1
|
Li JR, Chiang KT, Kao YC, Yu CL, Yang FC, Liang CS, Hsu TW. The association between study design and antidepressant effects in psychedelic-assisted therapy: A meta-analysis. J Affect Disord 2025; 369:421-428. [PMID: 39389119 DOI: 10.1016/j.jad.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Different study designs of psychedelic trials may impact the blinding and expectance, leading to biased treatment effects. This study aimed to examine the association between antidepressant efficacy and study designs in psychedelic trials. Six databases were systematically searched. Eligible trials were required to investigate the efficacy of psychedelics (psilocybin, lysergic acid diethylamide [LSD], 3,4-Methylenedioxymethamphetamine [MDMA], and ayahuasca) in adult patients with depressive symptoms. We only considered oral psychedelic-assisted therapy without concomitant use of antidepressants. The primary outcome was the change in depressive symptoms. There were five study designs of psychedelic trials, including non-active-drug-as-placebo, active-drug-as-placebo, waitlist-as-control, fixed-order, and pre-post designs. In non-active-drug -as-placebo design, psilocybin (k = 4, Hedges' g [g] = 0.87, 95 % confidence intervals[CIs] = 0.58 to 1.16) and MDMA (k = 2, g = 0.65, 95%CIs = 0.26 to 1.05) were associated with large and medium effect sizes, respectively. In active-drug-as-placebo design, both psilocybin (k = 2, g = 0.71, 95%CIs = -0.01 to 1.43) and MDMA (k = 3, g = 0.53, 95%CIs = -0.23 to 1.28) were not statistically significant. In pre-post single-arm (k = 3, g = 2.51, 95%CIs = 1.00 to 4.02) and waitlist-as-control (k = 1, g = 2.88, 95%CIs = 1.75 to 4.00) designs, psilocybin showed a large effect size of antidepressant effect. Ayahuasca also showed a large effect size in both pre-post (k = 2, g = 1.88, 95%CIs = 1.18 to 2.57) and non-active-drug-as-placebo (k = 1, g = 1.60, 95%CIs = 0.84 to 2.36) designs. LSD was associated with a significant antidepressant effect only in non-active-drug-as-placebo design (k = 1, g = 1.49, 95%CIs = 0.80 to 2.17) but not in active-drug-as-placebo design (k = 1, g = 0.44, 95%CIs = -0.90 to 1.78). The antidepressant effects of psychedelics may be overestimated in studies with pre-post single-arm, non-active-drugs-as placebo, and waitlist-control designs. Restricted sample size, difficulty with establishing blinding for participants, and over expectancy limit the estimation of the antidepressant effect of psychedelic-assisted therapy.
Collapse
Affiliation(s)
- Jia-Ru Li
- Department of Psychiatry, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Kuo-Tung Chiang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan; Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan
| | - Yu-Chen Kao
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan; Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan
| | - Chia-Ling Yu
- Department of Pharmacy, Chang Gung Memorial Hospital Linkou, Taipei, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan; Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan.
| | - Tien-Wei Hsu
- Department of Psychiatry, E-DA Dachang Hospital, I-Shou University, Kaohsiung, Taiwan; Department of Psychiatry, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Mohammad Hosseini A, Khaleghzadeh-Ahangar H, Rahimi A. The immunomodulatory effects of psychedelics in Alzheimer's disease-related dementia. Neuroscience 2025; 564:271-280. [PMID: 39603407 DOI: 10.1016/j.neuroscience.2024.11.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/03/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Dementia is an increasing disorder, and Alzheimer's disease (AD) is the cause of 60% of all dementia cases. Despite all efforts, there is no cure for stopping dementia progression. Recent studies reported potential effects of psychedelics on neuroinflammation during AD. Psychedelics by 5HT2AR activation can reduce proinflammatory cytokine levels (TNF-α, IL-6) and inhibit neuroinflammation. In addition to neuroinflammation suppression, psychedelics induce neuroplasticity by increasing Brain-derived neurotrophic factor (BDNF) levels through Sigma-1R stimulation. This review discussed the effects of psychedelics on AD from both neuroinflammatory and neuroplasticity standpoints.
Collapse
Affiliation(s)
| | - Hossein Khaleghzadeh-Ahangar
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran; Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Atena Rahimi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Pharmacology and Toxicology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
3
|
Arias HR, Rudin D, Luethi D, Valenta J, Leśniak A, Czartoryska Z, Olejarz-Maciej A, Doroz-Płonka A, Manetti D, De Deurwaerdère P, Romanelli MN, Handzlik J, Liechti ME, Chagraoui A. The psychoplastogens ibogaminalog and ibogainalog induce antidepressant-like activity in naïve and depressed mice by mechanisms involving 5-HT 2A receptor activation and serotonergic transmission. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111217. [PMID: 39662723 DOI: 10.1016/j.pnpbp.2024.111217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
The antidepressant-like activity of two psychoplastogens, ibogainalog (IBG) and ibogaminalog (DM506), was studied in naïve mice using the forced swim test (FST) and tail suspension test (TST). The behavioral results showed that a single administration of 25 mg/kg DM506 or 10 mg/kg IBG induced antidepressant-like activity in naïve mice in a volinanserin-sensitive manner that persisted for 72 h. Similar results were observed using the chronic immobilization stress (CIS) test, in which depression symptoms were reduced for 48 h. To assess the contribution of serotonergic and/or norepinephrinergic neurotransmission, serotonin (5-HT) and norepinephrine (NE) levels were depleted. The reduction in 5-HT levels, but not NE levels, inhibited the antidepressant-like activity of ibogalogs, suggesting that serotonergic transmission may play a more significant role than norepinephrinergic transmission. Concurrently, DM506, IBG, and TBG (derived from tabernanthine) inhibited monoamine transporters with the following order of selectivity: SERT > NE transporter > dopamine transporter. The IBG exhibited the highest selectivity for SERT. Only TBG inhibited monoamine oxidase A activity, indicating its relatively minor role. Radioligand and functional assays showed that all ibogalogs bind to the 5-HT2 receptor subfamily (DM506 > IBG > TBG) and fully activate 5-HT2A/2C receptors with similar potency in the nM range. However, they act as competitive antagonists of the 5-HT2B receptor, with DM506 as an exception, exhibiting partial but potent agonist activity. In conclusion, ibogalogs induce acute and sustained antidepressant-like activity in naïve and depressed mice through mechanisms involving 5-HT2A receptor activation and serotonergic transmission.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK, USA
| | - Deborah Rudin
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Dino Luethi
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Jan Valenta
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Anna Leśniak
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Zofia Czartoryska
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Krakow, Poland
| | - Agata Doroz-Płonka
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Krakow, Poland
| | - Dina Manetti
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Italy
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Italy
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Krakow, Poland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Abdeslam Chagraoui
- Department of Medical Biochemistry, Rouen University Hospital, CHU de Rouen, France; Différenciation et Communication Neuroendocrine, Endocrine et Germinale Laboratory, Institute for ResearchDr.nd Innovation in Biomedicine of Normandy (IRIB), University of Rouen, INSERM 1239, 76000 Rouen, France.
| |
Collapse
|
4
|
Askey T, Lasrado R, Maiarú M, Stephens GJ. Psilocybin as a novel treatment for chronic pain. Br J Pharmacol 2024. [PMID: 39614355 DOI: 10.1111/bph.17420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 12/01/2024] Open
Abstract
Psychedelic drugs are under active consideration for clinical use and have generated significant interest for their potential as anti-nociceptive treatments for chronic pain, and for addressing conditions like depression, frequently co-morbid with pain. This review primarily explores the utility of preclinical animal models in investigating the potential of psilocybin as an anti-nociceptive agent. Initial studies involving psilocybin in animal models of neuropathic and inflammatory pain are summarised, alongside areas where further research is needed. The potential mechanisms of action, including targeting serotonergic pathways through the activation of 5-HT2A receptors at both spinal and central levels, as well as neuroplastic actions that improve functional connectivity in brain regions involved in chronic pain, are considered. Current clinical aspects and the translational potential of psilocybin from animal models to chronic pain patients are reviewed. Also discussed is psilocybin's profile as an ideal anti-nociceptive agent, with a wide range of effects against chronic pain and its associated inflammatory or emotional components.
Collapse
Affiliation(s)
- Tate Askey
- Department of Pharmacology, School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| | | | - Maria Maiarú
- Department of Pharmacology, School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| | - Gary J Stephens
- Department of Pharmacology, School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| |
Collapse
|
5
|
Calder AE, Hase A, Hasler G. Effects of psychoplastogens on blood levels of brain-derived neurotrophic factor (BDNF) in humans: a systematic review and meta-analysis. Mol Psychiatry 2024:10.1038/s41380-024-02830-z. [PMID: 39613915 DOI: 10.1038/s41380-024-02830-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Peripheral levels of brain-derived neurotrophic factor (BDNF) are often used as a biomarker for the rapid plasticity-promoting effects of ketamine, psychedelics, and other psychoplastogens in humans. However, studies analyzing peripheral BDNF after psychoplastogen exposure show mixed results. In this meta-analysis, we aimed to test whether the rapid upregulation of neuroplasticity seen in preclinical studies is detectable using peripheral BDNF in humans. METHODS This analysis was pre-registered (PROSPERO ID: CRD42022333096) and funded by the University of Fribourg. We systematically searched PubMed, Web of Science, and PsycINFO to meta-analyze the effects of all available psychoplastogens on peripheral BDNF levels in humans, including ketamine, esketamine, LSD, psilocybin, ayahuasca, DMT, MDMA, scopolamine, and rapastinel. Risk of bias was assessed using Cochrane Risk of Bias Tools. Using meta-regressions and mixed effects models, we additionally analyzed the impact of several potential moderators. RESULTS We included 29 studies and found no evidence that psychoplastogens elevate peripheral BDNF levels in humans (SMD = 0.024, p = 0.64). This result was not affected by drug, dose, blood fraction, participant age, or psychiatric diagnoses. In general, studies with better-controlled designs and fewer missing values reported smaller effect sizes. Later measurement timepoints showed minimally larger effects on BDNF. CONCLUSION These data suggest that peripheral BDNF levels do not change after psychoplastogen administration in humans. It is possible that peripheral BDNF is not an informative marker of rapid changes in neuroplasticity, or that preclinical findings on psychoplastogens and neuroplasticity may not translate to human subjects. Limitations of this analysis include the reliability and validity of BDNF measurement and low variation in some potential moderators. More precise methods of measuring rapid changes in neuroplasticity, including neuroimaging and stimulation-based methods, are recommended for future studies attempting to translate preclinical findings to humans.
