1
|
Ren QX, Wang R, Mu QR, Chen L, Chen M, Wang LJ, Li P, Yang H, Gao W. Molecular networking and Paterno-Büchi reaction guided glycerides characterization and antioxidant activity assessment of Ganoderma lucidum spore oil. Food Chem 2025; 468:142500. [PMID: 39700810 DOI: 10.1016/j.foodchem.2024.142500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/10/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Ganoderma lucidum spore oil (GLSO) is a dietary supplement, with glycerides (GLs) recognized as its important active component. However, comprehensive profiling and accurate structural characterization of GLs in GLSO remain underexplored. In this study, 59 GLs from GLSO were identified by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF MS) and molecular networking (MN). The double bond isomers of these compounds were further resolved by the Paterno-Büchi (PB) reaction coupled with UPLC-Q-TOF MS, resulting in the identification of 36 unsaturated GLs, including 5 pairs of positional isomers. In summary, 64 GLs were characterized, consisting of 9 diacylglycerols (DGs) and 55 triacylglycerols (TGs). Additionally, the compositional variations, antioxidant activities, and relative isomer ratios of CC positional isomers of GLSO from eight different manufacturers were revealed, with 11 GLs correlating with antioxidant activity. This study enhances the understanding of the nutritional value of GLSO and lays a foundation for future quality standard formulation.
Collapse
Affiliation(s)
- Qing-Xuan Ren
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Rui Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qin-Ru Mu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ling Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Min Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Li-Jiang Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Chen KL, Kuo TH, Hsu CC. Mapping Lipid C═C Isomer Profiles of Human Gut Bacteria through a Novel Structural Lipidomics Workflow Assisted by Chemical Epoxidation. Anal Chem 2024; 96:17526-17536. [PMID: 39437332 PMCID: PMC11541895 DOI: 10.1021/acs.analchem.4c02697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
The unsaturated lipids produced by human gut bacteria have an extraordinary range of structural diversity, largely because of the isomerism of the carbon-carbon double bond (C═C) in terms of its position and stereochemistry. Characterizing distinct C═C configurations poses a considerable challenge in research, primarily owing to limitations in current bioanalytical methodologies. This study developed a novel structural lipidomics workflow by combining MELDI (meta-chloroperoxybenzoic acid epoxidation for lipid double-bond identification) with liquid chromatography-tandem mass spectrometry for C═C characterization. We utilized this workflow to quantitatively assess more than 50 C═C positional and cis/trans isomers of fatty acids and phospholipids from selected human gut bacteria. Strain-specific isomer profiles revealed unexpectedly high productivity of trans-10-octadecenoic acid by Enterococcus faecalis, Bifidobacterium longum, and Lactobacillus acidophilus among numerous trans-fatty acid isomers produced by gut bacteria. Isotope-tracking experiments suggested that gut bacteria produce trans-10-octadecenoic acid through the isomeric biotransformation of oleic acid in vitro and that such isomeric biotransformation of dietary oleic acid is dependent on the presence of gut bacteria in vivo.
Collapse
Affiliation(s)
- Kai-Li Chen
- Department
of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Ting-Hao Kuo
- Department
of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Cheng-Chih Hsu
- Department
of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
3
|
Xu C, Feng X, Xing W, Tang C, Sun X, Yang Y, Zhang J. Identification and quantitation of carbon-carbon double bond isomers of fatty acid in livestock and poultry meat. Food Res Int 2024; 196:115119. [PMID: 39614582 DOI: 10.1016/j.foodres.2024.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
Livestock and poultry meat is one of the main consumption sources of fatty acids (FAs) in China. FAs are the main component of lipids and essential nutrients for the human body. The location of carbon-carbon double bond (CC) in unsaturated fatty acids (UFAs) significantly affects the nutrition and flavor quality of meat products. This study established an analytical method for identifying the CC positions of UFAs based on the Paternò-Büchi (PB) reaction using ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF). The FA extract was derivatized with 2-acetylpyridine under ultraviolet light at 254 nm. The derivatized FA was then analyzed using targeted MS/MS mode in positive electrospray ionization. Limits of detection (LOD) and limits of quantitation (LOQ) of 21 UFAs were 0.004-0.680 and 0.013-2.267 μg/L, respectively. Furthermore, for the diagnostic ions at the same functional group terminal fragmented from derivatives of FA CC isomers, the abundance ratio was linear with that of the corresponding content, which could be applied to non-targeted screening of CC positions in FAs. Based on this method, a total of 28 UFAs were screened in five types of livestock and poultry meats in this study. Among them, four isomers of C17:1, four of C18:1, two of C18:2, two of C20:3 and two of C22:5 were identified. The precise identification and quantitation of the double bond positions of fatty acids will be of great significance for the exploration of the nutritional components in livestock and poultry meat.
Collapse
Affiliation(s)
- Chenyang Xu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaohui Feng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Weihai Xing
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaojie Sun
- SCIEX, Analytical Instrument Trading Co., Ltd, Beijing 100015, China.
| | - Youyou Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
4
|
Tang S, Wang H, Zhang H, Zhang M, Xu J, Yang C, Chen X, Guo X. Simultaneous Determination of the Position and Cis- Trans Configuration of Lipid C═C Bonds via Asymmetric Derivatization and Ion Mobility-Mass Spectrometry. J Am Chem Soc 2024; 146:29503-29512. [PMID: 39412160 DOI: 10.1021/jacs.4c08980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The position and cis-trans configuration of C═C bonds in unsaturated lipids significantly affect their biological activities. Simultaneous identification of the position and cis-trans configuration of C═C bonds in unsaturated lipids is important; nonetheless, it still remains a challenging task. Herein, a stereoselective asymmetric reaction was used to recognize cis-trans isomers of the C═C bonds, and the derivatized precursor ions and product ions were subjected to tandem ion mobility-mass spectrometry (IM-MS) analysis. The theoretical calculation revealed that the formation of intramolecular hydrogen bonds after the cyclization reaction amplified the structural difference between diastereomers and increased the separation efficiency in IM. Consequently, a simple, sensitive, and highly selective platform for simultaneous determination of the position and cis-trans configuration of various C═C bonds in unsaturated lipids was established. It was then successfully applied to pinpoint the cis-trans geometry conversion of the located C═C bonds in lipids of the bacterial membrane under environmental stress and track the heterogeneous distribution of unsaturated lipids in rats after spinal cord injury. The present study also offers new insights into the application of IM-MS technology in resolving molecular structures and demonstrates the potential as a platform for a broad range of applications.
Collapse
Affiliation(s)
- Shuai Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Huihui Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Mingyu Zhang
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jiancheng Xu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Chun Yang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China
| |
Collapse
|
5
|
Rudt E, Faist C, Schwantes V, Konrad N, Wiedmaier-Czerny N, Lehnert K, Topman-Rakover S, Brill A, Burdman S, Hayouka Z, Vetter W, Hayen H. LC-MS/MS-based phospholipid profiling of plant-pathogenic bacteria with tailored separation of methyl-branched species. Anal Bioanal Chem 2024; 416:5513-5525. [PMID: 39052053 PMCID: PMC11427607 DOI: 10.1007/s00216-024-05451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Plant-pathogenic bacteria are one of the major constraints on agricultural yield. In order to selectively treat these bacteria, it is essential to understand the molecular structure of their cell membrane. Previous studies have focused on analyzing hydrolyzed fatty acids (FA) due to the complexity of bacterial membrane lipids. These studies have highlighted the occurrence of branched-chain fatty acids (BCFA) alongside normal-chain fatty acids (NCFA) in many bacteria. As several FA are bound in the intact phospholipids of the bacterial membrane, the presence of isomeric FA complicates lipid analysis. Furthermore, commercially available reference standards do not fully cover potential lipid isomers. To address this issue, we have developed a reversed-phase high-performance liquid chromatography (RP-HPLC) method with tandem mass spectrometry (MS/MS) to analyze the phospholipids of various plant-pathogenic bacteria with a focus on BCFA containing phospholipids. The study revealed the separation of three isomeric phosphatidylethanolamines (PE) depending on the number of bound BCFA to NCFA. The validation of the retention order was based on available reference standards in combination with the analysis of hydrolyzed fatty acids through gas chromatography with mass spectrometry (GC/MS) after fractionation. Additionally, the transferability of the retention order to other major lipid classes, such as phosphatidylglycerols (PG) and cardiolipins (CL), was thoroughly examined. Using the information regarding the retention behavior, the phospholipid profile of six plant-pathogenic bacteria was structurally elucidated. Furthermore, the developed LC-MS/MS method was used to classify the plant-pathogenic bacteria based on the number of bound BCFA in the phospholipidome.
Collapse
Affiliation(s)
- Edward Rudt
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Christian Faist
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Vera Schwantes
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Nele Konrad
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Nina Wiedmaier-Czerny
- Institute of Food Chemistry (170b) , University of Hohenheim, Garbenstraße 28, D-70593, Stuttgart, Germany
| | - Katja Lehnert
- Institute of Food Chemistry (170b) , University of Hohenheim, Garbenstraße 28, D-70593, Stuttgart, Germany
| | - Shiri Topman-Rakover
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Aya Brill
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Walter Vetter
- Institute of Food Chemistry (170b) , University of Hohenheim, Garbenstraße 28, D-70593, Stuttgart, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany.
| |
Collapse
|
6
|
Yan T, Prentice BM. Structural characterization of sphingomyelins from tissue using electron-induced dissociation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9844. [PMID: 38932679 PMCID: PMC11643396 DOI: 10.1002/rcm.9844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/17/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
RATIONALE Sphingomyelins (SMs) and resulting metabolic products serve important functional and cell signaling roles and can act as potential biomarkers and therapeutic targets in many pathological disorders. SMs each contain a sphingoid base, an amide-linked fatty acyl chain, and a phosphocholine headgroup. Despite these simple building blocks, variations and modifications of both the sphingoid base and the fatty acyl chain result in a diverse array of structurally complicated SM compounds. Conventional tandem mass spectrometry (MS/MS) using the collision-induced dissociation (CID) method only provides limited structural information, necessitating other tools to unravel the structural complexity of these lipids. METHODS We utilize electron-induced dissociation (EID) and sequential CID/EID approaches to elucidate detailed structural features of SMs. Integrating the CID/EID method into an imaging MS workflow enables accurate identification of SMs directly from kidney tissue. RESULTS The application of EID enables identification of SMs at the molecular species level, identifying the sphingosine base and the amide-linked fatty acyl chains. Furthermore, removal of the phosphocholine headgroup via CID followed by sequential EID in an MS3 analysis (CID/EID) enhances the structural information obtained. CID/EID provides diagnostic fragmentation patterns revealing the hydroxylation site and double bond position in both the sphingosine base and amide-linked fatty acyl chains. CONCLUSIONS Detailed structural information of SMs from synthetic standards and biological tissue samples is obtained using an alternative electron-based dissociation method. Accurate characterization of SMs promises to better inform studies of tissue biochemistry, lipid metabolism, and molecular pathology.
