1
|
Dai Y, Zhu B, Yan X, Xie X, Zhan Z, Lv Y. Iridium Isotope Tag-Assisted LC-MS Method for Global Profiling and Quantification of Nonvolatile Serum Fatty Acids in Nonalcoholic Fatty Liver Mice. Anal Chem 2025. [PMID: 40150933 DOI: 10.1021/acs.analchem.4c05310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Highly accurate and sensitive measurements of fatty acids (FAs) in biological samples are essential for advancing our understanding of their diverse biofunctions. In this work, based on the characteristic isotope pattern of iridium (191/193Ir), we employed an iridium-encoded amine (Ir-NH2) as the derivatization reagent to establish a selective and sensitive liquid chromatography-mass spectrometry (LC-MS) method for rapid identification and accurate quantification of FAs in biological samples. Upon derivatization, nonvolatile FAs were transformed into amide derivatives tagged with a charged iridium tag, exhibiting improved sensitivity and selectivity in the electrospray ionization (ESI) positive ion mode. By leveraging the unique 2.002 Da mass shift and the 3:5 peak intensity ratio from the natural 191Ir and 193Ir isotopes, we can rapidly and efficiently screen the potential carboxyl-containing metabolites from biological samples. Compared to other existing methods, our technique offers higher sensitivity, better signal-to-noise ratio, lower detection limit (1.2-8.4 pg/mL), and easier quantification due to the clear identification of iridium-tagged derivatives. With this method, a total of 58 FAs, including both saturated and unsaturated types, were detected in mice serum lipid extracts, with carbon chain lengths varying from C9 to C24. More importantly, this method was successfully employed for global profiling of nonvolatile serum FAs from mice with nonalcoholic fatty liver disease (NAFLD), providing a novel means for detecting them and offering new avenues for exploring their functional roles and disease associations.
Collapse
Affiliation(s)
- Yongcheng Dai
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Beicheng Zhu
- Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Xueting Yan
- Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Xiaobo Xie
- Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Zixuan Zhan
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
2
|
Revol-Cavalier J, Quaranta A, Newman JW, Brash AR, Hamberg M, Wheelock CE. The Octadecanoids: Synthesis and Bioactivity of 18-Carbon Oxygenated Fatty Acids in Mammals, Bacteria, and Fungi. Chem Rev 2025; 125:1-90. [PMID: 39680864 PMCID: PMC11719350 DOI: 10.1021/acs.chemrev.3c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The octadecanoids are a broad class of lipids consisting of the oxygenated products of 18-carbon fatty acids. Originally referring to production of the phytohormone jasmonic acid, the octadecanoid pathway has been expanded to include products of all 18-carbon fatty acids. Octadecanoids are formed biosynthetically in mammals via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) activity, as well as nonenzymatically by photo- and autoxidation mechanisms. While octadecanoids are well-known mediators in plants, their role in the regulation of mammalian biological processes has been generally neglected. However, there have been significant advancements in recognizing the importance of these compounds in mammals and their involvement in the mediation of inflammation, nociception, and cell proliferation, as well as in immuno- and tissue modulation, coagulation processes, hormone regulation, and skin barrier formation. More recently, the gut microbiome has been shown to be a significant source of octadecanoid biosynthesis, providing additional biosynthetic routes including hydratase activity (e.g., CLA-HY, FA-HY1, FA-HY2). In this review, we summarize the current field of octadecanoids, propose standardized nomenclature, provide details of octadecanoid preparation and measurement, summarize the phase-I metabolic pathway of octadecanoid formation in mammals, bacteria, and fungi, and describe their biological activity in relation to mammalian pathophysiology as well as their potential use as biomarkers of health and disease.
Collapse
Affiliation(s)
- Johanna Revol-Cavalier
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Alessandro Quaranta
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - John W. Newman
- Western
Human Nutrition Research Center, Agricultural
Research Service, USDA, Davis, California 95616, United States
- Department
of Nutrition, University of California, Davis, Davis, California 95616, United States
- West
Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Alan R. Brash
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Mats Hamberg
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Craig E. Wheelock
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Department
of Respiratory Medicine and Allergy, Karolinska
University Hospital, Stockholm SE-141-86, Sweden
| |
Collapse
|
3
|
Wang Z, Li M, Xu S, Sun L, Li L. High-throughput relative quantification of fatty acids by 12-plex isobaric labeling and microchip capillary electrophoresis - Mass spectrometry. Anal Chim Acta 2024; 1318:342905. [PMID: 39067909 PMCID: PMC11299455 DOI: 10.1016/j.aca.2024.342905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/23/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Fatty acids (FAs) are essential cellular components and play important roles in various biological processes. Importantly, FAs produced by microorganisms from renewable sugars are considered sustainable substrates for biodiesels and oleochemicals. Their complex structures and diverse functional roles in biochemical processes necessitate the development of efficient and accurate methods for their quantitative analysis. RESULTS Here, we developed a novel method for relative quantification of FAs by combining 12-plex isobaric N,N-dimethyl leucine-derivatized ethylenediamine (DiLeuEN) labeling and microchip capillary electrophoresis-mass spectrometry (CE-MS). This method enables simultaneous quantification of 12 samples in a single MS analysis. DiLeuEN labeling introduced tertiary amine center structure into FAs, which makes them compatible with the positive mode separation of commercial microchip CE systems and further improves the sensitivity. The CE separation parameters were optimized, and the quantification accuracy was assessed using FA standards. Microchip CE-MS detection exhibited high sensitivity with a femtomole level detection limit and a total analysis time within 8 min. Finally, the applicability of our method to complex biological samples was demonstrated by analyzing FAs produced by four industrially relevant yeast strains (Saccharomyces cerevisiae, Yarrowia lipolytica YB-432, Yarrowia lipolytica Po1f and Rhodotorula glutinis). The analysis time for each sample is less than 1 min. SIGNIFICANCE This work addresses the current challenges in the field by introducing a method that combines microchip-based capillary electrophoresis separation with multiplex isobaric labeling. Our method not only offers remarkable sensitivity and rapid analysis speed but also the capability to quantify fatty acids across multiple samples simultaneously, which holds significant potential for extensive application in FA quantitative studies in diverse research areas, promising an enhanced understanding of FA functions and mechanisms.
Collapse
Affiliation(s)
- Zicong Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Miyang Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Shuling Xu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Liang Sun
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA; Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
4
|
Shenault DM, Fabijanczuk KC, Murtada R, Finn S, Gonzalez LE, Gao J, McLuckey SA. Gas-Phase Ion/Ion Reactions to Enable Radical-Directed Dissociation of Fatty Acid Ions: Application to Localization of Methyl Branching. Anal Chem 2024; 96:3389-3401. [PMID: 38353412 DOI: 10.1021/acs.analchem.3c04510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Methyl branching on the carbon chains of fatty acids and fatty esters is among the structural variations encountered with fatty acids and fatty esters. Branching in fatty acid/ester chains is particularly prominent in bacterial species and, for example, in vernix caseosa and sebum. The distinction of branched chains from isomeric straight-chain species and the localization of branching can be challenging to determine by mass spectrometry (MS). Condensed-phase derivatization strategies, often used in conjunction with separations, are most commonly used to address the identification and characterization of branched fatty acids. In this work, a gas-phase ion/ion strategy is presented that obviates condensed-phase derivatization and introduces a radical site into fatty acid ions to facilitate radical-directed dissociation (RDD). The gas-phase approach is also directly amenable to fatty acid anions generated via collision-induced dissociation from lipid classes that contain fatty esters. Specifically, divalent magnesium complexes bound to two terpyridine ligands that each incorporate a ((2,2,6,6-tetramethyl-1-piperidine-1-yl)oxy) (TEMPO) moiety are used to charge-invert fatty acid anions. Following the facile loss of one of the ligands and the TEMPO group of the remaining ligand, a radical site is introduced into the complex. Subsequent collision-induced dissociation (CID) of the complex exhibits preferred cleavages that localize the site(s) of branching. The approach is illustrated with iso-, anteiso-, and isoprenoid branched-chain fatty acids and an intact glycerophospholipid and is applied to a mixture of branched- and straight-chain fatty acids derived from Bacillus subtilis.
Collapse
Affiliation(s)
- De'Shovon M Shenault
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kimberly C Fabijanczuk
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rayan Murtada
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Shane Finn
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - L Edwin Gonzalez
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinshan Gao
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Li Y, Bai J, Tseng K, Zhang X, Zhang L, Zhang J, Sun W, Guo Y. Intramolecular Ring-Chain Equilibrium Elimination Strategy for Pinpointing C═C Positional and Geometric Isomers of N-Alkylpyridinium Unsaturated Fatty Acid Derivatives via Ion Mobility-Mass Spectrometry. Anal Chem 2024; 96:1977-1984. [PMID: 38258619 DOI: 10.1021/acs.analchem.3c04320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Free unsaturated fatty acids (UFA) are key intermediates of lipid metabolism and participate in many metabolic pathways with specific biological functions. Although various fragmentation-based methods for pinpointing C═C locations in UFA were developed, the current mass spectrometry methods are difficult to simultaneously differentiate geometric isomers and positional isomers in trace samples due to low ionization efficiency, low conversion, and low resolution. Herein, an intramolecular ring-chain equilibrium elimination strategy via 4-plex stable isotope labeling dual derivatization-assisted ion mobility-mass spectrometry was developed, thereby one-pot specifically labeling C═C and carboxyl groups among the trace and unstable UFA with high sensitivity, high efficiency, and good substrate generality. It achieved fast separation of both C═C positional and geometric isomers with high resolution, which benefited from eliminating the intramolecular ring-chain equilibrium by suppressing the formation of salt bridges between free carboxyl groups and pyridine cations. 4-plex stable isotope labeling reagents showed similar reactivity, enabling high-throughput quantitative analysis of omics. This method was successfully applied for accurate and rapid identification of the UFA composition in olive oil extract. These results suggest that the developed method provides new insight for rapid characterization of UFA C═C positional and geometric isomers in complex samples to explore disease biomarkers and food quality control indicators.
