1
|
Whapham CA, Walker JT. Too much ado about data: continuous remote monitoring of water temperatures, circulation and throughput can assist in the reduction of hospital-associated waterborne infections. J Hosp Infect 2024; 152:47-55. [PMID: 38960042 DOI: 10.1016/j.jhin.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND National and international guidance provides advice on maintenance and management of water systems in healthcare buildings; however, healthcare-associated waterborne infections (HAWIs) are increasing. AIM To identify parameters critical to water quality in healthcare buildings and to assess whether remote sensor monitoring can deliver safe water systems, thus reducing HAWIs. METHODS A narrative review was performed using the following search terms: (1) consistent water temperature AND waterborne pathogen control OR nosocomial infection; (2) water throughput AND waterborne pathogen control OR nosocomial infection; (3) remote monitoring of in-premises water systems AND continuous surveillance for temperature OR throughput OR flow OR use. Databases employed were PubMed, CDSR (Clinical Study Data Request) and DARE (Database of Abstracts of Reviews of Effects) from January 2013 to March 2024. FINDINGS Single ensuite-patient rooms, expansion of handwash basins, widespread glove use, alcohol gel and wipes have increased water system stagnancy resulting in amplification of waterborne pathogens and transmission risk of legionella, pseudomonas, and non-tuberculous mycobacteria. Manual monitoring does not represent temperatures across large complex water systems. This review deems that multiple-point continuous remote sensor monitoring is effective at identifying redundant and low use outlets, hydraulic imbalance and inconsistent temperature delivery across in-premises water systems. CONCLUSION As remote monitoring becomes more common there will be greater recognition of failures in temperature control, hydraulics, and balancing in water systems, and there remains much to learn as we adopt this developing technology within our hospitals.
Collapse
Affiliation(s)
- C A Whapham
- Independent Water Hygiene Consultant, Ludlow, UK.
| | - J T Walker
- Independent Microbiology Consultant, Walker on Water, Salisbury, UK
| |
Collapse
|
2
|
Dowdell KS, Potgieter SC, Olsen K, Lee S, Vedrin M, Caverly LJ, LiPuma JJ, Raskin L. Source-to-tap investigation of the occurrence of nontuberculous mycobacteria in a full-scale chloraminated drinking water system. Appl Environ Microbiol 2024; 90:e0060924. [PMID: 39109876 PMCID: PMC11409651 DOI: 10.1128/aem.00609-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/08/2024] [Indexed: 09/19/2024] Open
Abstract
Nontuberculous mycobacteria (NTM) in drinking water are a significant public health concern. However, an incomplete understanding of the factors that influence the occurrence of NTM in drinking water limits our ability to characterize risk and prevent infection. This study sought to evaluate the influence of season and water treatment, distribution, and stagnation on NTM in drinking water. Samples were collected source-to-tap in a full-scale, chloraminated drinking water system approximately monthly from December 2019 to November 2020. NTM were characterized using culture-dependent (plate culture with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry [MALDI-TOF MS] isolate analysis) and culture-independent methods (quantitative PCR and genome-resolved metagenomics). Sampling locations included source waters, three locations within the treatment plant, and five buildings receiving water from the distribution system. Building plumbing samples consisted of first draw, 5-min flush, and full flush cold-water samples. As the study took place during the COVID-19 pandemic, the influence of reduced water usage in three of the five buildings was also investigated. The highest NTM densities source-to-tap were found in the summer first draw building water samples (107 gene copies/L), which also had the lowest monochloramine concentrations. Flushing was found to be effective for reducing NTM and restoring disinfectant residuals, though flush times necessary to improve water quality varied by building. Clinically relevant NTM species, including Mycobacterium avium, were recovered via plate culture, with increased occurrence observed in buildings with higher water age. Four of five NTM metagenome-assembled genomes were identified to the species level and matched identified isolates.IMPORTANCENTM infections are increasing in prevalence, difficult to treat, and associated with high morbidity and mortality rates. Our lack of understanding of the factors that influence NTM occurrence in drinking water limits our ability to prevent infections, accurately characterize risk, and focus remediation efforts. In this study, we comprehensively evaluated NTM in a full-scale drinking water system, showing that various steps in treatment and distribution influence NTM presence. Stagnant building water contained the highest NTM densities source-to-tap and was associated with low disinfectant residuals. We illustrated the differences in NTM detection and characterization obtained from culture-based and culture-independent methods, highlighting the complementarity between these approaches. We demonstrated that focusing NTM mitigation efforts in building plumbing systems, which have the highest NTM densities source-to-tap, has potential for immediate positive effects. We also identified steps during treatment that increase NTM levels, which provides beneficial information for utilities seeking to reduce NTM in finished water.
Collapse
Affiliation(s)
- Katherine S. Dowdell
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Sarah C. Potgieter
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Kirk Olsen
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Soojung Lee
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew Vedrin
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Lindsay J. Caverly
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - John J. LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Lippai A, Ágoston C, Szunyogh L. The impact of stagnation on the microbial quality of constructed water systems after COVID-19 shutdowns. Biol Futur 2024; 75:361-370. [PMID: 39048893 DOI: 10.1007/s42977-024-00231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
In response to COVID-19 pandemic, governments all over the world limited the movement of people and mandated temporary closure of different institutions. While, these measures helped to reduce the spread of COVID-19, stagnant water can cause water quality deterioration. Stagnation is considered in context with the proliferation of pathogenic and facultatively pathogenic bacteria which pose potential health risks to humans. The objective of this study was to document the hygienic microbiological status of different water systems after the first shutdowns (between 18th March 2020 and 18th May 2020) in Hungary in comparison with a reference period (between 3rd January 2020 to 17th March). During the reference period drinking waters were compliant > 95% of total samples to the parametric values. After the short period shutdowns, the ratio of tnon-compliant drinking water samples was 6.6%: mainly Pseudomonas aeruginosa (7%) and coliform bacteria (5%) resulted poor water quality. The microscopic analysis of drinking waters showed that after low water demand the values of non-compliant samples also increased due to the proliferation of Amoebozoa and other Protozoa species. The compliant pool waters' ratio was also high in the reference period (97-99%), while after the shutdowns more samples were positive in both pool operation type (fill-and-drain pools and pools with recirculation) due to the proliferation of P. aeruginosa (14%) and micrococci (12%). Legionella non-compliant samples in hot tap water did not show significant difference during both studied periods (15%) although after stagnation the Legionella CFU (colony forming unit) values of the samples increased markedly.
Collapse
Affiliation(s)
- Anett Lippai
- Biokör Technology and Environmental Protection Ltd., Bláthy Ottó utca 41., Budapest, 1089, Hungary.
| | - Csaba Ágoston
- Biokör Technology and Environmental Protection Ltd., Bláthy Ottó utca 41., Budapest, 1089, Hungary
| | - Lilla Szunyogh
- Budapest Spas cPlc., Orlay utca 5-7., Budapest, 1117, Hungary
| |
Collapse
|
4
|
Lee-Masi M, Coulter C, Chow SJ, Zaitchik B, Jacangelo JG, Exum NG, Schwab KJ. Two-year evaluation of Legionella in an aging residential building: Assessment of multiple potable water remediation approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173710. [PMID: 38830423 PMCID: PMC11238177 DOI: 10.1016/j.scitotenv.2024.173710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Legionella is an opportunistic waterborne pathogen that is difficult to eradicate in colonized drinking water pipes. Legionella control is further challenged by aging water infrastructure and lack of evidence-based guidance for building treatment. This study assessed multiple premise water remediation approaches designed to reduce Legionella pneumophila within a residential building located in an aging, urban drinking water system over a two-year period. Samples (n = 745) were collected from hot and cold-water lines and quantified via most probable number culture. Building-level treatment approaches included three single heat shocks, three single chemical shocks, and continuous low-level chemical disinfection in the potable water system. The building was highly colonized with L. pneumophila with 71 % L. pneumophila positivity. Single heat shocks had a statistically significant L. pneumophila reduction one day post treatment but no significant L. pneumophila reduction at one week, two weeks, and four weeks post treatment. The first two chemical shocks resulted in statistically significant L. pneumophila reduction at two days and four weeks post treatment, but there was a significant L. pneumophila increase at four weeks following the third chemical shock. Continuous low-level chemical disinfection resulted in statistically significant L. pneumophila reduction at ten weeks post treatment implementation. This demonstrates that in a building highly colonized with L. pneumophila, sustained remediation is best achieved using continuous low-level chemical treatment.