Collapse
Affiliation(s)
- Tingting Yan
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Boone M. Prentice
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| |
Collapse
|
7
|
Brydon SC, Poad BLJ, Fang M, Rustam YH, Young RSE, Mouradov D, Sieber OM, Mitchell TW, Reid GE, Blanksby SJ, Marshall DL. Cross-Validation of Lipid Structure Assignment Using Orthogonal Ion Activation Modalities on the Same Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1976-1990. [PMID: 39037040 DOI: 10.1021/jasms.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The onset and progression of cancer is associated with changes in the composition of the lipidome. Therefore, better understanding of the molecular mechanisms of these disease states requires detailed structural characterization of the individual lipids within the complex cellular milieu. Recently, changes in the unsaturation profile of membrane lipids have been observed in cancer cells and tissues, but assigning the position(s) of carbon-carbon double bonds in fatty acyl chains carried by membrane phospholipids, including the resolution of lipid regioisomers, has proven analytically challenging. Conventional tandem mass spectrometry approaches based on collision-induced dissociation of ionized glycerophospholipids do not yield spectra that are indicative of the location(s) of carbon-carbon double bonds. Ozone-induced dissociation (OzID) and ultraviolet photodissociation (UVPD) have emerged as alternative ion activation modalities wherein diagnostic product ions can enable de novo assignment of position(s) of unsaturation based on predictable fragmentation behaviors. Here, for the first time, OzID and UVPD (193 nm) mass spectra are acquired on the same mass spectrometer to evaluate the relative performance of the two modalities for lipid identification and to interrogate the respective fragmentation pathways under comparable conditions. Based on investigations of lipid standards, fragmentation rules for each technique are expanded to increase confidence in structural assignments and exclude potential false positives. Parallel application of both methods to unsaturated phosphatidylcholines extracted from isogenic colorectal cancer cell lines provides high confidence in the assignment of multiple double bond isomers in these samples and cross-validates relative changes in isomer abundance.
Collapse
Affiliation(s)
- Samuel C Brydon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Mengxuan Fang
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Yepy H Rustam
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Reuben S E Young
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Dmitri Mouradov
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Oliver M Sieber
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Todd W Mitchell
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gavin E Reid
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - David L Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
8
|
Gu JY, Li XB, Liao GQ, Wang TC, Wang ZS, Jia Q, Qian YZ, Zhang XL, Qiu J. Comprehensive analysis of phospholipid in milk and their biological roles as nutrients and biomarkers. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38556904 DOI: 10.1080/10408398.2024.2330696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Phospholipids (PL) have garnered significant attention due to their physiological activities. Milk and other dairy products are important dietary sources for humans and have been extensively used to analyze the presence of PL by various analytical techniques. In this paper, the analysis techniques of PL were reviewed with the eight trigrams of phospholipidomics and a comprehensive fingerprint of 1295 PLs covering 8 subclasses in milk and other dairy products, especially. Technology is the primary productive force. Based on phospholipidomics technology, we further review the relationship between the composition of PL and factors that may be involved in processing and experimental operation, and emphasized the significance of the biological role played by PL in dietary supplements and biomarkers (production, processing and clinical research), and providing the future research directions.
Collapse
Affiliation(s)
- Jing-Yi Gu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xia-Bing Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Guang-Qin Liao
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Tian-Cai Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zi-Shuang Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qi Jia
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yong-Zhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xing-Lian Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
9
|
Shenault DM, Fabijanczuk KC, Murtada R, Finn S, Gonzalez LE, Gao J, McLuckey SA. Gas-Phase Ion/Ion Reactions to Enable Radical-Directed Dissociation of Fatty Acid Ions: Application to Localization of Methyl Branching. Anal Chem 2024; 96:3389-3401. [PMID: 38353412 DOI: 10.1021/acs.analchem.3c04510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Methyl branching on the carbon chains of fatty acids and fatty esters is among the structural variations encountered with fatty acids and fatty esters. Branching in fatty acid/ester chains is particularly prominent in bacterial species and, for example, in vernix caseosa and sebum. The distinction of branched chains from isomeric straight-chain species and the localization of branching can be challenging to determine by mass spectrometry (MS). Condensed-phase derivatization strategies, often used in conjunction with separations, are most commonly used to address the identification and characterization of branched fatty acids. In this work, a gas-phase ion/ion strategy is presented that obviates condensed-phase derivatization and introduces a radical site into fatty acid ions to facilitate radical-directed dissociation (RDD). The gas-phase approach is also directly amenable to fatty acid anions generated via collision-induced dissociation from lipid classes that contain fatty esters. Specifically, divalent magnesium complexes bound to two terpyridine ligands that each incorporate a ((2,2,6,6-tetramethyl-1-piperidine-1-yl)oxy) (TEMPO) moiety are used to charge-invert fatty acid anions. Following the facile loss of one of the ligands and the TEMPO group of the remaining ligand, a radical site is introduced into the complex. Subsequent collision-induced dissociation (CID) of the complex exhibits preferred cleavages that localize the site(s) of branching. The approach is illustrated with iso-, anteiso-, and isoprenoid branched-chain fatty acids and an intact glycerophospholipid and is applied to a mixture of branched- and straight-chain fatty acids derived from Bacillus subtilis.
Collapse
Affiliation(s)
- De'Shovon M Shenault
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kimberly C Fabijanczuk
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rayan Murtada
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Shane Finn
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - L Edwin Gonzalez
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinshan Gao
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
10
|
Harris RA, May JC, Harvey SR, Wysocki VH, McLean JA. Evaluation of Surface-Induced Dissociation Ion Mobility-Mass Spectrometry for Lipid Structural Characterization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:214-223. [PMID: 38215279 PMCID: PMC11798589 DOI: 10.1021/jasms.3c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The complexity of the lipidome has necessitated the development of novel analytical approaches for the identification and structural analysis of morphologically diverse classes of lipids. At this time, a variety of dissociation techniques have been utilized to probe lipid decomposition pathways in search of structurally diagnostic fragment ions. Here, we investigate the application of surface-induced dissociation (SID), a fragmentation technique that imparts energy to the target molecule via collision with a coated surface, for the fragmentation of seven lipids across four major lipid subclasses. We have developed a tuning methodology for guiding the efficient operation of a previously developed custom SID device for molecules as small as ca. 300 Da with ion mobility analysis of the fragmentation products. SID fragmentation of the various lipids analyzed was found to generate fragment ions similar to those observed in CID spectra, but fragment ion lab frame onset energies were lower in SID due to the higher energy deposition via a more massive target. For the largest lipid evaluated (cardiolipin 18:1), SID produced chain fragment ions, which yielded analytically useful information regarding the composition of the acyl tails. Ion mobility provided an orthogonal dimension of separation and aided in assigning product ions to their precursors. Overall, the combination of SID and IM-MS is another potential methodology in the analytical toolkit for lipid structural analysis.
Collapse
Affiliation(s)
- Rachel A. Harris
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville TN, 37235, United States
| | - Jody C. May
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville TN, 37235, United States
| | - Sophie R. Harvey
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH, 43210, United States
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH, 43210, United States
| | - John A. McLean
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville TN, 37235, United States
| |
Collapse
|
11
|
Sengupta A, Edwards ME, Yan X. Dual Metal Electrolysis in Theta Capillary for Lipid Analysis. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2023; 494:117137. [PMID: 38911479 PMCID: PMC11192522 DOI: 10.1016/j.ijms.2023.117137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Increasing studies associating glycerophospholipids with various pathological conditions highlight the need for their thorough characterization. However, the intricate composition of the lipidome due to the presence of lipid isomers poses significant challenges to structural lipidomics. This study uses the anodic corrosion of two metals in a single theta nESI emitter as a tool to simultaneously characterize lipids at multiple isomer levels. Anodic corrosion of cobalt and copper in the positive ion mode generates the metal-adducted lipid complexes, [M+Co]2+ and [M+Cu]+, respectively. Optimization of parameters such as the distances of the electrodes from the nESI tip allowed the achievement of the formation of one metal-adducted lipid product at a time. Collision-induced dissociation (CID) of [M+Co]2+ results in preferential loss of the fatty acyl (FA) chain at the sn-2 position, thus generating singly charged sn-specific fragment ions. Whereas, multistage fragmentation of [M+Cu]+ via CID generated a C=C bond position-specific characteristic ion pattern induced by the π-Cu+ interaction. The feasibility of the method was tested on PC lipid extract from egg yolk to identify lipids on multiple isomer levels. Thus, the application of dual metal anodic corrosion allows lipid isomer identification with reduced sample preparation time, no signal suppression by counter anions, low sample consumption, and no need for an extra apparatus.
Collapse
Affiliation(s)
- Annesha Sengupta
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Madison E. Edwards
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
12
|
Zhao J, Qiao L, Xia Y. In-Depth Characterization of Sphingoid Bases via Radical-Directed Dissociation Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2394-2402. [PMID: 37735971 DOI: 10.1021/jasms.3c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Sphingoid base (SPH) is a basic structural unit of all classes of sphingolipids. A sphingoid base typically consists of an aliphatic chain that may be desaturated between C4 and C5, an amine group at C2, and a variable number of OH groups located at C1, C3, and C4. Variations in the chain length and the occurrence of chemical modifications, such as methyl branching, desaturation, and hydroxylation, lead to a large structural diversity and distinct functional properties of sphingoid bases. However, conventional tandem mass spectrometry (MS/MS) via collision-induced dissociation (CID) faces challenges in characterizing these modifications. Herein, we developed an MS/MS method based on CID-triggered radical-directed dissociation (RDD) for in-depth characterization of sphingoid bases. The method involves derivatizing the sphingoid amine with 3-(2,2,6,6-tetramethylpiperidin-1-yloxymethyl)-picolinic acid 2,5-dioxopyrrolidin-1-yl ester (TPN), followed by MS2 CID to unleash the pyridine methyl radical moiety for subsequent RDD. This MS/MS method was integrated on a reversed-phase liquid chromatography-mass spectrometry workflow and further applied for in-depth profiling of total sphingoid bases in bovine heart and Caenorhabditis elegans. Notably, we identified and relatively quantified a series of unusual sphingoid bases, including SPH id17:2 (4,13) and SPH it19:0 in C. elegans, revealing that the metabolic pathways of sphingolipids are more diverse than previously known.
