1
|
Yu L, Hua Z, Liu X, Xing X, Zhang C, Hu T, Xue H. Multi-compartment levels and distributions of per- and polyfluoroalkyl substances surrounding fluorochemical manufacturing parks in China: A review of the current literature. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136196. [PMID: 39426146 DOI: 10.1016/j.jhazmat.2024.136196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Fluorochemical manufacturing parks (FMPs) are important point sources of per- and polyfluoroalkyl substances (PFASs) emissions to the surrounding environment. With legacy PFASs being phased-out and restricted in developed countries, China has emerged as one of the world's leading producers of PFASs. However, the occurrence and distribution patterns of PFASs emitted from FMPs in China remain poorly understood. This knowledge gap may lead to an underestimation of the contribution of FMPs as a source of PFASs in the environment. In this study, we collected pertinent data from published studies of PFAS emissions from FMPs and explored the occurrence patterns and distribution characteristics of PFASs across various media, including surface water, groundwater, tap water, sediment, soil, air, dust, plants, and animals. Seventeen classes of PFASs containing 80 compounds were identified in different media around FMPs, with concentrations significantly greater than in other suspected PFAS-contaminated sites. Notably, the levels of ultra-short-chain and emerging PFASs in the areas surrounding some FMPs were comparable to those of legacy PFASs, highlighting an increasing prevalence for the use of PFAS alternatives. In terms of spatial distribution, there was a decline in the PFAS concentration in most environmental media as the distance from FMPs increased. In addition, the distribution patterns of PFASs were associated with PFAS characteristics, the properties of different media, migration pathways, and other relevant aspects. This information will provide valuable insights into the current contamination situation regarding PFASs surrounding FMPs and will have profound implications for the effective implementation of PFAS management at FMPs.
Collapse
Affiliation(s)
- Liang Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Zulin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Xiaodong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China.
| | - Xiaolei Xing
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Chenyang Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Tao Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Hongqin Xue
- School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Bushong A, Sepúlveda M, Scherer M, Valachovic AC, Neill CM, Horn S, Choi Y, Lee LS, Baloni P, Hoskins T. Effects of Perfluorinated Alkyl Substances (PFAS) on Amphibian Body and Liver Conditions: Is Lipid Metabolism Being Perturbed throughout Metamorphosis? TOXICS 2024; 12:732. [PMID: 39453152 PMCID: PMC11510839 DOI: 10.3390/toxics12100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) may interact with peroxisome proliferator activated receptors (PPARs) and alter lipid homeostasis. Using Xenopus laevis, we investigated the effect of PFAS on (a) lipid homeostasis and whether this correlated to changes in body and hepatic condition; (b) the expression of hepatic genes regulated by PPAR; and (c) the hepatic lipidome. We chronically exposed tadpoles to 0.5 µg/L of either PFOS, PFHxS, PFOA, PFHxA, a binary mixture of PFOS and PFHxS (0.5 µg/L of each), or a control, from NF stage 52 through metamorphic climax. Growth, development, and survival were not affected, but we detected a sex-specific decrease in body condition at NF 66 (6.8%) and in hepatic condition (16.6%) across metamorphic climax for male tadpoles exposed to PFOS. We observed weak evidence for the transient downregulation of apolipoprotein-V (apoa5) at NF 62 in tadpoles exposed to PFHxA. Acyl-CoA oxidase 1 (acox1) was downregulated only in males exposed to PFHxS (Ln(Fold Change) = -0.54). We detected PFAS-specific downregulation of structural glycerophospholipids, while semi-quantitative profiling detected the upregulation in numerous glycerophospholipids, sphingomyelins, and diglycerides. Overall, our findings indicate that PFAS can induce sex-specific effects that change across larval development and metamorphosis. We demonstrate that PFAS alter lipid metabolism at environmentally relevant concentrations through divergent mechanisms that may not be related to PPARs, with an absence of effects on body condition, demonstrating the need for more molecular studies to elucidate mechanisms of PFAS-induced lipid dysregulation in amphibians and in other taxa.
