1
|
Jiang Y, Zhang H, Chen S, Ewart S, Holloway JW, Arshad H, Karmaus W. Intergenerational association of DNA methylation between parents and offspring. Sci Rep 2024; 14:19812. [PMID: 39191877 DOI: 10.1038/s41598-024-69317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Early patterning of DNA methylation (DNAm) may play an important role in later disease development. To better understand intergenerational epigenetic inheritance, we investigated the correlation between DNAm in blood in mother-newborn and in father-newborn pairs in the Isle of Wight (IoW) birth cohort. For parent-newborn pairs (n = 48), offspring DNAm was measured in cord blood and the parent's DNAm in whole blood. Mothers' DNAm was analyzed at birth (Guthrie card), age 18, early and late pregnancy respectively, and fathers' DNAm was measured during the mother's pregnancy. Linear regressions were applied to assess the intergenerational correlation of parental DNAm with that of offspring. Among various pairs of mother-newborn and father-newborn DNAm, the pairs where the mothers' DNAm was measured at age 18 years exhibited the highest number of CpGs with significant intergenerational correlation in DNAm, with 1829 CpGs (0.54%) of the 338,526 CpGs studied (FDR < 0.05). Amongst these 1829 CpGs, 986 (54%) are known quantitative trait loci (QTL) for CpG methylation (methQTL). When the mother's DNAm was assessed at early pregnancy, the number of CpGs showing intergenerational correlation was the smallest (384 CpGs, 0.11%). The second smallest number of such CpGs (559 CpGs, 0.17%) was found when investigating DNAm in offspring cord blood and father pairs. The low proportions of intergenerationally correlated CpGs suggest that epigenetic inheritance is limited.
Collapse
Affiliation(s)
- Yu Jiang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA.
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Su Chen
- Department of Mathematical Science, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susan Ewart
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA.
| |
Collapse
|
2
|
Yisahak SF, Hinkle SN, Mumford SL, Grantz KL, Zhang C, Newman RB, Grobman WA, Albert PS, Sciscione A, Wing DA, Owen J, Chien EK, Buck Louis GM, Grewal J. Nutritional Intake in Dichorionic Twin Pregnancies: A Descriptive Analysis of a Multisite United States Cohort. Matern Child Health J 2024; 28:206-213. [PMID: 37934328 DOI: 10.1007/s10995-023-03802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
INTRODUCTION Twin gestations have greater nutritional demands than singleton gestations, yet dietary intakes of women with twin gestations have not been well described. METHODS In a prospective, multi-site US study of 148 women with dichorionic twin gestations (2012-2013), we examined longitudinal changes in diet across pregnancy. Women completed a food frequency questionnaire during each trimester of pregnancy. We examined changes in means of total energy and energy-adjusted dietary components using linear mixed effects models. RESULTS Mean energy intake (95% CI) across the three trimesters was 2010 kcal/day (1846, 2175), 2177 kcal/day (2005, 2349), 2253 kcal/day (2056, 2450), respectively (P = 0.01), whereas the Healthy Eating Index-2010 was 63.9 (62.1, 65.6), 64.5 (62.6, 66.3), 63.2 (61.1, 65.3), respectively (P = 0.53). DISCUSSION Women with twin gestations moderately increased total energy as pregnancy progressed, though dietary composition and quality remained unchanged. These findings highlight aspects of nutritional intake that may need to be improved among women carrying twins.
Collapse
Affiliation(s)
- Samrawit F Yisahak
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Stefanie N Hinkle
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunni L Mumford
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine L Grantz
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Cuilin Zhang
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Bia-Echo Asia Centre for Reproductive Longevity and Equality, National University of Singapore, Singapore, Singapore
| | - Roger B Newman
- Division of Maternal-Fetal Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - William A Grobman
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Paul S Albert
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | | - Deborah A Wing
- University of California, Irvine and Long Beach Memorial Medical Center, Long Beach, CA, USA
| | - John Owen
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Edward K Chien
- Women and Infants Hospital of Rhode Island, Providence, RI, USA
| | | | - Jagteshwar Grewal
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
India's Opportunities and Challenges in Establishing a Twin Registry: An Unexplored Human Resource for the World's Second-Most Populous Nation. Twin Res Hum Genet 2022; 25:156-164. [PMID: 35786423 DOI: 10.1017/thg.2022.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nature and nurture have always been a prerogative of evolutionary biologists. The environment's role in shaping an organism's phenotype has always intrigued us. Since the inception of humankind, twinning has existed with an unsettled parley on the contribution of nature (i.e. genetics) versus nurture (i.e. environment), which can influence the phenotypes. The study of twins measures the genetic contribution and that of the environmental influence for a particular trait, acting as a catalyst, fine-tuning the phenotypic trajectories. This is further evident because a number of human diseases show a spectrum of clinical manifestations with the same underlying molecular aberration. As of now, there is no definite way to conclude just from the genomic data the severity of a disease or even to predict who will get affected. This greatly justifies initiating a twin registry for a country as diverse and populated as India. There is an unmet need to set up a nationwide database to carefully curate the information on twins, serving as a valuable biorepository to study their overall susceptibility to disease. Establishing a twin registry is of paramount importance to harness the wealth of human information related to the biomedical, anthropological, cultural, social and economic significance.
Collapse
|
4
|
Borg D, Rae K, Fiveash C, Schagen J, James-McAlpine J, Friedlander F, Thurston C, Oliveri M, Harmey T, Cavanagh E, Edwards C, Fontanarosa D, Perkins T, de Zubicaray G, Moritz K, Kumar S, Clifton V. Queensland Family Cohort: a study protocol. BMJ Open 2021; 11:e044463. [PMID: 34168023 PMCID: PMC8231060 DOI: 10.1136/bmjopen-2020-044463] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The perinatal-postnatal family environment is associated with childhood outcomes including impacts on physical and mental health and educational attainment. Family longitudinal cohort studies collect in-depth data that can capture the influence of an era on family lifestyle, mental health, chronic disease, education and financial stability to enable identification of gaps in society and provide the evidence for changes in government in policy and practice. METHODS AND ANALYSIS The Queensland Family Cohort (QFC) is a prospective, observational, longitudinal study that will recruit 12 500 pregnant families across the state of Queensland (QLD), Australia and intends to follow-up families and children for three decades. To identify the immediate and future health requirements of the QLD population; pregnant participants and their partners will be enrolled by 24 weeks of gestation and followed up at 24, 28 and 36 weeks of gestation, during delivery, on-ward, 6 weeks postpartum and then every 12 months where questionnaires, biological samples and physical measures will be collected from parents and children. To examine the impact of environmental exposures on families, data related to environmental pollution, household pollution and employment exposures will be linked to pregnancy and health outcomes. Where feasible, data linkage of state and federal government databases will be used to follow the participants long term. Biological samples will be stored long term for future discoveries of biomarkers of health and disease. ETHICS AND DISSEMINATION Ethical approval has been obtained from the Mater Research Ethics (HREC/16/MHS/113). Findings will be reported to (1) QFC participating families; (2) funding bodies, institutes and hospitals supporting the QFC; (3) federal, state and local governments to inform policy; (4) presented at local, national and international conferences and (5) disseminated by peer-review publications.
Collapse
Affiliation(s)
- Danielle Borg
- Mother and Baby, Mater Medical Research Institute, South Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Kym Rae
- Mother and Baby, Mater Medical Research Institute, South Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Corrine Fiveash
- Gallipoli Medical Research Foundation, Greenslopes, Queensland, Australia
| | - Johanna Schagen
- Mother and Baby, Mater Medical Research Institute, South Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Janelle James-McAlpine
- Mother and Baby, Mater Medical Research Institute, South Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Frances Friedlander
- Maternity Unit, Greenslopes Private Hospital, Greenslopes, Queensland, Australia
| | - Claire Thurston
- Mother and Baby, Mater Medical Research Institute, South Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Maria Oliveri
- Mother and Baby, Mater Medical Research Institute, South Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Theresa Harmey
- Mother and Baby, Mater Medical Research Institute, South Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Erika Cavanagh
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Maternal Fetal Medicine, Mater Hospital Brisbane, Brisbane, Queensland, Australia
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Christopher Edwards
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Davide Fontanarosa
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Tony Perkins
- School of Medical Science, Griffith University - Gold Coast Campus, Southport, Queensland, Australia
| | - Greig de Zubicaray
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Karen Moritz
- Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia
- The University of Queensland Child Health Research Centre, South Brisbane, Queensland, Australia
| | - Sailesh Kumar
- Mother and Baby, Mater Medical Research Institute, South Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Vicki Clifton
- Mother and Baby, Mater Medical Research Institute, South Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia
| |
Collapse
|
5
|
Epigenetic Influences on Neurodevelopment at 11 Years of Age: Protocol for the Longitudinal Peri/Postnatal Epigenetic Twins Study at 11 Years of Age (PETS@11). Twin Res Hum Genet 2020; 22:446-453. [PMID: 32008589 DOI: 10.1017/thg.2019.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neurodevelopment is sensitive to genetic and pre/postnatal environmental influences. These effects are likely mediated by epigenetic factors, yet current knowledge is limited. Longitudinal twin studies can delineate the link between genetic and environmental factors, epigenetic state at birth and neurodevelopment later in childhood. Building upon our study of the Peri/postnatal Epigenetic Twin Study (PETS) from gestation to 6 years of age, here we describe the PETS 11-year follow-up in which we will use neuroimaging and cognitive testing to examine the relationship between early-life environment, epigenetics and neurocognitive outcomes in mid-childhood. Using a within-pair twin model, the primary aims are to (1) identify early-life epigenetic correlates of neurocognitive outcomes; (2) determine the developmental stability of epigenetic effects and (3) identify modifiable environmental risk factors. Secondary aims are to identify factors influencing gut microbiota between 6 and 11 years of age to investigate links between gut microbiota and neurodevelopmental outcomes in mid-childhood. Approximately 210 twin pairs will undergo an assessment at 11 years of age. This includes a direct child cognitive assessment, multimodal magnetic resonance imaging, biological sampling, anthropometric measurements and a range of questionnaires on health and development, behavior, dietary habits and sleeping patterns. Data from complementary data sources, including the National Assessment Program - Literacy and Numeracy and the Australian Early Development Census, will also be sought. Following on from our previous focus on relationships between growth, cardiovascular health and oral health, this next phase of PETS will significantly advance our understanding of the environmental interactions that shape the developing brain.