Collapse
Affiliation(s)
- Monica Lee-Masi
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, United States
| | - Caroline Coulter
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, United States
| | - Steven J Chow
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, United States
| | - Benjamin Zaitchik
- Department of Earth and Planetary Sciences, Johns Hopkins Krieger School of Arts and Sciences, 3400 N. Charles St., Baltimore, MD 21218, United States
| | - Joseph G Jacangelo
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, United States; Stantec, 1299 Pennsylvania Ave. NW Ste 405, Washington, DC 20004, United States
| | - Natalie G Exum
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, United States
| | - Kellogg J Schwab
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, United States.
| |
Collapse
|
5
|
Kim T, Zhao X, Hozalski RM, LaPara TM. Residual disinfectant effectively suppresses Legionella species in drinking water distribution systems supplied by surface water in Minnesota, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173317. [PMID: 38788954 DOI: 10.1016/j.scitotenv.2024.173317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Seven public water systems in Minnesota, USA were analyzed from one to five times over a two-year period to assess temporal changes in the concentrations of total bacteria, Legionella spp., and Legionella pneumophila from source (i.e., raw water) through the water treatment process to the end water user. Bacterial biomass was collected by filtering large volumes of raw water (12 to 425 L, median: 38 L) or finished and tap water (27 to 1205 L, median: 448 L) using ultrafiltration membrane modules. Quantitative PCR (qPCR) was then used to enumerate all bacteria (16S rRNA gene fragments), all Legionella spp. (ssrA), and Legionella pneumophila (mip). Total coliforms, Escherichia coli, and L. pneumophila also were quantified in the water samples via cultivation. Median concentrations of total bacteria and Legionella spp. (ssrA) in raw water (8.5 and 4.3 log copies/L, respectively) decreased by about 2 log units during water treatment. The concentration of Legionella spp. (ssrA) in water collected from distribution systems inversely correlated with the total chlorine concentration for chloraminated systems significantly (p = 0.03). Although only 8 samples were collected from drinking water distribution systems using free chlorine as a residual disinfectant, these samples had significantly lower concentrations of Legionella spp. (ssrA) than samples collected from the chloraminated systems (p = 5 × 10-4). There was considerable incongruity between the results obtained via cultivation-independent (qPCR) and cultivation-dependent assays. Numerous samples were positive for L. pneumophila via cultivation, none of which tested positive for L. pneumophilia (mip) via qPCR. Conversely, a single sample tested positive for L. pneumophilia (mip) via qPCR, but this sample tested negative for L. pneumophilia via cultivation. Overall, the results suggest that conventional treatment is effective at reducing, but not eliminating, Legionella spp. from surface water supplies and that residual disinfection is effective at suppressing these organisms within drinking water distribution systems.
Collapse
Affiliation(s)
- Taegyu Kim
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota Twin-Cities, 500 Pillsbury Drive S.E., Minneapolis, MN, USA
| | - Xiaotian Zhao
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota Twin-Cities, 500 Pillsbury Drive S.E., Minneapolis, MN, USA
| | - Raymond M Hozalski
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota Twin-Cities, 500 Pillsbury Drive S.E., Minneapolis, MN, USA; Biotechnology Institute, University of Minnesota Twin Cities, 1479 Gortner Ave, St. Paul, MN, USA
| | - Timothy M LaPara
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota Twin-Cities, 500 Pillsbury Drive S.E., Minneapolis, MN, USA; Biotechnology Institute, University of Minnesota Twin Cities, 1479 Gortner Ave, St. Paul, MN, USA.
| |
Collapse
|
6
|
Grimard-Conea M, Bédard E, Prévost M. Can free chlorine residuals entering building plumbing systems really be maintained to prevent microbial growth? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173651. [PMID: 38821274 DOI: 10.1016/j.scitotenv.2024.173651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Secondary disinfection aims to prevent microbial regrowth during distribution by maintaining disinfectant residuals in water systems. However, multi-factorial interactions contribute to free chlorine decay in distribution systems, and even more so in building plumbing. Assembling 1737 samples from nine large institutional buildings, a meta-analysis was conducted to determine whether building managers can actively rely on incoming free chlorine residuals to prevent in-building microbial amplification. Findings showed that free chlorine concentrations in first draws met the 0.2 mg/L common guide level in respectively 26 %, 6 % and 2 % of cold, tepid and hot water samples, whereas flushing for 2-60 min only significantly increased this ratio in cold water (83 %), without reaching background levels found in service lines. Free chlorine was significantly but weakly (R≤ 0.2) correlated to adenosine triphosphate, heterotrophic plate count and total and intact cell counts, thus evidencing that residuals contributed to decreased culturable and viable biomass. Detection of culturable Legionella pneumophila spanning over a 4-log distribution solely occurred when free chlorine levels were below 0.2 mg/L, but no such trend could be distinguished clearly for culturable Pseudomonas aeruginosa. Water temperatures below 20 °C and >60 °C also completely prevented L. pneumophila detection. Overall, the majority of elevated microbial counts were measured in distal sites and in tepid and hot water, where free chlorine is less likely to be present due to stagnation and increased temperature. Therefore, building managers cannot solely rely on this chemical barrier to mitigate bacterial growth in bulk water.
Collapse
Affiliation(s)
| | - Emilie Bédard
- Department of Civil Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada.
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada.
| |
Collapse
|
7
|
Furst KE, Graham KE, Weisman RJ, Adusei KB. It's getting hot in here: Effects of heat on temperature, disinfection, and opportunistic pathogens in drinking water distribution systems. WATER RESEARCH 2024; 260:121913. [PMID: 38901309 DOI: 10.1016/j.watres.2024.121913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
As global temperatures rise with climate change, the negative effects of heat on drinking water distribution systems (DWDS) are of increasing concern. High DWDS temperatures are associated with degradation of water quality through physical, chemical and microbial mechanisms. Perhaps the most pressing concern is proliferation of thermotolerant opportunistic pathogens (OPs) like Legionella pneumophila and Naegleria Fowleri. Many OPs can be controlled in DWDS by residual disinfectants such as chlorine or chloramine, but maintaining protective residuals can be challenging at high temperatures. This critical review evaluates the literature on DWDS temperature, residual disinfectant decay, and OP survival and growth with respect to high temperatures. The findings are synthesized to determine the state of knowledge and future research priorities regarding OP proliferation and control at high DWDS temperatures. Temperatures above 40 °C were reported from multiple DWDS, with a maximum of 52 °C. Substantial diurnal temperature swings from ∼30-50 °C occurred in one DWDS. Many OPs can survive or even replicate at these temperatures. However, most studies focused on just a few OP species, and substantial knowledge gaps remain regarding persistence, infectivity, and shifts in microbial community structure at high temperatures relative to lower water temperatures. Chlorine decay rates substantially increase with temperature in some waters but not in others, for reasons that are not well understood. Decay rates within real DWDS are difficult to accurately characterize, presenting practical limitations for application of temperature-dependent decay models at full scale. Chloramine decay is slower than chlorine except in the presence of nitrifiers, which are especially known to grow in DWDS in warmer seasons and climates, though the high temperature range for nitrification is unknown. Lack of knowledge about DWDS nitrifier communities may hinder development of solutions. Fundamental knowledge gaps remain which prevent understanding even the occurrence of high temperatures in DWDS, much less the overall effect on exposure risk. Potential solutions to minimize DWDS temperatures or mitigate the impacts of heat were identified, many which could be aided by proven models for predicting DWDS temperature. Industry leadership and collaboration is needed to generate practical knowledge for protecting DWDS water quality as temperatures rise.
Collapse
Affiliation(s)
- Kirin E Furst
- Department of Civil, Environmental, & Infrastructure Engineering, George Mason University, 4400 University Drive, Fairfax, VA 22030, United States.
| | - Katherine E Graham
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Richard J Weisman
- Department of Civil, Environmental, & Infrastructure Engineering, George Mason University, 4400 University Drive, Fairfax, VA 22030, United States
| | - Kadmiel B Adusei
- Department of Civil, Environmental, & Infrastructure Engineering, George Mason University, 4400 University Drive, Fairfax, VA 22030, United States
| |
Collapse
|
8
|
Seenivasagham V, K C BK, Chandy JP, Kastl G, Blackall LL, Rittmann B, Sathasivan A. Heterotrophic bacteria isolated from a chloraminated system accelerate chloramine decay. CHEMOSPHERE 2024; 359:142341. [PMID: 38754485 DOI: 10.1016/j.chemosphere.2024.142341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/24/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
This work comprehensively demonstrates the ability of heterotrophic bacteria, isolated from a chloraminated system, to decay chloramine. This study non-selectively isolated 62 cultures of heterotrophic bacteria from a water sample (0.002 mg-N/L nitrite and 1.42 mg/L total chlorine) collected from a laboratory-scale reactor system; most of the isolates (93.3%) were Mycobacterium sp. Three species of Mycobacterium and one species of Micrococcus were inoculated to a basal inorganic medium with initial concentrations of acetate (from 0 to 24 mg-C/L) and 1.5 mg/L chloramine. Bacterial growth coincided with declines in the concentrations of chloramine, acetate, and ammonium. Detailed experiments with one of the Mycobacterium sp. isolates suggest that the common mechanism of chloramine loss is auto-decomposition likely mediated by chloramine-decaying proteins. The ability of the isolates to grow and decay chloramine underscores the important role of heterotrophic bacteria in the stability of chloramine in water-distribution systems. Existing strategies based on controlling nitrification should be augmented to include minimizing heterotrophic bacteria.
Collapse
Affiliation(s)
- Vimala Seenivasagham
- School of Engineering, Design and Built Environment Western Sydney University, NSW, 2747, Australia
| | - Bal Krishna K C
- School of Engineering, Design and Built Environment Western Sydney University, NSW, 2747, Australia
| | - Joseph P Chandy
- School of Engineering, Design and Built Environment Western Sydney University, NSW, 2747, Australia
| | - George Kastl
- School of Engineering, Design and Built Environment Western Sydney University, NSW, 2747, Australia
| | - Linda L Blackall
- School of BioSciences, University of Melbourne, VIC, 3010, Australia
| | - Bruce Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85287, USA
| | - Arumugam Sathasivan
- School of Engineering, Design and Built Environment Western Sydney University, NSW, 2747, Australia.
| |
Collapse
|
9
|
Bekkelund A, Angeloff LØ, Amato E, Hyllestad S. Adherence to Legionella control regulations and guidelines in Norwegian nursing homes: a cross-sectional survey. BMC Public Health 2024; 24:1491. [PMID: 38834949 DOI: 10.1186/s12889-024-18993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Infection by Legionella bacteria is a risk to elderly individuals in health care facilities and should be managed by preventing bacterial proliferation in internal water systems. Norwegian legislation calls for a mandatory Legionella-specific risk assessment with the subsequent introduction of an adapted water management programme. The present study investigates adherence to legislation and guidelines on Legionella control and prevention in Norwegian nursing homes. METHODS A cross-sectional survey was distributed to Norwegian municipalities to investigate the status of Legionella specific risk assessments of internal water distribution systems and the introduction of water management programmes in nursing homes. RESULTS A total of 55.1% (n = 228) of the participating nursing homes had performed Legionella-specific risk assessments, of which 55.3% (n = 126) stated that they had updated the risk assessment within the last year. 96.5% introduced a water management programme following a risk assessment, whereas 59.6% of the ones without a risk assessment did the same. Nursing homes with risk assessments were more likely to monitor Legionella levels than those without (61.2% vs 38.8%), to remove dead legs (44.7% vs 16.5%), and to select biocidal preventive treatment over hot water flushing (35.5% vs 4.6%). CONCLUSIONS This study presents novel insight into Legionella control in Norway, suggesting that adherence to mandatory risk assessment in nursing homes is moderate-low. Once performed, the risk assessment seems to be advantageous as an introduction to future Legionella prevention in terms of the scope and contents of the water management programme.