Collapse
Affiliation(s)
- Abigail E Calder
- Molecular Psychiatry Lab, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Adrian Hase
- Molecular Psychiatry Lab, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Gregor Hasler
- Molecular Psychiatry Lab, Department of Medicine, University of Fribourg, Fribourg, Switzerland.
- Fribourg Mental Health Network, Chemin du Cardinal-Journet 3, 1752, Villars-sur-Glâne, Switzerland.
- Lake Lucerne Institute, Vitznau, Switzerland.
| |
Collapse
|
6
|
Martin DA, Delgado AM, Calu DJ. Effects of psychedelic, DOI, on nucleus accumbens dopamine signaling to predictable rewards and cues in rats. Neuropsychopharmacology 2024; 49:1925-1933. [PMID: 38971932 PMCID: PMC11473690 DOI: 10.1038/s41386-024-01912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Psychedelics produce lasting therapeutic responses in neuropsychiatric diseases suggesting they may disrupt entrenched associations and catalyze learning. Here, we examine psychedelic 5-HT2A/2C agonist, DOI, effects on dopamine signaling in the nucleus accumbens (NAc) core, a region extensively linked to reward learning, motivation, and drug-seeking. We measure phasic dopamine transients following acute DOI administration in rats during well learned Pavlovian tasks in which sequential cues predict rewards. We find that DOI (0.0-1.2 mg/kg, i.p.) increases dopamine signals, photometrically measured using GRABDA optical sensor, to rewards and proximal reward cues, but not to the distal cues that predict these events. We determine that the elevated dopamine produced by DOI to reward cues occurs independently of DOI-induced changes in reward value. The increased dopamine associated with predictable reward cues and rewards supports DOI-induced increases in prediction error signaling. These findings lay a foundation for developing psychedelic strategies aimed at engaging error-driven learning mechanisms to disrupt entrenched associations or produce new associations.
Collapse
Affiliation(s)
- David A Martin
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Angel M Delgado
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Donna J Calu
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Ubhayarathna M, Langmead CJ, Diepenhorst NA, Stewart GD. Molecular and structural insights into the 5-HT 2C receptor as a therapeutic target for substance use disorders. Br J Pharmacol 2024; 181:4414-4429. [PMID: 37679998 DOI: 10.1111/bph.16233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Substance use disorder (SUD) is a chronic condition, with maintained abuse of a substance leading to physiological and psychological alterations and often changes in cognitive and social behaviours. Current therapies include psychotherapy coupled with medication; however, high relapse rates reveal the shortcomings of these therapies. The signalling, expression profile, and neurological function of the serotonin 2C receptor (5-HT2C receptor) make it a candidate of interest for the treatment of SUD. Recently, psychedelics, which broadly act at 5-HT2 receptors, have indicated potential for the treatment of SUD, implicating the 5-HT2C receptor. The modern psychedelic movement has rekindled interest in the 5-HT2C receptor, resulting in many new studies, especially structural analyses. This review explores the structural, molecular and cellular mechanisms governing 5-HT2C receptor function in the context of SUD. This provides the basis of the preclinical and clinical evidence for their role in SUD and highlights the potential for future exploration.
Collapse
Affiliation(s)
- Maleesha Ubhayarathna
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Christopher J Langmead
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
| | - Natalie A Diepenhorst
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Gregory D Stewart
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
| |
Collapse
|
8
|
Esmaeili AJ, Montazeri P, Gomez JC, Dumervil DJ, Nezhad FS, Steinhardt RC. Photoswitchable TCB-2 for control of the 5-HT 2A receptor and analysis of biased agonism. Chem Commun (Camb) 2024; 60:11956-11959. [PMID: 39350732 DOI: 10.1039/d4cc03892d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Therapies that target the serotonin 2A receptor (5-HT2AR) are promising. However, probes are needed to better understand the role of 5-HT2AR. Here, we design and synthesize a photoswitch and photoswitchable 5-HT2AR ligand based on highly potent agonist TCB-2 and arylazopyrazole, which also boasts photoswitchable G protein vs. β-arrestin pathway bias.
Collapse
Affiliation(s)
| | - Pantea Montazeri
- Syracuse University, Department of Chemistry, 111 College Pl., Syracuse, NY 13244, USA.
| | | | - Didier J Dumervil
- Syracuse University, Department of Chemistry, 111 College Pl., Syracuse, NY 13244, USA.
| | - Faezeh Safar Nezhad
- Syracuse University, Department of Chemistry, 111 College Pl., Syracuse, NY 13244, USA.
| | - Rachel C Steinhardt
- Syracuse University, Department of Chemistry, 111 College Pl., Syracuse, NY 13244, USA.
| |
Collapse
|
9
|
Gumpper RH, Nichols DE. Chemistry/structural biology of psychedelic drugs and their receptor(s). Br J Pharmacol 2024. [PMID: 39354889 DOI: 10.1111/bph.17361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 10/03/2024] Open
Abstract
This brief review highlights some of the structure-activity relationships of classic serotonergic psychedelics. In particular, we discuss structural features of three chemotypes: phenethylamines, ergolines and certain tryptamines, which possess psychedelic activity in humans. Where they are known, we point out the underlying molecular mechanisms utilized by each of the three chemotypes of psychedelic molecules. With a focus on the 5-HT2A receptor subtype, a G-protein coupled receptor known to be the primary target of psychedelics, we refer to several X-ray and cryoEM structures, with a variety of ligands bound, to illustrate the underlying atomistic basis for some of the known pharmacological observations of psychedelic drug actions.
Collapse
Affiliation(s)
- Ryan H Gumpper
- Department of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David E Nichols
- Department of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Ordovich-Clarkson RD, Jabbour M, Pelayo DA, Lara D, La Croix S, Mumman M, Stukas S, Anderson R, Meraz D, Bangura A, Anderson B, Bamrud L, Blake C. Comparing psilocybin to metformin as neuroprotective agents against Parkinson's dementia: A systematic review of evidence and efficacy. Prog Neuropsychopharmacol Biol Psychiatry 2024:111155. [PMID: 39357666 DOI: 10.1016/j.pnpbp.2024.111155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND & AIM Treatment of Parkinson's disease (PD) has remained largely unchanged and focuses primarily on symptomatic relief through activation of dopaminergic pathways. Currently, there are no proven prophylactic approaches to the prevention of PD. This systematic review seeks to compare two separate compounds, metformin (MTF) and psilocybin, as potential prophylactic therapeutics against the development of PD. METHODS The authors conducted a systematic review focusing on primary studies that test these compounds on cell and animal models to determine if they might have any neuroprotective or neuroplastic effects. RESULTS The results of this review found that MTF may halt the progression of diseases such as PD through multiple mechanisms including reduced oxidative stress at the level of the mitochondria, thereby reducing α-synuclein related damage. Psilocybin, on the other hand, may increase repair of damaged neurons through psychoplastogenic activation of serotonergic pathways, particularly 5-HT2A receptor activation, ultimately increasing the release of brain derived neurotropic factor (BDNF) and the reduction of α-synuclein accumulation. CONCLUSION Implications of this study include a need for further research in off-label use of MTF as well as further research into serotonergic compounds such as psilocybin for the treatment and prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Daniel Arteaga Pelayo
- Undergraduate research assistant through GCU's Research & Design Program, Phoenix, AZ, USA
| | - Daniel Lara
- Undergraduate research assistant through GCU's Research & Design Program, Phoenix, AZ, USA
| | - Sebastian La Croix
- Undergraduate research assistant through GCU's Research & Design Program, Phoenix, AZ, USA
| | - Macie Mumman
- Undergraduate research assistant through GCU's Research & Design Program, Phoenix, AZ, USA
| | - Shoshanah Stukas
- Undergraduate research assistant through GCU's Research & Design Program, Phoenix, AZ, USA
| | - Reagan Anderson
- Undergraduate research assistant through GCU's Research & Design Program, Phoenix, AZ, USA
| | - David Meraz
- Undergraduate research assistant through GCU's Research & Design Program, Phoenix, AZ, USA
| | - Anthony Bangura
- Undergraduate research assistant through GCU's Research & Design Program, Phoenix, AZ, USA
| | - Brooklyn Anderson
- Undergraduate research assistant through GCU's Research & Design Program, Phoenix, AZ, USA
| | - Luke Bamrud
- Undergraduate research assistant through GCU's Research & Design Program, Phoenix, AZ, USA
| | - Caleb Blake
- Medical student at Heritage College of Osteopathic Medicine, Ohio University, USA
| |
Collapse
|
11
|
Concerto C, Lanza G, Rodolico A. The Fascinating Link between Psychedelics and Neuroplasticity. J Integr Neurosci 2024; 23:177. [PMID: 39344227 DOI: 10.31083/j.jin2309177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 10/01/2024] Open
Affiliation(s)
- Carmen Concerto
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, 95123 Catania, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Alessandro Rodolico
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, 95123 Catania, Italy
- Klinikum rechts der Isar, Department of Psychiatry and Psychotherapy, TUM School of Medicine and Health, Technical University of Munich, 80333 Munich, Germany
| |
Collapse
|
12
|
Dwulet GE. Synthesis and in vitro evaluation of novel amino-phenylmethylene-imidazolone 5-HT 2A receptor antagonists. RSC Med Chem 2024; 15:2508-2513. [PMID: 39026648 PMCID: PMC11253854 DOI: 10.1039/d4md00262h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024] Open
Abstract
Many drugs target the serotonin 2A (5-HT2A) receptor, including psychedelics, antidepressants, and antipsychotics. This study investigates the 5-HT2A receptor-binding properties of a series of novel compounds with an amino-phenylmethylene-imidazolone (APMI) core structure. Two compounds (2a and 2c) demonstrated significant 5-HT2A receptor-binding affinity without agonistic activity, instead displaying antagonistic effects. Structurally, these compounds differ from previously reported phenethylamine-based antagonists. This work introduces APMIs as a novel pharmacophore for 5-HT2A receptor interaction and provides a foundation for developing new 5-HT2A receptor-targeting therapeutic agents.