Collapse
|
6
|
Tabatabaiefar MA, Sajjadi RS, Narrei S. Epigenetics and Common Non Communicable Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1121:7-20. [PMID: 31392648 DOI: 10.1007/978-3-030-10616-4_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Common Non communicable diseases (NCDs), such as cardiovascular disease, cancer, schizophrenia, and diabetes, have become the major cause of death in the world. They result from an interaction between genetics, lifestyle and environmental factors. The prevalence of NCDs are increasing, and researchers hopes to find efficient strategies to predict, prevent and treat them. Given the role of epigenome in the etiology of NCDs, insight into epigenetic mechanisms may offer opportunities to predict, detect, and prevent disease long before its clinical onset.Epigenetic alterations are exerted through several mechanisms including: chromatin modification, DNA methylation and controlling gene expression by non-coding RNAs (ncRNAs). In this chapter, we will discuss about NCDs, with focus on cancer, diabetes and schizophrenia. Different epigenetic mechanisms, categorized into two main groups DNA methylation and chromatin modifications and non-coding RNAs, will be separately discussed for these NCDs.
Collapse
Affiliation(s)
- Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. .,Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran. .,Genetics Department, Erythron Pathobiology and Genetics lab, Isfahan, Iran.
| | - Roshanak S Sajjadi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Narrei
- Genetics Department, Erythron Pathobiology and Genetics lab, Isfahan, Iran
| |
Collapse
|
7
|
Maymon R, Meiri H, Svirski R, Weiner E, Cuckle H. Maternal serum screening marker levels in twin pregnancies affected by gestational diabetes. Arch Gynecol Obstet 2018; 299:655-663. [DOI: 10.1007/s00404-018-5010-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
|
8
|
Supragingival Plaque Microbiome Ecology and Functional Potential in the Context of Health and Disease. mBio 2018; 9:mBio.01631-18. [PMID: 30482830 PMCID: PMC6282201 DOI: 10.1128/mbio.01631-18] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Oral health has substantial economic importance, with over $100 billion spent on dental care in the United States annually. The microbiome plays a critical role in oral health, yet remains poorly classified. To address the question of how microbial diversity and function in the oral cavities of children relate to caries diagnosis, we surveyed the supragingival plaque biofilm microbiome in 44 juvenile twin pairs. Using shotgun sequencing, we constructed a genome encyclopedia describing the core supragingival plaque microbiome. This unveiled several new previously uncharacterized but ubiquitous microbial lineages in the oral microbiome. Caries is a microbial community metabolic disorder that cannot be described by a single etiology, and our results provide the information needed for next-generation diagnostic tools and therapeutics for caries. To address the question of how microbial diversity and function in the oral cavities of children relates to caries diagnosis, we surveyed the supragingival plaque biofilm microbiome in 44 juvenile twin pairs. Using shotgun sequencing, we constructed a genome encyclopedia describing the core supragingival plaque microbiome. Caries phenotypes contained statistically significant enrichments in specific genome abundances and distinct community composition profiles, including strain-level changes. Metabolic pathways that are statistically associated with caries include several sugar-associated phosphotransferase systems, antimicrobial resistance, and metal transport. Numerous closely related previously uncharacterized microbes had substantial variation in central metabolism, including the loss of biosynthetic pathways resulting in auxotrophy, changing the ecological role. We also describe the first complete Gracilibacteria genomes from the human microbiome. Caries is a microbial community metabolic disorder that cannot be described by a single etiology, and our results provide the information needed for next-generation diagnostic tools and therapeutics for caries.
Collapse
|
9
|
Wang L, Han TL, Luo X, Li S, Young T, Chen C, Wen L, Xu P, Zheng Y, Saffery R, Baker PN, Tong C, Qi H. Metabolic Biomarkers of Monochorionic Twins Complicated With Selective Intrauterine Growth Restriction in Cord Plasma and Placental Tissue. Sci Rep 2018; 8:15914. [PMID: 30374111 PMCID: PMC6206027 DOI: 10.1038/s41598-018-33788-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/07/2018] [Indexed: 12/17/2022] Open
Abstract
The selective intrauterine growth restriction (sIUGR) of monochorionic diamniotic (MCDC) twins causes phenotypic growth discordance, which is correlated with metabolomic pertubations. A global, untargeted identification of the metabolic fingerprint may help elucidate the etiology of sIUGR. Umbilical cord blood and placentas collected from 15 pairs of sIUGR monochorionic twins, 24 pairs of uncomplicated twins, and 14 singletons diagnosed with intrauterine growth restriction (IUGR) were subjected to gas chromatography-mass spectrometry based metabolomic analyses. Supervised multivariate regression analysis and pathway analysis were performed to compare control twins with sIUGR twins. A generalized estimating equation (GEE) model was utilized to explore metabolic differences within sIUGR co-twins. Linear logistic regression was applied to screen metabolites that significantly differed in concentration between control twins and sIUGR twins or IUGR singletons. Umbilical cord blood demonstrated better global metabolomic separation of sIUGR and control twins compared to the placenta. Disrupted amino acid and fatty acid metabolism as well as high levels of exposure to environmental xenobiotics were associated with sIUGR. The metabolic abnormalities in MCDA twins suggested that in utero growth discordance is caused by intrauterine and extrauterine environmental factors, rather than genetics. Thus, this study provides new therapeutic targets and strategies for sIUGR management and prevention.
Collapse
Affiliation(s)
- Lianlian Wang
- Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C, Chongqing Medical University, Chongqing, 400016, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Reproduction Health and Infertility, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ting-Li Han
- Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C, Chongqing Medical University, Chongqing, 400016, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Liggins Institution, University of Auckland, Auckland, 1142, New Zealand
| | - Xiaofang Luo
- Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C, Chongqing Medical University, Chongqing, 400016, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Siming Li
- Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, 1010, New Zealand
| | - Tim Young
- Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, 1010, New Zealand
| | - Chang Chen
- Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C, Chongqing Medical University, Chongqing, 400016, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Li Wen
- Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C, Chongqing Medical University, Chongqing, 400016, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ping Xu
- Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C, Chongqing Medical University, Chongqing, 400016, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yangxi Zheng
- Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C, Chongqing Medical University, Chongqing, 400016, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Richard Saffery
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Philip N Baker
- Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C, Chongqing Medical University, Chongqing, 400016, China
- Liggins Institution, University of Auckland, Auckland, 1142, New Zealand
- College of Life Sciences, University of Leicester, Leicester, LE1 7RH, UK
| | - Chao Tong
- Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C, Chongqing Medical University, Chongqing, 400016, China.
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Hongbo Qi
- Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C, Chongqing Medical University, Chongqing, 400016, China.
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
10
|
Ziegler C, Schiele MA, Domschke K. Patho- und Therapieepigenetik psychischer Erkrankungen. DER NERVENARZT 2018; 89:1303-1314. [DOI: 10.1007/s00115-018-0625-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Mørkve Knudsen T, Rezwan FI, Jiang Y, Karmaus W, Svanes C, Holloway JW. Transgenerational and intergenerational epigenetic inheritance in allergic diseases. J Allergy Clin Immunol 2018; 142:765-772. [PMID: 30040975 PMCID: PMC6167012 DOI: 10.1016/j.jaci.2018.07.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 01/07/2023]
Abstract
It has become clear that early life (including in utero exposures) is a key window of vulnerability during which environmental exposures can alter developmental trajectories and initiate allergic disease development. However, recent evidence suggests that there might be additional windows of vulnerability to environmental exposures in the parental generation before conception or even in previous generations. There is evidence suggesting that information of prior exposures can be transferred across generations, and experimental animal models suggest that such transmission can be conveyed through epigenetic mechanisms. Although the molecular mechanisms of intergenerational and transgenerationational epigenetic transmission have yet to be determined, the realization that environment before conception can alter the risks of allergic diseases has profound implications for the development of public health interventions to prevent disease. Future research in both experimental models and in multigenerational human cohorts is needed to better understand the role of intergenerational and transgenerational effects in patients with asthma and allergic disease. This will provide the knowledge basis for a new approach to efficient intervention strategies aimed at reducing the major public health challenge of these conditions.
Collapse
Affiliation(s)
| | - Faisal I Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Yu Jiang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tenn
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tenn
| | - Cecilie Svanes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
12
|
Gomez A, Espinoza JL, Harkins DM, Leong P, Saffery R, Bockmann M, Torralba M, Kuelbs C, Kodukula R, Inman J, Hughes T, Craig JM, Highlander SK, Jones MB, Dupont CL, Nelson KE. Host Genetic Control of the Oral Microbiome in Health and Disease. Cell Host Microbe 2018; 22:269-278.e3. [PMID: 28910633 DOI: 10.1016/j.chom.2017.08.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/30/2017] [Accepted: 08/18/2017] [Indexed: 12/11/2022]
Abstract
Host-associated microbial communities are influenced by both host genetics and environmental factors. However, factors controlling the human oral microbiome and their impact on disease remain to be investigated. To determine the combined and relative effects of host genotype and environment on oral microbiome composition and caries phenotypes, we profiled the supragingival plaque microbiome of 485 dizygotic and monozygotic twins aged 5-11. Oral microbiome similarity always increased with shared host genotype, regardless of caries state. Additionally, although most of the variation in the oral microbiome was determined by environmental factors, highly heritable oral taxa were identified. The most heritable oral bacteria were not associated with caries state, did not tend to co-occur with other taxa, and decreased in abundance with age and sugar consumption frequency. Thus, while the human oral microbiome composition is influenced by host genetic background, potentially cariogenic taxa are likely not controlled by genetic factors.