Collapse
Affiliation(s)
- Jing Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lipeng Qiao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Naylor CN, Nagy G. Permethylation and Metal Adduction: A Toolbox for the Improved Characterization of Glycolipids with Cyclic Ion Mobility Separations Coupled to Mass Spectrometry. Anal Chem 2023; 95:13725-13732. [PMID: 37650842 DOI: 10.1021/acs.analchem.3c03448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Lipids are an important class of molecules involved in various biological functions but remain difficult to characterize through mass-spectrometry-based methods because of their many possible isomers. Glycolipids, specifically, play important roles in cell signaling but display an even greater level of isomeric heterogeneity as compared to other lipid classes stemming from the introduction of a carbohydrate and its corresponding linkage position and α/β anomericity at the headgroup. While liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) remains the gold standard technique in lipidomics, it is still unable to characterize all isomeric species, thus presenting the need for new, orthogonal, methodologies. Ion mobility spectrometry-mass spectrometry (IMS-MS) can provide an additional dimension of information that supplements LC-MS/MS workflows, but has seen little use for glycolipid analyses. Herein, we present an analytical toolbox that enables the characterization of various glycolipid isomer sets using high-resolution cyclic ion mobility separations coupled with mass spectrometry (cIMS-MS). Specifically, we utilized a combination of both permethylation and metal adduction to fully resolve isomeric sphingolipids and ceramides with our cIMS-MS platform. We also introduce a new metric that can enable comparing peak-to-peak resolution across varying cIMS-MS pathlengths. Overall, we envision that our presented methodologies are highly amenable to existing LC-MS/MS-based workflows and can also have broad utility toward other omics-based analyses.
Collapse
Affiliation(s)
- Cameron N Naylor
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Gabe Nagy
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
14
|
Hirtzel E, Edwards M, Freitas D, Liu Z, Wang F, Yan X. Aziridination-Assisted Mass Spectrometry of Nonpolar Sterol Lipids with Isomeric Resolution. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1998-2005. [PMID: 37523498 PMCID: PMC10863044 DOI: 10.1021/jasms.3c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Characterization of nonpolar lipids is crucial due to their essential biological functions and ability to exist in various isomeric forms. In this study, we introduce the N-H aziridination method to target carbon-carbon double bonds (C═C bonds) in nonpolar sterol lipids. The resulting fragments are readily dissociated upon collision-induced dissociation, generating specific fragment ions for C═C bond position determination and fingerprint fragments for backbone characterization. This method significantly enhances lipid ionization efficiency, thereby improving the sensitivity and accuracy of nonpolar lipid analysis. We demonstrated that aziridination of sterols leads to distinctive fragmentation pathways for chain and ring C═C bonds, enabling the identification of sterol isomers such as desmosterol and 7-dehydrocholesterol. Furthermore, aziridination can assist in identifying the sterol backbone by providing fingerprint tandem mass spectra. We also demonstrated the quantitative capacity of this approach with a limit of detection of 10 nM in the solvent mixture of methanol and water. To test the feasibility of this method in complex biological samples, we used mouse prostate cancerous tissues and found significant differences in nonpolar lipid profiles between healthy and cancerous samples. The high efficiency and specificity of aziridination-assisted mass spectrometric analysis, as well as its quantitative analysis ability, make it highly suitable for broad applications in nonpolar lipid research.
Collapse
Affiliation(s)
- Erin Hirtzel
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Madison Edwards
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Dallas Freitas
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ziying Liu
- Center
for Translational Cancer Research, Texas
A&M University, Houston, Texas 77030, United States
| | - Fen Wang
- Center
for Translational Cancer Research, Texas
A&M University, Houston, Texas 77030, United States
| | - Xin Yan
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
15
|
Saha S, Singh P, Dutta A, Vaidya H, Negi PC, Sengupta S, Seth S, Basak T. A Comprehensive Insight and Mechanistic Understanding of the Lipidomic Alterations Associated With DCM. JACC. ASIA 2023; 3:539-555. [PMID: 37614533 PMCID: PMC10442885 DOI: 10.1016/j.jacasi.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/17/2023] [Accepted: 06/03/2023] [Indexed: 08/25/2023]
Abstract
Dilated cardiomyopathy (DCM) is one of the major causes of heart failure characterized by the enlargement of the left ventricular cavity and contractile dysfunction of the myocardium. Lipids are the major sources of energy for the myocardium. Impairment of lipid homeostasis has a potential role in the pathogenesis of DCM. In this review, we have summarized the role of different lipids in the progression of DCM that can be considered as potential biomarkers. Further, we have also explained the mechanistic pathways followed by the lipid molecules in disease progression along with the cardioprotective role of certain lipids. As the global epidemiological status of DCM is alarming, it is high time to define some disease-specific biomarkers with greater prognostic value. We are proposing an adaptation of a system lipidomics-based approach to profile DCM patients in order to achieve a better diagnosis and prognosis of the disease.
Collapse
Affiliation(s)
- Shubham Saha
- School of Biosciences and Bioengineering. IIT-Mandi, Mandi, India
- BioX Center, Indian Institute of Technology-Mandi, Mandi, India
| | - Praveen Singh
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Abhi Dutta
- School of Biosciences and Bioengineering. IIT-Mandi, Mandi, India
- BioX Center, Indian Institute of Technology-Mandi, Mandi, India
| | - Hiteshi Vaidya
- Department of Cardiology, Indira Gandhi Medical College & Hospital, Shimla, India
| | - Prakash Chand Negi
- Department of Cardiology, Indira Gandhi Medical College & Hospital, Shimla, India
| | - Shantanu Sengupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sandeep Seth
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering. IIT-Mandi, Mandi, India
- BioX Center, Indian Institute of Technology-Mandi, Mandi, India
| |
Collapse
|
16
|
Menzel JP, Young RSE, Benfield AH, Scott JS, Wongsomboon P, Cudlman L, Cvačka J, Butler LM, Henriques ST, Poad BLJ, Blanksby SJ. Ozone-enabled fatty acid discovery reveals unexpected diversity in the human lipidome. Nat Commun 2023; 14:3940. [PMID: 37402773 DOI: 10.1038/s41467-023-39617-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023] Open
Abstract
Fatty acid isomers are responsible for an under-reported lipidome diversity across all kingdoms of life. Isomers of unsaturated fatty acids are often masked in contemporary analysis by incomplete separation and the absence of sufficiently diagnostic methods for structure elucidation. Here, we introduce a comprehensive workflow, to discover unsaturated fatty acids through coupling liquid chromatography and mass spectrometry with gas-phase ozonolysis of double bonds. The workflow encompasses semi-automated data analysis and enables de novo identification in complex media including human plasma, cancer cell lines and vernix caseosa. The targeted analysis including ozonolysis enables structural assignment over a dynamic range of five orders of magnitude, even in instances of incomplete chromatographic separation. Thereby we expand the number of identified plasma fatty acids two-fold, including non-methylene-interrupted fatty acids. Detection, without prior knowledge, allows discovery of non-canonical double bond positions. Changes in relative isomer abundances reflect underlying perturbations in lipid metabolism.
Collapse
Affiliation(s)
- Jan Philipp Menzel
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
| | - Reuben S E Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Faculty of Science, Medicine and Health, School of Chemistry and Molecular Bioscience, Wollongong, NSW, Australia
| | - Aurélie H Benfield
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Julia S Scott
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Puttandon Wongsomboon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Lukáš Cudlman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 16600, Prague, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 16600, Prague, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Sónia T Henriques
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
17
|
Hormann FL, Sommer S, Heiles S. Formation and Tandem Mass Spectrometry of Doubly Charged Lipid-Metal Ion Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37315187 DOI: 10.1021/jasms.3c00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phospholipids are major components of most eukaryotic cell membranes. Changes in metabolic states are often accompanied by phospholipid structure variations. The structural changes of phospholipids are the hallmark of disease states, or specific lipid structures have been associated with distinct organisms. Prime examples are microorganisms that synthesize phospholipids with, for example, different branched chain fatty acids. Assignment and relative quantitation of structural isomers of phospholipids that arise from attachment of different fatty acids to the glycerophospholipid backbone are difficult with routine tandem mass spectrometry or with liquid chromatography without authentic standards. In this work, we report on the observation that all investigated phospholipid classes form doubly charged lipid-metal ion complexes during electrospray ionization (ESI) and show that these complexes can be used to assign lipid classes and fatty acid moieties, distinguish isomers of branched chain fatty acids, and relatively quantify these isomers in positive-ion mode. Use of water free methanol and addition of divalent metal salts (100 mol %) to ESI spray solutions afford highly abundant doubly charged lipid-metal ion complexes (up to 70 times of protonated compounds). Higher-energy collisional dissociation and collision-induced dissociation of doubly charged complexes yield a diverse set of lipid class-dependent fragment ions. In common for all lipid classes is the liberation of fatty acid-metal adducts that yield fragment ions from the fatty acid hydrocarbon chain upon activation. This ability is used to pinpoint sites of branching in saturated fatty acids and is showcased for free fatty acids as well as glycerophospholipids. The analytical utility of doubly charged phospholipid-metal ion complexes is demonstrated by distinguishing fatty acid branching-site isomers in phospholipid mixtures and relatively quantifying the corresponding isomeric compounds.