Collapse
|
13
|
Romeo B, Kervadec E, Fauvel B, Strika-Bruneau L, Amirouche A, Verroust V, Piolino P, Benyamina A. Significant Psychedelic Experiences Evaluated for Mystical Characteristics Associated with Cannabis Use Reduction and Psychological Flexibility Improvement: A Naturalistic Cross-Sectional Retrospective Survey. J Psychoactive Drugs 2024:1-12. [PMID: 38961652 DOI: 10.1080/02791072.2024.2375720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/13/2024] [Indexed: 07/05/2024]
Abstract
Treating cannabis use disorder remains a significant challenge in the field of addiction medicine. Some recent studies point to psychedelic-assisted psychotherapy as a potential treatment option for substance use disorders. The objective of this study was therefore to explore the impact of naturalistic psychedelic experiences on cannabis use and psychological flexibility. An online retrospective survey was carried out on 152 cannabis users who also reported a significant experience induced by psychedelics in the past. Following a psychedelic experience, there was a significant and sustained reduction of average CUDIT score (p < .001), frequency of cannabis use (p < .001), and acute duration of daily intoxication (p < .001). Cannabis use reduction during the first month post-experience was significantly associated with the intensity of the mystical experience (p = .01). Participants reported a concomitant increased lasting improvement of psychological flexibility following the experience (p < .001), which was correlated to the intensity of the mystical experience during the first month post-experience (p = .04). This study demonstrates that naturalistic psychedelic experiences may be followed by a decrease in cannabis use. Positive health outcomes appear potentially connected to the intensity of the mystical experience, as well as an improvement in psychological flexibility.
Collapse
Affiliation(s)
- B Romeo
- Department of Psychiatry and Addictology, APHP, Paul Brousse Hospital, Villejuif, France
- Unité de Recherche Psychiatrie-Comorbidités-Addictions, PSYCOMADD - Paris Saclay University Île-de-France, Villejuif, France
| | - E Kervadec
- Department of Psychiatry and Addictology, APHP, Paul Brousse Hospital, Villejuif, France
| | - B Fauvel
- Laboratoire Mémoire, Cerveau et Cognition (UR 7536), Institut de Psychologie, Université Paris Cité, Paris, France
| | - L Strika-Bruneau
- Department of Psychiatry and Addictology, APHP, Paul Brousse Hospital, Villejuif, France
- Unité de Recherche Psychiatrie-Comorbidités-Addictions, PSYCOMADD - Paris Saclay University Île-de-France, Villejuif, France
| | - A Amirouche
- Department of Psychiatry and Addictology, APHP, Paul Brousse Hospital, Villejuif, France
- Unité de Recherche Psychiatrie-Comorbidités-Addictions, PSYCOMADD - Paris Saclay University Île-de-France, Villejuif, France
| | - V Verroust
- Unité de Recherche Psychiatrie-Comorbidités-Addictions, PSYCOMADD - Paris Saclay University Île-de-France, Villejuif, France
- Université Picardie-Jules Vernes, Amiens, France
| | - P Piolino
- Laboratoire Mémoire, Cerveau et Cognition (UR 7536), Institut de Psychologie, Université Paris Cité, Paris, France
| | - A Benyamina
- Department of Psychiatry and Addictology, APHP, Paul Brousse Hospital, Villejuif, France
- Unité de Recherche Psychiatrie-Comorbidités-Addictions, PSYCOMADD - Paris Saclay University Île-de-France, Villejuif, France
| |
Collapse
|
14
|
Bornemann J, Close JB, Ahmad K, Barba T, Godfrey K, Macdonald L, Erritzoe D, Nutt D, Carhart-Harris R. Study protocol for "Psilocybin in patients with fibromyalgia: brain biomarkers of action". Front Psychiatry 2024; 15:1320780. [PMID: 38983371 PMCID: PMC11232672 DOI: 10.3389/fpsyt.2024.1320780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/04/2024] [Indexed: 07/11/2024] Open
Abstract
Background Chronic pain is a leading cause of disability worldwide. Fibromyalgia is a particularly debilitating form of widespread chronic pain. Fibromyalgia remains poorly understood, and treatment options are limited or moderately effective at best. Here, we present a protocol for a mechanistic study investigating the effects of psychedelic-assisted-therapy in a fibromyalgia population. The principal focus of this trial is the central mechanism(s) of psilocybin-therapy i.e., in the brain and on associated mental schemata, primarily captured by electroencephalography (EEG) recordings of the acute psychedelic state, plus pre and post Magnetic Resonance Imaging (MRI). Methods Twenty participants with fibromyalgia will complete 8 study visits over 8 weeks. This will include two dosing sessions where participants will receive psilocybin at least once, with doses varying up to 25mg. Our primary outcomes are 1) Lempel-Ziv complexity (LZc) recorded acutely using EEG, and the 2) the (Brief Experiential Avoidance Questionnaire (BEAQ) measured at baseline and primary endpoint. Secondary outcomes will aim to capture broad aspects of the pain experience and related features through neuroimaging, self-report measures, behavioural paradigms, and qualitative interviews. Pain Symptomatology will be measured using the Brief Pain Inventory Interference Subscale (BPI-IS), physical and mental health-related function will be measured using the 36-Item Short Form Health Survey (SF-36). Further neurobiological investigations will include functional MRI (fMRI) and diffusion tensor imaging (changes from baseline to primary endpoint), and acute changes in pre- vs post-acute spontaneous brain activity - plus event-related potential functional plasticity markers, captured via EEG. Discussion The results of this study will provide valuable insight into the brain mechanisms involved in the action of psilocybin-therapy for fibromyalgia with potential implications for the therapeutic action of psychedelic-therapy more broadly. It will also deliver essential data to inform the design of a potential subsequent RCT.
Collapse
Affiliation(s)
- Julia Bornemann
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, United Kingdom
| | - James B. Close
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, United Kingdom
| | - Kirran Ahmad
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, United Kingdom
| | - Tommaso Barba
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, United Kingdom
| | - Kate Godfrey
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, United Kingdom
| | - Lauren Macdonald
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, United Kingdom
| | - David Erritzoe
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, United Kingdom
| | - David Nutt
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, United Kingdom
| | - Robin Carhart-Harris
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, United Kingdom
- Psychedelics Division, Neurology, Psychiatry and Behavioural Sciences Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
15
|
Zhao X, Du Y, Yao Y, Dai W, Yin Y, Wang G, Li Y, Zhang L. Psilocybin promotes neuroplasticity and induces rapid and sustained antidepressant-like effects in mice. J Psychopharmacol 2024; 38:489-499. [PMID: 38680011 DOI: 10.1177/02698811241249436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
BACKGROUND Psilocybin offers new hope for treating mood disorders due to its rapid and sustained antidepressant effects, as standard medications require weeks or months to exert their effects. However, the mechanisms underlying this action of psilocybin have not been identified. AIMS To investigate whether psilocybin has rapid and sustained antidepressant-like effects in mice and investigate whether its potential mechanisms of action are related to promoted neuroplasticity. METHODS We first examined the antidepressant-like effects of psilocybin in normal mice by the forced swimming test and in chronic corticosterone (CORT)-exposed mice by the sucrose preference test and novelty-suppressed feeding test. Furthermore, to explore the role of neuroplasticity in mediating the antidepressant-like effects of psilocybin, we measured structural neuroplasticity and neuroplasticity-associated protein levels in the prefrontal cortex (PFC) and hippocampus. RESULTS We observed that a single dose of psilocybin had rapid and sustained antidepressant-like effects in both healthy mice and chronic CORT-exposed mice. Moreover, psilocybin ameliorated chronic CORT exposure-induced inhibition of neuroplasticity in the PFC and hippocampus, including by increasing neuroplasticity (total number of dendritic branches and dendritic spine density), synaptic protein (p-GluA1, PSD95 and synapsin-1) levels, BDNF-mTOR signalling pathway activation (BDNF, TrkB and mTOR levels), and promoting neurogenesis (number of DCX-positive cells). CONCLUSIONS Our results demonstrate that psilocybin elicits robust, rapid and sustained antidepressant-like effects which is accompanied by the promotion of neuroplasticity in the PFC and hippocampus.
Collapse
Affiliation(s)
- Xiangting Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Inner Mongolia Traditional Chinese and Mongolian Medical Research Institute, Hohhot, China
| | - Yingjie Du
- Department of Anaesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yishan Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wei Dai
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongyu Yin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Guyan Wang
- Department of Anaesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yunfeng Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Liming Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
16
|
Hilal FF, Jeanblanc J, Deschamps C, Naassila M, Pierrefiche O, Ben Hamida S. Epigenetic drugs and psychedelics as emerging therapies for alcohol use disorder: insights from preclinical studies. J Neural Transm (Vienna) 2024; 131:525-561. [PMID: 38554193 DOI: 10.1007/s00702-024-02757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/22/2024] [Indexed: 04/01/2024]
Abstract
Alcohol use disorder (AUD) is a public health issue that affects millions of people worldwide leading to physical, mental and socio-economic consequences. While current treatments for AUD have provided relief to individuals, their effectiveness on the long term is often limited, leaving a number of affected individuals without sustainable solutions. In this review, we aim to explore two emerging approaches for AUD: psychedelics and epigenetic drugs (i.e., epidrugs). By examining preclinical studies, different animal species and procedures, we delve into the potential benefits of each of these treatments in terms of addictive behaviors (alcohol drinking and seeking, motivation to drink alcohol and prevention of relapse). Because psychedelics and epidrugs may share common and complementary mechanisms of action, there is an exciting opportunity for exploring synergies between these approaches and their parallel effectiveness in treating AUD and the diverse associated psychiatric conditions.
Collapse
Affiliation(s)
- Fahd François Hilal
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Jerome Jeanblanc
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Chloé Deschamps
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Mickael Naassila
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France.
| | - Olivier Pierrefiche
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Sami Ben Hamida
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France.
| |
Collapse
|
17
|
Tae HS, Ortells MO, Yousuf A, Xu SQ, Akk G, Adams DJ, Arias HR. Tabernanthalog and ibogainalog inhibit the α7 and α9α10 nicotinic acetylcholine receptors via different mechanisms and with higher potency than the GABA A receptor and Ca V2.2 channel. Biochem Pharmacol 2024; 223:116183. [PMID: 38580167 PMCID: PMC11151864 DOI: 10.1016/j.bcp.2024.116183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
In this study, we have investigated the pharmacological activity and structural interaction of two novel psychoplastogens, tabernanthalog (TBG) and ibogainalog (IBG) at heterologously-expressed rat (r) and human (h) nicotinic acetylcholine receptors (nAChRs), the rα1β2γ2L γ-aminobutyric acid type A receptor (GABAAR), and the human voltage-gated N-type calcium channel (CaV2.2 channel). Both compounds inhibited the nAChRs with the following receptor selectivity: α9α10 > α7 > α3β2 ≅ α3β4, indicating that β2/β4 subunits are relatively less important for their activity. The potencies of TBG and IBG were comparable at hα7 and hα9α10 subtypes, and comparable to their rat counterparts. TBG- and IBG-induced inhibition of rα7 was ACh concentration-independent and voltage-dependent, whereas rα9α10 inhibition was ACh concentration-dependent and voltage-independent, suggesting that they interact with the α7 ion channel pore and α9α10 orthosteric ligand binding site, respectively. These results were supported by molecular docking studies showing that at the α7 model TBG forms stable interactions with luminal rings at 9', 13', and 16', whereas IBG mostly interacts with the extracellular-transmembrane junction. In the α9α10 model, however, these compounds interacted with several residues from the principal (+) and complementary (-) sides in the transmitter binding site. Ibogaminalog (DM506) also interacted with a non-luminal site at α7, and one α9α10 orthosteric site. TBG and IBG inhibited the GABAAR and CaV2.2 channels with 10 to 30-fold lower potencies. In sum, we show that TBG and IBG inhibit the α7 and α9α10 nAChRs by noncompetitive and competitive mechanisms, respectively, and with higher potency than the GABAAR and CaV2.2 channel.