Collapse
Affiliation(s)
- Andres Gomez
- Departments of Human Biology and Genomic Medicine, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Josh L Espinoza
- Department of Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Derek M Harkins
- Departments of Human Biology and Genomic Medicine, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Pamela Leong
- Murdoch Children's Research Institute and Department of Pediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute and Department of Pediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Michelle Bockmann
- School of Dentistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Manolito Torralba
- Departments of Human Biology and Genomic Medicine, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Claire Kuelbs
- Departments of Human Biology and Genomic Medicine, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Rohith Kodukula
- JCVI Summer Intern Program, Torrey Pines High School, San Diego, CA 9213, USA
| | - Jason Inman
- Departments of Human Biology and Genomic Medicine, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Toby Hughes
- School of Dentistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jeffrey M Craig
- Murdoch Children's Research Institute and Department of Pediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Sarah K Highlander
- Departments of Human Biology and Genomic Medicine, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | | | - Chris L Dupont
- Department of Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Karen E Nelson
- Departments of Human Biology and Genomic Medicine, J. Craig Venter Institute, La Jolla, CA 92037, USA; Departments of Human Biology and Genomic Medicine, J. Craig Venter Institute, Rockville, MD 20850, USA.
| |
Collapse
|
13
|
Neyro V, Elie V, Médard Y, Jacqz-Aigrain E. mRNA expression of drug metabolism enzymes and transporter genes at birth using human umbilical cord blood. Fundam Clin Pharmacol 2018; 32:422-435. [DOI: 10.1111/fcp.12357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/18/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Virginia Neyro
- Department of Pediatric Clinical Pharmacology and Pharmacogenetics; Assistance Publique - Hôpitaux de Paris; Hôpital Robert Debré; Paris France
- Ecole Doctorale MTCI - Paris Descartes University; Paris France
| | - Valéry Elie
- Department of Pediatric Clinical Pharmacology and Pharmacogenetics; Assistance Publique - Hôpitaux de Paris; Hôpital Robert Debré; Paris France
| | - Yves Médard
- Department of Pediatric Clinical Pharmacology and Pharmacogenetics; Assistance Publique - Hôpitaux de Paris; Hôpital Robert Debré; Paris France
| | - Evelyne Jacqz-Aigrain
- Department of Pediatric Clinical Pharmacology and Pharmacogenetics; Assistance Publique - Hôpitaux de Paris; Hôpital Robert Debré; Paris France
- APHP INSERM Clinical Investigation Center CIC1426; Hôpital Robert Debré; Paris France
- Paris Diderot University; Sorbonne Paris-Cité; Paris France
| |
Collapse
|
14
|
van Otterdijk SD, Binder AM, Szarc vel Szic K, Schwald J, Michels KB. DNA methylation of candidate genes in peripheral blood from patients with type 2 diabetes or the metabolic syndrome. PLoS One 2017; 12:e0180955. [PMID: 28727822 PMCID: PMC5519053 DOI: 10.1371/journal.pone.0180955] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/23/2017] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The prevalence of type 2 diabetes (T2D) and the metabolic syndrome (MetS) is increasing and several studies suggested an involvement of DNA methylation in the development of these metabolic diseases. This study was designed to investigate if differential DNA methylation in blood can function as a biomarker for T2D and/or MetS. METHODS Pyrosequencing analyses were performed for the candidate genes KCNJ11, PPARγ, PDK4, KCNQ1, SCD1, PDX1, FTO and PEG3 in peripheral blood leukocytes (PBLs) from 25 patients diagnosed with only T2D, 9 patients diagnosed with T2D and MetS and 11 control subjects without any metabolic disorders. RESULTS No significant differences in gene-specific methylation between patients and controls were observed, although a trend towards significance was observed for PEG3. Differential methylation was observed between the groups in 4 out of the 42 single CpG loci located in the promoters regions of the genes FTO, KCNJ11, PPARγ and PDK4. A trend towards a positive correlation was observed for PEG3 methylation with HDL cholesterol levels. DISCUSSION Altered levels of DNA methylation in PBLs of specific loci might serve as a biomarker for T2D or MetS, although further investigation is required.
Collapse
Affiliation(s)
- Sanne D. van Otterdijk
- Institute for Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexandra M. Binder
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, United States of America
| | - Katarzyna Szarc vel Szic
- Institute for Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia Schwald
- Institute for Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
| | - Karin B. Michels
- Institute for Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, United States of America
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
15
|
de Luca A, Hankard R, Borys JM, Sinnett D, Marcil V, Levy E. Nutriepigenomics and malnutrition. Epigenomics 2017; 9:893-917. [DOI: 10.2217/epi-2016-0168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epigenetics is defined as the modulation of gene expression without changes to the underlying DNA sequence. Epigenetic alterations, as a consequence of in utero malnutrition, may play a role in susceptibility to develop adulthood diseases and inheritance. However, the mechanistic link between epigenetic modifications and abnormalities in nutrition remains elusive. This review provides an update on the association of suboptimal nutritional environment and the high propensity to produce adult-onset chronic illnesses with a particular focus on modifications in genome functions that occur without alterations to the DNA sequence. We will mention the drivers of the phenotype and pattern of epigenetic markers set down during the reprogramming along with novel preventative and therapeutic strategies. New knowledge of epigenetic alterations is opening a gate toward personalized medicine.
Collapse
Affiliation(s)
- Arnaud de Luca
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec H3T 1C5, Canada
- INSERM, U 1069, F-37044 Tours, France
| | - Regis Hankard
- INSERM, U 1069, F-37044 Tours, France
- François Rabelais University, F-37000 Tours, France
| | | | - Daniel Sinnett
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec H3T 1C5, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Valérie Marcil
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec H3T 1C5, Canada
- Department of Nutrition, Faculty of Medicine, University of Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Emile Levy
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec H3T 1C5, Canada
- EPODE International Network, F-75017 Paris, France
- Department of Nutrition, Faculty of Medicine, University of Montréal, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
16
|
Castillo-Fernandez JE, Loke YJ, Bass-Stringer S, Gao F, Xia Y, Wu H, Lu H, Liu Y, Wang J, Spector TD, Saffery R, Craig JM, Bell JT. DNA methylation changes at infertility genes in newborn twins conceived by in vitro fertilisation. Genome Med 2017; 9:28. [PMID: 28340599 PMCID: PMC5364659 DOI: 10.1186/s13073-017-0413-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 02/04/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The association of in vitro fertilisation (IVF) and DNA methylation has been studied predominantly at regulatory regions of imprinted genes and at just thousands of the ~28 million CpG sites in the human genome. METHODS We investigated the links between IVF and DNA methylation patterns in whole cord blood cells (n = 98) and cord blood mononuclear cells (n = 82) from newborn twins using genome-wide methylated DNA immunoprecipitation coupled with deep sequencing. RESULTS At a false discovery rate (FDR) of 5%, we identified one significant whole blood DNA methylation change linked to conception via IVF, which was located ~3 kb upstream of TNP1, a gene previously linked to male infertility. The 46 most strongly associated signals (FDR of 25%) included a second region in a gene also previously linked to infertility, C9orf3, suggesting that our findings may in part capture the effect of parental subfertility. Using twin modelling, we observed that individual-specific environmental factors appear to be the main overall contributors of methylation variability at the FDR 25% IVF-associated differentially methylated regions, although evidence for methylation heritability was also obtained at several of these regions. We replicated previous findings of differential methylation associated with IVF at the H19/IGF2 region in cord blood mononuclear cells, and we validated the signal at C9orf3 in monozygotic twins. We also explored the impact of intracytoplasmic sperm injection on the FDR 25% signals for potential effects specific to male or female infertility factors. CONCLUSIONS To our knowledge, this is the most comprehensive study of DNA methylation profiles at birth and IVF conception to date, and our results show evidence for epigenetic modifications that may in part reflect parental subfertility.
Collapse
Affiliation(s)
| | - Yuk Jing Loke
- Early Life Epigenetics, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Sebastian Bass-Stringer
- Early Life Epigenetics, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Fei Gao
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | | | - Jun Wang
- BGI-Shenzhen, Shenzhen, China.,King Abdulaziz University, Jeddah, 22254, Saudi Arabia.,Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark.,The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, SE1 7EH, London, UK.
| | - Richard Saffery
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia. .,Cancer, Disease and Developmental Epigenetics, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.
| | - Jeffrey M Craig
- Early Life Epigenetics, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC, Australia. .,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, SE1 7EH, London, UK.
| |
Collapse
|
17
|
Shojaei Saadi HA, Fournier É, Vigneault C, Blondin P, Bailey J, Robert C. Genome-wide analysis of sperm DNA methylation from monozygotic twin bulls. Reprod Fertil Dev 2017; 29:838-843. [DOI: 10.1071/rd15384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 12/03/2015] [Indexed: 12/23/2022] Open
Abstract
Monozygotic (MZ) twins are of great interest to elucidate the contributions of pre- and postnatal environmental factors on epigenetics in the expression of complex traits and diseases. Progeny testing recently revealed that MZ twin bulls do not necessarily lead to identical genetic merit estimates (i.e. breeding values). Therefore, to explain differences in offspring productivity of MZ twin bulls despite their identical genetic backgrounds, we hypothesised that paternal sperm epigenomes vary between MZ twin bulls. In the present study, semen characteristics and global sperm DNA methylome were profiled for four pairs of MZ twin bulls. Some MZ twin pairs had divergent semen quality (sperm morphology, motility and viability). Comparative genome-wide DNA methylome surveys were performed using methyl-sensitive enrichment and microarray identification. Between 2% and 10% of all probes (400 000) were differentially methylated between MZ twin pairs. In addition, there were 580 loci differentially methylated across all pairs of MZ twins. Furthermore, enrichment analysis indicated a significant enrichment for fertility associated quantitative trait loci (P = 0.033). In conclusion, differences in the sperm epigenome may contribute to incongruous diverging performances of daughters sired by bulls that are MZ twins.
Collapse
|
18
|
Sharing a Placenta is Associated With a Greater Similarity in DNA Methylation in Monochorionic Versus Dichorionic Twin Pars in Blood at Age 14. Twin Res Hum Genet 2016; 18:680-5. [PMID: 26678052 DOI: 10.1017/thg.2015.87] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Monozygotic (MZ) twins provide a natural system for investigating developmental plasticity and the potential epigenetic origins of disease. A major difference in the intrauterine environment between MZ pairs is whether they share a common placenta or have separate placentas. Using DNA methylation measured at >400,000 points in the genome on the Illumina HumanMethylation450 array, we demonstrate that the co-twins of MZ pairs (average age of 14) that shared a common placenta (n = 18 pairs) have more similar DNA methylation levels in blood throughout the genome relative to those with separate placentas (n = 16 pairs). Functional annotation of the genomic regions that show significantly different correlation between monochorionic (MC) and dichorionic (DC) MZ pairs found an over-representation of genes involved in the regulation of transcription, neuronal development, and cellular differentiation. These results support the idea that prenatal environmental exposures may have a lasting effect on an individual's epigenetic landscape, and the potential for these changes to have functional consequences.