Collapse
Affiliation(s)
- Yuling Li
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Shimadzu Research Laboratory (Shanghai) Co. Ltd., Shanghai 201206, China
| | - Jiahui Bai
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kuofeng Tseng
- Shimadzu Research Laboratory (Shanghai) Co. Ltd., Shanghai 201206, China
| | - Xiaoqiang Zhang
- Shimadzu Research Laboratory (Shanghai) Co. Ltd., Shanghai 201206, China
| | - Li Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjian Sun
- Shimadzu Research Laboratory (Shanghai) Co. Ltd., Shanghai 201206, China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Kulyk DS, Baryshnikov GV, Damale PS, Maher S, Badu-Tawiah AK. Charge inversion under plasma-nanodroplet reaction conditions excludes Fischer esterification for unsaturated fatty acids: a chemical approach for type II isobaric overlap. Chem Sci 2024; 15:914-922. [PMID: 38239686 PMCID: PMC10793210 DOI: 10.1039/d3sc05369e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/10/2023] [Indexed: 01/22/2024] Open
Abstract
Direct infusion ionization methods provide the highest throughput strategy for mass spectrometry (MS) analysis of low-volume samples. But the trade-off includes matrix effects, which can significantly reduce analytical performance. Herein, we present a novel chemical approach to tackle a special type of matrix effect, namely type II isobaric overlap. We focus on detailed investigation of a nanodroplet-based esterification chemistry for differentiating isotopologue [M + 2] signal due to unsaturated fatty acid (FA) from the monoisotopic signal from a saturated FA. The method developed involves the online fusion of nonthermal plasma with charged nanodroplets, enabling selective esterification of saturated FAs. We discovered that unsaturated FAs undergo spontaneous intramolecular reaction via a novel mechanism based on a carbocation intermediate to afford a protonated lactone moiety (resonance stabilized cyclic carbonium ion), whose mass is the same as the original protonated unsaturated FA. Therefore, the monoisotopic signal from any saturated FA can be selectively shifted away from the mass-to-charge position where the isobaric interference occurs to enable effective characterization by MS. The mechanism governing the spontaneous intramolecular reactions for unsaturated FAs was validated with DFT calculations, experimentation with standards, and isotope labeling. This novel insight achieved via the ultrafast plasma-nanodroplet reaction environment provides a potentially useful synthetic pathway to achieve catalyst-free lactone preparation. Analytically, we believe the performance of direct infusion MS can be greatly enhanced by combining our approach with prior sample enrichment steps for applications in biomedicine and food safety. Also, combination with portable mass spectrometers can improve the efficiency of field studies since front-end separation is not possible under such conditions.
Collapse
Affiliation(s)
- Dmytro S Kulyk
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Ave. Columbus OH 43210 USA
| | - Glib V Baryshnikov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University SE-60174 Norrköping Sweden
| | - Purva S Damale
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Ave. Columbus OH 43210 USA
| | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool Liverpool UK
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Ave. Columbus OH 43210 USA
| |
Collapse
|
7
|
Menzel JP, Young RSE, Benfield AH, Scott JS, Wongsomboon P, Cudlman L, Cvačka J, Butler LM, Henriques ST, Poad BLJ, Blanksby SJ. Ozone-enabled fatty acid discovery reveals unexpected diversity in the human lipidome. Nat Commun 2023; 14:3940. [PMID: 37402773 DOI: 10.1038/s41467-023-39617-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023] Open
Abstract
Fatty acid isomers are responsible for an under-reported lipidome diversity across all kingdoms of life. Isomers of unsaturated fatty acids are often masked in contemporary analysis by incomplete separation and the absence of sufficiently diagnostic methods for structure elucidation. Here, we introduce a comprehensive workflow, to discover unsaturated fatty acids through coupling liquid chromatography and mass spectrometry with gas-phase ozonolysis of double bonds. The workflow encompasses semi-automated data analysis and enables de novo identification in complex media including human plasma, cancer cell lines and vernix caseosa. The targeted analysis including ozonolysis enables structural assignment over a dynamic range of five orders of magnitude, even in instances of incomplete chromatographic separation. Thereby we expand the number of identified plasma fatty acids two-fold, including non-methylene-interrupted fatty acids. Detection, without prior knowledge, allows discovery of non-canonical double bond positions. Changes in relative isomer abundances reflect underlying perturbations in lipid metabolism.
Collapse
Affiliation(s)
- Jan Philipp Menzel
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
| | - Reuben S E Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Faculty of Science, Medicine and Health, School of Chemistry and Molecular Bioscience, Wollongong, NSW, Australia
| | - Aurélie H Benfield
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Julia S Scott
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Puttandon Wongsomboon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Lukáš Cudlman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 16600, Prague, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 16600, Prague, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Sónia T Henriques
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
8
|
Zhu H, Kurokawa M, Chen M, Wang Q, Inoue M, Takao T. Characteristic fragmentation of polyunsaturated fatty acids with allylic vicinal diols in positive-ion LC/ESI-MS/MS. J Lipid Res 2023; 64:100384. [PMID: 37172692 PMCID: PMC10276150 DOI: 10.1016/j.jlr.2023.100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
A characteristic fragmentation was observed for PUFAs that contain allylic vicinal diol groups (resolvin D1, D2, D4, E3, lipoxin A4, B4, and maresin 2), which were derivatized with N,N-dimethylethylenediamine (DMED), in positive-ion ESI-MS/MS. The findings indicate that when these compounds contain an allylic hydroxyl group that is located distal to the terminal DMED moiety in the case of resolvin D1, D4, and lipoxin A4, an aldehyde (-CH=O) is predominately formed, which arises from the breakdown in between vicinal diols, whereas, in the case of an allylic hydroxyl group that is located proximal to the DMED moiety, as in resolvin D2, E3, lipoxin B4, and maresin 2, an allylic carbene (-CH=CH-CH:) is formed. These specific fragmentations could be used as diagnostic ions for characterizing the above seven PUFAs. As a result, it was possible to detect resolvin D1, D2, E3, lipoxin A4, and B4 in sera (20 μl) obtained from healthy volunteers by multiple-reaction monitoring using LC/ESI-MS/MS.
Collapse
Affiliation(s)
- Huibin Zhu
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Mone Kurokawa
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Mengyao Chen
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Qiuyi Wang
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Toshifumi Takao
- Institute for Protein Research, Osaka University, Osaka, Japan.
| |
Collapse
|
9
|
Kaya I, Schembri LS, Nilsson A, Shariatgorji R, Baijnath S, Zhang X, Bezard E, Svenningsson P, Odell LR, Andrén PE. On-Tissue Chemical Derivatization for Comprehensive Mapping of Brain Carboxyl and Aldehyde Metabolites by MALDI-MS Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:836-846. [PMID: 37052344 PMCID: PMC10161219 DOI: 10.1021/jasms.2c00336] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The visualization of small metabolites by MALDI mass spectrometry imaging in brain tissue sections is challenging due to low detection sensitivity and high background interference. We present an on-tissue chemical derivatization MALDI mass spectrometry imaging approach for the comprehensive mapping of carboxyls and aldehydes in brain tissue sections. In this approach, the AMPP (1-(4-(aminomethyl)phenyl)pyridin-1-ium chloride) derivatization reagent is used for the covalent charge-tagging of molecules containing carboxylic acid (in the presence of peptide coupling reagents) and aldehydes. This includes free fatty acids and the associated metabolites, fatty aldehydes, dipeptides, neurotoxic reactive aldehydes, amino acids, neurotransmitters and associated metabolites, as well as tricarboxylic acid cycle metabolites. We performed sensitive ultrahigh mass resolution MALDI-MS detection and imaging of various carboxyl- and aldehyde-containing endogenous metabolites simultaneously in rodent brain tissue sections. We verified the AMPP-derivatized metabolites by tandem MS for structural elucidation. This approach allowed us to image numerous aldehydes and carboxyls, including certain metabolites which had been undetectable in brain tissue sections. We also demonstrated the application of on-tissue derivatization to carboxyls and aldehydes in coronal brain tissue sections of a nonhuman primate Parkinson's disease model. Our methodology provides a powerful tool for the sensitive, simultaneous spatial molecular imaging of numerous aldehydes and carboxylic acids during pathological states, including neurodegeneration, in brain tissue.
Collapse
Affiliation(s)
- Ibrahim Kaya
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | | | - Anna Nilsson
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | - Reza Shariatgorji
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | - Sooraj Baijnath
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | - Xiaoqun Zhang
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, F-33000 Bordeaux, France
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Luke R Odell
- Department of Medicinal Chemistry, Uppsala University, SE-75123 Uppsala, Sweden
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| |
Collapse
|
10
|
Zhang D, Huang S, Wang Q, Shang B, Liu J, Xing X, Hong Y, Liu H, Duan X, Sun H. Lipidomics and volatilomics reveal the changes in lipids and their volatile oxidative degradation products of brown rice during accelerated aging. Food Chem 2023; 421:136157. [PMID: 37099952 DOI: 10.1016/j.foodchem.2023.136157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023]
Abstract
Brown rice exhibits higher nutritional value and attracts more and more attentions; however, lipid alteration in brown rice during aging is poorly understood. In this study, lipidomics and volatilomics were employed to investigate free fatty acids, triglycerides, and volatile oxidative degradation products of lipids in brown rice during accelerated aging for 70 days. The results showed that the total free fatty acids in brown rice increased significantly (2.90-4.14 times) while triglycerides decreased remarkably at the initial stage of aging. Monounsaturated and polyunsaturated aldehydes, ketones, and acids increased obviously in brown rice during accelerated aging for 70 days. The screening of significantly different compounds indicated that the enzymatic hydrolysis of triglycerides (EHT) and enzymatic oxidation of lipids (EOL) were the main biochemical behaviors at the initial stage of aging (0-28 day) while automatic oxidation of lipids (AOL) was the primary chemical reaction for 28-70 days aging.
Collapse
Affiliation(s)
- Dong Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Shanshan Huang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qian Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Bo Shang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Jianlei Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xiaoting Xing
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Yu Hong
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Hui Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xiaoliang Duan
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Hui Sun
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| |
Collapse
|
11
|
Camunas-Alberca SM, Moran-Garrido M, Sáiz J, Gil-de-la-Fuente A, Barbas C, Gradillas A. Integrating the potential of ion mobility spectrometry-mass spectrometry in the separation and structural characterisation of lipid isomers. Front Mol Biosci 2023; 10:1112521. [PMID: 37006618 PMCID: PMC10060977 DOI: 10.3389/fmolb.2023.1112521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
It is increasingly evident that a more detailed molecular structure analysis of isomeric lipids is critical to better understand their roles in biological processes. The occurrence of isomeric interference complicates conventional tandem mass spectrometry (MS/MS)-based determination, necessitating the development of more specialised methodologies to separate lipid isomers. The present review examines and discusses recent lipidomic studies based on ion mobility spectrometry combined with mass spectrometry (IMS-MS). Selected examples of the separation and elucidation of structural and stereoisomers of lipids are described based on their ion mobility behaviour. These include fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, and sterol lipids. Recent approaches for specific applications to improve isomeric lipid structural information using direct infusion, coupling imaging, or liquid chromatographic separation workflows prior to IMS-MS are also discussed, including: 1) strategies to improve ion mobility shifts; 2) advanced tandem MS methods based on activation of lipid ions with electrons or photons, or gas-phase ion-molecule reactions; and 3) the use of chemical derivatisation techniques for lipid characterisation.