Collapse
Affiliation(s)
- Anna Bushong
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| | - Maria Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
- Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
| | - Meredith Scherer
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| | - Abigail C. Valachovic
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| | - C. Melman Neill
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| | - Sophia Horn
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| | - Youn Choi
- Department of Agronomy and Environmental & Ecological Engineering, Interdisciplinary Ecological Sciences and Engineering, Purdue University, West Lafayette, IN 47907, USA; (Y.C.); (L.S.L.)
| | - Linda S. Lee
- Department of Agronomy and Environmental & Ecological Engineering, Interdisciplinary Ecological Sciences and Engineering, Purdue University, West Lafayette, IN 47907, USA; (Y.C.); (L.S.L.)
| | - Priyanka Baloni
- College of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Tyler Hoskins
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| |
Collapse
|
3
|
Cao J, Lei Y, Li W, Jiang X, Li M. Coupled digital visualization and multi-omics uncover neurobehavioral dysfunction in zebrafish induced by resorcinol bis(diphenylphosphate). ENVIRONMENT INTERNATIONAL 2024; 192:109023. [PMID: 39321538 DOI: 10.1016/j.envint.2024.109023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Resorcinol bis(diphenylphosphate) (RDP) is an emerging pollutant that has been frequently detected in aquatic environments, although its toxicity is poorly characterized. To understand how RDP affects the neural system, two-month-old zebrafish were exposed to RDP at concentrations of 0.1 and 10 μg/L for 60 days. Following exposure, behavioral assessments were conducted, revealing the emergence of anxiety-like symptoms and memory deficits among the adult fish exposed to RDP, especially at the higher concentration. The increased blood-brain barrier (BBB) permeability (4.67-5.58-fold higher than the control group), reduced expression of tight junction proteins and the rapid brain RDP bioaccumulation (15.63 ± 2.34 ng/g wet weight) indicated the neurotoxicity of RDP. Excess reactive oxygen species synthesis (2.20-2.50-fold) was induced by RDP, leading to mitochondrial dysfunction and decreased production of neurotransmitters in the brain, specifically serotonin (5-HT; 16.3 %) and dopamine (DA; 18.1 %). Metabolomic analysis revealed that the low-toxicity RDP dose up-regulated lipid-related metabolites, while the high-toxicity dose up-regulated arachidonic acid metabolism and disrupted amino acid metabolism, including tryptophan and tyrosine metabolism related to dopaminergic and serotonergic pathways. The dysregulation of genes in various cellular processes was identified by transcriptomics, mainly involved in cell adhesion molecules and gap junctions, and oxidative phosphorylation, which were directly associated with BBB permeability and oxidative stress, respectively. Correlation analysis of microbiome-metabolite-host links built a mechanistic hypothesis for alterations in gut microbiota (Actinobacteriota and Proteobacteria) induced by high-dose RDP leading to the alteration of tryptophan, tyrosine, and arachidonic acid metabolism, decreasing the production of 5-HT and DA through the gut-brain axis. This study provides valuable insights into the mechanism underlying RDP-induced neurotoxicity in zebrafish, which can inform ecological risk assessments.
Collapse
Affiliation(s)
- Jing Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yumeng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wenhao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiaofeng Jiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
4
|
Jiang JY, How CM, Huang CW, Luo YS, Wei CC. Comparing the obesogenic effect and regulatory mechanisms of long-term exposure to per/polyfluoroalkyl substances with different terminal groups in Caenorhabditis elegans. CHEMOSPHERE 2024; 365:143396. [PMID: 39313077 DOI: 10.1016/j.chemosphere.2024.143396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/02/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
Per/polyfluoroalkyl substances (PFASs) are ubiquitous, bioaccumulative, and recalcitrant contaminants, posing global exposure and health risks. The effects of chemical structures on toxicities and the mechanisms of their obesogenic effects were largely unclear. This study used the model organism Caenorhabditis elegans to assess the impact of long-term exposure to different PFASs (PFNA, PFOSA, PFBS, PFHxS, 6:2 FTS, 4:2 FTS, PFOA, and PFOS) on growth and lipid metabolism and discussed the obesogenic mechanisms of selected PFASs. The growth assays indicated longer carbon-fluorine (-CF) chains and total fluorine atoms increased developmental toxicity of PFASs, while at 8 -CF chain-length, PFNA (-COOH terminal), PFOS (-SO3 terminal), and PFOSA (-SO2NH2 terminal) exhibited differential growth inhibition. With the toxicity ranking of PFNA > PFOS > PFOSA, all PFASs significantly induced total lipid accumulation and perturbed the lipid composition in C. elegans. All three PFASs significantly induced lipogenesis gene expression and partially suppressed lipolysis genes. The results suggested that the disruption of lipid metabolism of PFOSA depends on sbp-1, while PFNA and PFOS depend on nhr-49. In conclusion, long-term exposure to PFNA, PFOSA, and PFOS triggers obesogenic effects in organisms by distinct molecular mechanisms.