Collapse
|
19
|
Novakovic B, Napier CE, Vryer R, Dimitriadis E, Manuelpillai U, Sharkey A, Craig JM, Reddel RR, Saffery R. DNA methylation mediated up-regulation of TERRA non-coding RNA is coincident with elongated telomeres in the human placenta. Mol Hum Reprod 2016; 22:791-799. [PMID: 27604461 DOI: 10.1093/molehr/gaw053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/01/2016] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION What factors regulate elongated telomere length in the human placenta? SUMMARY ANSWER Hypomethylation of TERRA promoters in the human placenta is associated with high TERRA expression, however, no clear mechanistic link between these phenomena and elongated telomere length in the human placenta was found. WHAT IS KNOWN ALREADY Human placenta tissue and trophoblasts show longer telomere lengths compared to gestational age-matched somatic cells. However, telomerase (hTERT) expression and activity in the placenta is low, suggesting a role for an alternative lengthening of telomeres (ALT). While ALT is observed in 10-15% of human cancers and in some mouse stem cells, ALT has never been reported in non-cancerous human tissues. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Human term placental tissue and matched cord blood mononuclear cells (CBMCs) were collected as part of the Peri/Postnatal Epigenetic Twins study (PETS). In addition, first trimester placental villi, purified cytotrophoblasts, choriocarcinoma cell lines and a panel of ALT-positive cancer cell lines were tested. Telomere length was determined using the Terminal Restriction Fragment (TRF) assay and a relative quantitative PCR method. DNA methylation levels at several CpG rich subtelomeric TERRA promoters were determined using bisulfite conversion and the SEQUENOM EpiTYPER platform. Expression of TERRA and hTERT was determined using quantitative RT-PCR. ALT was assessed using the C-circle assay (CCA). MAIN RESULTS AND THE ROLE OF CHANCE The human placenta tissue and purified first trimester trophoblasts showed low subtelomeric (TERRA) DNA methylation compared to matched CBMCs and other somatic cells. Interestingly placental TERRA methylation was lower than ALT-cancer cell lines, previously reported to be hypomethylated at these loci. Low TERRA methylation was associated with higher expression of TERRA RNA in placenta compared to matched CBMCs. Detectable levels of C-circles were observed in first trimester placental villi, but not term placenta, suggesting that the ALT mechanism may be active in specific placental cells in early gestation. C-circle analysis of purified first trimester trophoblasts and ALT-associated PML bodies (APB) staining of first trimester villi cross-sections failed to identify this specific cell type population. LIMITATIONS, REASONS FOR CAUTION While first trimester villi showed detectable levels of C-circles, these levels were very low compared with those observed in ALT-positive tumours and cell lines. This is consistent with a small sub-population of ALT-positive cells but this requires further investigation. Finally, no mechanistic link was established between TERRA DNA methylation, the presence of C-circles and longer telomere length. WIDER IMPLICATIONS OF THE FINDINGS Given the previously described role of TERRA ncRNA as a negative regulator of telomerase, the finding of elevated TERRA and long telomeres is counterintutive. ALT as a mechanism for telomere length maintenance has only been reported in certain human cancers, and recently in mouse embryonic stem cells and embryos. As with many aspects of cancer, it appears that ALT activity in tumours may be the inappropriate activation of a pathway found in very specific cell types in human development. Our data are the first supportive evidence for ALT in a non-cancerous human tissue, a result that requires further investigation and replication. The level of TERRA methylation in the human placenta is significantly lower than found in ALT cancer cell lines and somatic cells, raising the possibility of a novel mechanism in maintaining low methylation at subtelomeric regions. LARGE SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTERESTS This study was supported by NHMRC early career fellowship (B.N.), NHMRC Senior Research Fellowship (R.S.) and the Victoria Government Infrastructure Grant. R.R. holds a patent for the C-circle assay. No other conflicts declared.
Collapse
Affiliation(s)
- Boris Novakovic
- Murdoch Childrens Research Institute-Cancer and Disease Epigenetics, Royal Children's Hospital Flemington Road, Parkville, Melbourne, Victoria 3052, Australia
| | - Christine E Napier
- Cancer Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Regan Vryer
- Murdoch Childrens Research Institute-Cancer and Disease Epigenetics, Royal Children's Hospital Flemington Road, Parkville, Melbourne, Victoria 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville VIC 305 2
| | - Eva Dimitriadis
- Embryo Implantation Laboratory, Hudson Institute for Medical Research, Monash University, Clayton VIC 3168, Australia
| | - Ursula Manuelpillai
- Pregnancy Research Centre, Department of Perinatal Medicine, Royal Women's Hospital , Parkville, Victoria 3052, Australia.,Centre for Genetic Diseases, Hudson Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| | - Andrew Sharkey
- Department of Pathology and Centre for Trophoblast Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Jeffrey M Craig
- Department of Paediatrics, University of Melbourne, Parkville VIC 305 2.,Early Life Epigenetics, Murdoch Childrens Research Institute, Royal Children's Hospital , Parkville VIC 3052, Australia
| | - Roger R Reddel
- Cancer Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Richard Saffery
- Murdoch Childrens Research Institute-Cancer and Disease Epigenetics, Royal Children's Hospital Flemington Road, Parkville, Melbourne, Victoria 3052, Australia .,Department of Paediatrics, University of Melbourne, Parkville VIC 305 2
| |
Collapse
|
20
|
Temples HS, Willoughby D, Holaday B, Rogers CR, Wueste D, Bridges W, Saffery R, Craig JM. Breastfeeding and Growth of Children in the Peri/postnatal Epigenetic Twins Study (PETS): Theoretical Epigenetic Mechanisms. J Hum Lact 2016; 32:481-8. [PMID: 27009979 DOI: 10.1177/0890334416637594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/10/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND The prevalence of overweight infants and toddlers has increased by 60% in the past 30 years and is a significant contributor to diabetes, cardiovascular disease, and early morbidity and mortality. The World Health Organization's updated meta-analysis in 2013 observed an association between breastfeeding and a lower prevalence of obesity later in life. The purpose of this study was to assess the growth of children in a cohort of Australian twins to examine associations between duration of breastfeeding and growth at 18 months of age. Our hypothesis is that the anthropometric measurements of the participants will be greater with shorter duration of breastfeeding. METHODS Methods include using cross-sectional data from a cohort at the 18-month visit (n = 179) in the Peri/postnatal Epigenetics Twins Study (PETS) to assess the relationship between duration of breastfeeding and infant size at 18 months of age. Inclusion criteria were birth weight of more than 2000 grams and breastfed for less than 1 month, 1 to 3 months, or 4 to 6 months. RESULTS The analysis suggested that infants breastfed for 1 to 3 months were significantly larger than infants breastfed for 4 to 6 months in terms of mean body mass index (BMI) (0.61 kg/m(2); P = .02; 95% confidence interval [CI], 0.17-1.05), arm circumference (0.66 cm; P = .006; 95% CI, 0.26-1.06), and abdominal circumference (1.16 cm; P = .03; 95% CI, 0.26-2.06). The analysis also suggested that infants breastfed for less than 1 month were significantly larger than infants breastfed for 4 to 6 months in terms of mean arm circumference (0.72 cm; P = .009; 95% CI, 0.26-1.17). CONCLUSION Results suggest that supplementing with non-breast milk before 4 months of age was associated with an increased BMI, arm circumference, and abdominal circumference at 18 months of age. The mean BMI decreased from 85% to 65% when infants were breastfeeding for 4 to 6 months as compared to breastfeeding for 1 to 3 months. Breastfeeding for 4 to 6 months appeared to protect against the risk of obesity for the children in the PETS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Richard Saffery
- Department of Paediatrics, University of Melbourne, Melbourne, Australia Cancer, Disease and Developmental Epigenetics Group, Cell Biology, Development and Disease Theme, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Jeffrey M Craig
- Department of Paediatrics, University of Melbourne, Melbourne, Australia Early Life Epigenetics Group, Public Health Genes and Environment Theme, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia
| |
Collapse
|
21
|
Chung E, Cromby J, Papadopoulos D, Tufarelli C. Social epigenetics: a science of social science? ACTA ACUST UNITED AC 2016. [DOI: 10.1002/2059-7932.12019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Association of in vitro fertilization with global and IGF2/H19 methylation variation in newborn twins. J Dev Orig Health Dis 2016; 6:115-24. [PMID: 25857739 DOI: 10.1017/s2040174415000161] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In vitro fertilization (IVF) and its subset intracytoplasmic sperm injection (ICSI), are widely used medical treatments for conception. There has been controversy over whether IVF is associated with adverse short- and long-term health outcomes of offspring. As with other prenatal factors, epigenetic change is thought to be a molecular mediator of any in utero programming effects. Most studies focused on DNA methylation at gene-specific and genomic level, with only a few on associations between DNA methylation and IVF. Using buccal epithelium from 208 twin pairs from the Peri/Postnatal Epigenetic Twin Study (PETS), we investigated associations between IVF and DNA methylation on a global level, using the proxies of Alu and LINE-1 interspersed repeats in addition to two locus-specific regulatory regions within IGF2/H19, controlling for 13 potentially confounding factors. Using multiple correction testing, we found strong evidence that IVF-conceived twins have lower DNA methylation in Alu, and weak evidence of lower methylation in one of the two IGF2/H19 regulatory regions and LINE-1, compared with naturally conceived twins. Weak evidence of a relationship between ICSI and DNA methylation within IGF2/H19 regulatory region was found, suggesting that one or more of the processes associated with IVF/ICSI may contribute to these methylation differences. Lower within- and between-pair DNA methylation variation was also found in IVF-conceived twins for LINE-1, Alu and one IGF2/H19 regulatory region. Although larger sample sizes are needed, our results provide additional insight to the possible influence of IVF and ICSI on DNA methylation. To our knowledge, this is the largest study to date investigating the association of IVF and DNA methylation.