Collapse
Affiliation(s)
- Sandra M. Camunas-Alberca
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Maria Moran-Garrido
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Jorge Sáiz
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Alberto Gil-de-la-Fuente
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Departamento de Tecnologías de la Información, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- *Correspondence: Ana Gradillas,
| |
Collapse
|
12
|
Lamont L, Hadavi D, Bowman AP, Flinders B, Cooper‐Shepherd D, Palmer M, Jordens J, Mengerink Y, Honing M, Langridge J, Porta Siegel T, Vreeken RJ, Heeren RMA. High-resolution ion mobility spectrometry-mass spectrometry for isomeric separation of prostanoids after Girard's reagent T derivatization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9439. [PMID: 36415963 PMCID: PMC10078546 DOI: 10.1002/rcm.9439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Isomeric separation of prostanoids is often a challenge and requires chromatography and time-consuming sample preparation. Multiple prostanoid isomers have distinct in vivo functions crucial for understanding the inflammation process, including prostaglandins E2 (PGE2 ) and D2 (PGD2 ). High-resolution ion mobility spectrometry (IMS) based on linear ion transport in low-to-moderate electric fields and nonlinear ion transport in strong electric fields emerges as a broad approach for rapid separations prior to mass spectrometry. METHODS Derivatization with Girard's reagent T (GT) was used to overcome inefficient ionization of prostanoids in negative ionization mode due to poor deprotonation of the carboxylic acid group. Three high-resolution IMS techniques, namely linear cyclic IMS, linear trapped IMS, and nonlinear high-field asymmetric waveform IMS, were compared for the isomeric separation and endogenous detection of prostanoids present in intestinal tissue. RESULTS Direct infusion of GT-derivatized prostanoids proved to increase the ionization efficiency in positive ionization mode by a factor of >10, which enabled detection of these molecules in endogenous concentration levels. The high-resolution IMS comparison revealed its potential for rapid isomeric analysis of biologically relevant prostanoids. Strengths and weaknesses of both linear and nonlinear IMS are discussed. Endogenous prostanoid detection in intestinal tissue extracts demonstrated the applicability of our approach in biomedical research. CONCLUSIONS The applied derivatization strategy offers high sensitivity and improved stereoisomeric separation for screening of complex biological systems. The high-resolution IMS comparison indicated that the best sensitivity and resolution are achieved by linear and nonlinear IMS, respectively.
Collapse
Affiliation(s)
- Lieke Lamont
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| | - Darya Hadavi
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| | - Andrew P. Bowman
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| | - Bryn Flinders
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| | | | | | - Jan Jordens
- DSM Materials Science CenterGeleenMDThe Netherlands
| | | | - Maarten Honing
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| | | | - Tiffany Porta Siegel
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| | - Rob J. Vreeken
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
- Janssen R&DBeerseBelgium
| | - Ron M. A. Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
13
|
Hancock SE, Ding E, Johansson Beves E, Mitchell T, Turner N. FACS-assisted single-cell lipidome analysis of phosphatidylcholines and sphingomyelins in cells of different lineages. J Lipid Res 2023; 64:100341. [PMID: 36740022 PMCID: PMC10027561 DOI: 10.1016/j.jlr.2023.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Recent advances in single-cell genomics and transcriptomics technologies have transformed our understanding of cellular heterogeneity in growth, development, ageing, and disease; however, methods for single-cell lipidomics have comparatively lagged behind in development. We have developed a method for the detection and quantification of a wide range of phosphatidylcholine and sphingomyelin species from single cells that combines fluorescence-assisted cell sorting with automated chip-based nanoESI and shotgun lipidomics. We show herein that our method is capable of quantifying more than 50 different phosphatidylcholine and sphingomyelin species from single cells and can easily distinguish between cells of different lineages or cells treated with exogenous fatty acids. Moreover, our method can detect more subtle differences in the lipidome between cell lines of the same cancer type. Our approach can be run in parallel with other single-cell technologies to deliver near-complete, high-throughput multi-omics data on cells with a similar phenotype and has the capacity to significantly advance our current knowledge on cellular heterogeneity.
Collapse
Affiliation(s)
- Sarah E Hancock
- Department of Pharmacology, School of Biomedical Sciences, UNSW Sydney, Australia; Cellular Bioenergetics Laboratory, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.
| | - Eileen Ding
- Department of Pharmacology, School of Biomedical Sciences, UNSW Sydney, Australia
| | | | - Todd Mitchell
- School of Medicine, University of Wollongong, Wollongong Australia; Molecular Horizons, University of Wollongong, Wollongong Australia
| | - Nigel Turner
- Department of Pharmacology, School of Biomedical Sciences, UNSW Sydney, Australia; Cellular Bioenergetics Laboratory, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.
| |
Collapse
|
14
|
Berger N, van der Wel T, Hirschmugl B, Baernthaler T, Gindlhuber J, Fawzy N, Eichmann T, Birner-Gruenberger R, Zimmermann R, van der Stelt M, Wadsack C. Inhibition of diacylglycerol lipase β modulates lipid and endocannabinoid levels in the ex vivo human placenta. Front Endocrinol (Lausanne) 2023; 14:1092024. [PMID: 36864832 PMCID: PMC9971001 DOI: 10.3389/fendo.2023.1092024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Lipids and fatty acids are key components in metabolic processes of the human placenta, thereby contributing to the development of the fetus. Placental dyslipidemia and aberrant activity of lipases have been linked to diverse pregnancy associated complications, such as preeclampsia and preterm birth. The serine hydrolases, diacylglycerol lipase α and β (DAGLα, DAGLβ) catalyze the degradation of diacylglycerols, leading to the formation of monoacylglycerols (MAG), including one main endocannabinoid 2-arachidonoylglycerol (2-AG). The major role of DAGL in the biosynthesis of 2-AG is evident from various studies in mice but has not been investigated in the human placenta. Here, we report the use of the small molecule inhibitor DH376, in combination with the ex vivo placental perfusion system, activity-based protein profiling (ABPP) and lipidomics, to determine the impact of acute DAGL inhibition on placental lipid networks. Methods DAGLα and DAGLβ mRNA expression was detected by RT-qPCR and in situ hybridization in term placentas. Immunohistochemistry staining for CK7, CD163 and VWF was applied to localize DAGLβ transcripts to different cell types of the placenta. DAGLβ activity was determined by in- gel and MS-based activity-based protein profiling (ABPP) and validated by addition of the enzyme inhibitors LEI-105 and DH376. Enzyme kinetics were measured by EnzChek™ lipase substrate assay. Ex vivo placental perfusion experiments were performed +/- DH376 [1 µM] and changes in tissue lipid and fatty acid profiles were measured by LC-MS. Additionally, free fatty acid levels of the maternal and fetal circulations were determined. Results We demonstrate that mRNA expression of DAGLβ prevails in placental tissue, compared to DAGLα (p ≤ 0.0001) and that DAGLβ is mainly located to CK7 positive trophoblasts (p ≤ 0.0001). Although few DAGLα transcripts were identified, no active enzyme was detected applying in-gel or MS-based ABPP, which underlined that DAGLβ is the principal DAGL in the placenta. DAGLβ dependent substrate hydrolysis in placental membrane lysates was determined by the application of LEI-105 and DH376. Ex vivo pharmacological inhibition of DAGLβ by DH376 led to reduced MAG tissue levels (p ≤ 0.01), including 2-AG (p≤0.0001). We further provide an activity landscape of serine hydrolases, showing a broad spectrum of metabolically active enzymes in the human placenta. Discussion Our results emphasize the role of DAGLβ activity in the human placenta by determining the biosynthesis of 2-AG. Thus, this study highlights the special importance of intra-cellular lipases in lipid network regulation. Together, the activity of these specific enzymes may contribute to the lipid signaling at the maternal-fetal interface, with implications for function of the placenta in normal and compromised pregnancies.
Collapse
Affiliation(s)
- Natascha Berger
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Tom van der Wel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Leiden, Netherlands
| | - Birgit Hirschmugl
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Thomas Baernthaler
- Otto Loewi Research Center, Division of Pharmacology, University of Graz, Graz, Austria
| | - Juergen Gindlhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Diagnostic and Research Center of Molecular Medicine, Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Nermeen Fawzy
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Thomas Eichmann
- BioTechMed-Graz, Graz, Austria
- Core Facility Mass Spectrometry, Center for Medical Research (ZMF), Medical University of Graz, Graz, Austria
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Center of Molecular Medicine, Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Robert Zimmermann
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Leiden, Netherlands
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
15
|
Young RSE, Flakelar CL, Narreddula VR, Jekimovs LJ, Menzel JP, Poad BLJ, Blanksby SJ. Identification of Carbon-Carbon Double Bond Stereochemistry in Unsaturated Fatty Acids by Charge-Remote Fragmentation of Fixed-Charge Derivatives. Anal Chem 2022; 94:16180-16188. [DOI: 10.1021/acs.analchem.2c03625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Reuben S. E. Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Clare L. Flakelar
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane 4014, Queensland, Australia
| | - Venkateswara R. Narreddula
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Lachlan J. Jekimovs
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Jan P. Menzel
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Berwyck L. J. Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Stephen J. Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| |
Collapse
|
16
|
Randolph CE, Beveridge CH, Iyer S, Blanksby SJ, McLuckey SA, Chopra G. Identification of Monomethyl Branched-Chain Lipids by a Combination of Liquid Chromatography Tandem Mass Spectrometry and Charge-Switching Chemistries. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2156-2164. [PMID: 36218280 PMCID: PMC10173259 DOI: 10.1021/jasms.2c00225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
While various mass spectrometric approaches have been applied to lipid analysis, unraveling the extensive structural diversity of lipids remains a significant challenge. Notably, these approaches often fail to differentiate between isomeric lipids─a challenge that is particularly acute for branched-chain fatty acids (FAs) that often share similar (or identical) mass spectra to their straight-chain isomers. Here, we utilize charge-switching strategies that combine ligated magnesium dications with deprotonated fatty acid anions. Subsequent activation of these charge inverted anions yields mass spectra that differentiate anteiso-branched- from straight-chain and iso-branched-chain FA isomers with the predictable fragmentation enabling de novo assignment of anteiso branch points. The application of these charge-inversion chemistries in both gas- and solution-phase modalities is demonstrated to assign the position of anteiso-methyl branch-points in FAs and, with the aid of liquid chromatography, can be extended to de novo assignment of additional branching sites via predictable fragmentation patterns as methyl branching site(s) move closer to the carboxyl carbon. The gas-phase approach is shown to be compatible with top-down structure elucidation of complex lipids such as phosphatidylcholines, while the integration of solution-phase charge-inversion with reversed phase liquid chromatography enables separation and unambiguous identification of FA structures within isomeric mixtures. Taken together, the presented charge-switching MS-based technique, in combination with liquid chromatography, enables the structural identification of branched-chain FA without the requirement of authentic methyl-branched FA reference standards.
Collapse
Affiliation(s)
- Caitlin E. Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Connor H. Beveridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Sanjay Iyer
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Stephen J. Blanksby
- Central Analytical Research Facility and the School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
- Department of Computer Science (by courtesy), Purdue Institutes of Drug Discovery and Integrative Neuroscience, Purdue Center for Cancer Research, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
17
|
Feng Y, Lv Y, Gu TJ, Chen B, Li L. Quantitative Analysis and Structural Elucidation of Fatty Acids by Isobaric Multiplex Labeling Reagents for Carbonyl-Containing Compound (SUGAR) Tags and m-CPBA Epoxidation. Anal Chem 2022; 94:13036-13042. [PMID: 36099193 PMCID: PMC9912774 DOI: 10.1021/acs.analchem.2c01917] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this study, a novel analytical method was developed to investigate fatty acids (FAs) for relative quantification, carbon-carbon double-bond localization, and cis-/trans-geometry differentiation by isobaric multiplex labeling reagents for carbonyl-containing compound (SUGAR) tag conjugation and meta-chloroperoxybenzoic acid (m-CPBA) epoxidation. FAs are essential components of cells and have diverse functions in energy storage and as complex lipid constituents. It has been reported that FAs play different roles in various biological processes such as the functional development of the brain. The comprehensive characterization and quantification of FAs are crucial to further elucidate their biological roles. However, it is challenging to perform relative quantification and structural elucidation of FAs using integrated mass spectrometry (MS)-based methods. Recently, our group developed isobaric multiplex SUGAR tags for quantitative glycomics. Besides aldehyde/ketone groups on glycans, hydrazide groups also possess reactivity toward carboxylic acids on FAs. In this study, we extended SUGAR tag labeling with FAs for the quantitative analysis by liquid chromatography (LC)-MS/MS in the positive ion mode and applied this strategy for the comparative analysis of FAs hydrolyzed from oil samples. In addition, to comprehensively elucidate the structures of unsaturated FAs, epoxidation by m-CPBA was performed before SUGAR tag labeling to enable carbon-carbon double-bond localization. Moreover, the cis- and trans-geometries of carbon-carbon double bonds in multiple pairs of monounsaturated FAs could also be differentiated in higher-energy collisional dissociation (HCD)-MS/MS. This study developed a high-throughput comprehensive FA analysis platform, which could be widely applied and utilized in biological and clinical studies.