Collapse
Affiliation(s)
- Felix-Levin Hormann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Straße 6b, 44139 Dortmund, Germany
- Lipidomics, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Simon Sommer
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sven Heiles
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Straße 6b, 44139 Dortmund, Germany
- Lipidomics, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
18
|
Fu X, Hafza N, Götz F, Lämmerhofer M. Profiling of branched chain and straight chain saturated fatty acids by ultra-high performance liquid chromatography-mass spectrometry. J Chromatogr A 2023; 1703:464111. [PMID: 37262934 DOI: 10.1016/j.chroma.2023.464111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023]
Abstract
Branched chain fatty acids (BCFAs) are one of the important sub categories of fatty acids (FAs) which have unique functions in nature. They are commonly analyzed by GC-MS after derivatization to methyl esters (FAMEs). On the other hand, there is a lack of isomer-selective LC-MS methods which allow the distinction of different isomers with wide coverage of carbon chain length. In this work, a systematic retention and isomer selectivity study on seven commercially available UHPLC columns (six polysaccharide columns Chiralpak IA-U, IB-U, IC-U, ID-U, IG-U and IH-U; one Acquity UPLC CSH C18 column) was performed. Various experimental factors were evaluated including column temperatures, gradient profiles and flow rates to elucidate their effects on the separation ability of homologous series of BCFAs with distinct chain lengths, different branching types and branching positions. In general, IG-U outperformed the other columns in terms of isomer selectivity especially for the short and medium-chain BCFA isomers while RP C18 showed good potential in terms of selectivity for long-chain BCFA isomers. Furthermore, after the evaluation of the chromatographic retention pattern on the various columns and method optimization, we report a methodology for untargeted isomer-selective BCFA profiling without precolumn derivatization with UHPLC-ESI-MS/MS by quadrupole-time-of-flight instrument with SWATH acquisition. The best method provides selectivity for constitutional isomers of BCFAs covering distinct chain length (C5-C20) with different branching types (methyl or ethyl) and branching positions (2Me, 3Me, 4Me, 6Me, anteiso and iso-BCFAs) with an optimized LC condition on Acquity UPLC CSH C18 column. Finally, the optimized method was applied for the BCFAs profiling in lipid extracts of Staphylococcus aureus samples. Besides, pooled human platelets and pooled human plasma were evaluated as mammalian samples for presence of BCFAs as well. The new method showed strong potential for BCFA profiling in bacterial samples including different isomers anteiso and iso-BCFAs, which could be a useful tool for related subdisciplines in metabolomics and lipidomics in particular in combination with electron-activated dissociation MS. Compared to GC, the presented isomer selective LC methods can be also of great utility for preparative purposes. Equivalent (carbon) chain length numbers were calculated for RP18 and Chiralpak IG-U and compared to those of FAMEs obtained by GC.
Collapse
Affiliation(s)
- Xiaoqing Fu
- University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, Auf der Morgenstelle 8, Tübingen 72076, Germany
| | - Nourhane Hafza
- University of Tübingen, Interfaculty Institute for Microbiology and Infection-Medicine Tübingen, Microbial Genetics, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Friedrich Götz
- University of Tübingen, Interfaculty Institute for Microbiology and Infection-Medicine Tübingen, Microbial Genetics, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Michael Lämmerhofer
- University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, Auf der Morgenstelle 8, Tübingen 72076, Germany.
| |
Collapse
|
19
|
Wu HT, Riggs DL, Lyon YA, Julian RR. Statistical Framework for Identifying Differences in Similar Mass Spectra: Expanding Possibilities for Isomer Identification. Anal Chem 2023; 95:6996-7005. [PMID: 37128750 PMCID: PMC10157605 DOI: 10.1021/acs.analchem.3c00495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Isomeric molecules are important analytes in many biological and chemical arenas, yet their similarity poses challenges for many analytical methods, including mass spectrometry (MS). Tandem-MS provides significantly more information about isomers than intact mass analysis, but highly similar fragmentation patterns are common and include cases where no unique m/z peaks are generated between isomeric pairs. However, even in such situations, differences in peak intensity can exist and potentially contain additional information. Herein, we present a framework for comparing mass spectra that differ only in terms of peak intensity and include calculation of a statistical probability that the spectra derive from different analytes. This framework allows for confident identification of peptide isomers by collision-induced dissociation, higher-energy collisional dissociation, electron-transfer dissociation, and radical-directed dissociation. The method successfully identified many types of isomers including various d/l amino acid substitutions, Leu/Ile, and Asp/IsoAsp. The method can accommodate a wide range of changes in instrumental settings including source voltages, isolation widths, and resolution without influencing the analysis. It is shown that quantification of the composition of isomeric mixtures can be enabled with calibration curves, which were found to be highly linear and reproducible. The analysis can be implemented with data collected by either direct infusion or liquid-chromatography MS. Although this framework is presented in the context of isomer characterization, it should also prove useful in many other contexts where similar mass spectra are generated.
Collapse
Affiliation(s)
- Hoi-Ting Wu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Dylan L. Riggs
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yana A. Lyon
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ryan R. Julian
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
20
|
Zhang J, Zhang Z, Jiang T, Zhang Z, Zhang W, Xu W. Rapidly identifying and quantifying of unsaturated lipids with carbon-carbon double bond isomers by photoepoxidation. Talanta 2023; 260:124575. [PMID: 37141821 DOI: 10.1016/j.talanta.2023.124575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
Unsaturated lipids play an essential role in life activities. Identifying and quantifying their carbon-carbon double bond (CC) isomers have become a hot topic in recent years. In lipidomics, the analysis of unsaturated lipids in complex biological samples usually requires high-throughput methods, which puts forward the requirements of rapid response and simple operation for identification. In this paper, we proposed a photoepoxidation strategy, which uses benzoin to open the double bonds of unsaturated lipids to form epoxides under ultraviolet light and aerobic conditions. Photoepoxidation is controlled by light and has a fast response. After 5 min, the derivatization yield can reach 80% with no side reaction products. Besides, the method has the advantages of high quantitation accuracy and a high yield of diagnostic ions. It was successfully applied to rapidly identify the double bond locations of various unsaturated lipids in both positive and negative ion modes, and to rapidly identify and quantitatively analyze the various isomers of unsaturated lipids in mouse tissue extract. So the method has the potential for large-scale analysis of unsaturated lipids in complex biological samples.
Collapse
Affiliation(s)
- Jian Zhang
- School of Life Science, Beijing Institute of Technology, No.5 Yard, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Zesen Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Zhongguancun Street, Hai Dian District, Beijing, 100084, China
| | - Ting Jiang
- School of Life Science, Beijing Institute of Technology, No.5 Yard, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Zhenyu Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Zhongguancun Street, Hai Dian District, Beijing, 100084, China
| | - Wenjing Zhang
- School of Life Science, Beijing Institute of Technology, No.5 Yard, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology, No.5 Yard, Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
21
|
Freitas DP, Chen X, Hirtzel EA, Edwards ME, Kim J, Wang H, Sun Y, Kocurek KI, Russell D, Yan X. In situ droplet-based on-tissue chemical derivatization for lipid isomer characterization using LESA. Anal Bioanal Chem 2023:10.1007/s00216-023-04653-3. [PMID: 37017722 PMCID: PMC10392465 DOI: 10.1007/s00216-023-04653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
In this work, we present an in situ droplet-based derivatization method for fast tissue lipid profiling at multiple isomer levels. On-tissue derivatization for isomer characterization was achieved in a droplet delivered by the TriVersa NanoMate LESA pipette. The derivatized lipids were then extracted and analyzed by the automated chip-based liquid extraction surface analysis (LESA) mass spectrometry (MS) followed by tandem MS to produce diagnostic fragment ions to reveal the lipid isomer structures. Three reactions, i.e., mCPBA epoxidation, photocycloaddition catalyzed by the photocatalyst Ir[dF(CF3)ppy]2(dtbbpy)PF6, and Mn(II) lipid adduction, were applied using the droplet-based derivatization to provide lipid characterization at carbon-carbon double-bond positional isomer and sn-positional isomer levels. Relative quantitation of both types of lipid isomers was also achieved based on diagnostic ion intensities. This method provides the flexibility of performing multiple derivatizations at different spots in the same functional region of an organ for orthogonal lipid isomer analysis using a single tissue slide. Lipid isomers were profiled in the cortex, cerebellum, thalamus, hippocampus, and midbrain of the mouse brain and 24 double-bond positional isomers and 16 sn-positional isomers showed various distributions in those regions. This droplet-based derivatization of tissue lipids allows fast profiling of multi-level isomer identification and quantitation and has great potential in tissue lipid studies requiring rapid sample-to-result turnovers.
Collapse
Affiliation(s)
- Dallas P Freitas
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX, 77843, USA
| | - Xi Chen
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX, 77843, USA
| | - Erin A Hirtzel
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX, 77843, USA
| | - Madison E Edwards
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX, 77843, USA
| | - Joohan Kim
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX, 77843, USA
| | - Hongying Wang
- Department of Nutrition, Texas A&M University, Carter-Mattil Hall, 373 Olven Blvd, College Station, TX, 77843, USA
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, Carter-Mattil Hall, 373 Olven Blvd, College Station, TX, 77843, USA
| | - Klaudia I Kocurek
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX, 77843, USA
| | - David Russell
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX, 77843, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX, 77843, USA.
| |
Collapse
|
22
|
Yan T, Born MEN, Prentice BM. Structural Elucidation and Relative Quantification of Sodium- and Potassium-Cationized Phosphatidylcholine Regioisomers Directly from Tissue Using Electron Induced Dissociation. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2023; 485:116998. [PMID: 37601139 PMCID: PMC10438893 DOI: 10.1016/j.ijms.2022.116998] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Comprehensive structural characterization of phosphatidylcholines (PCs) is essential to understanding their biological functions and roles in metabolism. Electron induced dissociation (EID) of protonated PCs directly generated from biological tissues has previously been shown to provide in-depth structural information on the lipid headgroup, regiosiomerism of fatty acyl tails and double bond positions. Although phosphatidylcholine ions formed via alkali metal cationization (i.e., [M + Na]+ and [M + K]+) are commonly generated during matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry experiments, the gas-phase ion chemistry behavior of EID on sodium- and potassium-cationized phosphatidylcholine ion types has not been studied for ions generated directly from tissue. Herein, we demonstrate EID on [M + Na]+ and [M + K]+ ion types in a MALDI imaging mass spectrometry workflow for lipid structural characterization. Briefly, near-complete structural information can be obtained upon EID of sodium- and potassium-cationized PCs, including diagnostic fragmentation of the lipid headgroup as well as identification of fatty acyl chain positions and double bond position. EID of cationized lipids generates sn-specific glycerol backbone cleavages as well as a favorable combined loss of sn-2 fatty acid with choline over sn-1, allowing for facile differentiation and relative quantification of PC regioisomers. Moreover, relative quantification of sn-positional isomers from biological tissue reveals that the relative percentages of sodium- and potassium-cationized sn-positional isomers varies significantly in different regions of rat brain tissue.
