol Rev Camb Philos Soc 2021; 96:1504-1527. [PMID: 33783115 DOI: 10.1111/brv.12712] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Physical exercise not only helps to improve physical health but can also enhance brain development and cognition. Recent reports on parental (both maternal and paternal) effects raise the possibility that parental exercise may provide benefits to offspring through intergenerational inheritance. However, the general magnitude and consistency of parental exercise effects on offspring is still controversial. Additionally, empirical research has long overlooked an important aspect of exercise: its effects on variability in neurodevelopmental and cognitive traits. Here, we compiled data from 52 studies involving 4786 rodents (412 effect sizes) to quantify the intergenerational transmission of exercise effects on brain and cognition. Using a multilevel meta-analytic approach, we found that, overall, parental exercise showed a tendency for increasing their offspring's brain structure by 12.7% (albeit statistically non-significant) probably via significantly facilitating neurogenesis (16.5%). Such changes in neural anatomy go in hand with a significant 20.8% improvement in neurobehaviour (improved learning and memory, and reduced anxiety). Moreover, we found parental exercise significantly reduces inter-individual differences (i.e. reduced variance in the treatment group) in progeny's neurobehaviour by 10.2% (coefficient of variation ratio, lnCVR), suggesting the existence of an individual by intervention interaction. The positive effects of exercise are modulated by several covariates (i.e. moderators), such as the exercised parent's sex, offspring's sex, and age, mode of exercise, and exercise timing. In particular, parental forced exercise is more efficient than voluntary exercise at significantly improving offspring neurobehaviour (26.0%) and reducing its variability (14.2%). We observed larger effects when parental exercise started before pregnancy. However, exercising only during pregnancy also had positive effects. Mechanistically, exercise significantly upregulated brain-derived neurotrophic factor (BDNF) by 28.9%, vascular endothelial growth factor (VEGF) by 35.8%, and significantly decreased hippocampal DNA methylation by 3.5%, suggesting that brain growth factor cascades and epigenetic modifications can moderate the transmission of parental exercise effects. Collectively, by coupling mean with variance effects, our analyses draw a more integrated picture of the benefits that parental exercise has on offspring: not only does it improve offspring brain development and cognitive performance, but it also reduces inter-individual differences in cognition-related traits. We advocate that meta-analysis of variation together with the mean of a trait provides novel insights for old controversies as well as emerging new questions, opening up a new era for generating variance-based hypotheses.
Collapse
Affiliation(s)
- Yefeng Yang
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.,Department of Biosystems Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yong Zhi Foo
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Daniel W A Noble
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.,Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Hamza Anwer
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
21
|
Roland CB, Knudsen SDP, Alomairah SA, Andersen AD, Bendix J, Clausen TD, Molsted S, Jensen AK, Teilmann G, Jespersen AP, Larsen JE, Hall GV, Andersen E, Barrès R, Mortensen OH, Maindal HT, Tarnow L, Løkkegaard ECL, Stallknecht B. Structured supervised exercise training or motivational counselling during pregnancy on physical activity level and health of mother and offspring: FitMum study protocol. BMJ Open 2021; 11:e043671. [PMID: 33741668 PMCID: PMC7986889 DOI: 10.1136/bmjopen-2020-043671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/30/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION A physically active lifestyle during pregnancy improves maternal and offspring health but can be difficult to follow. In Denmark, less than 40% of pregnant women meet physical activity (PA) recommendations. The FitMum study aims to explore strategies to increase PA during pregnancy among women with low PA and assess the health effects of PA. This paper presents the FitMum protocol, which evaluates the effects of structured supervised exercise training or motivational counselling supported by health technology during pregnancy on PA level and health of mother and offspring. METHODS AND ANALYSIS A single-site three-arm randomised controlled trial that aims to recruit 220 healthy, pregnant women with gestational age (GA) no later than week 15 and whose PA level does not exceed one hour/week. Participants are randomised to one of three groups: structured supervised exercise training consisting of three weekly exercise sessions, motivational counselling supported by health technology or a control group receiving standard care. The interventions take place from randomisation until delivery. The primary outcome is min/week of moderate-to-vigorous intensity PA (MVPA) as determined by a commercial activity tracker, collected from randomisation until GA of 28 weeks and 0-6 days, and the secondary outcome is gestational weight gain (GWG). Additional outcomes are complementary measures of PA; clinical and psychological health parameters in participant, partner and offspring; analyses of blood, placenta and breastmilk samples; process evaluation of interventions; and personal understandings of PA. ETHICS AND DISSEMINATION The study is approved by the Danish National Committee on Health Research Ethics (# H-18011067) and the Danish Data Protection Agency (# P-2019-512). Findings will be disseminated via peer-reviewed publications, at conferences, and to health professionals via science theatre performances. TRIAL REGISTRATION NUMBER NCT03679130. PROTOCOL VERSION This paper was written per the study protocol version 8 dated 28 August 2019.