Collapse
Affiliation(s)
- Han-Shen Tae
- Molecular Horizons/Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Marcelo O Ortells
- Facultad de Medicina, Universidad de Morón, and CONICET, Morón, Argentina
| | - Arsalan Yousuf
- Molecular Horizons/Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Sophia Q Xu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gustav Akk
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - David J Adams
- Molecular Horizons/Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK, USA
| |
Collapse
|
18
|
Tap SC. The potential of 5-methoxy-N,N-dimethyltryptamine in the treatment of alcohol use disorder: A first look at therapeutic mechanisms of action. Addict Biol 2024; 29:e13386. [PMID: 38600715 PMCID: PMC11007263 DOI: 10.1111/adb.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/24/2023] [Accepted: 02/13/2024] [Indexed: 04/12/2024]
Abstract
Alcohol use disorder (AUD) remains one of the most prevalent psychiatric disorders worldwide with high economic costs. Current treatment options show modest efficacy and relapse rates are high. Furthermore, there are increases in the treatment gap and few new medications have been approved in the past 20 years. Recently, psychedelic-assisted therapy with psilocybin and lysergic acid diethylamide has garnered significant attention in the treatment of AUD. Yet, they require significant amounts of therapist input due to prolonged subjective effects (~4-12 h) leading to high costs and impeding implementation. Accordingly, there is an increasing interest in the rapid and short-acting psychedelic 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT). This paper offers a first look at potential therapeutic mechanisms for AUD by reviewing the current literature on 5-MeO-DMT. Primarily, 5-MeO-DMT is able to induce mystical experiences and ego-dissolution together with increases in psychological flexibility and mindfulness. This could decrease AUD symptoms through the alleviation of psychiatric mood-related comorbidities consistent with the negative reinforcement and self-medication paradigms. In addition, preliminary evidence indicates that 5-MeO-DMT modulates neural oscillations that might subserve ego-dissolution (increases in gamma), psychological flexibility and mindfulness (increases in theta), and the reorganization of executive control networks (increases in coherence across frequencies) that could improve emotion regulation and inhibition. Finally, animal studies show that 5-MeO-DMT is characterized by neuroplasticity, anti-inflammation, 5-HT2A receptor agonism, and downregulation of metabotropic glutamate receptor 5 with clinical implications for AUD and psychiatric mood-related comorbidities. The paper concludes with several recommendations for future research to establish the purported therapeutic mechanisms of action.
Collapse
Affiliation(s)
- Stephan C. Tap
- Department of PsychiatryGroningen University Medical CenterGroningenThe Netherlands
| |
Collapse
|
19
|
Barksdale BR, Doss MK, Fonzo GA, Nemeroff CB. The mechanistic divide in psychedelic neuroscience: An unbridgeable gap? Neurotherapeutics 2024; 21:e00322. [PMID: 38278658 DOI: 10.1016/j.neurot.2024.e00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
In recent years, psychedelics have generated considerable excitement and interest as potential novel therapeutics for an array of conditions, with the most advanced evidence base in the treatment of certain severe and/or treatment-resistant psychiatric disorders. An array of clinical and pre-clinical evidence has informed our current understanding of how psychedelics produce profound alterations in consciousness. Mechanisms of psychedelic action include receptor binding and downstream cellular and transcriptional pathways, with long-term impacts on brain structure and function-from the level of single neurons to large-scale circuits. In this perspective, we first briefly review and synthesize separate lines of research on potential mechanistic processes underlying the acute and long-term effects of psychedelic compounds, with a particular emphasis on highlighting current theoretical models of psychedelic drug action and their relationships to therapeutic benefits for psychiatric and brain-based disorders. We then highlight an existing area of ongoing controversy we argue is directly informed by theoretical models originating from disparate levels of inquiry, and we ultimately converge on the notion that bridging the current chasm in explanatory models of psychedelic drug action across levels of inquiry (molecular, cellular, circuit, and psychological/behavioral) through innovative methods and collaborative efforts will ultimately yield the comprehensive understanding needed to fully capitalize on the potential therapeutic properties of these compounds.
Collapse
Affiliation(s)
- Bryan R Barksdale
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Manoj K Doss
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Gregory A Fonzo
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Charles B Nemeroff
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA.
| |
Collapse
|
20
|
Tabaac BJ, Shinozuka K, Arenas A, Beutler BD, Cherian K, Evans VD, Fasano C, Muir OS. Psychedelic Therapy: A Primer for Primary Care Clinicians-Psilocybin. Am J Ther 2024; 31:e121-e132. [PMID: 38518269 DOI: 10.1097/mjt.0000000000001724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
BACKGROUND The primary psychoactive drug in magic mushrooms, psilocybin, induces profound alterations in consciousness through the 5-HT2A receptor. This review consolidates current research findings to elucidate the pharmacology, safety profile, and clinical applications of psilocybin. AREAS OF UNCERTAINTY Despite initial concerns that psilocybin could cause psychosis, contemporary research has demonstrated that psilocybin is generally safe. The most common adverse effects are nausea and headache, yet both tend to be transient. Serious adverse events can generally be avoided in controlled settings such as clinical trials. However, in the largest clinical trial to date, there were a total of 7 reported cases of suicidal ideation, up to 12 weeks after receiving a single 25 mg dose of psilocybin. That being said, all 7 cases did not respond to the treatment. Although selective serotonin reuptake inhibitors may blunt the hallucinogenic qualities of psilocybin, preliminary research suggests that they may enhance its antidepressant effects. THERAPEUTIC ADVANCES In clinical trials, psilocybin has shown promise for treating major depressive disorder and treatment-resistant depression. Initial studies indicated that 42%-57% of patients underwent remission after psilocybin-assisted therapy, which suggests that psilocybin is more effective than existing antidepressant medications. Clinical data have also demonstrated that psilocybin can manage substance use disorders and end-of-life anxiety with clinical outcomes that are sustained for months and sometimes years after 1 or 2 doses. LIMITATIONS However, larger Phase II trials with more than 100 depressed participants have shown a much smaller remission rate of 25%-29%, though these studies still observed that psilocybin causes a significant reduction in depressive symptoms. CONCLUSIONS Aside from ketamine, psilocybin is the most clinically well-researched psychedelic drug, with trials that have enrolled hundreds of participants and multiple therapeutic applications. Phase III trials will determine whether psilocybin lives up to the promise that it showed in previous clinical trials.
Collapse
Affiliation(s)
- Burton J Tabaac
- Reno School of Medicine, University of Nevada, Reno, NV
- Department of Neurology, Carson Tahoe Health, Carson City, NV
| | - Kenneth Shinozuka
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Alejandro Arenas
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, WA
| | - Bryce D Beutler
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Kirsten Cherian
- Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA
| | - Viviana D Evans
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Owen S Muir
- Fermata Health, Brooklyn, NY; and
- Acacia Clinics, Sunnyvale, CA
| |
Collapse
|
21
|
Hatzipantelis CJ, Olson DE. The Effects of Psychedelics on Neuronal Physiology. Annu Rev Physiol 2024; 86:27-47. [PMID: 37931171 PMCID: PMC10922499 DOI: 10.1146/annurev-physiol-042022-020923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Psychedelics are quite unique among drugs that impact the central nervous system, as a single administration of a psychedelic can both rapidly alter subjective experience in profound ways and produce sustained effects on circuits relevant to mood, fear, reward, and cognitive flexibility. These remarkable properties are a direct result of psychedelics interacting with several key neuroreceptors distributed across the brain. Stimulation of these receptors activates a variety of signaling cascades that ultimately culminate in changes in neuronal structure and function. Here, we describe the effects of psychedelics on neuronal physiology, highlighting their acute effects on serotonergic and glutamatergic neurotransmission as well as their long-lasting effects on structural and functional neuroplasticity in the cortex. We propose that the neurobiological changes leading to the acute and sustained effects of psychedelics might be distinct, which could provide opportunities for engineering compounds with optimized safety and efficacy profiles.
Collapse
Affiliation(s)
- Cassandra J Hatzipantelis
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, California, USA;
- Department of Chemistry, University of California, Davis, Davis, California, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - David E Olson
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, California, USA;
- Department of Chemistry, University of California, Davis, Davis, California, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California, USA
- Center for Neuroscience, University of California, Davis, Davis, California, USA
| |
Collapse
|
22
|
Palmisano VF, Agnorelli C, Fagiolini A, Erritzoe D, Nutt D, Faraji S, Nogueira JJ. Membrane Permeation of Psychedelic Tryptamines by Dynamic Simulations. Biochemistry 2024. [PMID: 38324395 PMCID: PMC10882957 DOI: 10.1021/acs.biochem.3c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Renewed scientific interest in psychedelic compounds represents one of the most promising avenues for addressing the current burden of mental health disorders. Classic psychedelics are a group of compounds that exhibit structural similarities to the naturally occurring neurotransmitter serotonin (5-HT). Acting on the 5-HT type 2A receptors (HT2ARs), psychedelics induce enduring neurophysiological changes that parallel their therapeutic psychological and behavioral effects. Recent preclinical evidence suggests that the ability of psychedelics to exert their action is determined by their ability to permeate the neuronal membrane to target a pool of intracellular 5-HT2ARs. In this computational study, we employ classical molecular dynamics simulations and umbrella sampling techniques to investigate the permeation behavior of 12 selected tryptamines and to characterize the interactions that drive the process. We aim at elucidating the impact of N-alkylation, indole ring substitution and positional modifications, and protonation on their membrane permeability. Dimethylation of the primary amine group and the introduction of a methoxy group at position 5 exhibited an increase in permeability. Moreover, there is a significant influence of positional substitutions on the indole groups, and the protonation of the molecules substantially increases the energy barrier at the center of the bilayer, making the compounds highly impermeable. All the information extracted from the trends predicted by the simulations can be applied in future drug design projects to develop psychedelics with enhanced activity.