Collapse
Affiliation(s)
- Yu Feng
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Yanni Lv
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States.,School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Ting-Jia Gu
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Bingming Chen
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
18
|
Liquid Chromatography-Mass Spectrometry (LC-MS) Derivatization-Based Methods for the Determination of Fatty Acids in Biological Samples. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175717. [PMID: 36080484 PMCID: PMC9458108 DOI: 10.3390/molecules27175717] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022]
Abstract
Fatty acids (FAs) play pleiotropic roles in living organisms, acting as signaling molecules and gene regulators. They are present in plants and foods and may affect human health by food ingestion. As a consequence, analytical methods for their determination in biological fluids, plants and foods have attracted high interest. Undoubtedly, mass spectrometry (MS) has become an indispensable technique for the analysis of FAs. Due to the inherent poor ionization efficiency of FAs, their chemical derivatization prior to analysis is often employed. Usually, the derivatization of the FA carboxyl group aims to charge reversal, allowing detection and quantification in positive ion mode, thus, resulting in an increase in sensitivity in determination. Another approach is the derivatization of the double bond of unsaturated FAs, which aims to identify the double bond location. The present review summarizes the various classes of reagents developed for FA derivatization and discusses their applications in the liquid chromatography-MS (LC-MS) analysis of FAs in various matrices, including plasma and feces. In addition, applications for the determination of eicosanoids and fatty acid esters of hydroxy fatty acids (FAHFAs) are discussed.
Collapse
|
19
|
Lemaitre RN, Jensen PN, Zeigler M, Fretts AM, Umans JG, Howard BV, Sitlani CM, McKnight B, Gharib SA, King IB, Siscovick DS, Psaty BM, Sotoodehnia N, Totah RA. Plasma epoxyeicosatrienoic acids and diabetes-related cardiovascular disease: The cardiovascular health study. EBioMedicine 2022; 83:104189. [PMID: 35930887 PMCID: PMC9356248 DOI: 10.1016/j.ebiom.2022.104189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 11/04/2022] Open
Abstract
Background Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid that may impact atherosclerosis, and animal experimental studies suggest EETs protect cardiac function. Plasma EETs are mostly esterified to phospholipids and part of an active pool. To address the limited information about EETs and CVD in humans, we conducted a prospective study of total plasma EETs (free + esterified) and diabetes-related CVD in the Cardiovascular Health Study (CHS). Methods We measured 4 EET species and their metabolites, dihydroxyepoxyeicosatrienoic acids (DHETs), in plasma samples from 892 CHS participants with type 2 diabetes. We determined the association of EETs and DHETs with incident myocardial infarction (MI) and ischemic stroke using Cox regression. Findings During follow-up (median 7.5 years), we identified 150 MI and 134 ischemic strokes. In primary, multivariable analyses, elevated levels of each EET species were associated with non-significant lower risk of incident MI (for example, hazard ratio for 1 SD higher 14,15-EET: 0.86, 95% CI: 0.72–1.02; p=0.08). The EETs-MI associations became significant in analyses further adjusted for DHETs (hazard ratio for 1 SD higher 14,15-EET adjusted for 14,15-DHET: 0.76, 95% CI: 0.63–0.91; p=0.004). Elevated EET levels were associated with higher risk of ischemic stroke in primary but not secondary analyses. Three DHET species were associated with higher risk of ischemic stroke in all analyses. Interpretation Findings from this prospective study complement the extensive studies in animal models showing EETs protect cardiac function and provide new information in humans. Replication is needed to confirm the associations. Funding US National Institutes of Health.
Collapse
|
20
|
Cheng J, Li Y, Wang Y, Zhang J, Sun T, Zhang L, Guo Y. Quaterization Derivatization with Bis(Pyridine) Iodine Tetrafluoroboride: High-Sensitivity Mass Spectrometric Analysis of Unsaturated Fatty Acids in Human Thyroid Tissues. Anal Chem 2022; 94:11185-11191. [PMID: 35916214 DOI: 10.1021/acs.analchem.2c01519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accurate quantification of disease-related unsaturated fatty acids (UFAs) in biomedical samples plays an important role in clinical diagnosis. Here, we reported a quaterization derivatization-stable isotope labeling strategy for accurate quantitative analysis of UFAs by high-performance liquid chromatography-mass spectrometry. [d0]/[d10]-Bis(pyridine) iodine tetrafluoroboride ([d0]/[d10]-IPy2BF4) was employed as the carbon-carbon double bond derivatization reagent with high efficiency and high specificity, to introduce a charge tag on UFAs and avoid the interference of saturated fatty acids. After labeling, the detection sensitivity was significantly enhanced by up to three orders of magnitude compared to intact UFAs. The standard curves showed good linearity (R2 > 0.999) over a wide concentration range. This strategy was successfully applied to determine the content of 12 UFAs in human thyroid carcinoma and para-carcinoma tissues. A significant difference was found in the content of several UFAs between these two kinds of tissues (p < 0.05). These results indicated that the proposed strategy may be valuable for the discovery of abnormal UFA content in early clinical diagnosis.
Collapse
Affiliation(s)
- Jie Cheng
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuling Li
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yunjun Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai 200032, China
| | - Jing Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tuanqi Sun
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai 200032, China
| | - Li Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
21
|
Zhu Z, Li X, Tang C, Shen J, Liu J, Ye Y. A derivatization strategy for comprehensive identification of 2- and 3-hydroxyl fatty acids by LC-MS. Anal Chim Acta 2022; 1216:339981. [DOI: 10.1016/j.aca.2022.339981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 11/01/2022]
|
22
|
Boyer BB, Hopkins SE, Wiener HW, Purnell JQ, O'Brien DM, Zhang CX, Aslan JE, Aliwarga T, Pomeroy JJ, Thummel KE, Tiwari HK. Habitual Intake of Marine-Derived n-3 PUFAs is Inversely Associated with a Cardiometabolic Inflammatory Profile in Yup'ik Alaska Native People. J Nutr 2022; 152:844-855. [PMID: 34871429 PMCID: PMC8891177 DOI: 10.1093/jn/nxab412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 12/01/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The relationship between dietary n-3 PUFAs and the prevention of cardiometabolic diseases, including type 2 diabetes, is unresolved. Examination of the association between n-3 PUFAs and chronic low-grade inflammation in a population where many individuals have had an extremely high intake of marine mammals and fish throughout their lifespan may provide important clues regarding the impact of n-3 PUFAs on health. OBJECTIVES The aim of this study was to explore associations between concentrations of n-3 PUFAs resulting from habitual intake of natural food sources high in fish and marine mammals with immune biomarkers of metabolic inflammation and parameters of glucose regulation. METHODS A total of 569 Yup'ik Alaska Native adults (18-87 years old) were enrolled in this cross-sectional study between December 2016 and November 2019. The RBC nitrogen isotope ratio (NIR; 15N/14N) was used as a validated measure of n-3 PUFA intake to select 165 participant samples from the first and fourth quartiles of n-3 PUFA intakes. Outcomes included 38 pro- and anti-inflammatory cytokines and 8 measures of glucose homeostasis associated with type 2 diabetes risks. These outcomes were evaluated for their associations with direct measurements of EPA, DHA, and arachidonic acid in RBCs. ANALYSIS Linear regression was used to detect significant relationships with cytokines and n-3 PUFAs, adiposity, and glucose-related variables. RESULTS The DHA concentration in RBC membranes was inversely associated with IL-6 (β = -0.0066; P < 0.001); EPA was inversely associated with TNFα (β = -0.4925; P < 0.001); and the NIR was inversely associated with Monocyte chemoattractant protein-1 (MCP-1) (β = -0.8345; P < 0.001) and IL-10 (β = -1.2868; P < 0.001). CONCLUSIONS Habitual intake of marine mammals and fish rich in n-3 PUFAs in this study population of Yup'ik Alaska Native adults is associated with reduced systemic inflammation, which may contribute to the low prevalence of diseases in which inflammation plays an important role.
Collapse
Affiliation(s)
- Bert B Boyer
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Scarlett E Hopkins
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Howard W Wiener
- Department of Statistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jonathan Q Purnell
- Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Diane M O'Brien
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Cindy X Zhang
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Joseph E Aslan
- Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Theresa Aliwarga
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Jeremy J Pomeroy
- Clinical Research Center, Marshfield Clinic, Marshfield, WI, USA
| | - Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Hemant K Tiwari
- Department of Statistics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
23
|
Poad BLJ, Young RSE, Marshall DL, Trevitt AJ, Blanksby SJ. Accelerating Ozonolysis Reactions Using Supplemental RF-Activation of Ions in a Linear Ion Trap Mass Spectrometer. Anal Chem 2022; 94:3897-3903. [PMID: 35201768 DOI: 10.1021/acs.analchem.1c04915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gas-phase ion-molecule reactions provide structural insights across a range of analytical applications. A hindrance to the wider use of ion-molecule reactions is that they are relatively slow compared to other ion activation modalities and can thereby impose a bottleneck on the time required to analyze each sample. Here we describe a method for accelerating the rate of ion-molecule reactions involving ozone, implemented by supplementary RF-activation of mass-selected ions within a linear ion trap. Reaction rate accelerations between 15-fold (for ozonolysis of alkenes in ionised lipids) and 90-fold (for ozonation of halide anions) are observed compared to thermal conditions. These enhanced reaction rates with ozone increase sample throughput, aligning the reaction time with the overall duty cycle of the mass spectrometer. We demonstrate that the acceleration is due to the supplementary RF-activation surmounting the activation barrier energy of the entrance channel of the ion-molecule reaction. This rate acceleration is subsequently shown to aid identification of new, low abundance lipid isomers and enables an equivalent increase in the number of lipid species that can be analyzed.