Collapse
|
23
|
Townsend ML, Riepsamen A, Georgiou C, Flood VM, Caputi P, Wright IM, Davis WS, Jones A, Larkin TA, Williamson MJ, Grenyer BFS. Longitudinal Intergenerational Birth Cohort Designs: A Systematic Review of Australian and New Zealand Studies. PLoS One 2016; 11:e0150491. [PMID: 26991330 PMCID: PMC4798594 DOI: 10.1371/journal.pone.0150491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/15/2016] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The longitudinal birth cohort design has yielded a substantial contribution to knowledge of child health and development. The last full review in New Zealand and Australia in 2004 identified 13 studies. Since then, birth cohort designs continue to be an important tool in understanding how intrauterine, infant and childhood development affect long-term health and well-being. This updated review in a defined geographical area was conducted to better understand the factors associated with successful quality and productivity, and greater scientific and policy contribution and scope. METHODS We adopted the preferred reporting items for systematic reviews and meta-analyses (PRISMA) approach, searching PubMed, Scopus, Cinahl, Medline, Science Direct and ProQuest between 1963 and 2013. Experts were consulted regarding further studies. Five inclusion criteria were used: (1) have longitudinally tracked a birth cohort, (2) have collected data on the child and at least one parent or caregiver (3) be based in Australia or New Zealand, (4) be empirical in design, and (5) have been published in English. RESULTS 10665 records were initially retrieved from which 23 birth cohort studies met the selection criteria. Together these studies recruited 91,196 participants, with 38,600 mothers, 14,206 fathers and 38,390 live births. Seventeen studies were located in Australia and six in New Zealand. Research questions initially focused on the perinatal period, but as studies matured, longer-term effects and outcomes were examined. CONCLUSIONS This review demonstrates the significant yield from this effort both in terms of scientific discovery and social policy impact. Further opportunities have been recognised with cross-study collaboration and pooling of data between established and newer studies and international studies to investigate global health determinants.
Collapse
Affiliation(s)
- Michelle L. Townsend
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Psychology, University of Wollongong, Wollongong, NSW, Australia
| | - Angelique Riepsamen
- School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales, Sydney, NSW, Australia
| | - Christos Georgiou
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Eastern Health, Melbourne, Victoria, Australia
- Monash University, Faculty of Medicine, Nursing and Health Services, Eastern Health Clinical School, Melbourne, Victoria, Australia
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Victoria M. Flood
- Faculty of Health Sciences, University of Sydney, Sydney, NSW, Australia
- St Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - Peter Caputi
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Psychology, University of Wollongong, Wollongong, NSW, Australia
| | - Ian M. Wright
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Shoalhaven Local Health District, NSW Health, Sydney, NSW, Australia
| | - Warren S. Davis
- Illawarra Shoalhaven Local Health District, NSW Health, Sydney, NSW, Australia
| | - Alison Jones
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Theresa A. Larkin
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Moira J. Williamson
- School of Nursing and Midwifery, Central Queensland University, Rockhampton, Queensland, Australia
| | - Brin F. S. Grenyer
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Psychology, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
24
|
Di Ciaula A. Type I diabetes in paediatric age in Apulia (Italy): Incidence and associations with outdoor air pollutants. Diabetes Res Clin Pract 2016; 111:36-43. [PMID: 26527558 DOI: 10.1016/j.diabres.2015.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 10/01/2015] [Accepted: 10/14/2015] [Indexed: 02/06/2023]
Abstract
AIM This study aimed to explore Type 1 diabetes (T1D) incidence and possible relations with specific air pollutants in a large population of children, during a wide time period. METHODS T1D rates and trends were examined (2001-2013, GAM and Joinpoint Regression analysis) by data on the first hospitalization in all children (0-14 years) living in Apulia (Southern Italy, average yearly population aged 0-14 years in the examined period: 631,275 subjects), and linked with levels of PM10, NOx, CO and ozone. RESULTS A total of 1501 children were first discharged in the selected area with a diagnosis of T1D. Incidence decreased from 48.5 (95% CI 43.3; 54.0, 2001) to 16.9 per 100,000 (95% CI 13.7; 20.6, 2013), with differences according to age at onset (constant at 0-4 years, continuously decreasing at 5-9 years, decreasing until 2003 at 10-14 years), and with a positive relation with PM10--but not ozone, NOx and CO average air levels. The OR was 1.037 (1.002; 1.074) in the high tertile of PM10 concentrations, and mean incidence was higher with PM10 levels in the highest, than in the medium/reference tertile. Mean age at T1D onset was linked with yearly PM10 and ozone air levels. CONCLUSIONS On a wide period, a stable or decreased incidence of T1D was evident in children with early- or later onset of disease, respectively. PM10 exposure significantly affects the incidence of T1D, which might be considered, at least in part, a preventable condition.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Division of Internal Medicine, Hospital of Bisceglie (ASL BAT), Bisceglie, Italy; International Society of Doctors for Environment (ISDE), Arezzo, Italy.
| |
Collapse
|
25
|
Ávila JGO, Echeverri I, de Plata CA, Castillo A. Impact of oxidative stress during pregnancy on fetal epigenetic patterns and early origin of vascular diseases. Nutr Rev 2015; 73:12-21. [PMID: 26024054 DOI: 10.1093/nutrit/nuu001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies have led scientists to postulate the developmental origins of health and disease hypothesis for noncommunicable diseases such as diabetes, cardiovascular diseases, hypertension, and obesity. However, the cellular and molecular mechanisms involved in the development of these diseases are not well understood. In various animal models, it has been observed that oxidative stress during pregnancy is associated with the early development of endothelial dysfunction in offspring. This phenomenon suggests that endothelial dysfunction may initiate in the uterus and could lead to increased risk of cardiovascular disease later in life. Currently, it is known that many of the fetal adaptive responses to environmental factors are mediated by epigenetic changes in the genome, especially by the degree of methylation in cytosines in the promoter regions of genes. These findings suggest that the establishment of a particular epigenetic pattern in the genome may be generated by oxidative stress.
Collapse
Affiliation(s)
- Jose Guillermo Ortega Ávila
- J.G. Ortega Ávila is with the Department of Physiological Sciences, Nutrition Group, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia and the Department of Basic Sciences, Research Group on Basic and Clinical Health Sciences, School of Medicine, Pontificia Universidad Javeriana, Cali, Colombia. I. Echeverri is with the Department of Physiological Sciences, Nutrition Group, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia and the Department of Basic Sciences, School of Medicine, Universidad ICESI, Cali, Colombia. C. Aguilar de Plata and A. Castillo are with the Department of Physiological Sciences, Nutrition Group, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia.
| | - Isabella Echeverri
- J.G. Ortega Ávila is with the Department of Physiological Sciences, Nutrition Group, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia and the Department of Basic Sciences, Research Group on Basic and Clinical Health Sciences, School of Medicine, Pontificia Universidad Javeriana, Cali, Colombia. I. Echeverri is with the Department of Physiological Sciences, Nutrition Group, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia and the Department of Basic Sciences, School of Medicine, Universidad ICESI, Cali, Colombia. C. Aguilar de Plata and A. Castillo are with the Department of Physiological Sciences, Nutrition Group, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia
| | - Cecilia Aguilar de Plata
- J.G. Ortega Ávila is with the Department of Physiological Sciences, Nutrition Group, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia and the Department of Basic Sciences, Research Group on Basic and Clinical Health Sciences, School of Medicine, Pontificia Universidad Javeriana, Cali, Colombia. I. Echeverri is with the Department of Physiological Sciences, Nutrition Group, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia and the Department of Basic Sciences, School of Medicine, Universidad ICESI, Cali, Colombia. C. Aguilar de Plata and A. Castillo are with the Department of Physiological Sciences, Nutrition Group, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia
| | - Andrés Castillo
- J.G. Ortega Ávila is with the Department of Physiological Sciences, Nutrition Group, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia and the Department of Basic Sciences, Research Group on Basic and Clinical Health Sciences, School of Medicine, Pontificia Universidad Javeriana, Cali, Colombia. I. Echeverri is with the Department of Physiological Sciences, Nutrition Group, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia and the Department of Basic Sciences, School of Medicine, Universidad ICESI, Cali, Colombia. C. Aguilar de Plata and A. Castillo are with the Department of Physiological Sciences, Nutrition Group, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia
| |
Collapse
|
26
|
DNA Methylation Changes in the IGF1R Gene in Birth Weight Discordant Adult Monozygotic Twins. Twin Res Hum Genet 2015; 18:635-46. [DOI: 10.1017/thg.2015.76] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Low birth weight (LBW) can have an impact on health outcomes in later life, especially in relation to pre-disposition to metabolic disease. Several studies suggest that LBW resulting from restricted intrauterine growth leaves a footprint on DNA methylation in utero, and this influence likely persists into adulthood. To investigate this further, we performed epigenome-wide association analyses of blood DNA methylation using Infinium HumanMethylation450 BeadChip profiles in 71 adult monozygotic (MZ) twin pairs who were extremely discordant for birth weight. A signal mapping to the IGF1R gene (cg12562232, p = 2.62 × 10−8), was significantly associated with birth weight discordance at a genome-wide false-discovery rate (FDR) of 0.05. We pursued replication in three additional independent datasets of birth weight discordant MZ pairs and observed the same direction of association, but the results were not significant. However, a meta-analysis across the four independent samples, in total 216 birth-weight discordant MZ twin pairs, showed a significant positive association between birth weight and DNA methylation differences at IGF1R (random-effects meta-analysis p = .04), and the effect was particularly pronounced in older twins (random-effects meta-analysis p = .008, 98 older birth-weight discordant MZ twin pairs). The results suggest that severe intra-uterine growth differences (birth weight discordance >20%) are associated with methylation changes in the IGF1R gene in adulthood, independent of genetic effects.