Collapse
Affiliation(s)
- Anders Bekkelund
- Department of Zoonotic, Food- and Waterborne Infections, Norwegian Institute of Public Health, Oslo, P.O. box 222, Norway
| | - Line Ødegård Angeloff
- Department of Zoonotic, Food- and Waterborne Infections, Norwegian Institute of Public Health, Oslo, P.O. box 222, Norway
| | - Ettore Amato
- Department of Zoonotic, Food- and Waterborne Infections, Norwegian Institute of Public Health, Oslo, P.O. box 222, Norway
| | - Susanne Hyllestad
- Department of Zoonotic, Food- and Waterborne Infections, Norwegian Institute of Public Health, Oslo, P.O. box 222, Norway.
| |
Collapse
|
10
|
LeChevallier MW, Prosser T, Stevens M. Opportunistic Pathogens in Drinking Water Distribution Systems-A Review. Microorganisms 2024; 12:916. [PMID: 38792751 PMCID: PMC11124194 DOI: 10.3390/microorganisms12050916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
In contrast to "frank" pathogens, like Salmonella entrocolitica, Shigella dysenteriae, and Vibrio cholerae, that always have a probability of disease, "opportunistic" pathogens are organisms that cause an infectious disease in a host with a weakened immune system and rarely in a healthy host. Historically, drinking water treatment has focused on control of frank pathogens, particularly those from human or animal sources (like Giardia lamblia, Cryptosporidium parvum, or Hepatitis A virus), but in recent years outbreaks from drinking water have increasingly been due to opportunistic pathogens. Characteristics of opportunistic pathogens that make them problematic for water treatment include: (1) they are normally present in aquatic environments, (2) they grow in biofilms that protect the bacteria from disinfectants, and (3) under appropriate conditions in drinking water systems (e.g., warm water, stagnation, low disinfectant levels, etc.), these bacteria can amplify to levels that can pose a public health risk. The three most common opportunistic pathogens in drinking water systems are Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. This report focuses on these organisms to provide information on their public health risk, occurrence in drinking water systems, susceptibility to various disinfectants, and other operational practices (like flushing and cleaning of pipes and storage tanks). In addition, information is provided on a group of nine other opportunistic pathogens that are less commonly found in drinking water systems, including Aeromonas hydrophila, Klebsiella pneumoniae, Serratia marcescens, Burkholderia pseudomallei, Acinetobacter baumannii, Stenotrophomonas maltophilia, Arcobacter butzleri, and several free-living amoebae including Naegleria fowleri and species of Acanthamoeba. The public health risk for these microbes in drinking water is still unclear, but in most cases, efforts to manage Legionella, mycobacteria, and Pseudomonas risks will also be effective for these other opportunistic pathogens. The approach to managing opportunistic pathogens in drinking water supplies focuses on controlling the growth of these organisms. Many of these microbes are normal inhabitants in biofilms in water, so the attention is less on eliminating these organisms from entering the system and more on managing their occurrence and concentrations in the pipe network. With anticipated warming trends associated with climate change, the factors that drive the growth of opportunistic pathogens in drinking water systems will likely increase. It is important, therefore, to evaluate treatment barriers and management activities for control of opportunistic pathogen risks. Controls for primary treatment, particularly for turbidity management and disinfection, should be reviewed to ensure adequacy for opportunistic pathogen control. However, the major focus for the utility's opportunistic pathogen risk reduction plan is the management of biological activity and biofilms in the distribution system. Factors that influence the growth of microbes (primarily in biofilms) in the distribution system include, temperature, disinfectant type and concentration, nutrient levels (measured as AOC or BDOC), stagnation, flushing of pipes and cleaning of storage tank sediments, and corrosion control. Pressure management and distribution system integrity are also important to the microbial quality of water but are related more to the intrusion of contaminants into the distribution system rather than directly related to microbial growth. Summarizing the identified risk from drinking water, the availability and quality of disinfection data for treatment, and guidelines or standards for control showed that adequate information is best available for management of L. pneumophila. For L. pneumophila, the risk for this organism has been clearly established from drinking water, cases have increased worldwide, and it is one of the most identified causes of drinking water outbreaks. Water management best practices (e.g., maintenance of a disinfectant residual throughout the distribution system, flushing and cleaning of sediments in pipelines and storage tanks, among others) have been shown to be effective for control of L. pneumophila in water supplies. In addition, there are well documented management guidelines available for the control of the organism in drinking water distribution systems. By comparison, management of risks for Mycobacteria from water are less clear than for L. pneumophila. Treatment of M. avium is difficult due to its resistance to disinfection, the tendency to form clumps, and attachment to surfaces in biofilms. Additionally, there are no guidelines for management of M. avium in drinking water, and one risk assessment study suggested a low risk of infection. The role of tap water in the transmission of the other opportunistic pathogens is less clear and, in many cases, actions to manage L. pneumophila (e.g., maintenance of a disinfectant residual, flushing, cleaning of storage tanks, etc.) will also be beneficial in helping to manage these organisms as well.
Collapse
Affiliation(s)
| | - Toby Prosser
- Melbourne Water, Melbourne, VIC 3001, Australia; (T.P.); (M.S.)
| | - Melita Stevens
- Melbourne Water, Melbourne, VIC 3001, Australia; (T.P.); (M.S.)
| |
Collapse
|
11
|
Clements E, Crank K, Nerenberg R, Atkinson A, Gerrity D, Hannoun D. Quantitative Microbial Risk Assessment Framework Incorporating Water Ages with Legionella pneumophila Growth Rates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6540-6551. [PMID: 38574283 PMCID: PMC11025131 DOI: 10.1021/acs.est.4c01208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
Water age in drinking water systems is often used as a proxy for water quality but is rarely used as a direct input in assessing microbial risk. This study directly linked water ages in a premise plumbing system to concentrations of Legionella pneumophila via a growth model. In turn, the L. pneumophila concentrations were used for a quantitative microbial risk assessment to calculate the associated probabilities of infection (Pinf) and clinically severe illness (Pcsi) due to showering. Risk reductions achieved by purging devices, which reduce water age, were also quantified. The median annual Pinf exceeded the commonly used 1 in 10,000 (10-4) risk benchmark in all scenarios, but the median annual Pcsi was always 1-3 orders of magnitude below 10-4. The median annual Pcsi was lower in homes with two occupants (4.7 × 10-7) than with one occupant (7.5 × 10-7) due to more frequent use of water fixtures, which reduced water ages. The median annual Pcsi for homes with one occupant was reduced by 39-43% with scheduled purging 1-2 times per day. Smart purging devices, which purge only after a certain period of nonuse, maintained these lower annual Pcsi values while reducing additional water consumption by 45-62%.
Collapse
Affiliation(s)
- Emily Clements
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States
| | - Katherine Crank
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States
| | - Robert Nerenberg
- Department
of Civil & Environmental Engineering & Earth Science, University of Notre Dame, 156 Fitzpatrick Hall, Notre
Dame, Indiana 46556, United States
| | - Ariel Atkinson
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States
| | - Daniel Gerrity
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States
| | - Deena Hannoun
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States
| |
Collapse
|
12
|
Joshi S, Richard R, Hogue D, Brown J, Cahill M, Kotta V, Call K, Butzine N, Marcos-Hernández M, Alja'fari J, Voth-Gaeddert L, Boyer T, Hamilton KA. Water Quality Trade-offs for Risk Management Interventions in a Green Building. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2024; 10:767-786. [PMID: 39185481 PMCID: PMC11343562 DOI: 10.1039/d3ew00650f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Premise plumbing water quality degradation has led to negative health impacts from pathogen outbreaks (e.g., Legionella pneumophila and non-tuberculous mycobacteria), as well as chronic effects from exposure to heavy metals or disinfection by-products (DBP). Common water quality management interventions include flushing, heat shock (thermal disinfection), supplemental disinfection (shock or super chlorination), and water heater temperature setpoint change. In this study, a Legionella pneumophila- colonized Leadership in Energy and Environmental Design (LEED) certified building was monitored to study health-relevant water quality changes before and after three controlled management interventions: (1) flushing at several points throughout the building; (2) changing the water heater set point; and (3) a combination of interventions (1) and (2) by flushing during a period of elevated water heater set point (incompletely performed due to operational issues). Microbial (culturable L. pneumophila, the L. pneumophila mip gene, and cATP) and physico-chemical (pH, temperature, conductivity, disinfectant residual, disinfection by-products (DBPs; total trihalomethanes, TTHM), and heavy metals) water quality were monitored alongside building occupancy as approximated using Wi-Fi logins. Flushing alone resulted in a significant decrease in cATP and L. pneumophila concentrations (p = 0.018 and 0.019, respectively) and a significant increase in chlorine concentrations (p = 0.002) as well as iron and DBP levels (p = 0.002). Copper concentrations increased during the water heater temperature setpoint increase alone to 140°F during December 2022 (p = 0.01). During the flushing and elevated temperature in parts of the building in February 2023, there was a significant increase in chlorine concentrations (p = 0.002) and iron (p = 0.002) but no significant decrease in L. pneumophila concentrations in the drinking water samples (p = 0.27). This study demonstrated the potential impacts of short term or incompletely implemented interventions which in this case were not sufficient to holistically improve water quality. As implementing interventions is logistically- and time-intensive, more effective and holistic approaches are needed for informing preventative and corrective actions that are beneficial for multiple water quality and sustainability goals.