Collapse
Affiliation(s)
- Vito F Palmisano
- Department of Chemistry, Universidad Autonoma de Madrid, Madrid 28049, Spain
- Theoretical Chemistry Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Claudio Agnorelli
- Center for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, London SW7 2BX, U.K
- Unit of Psychiatry, Department of Molecular Medicine, University of Siena, Siena 53100, Italy
| | - Andrea Fagiolini
- Unit of Psychiatry, Department of Molecular Medicine, University of Siena, Siena 53100, Italy
| | - David Erritzoe
- Center for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, London SW7 2BX, U.K
| | - David Nutt
- Center for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, London SW7 2BX, U.K
| | - Shirin Faraji
- Theoretical Chemistry Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Juan J Nogueira
- Department of Chemistry, Universidad Autonoma de Madrid, Madrid 28049, Spain
- IADCHEM, Institute for Advanced Research in Chemistry, Universidad Autonoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
23
|
Murphy RJ, Godfrey K, Shaw AD, Muthukumaraswamy S, Sumner RL. Modulation of long-term potentiation following microdoses of LSD captured by thalamo-cortical modelling in a randomised, controlled trial. BMC Neurosci 2024; 25:7. [PMID: 38317077 PMCID: PMC10845757 DOI: 10.1186/s12868-024-00844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Microdosing psychedelics is a phenomenon with claimed cognitive benefits that are relatively untested clinically. Pre-clinically, psychedelics have demonstrated enhancing effects on neuroplasticity, which cannot be measured directly in humans, but may be indexed by non-invasive electroencephalography (EEG) paradigms. This study used a visual long-term potentiation (LTP) EEG paradigm to test the effects of microdosed lysergic acid diethylamide (LSD) on neural plasticity, both acutely while on the drug and cumulatively after microdosing every third day for six weeks. Healthy adult males (n = 80) completed the visual LTP paradigm at baseline, 2.5 h following a dose of 10 µg of LSD or inactive placebo, and 6 weeks later after taking 14 repeated microdoses. Visually induced LTP was used as indirect index of neural plasticity. Surface level event-related potential (ERPs) based analyses are presented alongside dynamic causal modelling of the source localised data using a generative thalamocortical model (TCM) of visual cortex to elucidate underlying synaptic circuitry. RESULTS Event-related potential (ERP) analyses of N1b and P2 components did not show evidence of changes in visually induced LTP by LSD either acutely or after 6 weeks of regular dosing. However modelling the complete timecourse of the ERP with the TCM demonstrated changes in laminar connectivity in primary visual cortex. This primarily included changes to self-gain and inhibitory input parameters acutely. Layer 2/3 to layer 5 excitatory connectivity was also different between LSD and placebo groups. After regular dosing only excitatory input from layer 2/3 into layer 5 and inhibitory input into layer 4 were different between groups. CONCLUSIONS Without modulation of the ERPs it is difficult to relate the findings to other studies visually inducing LTP. It also indicates the classic peak analysis may not be sensitive enough to demonstrate evidence for changes in LTP plasticity in humans at such low doses. The TCM provides a more sensitive approach to assessing changes to plasticity as differences in plasticity mediated laminar connectivity were found between the LSD and placebo groups. TRIAL REGISTRATION ANZCTR registration number ACTRN12621000436875; Registered 16/04/2021 https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=381476 .
Collapse
Affiliation(s)
- Robin J Murphy
- School of Pharmacy, University of Auckland, Auckland, New Zealand.
| | - Kate Godfrey
- Centre for Psychedelic Research, Department of Psychiatry, Imperial College London, London, UK
| | | | | | - Rachael L Sumner
- School of Pharmacy, University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Duan W, Cao D, Wang S, Cheng J. Serotonin 2A Receptor (5-HT 2AR) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants. Chem Rev 2024; 124:124-163. [PMID: 38033123 DOI: 10.1021/acs.chemrev.3c00375] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Psychedelics make up a group of psychoactive compounds that induce hallucinogenic effects by activating the serotonin 2A receptor (5-HT2AR). Clinical trials have demonstrated the traditional psychedelic substances like psilocybin as a class of rapid-acting and long-lasting antidepressants. However, there is a pressing need for rationally designed 5-HT2AR agonists that possess optimal pharmacological profiles in order to fully reveal the therapeutic potential of these agonists and identify safer drug candidates devoid of hallucinogenic effects. This Perspective provides an overview of the structure-activity relationships of existing 5-HT2AR agonists based on their chemical classifications and discusses recent advancements in understanding their molecular pharmacology at a structural level. The encouraging clinical outcomes of psychedelics in depression treatment have sparked drug discovery endeavors aimed at developing novel 5-HT2AR agonists with improved subtype selectivity and signaling bias properties, which could serve as safer and potentially nonhallucinogenic antidepressants. These efforts can be significantly expedited through the utilization of structure-based methods and functional selectivity-directed screening.
Collapse
Affiliation(s)
- Wenwen Duan
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Dongmei Cao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
25
|
Nutt DJ, Peill JM, Weiss B, Godfrey K, Carhart-Harris RL, Erritzoe D. Psilocybin and Other Classic Psychedelics in Depression. Curr Top Behav Neurosci 2024; 66:149-174. [PMID: 37955822 DOI: 10.1007/7854_2023_451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Psychedelic drugs such as psilocybin and ketamine are returning to clinical research and intervention across several disorders including the treatment of depression. This chapter focusses on psychedelics that specifically target the 5-HT2A receptor such as psilocybin and DMT. These produce plasma-concentration related psychological effects such as hallucinations and out of body experiences, insightful and emotional breakthroughs as well as mystical-type experiences. When coupled with psychological support, effects can produce a rapid improvement in mood among people with depression that can last for months. In this chapter, we summarise the scientific studies to date that explore the use of psychedelics in depressed individuals, highlighting key clinical, psychological and neuroimaging features of psychedelics that may account for their therapeutic effects. These include alterations in brain entropy that disrupt fixed negative ruminations, a period of post-treatment increased cognitive flexibility, and changes in self-referential psychological processes. Finally, we propose that the brain mechanisms underlying the therapeutic effect of serotonergic psychedelics might be distinct from those underlying classical serotonin reuptake-blocking antidepressants.
Collapse
Affiliation(s)
- D J Nutt
- Centres for Neuropsychopharmacology & Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK.
| | - J M Peill
- Centres for Neuropsychopharmacology & Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| | - B Weiss
- Centres for Neuropsychopharmacology & Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| | - K Godfrey
- Centres for Neuropsychopharmacology & Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| | - R L Carhart-Harris
- Centres for Neuropsychopharmacology & Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
- Psychedelics Division, Neuroscape, University of California San Francisco, San Francisco, CA, USA
| | - D Erritzoe
- Centres for Neuropsychopharmacology & Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
26
|
Heifets BD, Olson DE. Therapeutic mechanisms of psychedelics and entactogens. Neuropsychopharmacology 2024; 49:104-118. [PMID: 37488282 PMCID: PMC10700553 DOI: 10.1038/s41386-023-01666-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
Recent clinical and preclinical evidence suggests that psychedelics and entactogens may produce both rapid and sustained therapeutic effects across several indications. Currently, there is a disconnect between how these compounds are used in the clinic and how they are studied in preclinical species, which has led to a gap in our mechanistic understanding of how these compounds might positively impact mental health. Human studies have emphasized extra-pharmacological factors that could modulate psychedelic-induced therapeutic responses including set, setting, and integration-factors that are poorly modelled in current animal experiments. In contrast, animal studies have focused on changes in neuronal activation and structural plasticity-outcomes that are challenging to measure in humans. Here, we describe several hypotheses that might explain how psychedelics rescue neuropsychiatric disease symptoms, and we propose ways to bridge the gap between human and rodent studies. Given the diverse pharmacological profiles of psychedelics and entactogens, we suggest that their rapid and sustained therapeutic mechanisms of action might best be described by the collection of circuits that they modulate rather than their actions at any single molecular target. Thus, approaches focusing on selective circuit modulation of behavioral phenotypes might prove more fruitful than target-based methods for identifying novel compounds with rapid and sustained therapeutic effects similar to psychedelics and entactogens.
Collapse
Affiliation(s)
- Boris D Heifets
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA.
| | - David E Olson
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA, 95616, USA.
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA.
- Center for Neuroscience, University of California, Davis, Davis, CA, 95618, USA.
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
27
|
Gergs U, Jacob H, Braekow P, Hofmann B, Pockes S, Humphrys LJ, Kirchhefer U, Fehse C, Neumann J. Lysergic acid diethylamide stimulates cardiac human H 2 histamine and cardiac human 5-HT 4-serotonin receptors. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:221-236. [PMID: 37401967 PMCID: PMC10771359 DOI: 10.1007/s00210-023-02591-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Lysergic acid diethylamide (LSD) is an artificial hallucinogenic drug. Thus, we hypothesized that LSD might act 5-HT4 serotonin receptors and/or H2 histamine receptors. We studied isolated electrically stimulated left atrial preparations, spontaneously beating right atrial preparations, and spontaneously beating Langendorff-perfused hearts from transgenic mice with cardiomyocyte-specific overexpression of the human 5-HT4 receptor (5-HT4-TG) or of the H2-histamine receptor (H2-TG). For comparison, we used wild type littermate mice (WT). Finally, we measured isometric force of contraction in isolated electrically stimulated muscle strips from the human right atrium obtained from patients during bypass surgery. LSD (up to 10 µM) concentration dependently increased force of contraction and beating rate in left or right atrial preparations from 5-HT4-TG (n = 6, p < 0.05) in 5-HT4-TG atrial preparations. The inotropic and chronotropic effects of LSD were antagonized by 10 µM tropisetron in 5-HT4-TG. In contrast, LSD (10 µM) increased force of contraction and beating rate in left or right atrial preparations, from H2-TG. After pre-stimulation with cilostamide (1 µM), LSD (10 µM) increased force of contraction in human atrial preparations (n = 6, p < 0.05). The contractile effects of LSD in human atrial preparations could be antagonized by 10 µM cimetidine and 1 µM GR 125487. LSD leads to H2-histamine receptor and 5-HT4-receptor mediated cardiac effects in humans.