Collapse
Affiliation(s)
- Tingting Yan
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | | | - Boone M. Prentice
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| |
Collapse
|
23
|
Silzel J, Julian RR. RDD-HCD Provides Variable Fragmentation Routes Dictated by Radical Stability. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:452-458. [PMID: 36787650 PMCID: PMC9982999 DOI: 10.1021/jasms.2c00326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Radical-directed dissociation (RDD) is a fragmentation technique in which a radical created by selective 213/266 nm photodissociation of a carbon-iodine bond is reisolated and collisionally activated. In previous RDD experiments, collisional activation was effected by ion-trap collision-induced dissociation (CID). Higher-energy collisional dissociation (HCD) differs from CID both in terms of how ions are excited and in the number, type, or abundance of fragments that are observed. In this paper, we explore the use of HCD for activation in RDD experiments. While RDD-CID favors fragments produced from radical-directed pathways such as a/z-ions and side chain losses regardless of the activation energy employed, RDD-HCD spectra vary considerably as a function of activation energy, with lower energies favoring RDD while higher energies favor products resulting from cleavage directed by mobile protons (b/y-ions). RDD-HCD therefore affords more tunable fragmentation based on the HCD energy provided. Importantly, the abundance of radical products decreases as a function of increasing HCD energy, confirming that RDD generally proceeds via lower-energy barriers relative to mobile-proton-driven dissociation. The dominance of b/y-ions at higher energies for RDD-HCD can therefore be explained by the higher survivability of fragments not containing the radical after the initial or subsequent dissociation events. Furthermore, these results confirm previous suspicions that HCD spectra differ from CID spectra due to multiple dissociation events.
Collapse
|
24
|
Song Y, Song Q, Liu W, Li J, Tu P. High-confidence structural identification of metabolites relying on tandem mass spectrometry through isomeric identification: A tutorial. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
25
|
Chen X, Tang S, Freitas D, Hirtzel E, Cheng H, Yan X. Characterization of glycerophospholipids at multiple isomer levels via Mn(II)-catalyzed epoxidation. Analyst 2022; 147:4838-4844. [PMID: 36128870 PMCID: PMC9704799 DOI: 10.1039/d2an01174c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Characterization of glycerophospholipid isomers is of significant importance as they play different roles in physiological and pathological processes. In this work, we present a novel and bifunctional derivatization method utilizing Mn(II)-catalyzed epoxidation to simultaneously identify carbon-carbon double bond (CC bond)- and stereonumbering (sn)-positional isomers of phosphatidylcholine. Mn(II) coordinates with picolinic acid and catalyzes epoxidation of unsaturated lipids by peracetic acid. Collision-induced dissociation (CID) of the epoxides generates diagnostic ions that can be used to locate CC bond positions. Meanwhile, CID of Mn(II) ion-lipid complexes produces characteristic ions for determination of sn positions. This bifunctional derivatization takes place in seconds, and the diagnostic ions produced in CID are clear and easy to interpret. Moreover, relative quantification of CC bond-and sn-positional isomers was achieved. The capability of this method in identifying lipids at multiple isomer levels was shown using lipid standards and lipid extracts from complex biological samples.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Shuli Tang
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Dallas Freitas
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Erin Hirtzel
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Heyong Cheng
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| |
Collapse
|
26
|
Blevins MS, Shields SWJ, Cui W, Fallatah W, Moser AB, Braverman NE, Brodbelt JS. Structural Characterization and Quantitation of Ether-Linked Glycerophospholipids in Peroxisome Biogenesis Disorder Tissue by Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2022; 94:12621-12629. [PMID: 36070546 PMCID: PMC9631334 DOI: 10.1021/acs.analchem.2c01274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biological impact of ether glycerophospholipids (GP) in peroxisomal disorders and other diseases makes them significant targets as biomarkers for diagnostic assays or deciphering pathology of the disorders. Ether lipids include both plasmanyl and plasmenyl lipids, which each contain an ether or a vinyl ether bond at the sn-1 linkage position, respectively. This linkage, in contrast to traditional diacyl GPs, precludes their detailed characterization by mass spectrometry via traditional collisional-based MS/MS techniques. Additionally, the isomeric nature of plasmanyl and plasmenyl pairs of ether lipids introduces a further level of complexity that impedes analysis of these species. Here, we utilize 213 nm ultraviolet photodissociation mass spectrometry (UVPD-MS) for detailed characterization of phosphatidylethanolamine (PE) and phosphatidylcholine (PC) plasmenyl and plasmanyl lipids in mouse brain tissue. 213 nm UVPD-MS enables the successful differentiation of these four ether lipid subtypes for the first time. We couple this UVPD-MS methodology to reversed-phase liquid chromatography (RPLC) for characterization and relative quantitation of ether lipids from normal and diseased (Pex7 deficiency modeling the peroxisome biogenesis disorder, RCDP) mouse brain tissue, highlighting the ability to pinpoint specific structural features of ether lipids that are important for monitoring aberrant lipid metabolism in peroxisomal disorders.
Collapse
Affiliation(s)
- Molly S Blevins
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Samuel W J Shields
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Wedad Fallatah
- Department of Medical Genetics, King Abdul-Aziz University, Jeddah, 21423, Saudi Arabia
| | - Ann B Moser
- Kennedy Krieger Institute, Baltimore, Maryland 21205, United States
- School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | | | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
27
|
Tang S, Chen X, Ke Y, Wang F, Yan X. Voltage-Controlled Divergent Cascade of Electrochemical Reactions for Characterization of Lipids at Multiple Isomer Levels Using Mass Spectrometry. Anal Chem 2022; 94:12750-12756. [PMID: 36087069 PMCID: PMC10386884 DOI: 10.1021/acs.analchem.2c02375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cascading divergent reactions in a single system is highly desirable for their intrinsic efficiency and potential to achieve multilevel structural characterization of complex biomolecules. In this work, two electrochemical reactions, interfacial electro-epoxidation and cobalt anodic corrosion, are divergently cascaded in nanoelectrospray (nESI) and can be switched at different voltages. We applied these reactions to lipid identification at multiple isomer levels using mass spectrometry (MS), which remains a great challenge in structural lipidomics. The divergent cascade reactions in situ derivatize lipids to produce epoxidized lipids and cobalt-adducted lipids at different voltages. These lipids are then fragmented upon low-energy collision-induced dissociation (CID), generating diagnostic fragments to indicate C═C locations and sn-positions that cannot be achieved by the low-energy CID of native lipids. We have demonstrated that lipid structural isomers show significantly different profiles in the analysis of healthy and cancerous mouse prostate samples using this strategy. The application of divergent cascade reactions in lipid identification allows the four-in-one analysis of lipid headgroups, fatty acyl chains, C═C locations, and sn-positions simply by tuning the nESI voltages within a single experiment. This feature as well as its low sample consumption, no need for an extra apparatus, and quantitative analysis capability show its great potential in lipidomics.
Collapse
Affiliation(s)
- Shuli Tang
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Xi Chen
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Yuepeng Ke
- Center for Translational Cancer Research, Texas A&M Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Fen Wang
- Center for Translational Cancer Research, Texas A&M Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| |
Collapse
|
28
|
Lambeth TR, Julian RR. Efficient Isothiocyanate Modification of Peptides Facilitates Structural Analysis by Radical-Directed Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1338-1345. [PMID: 34670075 DOI: 10.1021/jasms.1c00237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Radical-directed dissociation (RDD) is a powerful technique for structural characterization of peptides in mass spectrometry experiments. Prior to analysis, a radical precursor must typically be appended to facilitate generation of a free radical. To explore the use of a radical precursor that can be easily attached in a single step, we modified peptides using a "click" reaction with iodophenyl isothiocyanate. Coupling with amine functional groups proceeds with high yields, producing stable iodophenylthiourea-modified peptides. Photodissociation yields were recorded at 266 and 213 nm for the 2-, 3-, and 4-iodo isomers of the modifier and found to be highest for the 4-iodo isomer in nearly all cases. Fragmentation of the modified peptides following collisional activation revealed favorable losses of the tag, and electronic structure calculations were used to evaluate a potential mechanism involving hydrogen transfer within the thiourea group. Examination of RDD data revealed that 4-iodobenzoic acid, 4-iodophenylthiourea, and 3-iodotyrosine yield similar fragmentation patterns for a given peptide, although differences in fragment abundance are noted. Iodophenyl isothiocyanate labeling in combination with RDD can be used to differentiate isomeric amino acids within peptides, which should facilitate simplified evaluation of isomers present in complex biological samples.
Collapse
Affiliation(s)
- Tyler R Lambeth
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ryan R Julian
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
29
|
Xu L, Guan H, Liu L, Mao S, Feng J, Su Z, Liu L. Determining the double-bond positions of monounsaturated compounds in the alcohol fraction in seep carbonate. J Chromatogr A 2022; 1672:463009. [DOI: 10.1016/j.chroma.2022.463009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
|
30
|
Feng G, Gao M, Wang L, Chen J, Hou M, Wan Q, Lin Y, Xu G, Qi X, Chen S. Dual-resolving of positional and geometric isomers of C=C bonds via bifunctional photocycloaddition-photoisomerization reaction system. Nat Commun 2022; 13:2652. [PMID: 35550511 PMCID: PMC9098869 DOI: 10.1038/s41467-022-30249-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/22/2022] [Indexed: 11/11/2022] Open
Abstract
The biological functions of lipids largely depend on their chemical structures. The position and configuration of C=C bonds are two of the essential attributes that determine the structures of unsaturated lipids. However, simultaneous identification of both attributes remains challenging. Here, we develop a bifunctional visible-light-activated photocycloaddition-photoisomerization reaction system, which enables the dual-resolving of the positional and geometric isomerism of C=C bonds in lipids when combines with liquid chromatography-mass spectrometry. The dual-pathway reaction mechanism is demonstrated by experiments and density functional theory calculations. Based on this bifunctional reaction system, a workflow of deep structural lipidomics is established, and allows the revealing of unique patterns of cis-trans-isomers in bacteria, as well as the tracking of C=C positional isomers changes in mouse brain ischemia. This study not only offers a powerful tool for deep lipid structural biology, but also provides a paradigm for developing the multifunctional visible-light-induced reaction. The simultaneous identification of position and configuration of double bonds in unsaturated lipids is challenging. Here, the authors develop a workflow for deep structural lipidomics to address this issue using a bifunctional reaction system combined with liquid chromatography-mass spectrometry, revealing double bond patterns in bacteria and in mouse brain ischemia.