Collapse
Affiliation(s)
- Caroline Borup Roland
- Department of Biomedical Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
- Department of Gynaecology and Obstetrics, Nordsjaellands Hospital, Hillerod, Denmark
| | - Signe de Place Knudsen
- Department of Biomedical Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
- Department of Gynaecology and Obstetrics, Nordsjaellands Hospital, Hillerod, Denmark
| | - Saud Abdulaziz Alomairah
- Department of Biomedical Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
- Department of Public Health, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Anne Dsane Andersen
- Department of Gynaecology and Obstetrics, Nordsjaellands Hospital, Hillerod, Denmark
| | - Jane Bendix
- Department of Gynaecology and Obstetrics, Nordsjaellands Hospital, Hillerod, Denmark
| | - Tine D Clausen
- Department of Gynaecology and Obstetrics, Nordsjaellands Hospital, Hillerod, Denmark
- Department of Clinical Medicine, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Stig Molsted
- Department of Clinical Research, Nordsjaellands Hospital, Hillerod, Denmark
| | - Andreas Kryger Jensen
- Department of Clinical Research, Nordsjaellands Hospital, Hillerod, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Grete Teilmann
- Department of Paediatrics, Nordsjaellands Hospital, Hillerod, Denmark
| | - Astrid Pernille Jespersen
- The Saxo Institute, University of Copenhagen, Centre for Health Research in the Humanities, Copenhagen, Denmark
| | - Jakob Eg Larsen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Gerrit van Hall
- Department of Biomedical Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
- Clinical Metabolomics Core Facility, Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Emil Andersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Ole Hartvig Mortensen
- Department of Biomedical Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Helle Terkildsen Maindal
- Department of Public Health, Aarhus Universitet, Aarhus, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Lise Tarnow
- Steno Diabetes Center Copenhagen, Holbaek, Denmark
| | - Ellen Christine Leth Løkkegaard
- Department of Gynaecology and Obstetrics, Nordsjaellands Hospital, Hillerod, Denmark
- Department of Clinical Medicine, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Bente Stallknecht
- Department of Biomedical Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| |
Collapse
|
22
|
Sanches EF, Dos Santos TM, Odorcyk F, Untertriefallner H, Rezena E, Hoeper E, Avila T, Martini AP, Venturin GT, da Costa JC, Greggio S, Netto CA, Wyse AT. Pregnancy swimming prevents early brain mitochondrial dysfunction and causes sex-related long-term neuroprotection following neonatal hypoxia-ischemia in rats. Exp Neurol 2021; 339:113623. [PMID: 33529673 DOI: 10.1016/j.expneurol.2021.113623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Neonatal hypoxia-ischemia (HI) is a major cause of cognitive impairments in infants. Antenatal strategies improving the intrauterine environment can have high impact decreasing pregnancy-derived intercurrences. Physical exercise alters the mother-fetus unity and has been shown to prevent the energetic challenge imposed by HI. This study aimed to reveal neuroprotective mechanisms afforded by pregnancy swimming on early metabolic failure and late cognitive damage, considering animals' sex as a variable. Pregnant Wistar rats were submitted to daily swimming exercise (20' in a tank filled with 32 °C water) during pregnancy. Neonatal HI was performed in male and female pups at postnatal day 7. Electron chain transport, mitochondrial mass and function and ROS formation were assessed in the right brain hemisphere 24 h after HI. From PND45, reference and working spatial memory were tested in the Morris water maze. MicroPET-FDG images were acquired 24 h after injury (PND8) and at PND60, following behavioral analysis. HI induced early energetic failure, decreased enzymatic activity in electron transport chain, increased production of ROS in cortex and hippocampus as well as caused brain glucose metabolism dysfunction and late cognitive impairments. Maternal swimming was able to prevent mitochondrial dysfunction and to improve spatial memory. The intergenerational effects of swimming were sex-specific, since male rats were benefited most. In conclusion, maternal swimming was able to affect the mitochondrial response to HI in the offspring's brains, preserving its function and preventing cognitive damage in a sex-dependent manner, adding relevant information on maternal exercise neuroprotection and highlighting the importance of mitochondria as a therapeutic target for HI neuropathology.