Collapse
Affiliation(s)
- Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle (Saale), Germany
| | - Hannes Jacob
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle (Saale), Germany
| | - Pauline Braekow
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle (Saale), Germany
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Ernst Grube Straße 40, 06097, Halle (Saale), Germany
| | - Steffen Pockes
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93040, Regensburg, Germany
| | - Laura J Humphrys
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93040, Regensburg, Germany
| | - Uwe Kirchhefer
- Institute for Pharmacology and Toxicology, University Hospital Münster, Westfälische Wilhelms-University, Domagkstraße 12, 48149, Münster, Germany
| | - Charlotte Fehse
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle (Saale), Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle (Saale), Germany.
| |
Collapse
|
28
|
Bottemanne H, Berkovitch L, Gauld C, Balcerac A, Schmidt L, Mouchabac S, Fossati P. Storm on predictive brain: A neurocomputational account of ketamine antidepressant effect. Neurosci Biobehav Rev 2023; 154:105410. [PMID: 37793581 DOI: 10.1016/j.neubiorev.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
For the past decade, ketamine, an N-methyl-D-aspartate receptor (NMDAr) antagonist, has been considered a promising treatment for major depressive disorder (MDD). Unlike the delayed effect of monoaminergic treatment, ketamine may produce fast-acting antidepressant effects hours after a single administration at subanesthetic dose. Along with these antidepressant effects, it may also induce transient dissociative (disturbing of the sense of self and reality) symptoms during acute administration which resolve within hours. To understand ketamine's rapid-acting antidepressant effect, several biological hypotheses have been explored, but despite these promising avenues, there is a lack of model to understand the timeframe of antidepressant and dissociative effects of ketamine. In this article, we propose a neurocomputational account of ketamine's antidepressant and dissociative effects based on the Predictive Processing (PP) theory, a framework for cognitive and sensory processing. PP theory suggests that the brain produces top-down predictions to process incoming sensory signals, and generates bottom-up prediction errors (PEs) which are then used to update predictions. This iterative dynamic neural process would relies on N-methyl-D-aspartate (NMDAr) and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic receptors (AMPAr), two major component of the glutamatergic signaling. Furthermore, it has been suggested that MDD is characterized by over-rigid predictions which cannot be updated by the PEs, leading to miscalibration of hierarchical inference and self-reinforcing negative feedback loops. Based on former empirical studies using behavioral paradigms, neurophysiological recordings, and computational modeling, we suggest that ketamine impairs top-down predictions by blocking NMDA receptors, and enhances presynaptic glutamate release and PEs, producing transient dissociative symptoms and fast-acting antidepressant effect in hours following acute administration. Moreover, we present data showing that ketamine may enhance a delayed neural plasticity pathways through AMPAr potentiation, triggering a prolonged antidepressant effect up to seven days for unique administration. Taken together, the two sides of antidepressant effects with distinct timeframe could constitute the keystone of antidepressant properties of ketamine. These PP disturbances may also participate to a ketamine-induced time window of mental flexibility, which can be used to improve the psychotherapeutic process. Finally, these proposals could be used as a theoretical framework for future research into fast-acting antidepressants, and combination with existing antidepressant and psychotherapy.
Collapse
Affiliation(s)
- Hugo Bottemanne
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France; Sorbonne University, Department of Psychiatry, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Lucie Berkovitch
- Saclay CEA Centre, Neurospin, Gif-Sur-Yvette Cedex, France; Department of Psychiatry, GHU Paris Psychiatrie et Neurosciences, Service Hospitalo-Universitaire, Paris, France
| | - Christophe Gauld
- Department of Child Psychiatry, CHU de Lyon, F-69000 Lyon, France; Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS & Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Alexander Balcerac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Liane Schmidt
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France
| | - Stephane Mouchabac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Psychiatry, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Philippe Fossati
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France
| |
Collapse
|
29
|
van Elk M, Fried EI. History repeating: guidelines to address common problems in psychedelic science. Ther Adv Psychopharmacol 2023; 13:20451253231198466. [PMID: 37766730 PMCID: PMC10521293 DOI: 10.1177/20451253231198466] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023] Open
Abstract
Research in the last decade has expressed considerable optimism about the clinical potential of psychedelics for the treatment of mental disorders. This optimism is reflected in an increase in research papers, investments by pharmaceutical companies, patents, media coverage, as well as political and legislative changes. However, psychedelic science is facing serious challenges that threaten the validity of core findings and raise doubt regarding clinical efficacy and safety. In this paper, we introduce the 10 most pressing challenges, grouped into easy, moderate, and hard problems. We show how these problems threaten internal validity (treatment effects are due to factors unrelated to the treatment), external validity (lack of generalizability), construct validity (unclear working mechanism), or statistical conclusion validity (conclusions do not follow from the data and methods). These problems tend to co-occur in psychedelic studies, limiting conclusions that can be drawn about the safety and efficacy of psychedelic therapy. We provide a roadmap for tackling these challenges and share a checklist that researchers, journalists, funders, policymakers, and other stakeholders can use to assess the quality of psychedelic science. Addressing today's problems is necessary to find out whether the optimism regarding the therapeutic potential of psychedelics has been warranted and to avoid history repeating itself.
Collapse
Affiliation(s)
- Michiel van Elk
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, PO Box 9555, Leiden 2300 RB, The Netherlands
| | - Eiko I. Fried
- Clinical Psychology Unit, Institute of Psychology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
30
|
Ferri BG, de Novais CO, Bonani RS, de Barros WA, de Fátima Â, Vilela FC, Giusti-Paiva A. Psychoactive substances 25H-NBOMe and 25H-NBOH induce antidepressant-like behavior in male rats. Eur J Pharmacol 2023; 955:175926. [PMID: 37479015 DOI: 10.1016/j.ejphar.2023.175926] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/18/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Ring-substituted phenethylamines are believed to induce psychedelic effects primarily by interacting with 5-hydroxytryptamine 2 (5-HT2A) receptors in the brain. We assessed the effect of the psychedelic substances 25H-NBOMe and 25H-NBOH on the depressive-like behavior of male adult rats. Naive Wistar rats were divided into groups to assess the effects of different doses (0.1 mg/kg, 1 mg/kg, and 3 mg/kg) of 25H-NBOMe and 25H-NBOH. The substances were administered intraperitoneally and the hallucinogenic properties were evaluated using the head twitch response test (HTR). Additionally, we assessed their locomotor activity in the open field test (OFT) and depressive-like behavior in the forced swimming test (FST). Our data demonstrated that all doses of synthetic psychedelic substances evaluated exhibited hallucinogenic effects. Interestingly, we observed that both 25H-NBOMe and 25H-NBOH produced a significantly greater motivation to escape in the FST, compared to the control group. Furthermore, we found no significant differences in locomotor activity during the OFT, except for the dose of 3 mg/kg, which induced a reduction in locomotion. This study provides new insights into a potential psychedelic substance, specifically by demonstrating the previously unknown antidepressant properties of a single dose of both 25H-NBOMe and 25H-NBOH. These findings contribute to the ongoing progress of experimental psychiatry toward developing safe and effective clinical practices in the field of psychedelics research.
Collapse
Affiliation(s)
- Barbara G Ferri
- Programa de Pós-Graduação Multicêntrico Em Ciências Fisiológicas (PPGMCF), Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil
| | - Cintia O de Novais
- Programa de Pós-Graduação Multicêntrico Em Ciências Fisiológicas (PPGMCF), Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil
| | - Raquel S Bonani
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil
| | - Wellington A de Barros
- Instituto de Química da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ângelo de Fátima
- Instituto de Química da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Fabiana C Vilela
- Programa de Pós-Graduação Em Biociências (PPGB), Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil
| | - Alexandre Giusti-Paiva
- Programa de Pós-Graduação Multicêntrico Em Ciências Fisiológicas (PPGMCF), Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil; Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas da Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
31
|
Jaster AM, González-Maeso J. Mechanisms and molecular targets surrounding the potential therapeutic effects of psychedelics. Mol Psychiatry 2023; 28:3595-3612. [PMID: 37759040 DOI: 10.1038/s41380-023-02274-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Psychedelics, also known as classical hallucinogens, have been investigated for decades due to their potential therapeutic effects in the treatment of neuropsychiatric and substance use disorders. The results from clinical trials have shown promise for the use of psychedelics to alleviate symptoms of depression and anxiety, as well as to promote substantial decreases in the use of nicotine and alcohol. While these studies provide compelling evidence for the powerful subjective experience and prolonged therapeutic adaptations, the underlying molecular reasons for these robust and clinically meaningful improvements are still poorly understood. Preclinical studies assessing the targets and circuitry of the post-acute effects of classical psychedelics are ongoing. Current literature is split between a serotonin 5-HT2A receptor (5-HT2AR)-dependent or -independent signaling pathway, as researchers are attempting to harness the mechanisms behind the sustained post-acute therapeutically relevant effects. A combination of molecular, behavioral, and genetic techniques in neuropharmacology has begun to show promise for elucidating these mechanisms. As the field progresses, increasing evidence points towards the importance of the subjective experience induced by psychedelic-assisted therapy, but without further cross validation between clinical and preclinical research, the why behind the experience and its translational validity may be lost.
Collapse
Affiliation(s)
- Alaina M Jaster
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
32
|
Hornick MG, Stefanski A. Hallucinogenic potential: a review of psychoplastogens for the treatment of opioid use disorder. Front Pharmacol 2023; 14:1221719. [PMID: 37675046 PMCID: PMC10477608 DOI: 10.3389/fphar.2023.1221719] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
The United States is entering its fourth decade of the opioid epidemic with no clear end in sight. At the center of the epidemic is an increase in opioid use disorder (OUD), a complex condition encompassing physical addiction, psychological comorbidities, and socioeconomic and legal travails associated with the misuse and abuse of opioids. Existing behavioral and medication-assisted therapies show limited efficacy as they are hampered by lack of access, strict regimens, and failure to fully address the non-pharmacological aspects of the disease. A growing body of research has indicated the potential of hallucinogens to efficaciously and expeditiously treat addictions, including OUD, by a novel combination of pharmacology, neuroplasticity, and psychological mechanisms. Nonetheless, research into these compounds has been hindered due to legal, social, and safety concerns. This review will examine the preclinical and clinical evidence that psychoplastogens, such as ibogaine, ketamine, and classic psychedelics, may offer a unique, holistic alternative for the treatment of OUD while acknowledging that further research is needed to establish long-term efficacy along with proper safety and ethical guidelines.