Collapse
Affiliation(s)
- Jia-Yu Jiang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
| | - Chun Ming How
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
| | - Chi-Wei Huang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 811, Taiwan
| | - Yu-Syuan Luo
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan; Master of Public Health Program, College of Public Health, National Taiwan University, Taipei, 100, Taiwan
| | - Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan.
| |
Collapse
|
5
|
Rohonczy J, Forbes MR, Gilroy ÈAM, Carpenter DJ, Young SD, Morrill A, Brinovcar C, De Silva AO, Bartlett AJ, Robinson SA. Effects of perfluoroalkyl sulfonic acids on developmental, physiological, and immunological measures in northern leopard frog tadpoles. CHEMOSPHERE 2024; 365:143333. [PMID: 39271078 DOI: 10.1016/j.chemosphere.2024.143333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
The chronic toxicity of short chain perfluoroalkyl sulfonic acids (PFSAs), such as perfluorobutanesulfonic acid (PFBS) and perfluorohexanesulfonic acid (PFHxS), are relatively understudied despite the increasing detection of these compounds in the environment. We investigated the chronic toxicity and bioconcentration of PFBS and PFHxS using northern leopard frog (Rana [Lithobates] pipiens) tadpoles. We exposed Gosner stage (GS) 25 tadpoles to either PFBS or PFHxS at nominal concentrations of 0.1, 1, 10, 100, and 1000 μg/L until metamorphosis (GS42). We then assessed tadpole growth, development, stress, and immune metrics, and measured fatty acid (FA) composition and PFSA concentrations in liver and whole-body tissues. Tadpole growth and development measures were relatively unaffected by PFSA exposure. However, tadpoles exposed to 1000 μg/L PFBS or PFHxS had significantly increased hepatosomatic indexes (HSI) relative to controls. Further, tadpoles from the 1000 μg/L PFHxS treatment had altered FA profiles relative to controls, with increased total FAs, saturated FAs, monounsaturated FAs, and omega-6 polyunsaturated FAs. In addition, tadpoles from the 1000 μg/L PFHxS treatment had a higher probability of waterborne corticosterone detection. These results suggest that PFBS and PFHxS influence the hepatic health of tadpoles, and that PFHxS may alter lipid metabolism in tadpoles. We also observed a higher probability of tadpoles being phenotypically female after exposure to an environmentally relevant concentration (0.1 μg/L) of PFHxS, suggesting that PFHxS may exert endocrine disrupting effects on tadpoles during early development. The measured bioconcentration factors (BCFs) for both compounds were ≤10 L kg-1 wet weight, suggesting low bioconcentration potential for PFBS and PFHxS in tadpoles. Many of the significant effects observed in this study occurred at concentrations several orders of magnitude above those measured in the environment; however, our work shows effects of PFSAs exposure on amphibians and provides essential information for ecological risk assessments of these compounds.