Collapse
Affiliation(s)
- Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4001, Australia.,Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Reuben S E Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - David L Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Adam J Trevitt
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2552, Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4001, Australia.,Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| |
Collapse
|
24
|
Han X, Gross RW. The foundations and development of lipidomics. J Lipid Res 2022; 63:100164. [PMID: 34953866 PMCID: PMC8953652 DOI: 10.1016/j.jlr.2021.100164] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
For over a century, the importance of lipid metabolism in biology was recognized but difficult to mechanistically understand due to the lack of sensitive and robust technologies for identification and quantification of lipid molecular species. The enabling technological breakthroughs emerged in the 1980s with the development of soft ionization methods (Electrospray Ionization and Matrix Assisted Laser Desorption/Ionization) that could identify and quantify intact individual lipid molecular species. These soft ionization technologies laid the foundations for what was to be later named the field of lipidomics. Further innovative advances in multistage fragmentation, dramatic improvements in resolution and mass accuracy, and multiplexed sample analysis fueled the early growth of lipidomics through the early 1990s. The field exponentially grew through the use of a variety of strategic approaches, which included direct infusion, chromatographic separation, and charge-switch derivatization, which facilitated access to the low abundance species of the lipidome. In this Thematic Review, we provide a broad perspective of the foundations, enabling advances, and predicted future directions of growth of the lipidomics field.
Collapse
Affiliation(s)
- Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Departments of Medicine - Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Richard W Gross
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Chemistry, Washington University, St. Louis, MO, USA
| |
Collapse
|
25
|
Jian R, Zhao X, Lin Q, Xia Y. Profiling of branched-chain fatty acids via nitroxide radical-directed dissociation integrated on an LC-MS/MS workflow. Analyst 2022; 147:2115-2123. [DOI: 10.1039/d2an00266c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By coupling O-benzylhydroxylamine derivatization and tandem mass spectrometry, nitroxide radical-induced dissociation can be initiated via collisional activation which enables the analysis of methyl branching(s) in fatty acids.
Collapse
Affiliation(s)
- Ruijun Jian
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xue Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiaohong Lin
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
26
|
Xiong CF, Zhu QF, Chen YY, He DX, Feng YQ. Screening and Identification of Epoxy/Dihydroxy-Oxylipins by Chemical Labeling-Assisted Ultrahigh-Performance Liquid Chromatography Coupled with High-Resolution Mass Spectrometry. Anal Chem 2021; 93:9904-9911. [PMID: 34227808 DOI: 10.1021/acs.analchem.1c02058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Epoxy/dihydroxy-oxylipins are important biologically active compounds that are mainly formed from polyunsaturated fatty acids (PUFAs) in the reactions catalyzed by the cytochrome P450 (CYP 450) enzyme. The analysis of epoxy/dihydroxy-oxylipins would be helpful to gain insights into their landscape in living organisms and provide a reference for the biological studies of these compounds. In this work, we employed chemical labeling-assisted liquid chromatography (LC) coupled with high-resolution mass spectrometry (CL-LC-HRMS) to establish a highly sensitive and specific method for screening and annotating epoxy/dihydroxy-oxylipins in biological samples. The isotope reagents 2-dimethylaminoethylamine (DMED) and DMED-d4 were employed to label epoxy/dihydroxy-oxylipins containing carboxyl groups so as to improve the analysis selectivity and MS detection sensitivity of epoxy/dihydroxy-oxylipins. Based on a pair of diagnostic ions with a mass-to-charge ratio (m/z) difference of 15.995 originating from the fragmentation of derivatives via high-energy collision dissociation (HCD), the potential epoxy/dihydroxy-oxylipins were rapidly screened from the complex matrix. Furthermore, the epoxy/dihydroxy groups could be readily localized by the diagnostic ion pairs, which enabled us to accurately annotate the epoxy/dihydroxy-oxylipins detected in biological samples. The applicability of our method was demonstrated by profiling epoxy/dihydroxy-oxylipins in human serum and heart samples from mice with high-fat diet (HFD). By the proposed method, a total of 32 and 62 potential epoxy/dihydroxy-oxylipins including 42 unreported ones were detected from human serum and the mice heart sample, respectively. Moreover, the relative quantitative results showed that most of the potential epoxy/dihydroxy-oxylipins, especially the oxidation products of linoleic acid (LA) or α-linolenic acid (ALA), were significantly decreased in the heart of mice with HFD. Our developed method is of high specificity and sensitivity and thus is a promising tool for the identification of novel epoxy/dihydroxy-oxylipins in biological samples.
Collapse
Affiliation(s)
- Cai-Feng Xiong
- Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Quan-Fei Zhu
- Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yao-Yu Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Dong-Xiao He
- Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
27
|
Lemaitre RN, Jensen PN, Zeigler M, Denham J, Fretts AM, Umans JG, Howard BV, Sitlani CM, McKnight B, Gharib SA, King IB, Siscovick DS, Psaty BM, Sotoodehnia N, Totah RA. Plasma epoxyeicosatrienoic acids and dihydroxyeicosatrieonic acids, insulin, glucose and risk of diabetes: The strong heart study. EBioMedicine 2021; 66:103279. [PMID: 33752126 PMCID: PMC8010619 DOI: 10.1016/j.ebiom.2021.103279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid with multiple biological functions. Rodent experiments suggest EETs play a role in insulin sensitivity and diabetes, but evidence in humans is limited. To address this knowledge gap, we conducted a case-cohort study in the Strong Heart Family Study, a prospective cohort among American Indians. METHODS We measured 4 EET species and 4 species of corresponding downstream metabolites, dihydroxyeicosatrieonic acids (DHETs), in plasma samples from 1161 participants, including 310 with type 2 diabetes. We estimated the associations of total (esterified and free) EETs and DHETs with incident diabetes risk, adjusting for known risk factors. We also examined cross-sectional associations with plasma fasting insulin and glucose in the case-cohort and in 271 participants without diabetes from the older Strong Heart Study cohort, and meta-analyzed the results from the 2 cohorts. FINDINGS We observed no significant association of total EET or DHET levels with incident diabetes. In addition, plasma EETs were not associated with plasma insulin or plasma glucose. However, higher plasma 14,15-DHET was associated with lower plasma insulin and lower plasma glucose. INTERPRETATION In this first prospective study of EETs and diabetes, we found no evidence for a role of total plasma EETs in diabetes. The novel associations of 14,15-DHET with insulin and glucose warrant replication and exploration of possible mechanisms. FUNDING US National Institutes of Health.
Collapse
Affiliation(s)
- Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Paul N Jensen
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Maxwell Zeigler
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Julie Denham
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Amanda M Fretts
- Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, MD, USA
| | - Barbara V Howard
- MedStar Health Research Institute, Hyattsville, MD, USA; Georgetown and Howard Universities Center for Translational Science, Washington DC, USA
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Barbara McKnight
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Sina A Gharib
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Irena B King
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | | | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA; Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, WA, USA; Kaiser Permanente Washington Health Research Institute, Seattle, WA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
28
|
Hughes CC. Chemical labeling strategies for small molecule natural product detection and isolation. Nat Prod Rep 2021; 38:1684-1705. [PMID: 33629087 DOI: 10.1039/d0np00034e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: Up to 2020.It is widely accepted that small molecule natural products (NPs) evolved to carry out a particular ecological function and that these finely-tuned molecules can sometimes be appropriated for the treatment of disease in humans. Unfortunately, for the natural products chemist, NPs did not evolve to possess favorable physicochemical properties needed for HPLC-MS analysis. The process known as derivatization, whereby an NP in a complex mixture is decorated with a nonnatural moiety using a derivatizing agent (DA), arose from this sad state of affairs. Here, NPs are freed from the limitations of natural functionality and endowed, usually with some degree of chemoselectivity, with additional structural features that make HPLC-MS analysis more informative. DAs that selectively label amines, carboxylic acids, alcohols, phenols, thiols, ketones, and aldehydes, terminal alkynes, electrophiles, conjugated alkenes, and isocyanides have been developed and will be discussed here in detail. Although usually employed for targeted metabolomics, chemical labeling strategies have been effectively applied to uncharacterized NP extracts and may play an increasing role in the detection and isolation of certain classes of NPs in the future.
Collapse
Affiliation(s)
- Chambers C Hughes
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany 72076.
| |
Collapse
|
29
|
Zaikin VG, Borisov RS. Options of the Main Derivatization Approaches for Analytical ESI and MALDI Mass Spectrometry. Crit Rev Anal Chem 2021; 52:1287-1342. [PMID: 33557614 DOI: 10.1080/10408347.2021.1873100] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The inclusion of preliminary chemical labeling (derivatization) in the analysis process by such powerful and widespread methods as electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is a popular and widely used methodological approach. This is due to the need to remove some fundamental limitations inherent in these powerful analytic methods. Although a number of special reviews has been published discussing the utilization of derivatization approaches, the purpose of the present critical review is to comprehensively summarize, characterize and evaluate most of the previously developed and practically applied, as well as recently proposed representative derivatization reagents for ESI-MS and MALDI-MS platforms in their mostly sensitive positive ion mode and frequently hyphenated with separation techniques. The review is focused on the use of preliminary chemical labeling to facilitate the detection, identification, structure elucidation, quantification, profiling or MS imaging of compounds within complex matrices. Two main derivatization approaches, namely the introduction of permanent charge-fixed or highly proton affinitive residues into analytes are critically evaluated. In situ charge-generation, charge-switch and charge-transfer derivatizations are considered separately. The potential of using reactive matrices in MALDI-MS and chemical labeling in MS-based omics sciences is given.
Collapse
Affiliation(s)
- Vladimir G Zaikin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| | - Roman S Borisov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
30
|
Young RSE, Bowman AP, Williams ED, Tousignant KD, Bidgood CL, Narreddula VR, Gupta R, Marshall DL, Poad BLJ, Nelson CC, Ellis SR, Heeren RMA, Sadowski MC, Blanksby SJ. Apocryphal FADS2 activity promotes fatty acid diversification in cancer. Cell Rep 2021; 34:108738. [PMID: 33567271 DOI: 10.1016/j.celrep.2021.108738] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/18/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
Canonical fatty acid metabolism describes specific enzyme-substrate interactions that result in products with well-defined chain lengths, degree(s), and positions of unsaturation. Deep profiling of lipids across a range of prostate cancer cell lines reveals a variety of fatty acids with unusual site(s) of unsaturation that are not described by canonical pathways. The structure and abundance of these unusual lipids correlate with changes in desaturase expression and are strong indicators of cellular phenotype. Gene silencing and stable isotope tracing demonstrate that direct Δ6 and Δ8 desaturation of 14:0 (myristic), 16:0 (palmitic), and 18:0 (stearic) acids by FADS2 generate new families of unsaturated fatty acids (including n-8, n-10, and n-12) that have rarely-if ever-been reported in human-derived cells. Isomer-resolved lipidomics reveals the selective incorporation of these unusual fatty acids into complex structural lipids and identifies their presence in cancer tissues, indicating functional roles in membrane structure and signaling.
Collapse
Affiliation(s)
- Reuben S E Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Andrew P Bowman
- M4I, The Maastricht MultiModal Molecular Imaging Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4000, Australia
| | - Kaylyn D Tousignant
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4000, Australia
| | - Charles L Bidgood
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4000, Australia
| | | | - Rajesh Gupta
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, 2 George St., Brisbane, QLD 4000, Australia
| | - David L Marshall
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, 2 George St., Brisbane, QLD 4000, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia; Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, 2 George St., Brisbane, QLD 4000, Australia
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4000, Australia
| | - Shane R Ellis
- M4I, The Maastricht MultiModal Molecular Imaging Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ron M A Heeren
- M4I, The Maastricht MultiModal Molecular Imaging Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Martin C Sadowski
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4000, Australia; Institute of Pathology, University of Bern, Murtenstrasse 31, 3008 Bern, Switzerland.