Collapse
Affiliation(s)
- Mary G. Hornick
- College of Science, Health and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| | | |
Collapse
|
33
|
Majić T, Ehrlich S. Psilocybin for the treatment of anorexia nervosa. Nat Med 2023; 29:1906-1907. [PMID: 37488290 DOI: 10.1038/s41591-023-02458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Affiliation(s)
- Tomislav Majić
- Department of Psychiatry and Psychotherapy, Berlin Institute of Health, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Charité Mitte, Berlin, Germany
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Translational Developmental Neuroscience Section, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
- Department of Child and Adolescent Psychiatry, Eating Disorder Research and Treatment Center, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
34
|
Schmitz GP, Roth BL. G protein-coupled receptors as targets for transformative neuropsychiatric therapeutics. Am J Physiol Cell Physiol 2023; 325:C17-C28. [PMID: 37067459 PMCID: PMC10281788 DOI: 10.1152/ajpcell.00397.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of druggable genes in the human genome. Even though perhaps 30% of approved medications target GPCRs, they interact with only a small number of them. Here, we consider whether there might be new opportunities for transformative therapeutics for neuropsychiatric disorders by specifically targeting both known and understudied GPCRs. Using psychedelic drugs that target serotonin receptors as an example, we show how recent insights into the structure, function, signaling, and cell biology of these receptors have led to potentially novel therapeutics. We next focus on the possibility that nonpsychedelic 5-HT2A receptor agonists might prove to be safe and rapidly acting antidepressants. Finally, we examine understudied and orphan GPCRs using the MRGPR family of receptors as an example.
Collapse
Affiliation(s)
- Gavin P Schmitz
- Department of Pharmacology, UNC Chapel Hill Medical School, Chapel Hill, North Carolina, United States
| | - Bryan L Roth
- Department of Pharmacology, UNC Chapel Hill Medical School, Chapel Hill, North Carolina, United States
| |
Collapse
|
35
|
Kargbo RB. Orally Active Forms of DMT, 5-MeO-DMT, and Long-Acting MDMA for the Treatment of Neuropsychiatric Disorders. ACS Med Chem Lett 2023; 14:367-368. [PMID: 37077395 PMCID: PMC10108390 DOI: 10.1021/acsmedchemlett.3c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Indexed: 03/18/2023] Open
Abstract
This Patent Highlight describes derivatives of DMT, 5-MeO-DMT, and MDMA that are metabolically converted to biologically active analogs. When these prodrugs are administered to a subject, they potentially could be used therapeutically in conditions associated with neurological diseases. Furthermore, the disclosure provides methods to potentially treat conditions comprising major depressive disorder, post-traumatic stress disorder, Alzheimer's disease, Parkinson's disease, schizophrenia, frontotemporal dementia, Parkinson's dementia, dementia, Lewy body dementia, multiple system atrophy, or substance abuse.
Collapse
|
36
|
VanderZwaag J, Halvorson T, Dolhan K, Šimončičová E, Ben-Azu B, Tremblay MÈ. The Missing Piece? A Case for Microglia's Prominent Role in the Therapeutic Action of Anesthetics, Ketamine, and Psychedelics. Neurochem Res 2023; 48:1129-1166. [PMID: 36327017 DOI: 10.1007/s11064-022-03772-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
There is much excitement surrounding recent research of promising, mechanistically novel psychotherapeutics - psychedelic, anesthetic, and dissociative agents - as they have demonstrated surprising efficacy in treating central nervous system (CNS) disorders, such as mood disorders and addiction. However, the mechanisms by which these drugs provide such profound psychological benefits are still to be fully elucidated. Microglia, the CNS's resident innate immune cells, are emerging as a cellular target for psychiatric disorders because of their critical role in regulating neuroplasticity and the inflammatory environment of the brain. The following paper is a review of recent literature surrounding these neuropharmacological therapies and their demonstrated or hypothesized interactions with microglia. Through investigating the mechanism of action of psychedelics, such as psilocybin and lysergic acid diethylamide, ketamine, and propofol, we demonstrate a largely under-investigated role for microglia in much of the emerging research surrounding these pharmacological agents. Among others, we detail sigma-1 receptors, serotonergic and γ-aminobutyric acid signalling, and tryptophan metabolism as pathways through which these agents modulate microglial phagocytic activity and inflammatory mediator release, inducing their therapeutic effects. The current review includes a discussion on future directions in the field of microglial pharmacology and covers bidirectional implications of microglia and these novel pharmacological agents in aging and age-related disease, glial cell heterogeneity, and state-of-the-art methodologies in microglial research.
Collapse
Affiliation(s)
- Jared VanderZwaag
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Torin Halvorson
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kira Dolhan
- Department of Psychology, University of Victoria, Vancouver, BC, Canada
- Department of Biology, University of Victoria, Vancouver, BC, Canada
| | - Eva Šimončičová
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Marie-Ève Tremblay
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada.
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
37
|
Lewis V, Bonniwell EM, Lanham JK, Ghaffari A, Sheshbaradaran H, Cao AB, Calkins MM, Bautista-Carro MA, Arsenault E, Telfer A, Taghavi-Abkuh FF, Malcolm NJ, El Sayegh F, Abizaid A, Schmid Y, Morton K, Halberstadt AL, Aguilar-Valles A, McCorvy JD. A non-hallucinogenic LSD analog with therapeutic potential for mood disorders. Cell Rep 2023; 42:112203. [PMID: 36884348 PMCID: PMC10112881 DOI: 10.1016/j.celrep.2023.112203] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/30/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Hallucinations limit widespread therapeutic use of psychedelics as rapidly acting antidepressants. Here we profiled the non-hallucinogenic lysergic acid diethylamide (LSD) analog 2-bromo-LSD (2-Br-LSD) at more than 33 aminergic G protein-coupled receptors (GPCRs). 2-Br-LSD shows partial agonism at several aminergic GPCRs, including 5-HT2A, and does not induce the head-twitch response (HTR) in mice, supporting its classification as a non-hallucinogenic 5-HT2A partial agonist. Unlike LSD, 2-Br-LSD lacks 5-HT2B agonism, an effect linked to cardiac valvulopathy. Additionally, 2-Br-LSD produces weak 5-HT2A β-arrestin recruitment and internalization in vitro and does not induce tolerance in vivo after repeated administration. 2-Br-LSD induces dendritogenesis and spinogenesis in cultured rat cortical neurons and increases active coping behavior in mice, an effect blocked by the 5-HT2A-selective antagonist volinanserin (M100907). 2-Br-LSD also reverses the behavioral effects of chronic stress. Overall, 2-Br-LSD has an improved pharmacological profile compared with LSD and may have profound therapeutic value for mood disorders and other indications.
Collapse
Affiliation(s)
- Vern Lewis
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Emma M Bonniwell
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Janelle K Lanham
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Abdi Ghaffari
- BetterLife Pharma Inc., Vancouver, BC V6H 1A6, Canada
| | | | - Andrew B Cao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Maggie M Calkins
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Emily Arsenault
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Andre Telfer
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | - Nicholas J Malcolm
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Fatema El Sayegh
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Yasmin Schmid
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kathleen Morton
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam L Halberstadt
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
38
|
Vargas MV, Dunlap LE, Dong C, Carter SJ, Tombari RJ, Jami SA, Cameron LP, Patel SD, Hennessey JJ, Saeger HN, McCorvy JD, Gray JA, Tian L, Olson DE. Psychedelics promote neuroplasticity through the activation of intracellular 5-HT2A receptors. Science 2023; 379:700-706. [PMID: 36795823 PMCID: PMC10108900 DOI: 10.1126/science.adf0435] [Citation(s) in RCA: 151] [Impact Index Per Article: 151.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/09/2023] [Indexed: 02/18/2023]
Abstract
Decreased dendritic spine density in the cortex is a hallmark of several neuropsychiatric diseases, and the ability to promote cortical neuron growth has been hypothesized to underlie the rapid and sustained therapeutic effects of psychedelics. Activation of 5-hydroxytryptamine (serotonin) 2A receptors (5-HT2ARs) is essential for psychedelic-induced cortical plasticity, but it is currently unclear why some 5-HT2AR agonists promote neuroplasticity, whereas others do not. We used molecular and genetic tools to demonstrate that intracellular 5-HT2ARs mediate the plasticity-promoting properties of psychedelics; these results explain why serotonin does not engage similar plasticity mechanisms. This work emphasizes the role of location bias in 5-HT2AR signaling, identifies intracellular 5-HT2ARs as a therapeutic target, and raises the intriguing possibility that serotonin might not be the endogenous ligand for intracellular 5-HT2ARs in the cortex.
Collapse
Affiliation(s)
- Maxemiliano V. Vargas
- Neuroscience Graduate Program, University of California, Davis; Davis, CA 95618, USA
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
| | - Lee E. Dunlap
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
- Department of Chemistry, University of California, Davis; Davis, CA 95616, USA
| | - Chunyang Dong
- Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Program, University of California, Davis; Davis, CA 95616, USA
| | - Samuel J. Carter
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
- Department of Chemistry, University of California, Davis; Davis, CA 95616, USA
| | - Robert J. Tombari
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
- Department of Chemistry, University of California, Davis; Davis, CA 95616, USA
| | - Shekib A. Jami
- Center for Neuroscience, University of California, Davis; Davis, CA 95618, USA
| | - Lindsay P. Cameron
- Neuroscience Graduate Program, University of California, Davis; Davis, CA 95618, USA
| | - Seona D. Patel
- Department of Chemistry, University of California, Davis; Davis, CA 95616, USA
| | - Joseph J. Hennessey
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| | - Hannah N. Saeger
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
- Pharmacology and Toxicology Graduate Program, University of California, Davis; Davis, CA 95616, USA
| | - John D. McCorvy
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| | - John A. Gray
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
- Center for Neuroscience, University of California, Davis; Davis, CA 95618, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Lin Tian
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
- Center for Neuroscience, University of California, Davis; Davis, CA 95618, USA
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis; Sacramento, CA 95817, USA
| | - David E. Olson
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
- Department of Chemistry, University of California, Davis; Davis, CA 95616, USA
- Center for Neuroscience, University of California, Davis; Davis, CA 95618, USA
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis; Sacramento, CA 95817, USA
| |
Collapse
|
39
|
Kargbo RB. Psychedelic-Assisted Neuroplasticity for the Treatment of Mental Health Disorders. ACS Med Chem Lett 2023; 14:133-135. [PMID: 36793424 PMCID: PMC9923829 DOI: 10.1021/acsmedchemlett.2c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 01/19/2023] Open
Abstract
The renaissance of research into psychedelics class of drugs has renewed interest for a possible psychedelic clinical therapy for treating psychiatric conditions such as treatment-resistant depression, major depressive-disorder, post-traumatic stress disorder, and other neuropsychiatric diseases. Psychedelics are known to stimulate neurogenesis and gliogenesis, reduce inflammation, and ameliorate oxidative stress, which makes them promising candidates for therapeutics in psychiatric, neurodegenerative, and movement disorders. The patent highlight showcase methods for treating mental health disorders and promoting neural plasticity.