Collapse
Affiliation(s)
- Guifang Feng
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, China
| | - Ming Gao
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, China
| | - Liwei Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jiayi Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Menglu Hou
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, China
| | - Qiongqiong Wan
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Guoyong Xu
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Suming Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, China.
| |
Collapse
|
31
|
Zhang W, Jian R, Zhao J, Liu Y, Xia Y. Deep-lipidotyping by mass spectrometry: recent technical advances and applications. J Lipid Res 2022; 63:100219. [PMID: 35489417 PMCID: PMC9213770 DOI: 10.1016/j.jlr.2022.100219] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/18/2022] Open
Abstract
In-depth structural characterization of lipids is an essential component of lipidomics. There has been a rapid expansion of mass spectrometry methods that are capable of resolving lipid isomers at various structural levels over the past decade. These developments finally make deep-lipidotyping possible, which provides new means to study lipid metabolism and discover new lipid biomarkers. In this review, we discuss recent advancements in tandem mass spectrometry (MS/MS) methods for identification of complex lipids beyond the species (known headgroup information) and molecular species (known chain composition) levels. These include identification at the levels of carbon-carbon double bond (C=C) location and sn-position as well as characterization of acyl chain modifications. We also discuss the integration of isomer-resolving MS/MS methods with different lipid analysis workflows and their applications in lipidomics. The results showcase the distinct capabilities of deep-lipidotyping in untangling the metabolism of individual isomers and sensitive phenotyping by using relative fractional quantitation of the isomers.
Collapse
Affiliation(s)
- Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, P. R. China
| | - Ruijun Jian
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jing Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yikun Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, P. R. China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
32
|
Grabarics M, Lettow M, Kirschbaum C, Greis K, Manz C, Pagel K. Mass Spectrometry-Based Techniques to Elucidate the Sugar Code. Chem Rev 2022; 122:7840-7908. [PMID: 34491038 PMCID: PMC9052437 DOI: 10.1021/acs.chemrev.1c00380] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the "sugar code" and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility-mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves.
Collapse
Affiliation(s)
- Márkó Grabarics
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Maike Lettow
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Carla Kirschbaum
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kim Greis
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Christian Manz
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kevin Pagel
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| |
Collapse
|
33
|
Lin Q, Li P, Jian R, Xia Y. Localization of Intrachain Modifications in Bacterial Lipids Via Radical-Directed Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:714-721. [PMID: 35195000 DOI: 10.1021/jasms.2c00011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Intrachain modifications of membrane glycerophospholipids (GPLs) due to formation of the carbon-carbon double bond (C═C), cyclopropane ring, and methyl branching are crucial for bacterial membrane homeostasis. Conventional collision-induced dissociation (CID) of even-electron ions of GPL favors charge-directed fragmentation channels, and thus little structurally informative fragments can be detected for locating intrachain modifications. In this study, we report a radical-directed dissociation (RDD) approach for characterization of the intrachain modifications within phosphoethanolamines (PEs), a major lipid component in bacterial membrane. In this method, a radical precursor that can produce benzyl or pyridine methyl radical upon low-energy CID at high efficiency is conjugated onto the amine group of PEs. The carbon-centered radical ions subsequently initiate RDD along the fatty acyl chain, producing fragment patterns key to the assignment and localization of intrachain modifications including C═C, cyclopropane rings, and methyl branching. Besides intrachain fragmentation, RDD on the glycerol backbone produces fatty acyl loss as radicals, allowing one to identify the fatty acyl chain composition of PE. Moreover, RDD of lyso-PEs produces radical losses for distinguishing the sn-isomers. The above RDD approach has been incorporated onto a liquid chromatography-mass spectrometry workflow and applied for the analysis of lipid extracts from Escherichia coli and Bacillus subtilis.
Collapse
Affiliation(s)
- Qiaohong Lin
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China
| | - Pengyun Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ruijun Jian
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China
| | - Yu Xia
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China
| |
Collapse
|
34
|
Li HF, Zhao J, Cao W, Zhang W, Xia Y, Ouyang Z. Site-Specific Photochemical Reaction for Improved C=C Location Analysis of Unsaturated Lipids by Ultraviolet Photodissociation. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9783602. [PMID: 35252873 PMCID: PMC8859641 DOI: 10.34133/2022/9783602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/16/2022] [Indexed: 11/16/2022]
Abstract
Unraveling the complexity of the lipidome requires the development of novel approaches to facilitate structural identification and characterization of lipid species with isomer-level discrimination. Ultraviolet photodissociation tandem mass spectrometry (UVPD MS/MS) is a promising tool for structure determination of lipids. The sensitivity of UVPD for lipid analysis however is limited mainly due to weak absorption of UV photons by a C=C. Herein, a C=C site-specific derivatization, the Paternò-Büchi (PB) reaction, was used to incorporate a chromophore to the C=C moiety in fatty acyls, leading to significantly improved UVPD efficiency and sensitivity for pinpointing C=C locations. The wavelength-dependent photodissociation of the PB products demonstrated 4-CF3-benzophenone as the best reagent for UVPD in terms of the efficiency of generating C=C diagnostic fragments and simplicity for C=C location assignments. We demonstrated the effectiveness of this approach for the shotgun profiling of C=C location isomers in different lipid classes from complex lipid extracts, highlighting its potential to advancing the identification of the C=C bond locations in unsaturated lipids.
Collapse
Affiliation(s)
- Hai-Fang Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Jing Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wenbo Cao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Morozumi S, Ueda M, Okahashi N, Arita M. Structures and functions of the gut microbial lipidome. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159110. [PMID: 34995792 DOI: 10.1016/j.bbalip.2021.159110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022]
Abstract
Microbial lipids provide signals that are responsible for maintaining host health and controlling disease. The differences in the structures of microbial lipids have been shown to alter receptor selectivity and agonist/antagonist activity. Advanced lipidomics is an emerging field that helps to elucidate the complex bacterial lipid diversity. The use of cutting-edge technologies is expected to lead to the discovery of new functional metabolites involved in host homeostasis. This review aims to describe recent updates on functional lipid metabolites derived from gut microbiota, their structure-activity relationships, and advanced lipidomics technologies.
Collapse
Affiliation(s)
- Satoshi Morozumi
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Masahiro Ueda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; JSR Bioscience and Informatics R&D Center, JSR Corporation, 3-103-9 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Nobuyuki Okahashi
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
36
|
Macias LA, Brodbelt JS. Enhanced Characterization of Cardiolipins via Hybrid 193 nm Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2022; 94:3268-3277. [PMID: 35135194 PMCID: PMC9284920 DOI: 10.1021/acs.analchem.1c05071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiolipins (CLs) constitute a structurally complex class of glycerophospholipids with a unique tetraacylated structure accompanied by distinctive functional roles. Aberrations in the composition of this lipid class have been associated with disease states, spurring interest in the development of new approaches to differentiate the structures of diverse CLs in complex mixtures. The structural characterization of these complex lipids using conventional methods, however, suffers from limited resolution and frequently proves unable to discern subtle yet biologically significant features such as unsaturation sites or acyl chain position assignments. Here, we describe the synergistic use of chemical derivatization and hybrid dissociation techniques to characterize CL from complex biological mixtures with both double bond and sn positional isomer resolution in a shotgun mass spectrometry strategy. Utilizing (trimethylsilyl)diazomethane (TMSD), CL phosphate groups were methylated to promote positive-mode ionization by the production of metal-cationized lipids, enabling structural interrogation via hybrid higher-energy collisional activation/ultraviolet photodissociation (HCD/UVPD). This combination of TMSD derivatization and HCD/UVPD fragmentation results in diagnostic product ions that permit distinction and relative quantitation of sn-stereoisomers and the localization of double bonds. Applying this strategy to a total lipid extract from a thyroid carcinoma revealed a previously unreported 18:2/18:1 motif, elucidating a structural feature unique to the lipid class.
Collapse
Affiliation(s)
- Luis A Macias
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
37
|
Jian R, Zhao X, Lin Q, Xia Y. Profiling of branched-chain fatty acids via nitroxide radical-directed dissociation integrated on an LC-MS/MS workflow. Analyst 2022; 147:2115-2123. [DOI: 10.1039/d2an00266c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By coupling O-benzylhydroxylamine derivatization and tandem mass spectrometry, nitroxide radical-induced dissociation can be initiated via collisional activation which enables the analysis of methyl branching(s) in fatty acids.
Collapse
Affiliation(s)
- Ruijun Jian
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xue Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiaohong Lin
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
38
|
Wang X, Li Y, Jiang Y, Meng L, Nie Z. In-depth free fatty acids annotation of edible oil by mCPBA epoxidation and tandem mass spectrometry. Food Chem 2021; 374:131793. [PMID: 34915370 DOI: 10.1016/j.foodchem.2021.131793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/04/2021] [Accepted: 12/03/2021] [Indexed: 11/18/2022]
Abstract
The analysis of free fatty acids (FFAs) in edible oils, especially their fine structure, can provide information for nutritional value evaluation and authentication. Here, a strategy based on epoxidation reaction by mCPBA combined with tandem MS was developed to identify and relatively quantify FFAs, including CC location isomers, which can rapidly distinguish different edible oils. Notably, low-abundant FFAs can be detected directly in the presence of high-abundant triacylglycerol (TAG) without complicated pretreatment. We identified a series of CC location isomers via mCPBA-nanoESI-MS/MS, among them, FA 24:1 (Δ13) and FA 24:1 (Δ17) were first identified in edible oils, and the predominant UFAs was FA 18:1 (Δ9), which occupies 98.35% of FA 18:1 in peanut oil while 89.68% in rapeseed oil. The results demonstrated that the proposed method could provide further in-depth CC positional information of oils, promoting the development of structural determination of fatty acids in food chemistry.