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia; Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, 2 George St., Brisbane, QLD 4000, Australia.
| |
Collapse
|
31
|
Pedersen TL, Gray IJ, Newman JW. Plasma and serum oxylipin, endocannabinoid, bile acid, steroid, fatty acid and nonsteroidal anti-inflammatory drug quantification in a 96-well plate format. Anal Chim Acta 2021; 1143:189-200. [PMID: 33384117 DOI: 10.1016/j.aca.2020.11.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022]
Abstract
The goal of this research was to develop a high-throughput, cost-effective method for metabolic profiling of lipid mediators and hormones involved in the regulation of inflammation and energy metabolism, along with polyunsaturated fatty acids and common over-the-counter non-steroidal anti-inflammatory drugs (NSAIDs). We describe a 96-well plate protein precipitation and filtration procedure for 50 μL of plasma or serum in the presence of 37 deuterated analogs and 2 instrument internal standards. Data is acquired in two back-to-back UPLC-MS/MS analyses using electrospray ionization with positive/negative switching and scheduled multiple reaction monitoring for the determination of 145 compounds, including oxylipins, endocannabinoids and like compounds, bile acids, glucocorticoids, sex steroids, polyunsaturated fatty acids, and 3 NSAIDs. Intra- and inter-batch variability was <25% for >70% of metabolites above the LOQ in both matrices, but higher inter-batch variability was observed for serum oxylipins and some bile acids. Results for NIST Standard Reference Material 1950, compared favorably with the 20 certified metabolite values covered by this assay, and we provide new data for oxylipins, N-acylethanolamides, glucocorticoids, and 17-hydroxy-progesterone in this material. Application to two independent cohorts of elderly men and women showed the routine detection of 86 metabolites, identified fasting state influences on essential fatty acid-derived oxylipins, N-acylethanolamides and conjugated bile acids, identified rare presence of high and low testosterone levels and the presence of NSAIDs in ∼10% of these populations. The described method appears valuable for investigations in large cohort studies to provide insight into metabolic cross-talk between the array of mediators assessed here.
Collapse
Affiliation(s)
- Theresa L Pedersen
- Dept of Food Science and Technology, University of California at Davis, Davis, CA, USA
| | - Ira J Gray
- Obesity and Metabolism Research Unit, United States Department of Agriculture - Agricultural Research Service - Western Human Nutrition Research Center, Davis, CA, USA; West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA
| | - John W Newman
- Obesity and Metabolism Research Unit, United States Department of Agriculture - Agricultural Research Service - Western Human Nutrition Research Center, Davis, CA, USA; West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA; Dept of Nutrition, University of California Davis, Davis, CA, USA.
| |
Collapse
|
32
|
Mass Spectrometry-Based Shotgun Lipidomics Using Charge-Switch Derivatization for Analysis of Complex Long-Chain Fatty Acids. Methods Mol Biol 2021; 2306:93-103. [PMID: 33954942 DOI: 10.1007/978-1-0716-1410-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Charge-switch derivatization to convert long-chain fatty acids (LCFAs) to their N-(4-aminomethylphenyl) pyridinium (AMPP) derivatives (FA-AMPP derivative) drastically increases their sensitivity (>102) detected by electrospray ionization (ESI) or matrix assisted laser desorption ionization (MALDI). Lipidomic analyses of the FA-AMPP derivatives by ESI combined with CID tandem mass spectrometry (MS2), or by MALDI-TOF/TOF affords unambiguous structural characterization of LCFAs, including many unusual microbial LCFAs that contain various functional groups such as methyl, hydroxyl, cyclopropyl, and double bond(s). The ease of preparation of the FA-AMPP derivatives, the tremendous gain in sensitivity after derivatization, and more importantly, the readily recognizable product ion spectra that contain rich structurally informative fragment ions for locating functional groups make this method one of the most powerful techniques for LCFA identification and quantification.
Collapse
|
33
|
Narreddula VR, McKinnon BI, Marlton SJP, Marshall DL, Boase NRB, Poad BLJ, Trevitt AJ, Mitchell TW, Blanksby SJ. Next-generation derivatization reagents optimized for enhanced product ion formation in photodissociation-mass spectrometry of fatty acids. Analyst 2021; 146:156-169. [DOI: 10.1039/d0an01840f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Next-generation derivatives for photodissociation-mass spectrometry for fatty acids generating photoproduct yields of up to 97% at 266 nm.
Collapse
Affiliation(s)
- Venkateswara R. Narreddula
- School of Chemistry and Physics
- Science and Engineering Faculty
- Queensland University of Technology
- Brisbane
- Australia
| | - Benjamin I. McKinnon
- Molecular Horizons and School of Chemistry and Molecular Bioscience
- University of Wollongong
- Wollongong
- Australia
| | - Samuel J. P. Marlton
- Molecular Horizons and School of Chemistry and Molecular Bioscience
- University of Wollongong
- Wollongong
- Australia
| | - David L. Marshall
- Central Analytical Research Facility
- Institute for Future Environments
- Queensland University of Technology
- Brisbane
- Australia
| | - Nathan R. B. Boase
- School of Chemistry and Physics
- Science and Engineering Faculty
- Queensland University of Technology
- Brisbane
- Australia
| | - Berwyck L. J. Poad
- Central Analytical Research Facility
- Institute for Future Environments
- Queensland University of Technology
- Brisbane
- Australia
| | - Adam J. Trevitt
- Molecular Horizons and School of Chemistry and Molecular Bioscience
- University of Wollongong
- Wollongong
- Australia
| | - Todd W. Mitchell
- School of Medicine
- University of Wollongong
- Wollongong
- Australia
- Illawarra Health and Medical Research Institute
| | - Stephen J. Blanksby
- School of Chemistry and Physics
- Science and Engineering Faculty
- Queensland University of Technology
- Brisbane
- Australia
| |
Collapse
|
34
|
Liquid-Chromatographic Methods for Carboxylic Acids in Biological Samples. Molecules 2020; 25:molecules25214883. [PMID: 33105855 PMCID: PMC7660098 DOI: 10.3390/molecules25214883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 11/25/2022] Open
Abstract
Carboxyl-bearing low-molecular-weight compounds such as keto acids, fatty acids, and other organic acids are involved in a myriad of metabolic pathways owing to their high polarity and solubility in biological fluids. Various disease areas such as cancer, myeloid leukemia, heart disease, liver disease, and lifestyle diseases (obesity and diabetes) were found to be related to certain metabolic pathways and changes in the concentrations of the compounds involved in those pathways. Therefore, the quantification of such compounds provides useful information pertaining to diagnosis, pathological conditions, and disease mechanisms, spurring the development of numerous analytical methods for this purpose. This review article addresses analytical methods for the quantification of carboxylic acids, which were classified into fatty acids, tricarboxylic acid cycle and glycolysis-related compounds, amino acid metabolites, perfluorinated carboxylic acids, α-keto acids and their metabolites, thiazole-containing carboxylic acids, and miscellaneous, in biological samples from 2000 to date. Methods involving liquid chromatography coupled with ultraviolet, fluorescence, mass spectrometry, and electrochemical detection were summarized.
Collapse
|
35
|
Randolph CE, Blanksby SJ, McLuckey SA. Enhancing detection and characterization of lipids using charge manipulation in electrospray ionization-tandem mass spectrometry. Chem Phys Lipids 2020; 232:104970. [PMID: 32890498 PMCID: PMC7606777 DOI: 10.1016/j.chemphyslip.2020.104970] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Heightened awareness regarding the implication of disturbances in lipid metabolism with respect to prevalent human-related pathologies demands analytical techniques that provide unambiguous structural characterization and accurate quantitation of lipids in complex biological samples. The diversity in molecular structures of lipids along with their wide range of concentrations in biological matrices present formidable analytical challenges. Modern mass spectrometry (MS) offers an unprecedented level of analytical power in lipid analysis, as many advancements in the field of lipidomics have been facilitated through novel applications of and developments in electrospray ionization tandem mass spectrometry (ESI-MS/MS). ESI allows for the formation of intact lipid ions with little to no fragmentation and has become widely used in contemporary lipidomics experiments due to its sensitivity, reproducibility, and compatibility with condensed-phase modes of separation, such as liquid chromatography (LC). Owing to variations in lipid functional groups, ESI enables partial chemical separation of the lipidome, yet the preferred ion-type is not always formed, impacting lipid detection, characterization, and quantitation. Moreover, conventional ESI-MS/MS approaches often fail to expose diverse subtle structural features like the sites of unsaturation in fatty acyl constituents or acyl chain regiochemistry along the glycerol backbone, representing a significant challenge for ESI-MS/MS. To overcome these shortcomings, various charge manipulation strategies, including charge-switching, have been developed to transform ion-type and charge state, with aims of increasing sensitivity and selectivity of ESI-MS/MS approaches. Importantly, charge manipulation approaches afford enhanced ionization efficiency, improved mixture analysis performance, and access to informative fragmentation channels. Herein, we present a critical review of the current suite of solution-based and gas-phase strategies for the manipulation of lipid ion charge and type relevant to ESI-MS/MS.
Collapse
Affiliation(s)
- Caitlin E Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| |
Collapse
|
36
|
Zheng JY, Jin YY, Shi ZQ, Zhou JL, Liu LF, Xin GZ. Fluorous-paired derivatization approach towards highly sensitive and accurate determination of long chain unsaturated fatty acids by liquid chromatography-tandem mass spectrometry. Anal Chim Acta 2020; 1136:187-195. [PMID: 33081943 DOI: 10.1016/j.aca.2020.09.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
Long chain unsaturated fatty acids (LCUFAs) are emerging as critical contributors to inflammation and its resolution. Sensitive and accurate measurement of LCUFAs in biological samples is thus of great value in disease diagnosis and prognosis. In this work, a fluorous-derivatization approach for UPLC-MS/MS quantification of LCUFAs was developed by employing a pair of fluorous reagents, namely 3-(perfluorooctyl)-propylamine (PFPA) and 2-(perfluorooctyl)-ethylamine (PFEA). With this method, the LCUFAs in biological samples were perfluoroalkylated with PFPA and specifically retained on a fluorous-phase LC column, which largely reduced matrix interferences-induced quantitation deviation. Moreover, PFEA-labeled LCUFAs standards were introduced as one-to-one internal standards to farthest ensure unbiased results. Application of the proposed method enabled a reliable determination of eight typical LCUFAs with high sensitivity (LLOQ ranged from 30 amol to 6.25 fmol) and low matrix interferences (almost less than 10%). Such a high sensitivity could facilitate the determination of small-volume and low-concentration bio-samples. Further metabolic characterization of these targeted LCUFAs was monitored in OVA-induce asthma mice, requiring only 5 μL serum sample. Our results showed that asthmatic attack led to significant disturbances not only in the concentrations but also in the ratio among these LCUFAs. In view of the favorable advantages in sensitivity and accuracy, the present fluorous-paired derivatization approach will be expected to serve as a new avenue for dissecting the physiological and clinical implications of LCUFAs, thereby shedding light on the management of diseases related to their disturbances.