Collapse
|
27
|
A Genome-Wide Scan of DNA Methylation Markers for Distinguishing Monozygotic Twins. Twin Res Hum Genet 2015; 18:670-9. [PMID: 26500037 DOI: 10.1017/thg.2015.73] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Identification of individuals within pairs of monozygotic (MZ) twins remains unresolved using common forensic DNA typing technology. For some criminal cases involving MZ twins as suspects, the twins had to be released due to inability to identify which of the pair was the perpetrator. In this study, we performed a genome-wide scan on whole blood-derived DNA from four pairs of healthy phenotypically concordant MZ twins using the methylated DNA immunoprecipitation sequencing technology to identify candidate DNA methylation markers with capacity to distinguish MZ twins within a pair. We identified 38 differential methylation regions showing within-pair methylation differences in all four MZ pairs. These are all located in CpG islands, 17 of which are promoter-associated, 17 are intergenic islands, and four are intragenic islands. Genes associated with these markers are related with cell proliferation, differentiation, and growth and development, including zinc finger proteins, PRRX2, RBBP9, or are involved in G-protein signaling, such as the regulator of G-protein signaling 16. Further validation studies on additional MZ twins are now required to evaluate the broader utility of these 38 markers for forensic use.
Collapse
|
28
|
Abstract
Discriminating individuals within a pair of monozygotic (MZ) twins using genetic markers remains unresolved. This inability causes problems in criminal or paternity cases involving MZ twins as suspects or alleged fathers. Our previous study showed DNA methylation differences in interspersed repeat sequences such as Alu and LINE-1 within pairs of newborn MZ twins. To further evaluate the possible value of LINE-1 DNA methylation for discriminating MZ twins, this study investigated the LINE-1 DNA methylation of a large number of twins. We collected blood samples and buccal cell samples from 119 pairs of MZ and 57 pairs of dizygotic (DZ) twins. Genomic DNA was extracted and LINE-1 methylation level was detected using bisulfite pyrosequencing. The mean methylation level of the three CpG sites in the blood sample among the 176 unrelated individuals was 76.60% and 70.08% in buccal samples. This difference was significant, indicating the tissue specificity of LINE-1 DNA methylation. Among 119 pairs of MZ twins, 15 pairs could be discriminated according to the difference of CpG methylation level between them, which accounted for 12.61% of total number of MZ pairs. As for DZ twins, 10 pairs had significant differences between two individuals, which accounted for 17.54% of the total 57 DZ pairs. In conclusion, there are global DNA methylation differences within some healthy concordant monozygotic (MZ) twin pairs. LINE-1 DNA methylation might be a potential marker for helping to discriminate individuals within MZ twin pairs, and the tissue specificity must be considered in practice.
Collapse
|
29
|
Lévesque ML, Casey KF, Szyf M, Ismaylova E, Ly V, Verner MP, Suderman M, Brendgen M, Vitaro F, Dionne G, Boivin M, Tremblay RE, Booij L. Genome-wide DNA methylation variability in adolescent monozygotic twins followed since birth. Epigenetics 2015; 9:1410-21. [PMID: 25437055 DOI: 10.4161/15592294.2014.970060] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
DNA methylation patterns are characterized by highly conserved developmental programs, but allow for divergent gene expression resulting from stochastic epigenetic drift or divergent environments. Genome-wide methylation studies in monozygotic (MZ) twins are providing insight into the extent of epigenetic variation that occurs, irrespective of genotype. However, little is known about the variability of DNA methylation patterns in adolescence, a period involving significant and rapid physical, emotional, social, and neurodevelopmental change. Here, we assessed genome-wide DNA methylation using the 450 K Illumina BeadChip in a sample of 37 MZ twin pairs followed longitudinally since birth to investigate: 1) the extent of variation in DNA methylation in identical genetic backgrounds in adolescence and; 2) whether these variations are randomly distributed or enriched in particular functional pathways. We also assessed stability of DNA methylation over 3-6 months to distinguish stable trait-like and variable state-like genes. A pathway analysis found high within-pair variability in genes associated with development, cellular mechanisms, tissue and cell morphology, and various disorders. Test-retest analyses performed in a sub-sample of 8 twin pairs demonstrated enrichment in gene pathways involved in organismal development, cellular growth and proliferation, cell signaling, and particular disorders. The variability found in functional gene pathways may plausibly underlie phenotypic differences in this adolescent MZ twin sample. Furthermore, we assessed stability of methylation over 3-6 months and found that some genes were stable while others were unstable, suggesting that the methylome remains dynamic in adolescence and that dynamic sites tend to be organized in certain gene pathways.
Collapse
|
30
|
The CODATwins Project: The Cohort Description of Collaborative Project of Development of Anthropometrical Measures in Twins to Study Macro-Environmental Variation in Genetic and Environmental Effects on Anthropometric Traits. Twin Res Hum Genet 2015; 18:348-60. [PMID: 26014041 DOI: 10.1017/thg.2015.29] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For over 100 years, the genetics of human anthropometric traits has attracted scientific interest. In particular, height and body mass index (BMI, calculated as kg/m2) have been under intensive genetic research. However, it is still largely unknown whether and how heritability estimates vary between human populations. Opportunities to address this question have increased recently because of the establishment of many new twin cohorts and the increasing accumulation of data in established twin cohorts. We started a new research project to analyze systematically (1) the variation of heritability estimates of height, BMI and their trajectories over the life course between birth cohorts, ethnicities and countries, and (2) to study the effects of birth-related factors, education and smoking on these anthropometric traits and whether these effects vary between twin cohorts. We identified 67 twin projects, including both monozygotic (MZ) and dizygotic (DZ) twins, using various sources. We asked for individual level data on height and weight including repeated measurements, birth related traits, background variables, education and smoking. By the end of 2014, 48 projects participated. Together, we have 893,458 height and weight measures (52% females) from 434,723 twin individuals, including 201,192 complete twin pairs (40% monozygotic, 40% same-sex dizygotic and 20% opposite-sex dizygotic) representing 22 countries. This project demonstrates that large-scale international twin studies are feasible and can promote the use of existing data for novel research purposes.
Collapse
|
31
|
Low Birth Weight in MZ Twins Discordant for Birth Weight is Associated with Shorter Telomere Length and lower IQ, but not Anxiety/Depression in Later Life. Twin Res Hum Genet 2015; 18:198-209. [PMID: 25744032 DOI: 10.1017/thg.2015.3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Shorter telomere length (TL) has found to be associated with lower birth weight and with lower cognitive ability and psychiatric disorders. However, the direction of causation of these associations and the extent to which they are genetically or environmentally mediated are unclear. Within-pair comparisons of monozygotic (MZ) and dizygotic (DZ) twins can throw light on these questions. We investigated correlations of within pair differences in telomere length, IQ, and anxiety/depression in an initial sample from Brisbane (242 MZ pairs, 245 DZ same sex (DZSS) pairs) and in replication samples from Amsterdam (514 MZ pairs, 233 DZSS pairs) and Melbourne (19 pairs selected for extreme high or low birth weight difference). Intra-pair differences of birth weight and telomere length were significantly correlated in MZ twins, but not in DZSS twins. Greater intra-pair differences of telomere length were observed in the 10% of MZ twins with the greatest difference in birth weight compared to the bottom 90% in both samples and also in the Melbourne sample. Intra-pair differences of telomere length and IQ, but not of TL and anxiety/depression, were correlated in MZ twins, and to a smaller extent in DZSS twins. Our findings suggest that the same prenatal effects that reduce birth weight also influence telomere length in MZ twins. The association between telomere length and IQ is partly driven by the same prenatal effects that decrease birth weight.
Collapse
|
32
|
Twin studies advance the understanding of gene–environment interplay in human nutrigenomics. Nutr Res Rev 2014; 27:242-51. [DOI: 10.1017/s095442241400016x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Investigations into the genetic architecture of diet–disease relationships are particularly relevant today with the global epidemic of obesity and chronic disease. Twin studies have demonstrated that genetic makeup plays a significant role in a multitude of dietary phenotypes such as energy and macronutrient intakes, dietary patterns, and specific food group intakes. Besides estimating heritability of dietary assessment, twins provide a naturally unique, case–control experiment. Due to their shared upbringing, matched genes and sex (in the case of monozygotic (MZ) twin pairs), and age, twins provide many advantages over classic epidemiological approaches. Future genetic epidemiological studies could benefit from the twin approach particularly where defining what is ‘normal’ is problematic due to the high inter-individual variability underlying metabolism. Here, we discuss the use of twins to generate heritability estimates of food intake phenotypes. We then highlight the value of discordant MZ pairs to further nutrition research through discovery and validation of biomarkers of intake and health status in collaboration with cutting-edge omics technologies.
Collapse
|
33
|
Abstract
Epigenetics is one of the most rapidly expanding fields in the life sciences. Its rise is frequently framed as a revolutionary turn that heralds a new epoch both for gene-based epistemology and for the wider discourse on life that pervades knowledge-intensive societies of the molecular age. The fundamentals of this revolution remain however to be scrutinized, and indeed the very contours of what counts as 'epigenetic' are often blurred. This is reflected also in the mounting discourse on the societal implications of epigenetics, in which vast expectations coexist with significant uncertainty about what aspects of this science are most relevant for politics or policy alike. This is therefore a suitable time to reflect on the directions that social theory could most productively take in the scrutiny of this revolution. Here we take this opportunity in both its scholarly and normative dimension, that is, proposing a roadmap for social theorizing on epigenetics that does not shy away from, and indeed hopefully guides, the framing of its most socially relevant outputs. To this end, we start with an epistemological reappraisal of epigenetic discourse that valorizes the blurring of meanings as a critical asset for the field and privileged analytical entry point. We then propose three paths of investigation. The first looks at the structuring elements of controversies and visions around epigenetics. The second probes the mutual constitution between the epigenetic reordering of living phenomena and the normative settlements that orient individual and collective responsibilities. The third highlights the material import of epigenetics and the molecularization of culture that it mediates. We suggest that these complementary strands provide both an epistemically and socially self-reflective framework to advance the study of epigenetics as a molecular juncture between nature and nurture and thus as the new critical frontier in the social studies of the life sciences.