Collapse
Affiliation(s)
- Xiao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuze Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuming Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lingwei Meng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
39
|
Pathmasiri KC, Nguyen TTA, Khamidova N, Cologna SM. Mass spectrometry-based lipid analysis and imaging. CURRENT TOPICS IN MEMBRANES 2021; 88:315-357. [PMID: 34862030 DOI: 10.1016/bs.ctm.2021.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass spectrometry imaging (MSI) is a powerful tool for in situ mapping of analytes across a sample. With growing interest in lipid biochemistry, the ability to perform such mapping without antibodies has opened many opportunities for MSI and lipid analysis. Herein, we discuss the basics of MSI with particular emphasis on MALDI mass spectrometry and lipid analysis. A discussion of critical advancements as well as protocol details are provided to the reader. In addition, strategies for improving the detection of lipids, as well as applications in biomedical research, are presented.
Collapse
Affiliation(s)
- Koralege C Pathmasiri
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Thu T A Nguyen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Nigina Khamidova
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States; Laboratory of Integrated Neuroscience, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
40
|
Ma X, Zhang W, Li Z, Xia Y, Ouyang Z. Enabling High Structural Specificity to Lipidomics by Coupling Photochemical Derivatization with Tandem Mass Spectrometry. Acc Chem Res 2021; 54:3873-3882. [PMID: 34570464 DOI: 10.1021/acs.accounts.1c00419] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lipids have pivotal roles in many biological processes, including energy storage, signal transduction, and plasma membrane formation. A disruption of lipid homeostasis is found to be associated with a range of diseases, such as cardiovascular diseases, diabetes, and cancer. Fundamental lipid biology and disease diagnostics can benefit from monitoring lipid changes in cells, tissues, organs, or the whole biological system. Therefore, it is important to develop lipid analysis tools to achieve comprehensive lipid characterization and quantitation. Over the past two decades, mass spectrometry (MS) has become the method of choice for qualitative and quantitative analyses of lipids, owing to its high sensitivity, multiplexed analysis, and soft ionization features. With the rapid development and adoption of ultrahigh-resolution MS, isobaric lipids can now be routinely resolved. By contrast, the structural characterization and quantitation of isomeric lipids remain an analytical challenge. Although some lipid C═C location or sn-isomers can be resolved by chromatography, ion mobility, or selective ionization approaches, a detailed structural characterization on the lipidome-wide level needs to be achieved.Over the past six years, we have successfully combined the Paternò-Büchi (PB) reaction, which is a UV-promoted photocycloaddition reaction specific to the C═C, with tandem MS (MS/MS) to locate the C═C in lipids and quantify lipid C═C location isomers. The PB reactions have analytical advantages such as a simple experimental setup, rapid lipid C═C derivatization, and highly specific C═C cleavage during PB-MS/MS to produce abundant diagnostic ions. More importantly, without a need of isomer separation or a comparison to authentic standards, PB-MS/MS can be directly applied to identify and quantify a mixture of lipid C═C location isomers, often coexisting with molar ratios sensitive to the biological state of the system. The PB-MS/MS method is compatible with conventional shotgun lipidomics employing a nanoelectrospray ionization or a large-sale lipid structural analysis via liquid chromatography (LC) coupled to any mass spectrometer with tandem MS capability. The PB-MS/MS method is highly versatile, as a variety of PB reagents can be tailored to a broad range of applications. Besides UV-promoted PB reactions, visible-light PB reactions have also been developed to offer more flexibility for a lipid analysis. By using selected PB reagents, the sn-positions of fatty acyls can be resolved together with C═C locations in phospholipids. This method has been used in lipidomic analyses of tissue, blood, and plasma from animal models and clinical samples, demonstrating the potential of using lipid C═C or sn-location isomer ratios for phenotyping and disease diagnostics. Lipid isomer-resolving MS imagings of tissues and single-cell lipid analysis have also been demonstrated by a proper implementation of PB-MS/MS.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Zishuai Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
41
|
Köfeler HC, Ahrends R, Baker ES, Ekroos K, Han X, Hoffmann N, Holčapek M, Wenk MR, Liebisch G. Recommendations for good practice in MS-based lipidomics. J Lipid Res 2021; 62:100138. [PMID: 34662536 PMCID: PMC8585648 DOI: 10.1016/j.jlr.2021.100138] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
In the last 2 decades, lipidomics has become one of the fastest expanding scientific disciplines in biomedical research. With an increasing number of new research groups to the field, it is even more important to design guidelines for assuring high standards of data quality. The Lipidomics Standards Initiative is a community-based endeavor for the coordination of development of these best practice guidelines in lipidomics and is embedded within the International Lipidomics Society. It is the intention of this review to highlight the most quality-relevant aspects of the lipidomics workflow, including preanalytics, sample preparation, MS, and lipid species identification and quantitation. Furthermore, this review just does not only highlights examples of best practice but also sheds light on strengths, drawbacks, and pitfalls in the lipidomic analysis workflow. While this review is neither designed to be a step-by-step protocol by itself nor dedicated to a specific application of lipidomics, it should nevertheless provide the interested reader with links and original publications to obtain a comprehensive overview concerning the state-of-the-art practices in the field.
Collapse
Affiliation(s)
- Harald C Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria.
| | - Robert Ahrends
- Department for Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Esbo, Finland
| | - Xianlin Han
- Barshop Inst Longev & Aging Studies, Univ Texas Hlth Sci Ctr San Antonio, San Antonio, TX, USA
| | - Nils Hoffmann
- Center for Biotechnology, Universität Bielefeld, Bielefeld, Germany
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
42
|
Heiles S. Advanced tandem mass spectrometry in metabolomics and lipidomics-methods and applications. Anal Bioanal Chem 2021; 413:5927-5948. [PMID: 34142202 PMCID: PMC8440309 DOI: 10.1007/s00216-021-03425-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
Metabolomics and lipidomics are new drivers of the omics era as molecular signatures and selected analytes allow phenotypic characterization and serve as biomarkers, respectively. The growing capabilities of untargeted and targeted workflows, which primarily rely on mass spectrometric platforms, enable extensive charting or identification of bioactive metabolites and lipids. Structural annotation of these compounds is key in order to link specific molecular entities to defined biochemical functions or phenotypes. Tandem mass spectrometry (MS), first and foremost collision-induced dissociation (CID), is the method of choice to unveil structural details of metabolites and lipids. But CID fragment ions are often not sufficient to fully characterize analytes. Therefore, recent years have seen a surge in alternative tandem MS methodologies that aim to offer full structural characterization of metabolites and lipids. In this article, principles, capabilities, drawbacks, and first applications of these "advanced tandem mass spectrometry" strategies will be critically reviewed. This includes tandem MS methods that are based on electrons, photons, and ion/molecule, as well as ion/ion reactions, combining tandem MS with concepts from optical spectroscopy and making use of derivatization strategies. In the final sections of this review, the first applications of these methodologies in combination with liquid chromatography or mass spectrometry imaging are highlighted and future perspectives for research in metabolomics and lipidomics are discussed.
Collapse
Affiliation(s)
- Sven Heiles
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392, Giessen, Germany.
| |
Collapse
|
43
|
Kirschbaum C, Greis K, Polewski L, Gewinner S, Schöllkopf W, Meijer G, von Helden G, Pagel K. Unveiling Glycerolipid Fragmentation by Cryogenic Infrared Spectroscopy. J Am Chem Soc 2021; 143:14827-14834. [PMID: 34473927 PMCID: PMC8447261 DOI: 10.1021/jacs.1c06944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Mass spectrometry
is routinely employed for structure elucidation
of molecules. Structural information can be retrieved from intact
molecular ions by fragmentation; however, the interpretation of fragment
spectra is often hampered by poor understanding of the underlying
dissociation mechanisms. For example, neutral headgroup loss from
protonated glycerolipids has been postulated to proceed via an intramolecular
ring closure but the mechanism and resulting ring size have never
been experimentally confirmed. Here we use cryogenic gas-phase infrared
(IR) spectroscopy in combination with computational chemistry to unravel
the structures of fragment ions and thereby shed light on elusive
dissociation mechanisms. Using the example of glycerolipid fragmentation,
we study the formation of protonated five-membered dioxolane and six-membered
dioxane rings and show that dioxolane rings are predominant throughout
different glycerolipid classes and fragmentation channels. For comparison,
pure dioxolane and dioxane ions were generated from tailor-made dehydroxyl
derivatives inspired by natural 1,2- and 1,3-diacylglycerols and subsequently
interrogated using IR spectroscopy. Furthermore, the cyclic structure
of an intermediate fragment occurring in the phosphatidylcholine fragmentation
pathway was spectroscopically confirmed. Overall, the results contribute
substantially to the understanding of glycerolipid fragmentation and
showcase the value of vibrational ion spectroscopy to mechanistically
elucidate crucial fragmentation pathways in lipidomics.
Collapse
Affiliation(s)
- Carla Kirschbaum
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Kim Greis
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Lukasz Polewski
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Sandy Gewinner
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | | | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Kevin Pagel
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| |
Collapse
|
44
|
Macias LA, Garza KY, Feider CL, Eberlin LS, Brodbelt JS. Relative Quantitation of Unsaturated Phosphatidylcholines Using 193 nm Ultraviolet Photodissociation Parallel Reaction Monitoring Mass Spectrometry. J Am Chem Soc 2021; 143:14622-14634. [PMID: 34486374 PMCID: PMC8579512 DOI: 10.1021/jacs.1c05295] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Structural characterization of glycerophospholipids beyond the fatty acid level has become a major endeavor in lipidomics, presenting an opportunity to advance the understanding of the intricate relationship between lipid metabolism and disease state. Distinguishing subtle lipid structural features, however, remains a major challenge for high-throughput workflows that implement traditional tandem mass spectrometry (MS/MS) techniques, stunting the molecular depth of quantitative strategies. Here, reversed phase liquid chromatography is coupled to parallel reaction mass spectrometry utilizing the double bond localization capabilities of ultraviolet photodissociation (UVPD) mass spectrometry to produce double bond isomer specific responses that are leveraged for relative quantitation. The strategy provides lipidomic characterization at the double bond level for phosphatidylcholine phospholipids from biological extracts. In addition to quantifying monounsaturated lipids, quantitation of phospholipids incorporating isomeric polyunsaturated fatty acids is also achieved. Using this technique, phosphatidylcholine isomer ratios are compared across human normal and tumor breast tissue to reveal significant structural alterations related to disease state.