Collapse
Affiliation(s)
- Sayalee Joshi
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAlister Ave, Tempe, AZ 85281, USA
| | - Rain Richard
- NCS Engineering, 202 E. Earll Drive Suite 110, Phoenix AZ 85012, USA
| | - Derek Hogue
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
| | - James Brown
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
| | - Molly Cahill
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAlister Ave, Tempe, AZ 85281, USA
| | - Vishnu Kotta
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAlister Ave, Tempe, AZ 85281, USA
| | - Kathryn Call
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
| | - Noah Butzine
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAlister Ave, Tempe, AZ 85281, USA
| | - Mariana Marcos-Hernández
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA
| | - Jumana Alja'fari
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAlister Ave, Tempe, AZ 85281, USA
| | - Lee Voth-Gaeddert
- The Biodesign Institute Center for Health Through Microbiomes, Arizona State University, 1001 S McAlister Ave, Tempe, AZ 85281, USA
| | - Treavor Boyer
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, PO Box 873005, Tempe, AZ 85287-3005, USA
| | - Kerry A Hamilton
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAlister Ave, Tempe, AZ 85281, USA
| |
Collapse
|
13
|
Ra K, Proctor C, Ley C, Angert D, Noh Y, Odimayomi T, Whelton AJ. Four buildings and a flush: Lessons from degraded water quality and recommendations on building water management. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 18:100314. [PMID: 37854462 PMCID: PMC10579424 DOI: 10.1016/j.ese.2023.100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023]
Abstract
A reduction in building occupancy can lead to stagnant water in plumbing, and the potential consequences for water quality have gained increasing attention. To investigate this, a study was conducted during the COVID-19 pandemic, focusing on water quality in four institutional buildings. Two of these buildings were old (>58 years) and large (>19,000 m2), while the other two were new (>13 years) and small (<11,000 m2). The study revealed significant decreases in water usage in the small buildings, whereas usage remained unchanged in the large buildings. Initial analysis found that residual chlorine was rarely detectable in cold/drinking water samples. Furthermore, the pH, dissolved oxygen, total organic carbon, and total cell count levels in the first draw of cold water samples were similar across all buildings. However, the ranges of heavy metal concentrations in large buildings were greater than observed in small buildings. Copper (Cu), lead (Pb), and manganese (Mn) sporadically exceeded drinking water limits at cold water fixtures, with maximum concentrations of 2.7 mg Cu L-1, 45.4 μg Pb L-1, 1.9 mg Mn L-1. Flushing the plumbing for 5 min resulted in detectable residual at fixtures in three buildings, but even after 125 min of flushing in largest and oldest building, no residual chlorine was detected at the fixture closest to the building's point of entry. During the pandemic, the building owner conducted fixture flushing, where one to a few fixtures were operated per visit in buildings with hundreds of fixtures and multiple floors. However, further research is needed to understand the fundamental processes that control faucet water quality from the service line to the faucet. In the absence of this knowledge, building owners should create and use as-built drawings to develop flushing plans and conduct periodic water testing.
Collapse
Affiliation(s)
- Kyungyeon Ra
- Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Caitlin Proctor
- Agricultural and Biological Engineering, Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Christian Ley
- Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Civil and Environmental Engineering, University of Colorado, 1111 Engineering Drive, Boulder, CO, 80309, USA
| | - Danielle Angert
- Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Civil, Architectural and Environmental Engineering, University of Texas, 301E E Dean Keeton Street, Austin, TX, 78712, USA
| | - Yoorae Noh
- Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Tolulope Odimayomi
- Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Civil and Environmental Engineering, Virginia Tech, 750 Drillfield Drive, Blacksburg, VA, 24061, USA
| | - Andrew J. Whelton
- Lyles School of Civil Engineering, Division of Environmental and Ecological Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| |
Collapse
|
14
|
Hozalski RM, Zhao X, Kim T, LaPara TM. On-site filtration of large sample volumes improves the detection of opportunistic pathogens in drinking water distribution systems. Appl Environ Microbiol 2024; 90:e0165823. [PMID: 38236032 PMCID: PMC10880612 DOI: 10.1128/aem.01658-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
In this study, we compared conventional vacuum filtration of small volumes through disc membranes (effective sample volumes for potable water: 0.3-1.0 L) with filtration of high volumes using ultrafiltration (UF) modules (effective sample volumes for potable water: 10.6-84.5 L) for collecting bacterial biomass from raw, finished, and tap water at seven drinking water systems. Total bacteria, Legionella spp., Legionella pneumophila, Mycobacterium spp., and Mycobacterium avium complex in these samples were enumerated using both conventional quantitative PCR (qPCR) and viability qPCR (using propidium monoazide). In addition, PCR-amplified gene fragments were sequenced for microbial community analysis. The frequency of detection (FOD) of Legionella spp. in finished and tap water samples was much greater using UF modules (83% and 77%, respectively) than disc filters (24% and 33%, respectively). The FODs for Mycobacterium spp. in raw, finished, and tap water samples were also consistently greater using UF modules than disc filters. Furthermore, the number of observed operational taxonomic units and diversity index values for finished and tap water samples were often substantially greater when using UF modules as compared to disc filters. Conventional and viability qPCR yielded similar results, suggesting that membrane-compromised cells represented a minor fraction of total bacterial biomass. In conclusion, our research demonstrates that large-volume filtration using UF modules improved the detection of opportunistic pathogens at the low concentrations typically found in public drinking water systems and that the majority of bacteria in these systems appear to be viable in spite of disinfection with free chlorine and/or chloramine.IMPORTANCEOpportunistic pathogens, such as Legionella pneumophila, are a growing public health concern. In this study, we compared sample collection and enumeration methods on raw, finished, and tap water at seven water systems throughout the State of Minnesota, USA. The results showed that on-site filtration of large water volumes (i.e., 500-1,000 L) using ultrafiltration membrane modules improved the frequency of detection of relatively rare organisms, including opportunistic pathogens, compared to the common approach of filtering about 1 L using disc membranes. Furthermore, results from viability quantitative PCR (qPCR) with propidium monoazide were similar to conventional qPCR, suggesting that membrane-compromised cells represent an insignificant fraction of microorganisms. Results from these ultrafiltration membrane modules should lead to a better understanding of the microbial ecology of drinking water distribution systems and their potential to inoculate premise plumbing systems with opportunistic pathogens where conditions are more favorable for their growth.
Collapse
Affiliation(s)
- Raymond M. Hozalski
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
- Biotechnology Institute, University of Minnesota Twin Cities, St. Paul, Minnesota, USA
| | - Xiaotian Zhao
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Taegyu Kim
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Timothy M. LaPara
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
- Biotechnology Institute, University of Minnesota Twin Cities, St. Paul, Minnesota, USA
| |
Collapse
|
15
|
Healy HG, Ehde A, Bartholow A, Kantor RS, Nelson KL. Responses of drinking water bulk and biofilm microbiota to elevated water age in bench-scale simulated distribution systems. NPJ Biofilms Microbiomes 2024; 10:7. [PMID: 38253591 PMCID: PMC10803812 DOI: 10.1038/s41522-023-00473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Reductions in nonresidential water demand during the COVID-19 pandemic highlighted the importance of understanding how water age impacts drinking water quality and microbiota in piped distribution systems. Using benchtop model distribution systems, we aimed to characterize the impacts of elevated water age on microbiota in bulk water and pipe wall biofilms. Five replicate constant-flow reactors were fed with municipal chloraminated tap water for 6 months prior to building closures and 7 months after. After building closures, chloramine levels entering the reactors dropped; in the reactor bulk water and biofilms the mean cell counts and ATP concentrations increased over an order of magnitude while the detection of opportunistic pathogens remained low. Water age, and the corresponding physicochemical changes, strongly influenced microbial abundance and community composition. Differential initial microbial colonization also had a lasting influence on microbial communities in each reactor (i.e., historical contingency).
Collapse
Affiliation(s)
- Hannah Greenwald Healy
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Aliya Ehde
- Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, USA
| | - Alma Bartholow
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Rose S Kantor
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, USA.
| | - Kara L Nelson
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
16
|
Huang CK, Weerasekara A, Lu J, Carter R, Weynberg KD, Thomson R, Bell S, Guo J. Extended water stagnation in buildings during the COVID-19 pandemic increases the risks posed by opportunistic pathogens. WATER RESEARCH X 2023; 21:100201. [PMID: 38098883 PMCID: PMC10719583 DOI: 10.1016/j.wroa.2023.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 12/17/2023]
Abstract
The regrowth and subsequent exposure of opportunistic pathogens (OPs) whilst reopening buildings that have been locked down due to the stay-at-home restrictions to limit the spread of COVID-19, is a public health concern. To better understand such microbiological risks due to lowered occupancy and water demand in buildings, first and post-flush water samples (n = 48) were sampled from 24 drinking water outlets from eight university buildings in two campuses (urban and rural), with various end-user occupancies. Both campuses were served with chlorinated water originating from a single drinking water distribution system in South-East Queensland, situated 14 km apart, where the rural campus had lower chlorine residuals. Culture-dependent and culture-independent methods (such as flow cytometry, qPCR and 16S rRNA gene amplicon sequencing) were used concurrently to comprehensively characterise the OPs of interest (Legionella spp., Pseudomonas aeruginosa, and nontuberculous mycobacteria (NTM)) and the premise plumbing microbiome. Results showed that buildings with extended levels of stagnation had higher and diverse levels of microbial growth, as observed in taxonomic structure and composition of the microbial communities. NTM were ubiquitous in all the outlets sampled, regardless of campus or end-user occupancy of the buildings. qPCR and culture demonstrated prevalent and higher concentrations of NTM in buildings (averaging 3.25 log10[estimated genomic copies/mL]) with extended stagnation in the urban campus. Furthermore, flushing the outlets for 30 minutes restored residual and total chlorine, and subsequently decreased the levels of Legionella by a reduction of 1 log. However, this approach was insufficient to restore total and residual chlorine levels for the outlets in the rural campus, where both Legionella and NTM levels detected by qPCR remained unchanged, regardless of building occupancy. Our findings highlight that regular monitoring of operational parameters such as residual chlorine levels, and the implementation of water risk management plans are important for non-healthcare public buildings, as the levels of OPs in these environments are typically not assessed.