Collapse
|
40
|
Cameron LP, Patel SD, Vargas MV, Barragan EV, Saeger HN, Warren HT, Chow WL, Gray JA, Olson DE. 5-HT2ARs Mediate Therapeutic Behavioral Effects of Psychedelic Tryptamines. ACS Chem Neurosci 2023; 14:351-358. [PMID: 36630260 PMCID: PMC9939288 DOI: 10.1021/acschemneuro.2c00718] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Psychedelic compounds have displayed antidepressant potential in both humans and rodents. Despite their promise, psychedelics can induce undesired effects that pose safety concerns and limit their clinical scalability. The rational development of optimized psychedelic-related medicines will require a full mechanistic understanding of how these molecules produce therapeutic effects. While the hallucinogenic properties of psychedelics are generally attributed to activation of serotonin 2A receptors (5-HT2ARs), it is currently unclear if these receptors also mediate their antidepressant effects as several nonhallucinogenic analogues of psychedelics with antidepressant-like properties have been developed. Moreover, many psychedelics exhibit promiscuous pharmacology, making it challenging to identify their primary therapeutic target(s). Here, we use a combination of pharmacological and genetic tools to demonstrate that activation of 5-HT2A receptors is essential for tryptamine-based psychedelics to produce antidepressant-like effects in rodents. Our results suggest that psychedelic tryptamines can induce hallucinogenic and therapeutic effects through activation of the same receptor.
Collapse
Affiliation(s)
- Lindsay P. Cameron
- Neuroscience Graduate Program, University of California, Davis, Davis, CA 95618, USA
| | - Seona D. Patel
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Maxemiliano V. Vargas
- Neuroscience Graduate Program, University of California, Davis, Davis, CA 95618, USA
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
| | - Eden V. Barragan
- Neuroscience Graduate Program, University of California, Davis, Davis, CA 95618, USA
| | - Hannah N. Saeger
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
- Pharmacology and Toxicology Graduate Program, University of California, Davis, Davis, CA 95616, USA
| | - Hunter T. Warren
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
| | - Winston L. Chow
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
| | - John A. Gray
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - David E. Olson
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95618, USA
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
41
|
Alper K, Cange J, Sah R, Schreiber-Gregory D, Sershen H, Vinod KY. Psilocybin sex-dependently reduces alcohol consumption in C57BL/6J mice. Front Pharmacol 2023; 13:1074633. [PMID: 36686713 PMCID: PMC9846572 DOI: 10.3389/fphar.2022.1074633] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
The classical psychedelic psilocybin is of interest as a treatment for alcohol use disorder (AUD). This study investigated the effects of psilocybin on voluntary ethanol consumption in adult male and female C57BL/6J mice administered saline or psilocybin intraperitoneally as a single dose of 0.1, 0.5, 1.0 or 2.0 mg/kg and provided 20% ethanol utilizing a two-bottle choice alcohol drinking paradigm. Ethanol was provided continuously for 3 days immediately following the administration of psilocybin, then withheld for 2 days, and then provided continuously for two subsequent additional days. A multilevel model (MLM) for repeated measures was used to compare ethanol consumption and preference in psilocybin-treated groups versus controls. Ethanol consumption and preference were reduced in male mice during the 3-day interval that immediately followed psilocybin administration. The effect of psilocybin on ethanol consumption was dose-related and was consistent across the 3-day interval at dosages of 0.5 mg/kg or greater. Psilocybin had no effect on consumption or preference when ethanol was subsequently reintroduced after 2 days of withdrawal. In contrast to males, psilocybin had no significant effect on ethanol consumption or preference in female mice at any dosage or time point. The lack of an effect of psilocybin on quinine preference, and its limited interaction with locomotor activity indicated that the observed reduction in voluntary ethanol consumption was not attributable to altered taste perception or motor effects. Total fluid consumption was increased in males at some time points and psilocybin dosages and unchanged in females, and the absence of any decrease in either group at any time point indicated that the observed reduction in ethanol consumption was not mediated by nonspecific effects on consummatory behavior. The finding of a sex-dependent effect of psilocybin on ethanol consumption suggests that the C57BL/6J mouse may provide a useful experimental approach to modeling sex differences in vulnerability to AUD in addition to investigation of the neurobiological basis of the effect of classical psychedelics on alcohol drinking behavior.
Collapse
Affiliation(s)
- Kenneth Alper
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, United States,Department of Neurology, NYU Grossman School of Medicine, New York, NY, United States,*Correspondence: Kenneth Alper, ; K. Yaragudri Vinod,
| | - Janelle Cange
- Division of Laboratory Animal Resources of Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Ria Sah
- Department of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | | | - Henry Sershen
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, United States,Department of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - K. Yaragudri Vinod
- Department of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States,Emotional Brain Institute, Orangeburg, NY, United States,Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York, NY, United States,*Correspondence: Kenneth Alper, ; K. Yaragudri Vinod,
| |
Collapse
|
42
|
Calder AE, Hasler G. Towards an understanding of psychedelic-induced neuroplasticity. Neuropsychopharmacology 2023; 48:104-112. [PMID: 36123427 PMCID: PMC9700802 DOI: 10.1038/s41386-022-01389-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 12/20/2022]
Abstract
Classic psychedelics, such as LSD, psilocybin, and the DMT-containing beverage ayahuasca, show some potential to treat depression, anxiety, and addiction. Importantly, clinical improvements can last for months or years after treatment. It has been theorized that these long-term improvements arise because psychedelics rapidly and lastingly stimulate neuroplasticity. The focus of this review is on answering specific questions about the effects of psychedelics on neuroplasticity. Firstly, we review the evidence that psychedelics promote neuroplasticity and examine the cellular and molecular mechanisms behind the effects of different psychedelics on different aspects of neuroplasticity, including dendritogenesis, synaptogenesis, neurogenesis, and expression of plasticity-related genes (e.g., brain-derived neurotrophic factor and immediate early genes). We then examine where in the brain psychedelics promote neuroplasticity, particularly discussing the prefrontal cortex and hippocampus. We also examine what doses are required to produce this effect (e.g., hallucinogenic doses vs. "microdoses"), and how long purported changes in neuroplasticity last. Finally, we discuss the likely consequences of psychedelics' effects on neuroplasticity for both patients and healthy people, and we identify important research questions that would further scientific understanding of psychedelics' effects on neuroplasticity and its potential clinical applications.
Collapse
Affiliation(s)
- Abigail E Calder
- University Center for Psychiatric Research, University of Fribourg, Fribourg, Switzerland.
| | - Gregor Hasler
- University Center for Psychiatric Research, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
43
|
Urban MM, Stingl MR, Meinhardt MW. Mini-review: The neurobiology of treating substance use disorders with classical psychedelics. Front Neurosci 2023; 17:1156319. [PMID: 37139521 PMCID: PMC10149865 DOI: 10.3389/fnins.2023.1156319] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/23/2023] [Indexed: 05/05/2023] Open
Abstract
The potential of psychedelics to persistently treat substance use disorders is known since the 1960s. However, the biological mechanisms responsible for their therapeutic effects have not yet been fully elucidated. While it is known that serotonergic hallucinogens induce changes in gene expression and neuroplasticity, particularly in prefrontal regions, theories on how specifically this counteracts the alterations that occur in neuronal circuitry throughout the course of addiction are largely unknown. This narrative mini-review endeavors to synthesize well-established knowledge from addiction research with findings and theories regarding the neurobiological effects of psychedelics to give an overview of the potential mechanisms that underlie the treatment of substance use disorders with classical hallucinogenic compounds and point out gaps in the current understanding.
Collapse
Affiliation(s)
- Marvin M. Urban
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Heidelberg, Germany
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
- *Correspondence: Marvin M. Urban,
| | - Moritz R. Stingl
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Heidelberg, Germany
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Marcus W. Meinhardt
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
44
|
Kargbo R. Restoration of Motor Function Post-Neurological Injury Using Serotonergic Agonist. ACS Med Chem Lett 2022; 13:1397-1399. [PMID: 36105333 PMCID: PMC9465889 DOI: 10.1021/acsmedchemlett.2c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 11/29/2022] Open
|
45
|
Kargbo RB. Ibogaine and Their Analogs as Therapeutics for Neurological and Psychiatric Disorders. ACS Med Chem Lett 2022; 13:888-890. [DOI: 10.1021/acsmedchemlett.2c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Robert B. Kargbo
- Usona Institute, 277 Granada Drive, San Luis Obispo, California 93401-7337, United States
| |
Collapse
|
46
|
Kargbo RB. 5-HT Receptor Modulators for Therapeutic Use in the Treatment of Obsessive-Compulsive Disorder and Other Psychological Disorders. ACS Med Chem Lett 2022; 13:770-772. [PMID: 35586441 PMCID: PMC9109471 DOI: 10.1021/acsmedchemlett.2c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Robert B. Kargbo
- Usona Institute, 277 Granada Drive, San Luis Obispo, California 93401-7337, United States
| |
Collapse
|
47
|
Kargbo RB. 3-Pyrrolidine-indole Derivatives as 5-HT2-Selective Receptor Modulators for the Potential Treatment of Mental Disorders. ACS Med Chem Lett 2022; 13:749-751. [PMID: 35586424 PMCID: PMC9109475 DOI: 10.1021/acsmedchemlett.2c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Robert B. Kargbo
- Usona Institute, 277 Granada Drive, San Luis Obispo, California 93401-7337, United States
| |
Collapse
|
48
|
Borgland SL, Neyens DM. Serotonergic psychedelic treatment for obesity and eating disorders: potential expectations and caveats for emerging studies. J Psychiatry Neurosci 2022; 47:E218-E221. [PMID: 35705203 PMCID: PMC9343116 DOI: 10.1503/jpn.220090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Stephanie L Borgland
- From the Hotchkiss Brain Institute, University of Calgary, Calgary, Alb. (Borgland, Neyens)
| | - Drew M Neyens
- From the Hotchkiss Brain Institute, University of Calgary, Calgary, Alb. (Borgland, Neyens)
| |
Collapse
|
49
|
Kargbo RB. Improved Metabolically Stable 5-HT Receptor Modulators and the Development of New Antidepressants. ACS Med Chem Lett 2022; 13:537-539. [PMID: 35450349 PMCID: PMC9014710 DOI: 10.1021/acsmedchemlett.2c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Robert B. Kargbo
- Usona Institute, 277 Granada Drive, San Luis Obispo, California 93401-7337, United States
| |
Collapse
|