Collapse
Affiliation(s)
- E F Sanches
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - T M Dos Santos
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - F Odorcyk
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - H Untertriefallner
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - E Rezena
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - E Hoeper
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - T Avila
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A P Martini
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - G T Venturin
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - J C da Costa
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - S Greggio
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - C A Netto
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A T Wyse
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
23
|
Tarevnic R, Ornellas F, Mandarim-de-Lacerda CA, Aguila MB. Maternal swimming mitigates liver damage caused by paternal obesity. Nutrition 2021; 86:111168. [PMID: 33601122 DOI: 10.1016/j.nut.2021.111168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 01/06/2021] [Accepted: 01/16/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Parents' lifestyle and nutrition can program offspring obesity in adulthood. We hypothesized that maternal swimming has beneficial effects on the adversity caused by paternal obesity on offspring. METHODS Twelve-week-old male C57 BL/6 J mice (fed a high-fat diet, obese father [ObFa], or control diet, lean father [LFa]) were mated with female mice fed only the control diet. Mothers were trained (TMo) or untrained (UMo): swimming for 6 wk before and the first 2 wk of gestation. Pups were fed only the control diet. RESULTS Fathers showed different body mass (BM) at copulation, but not the mothers. The ObFa had 20% higher BM than the LFa. Twelve-week-old ObFa/UMo offspring showed a higher BM gain than the LFa/UMo and ObFa/TMo. There was BM sexual dimorphism in the LFa/UMo (female mice +24% than male mice). There was hyperglycemia and hyperinsulinemia in the ObFa/UMo, but low glycemia and insulin levels were seen in the ObFa/TMo. There was augmented liver steatosis in the ObFa/UMo compared with the LFa/UMo, and the ObFa/TMo compared with the LFa/TMo, but reduced steatosis in the ObFa/TMo compared with the ObFa/UMo. In addition, lipogenic markers were more expressed and beta-oxidation markers less expressed in the ObFa/UMo compared with the LFa/UMo, but the opposite was observed in the ObFa/TMo compared with the ObFa/UMo. Proinflammatory markers were higher in the liver of the ObFa/UMo compared with the LFa/UMo and lower in the ObFa/TMo compared with the ObFa/UMo. CONCLUSIONS Obese fathers produced offspring that were overweight and had altered fasting glycemia and insulin sensitivity, leading to higher liver lipogenesis and inflammation, as well as lower beta-oxidation. The swimming mother mitigated these adverse effects in mice offspring.
Collapse
Affiliation(s)
- Renata Tarevnic
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Ornellas
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Dingsdale H, Nan X, Garay SM, Mueller A, Sumption LA, Chacón-Fernández P, Martinez-Garay I, Ghevaert C, Barde YA, John RM. The placenta protects the fetal circulation from anxiety-driven elevations in maternal serum levels of brain-derived neurotrophic factor. Transl Psychiatry 2021; 11:62. [PMID: 33462179 PMCID: PMC7813890 DOI: 10.1038/s41398-020-01176-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 01/30/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays crucial roles in brain function. Numerous studies report alterations in BDNF levels in human serum in various neurological conditions, including mood disorders such as depression. However, little is known about BDNF levels in the blood during pregnancy. We asked whether maternal depression and/or anxiety during pregnancy were associated with altered serum BDNF levels in mothers (n = 251) and their new-born infants (n = 212). As prenatal exposure to maternal mood disorders significantly increases the risk of neurological conditions in later life, we also examined the possibility of placental BDNF transfer by developing a new mouse model. We found no association between maternal symptoms of depression and either maternal or infant cord blood serum BDNF. However, maternal symptoms of anxiety correlated with significantly raised maternal serum BDNF exclusively in mothers of boys (r = 0.281; P = 0.005; n = 99). Serum BDNF was significantly lower in male infants than female infants but neither correlated with maternal anxiety symptoms. Consistent with this observation, we found no evidence for BDNF transfer across the placenta. We conclude that the placenta protects the developing fetus from maternal changes in serum BDNF that could otherwise have adverse consequences for fetal development.