Collapse
Affiliation(s)
- Casey K Huang
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, QLD 4072, Australia
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, QLD 4102, Australia
| | - Anjani Weerasekara
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, QLD 4072, Australia
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, QLD 4102, Australia
| | - Ji Lu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, QLD 4072, Australia
| | - Robyn Carter
- Respiratory Research Unit, Gallipoli Medical Research Institute, QLD 4120, Australia
| | - Karen D. Weynberg
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Rachel Thomson
- Respiratory Research Unit, Gallipoli Medical Research Institute, QLD 4120, Australia
- Greenslopes Clinical Unit, The University of Queensland, QLD Australia
| | - Scott Bell
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Australia
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, QLD Australia
- Translational Research Institute, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, QLD 4072, Australia
| |
Collapse
|
17
|
Honda JR. Environmental Sources and Transmission of Nontuberculous Mycobacteria. Clin Chest Med 2023; 44:661-674. [PMID: 37890909 DOI: 10.1016/j.ccm.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
The field of environmental nontuberculous mycobacteria (NTM) is benefiting from a new era of genomics that has catapulted our understanding of preferred niches, transmission, and outbreak investigations. The ability to forecast environmental features that promote or reduce environmental NTM prevalence will greatly improve with coordinated environmental sampling and by elevating the necessity for uniform disease notifications. Studies that synergize environmental biology, isolate notifications, and comparative genomics in prospective, longitudinal studies, particularly during climate changes and weather events, will be useful to solve longstanding NTM public health quandaries.
Collapse
Affiliation(s)
- Jennifer R Honda
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, 11937 US Hwy 271, BMR Building, Tyler, TX 75708, USA.
| |
Collapse
|
18
|
Lee-Masi M, Coulter C, Chow SJ, Zaitchik B, Jacangelo JG, Exum NG, Schwab KJ. Two-Year Evaluation of Legionella in an Aging Residential Building: Assessment of Multiple Potable Water Remediation Approaches. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.19.23292444. [PMID: 37502988 PMCID: PMC10371102 DOI: 10.1101/2023.07.19.23292444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Legionella is an opportunistic waterborne pathogen that is difficult to eradicate in colonized drinking water pipes. Legionella control is further challenged by aging water infrastructure and lack of evidence-based guidance for building treatment. This study assessed multiple premise water remediation approaches designed to reduce Legionella pneumophila (Lp) within a residential building located in an aging, urban drinking water system over a two-year period. Samples (n=745) were collected from hot and cold-water lines and quantified via most probable number culture. Building-level treatment approaches included three single heat shocks (HS), three single chemical shocks (CS), and continuous low-level chemical disinfection (CCD) in the potable water system. The building was highly colonized with Lp with 71% Lp positivity. Single HS had a statistically significant Lp reduction one day post treatment but no significant Lp reduction one, two, and four weeks post treatment. The first two CS resulted in statistically significant Lp reduction at two days and four weeks post treatment, but there was a significant Lp increase at four weeks following the third CS. CCD resulted in statistically significant Lp reduction ten weeks post treatment implementation. This demonstrates that in a building highly colonized with Lp, sustained remediation is best achieved using CCD.
Collapse
Affiliation(s)
- Monica Lee-Masi
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, 21205, Baltimore, Maryland, United States
| | - Caroline Coulter
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, 21205, Baltimore, Maryland, United States
| | - Steven J. Chow
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, 21205, Baltimore, Maryland, United States
| | - Benjamin Zaitchik
- Department of Earth and Planetary Sciences, Johns Hopkins Krieger School of Arts and Sciences, 21218, Baltimore, Maryland, United States
| | - Joseph G. Jacangelo
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, 21205, Baltimore, Maryland, United States
- Department of Earth and Planetary Sciences, Johns Hopkins Krieger School of Arts and Sciences, 21218, Baltimore, Maryland, United States
| | - Natalie G. Exum
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, 21205, Baltimore, Maryland, United States
| | - Kellogg J. Schwab
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, 21205, Baltimore, Maryland, United States
| |
Collapse
|
19
|
Grimard-Conea M, Prévost M. Controlling Legionella pneumophila in Showerheads: Combination of Remedial Intervention and Preventative Flushing. Microorganisms 2023; 11:1361. [PMID: 37374862 DOI: 10.3390/microorganisms11061361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Shock chlorination and remedial flushing are suggested to address Legionella pneumophila (Lp) contamination in buildings or during their (re)commissioning. However, data on general microbial measurements (adenosine tri-phosphate [ATP], total cell counts [TCC]), and the abundance of Lp are lacking to support their temporary implementation with variable water demands. In this study, the weekly short-term (3-week) impact of shock chlorination (20-25 mg/L free chlorine, 16 h) or remedial flushing (5-min flush) combined with distinct flushing regimes (daily, weekly, stagnant) was investigated in duplicates of showerheads in two shower systems. Results showed that the combination of stagnation and shock chlorination prompted biomass regrowth, with ATP and TCC in the first draws reaching large regrowth factors of 4.31-7.07-fold and 3.51-5.68-fold, respectively, from baseline values. Contrastingly, remedial flushing followed by stagnation generally resulted in complete or larger regrowth in Lp culturability and gene copies (gc). Irrespective of the intervention, daily flushed showerheads resulted in significantly (p < 0.05) lower ATP and TCC, as well as lower Lp concentrations than weekly flushes, in general. Nonetheless, Lp persisted at concentrations ranging from 11 to 223 as the most probable number per liter (MPN/L) and in the same order of magnitude (103-104 gc/L) than baseline values after remedial flushing, despite daily/weekly flushing, unlike shock chlorination which suppressed Lp culturability (down 3-log) for two weeks and gene copies by 1-log. This study provides insights on the most optimal short-term combination of remedial and preventative strategies that can be considered pending the implementation of suitable engineering controls or building-wide treatment.
Collapse
Affiliation(s)
- Marianne Grimard-Conea
- Industrial Chair in Drinking Water, Department of Civil, Mining and Geological Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada
| | - Michèle Prévost
- Industrial Chair in Drinking Water, Department of Civil, Mining and Geological Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada
| |
Collapse
|
20
|
Logan-Jackson AR, Batista MD, Healy W, Ullah T, Whelton AJ, Bartrand TA, Proctor C. A Critical Review on the Factors that Influence Opportunistic Premise Plumbing Pathogens: From Building Entry to Fixtures in Residences. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6360-6372. [PMID: 37036108 DOI: 10.1021/acs.est.2c04277] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Residential buildings provide unique conditions for opportunistic premise plumbing pathogen (OPPP) exposure via aerosolized water droplets produced by showerheads, faucets, and tubs. The objective of this review was to critically evaluate the existing literature that assessed the impact of potentially enhancing conditions to OPPP occurrence associated with residential plumbing and to point out knowledge gaps. Comprehensive studies on the topic were found to be lacking. Major knowledge gaps identified include the assessment of OPPP growth in the residential plumbing, from building entry to fixtures, and evaluation of the extent of the impact of typical residential plumbing design (e.g., trunk and branch and manifold), components (e.g., valves and fixtures), water heater types and temperature setting of operation, and common pipe materials (copper, PEX, and PVC/CPVC). In addition, impacts of the current plumbing code requirements on OPPP responses have not been assessed by any study and a lack of guidelines for OPPP risk management in residences was identified. Finally, the research required to expand knowledge on OPPP amplification in residences was discussed.
Collapse
Affiliation(s)
- Alshae' R Logan-Jackson
- Building Energy and Environment Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Marylia Duarte Batista
- Building Energy and Environment Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - William Healy
- Building Energy and Environment Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Tania Ullah
- Building Energy and Environment Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Andrew J Whelton
- Lyles School of Civil Engineering, Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Timothy A Bartrand
- Environmental Science, Policy, and Research Institute, Bala Cynwyd, Pennsylvania 19004, United States
| | - Caitlin Proctor
- Agricultural and Biological Engineering, Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
21
|
Kim T, Zhao X, LaPara TM, Hozalski RM. Flushing Temporarily Improves Microbiological Water Quality for Buildings Supplied with Chloraminated Surface Water but Has Little Effect for Groundwater Supplies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5453-5463. [PMID: 36952669 DOI: 10.1021/acs.est.2c08123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microbial communities in premise plumbing systems were investigated after more than 2 months of long-term stagnation, during a subsequent flushing event, and during post-flush stagnation. Water samples were collected from showers in buildings supplied with chlorinated groundwater, untreated groundwater, and chloraminated surface water. The building supplied with chlorinated groundwater generally had the lowest bacterial concentrations across all sites (ranging from below quantification limit to 5.2 log copies/L). For buildings supplied with untreated groundwater, bacterial concentrations (5.0 to 7.6 log copies/L) and microbial community diversity index (ACE) values were consistent throughout sampling. Nontuberculous mycobacteria (NTM) and Legionella pneumophila were not detected in any groundwater-supplied buildings. Total bacteria, Legionella spp., and NTM were abundant in the surface water-supplied buildings following long-term stagnation (up to 7.6, 6.2, and 7.6 log copies/L, respectively). Flushing decreased these concentrations by ∼1 to >4 log units and reduced microbial community diversity, but the communities largely recovered within a week of post-flush stagnation. The results suggest that buildings supplied with disinfected surface water are more likely than buildings supplied with treated or untreated groundwater to experience deleterious changes in microbiological water quality during stagnation and that the water quality improvements from flushing with chloraminated water, while substantial, are short-lived.