Collapse
Affiliation(s)
- Maurizio Meloni
- School of Sociology and Social Policy, University of Nottingham, Law and Social Sciences Building, University Park, Nottingham NG7 2RD UK
- Honorary, College of Social Sciences and International Studies, University of Exeter, EX4 4RJ, Exeter, UK
| | - Giuseppe Testa
- European Institute of Oncology, Via Adamello 16, Milan 20139, Italy
| |
Collapse
|
34
|
DNA methylation: the pivotal interaction between early-life nutrition and glucose metabolism in later life. Br J Nutr 2014; 112:1850-7. [PMID: 25327140 DOI: 10.1017/s0007114514002827] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Traditionally, it has been widely acknowledged that genes together with adult lifestyle factors determine the risk of developing some metabolic diseases such as insulin resistance, obesity and diabetes mellitus in later life. However, there is now substantial evidence that prenatal and early-postnatal nutrition play a critical role in determining susceptibility to these diseases in later life. Maternal nutrition has historically been a key determinant for offspring health, and gestation is the critical time window that can affect the growth and development of offspring. The Developmental Origins of Health and Disease (DOHaD) hypothesis proposes that exposures during early life play a critical role in determining the risk of developing metabolic diseases in adulthood. Currently, there are substantial epidemiological studies and experimental animal models that have demonstrated that nutritional disturbances during the critical periods of early-life development can significantly have an impact on the predisposition to developing some metabolic diseases in later life. The hypothesis that epigenetic mechanisms may link imbalanced early-life nutrition with altered disease risk has been widely accepted in recent years. Epigenetics can be defined as the study of heritable changes in gene expression that do not involve alterations in the DNA sequence. Epigenetic processes play a significant role in regulating tissue-specific gene expression, and hence alterations in these processes may induce long-term changes in gene function and metabolism that persist throughout the life course. The present review focuses on how nutrition in early life can alter the epigenome, produce different phenotypes and alter disease susceptibilities, especially for impaired glucose metabolism.
Collapse
|
35
|
Reamon-Buettner SM, Buschmann J, Lewin G. Identifying placental epigenetic alterations in an intrauterine growth restriction (IUGR) rat model induced by gestational protein deficiency. Reprod Toxicol 2014; 45:117-24. [PMID: 24607647 DOI: 10.1016/j.reprotox.2014.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/04/2014] [Accepted: 02/26/2014] [Indexed: 12/13/2022]
Abstract
Poor maternal nutrition during gestation can lead to intrauterine growth retardation (IUGR), a main cause of low birth weight associated with high neonatal morbidity and mortality. Such early uterine environmental exposures can impact the neonatal epigenome to render later-in-life disease susceptibility. We established in Wistar Han rats a mild IUGR model induced by gestational protein deficiency (i.e. 9% crude protein in low protein diet vs. 21% in control, from GD 0 to 21) to identify alterations in gene expression and methylation patterns in certain genes implicated in human IUGR or in placental development. We found differential gene expression of Wnt2 and Dlk1 between IUGR and control. Notably, Wnt2 exhibited significant decrease while Dlk1 increase in IUGR placentas, correlating to decrease in fetal and placental weight. Methylation patterns encompassing 30 CpGs in the Wnt2 promoter region revealed variability in both IUGR and control placentas, but a site-specific hypomethylation was evident in IUGR placentas. Our present findings further support a key role of maternal gestational nutrition in defining the neonatal epigenome.
Collapse
Affiliation(s)
- Stella Marie Reamon-Buettner
- Toxicology and Environmental Hygiene, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs Strasse 1, 30625 Hannover, Germany.
| | - Jochen Buschmann
- Toxicology and Environmental Hygiene, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs Strasse 1, 30625 Hannover, Germany
| | - Geertje Lewin
- Toxicology and Environmental Hygiene, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
36
|
Novakovic B, Ryan J, Pereira N, Boughton B, Craig JM, Saffery R. Postnatal stability, tissue, and time specific effects of AHRR methylation change in response to maternal smoking in pregnancy. Epigenetics 2013; 9:377-86. [PMID: 24270552 DOI: 10.4161/epi.27248] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The intrauterine environment has the potential to "program" the developing fetus in a way that can be potentially deleterious to later health. While in utero environmental/stochastic factors are known to influence DNA methylation profile at birth, it has been difficult to assign specific examples of epigenetic variation to specific environmental exposures. Recently, several studies have linked exposure to smoking with DNA methylation change in the aryl hydrocarbon receptor repressor (AHRR) gene in blood. This includes hypomethylation of AHRR in neonatal blood in response to maternal smoking in pregnancy. The role of AHRR as a negative regulator of pathways involved in pleiotropic responses to environmental contaminants raises the possibility that smoking-induced hypomethylation is an adaptive response to an adverse in utero environmental exposure. However, the tissue specificity of the response to maternal smoking, and the stability of the methylation changes early in life remain to be determined. In this study we analyzed AHRR methylation in three cell types-cord blood mononuclear cells (CBMCs), buccal epithelium, and placenta tissue-from newborn twins of mothers who smoked throughout pregnancy and matched controls. Further, we explored the postnatal stability of this change at 18 months. Our results confirm the previous association between maternal smoking and AHRR methylation in neonatal blood. In addition, this study expands the region of AHRR methylation altered in response to maternal smoking during pregnancy and reveals the tissue-specific nature of epigenetic responses to environmental exposures in utero. Further, the evidence for postnatal stability of smoking-induced epigenetic change supports a role for epigenetics as a mediator of long-term effects of specific in utero exposures in humans. Longitudinal analysis of further specific exposures in larger cohorts is required to examine the extent of this phenomenon in humans.
Collapse
Affiliation(s)
- Boris Novakovic
- Cancer, Disease and Developmental Epigenetics; Murdoch Childrens Research Institute; Royal Children's Hospital; Parkville, VIC Australia
| | - Joanne Ryan
- Cancer, Disease and Developmental Epigenetics; Murdoch Childrens Research Institute; Royal Children's Hospital; Parkville, VIC Australia; Department of Paediatrics; University of Melbourne; Parkville, VIC Australia
| | - Natalie Pereira
- Metabolomics Australia; School of Botany; The University of Melbourne; Parkville, VIC Australia
| | - Berin Boughton
- Metabolomics Australia; School of Botany; The University of Melbourne; Parkville, VIC Australia
| | - Jeffrey M Craig
- Department of Paediatrics; University of Melbourne; Parkville, VIC Australia; Early Life Epigenetics; Murdoch Childrens Research Institute; Royal Children's Hospital; Parkville, VIC Australia; Department of Paediatrics; University of Melbourne; Parkville, VIC Australia
| | - Richard Saffery
- Cancer, Disease and Developmental Epigenetics; Murdoch Childrens Research Institute; Royal Children's Hospital; Parkville, VIC Australia; Department of Paediatrics; University of Melbourne; Parkville, VIC Australia
| |
Collapse
|
37
|
Anderson CM, Ralph JL, Wright ML, Linggi B, Ohm JE. DNA methylation as a biomarker for preeclampsia. Biol Res Nurs 2013; 16:409-20. [PMID: 24165327 DOI: 10.1177/1099800413508645] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Preeclampsia contributes significantly to pregnancy-associated morbidity and mortality as well as future risk of cardiovascular disease in mother and offspring, and preeclampsia in offspring. The lack of reliable methods for early detection limits the opportunities for prevention, diagnosis, and timely treatment. PURPOSE The purpose of this study was to explore distinct DNA methylation patterns associated with preeclampsia in both maternal cells and fetal-derived tissue that represent potential biomarkers to predict future preeclampsia and inheritance in children. METHOD A convenience sample of nulliparous women (N = 55) in the first trimester of pregnancy was recruited for this prospective study. Genome-wide DNA methylation was quantified in first-trimester maternal peripheral white blood cells and placental chorionic tissue from normotensive women and those with preeclampsia (n = 6/group). RESULTS Late-onset preeclampsia developed in 12.7% of women. Significant differences in DNA methylation were identified in 207 individual linked cytosine and guanine (CpG) sites in maternal white blood cells collected in the first trimester (132 sites with gain and 75 sites with loss of methylation), which were common to approximately 75% of the differentially methylated CpG sites identified in chorionic tissue of fetal origin. CONCLUSION This study is the first to identify maternal epigenetic targets and common targets in fetal-derived tissue that represent putative biomarkers for early detection and heritable risk of preeclampsia. Findings may pave the way for diagnosis of preeclampsia prior to its clinical presentation and acute damaging effects, and the potential for prevention of the detrimental long-term sequelae.
Collapse
Affiliation(s)
- Cindy M Anderson
- College of Nursing, The Ohio State University, Columbus, Ohio, USA
| | - Jody L Ralph
- Department of Nursing, College of Nursing and Professional Disciplines, University of North Dakota, Grand Forks, ND, USA
| | - Michelle L Wright
- Department of Nursing, College of Nursing and Professional Disciplines, University of North Dakota, Grand Forks, ND, USA
| | - Bryan Linggi
- Pacific Northwest National Laboratory, U.S. Department of Energy, Richland, WA, USA
| | - Joyce E Ohm
- Department of Biochemistry and Microbiology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
38
|
Touwslager RNH, Gielen M, Tan FES, Mulder ALM, Gerver WJM, Zimmermann LJ, Houben AJHM, Zeegers MP, Derom C, Vlietinck R, Maes HH, Stehouwer CDA, Thomis M. Genetic, maternal and placental factors in the association between birth weight and physical fitness: a longitudinal twin study. PLoS One 2013; 8:e76423. [PMID: 24194838 PMCID: PMC3806789 DOI: 10.1371/journal.pone.0076423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 08/26/2013] [Indexed: 01/13/2023] Open
Abstract
Background Adult cardiorespiratory fitness and muscle strength are related to all-cause and cardiovascular mortality. Both are possibly related to birth weight, but it is unclear what the importance is of genetic, maternal and placental factors in these associations. Design Peak oxygen uptake and measures of strength, flexibility and balance were obtained yearly during adolescence (10–18 years) in 114 twin pairs in the Leuven Longitudinal Twin Study. Their birth weights had been collected prospectively within the East Flanders Prospective Twin Survey. Results We identified linear associations between birth weight and adolescent vertical jump (b = 1.96 cm per kg birth weight, P = 0.02), arm pull (b = 1.85 kg per kg birth weight P = 0.03) and flamingo balance (b = −1.82 attempts to stand one minute per kg birth weight, P = 0.03). Maximum oxygen uptake appeared to have a U-shaped association with birth weight (the smallest and largest children had the lowest uptake, P = 0.01), but this association was no longer significant after adjustment for parental BMI. Using the individual twin’s deviation from his own twin pair’s average birth weight, we found positive associations between birth weight and adolescent vertical jump (b = 3.49, P = 0.0007) and arm pull (b = 3.44, P = 0.02). Δ scores were calculated within the twin pairs as first born twin minus second born twin. Δ birth weight was associated with Δ vertical jump within MZ twin pairs only (b = 2.63, P = 0.009), which indicates importance of placental factors. Conclusions We found evidence for an association between adolescent physical performance (strength, balance and possibly peak oxygen uptake) and birth weight. The associations with vertical jump and arm pull were likely based on individual, more specifically placental (in the case of vertical jump) factors. Our results should be viewed as hypothesis-generating and need confirmation, but potentially support preventive strategies to optimize birth weight, for example via placental function, to target later fitness and health.