Collapse
Affiliation(s)
- Hayley Dingsdale
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Xinsheng Nan
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Samantha M Garay
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Annett Mueller
- Department of Haematology, University of Cambridge, Cambridge, CB2 0PT, UK
| | - Lorna A Sumption
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Pedro Chacón-Fernández
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
- Hospital Universitario Virgen Macarena-FISEVI, University of Seville, E41009, Seville, Spain
| | | | - Cedric Ghevaert
- Department of Haematology, University of Cambridge, Cambridge, CB2 0PT, UK
| | - Yves-Alain Barde
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Rosalind M John
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
25
|
Emerald B, Kaimala S, Ansari S. Risk factors which influence DNA methylation in childhood obesity. HAMDAN MEDICAL JOURNAL 2021. [DOI: 10.4103/hmj.hmj_15_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Bae-Gartz I, Kasper P, Großmann N, Breuer S, Janoschek R, Kretschmer T, Appel S, Schmitz L, Vohlen C, Quaas A, Schweiger MR, Grimm C, Fischer A, Ferrari N, Graf C, Frese CK, Lang S, Demir M, Schramm C, Fink G, Goeser T, Dötsch J, Hucklenbruch-Rother E. Maternal exercise conveys protection against NAFLD in the offspring via hepatic metabolic programming. Sci Rep 2020; 10:15424. [PMID: 32963289 PMCID: PMC7508970 DOI: 10.1038/s41598-020-72022-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Maternal exercise (ME) during pregnancy has been shown to improve metabolic health in offspring and confers protection against the development of non-alcoholic fatty liver disease (NAFLD). However, its underlying mechanism are still poorly understood, and it remains unclear whether protective effects on hepatic metabolism are already seen in the offspring early life. This study aimed at determining the effects of ME during pregnancy on offspring body composition and development of NAFLD while focusing on proteomic-based analysis of the hepatic energy metabolism during developmental organ programming in early life. Under an obesogenic high-fat diet (HFD), male offspring of exercised C57BL/6J-mouse dams were protected from body weight gain and NAFLD in adulthood (postnatal day (P) 112). This was associated with a significant activation of hepatic AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor alpha (PPARα) and PPAR coactivator-1 alpha (PGC1α) signaling with reduced hepatic lipogenesis and increased hepatic β-oxidation at organ programming peak in early life (P21). Concomitant proteomic analysis revealed a characteristic hepatic expression pattern in offspring as a result of ME with the most prominent impact on Cholesterol 7 alpha-hydroxylase (CYP7A1). Thus, ME may offer protection against offspring HFD-induced NAFLD by shaping hepatic proteomics signature and metabolism in early life. The results highlight the potential of exercise during pregnancy for preventing the early origins of NAFLD.
Collapse
Affiliation(s)
- Inga Bae-Gartz
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany.