Collapse
Affiliation(s)
- Taegyu Kim
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, Minnesota 55455, United States
| | - Xiaotian Zhao
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, Minnesota 55455, United States
| | - Timothy M LaPara
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, Minnesota 55455, United States
- Biotechnology Institute, University of Minnesota Twin Cities, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
| | - Raymond M Hozalski
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, Minnesota 55455, United States
- Biotechnology Institute, University of Minnesota Twin Cities, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
| |
Collapse
|
22
|
Vosloo S, Huo L, Chauhan U, Cotto I, Gincley B, Vilardi KJ, Yoon B, Bian K, Gabrielli M, Pieper KJ, Stubbins A, Pinto AJ. Gradual Recovery of Building Plumbing-Associated Microbial Communities after Extended Periods of Altered Water Demand during the COVID-19 Pandemic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3248-3259. [PMID: 36795589 PMCID: PMC9969676 DOI: 10.1021/acs.est.2c07333] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
COVID-19 pandemic-related building restrictions heightened drinking water microbiological safety concerns post-reopening due to the unprecedented nature of commercial building closures. Starting with phased reopening (i.e., June 2020), we sampled drinking water for 6 months from three commercial buildings with reduced water usage and four occupied residential households. Samples were analyzed using flow cytometry and full-length 16S rRNA gene sequencing along with comprehensive water chemistry characterization. Prolonged building closures resulted in 10-fold higher microbial cell counts in the commercial buildings [(2.95 ± 3.67) × 105 cells mL-1] than in residential households [(1.11 ± 0.58) × 104 cells mL-1] with majority intact cells. While flushing reduced cell counts and increased disinfection residuals, microbial communities in commercial buildings remained distinct from those in residential households on the basis of flow cytometric fingerprinting [Bray-Curtis dissimilarity (dBC) = 0.33 ± 0.07] and 16S rRNA gene sequencing (dBC = 0.72 ± 0.20). An increase in water demand post-reopening resulted in gradual convergence in microbial communities in water samples collected from commercial buildings and residential households. Overall, we find that the gradual recovery of water demand played a key role in the recovery of building plumbing-associated microbial communities as compared to short-term flushing after extended periods of reduced water demand.
Collapse
Affiliation(s)
- Solize Vosloo
- Department
of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 021115, United States
| | - Linxuan Huo
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30318, United States
| | - Umang Chauhan
- Department
of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 021115, United States
| | - Irmarie Cotto
- Department
of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 021115, United States
| | - Benjamin Gincley
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30318, United States
| | - Katherine J. Vilardi
- Department
of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 021115, United States
| | - Bryan Yoon
- Department
of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 021115, United States
| | - Kaiqin Bian
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30318, United States
| | - Marco Gabrielli
- Dipartimento
di Ingegneria Civile e Ambientale - Sezione Ambientale, Politecnico di Milano, 20133 Milan, Italy
| | - Kelsey J. Pieper
- Department
of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 021115, United States
| | - Aron Stubbins
- Department
of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 021115, United States
| | - Ameet J. Pinto
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30318, United States
| |
Collapse
|
23
|
Yin H, Chen R, Wang H, Schwarz C, Hu H, Shi B, Wang Y. Co-occurrence of phthalate esters and perfluoroalkyl substances affected bacterial community and pathogenic bacteria growth in rural drinking water distribution systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158943. [PMID: 36155042 DOI: 10.1016/j.scitotenv.2022.158943] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The adverse health effects of phthalate esters (PAEs) and perfluoroalkyl substances (PFAS) in drinking water have attracted considerable attention. Our study investigated the effects of PAEs and PFAS on the bacterial community and the growth of potential human pathogenic bacteria in rural drinking water distribution systems. Our results showed that the total concentration of PAEs and PFAS ranged from 1.02 × 102 to 1.65 × 104 ng/L, from 4.40 to 1.84 × 102 ng/L in rural drinking water of China, respectively. PAEs concentration gradually increased and PFAS slowly decreased along the pipeline distribution, compared to concentrations in the effluents of rural drinking water treatment plants. The co-occurrence of higher concentrations of PAEs and PFAS changed the structure and function of the bacterial communities found within these environments. The bacterial community enhanced their ability to respond to fluctuating environmental conditions through up-regulation of functional genes related to extracellular signaling and interaction, as well as genes related to replication and repair. Under these conditions, co-occurrence of PAEs and PFAS promoted the growth of potential human pathogenic bacteria (HPB), therefore increasing the risk of the development of associated diseases among exposed persons. The main HPB observed in this study included Burkholderia mallei, Mycobacterium tuberculosis, Klebsiella pneumoniae, Acinetobacter calcoaceticus, Escherichia coli, and Pseudomonas aeruginosa. Contaminants including particles, microorganisms, PAEs and PFAS were found to be released from corrosion scales and deposits of pipes and taps, resulting in the increase of the cytotoxicity and microbial risk of rural tap water. These results are important to efforts to improve the safety of rural drinking water.
Collapse
Affiliation(s)
- Hong Yin
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruya Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Cory Schwarz
- Department of Civil and Environmental Engineering, Rice University, Houston 77005, United States
| | - Haotian Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yili Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
24
|
Huang C, Clark GG, Zaki FR, Won J, Ning R, Boppart SA, Elbanna AE, Nguyen TH. Effects of phosphate and silicate on stiffness and viscoelasticity of mature biofilms developed with simulated drinking water. BIOFOULING 2023; 39:36-46. [PMID: 36847486 PMCID: PMC10065970 DOI: 10.1080/08927014.2023.2177538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 05/21/2023]
Abstract
Biofilms, a porous matrix of cells aggregated with extracellular polymeric substances under the influence of chemical constituents in the feed water, can develop a viscoelastic response to mechanical stresses. In this study, the roles of phosphate and silicate, common additives in corrosion control and meat processing, on the stiffness, viscoelasticity, porous structure networks, and chemical properties of biofilm were investigated. Three-year biofilms on PVC coupons were grown from sand-filtered groundwater with or without one of the non-nutrient (silicate) or nutrient additives (phosphate or phosphate blends). Compared with non-nutrient additives, the phosphate and phosphate-blend additives led to a biofilm with the lowest stiffness, most viscoelastic, and more porous structure, including more connecting throats with greater equivalent radii. The phosphate-based additives also led to more organic species in the biofilm matrix than the silicate additive did. This work demonstrated that nutrient additives could promote biomass accumulation but also reduce mechanical stability.
Collapse
Affiliation(s)
- Conghui Huang
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL
| | - Gemma G. Clark
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL
| | - Farzana R. Zaki
- Beckman Institute for Advanced Science and Technology, 405 North Mathews Avenue, Urbana, Illinois 61801, USA
| | - Jungeun Won
- Beckman Institute for Advanced Science and Technology, 405 North Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois Urbana Champaign, 1304 West Springfield Avenue, Urbana, Illinois 61801, USA
| | - Runsen Ning
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, 405 North Mathews Avenue, Urbana, Illinois 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, 506 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois Urbana Champaign, 1304 West Springfield Avenue, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, 306 North Wright Street, Urbana, Illinois 61801, USA
| | - Ahmed E. Elbanna
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL
| | - Thanh H. Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, 506 South Mathews Avenue, Urbana, Illinois 61801, USA
| |
Collapse
|
25
|
A Metagenomic Investigation of Spatial and Temporal Changes in Sewage Microbiomes across a University Campus. mSystems 2022; 7:e0065122. [PMID: 36121163 PMCID: PMC9599454 DOI: 10.1128/msystems.00651-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Wastewater microbial communities are not static and can vary significantly across time and space, but this variation and the factors driving the observed spatiotemporal variation often remain undetermined. We used a shotgun metagenomic approach to investigate changes in wastewater microbial communities across 17 locations in a sewer network, with samples collected from each location over a 3-week period. Fecal material-derived bacteria constituted a relatively small fraction of the taxa found in the collected samples, highlighting the importance of environmental sources to the sewage microbiome. The prokaryotic communities were highly variable in composition depending on the location within the sampling network, and this spatial variation was most strongly associated with location-specific differences in sewage pH. However, we also observed substantial temporal variation in the composition of the prokaryotic communities at individual locations. This temporal variation was asynchronous across sampling locations, emphasizing the importance of independently considering both spatial and temporal variation when assessing the wastewater microbiome. The spatiotemporal patterns in viral community composition closely tracked those of the prokaryotic communities, allowing us to putatively identify the bacterial hosts of some of the dominant viruses in these systems. Finally, we found that antibiotic resistance gene profiles also exhibit a high degree of spatiotemporal variability, with most of these genes unlikely to be derived from fecal bacteria. Together, these results emphasize the dynamic nature of the wastewater microbiome, the challenges associated with studying these systems, and the utility of metagenomic approaches for building a multifaceted understanding of these microbial communities and their functional attributes. IMPORTANCE Sewage systems harbor extensive microbial diversity, including microbes derived from both human and environmental sources. Studies of the sewage microbiome are useful for monitoring public health and the health of our infrastructure, but the sewage microbiome can be highly variable in ways that are often unresolved. We sequenced DNA recovered from wastewater samples collected over a 3-week period at 17 locations in a single sewer system to determine how these communities vary across time and space. Most of the wastewater bacteria, and the antibiotic resistance genes they harbor, were not derived from human feces, but human usage patterns did impact how the amounts and types of bacteria and bacterial genes we found in these systems varied over time. Likewise, the wastewater communities, including both bacteria and their viruses, varied depending on location within the sewage network, highlighting the challenges and opportunities in efforts to monitor and understand the sewage microbiome.