Collapse
Affiliation(s)
- Jia-Yi Zheng
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China
| | - Ying-Ying Jin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China
| | - Zi-Qi Shi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Jian-Liang Zhou
- Holistic Integrative Pharmacy Institutes, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, China
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China.
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China.
| |
Collapse
|
37
|
Liu GY, Moon SH, Jenkins CM, Sims HF, Guan S, Gross RW. A functional role for eicosanoid-lysophospholipids in activating monocyte signaling. J Biol Chem 2020; 295:12167-12180. [PMID: 32641497 PMCID: PMC7443508 DOI: 10.1074/jbc.ra120.013619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
Recently, eicosanoid-lysophospholipids were identified as novel metabolites generated from the direct cyclooxygenase- or lipoxygenase-catalyzed oxidation of 2-arachidonoyl-lysophospholipids produced from either phospholipase A1-mediated hydrolysis of diacyl arachidonoyl-phospholipids or through the cytochrome c-catalyzed oxidative hydrolysis of the vinyl ether linkage of arachidonoyl-plasmalogens. Although the metabolic pathways generating eicosanoid-lysophospholipids have been increasingly appreciated, the signaling functions of eicosanoid-lysophospholipids remain largely unknown. Herein, we demonstrate that 2-12(S)-HETE-lysophospholipids as well as nonesterified 12(S)-HETE are potent lipid mediators that activate THP-1 human monocytic cells to generate tumor necrosis factor α (TNFα) and interleukin 8 (IL8). Remarkably, low nanomolar concentrations of 12(S)-HETE-lysophospholipids, but not other oxidized signaling lipids examined activated THP-1 cells resulting in the production of large amounts of TNFα. Moreover, TNFα release induced by 12(S)-HETE-lysophospholipids was inhibited by the TNFα converting enzyme inhibitor TAPI-0 indicating normal processing of TNFα in THP-1 cells stimulated with these agonists. Western blotting analyses revealed that 12(S)-HETE-lysophospholipids activated the phosphorylation of NFκB p65, suggesting activation of the canonical NFκB signaling pathway. Importantly, activation of THP-1 cells to release TNFα was stereoselective with 12(S)-HETE favored over 12(R)-HETE. Furthermore, the EC50 of 2-12(S)-HETE-lysophosphatidylcholine in activating THP-1 cells was 2.1 nm, whereas the EC50 of free 12(S)-HETE was 23 nm Additionally, lipid extracts of activated platelets were separated by RP-HPLC demonstrating the coelution of 12(S)-HETE with fractions initiating TNFα release. Collectively, these results demonstrate the potent signaling properties of 2-12(S)-HETE-lysophospholipids and 12(S)-HETE by their ability to release TNFα and activate NFκB signaling thereby revealing a previously unknown role of 2-12(S)-HETE-lysophospholipids in mediating inflammatory responses.
Collapse
Affiliation(s)
- Gao-Yuan Liu
- Department of Chemistry, Washington University, Saint Louis, Missouri, USA; Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Sung Ho Moon
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Christopher M Jenkins
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Harold F Sims
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Shaoping Guan
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Richard W Gross
- Department of Chemistry, Washington University, Saint Louis, Missouri, USA; Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA; Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri, USA; Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
38
|
Hellhake S, Meckelmann SW, Empl MT, Rentmeister K, Wißdorf W, Steinberg P, Schmitz OJ, Benter T, Schebb NH. Non-targeted and targeted analysis of oxylipins in combination with charge-switch derivatization by ion mobility high-resolution mass spectrometry. Anal Bioanal Chem 2020; 412:5743-5757. [PMID: 32699965 PMCID: PMC7413910 DOI: 10.1007/s00216-020-02795-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/15/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Eicosanoids and other oxylipins play an important role in mediating inflammation as well as other biological processes. For the investigation of their biological role(s), comprehensive analytical methods are necessary, which are able to provide reliable identification and quantification of these compounds in biological matrices. Using charge-switch derivatization with AMPP (N-(4-aminomethylphenyl)pyridinium chloride) in combination with liquid chromatography ion mobility quadrupole time-of-flight mass spectrometry (LC-IM-QTOF-MS), we developed a non-target approach to analyze oxylipins in plasma, serum, and cells. The developed workflow makes use of an ion mobility resolved fragmentation to pinpoint derivatized molecules based on the cleavage of AMPP, which yields two specific fragment ions. This allows a reliable identification of known and unknown eicosanoids and other oxylipins. We characterized the workflow using 52 different oxylipins and investigated their fragmentation patterns and ion mobilities. Limits of detection ranged between 0.2 and 10.0 nM (1.0-50 pg on column), which is comparable with other state-of-the-art methods using LC triple quadrupole (QqQ) MS. Moreover, we applied this strategy to analyze oxylipins in different biologically relevant matrices, as cultured cells, human plasma, and serum. Graphical abstract.
Collapse
Affiliation(s)
- Stefan Hellhake
- School of Mathematics and Natural Sciences, University of Wuppertal, Gauss-Str. 20, 42119, Wuppertal, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry & Teaching and Research Center for Separation, University of Duisburg-Essen, Universitätsstr. 5-7, 45141, Essen, Germany
| | - Michael T Empl
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bünteweg 2, 30559, Hannover, Germany
| | - Kristina Rentmeister
- Applied Analytical Chemistry & Teaching and Research Center for Separation, University of Duisburg-Essen, Universitätsstr. 5-7, 45141, Essen, Germany
| | - Walter Wißdorf
- School of Mathematics and Natural Sciences, University of Wuppertal, Gauss-Str. 20, 42119, Wuppertal, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bünteweg 2, 30559, Hannover, Germany
| | - Oliver J Schmitz
- Applied Analytical Chemistry & Teaching and Research Center for Separation, University of Duisburg-Essen, Universitätsstr. 5-7, 45141, Essen, Germany
| | - Thorsten Benter
- School of Mathematics and Natural Sciences, University of Wuppertal, Gauss-Str. 20, 42119, Wuppertal, Germany
| | - Nils Helge Schebb
- School of Mathematics and Natural Sciences, University of Wuppertal, Gauss-Str. 20, 42119, Wuppertal, Germany.
| |
Collapse
|
39
|
Analytical Methods for the Determination of Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) in Biological Samples, Plants and Foods. Biomolecules 2020; 10:biom10081092. [PMID: 32707994 PMCID: PMC7463945 DOI: 10.3390/biom10081092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Fatty acid esters of hydroxy fatty acids (FAHFAs) constitute a class of recently identified novel lipids exhibiting anti-diabetic and anti-inflammatory effects. Due to their high biological significance, a tremendous effort has been devoted to the development of analytical methods for the detection and quantitation of FAHFAs during the last five years. The analysis of FAHFAs is very challenging due to the great number of possible regio-isomers arising from the great number of possible combinations of FAs with HFAs, and the low abundancies of FAHFAs in biological samples. The aim of this review article is to summarize all the cutting-edge analytical methodologies for the determination of FAHFAs in biological samples, plant tissues and food matrices, with emphasis on extraction and analysis steps. All the analytical methodologies rely on the use of liquid chromatography–mass spectrometry (LC-MS), providing high sensitivity due to the MS detection. Powerful and robust analytical methodologies may highly contribute in studying FAHFAs levels under various biomedical conditions, and facilitate our understanding of the role of these lipid species in physiological and pathological conditions.
Collapse
|
40
|
Guan S, Armbruster MR, Huang T, Edwards JL, Bythell BJ. Isomeric Differentiation and Acidic Metabolite Identification by Piperidine-Based Tagging, LC-MS/MS, and Understanding of the Dissociation Chemistries. Anal Chem 2020; 92:9305-9311. [PMID: 32466643 DOI: 10.1021/acs.analchem.0c01640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We demonstrate a method for facile differentiation of acidic, isomeric metabolites by attaching high proton affinity, piperidine-based chemical tags to each carboxylic acid group. These tags attach with high efficiency to the analytes, increase the signal, and result in the formation of multiply-charged cations. We illustrate the present approach with citrate and isocitrate, which are isomeric metabolites each containing three carboxylic acid groups. We observe a 20-fold increase in signal-to-noise for citrate and an 8-fold increase for isocitrate as compared to detection of the untagged analytes in negative mode. Collision-induced dissociation of the triply tagged, triply charged analytes results in distinct tandem mass spectra. The phenylene spacer groups limit proton mobility and enable access to structurally informative C-C bond cleavage reactions. Modeling of the gas-phase structures and dissociation chemistry of these triply charged analyte ions highlights the importance of hydroxyl proton mobilization in this low proton mobility environment. Tandem mass spectrometric analyses of deuterated congeners and MS3 spectra are consistent with the proposed fragment ion structures and mechanisms of formation. Direct evidence that these chemistries are more generally applicable is provided by subsequent analyses of doubly tagged, doubly charged malate ions. Future work will focus on applying these methods to identify new metabolites and development of general rules for structural determination of tagged metabolites with multiple charges.
Collapse
Affiliation(s)
- Shanshan Guan
- Department of Chemistry and Biochemistry, Ohio University, 391 Clippinger Laboratories, Athens, Ohio 45701, United States
- Department of Chemistry and Biochemistry, University of Missouri, 1 University Blvd, St. Louis, Missouri 63121, United States
| | - Michael R Armbruster
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63102, United States
| | - Tianjiao Huang
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63102, United States
| | - James L Edwards
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63102, United States
| | - Benjamin J Bythell
- Department of Chemistry and Biochemistry, Ohio University, 391 Clippinger Laboratories, Athens, Ohio 45701, United States
- Department of Chemistry and Biochemistry, University of Missouri, 1 University Blvd, St. Louis, Missouri 63121, United States
| |
Collapse
|
41
|
Du P, Hu T, An Z, Li P, Liu L. Simultaneous quantitative determination of arachidonic acid and cascade metabolites in rat serum by UPLC-MS/MS: application for longitudinal metabolomics of anlotinib. Analyst 2020; 145:4972-4981. [PMID: 32515434 DOI: 10.1039/d0an00867b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Arachidonic acid (AA) and cascade metabolites have been shown to be involved in cancer pathologic states. Anlotinib, a novel oral small molecule inhibitor of multiple receptor tyrosine kinases, has brought significant improvement to the survival of patients with advanced lung cancer. Here, a robust and reproducible ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed, optimized and validated for quantitating AA and cascade metabolites for the first time. Through careful optimization of the analytical conditions, a total of 69 analytes can be efficiently separated and quantitated in a single run of 17 min. A simple and labor-saving protein precipitation procedure was utilized for serum sample pretreatment. The validation parameters and quality control chart of all analytes satisfy the acceptance criteria of bioanalytical method guidelines. The limit of detection (LOD) ranged from 0.005 ng mL-1 to 1 ng mL-1, and the volume of serum was only 20 μL. This rapid and sensitive UPLC-MS/MS method was successfully applied to a longitudinal metabolomics study in rat serum after a single administration of anlotinib (6 mg kg-1). Finally, a total of 41 metabolites can be calculated under the present conditions. Serum samples from the same rat were segregated into a tight cluster in both unsupervised principal component analysis (PCA) and supervised orthogonal partial least-squares discriminant analysis (OPLS-DA) at different sampling time points after anlotinib treatment. Moreover, the number of analytes whose variable importance (VIP) values were larger than 1.0 was 17. The present study not only offers a UPLC-MS/MS analytical reference for AA but also brings out insights for future mechanistic studies or biomarkers to predict the efficacy, toxicity and clinical outcomes in patients with cancer.