Collapse
Affiliation(s)
- Luis A Macias
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kyana Y Garza
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Clara L Feider
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
45
|
Tang S, Fan L, Cheng H, Yan X. Incorporating Electro-Epoxidation into Electrospray Ionization Mass Spectrometry for Simultaneous Analysis of Negatively and Positively Charged Unsaturated Glycerophospholipids. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2288-2295. [PMID: 33232136 DOI: 10.1021/jasms.0c00356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, we develop an alternating current (AC)-induced electro-epoxidation reaction and incorporate it into nanoelectrospray ionization for locating carbon-carbon double-bonds in positively and negatively charged forms of lipids simultaneously. An AC voltage plays multiple roles in this method, including initiation of the electro-epoxidation of carbon-carbon double-bonds in both charged states of lipids and protonation/deprotonation of lipids for detection in both ion modes. Moreover, the rapid switch between native lipids and their electro-epoxidation products can be achieved at different AC voltages. The efficacy of the present method was demonstrated in mixtures of lipid standards and in a biological polar lipid extract. The advantages of simultaneous detection of negatively and positively charged unsaturated lipids, the low sample consumption, and on-demand electro-epoxidation should allow its wide applications in lipid-related research.
Collapse
Affiliation(s)
- Shuli Tang
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77845, United States
| | - Licheng Fan
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77845, United States
| | - Heyong Cheng
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77845, United States
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77845, United States
| |
Collapse
|
46
|
Xu S, Lv X, Wu B, Xie Y, Wu Z, Tu X, Chen H, Wei F. Pseudotargeted Lipidomics Strategy Enabling Comprehensive Profiling and Precise Lipid Structural Elucidation of Polyunsaturated Lipid-Rich Echium Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9012-9024. [PMID: 33683118 DOI: 10.1021/acs.jafc.0c07268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Echium oil has great nutritional value as a result of its high content of α-linolenic acid (ALA, 18:3ω-3) and stearidonic acid (SDA, 18:4ω-3). However, the comprehensive lipid profiling and exact structural characterization of bioactive polyunsaturated lipids in echium oil have not yet been obtained. In this study, we developed a novel pseudotargeted lipidomics strategy for comprehensive profiling and lipid structural elucidation of polyunsaturated lipid-rich echium oil. Our approach integrated untargeted lipidomics analysis with a targeted lipidomics strategy based on Paternò-Büchi (PB)-tandem mass spectrometry (MS/MS) using 2-acetylpyridine (2-AP) as the reaction reagent, allowing for high-coverage lipid profiling and simultaneous determination of C═C locations in triacylglycerols (TGs), diacylglycerols (DGs), free fatty acids (FFAs), and sterol esters (SEs) in echium oil. A total of 209 lipid species were profiled, among which 162 unsaturated lipids were identified with C═C location assignment and 42 groups of ω-3 and ω-6 C═C location isomers were discovered. In addition, relative isomer ratios of certain groups of lipid C═C location isomers were revealed. This pseudotargeted lipidomics strategy described in this study is expected to provide new insight into structural characterization of distinctive bioactive lipids in food.
Collapse
Affiliation(s)
- Shuling Xu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Xin Lv
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Bangfu Wu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Ya Xie
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Zongyuan Wu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Xinghao Tu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Hong Chen
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Fang Wei
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| |
Collapse
|
47
|
Non-covalent double bond sensors for gas-phase infrared spectroscopy of unsaturated fatty acids. Anal Bioanal Chem 2021; 413:3643-3653. [PMID: 33956167 PMCID: PMC8141490 DOI: 10.1007/s00216-021-03334-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022]
Abstract
The position and configuration of carbon-carbon double bonds in unsaturated fatty acids is crucial for their biological functions and influences health and disease. However, double bond isomers are not routinely distinguished by classical mass spectrometry workflows. Instead, they require sophisticated analytical approaches usually based on chemical derivatization and/or instrument modification. In this work, a novel strategy to investigate fatty acid double bond isomers (18:1) without prior chemical treatment or modification of the ion source was implemented by non-covalent adduct formation in the gas phase. Fatty acid adducts with sodium, pyridinium, trimethylammonium, dimethylammonium, and ammonium cations were characterized by a combination of cryogenic gas-phase infrared spectroscopy, ion mobility-mass spectrometry, and computational modeling. The results reveal subtle differences between double bond isomers and confirm three-dimensional geometries constrained by non-covalent ion-molecule interactions. Overall, this study on fatty acid adducts in the gas phase explores new avenues for the distinction of lipid double bond isomers and paves the way for further investigations of coordinating cations to increase resolution.
Collapse
|
48
|
Zhang H, Xu M, Shi X, Liu Y, Li Z, Jagodinsky JC, Ma M, Welham NV, Morris ZS, Li L. Quantification and molecular imaging of fatty acid isomers from complex biological samples by mass spectrometry. Chem Sci 2021; 12:8115-8122. [PMID: 34194701 PMCID: PMC8208125 DOI: 10.1039/d1sc01614h] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Elucidating the isomeric structure of free fatty acids (FAs) in biological samples is essential to comprehend their biological functions in various physiological and pathological processes. Herein, we report a novel approach of using peracetic acid (PAA) induced epoxidation coupled with mass spectrometry (MS) for localization of the C[double bond, length as m-dash]C bond in unsaturated FAs, which enables both quantification and spatial visualization of FA isomers from biological samples. Abundant diagnostic fragment ions indicative of the C[double bond, length as m-dash]C positions were produced upon fragmentation of the FA epoxides derived from either in-solution or on-tissue PAA epoxidation of free FAs. The performance of the proposed approach was evaluated by analysis of FAs in human cell lines as well as mapping the FA isomers from cancer tissue samples with MALDI-TOF/TOF-MS. Merits of the newly developed method include high sensitivity, simplicity, high reaction efficiency, and capability of spatial characterization of FA isomers in tissue samples.
Collapse
Affiliation(s)
- Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison Madison WI 53705 USA
| | - Meng Xu
- Department of Chemistry, University of Wisconsin-Madison Madison WI 53706 USA
| | - Xudong Shi
- Division of Otolaryngology, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison Madison WI 53792 USA
| | - Yuan Liu
- School of Pharmacy, University of Wisconsin-Madison Madison WI 53705 USA
| | - Zihui Li
- Department of Chemistry, University of Wisconsin-Madison Madison WI 53706 USA
| | - Justin C Jagodinsky
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison Madison WI 53705 USA
| | - Min Ma
- School of Pharmacy, University of Wisconsin-Madison Madison WI 53705 USA
| | - Nathan V Welham
- Division of Otolaryngology, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison Madison WI 53792 USA
| | - Zachary S Morris
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison Madison WI 53705 USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison Madison WI 53705 USA
- Department of Chemistry, University of Wisconsin-Madison Madison WI 53706 USA
| |
Collapse
|
49
|
Bonney JR, Prentice BM. Perspective on Emerging Mass Spectrometry Technologies for Comprehensive Lipid Structural Elucidation. Anal Chem 2021; 93:6311-6322. [PMID: 33856206 PMCID: PMC8177724 DOI: 10.1021/acs.analchem.1c00061] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lipids and metabolites are of interest in many clinical and research settings because it is the metabolome that is increasingly recognized as a more dynamic and sensitive molecular measure of phenotype. The enormous diversity of lipid structures and the importance of biological structure-function relationships in a wide variety of applications makes accurate identification a challenging yet crucial area of research in the lipid community. Indeed, subtle differences in the chemical structures of lipids can have important implications in cellular metabolism and many disease pathologies. The speed, sensitivity, and molecular specificity afforded by modern mass spectrometry has led to its widespread adoption in the field of lipidomics on many different instrument platforms and experimental workflows. However, unambiguous and complete structural identification of lipids by mass spectrometry remains challenging. Increasingly sophisticated tandem mass spectrometry (MS/MS) approaches are now being developed and seamlessly integrated into lipidomics workflows to meet this challenge. These approaches generally either (i) alter the type of ion that is interrogated or (ii) alter the dissociation method in order to improve the structural information obtained from the MS/MS experiment. In this Perspective, we highlight recent advances in both ion type alteration and ion dissociation methods for lipid identification by mass spectrometry. This discussion is aimed to engage investigators involved in fundamental ion chemistry and technology developments as well as practitioners of lipidomics and its many applications. The rapid rate of technology development in recent years has accelerated and strengthened the ties between these two research communities. We identify the common characteristics and practical figures of merit of these emerging approaches and discuss ways these may catalyze future directions of lipid structural elucidation research.
Collapse
Affiliation(s)
- Julia R Bonney
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
50
|
Bouza M, Li Y, Wang AC, Wang ZL, Fernández FM. Triboelectric Nanogenerator Ion Mobility-Mass Spectrometry for In-Depth Lipid Annotation. Anal Chem 2021; 93:5468-5475. [PMID: 33720699 PMCID: PMC8292975 DOI: 10.1021/acs.analchem.0c05145] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipids play a critical role in cell membrane integrity, signaling, and energy storage. However, in-depth structural characterization of lipids is still challenging and not routinely possible in lipidomics experiments. Techniques such as collision-induced dissociation (CID) tandem mass spectrometry (MS/MS), ion mobility (IM) spectrometry, and ultrahigh-performance liquid chromatography are not yet capable of fully characterizing double-bond and sn-chain position of lipids in a high-throughput manner. Herein, we report on the ability to structurally characterize lipids using large-area triboelectric nanogenerators (TENG) coupled with time-aligned parallel (TAP) fragmentation IM-MS analysis. Gas-phase lipid epoxidation during TENG ionization, coupled to mobility-resolved MS3 via TAP IM-MS, enabled the acquisition of detailed information on the presence and position of lipid C═C double bonds, the fatty acyl sn-chain position and composition, and the cis/trans geometrical C═C isomerism. The proposed methodology proved useful for the shotgun lipidomics analysis of lipid extracts from biological samples, enabling the detailed annotation of numerous lipid isobars.
Collapse
Affiliation(s)
- Marcos Bouza
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- NSF/NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Yafeng Li
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Aurelia C Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhong Lin Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- NSF/NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| |
Collapse
|