Collapse
|
26
|
Rahmatika I, Kurisu F, Furumai H, Kasuga I. Dynamics of the Microbial Community and Opportunistic Pathogens after Water Stagnation in the Premise Plumbing of a Building. Microbes Environ 2022; 37. [PMID: 35321996 PMCID: PMC8958293 DOI: 10.1264/jsme2.me21065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In premise plumbing, microbial water quality may deteriorate under certain conditions, such as stagnation. Stagnation results in a loss of disinfectant residual, which may lead to the regrowth of microorganisms, including opportunistic pathogens. In the present study, microbial regrowth was investigated at eight faucets in a building over four seasons in one year. Water samples were obtained before and after 24 h of stagnation. In the first 100 mL after stagnation, total cell counts measured by flow cytometry increased 14- to 220-fold with a simultaneous decrease in free chlorine from 0.17–0.36 mg L–1 to <0.02 mg L–1. After stagnation, total cell counts were not significantly different among seasons; however, the composition of the microbial community varied seasonally. The relative abundance of Pseudomonas spp. was dominant in winter, whereas Sphingomonas spp. were dominant in most faucets after stagnation in other seasons. Opportunistic pathogens, such as Legionella pneumophila, Mycobacterium avium, Pseudomonas aeruginosa, and Acanthamoeba spp., were below the quantification limit for real-time quantitative PCR in all samples. However, sequences related to other opportunistic pathogens, including L. feeleii, L. maceachernii, L. micdadei, M. paragordonae, M. gordonae, and M. haemophilum, were detected. These results indicate that health risks may increase after stagnation due to the regrowth of opportunistic pathogens.
Collapse
Affiliation(s)
- Iftita Rahmatika
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo
| | - Futoshi Kurisu
- Research Center for Water Environment Technology, Graduate School of Engineering, The University of Tokyo
| | - Hiroaki Furumai
- Research Center for Water Environment Technology, Graduate School of Engineering, The University of Tokyo
| | - Ikuro Kasuga
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo
| |
Collapse
|
27
|
Practitioners’ Perspective on the Prevalent Water Quality Management Practices for Legionella Control in Large Buildings in the United States. WATER 2022. [DOI: 10.3390/w14040663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Managing building water systems is complicated by the need to maintain hot water temperatures high enough to control the growth of Legionella spp. while minimizing the risk of scalding. This study assessed water quality management practices in large buildings in the United States. Surveys conducted with building water quality managers found that more than 85% of buildings have hot water temperatures that are consistent with scald risk mitigation guidelines (i.e., <122 °F/50 °C). However, nearly two thirds and three quarters of buildings do not comply with the common temperature guidance for opportunistic pathogen control, i.e., water heater setpoint > 140 °F (60 °C) and recirculation loop > 122 °F (50 °C), respectively; median values for both setpoint and recirculation loop temperatures are 10 °F (6 °C) or more below temperatures recommended for opportunistic pathogen control. These observations suggest that many buildings are prone to Legionella spp. risk. The study also found that 27% of buildings do not comply with guidelines for time to equilibrium hot water temperature, over 33% fail to monitor temperature in the recirculation loop, more than 70% fail to replace or disinfect showerheads, more than 40% lack a written management plan, and only a minority conduct any monitoring of residual disinfectant levels or microbiological quality. Given the rise in Legionellosis infections in recent years, coupled with highlighted water quality concerns because of prolonged water stagnation in plumbing, such as in buildings closed due to COVID-19, current management practices, which appear to be focused on scald risk, may need to be broadened to include greater attention to control of opportunistic pathogens. To accomplish this, there is a need for formal training and resources for facility managers.
Collapse
|
28
|
Ye C, Xian X, Bao R, Zhang Y, Feng M, Lin W, Yu X. Recovery of microbiological quality of long-term stagnant tap water in university buildings during the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150616. [PMID: 34592279 PMCID: PMC9752782 DOI: 10.1016/j.scitotenv.2021.150616] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 05/10/2023]
Abstract
Stagnant water can cause water quality deterioration and, in particular, microbiological contaminations, posing potential health risks to occupants. University buildings were unoccupied with little water usage during the COVID-19 pandemic. It's an opportunity to study microbiological quality of long-term stagnant water (LTSW) in university buildings. The tap water samples were collected for three months from four types of campus buildings to monitor water quality and microbial risks after long-term stagnation. Specifically, the residual chlorine, turbidity, and iron/zinc were disqualified, and the heterotrophic plate counts (HPC) exceeded the Chinese national standard above 100 times. It took 4-54 days for these parameters to recover to the routine levels. Six species of pathogens were detected with high frequency and levels (101-105 copies/100 mL). Remarkably, L. pneumophilia occurred in 91% of samples with turbidity > 1 NTU. The absence of the culturable cells for these bacteria possibly implied their occurrence in a viable but non-culturable (VBNC) status. The bacterial community of the stagnant tap water differed significantly and reached a steady state in more than 50 days. Furthermore, a high concentration of endotoxin (>10 EU/mL) was found in LTSW, which was in accordance with the high proportion of dead bacteria. The results suggested that the increased microbiological risks require more attention and the countermeasures before the building reopens should be taken.
Collapse
Affiliation(s)
- Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Xuanxuan Xian
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Ruihan Bao
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Yiting Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Wenfang Lin
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
29
|
Gorman D, Green A, Puri N, Dellinger P. Severe ARDS Secondary to Legionella Pneumonia Requiring VV ECMO in the Setting of Newly Diagnosed Hairy Cell Leukemia. J Investig Med High Impact Case Rep 2022; 10:23247096211065618. [PMID: 35038889 PMCID: PMC8771749 DOI: 10.1177/23247096211065618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Venovenous (VV) extracorporeal membrane oxygenation (ECMO) for severe acute respiratory distress syndrome (ARDS) is initiated in patients with high mortality as a potential lifesaving intervention. Hematologic malignancy (HM) is considered a relative exclusion criterion by the Extracorporeal Life Support Organization (ELSO). This case examines the relative contraindication and presents a successful outcome. A healthy 59-year-old male presented with respiratory distress. On arrival his SpO2 on room air was 82%, chest x-ray revealed a lobar infiltrate, complete blood count demonstrated severe leukopenia, and a peripheral blood smear demonstrated cytoplasmic inclusions concerning for hairy cells. He was intubated and decision was made to initiate VV-ECMO during hospital day (HD) 1. Cytometry later confirmed a diagnosis of hairy cell leukemia (HCL). A diagnosis of Legionella was confirmed on HD 5. Initial hospitalization was complicated by progression to complete bilateral lung involvement, pulmonary hemorrhage, recurrent tachyarrhythmias, hemodynamic instability, and acute renal failure. Respiratory status stabilized and eventually began to improve. On HD 27, he was decannulated and later discharged to rehabilitation. Four months later he received inpatient chemotherapy and is currently in full remission. This is a successful outcome in a patient with severe ARDS requiring VV-ECMO in the setting of newly diagnosed HCL. The 10-year survival for treated HCL is near 100%. Due to favorable prognosis, HCL should not be considered a relative contraindication to VV-ECMO. While HM remains a relative exclusion criterion by the ELSO, it is important to analyze each patient individually and make decisions based on evolving bodies of evidence.
Collapse
Affiliation(s)
| | - Adam Green
- Cooper University Health Care, Camden, NJ, USA
| | - Nitin Puri
- Cooper University Health Care, Camden, NJ, USA
| | | |
Collapse
|
30
|
Zhang C, Struewing I, Mistry JH, Wahman DG, Pressman J, Lu J. Legionella and other opportunistic pathogens in full-scale chloraminated municipal drinking water distribution systems. WATER RESEARCH 2021; 205:117571. [PMID: 34628111 PMCID: PMC8629321 DOI: 10.1016/j.watres.2021.117571] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 05/06/2023]
Abstract
Water-based opportunistic pathogens (OPs) are a leading cause of drinking-water-related disease outbreaks, especially in developed countries such as the United States (US). Physicochemical water quality parameters, especially disinfectant residuals, control the (re)growth, presence, colonization, and concentrations of OPs in drinking water distribution systems (DWDSs), while the relationship between OPs and those parameters remain unclear. This study aimed to quantify how physicochemical parameters, mainly monochloramine residual concentration, hydraulic residence time (HRT), and seasonality, affected the occurrence and concentrations of four common OPs (Legionella, Mycobacterium, Pseudomonas, and Vermamoeba vermiformis) in four full-scale DWDSs in the US. Legionella as a dominant OP occurred in 93.8% of the 64 sampling events and had a mean density of 4.27 × 105 genome copies per liter. Legionella positively correlated with Mycobacterium, Pseudomonas, and total bacteria. Multiple regression with data from the four DWDSs showed that Legionella had significant correlations with total chlorine residual level, free ammonia concentration, and trihalomethane concentration. Therefore, Legionella is a promising indicator of water-based OPs, reflecting microbial water quality in chloraminated DWDSs. The OP concentrations had strong seasonal variations and peaked in winter and/or spring possibly because of reduced water usage (i.e., increased water stagnation or HRT) during cold seasons. The OP concentrations generally increased with HRT presumably because of disinfectant residual decay, indicating the importance of well-maintaining disinfectant residuals in DWDSs for OP control. The concentrations of Mycobacterium, Pseudomonas, and V. vermiformis were significantly associated with total chlorine residual concentration, free ammonia concentration, and pH and trihalomethane concentration, respectively. Overall, this study demonstrates how the significant spatiotemporal variations of OP concentrations in chloraminated DWDSs correlated with critical physicochemical water quality parameters such as disinfectant residual levels. This work also indicates that Legionella is a promising indicator of OPs and microbial water quality in chloraminated DWDSs.