| | - Philipp Kasper
- Department of Gastroenterology and Hepatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Nora Großmann
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Saida Breuer
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Ruth Janoschek
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Tobias Kretschmer
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Sarah Appel
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Lisa Schmitz
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Christina Vohlen
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Alexander Quaas
- Department of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Michal R Schweiger
- Translational Epigenetics and Tumor Genetic, University Hospital of Cologne, Cologne, Germany
| | - Christina Grimm
- Translational Epigenetics and Tumor Genetic, University Hospital of Cologne, Cologne, Germany
| | | | - Nina Ferrari
- Cologne Center for Prevention in Childhood and Youth / Heart Center Cologne, University Hospital of Cologne, Cologne, Germany.,Institute of Movement and Neuroscience, Department of Movement and Health Promotion, German Sport University, Cologne, Germany
| | - Christine Graf
- Institute of Movement and Neuroscience, Department of Movement and Health Promotion, German Sport University, Cologne, Germany
| | - Christian K Frese
- Proteomics Core Facility, CECAD Research Center, University Hospital of Cologne, Cologne, Germany.,Max-Planck-Unit for the Science of Pathogens, Charité University Medicine Berlin, Berlin, Germany
| | - Sonja Lang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité Campus Mitte and Campus Virchow Clinic, Charité University Medicine Berlin, Berlin, Germany
| | - Christoph Schramm
- Department of Gastroenterology and Hepatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Gregor Fink
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Tobias Goeser
- Department of Gastroenterology and Hepatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Eva Hucklenbruch-Rother
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| |
Collapse
|
27
|
Ferrari N, Schmitz L, Schmidt N, Mahabir E, Van de Vondel P, Merz WM, Lehmacher W, Stock S, Brockmeier K, Ensenauer R, Fehm T, Joisten C. A lifestyle intervention during pregnancy to reduce obesity in early childhood: the study protocol of ADEBAR - a randomized controlled trial. BMC Sports Sci Med Rehabil 2020; 12:55. [PMID: 32944252 PMCID: PMC7487987 DOI: 10.1186/s13102-020-00198-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/19/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND The prevalence of obesity in childhood is increasing worldwide and may be affected by genetic factors and the lifestyle (exercise, nutrition behavior) of expectant parents. Lifestyle factors affect adipokines, namely leptin, resistin, and adiponectin as well as cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), which are involved in the regulation of maternal metabolic homeostasis, glucose metabolism, and the development of insulin resistance, metabolic syndrome, gestational diabetes mellitus, and hypertension. However, studies focusing on the effect of exercise or a combination of parental exercise and nutrition on the above-mentioned markers in newborns (venous cord blood) and especially on the long-term development of infants' weight gain are lacking. The study will investigate the effects of a multimodal intervention (regular exercise, diet) on parental and childhood adipocytokines (leptin, resistin, adiponectin, TNF-α, IL-6, BDNF). The effect of a lifestyle-related change in "fetal environmental conditions" on the long-term weight development of the child up to the age of two will also be assessed. METHODS/DESIGN A randomized multi-center controlled trial will be conducted in Germany, comparing supervised aerobic and resistance training 2x/week (13th to 36th weeks of gestation) and nutritional counseling (6th to 36th weeks of gestation) during pregnancy with usual care. Thirty women (pre-pregnancy Body Mass Index ≥25 kg/m2, 6th-10th week of gestation) will be included in each group. Maternal anthropometric and physical measurements as well as blood sampling will occur at the 6th-10th, 13th-14th, 21st-24th, and 36th week of gestation, at delivery as well as 8 weeks and 24 months postpartum. Neonatal measurements and umbilical blood sampling will be performed at birth. Maternal and infants' weight development will be assessed every 6 months till 24 months postpartum. A difference in childhood BMI of 1 kg/m2 at the age of two years between both groups will be assumed. A power size of 80% using a significance level of 0.05 and an effect size of 1.0 is presumed. DISCUSSION A better understanding of how lifestyle-related changes in the fetal environment might influence infants' outcome after two years of life could have a profound impact on the prevention and development of infants' obesity. TRIAL REGISTRATION The trial is registered at the German Clinical Trial Register (DRKS00007702); Registered on 10th of August 2016; retrospectively registered https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00007702.