Collapse
Affiliation(s)
- Robbert N. H. Touwslager
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Oncology and Developmental Biology, Maastricht, The Netherlands
- Nutrition and Toxicology Research Institute Maastricht, Maastricht, The Netherlands
- * E-mail:
| | - Marij Gielen
- Nutrition and Toxicology Research Institute Maastricht, Maastricht, The Netherlands
- Section of Complex Genetics, Department of Genetics and Cell Biology, Maastricht University, Maastricht, The Netherlands
| | - Frans E. S. Tan
- Department of Methodology and Statistics, Maastricht University, Maastricht, The Netherlands
- Care and Public Health Research Institute, Maastricht, The Netherlands
| | - Antonius L. M. Mulder
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Oncology and Developmental Biology, Maastricht, The Netherlands
| | - Willem J. M. Gerver
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Oncology and Developmental Biology, Maastricht, The Netherlands
| | - Luc J. Zimmermann
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Oncology and Developmental Biology, Maastricht, The Netherlands
| | - Alfons J. H. M. Houben
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Maurice P. Zeegers
- Nutrition and Toxicology Research Institute Maastricht, Maastricht, The Netherlands
- Section of Complex Genetics, Department of Genetics and Cell Biology, Maastricht University, Maastricht, The Netherlands
| | - Catherine Derom
- Department for Human Genetics, Faculty of Medicine, Catholic University of Leuven, Leuven, Belgium
| | - Robert Vlietinck
- Department for Human Genetics, Faculty of Medicine, Catholic University of Leuven, Leuven, Belgium
| | - Hermine H. Maes
- Department of Human and Molecular Genetics, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Coen D. A. Stehouwer
- Nutrition and Toxicology Research Institute Maastricht, Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Martine Thomis
- Department of Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW This review summarizes recent findings in the epigenetics of vascular cells and discusses the new challenges for therapeutic strategies of cardiovascular diseases. RECENT FINDINGS There is emerging optimism that epigenetic mechanisms can provide the missing link to connect (epi)genomes with the cause of complex diseases. Environmental factors like intrauterine conditions during fetal development appear to preprogram humans for complex diseases. The purpose of this review is to summarize the newest results about the inheritable epigenetic features of cardiovascular diseases. Also, the recently discovered role of small RNAs in epigenetic gene regulation is discussed. SUMMARY Epigenetic mechanisms of gene regulation will likely become major determinants in the pathogenesis of complex diseases and may offer new opportunities for the treatment of these diseases.
Collapse
Affiliation(s)
- Mikko P Turunen
- Department of Biotechnology and Molecular Medicine, A.I.Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | | |
Collapse
|
40
|
Abstract
The epigenome has been heralded as a key 'missing piece' of the aetiological puzzle for complex phenotypes across the biomedical sciences. The standard research approaches developed for genetic epidemiology, however, are not necessarily appropriate for epigenetic studies of common disease. Here, we discuss the optimal execution of population-based studies of epigenetic variation, which will contribute to the emerging field of 'epigenetic epidemiology' and emphasize the importance of establishing a causal role in pathology for disease-associated epigenetic changes. We propose that improved understanding of the molecular mechanisms underlying human health and disease are best achieved through carrying out studies of epigenetics in populations as a part of an integrated functional genomics strategy.
Collapse
|
41
|
Kunio M, Yang C, Minakuchi Y, Ohori K, Soutome M, Hirasawa T, Kazuki Y, Adachi N, Suzuki S, Itoh M, Goto YI, Andoh T, Kurosawa H, Akamatsu W, Ohyama M, Okano H, Oshimura M, Sasaki M, Toyoda A, Kubota T. Comparison of Genomic and Epigenomic Expression in Monozygotic Twins Discordant for Rett Syndrome. PLoS One 2013; 8:e66729. [PMID: 23805272 PMCID: PMC3689680 DOI: 10.1371/journal.pone.0066729] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/10/2013] [Indexed: 12/12/2022] Open
Abstract
Monozygotic (identical) twins have been widely used in genetic studies to determine the relative contributions of heredity and the environment in human diseases. Discordance in disease manifestation between affected monozygotic twins has been attributed to either environmental factors or different patterns of X chromosome inactivation (XCI). However, recent studies have identified genetic and epigenetic differences between monozygotic twins, thereby challenging the accepted experimental model for distinguishing the effects of nature and nurture. Here, we report the genomic and epigenomic sequences in skin fibroblasts of a discordant monozygotic twin pair with Rett syndrome, an X-linked neurodevelopmental disorder characterized by autistic features, epileptic seizures, gait ataxia and stereotypical hand movements. The twins shared the same de novo mutation in exon 4 of the MECP2 gene (G269AfsX288), which was paternal in origin and occurred during spermatogenesis. The XCI patterns in the twins did not differ in lymphocytes, skin fibroblasts, and hair cells (which originate from ectoderm as does neuronal tissue). No reproducible differences were detected between the twins in single nucleotide polymorphisms (SNPs), insertion-deletion polymorphisms (indels), or copy number variations. Differences in DNA methylation between the twins were detected in fibroblasts in the upstream regions of genes involved in brain function and skeletal tissues such as Mohawk Homeobox (MKX), Brain-type Creatine Kinase (CKB), and FYN Tyrosine Kinase Protooncogene (FYN). The level of methylation in these upstream regions was inversely correlated with the level of gene expression. Thus, differences in DNA methylation patterns likely underlie the discordance in Rett phenotypes between the twins.
Collapse
Affiliation(s)
- Miyake Kunio
- Department of Epigenetic Medicine, Faculty of Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Chunshu Yang
- Department of Epigenetic Medicine, Faculty of Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Yohei Minakuchi
- Comparative Genomics Laboratory, Center for Information Biology, National Institute of Genetics, Mishima, Japan
| | - Kenta Ohori
- Department of Epigenetic Medicine, Faculty of Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Masaki Soutome
- Department of Epigenetic Medicine, Faculty of Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Takae Hirasawa
- Department of Epigenetic Medicine, Faculty of Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Yasuhiro Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Japan
| | - Noboru Adachi
- Department of Legal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Seiko Suzuki
- Department of Child Neurology, National Center Hospital for Mental, Nervous, and Muscular Disorders, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masayuki Itoh
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yu-ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomoko Andoh
- Department of Biotechnology, Faculty of Life and Environmental Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Japan
| | - Hiroshi Kurosawa
- Department of Biotechnology, Faculty of Life and Environmental Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Japan
| | - Wado Akamatsu
- Department of Physiology, Keio University School of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Manabu Ohyama
- Department of Dermatology, Keio University School of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mitsuo Oshimura
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Japan
| | - Masayuki Sasaki
- Department of Child Neurology, National Center Hospital for Mental, Nervous, and Muscular Disorders, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Center for Information Biology, National Institute of Genetics, Mishima, Japan
| | - Takeo Kubota
- Department of Epigenetic Medicine, Faculty of Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| |
Collapse
|
42
|
Di Ciaula A, Wang DQH, Bonfrate L, Portincasa P. Current views on genetics and epigenetics of cholesterol gallstone disease. CHOLESTEROL 2013; 2013:298421. [PMID: 23691293 PMCID: PMC3649201 DOI: 10.1155/2013/298421] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/06/2013] [Accepted: 03/20/2013] [Indexed: 02/07/2023]
Abstract
Cholesterol gallstone disease, one of the commonest digestive diseases in western countries, is induced by an imbalance in cholesterol metabolism, which involves intestinal absorption, hepatic biosynthesis, and biliary output of cholesterol, and its conversion to bile acids. Several components of the metabolic syndrome (e.g., obesity, type 2 diabetes, dyslipidemia, and hyperinsulinemia) are also well-known risk factors for gallstones, suggesting the existence of interplay between common pathophysiological pathways influenced by insulin resistance, genetic, epigenetic, and environmental factors. Cholesterol gallstones may be enhanced, at least in part, by the abnormal expression of a set of the genes that affect cholesterol homeostasis and lead to insulin resistance. Additionally, epigenetic mechanisms (mainly DNA methylation, histone acetylation/deacetylation, and noncoding microRNAs) may modify gene expression in the absence of an altered DNA sequence, in response to different lithogenic environmental stimuli, such as diet, lifestyle, pollutants, also occurring in utero before birth. In this review, we will comment on various steps of the pathogenesis of cholesterol gallstones and interaction between environmental and genetic factors. The epigenomic approach may offer new options for therapy of gallstones and better possibilities for primary prevention in subjects at risk.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- 1Division of Internal Medicine Hospital of Bisceglie, 76011 Bisceglie, Italy
| | - David Q.-H. Wang
- 2Saint Louis University School of Medicine, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Edward Doisy Research Center, St. Louis, MO 63104, USA
| | - Leonilde Bonfrate
- 3Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University “Aldo Moro“ of Bari Medical School, 70124 Bari, Italy
| | - Piero Portincasa
- 3Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University “Aldo Moro“ of Bari Medical School, 70124 Bari, Italy
- 4European Society for Clinical Investigation (ESCI), 3584 CJ Utrecht, The Netherlands
- *Piero Portincasa:
| |
Collapse
|