Collapse
Affiliation(s)
- Chiqian Zhang
- Pegasus Technical Services, Inc., Cincinnati, Ohio, USA
| | - Ian Struewing
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Jatin H Mistry
- United States Environmental Protection Agency, Region 6, Dallas, Texas, USA
| | - David G Wahman
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Jonathan Pressman
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA.
| |
Collapse
|
31
|
Richard R, Boyer TH. Pre- and post-flushing of three schools in Arizona due to COVID-19 shutdown. AWWA WATER SCIENCE 2021; 3:e1239. [PMID: 34901766 PMCID: PMC8646703 DOI: 10.1002/aws2.1239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 01/14/2023]
Abstract
A one-day water sampling and flushing study was conducted for three schools in Maricopa County that experienced prolonged building inactivity due to the COVID-19 pandemic: an elementary school, middle school, and high school. Grab samples were taken at hand washing sinks, water fountains, and hose bibbs before and after flushing. Samples were analyzed for free chlorine, UVA254, copper, lead, total trihalomethanes, pH, conductivity, temperature, and Legionella species. All three schools experienced an increase in free chlorine post-flush. Copper concentrations were higher for first draw samples than post-flush samples for all schools. Conductivity, temperature, and pH did not see a major change after flushing. UVA254 values decreased after flushing. Bromoform species saw a 20% increase after flushing at the elementary school. Legionella spp. did not decrease post-flush at the elementary school. Overall, flushing changed the water quality at the schools. However, equipment flushing may be necessary to fully remediate Legionella spp. ARTICLE IMPACT STATEMENT Prolonged closure of buildings causes water quality issues such as lack of disinfectant and Legionella. Flushing can restore water quality.
Collapse
Affiliation(s)
- Rain Richard
- School of Sustainable Engineering and the Built Environment (SSEBE)Arizona State UniversityTempeArizonaUSA
- Biodesign Swette Center for Environmental BiotechnologyArizona State UniversityTempeArizonaUSA
| | - Treavor H. Boyer
- School of Sustainable Engineering and the Built Environment (SSEBE)Arizona State UniversityTempeArizonaUSA
- Biodesign Swette Center for Environmental BiotechnologyArizona State UniversityTempeArizonaUSA
| |
Collapse
|
32
|
Roy S, Mosteller K, Mosteller M, Webber K, Webber V, Webber S, Reid L, Walters L, Edwards MA. Citizen science chlorine surveillance during the Flint, Michigan federal water emergency. WATER RESEARCH 2021; 201:117304. [PMID: 34107367 DOI: 10.1016/j.watres.2021.117304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/30/2021] [Accepted: 05/24/2021] [Indexed: 05/12/2023]
Abstract
Rising incidence of waterborne diseases including Legionellosis linked to low chlorine residuals in buildings and the availability of inexpensive testing options, create an opportunity for citizen science chorine monitoring to complement sampling done by water utilities. University researchers and Flint residents coordinated a citizen science chlorine surveillance campaign in Flint, Michigan in 2015-19, that helped expose the nature of two deadly Legionnaires Disease outbreaks in 2014-2015 during the Flint Water Crisis and progress of system recovery during the Federal emergency. Results obtained with an inexpensive color wheel were in agreement with a digital colorimeter (R2 =0.99; p = 2.81 × 10-21) at 15 sites geographically distributed across Flint. Blinded tests revealed good agreement between official (n = 2051) and citizen (n = 654) data in terms of determining whether regulatory guidelines for chlorine were met, but a discovery that the citizen data were statistically lower than the city's (p<0.00001) especially in warm summer months led to recommendations for increased flushing of service lines before measurements. This work suggests that expanded citizen surveillance of chlorine, site specific flushing advice, and guidance on decisions about water heater set point could help consumers reduce Legionella risks in their homes. Citizen science initiatives for chlorine monitoring offer a unique opportunity for mutually beneficial collaborations between consumers and utilities to reduce the main source of waterborne disease in developed countries.
Collapse
Affiliation(s)
- Siddhartha Roy
- Civil and Environmental Engineering, Virginia Tech, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pereira A, Silva AR, Melo LF. Legionella and Biofilms-Integrated Surveillance to Bridge Science and Real-Field Demands. Microorganisms 2021; 9:microorganisms9061212. [PMID: 34205095 PMCID: PMC8228026 DOI: 10.3390/microorganisms9061212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Legionella is responsible for the life-threatening pneumonia commonly known as Legionnaires’ disease or legionellosis. Legionellosis is known to be preventable if proper measures are put into practice. Despite the efforts to improve preventive approaches, Legionella control remains one of the most challenging issues in the water treatment industry. Legionellosis incidence is on the rise and is expected to keep increasing as global challenges become a reality. This puts great emphasis on prevention, which must be grounded in strengthened Legionella management practices. Herein, an overview of field-based studies (the system as a test rig) is provided to unravel the common roots of research and the main contributions to Legionella’s understanding. The perpetuation of a water-focused monitoring approach and the importance of protozoa and biofilms will then be discussed as bottom-line questions for reliable Legionella real-field surveillance. Finally, an integrated monitoring model is proposed to study and control Legionella in water systems by combining discrete and continuous information about water and biofilm. Although the successful implementation of such a model requires a broader discussion across the scientific community and practitioners, this might be a starting point to build more consistent Legionella management strategies that can effectively mitigate legionellosis risks by reinforcing a pro-active Legionella prevention philosophy.
Collapse
|
34
|
Chambers ST, Slow S, Scott-Thomas A, Murdoch DR. Legionellosis Caused by Non- Legionella pneumophila Species, with a Focus on Legionella longbeachae. Microorganisms 2021; 9:291. [PMID: 33572638 PMCID: PMC7910863 DOI: 10.3390/microorganisms9020291] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Although known as causes of community-acquired pneumonia and Pontiac fever, the global burden of infection caused by Legionella species other than Legionella pneumophila is under-recognised. Non-L. pneumophila legionellae have a worldwide distribution, although common testing strategies for legionellosis favour detection of L. pneumophila over other Legionella species, leading to an inherent diagnostic bias and under-detection of cases. When systematically tested for in Australia and New Zealand, L. longbeachae was shown to be a leading cause of community-acquired pneumonia. Exposure to potting soils and compost is a particular risk for infection from L. longbeachae, and L. longbeachae may be better adapted to soil and composting plant material than other Legionella species. It is possible that the high rate of L. longbeachae reported in Australia and New Zealand is related to the composition of commercial potting soils which, unlike European products, contain pine bark and sawdust. Genetic studies have demonstrated that the Legionella genomes are highly plastic, with areas of the chromosome showing high levels of recombination as well as horizontal gene transfer both within and between species via plasmids. This, combined with various secretion systems and extensive effector repertoires that enable the bacterium to hijack host cell functions and resources, is instrumental in shaping its pathogenesis, survival and growth. Prevention of legionellosis is hampered by surveillance systems that are compromised by ascertainment bias, which limits commitment to an effective public health response. Current prevention strategies in Australia and New Zealand are directed at individual gardeners who use potting soils and compost. This consists of advice to avoid aerosols generated by the use of potting soils and use masks and gloves, but there is little evidence that this is effective. There is a need to better understand the epidemiology of L. longbeachae and other Legionella species in order to develop effective treatment and preventative strategies globally.
Collapse
Affiliation(s)
- Stephen T. Chambers
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand; (S.S.); (A.S.-T.); (D.R.M.)
| | | | | | | |
Collapse
|
35
|
Cullom AC, Martin RL, Song Y, Williams K, Williams A, Pruden A, Edwards MA. Critical Review: Propensity of Premise Plumbing Pipe Materials to Enhance or Diminish Growth of Legionella and Other Opportunistic Pathogens. Pathogens 2020; 9:E957. [PMID: 33212943 PMCID: PMC7698398 DOI: 10.3390/pathogens9110957] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Growth of Legionella pneumophila and other opportunistic pathogens (OPs) in drinking water premise plumbing poses an increasing public health concern. Premise plumbing is constructed of a variety of materials, creating complex environments that vary chemically, microbiologically, spatially, and temporally in a manner likely to influence survival and growth of OPs. Here we systematically review the literature to critically examine the varied effects of common metallic (copper, iron) and plastic (PVC, cross-linked polyethylene (PEX)) pipe materials on factors influencing OP growth in drinking water, including nutrient availability, disinfectant levels, and the composition of the broader microbiome. Plastic pipes can leach organic carbon, but demonstrate a lower disinfectant demand and fewer water chemistry interactions. Iron pipes may provide OPs with nutrients directly or indirectly, exhibiting a high disinfectant demand and potential to form scales with high surface areas suitable for biofilm colonization. While copper pipes are known for their antimicrobial properties, evidence of their efficacy for OP control is inconsistent. Under some circumstances, copper's interactions with premise plumbing water chemistry and resident microbes can encourage growth of OPs. Plumbing design, configuration, and operation can be manipulated to control such interactions and health outcomes. Influences of pipe materials on OP physiology should also be considered, including the possibility of influencing virulence and antibiotic resistance. In conclusion, all known pipe materials have a potential to either stimulate or inhibit OP growth, depending on the circumstances. This review delineates some of these circumstances and informs future research and guidance towards effective deployment of pipe materials for control of OPs.
Collapse
Affiliation(s)
- Abraham C. Cullom
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| | - Rebekah L. Martin
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
- Civil and Environmental Engineering, Virginia Military Institute, Lexington, VA 24450, USA
| | - Yang Song
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| | | | - Amanda Williams
- c/o Marc Edwards, Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA;
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| | - Marc A. Edwards
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| |
Collapse
|