Collapse
Affiliation(s)
- Nina Ferrari
- Cologne Centre for Prevention in Childhood and Youth/ Heart Centre Cologne, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Department for physical activity in public health, Institute of Movement and Neurosciences, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Laura Schmitz
- Department for physical activity in public health, Institute of Movement and Neurosciences, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Nikola Schmidt
- Department for physical activity in public health, Institute of Movement and Neurosciences, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Esther Mahabir
- Comparative Medicine, Center for Molecular Medicine, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
- Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 9, 50931 Cologne, Germany
| | | | - Waltraut M. Merz
- Department of Obstetrics and Prenatal Medicine, University Bonn Medical School, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Walter Lehmacher
- Department of Biometry (IMSIE), Faculty of medicine, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Stephanie Stock
- Cologne Institute for Health Economics and Clinical Epidemiology, The University Hospital of Cologne, Gleueler Strasse 176 - 178/II, 50935 Cologne, Germany
| | - Konrad Brockmeier
- Cologne Centre for Prevention in Childhood and Youth/ Heart Centre Cologne, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Department of Paediatric Cardiology, Heart Centre Cologne, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Regina Ensenauer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital, University of Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
- Institute of Child Nutrition, Max Rubner-Institut, Haid-und-Neu-Str. 9, 76131 Karlsruhe, Germany
| | - Tanja Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, University of Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Christine Joisten
- Cologne Centre for Prevention in Childhood and Youth/ Heart Centre Cologne, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Department for physical activity in public health, Institute of Movement and Neurosciences, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| |
Collapse
|
28
|
D'Angelo A, Ceccanti M, Petrella C, Greco A, Tirassa P, Rosso P, Ralli M, Ferraguti G, Fiore M, Messina MP. Role of neurotrophins in pregnancy, delivery and postpartum. Eur J Obstet Gynecol Reprod Biol 2020; 247:32-41. [PMID: 32058187 DOI: 10.1016/j.ejogrb.2020.01.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 01/09/2023]
Abstract
Neurotrophins (NTs) are a family of polypeptides whose functions have been extensively studied in the past two decades. In particular, Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF) play a major role in the development, nutrition and growth of the central and peripheral nervous system and in the pathogenesis of neurodegenerative, cardiometabolic and (auto)immune diseases. However, NGF and BDNF have subtle functions for follicular development, implantation, and placentation. This short narrative review summarizes the existing evidence, published between 2000 and 2019, about the role of NTs in many different conditions that might affect women during and after pregnancy such as preeclampsia, gestational diabetes, obesity, depression, anxiety, smoking and alcohol abuse. Literature suggests that the dysregulation of synthesis and release of NTs may lead to decisive effects on both maternal and fetal health. Some piece of evidences was found about a possible association between NGF/BDNF and breastfeeding. Additional studies on human models are necessary to further characterize the role of NTs in life-changing experiences like labor and delivery.
Collapse
Affiliation(s)
- Alessio D'Angelo
- Department of Gynecology, Obstetric, and Urology, Sapienza University of Rome, Italy
| | - Mauro Ceccanti
- Centro Riferimento Alcologico Regione Lazio, Sapienza University of Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Pamela Rosso
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Italy
| | | | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy.
| | | |
Collapse
|
29
|
Metabolic Health-The Role of Adipo-Myokines. Int J Mol Sci 2019; 20:ijms20246159. [PMID: 31817641 PMCID: PMC6941068 DOI: 10.3390/ijms20246159] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is now a worldwide epidemic. In recent years, different phenotypes of obesity, ranging from metabolically healthy normal weight to metabolically unhealthy obese, were described. Although there is no standardized definition for these phenotypes or for metabolic health, the influence of lifestyle and early-life factors is undisputed. In this context, the ratio of muscle-to-fat tissue seems to play a crucial role. Both adipose tissue and skeletal muscle are highly heterogeneous endocrine organs secreting several hormones, with myokines and adipokines being involved in local autocrine/paracrine interactions and crosstalk with other tissues. Some of these endocrine factors are secreted by both tissues and are, therefore, termed adipo-myokines. High (cardiorespiratory) fitness as a surrogate parameter for an active lifestyle is epidemiologically linked to “better” metabolic health, even in the obese; this may be partly due to the role of adipo-myokines and the crosstalk between adipose and muscle tissue. Therefore, it is essential to consider (cardiovascular) fitness in the definition of metabolically healthy obese/metabolic health and to perform longitudinal studies in this regard. A better understanding of both the (early-life) lifestyle factors and the underlying mechanisms that mediate different phenotypes is necessary for the tailored prevention and personalized treatment of obesity.