Collapse
Affiliation(s)
- Ping Du
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | | | | | | | | |
Collapse
|
42
|
Concerted EP2 and EP4 Receptor Signaling Stimulates Autocrine Prostaglandin E 2 Activation in Human Podocytes. Cells 2020; 9:cells9051256. [PMID: 32438662 PMCID: PMC7290667 DOI: 10.3390/cells9051256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/29/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
Glomerular hyperfiltration is an important mechanism in the development of albuminuria. During hyperfiltration, podocytes are exposed to increased fluid flow shear stress (FFSS) in Bowman’s space. Elevated Prostaglandin E2 (PGE2) synthesis and upregulated cyclooxygenase 2 (Cox2) are associated with podocyte injury by FFSS. We aimed to elucidate a PGE2 autocrine/paracrine pathway in human podocytes (hPC). We developed a modified liquid chromatography tandem mass spectrometry (LC/ESI-MS/MS) protocol to quantify cellular PGE2, 15-keto-PGE2, and 13,14-dihydro-15-keto-PGE2 levels. hPC were treated with PGE2 with or without separate or combined blockade of prostaglandin E receptors (EP), EP2, and EP4. Furthermore, the effect of FFSS on COX2, PTGER2, and PTGER4 expression in hPC was quantified. In hPC, stimulation with PGE2 led to an EP2- and EP4-dependent increase in cyclic adenosine monophosphate (cAMP) and COX2, and induced cellular PGE2. PTGER4 was downregulated after PGE2 stimulation in hPC. In the corresponding LC/ESI-MS/MS in vivo analysis at the tissue level, increased PGE2 and 15-keto-PGE2 levels were observed in isolated glomeruli obtained from a well-established rat model with glomerular hyperfiltration, the Munich Wistar Frömter rat. COX2 and PTGER2 were upregulated by FFSS. Our data thus support an autocrine/paracrine COX2/PGE2 pathway in hPC linked to concerted EP2 and EP4 signaling.
Collapse
|
43
|
Narreddula VR, Sadowski P, Boase NRB, Marshall DL, Poad BLJ, Trevitt AJ, Mitchell TW, Blanksby SJ. Structural elucidation of hydroxy fatty acids by photodissociation mass spectrometry with photolabile derivatives. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8741. [PMID: 32012356 DOI: 10.1002/rcm.8741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE Eicosanoids are short-lived bio-responsive lipids produced locally from oxidation of polyunsaturated fatty acids (FAs) via a cascade of enzymatic or free radical reactions. Alterations in the composition and concentration of eicosanoids are indicative of inflammation responses and there is strong interest in developing analytical methods for the sensitive and selective detection of these lipids in biological mixtures. Most eicosanoids are hydroxy FAs (HFAs), which present a particular analytical challenge due to the presence of regioisomers arising from differing locations of hydroxylation and unsaturation within their structures. METHODS In this study, the recently developed derivatization reagent 1-(3-(aminomethyl)-4-iodophenyl)pyridin-1-ium (4-I-AMPP+ ) was applied to a representative set of HFAs including bioactive eicosanoids. Photodissociation (PD) mass spectra obtained at 266 nm of 4-I-AMPP+ -modified HFAs exhibit abundant product ions arising from photolysis of the aryl-iodide bond within the derivative with subsequent migration of the radical to the hydroxyl group promoting fragmentation of the FA chain and facilitating structural assignment. RESULTS Representative polyunsaturated HFAs (from the hydroxyeicosatetraenoic acid and hydroxyeicosapentaenoic acid families) were derivatized with 4-I-AMPP+ and subjected to a reversed-phase liquid chromatography workflow that afforded chromatographic resolution of isomers in conjunction with structurally diagnostic PD mass spectra. CONCLUSIONS PD of these complex HFAs was found to be sensitive to the locations of hydroxyl groups and carbon-carbon double bonds, which are structural properties strongly associated with the biosynthetic origins of these lipid mediators.
Collapse
Affiliation(s)
- Venkateswara R Narreddula
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Pawel Sadowski
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Nathan R B Boase
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - David L Marshall
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Berwyck L J Poad
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Adam J Trevitt
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Todd W Mitchell
- School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Stephen J Blanksby
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| |
Collapse
|
44
|
Ye K, Jiang Q, Lu Y, Wen X, Yang J. Quantification of prostaglandins in rat uterus by ultra high-performance liquid chromatography/mass spectrometry based on derivatization with analogous reagents. J Chromatogr A 2020; 1618:460869. [DOI: 10.1016/j.chroma.2020.460869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/04/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
|
45
|
Xu S, Wei F, Xie Y, Wu B, Lv X, Qin Z, Chen H. Localisation of C=C Bond and absolute quantification of unsaturated Fatty Acids in Vegetable Oils based on photochemical derivatisation reaction coupled with mass spectrometry. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shuling Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| | - Fang Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| | - Ya Xie
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| | - Bangfu Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| | - Xin Lv
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| | - Zuojian Qin
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| | - Hong Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| |
Collapse
|
46
|
Xu L, Hu C, Liu Y, Li S, Vetter W, Yin H, Wang Y. Development of a sensitive and quantitative method for the identification of two major furan fatty acids in human plasma. J Lipid Res 2020; 61:560-569. [PMID: 32029512 DOI: 10.1194/jlr.d119000514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/29/2020] [Indexed: 01/28/2023] Open
Abstract
This article focuses on the establishment of an accurate and sensitive quantitation method for the analysis of furan fatty acids. In particular, the sensitivity of GC/MS and UPLC/ESI/MS/MS was compared for the identification and quantification of furan fatty acids. Different methylation methods were tested with respect to GC/MS analysis. Special attention needs to be paid to the methylation of furan fatty acids, as acidic catalysts might lead to the degradation of the furan ring. GC/MS analysis in full-scan mode demonstrated that the limit of quantitation was 10 μM. UPLC/ESI/MS/MS in multiple reaction monitoring mode displayed a higher detection sensitivity than GC/MS. Moreover, the identification of furan fatty acids with charge-reversal derivatization was tested in the positive mode with two widely used pyridinium salts. Significant oxidation was unexpectedly observed using N-(4-aminomethylphenyl) pyridinium as a derivatization agent. The formed 3-acyl-oxymethyl-1-methylpyridinium iodide derivatized by 2-bromo-1-methylpyridinium iodide and 3-carbinol-1-methylpyridinium iodide improved the sensitivity more than 2,000-fold compared with nonderivatization in the negative mode by UPLC/ESI/MS/MS. This charge-reversal derivatization enabled the targeted quantitation of furan fatty acids in human plasma. Thus, it is anticipated that this protocol could greatly contribute to the clarification of pathological mechanisms related to furan fatty acids and their metabolites.
Collapse
Affiliation(s)
- Long Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Changfeng Hu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yongguo Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Siming Li
- Analytical Applications Center, Analytical Instruments Division, Shimadzu, Guangzhou, China
| | - Walter Vetter
- Institute of Food Chemistry, Department of Food Chemistry (170b), University of Hohenheim, Stuttgart, Germany
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
47
|
Liakh I, Pakiet A, Sledzinski T, Mika A. Methods of the Analysis of Oxylipins in Biological Samples. Molecules 2020; 25:E349. [PMID: 31952163 PMCID: PMC7024226 DOI: 10.3390/molecules25020349] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Oxylipins are derivatives of polyunsaturated fatty acids and due to their important and diverse functions in the body, they have become a popular subject of studies. The main challenge for researchers is their low stability and often very low concentration in samples. Therefore, in recent years there have been developments in the extraction and analysis methods of oxylipins. New approaches in extraction methods were described in our previous review. In turn, the old analysis methods have been replaced by new approaches based on mass spectrometry (MS) coupled with liquid chromatography (LC) and gas chromatography (GC), and the best of these methods allow hundreds of oxylipins to be quantitatively identified. This review presents comparative and comprehensive information on the progress of various methods used by various authors to achieve the best results in the analysis of oxylipins in biological samples.
Collapse
Affiliation(s)
- Ivan Liakh
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.)
| | - Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.)
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.)
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
| |
Collapse
|
48
|
Cebo M, Schlotterbeck J, Gawaz M, Chatterjee M, Lämmerhofer M. Simultaneous targeted and untargeted UHPLC-ESI-MS/MS method with data-independent acquisition for quantification and profiling of (oxidized) fatty acids released upon platelet activation by thrombin. Anal Chim Acta 2020; 1094:57-69. [DOI: 10.1016/j.aca.2019.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/06/2019] [Indexed: 12/19/2022]
|
49
|
Wei F, Lamichhane S, Orešič M, Hyötyläinen T. Lipidomes in health and disease: Analytical strategies and considerations. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115664] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
50
|
Poad BLJ, Marshall DL, Harazim E, Gupta R, Narreddula VR, Young RSE, Duchoslav E, Campbell JL, Broadbent JA, Cvačka J, Mitchell TW, Blanksby SJ. Combining Charge-Switch Derivatization with Ozone-Induced Dissociation for Fatty Acid Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2135-2143. [PMID: 31347025 DOI: 10.1007/s13361-019-02285-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
The specific positions of carbon-carbon double bond(s) within an unsaturated fatty acid exert a significant effect on the physical and chemical properties of the lipid that ultimately inform its biological function(s). Contemporary liquid chromatography-mass spectrometry (MS) strategies based on electrospray ionization coupled to tandem MS can easily detect fatty acyl lipids but generally cannot reveal those specific site(s) of unsaturation. Herein, we describe a novel and versatile workflow whereby fatty acids are first converted to fixed charge N-(4-aminomethylphenyl)pyridinium (AMPP) derivatives and subsequently subjected to ozone-induced dissociation (OzID) on a modified triple quadrupole mass spectrometer. The AMPP modification enhances the detection of fatty acids introduced by direct infusion. Fragmentation of the derivatized fatty acids also provides diagnostic fragment ions upon collision-induced dissociation that can be targeted in precursor ion scans to subsequently trigger OzID analyses in an automated data-dependent workflow. It is these OzID analyses that provide unambiguous assignment of carbon-carbon double bond locations in the AMPP-derivatized fatty acids. The performance of this analysis pipeline is assessed in profiling the patterns of unsaturation in fatty acids within the complex biological secretion vernix caseosa. This analysis uncovers significant isomeric diversity within the fatty acid pool of this sample, including a number of hitherto unreported double bond positional isomers that hint at the activity of potentially new metabolic pathways.
Collapse
Affiliation(s)
- Berwyck L J Poad
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Australia.
| | - David L Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Australia
| | - Eva Harazim
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Rajesh Gupta
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Australia
| | - Venkateswara R Narreddula
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia
| | - Reuben S E Young
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia
| | | | | | - James A Broadbent
- SCIEX, Concord, ON, Canada
- CSIRO Agriculture and Food, St Lucia, Queensland, 4067, Australia
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Todd W Mitchell
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|