Collapse
|
30
|
How do different physical exercise parameters modulate brain-derived neurotrophic factor in healthy and non-healthy adults? A systematic review, meta-analysis and meta-regression. Sci Sports 2019. [DOI: 10.1016/j.scispo.2019.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
31
|
Maternal physical activity-induced adaptive transcriptional response in brain and placenta of mothers and rat offspring. J Dev Orig Health Dis 2019; 11:108-117. [PMID: 31203831 DOI: 10.1017/s2040174419000333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maternal physical activity induces brain functional changes and neuroplasticity, leading to an improvement of cognitive functions, such as learning and memory in the offspring. This study investigated the effects of voluntary maternal physical activity on the gene expression of the neurotrophic factors (NTFs): BDNF, NTF4, NTRK2, IGF-1 and IGF-1r in the different areas of mother's brain, placenta and foetus brain of rats. Female Wistar rats (n = 15) were individually housed in voluntary physical activity cages, containing a running wheel, for 4 weeks (period of adaptation) before gestation. Rats were classified as inactive (I, n = 6); active (A, n = 4) and very active (VA, n = 5) according to daily distance spontaneously travelled. During gestation, the dams continued to have access to the running wheel. At the 20th day of gestation, gene expression of NTFs was analysed in different areas of mother's brain (cerebellum, hypothalamus, hippocampus and cortex), placenta and the offspring's brain. NTFs gene expression was evaluated using quantitative PCR. Very active mothers showed upregulation of IGF-1 mRNA in the cerebellum (36.8%) and NTF4 mRNA expression in the placenta (24.3%). In the cortex, there was a tendency of up-regulation of NTRK2 mRNA (p = 0.06) in the A and VA groups when compared to I group. There were no noticeable changes in the gene expression of NTFs in the offspring's brain. Our findings suggest the existence of a developmental plasticity induced by maternal physical activity in specific areas of the brain and placenta representing the first investment for offspring during development.
Collapse
|
32
|
Narvaez-Sanchez R, Calderón JC, Vega G, Trillos MC, Ospina S. Skeletal muscle as a protagonist in the pregnancy metabolic syndrome. Med Hypotheses 2019; 126:26-37. [PMID: 31010495 DOI: 10.1016/j.mehy.2019.02.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/12/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022]
Abstract
The pregnant woman normally shows clinical manifestations similar to a metabolic syndrome (MS), due to her metabolic and hemodynamic adaptations in order to share nutrients with the child. If those adjustments are surpassed, a kind of pregnancy MS (PregMS) could appear, characterized by excessive insulin resistance and vascular maladaptation. Skeletal muscle (SKM) must be a protagonist in the PregMS: SKM strength and mass have been associated inversely with MS incidence in non-pregnant patients, and in pregnant women muscular activity modulates metabolic and vascular adaptations that favor better outcomes. Of note, a sedentary lifestyle affects exactly in the other way. Those effects may be explained not only by the old paradigm of SKM being a great energy consumer and store, but because it is an endocrine organ whose chronic activity or deconditioning correspondingly releases myokines modulating insulin sensitivity and cardiovascular adaptation, by direct or indirect mechanisms not well understood. In this document, we present evidence to support the concept of a PregMS and hypothesize on the role of the SKM mass, fiber types composition and myokines in its pathophysiology. Also, we discuss some exercise interventions in pregnancy as a way to test our hypotheses.
Collapse
Affiliation(s)
- Raul Narvaez-Sanchez
- Physiology and Biochemistry Research Group PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia; Red iberoamericana de trastornos vasculares y del embarazo, RIVATREM, Colombia.
| | - Juan C Calderón
- Physiology and Biochemistry Research Group PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia. http://www.udea.edu.co/physis
| | - Gloria Vega
- Physiology and Biochemistry Research Group PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia. http://www.udea.edu.co/physis
| | - Maria Camila Trillos
- Physiology and Biochemistry Research Group PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia. http://www.udea.edu.co/physis
| | - Sara Ospina
- Physiology and Biochemistry Research Group PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia. http://www.udea.edu.co/physis
| |
Collapse
|
33
|
Beneficial effects of maternal swimming during pregnancy on offspring metabolism when the father is obese. J Dev Orig Health Dis 2018; 10:502-506. [PMID: 30560765 DOI: 10.1017/s2040174418001046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We aimed to evaluate the impact of maternal exercise training on the offspring metabolism and body size caused by father obesity. C57BL/6 male 4-week-old mice were fed a high-fat diet (HF father) or control diet (C father), while equal age female mice were fed only a C diet and were separated into two groups: trained (T mother) and non-trained (NT mother), and at 12 weeks of age mice were mated. A continuous swimming protocol was applied for 10 weeks (before and during gestation), and offspring were followed since weaning until sacrifice (at 12 weeks of age). HF father, compared to C father, showed obesity, elevated total cholesterol (TC) and triglycerides (TG), and glucose intolerance. Both sexes HF/NT offspring showed hyperglycemia, glucose intolerance and high levels of TC and TG, without obesity. However, HF/T offspring showed data close to C/NT, demonstrating the beneficial effect of maternal exercise in the offspring of obese fathers.
Collapse
|