Collapse
Affiliation(s)
- Jillian Rohonczy
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Mark R Forbes
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Ève A M Gilroy
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| | - David J Carpenter
- Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada
| | - Sarah D Young
- Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada
| | - André Morrill
- Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada
| | - Cassandra Brinovcar
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| | - Amila O De Silva
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| | - Adrienne J Bartlett
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| | - Stacey A Robinson
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada; Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada.
| |
Collapse
|
6
|
Zhang Y, Sun W, Wang B, Liu Z, Liu Z, Zhang X, Wang B, Han Y, Zhang H. Metabolomics reveals the lipid metabolism disorder in Pelophylax nigromaculatus exposed to environmentally relevant levels of microcystin-LR. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124458. [PMID: 38942276 DOI: 10.1016/j.envpol.2024.124458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Cyanobacterial blooms have emerged as a significant environmental issue worldwide in recent decades. However, the toxic effects of microcystin-LR (MC-LR) on aquatic organisms, such as frogs, have remained poorly understood. In this study, frogs (Pelophylax nigromaculatus) were exposed to environmentally relevant concentrations of MC-LR (0, 1, and 10 μg/L) for 21 days. Subsequently, we assessed the impact of MC-LR on the histomorphology of the frogs' livers and conducted a global MS-based nontarget metabolomics analysis, followed by the determination of substances involved in lipid metabolism. Results showed that MC-LR significantly induced histological alterations in the frogs' hepatopancreas. Over 200 differentially expressed metabolites were identified, primarily enriched in lipid metabolism. Biochemical analysis further confirmed that MC-LR exposure led to a disorder in lipid metabolism in the frogs. This study laid the groundwork for a mechanistic understanding of MC-LR toxicity in frogs and potentially other aquatic organisms.
Collapse
Affiliation(s)
- Yinan Zhang
- Hangzhou Normal University, Hangzhou, 310018, China
| | - Wenhui Sun
- Hangzhou Normal University, Hangzhou, 310018, China
| | - Bingyi Wang
- Hangzhou Normal University, Hangzhou, 310018, China
| | - Zhiqun Liu
- Hangzhou Normal University, Hangzhou, 310018, China
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou, 310018, China; Hangzhou International Urbanology Research Center, Hangzhou, 311121, China
| | | | - Binhao Wang
- Hangzhou Normal University, Hangzhou, 310018, China
| | - Yu Han
- Hangzhou Normal University, Hangzhou, 310018, China
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou, 310018, China; Hangzhou International Urbanology Research Center, Hangzhou, 311121, China.
| |
Collapse
|
7
|
Garmo LC, Herroon MK, Mecca S, Wilson A, Allen DR, Agarwal M, Kim S, Petriello MC, Podgorski I. The long-chain polyfluorinated alkyl substance perfluorohexane sulfonate (PFHxS) promotes bone marrow adipogenesis. Toxicol Appl Pharmacol 2024; 491:117047. [PMID: 39111555 DOI: 10.1016/j.taap.2024.117047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/11/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) bioaccumulate in different organ systems, including bone. While existing research highlights the adverse impact of PFAS on bone density, a critical gap remains in understanding the specific effects on the bone marrow microenvironment, especially the bone marrow adipose tissue (BMAT). Changes in BMAT have been linked to various health consequences, such as the development of osteoporosis and the progression of metastatic tumors in bone. Studies presented herein demonstrate that exposure to a mixture of five environmentally relevant PFAS compounds promotes marrow adipogenesis in vitro and in vivo. We show that among the components of the mixture, PFHxS, an alternative to PFOS, has the highest propensity to accumulate in bone and effectively promote marrow adipogenesis. Utilizing RNAseq approaches, we identified the peroxisome proliferator-activated receptor (PPAR) signaling as a top pathway modulated by PFHxS exposure. Furthermore, we provide results suggesting the activation and involvement of PPAR-gamma (PPARγ) in PFHxS-mediated bone marrow adipogenesis, especially in combination with high-fat diet. In conclusion, our findings demonstrate the potential impact of elevated PFHxS levels, particularly in occupational settings, on bone health, and specifically bone marrow adiposity. This study contributes new insights into the health risks of PFHxS exposure, urging further research on the relationship between environmental factors, diet, and adipose tissue dynamics.
Collapse
Affiliation(s)
- Laimar C Garmo
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Mackenzie K Herroon
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Shane Mecca
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Alexis Wilson
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, United States of America
| | - David R Allen
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Manisha Agarwal
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, United States of America
| | - Michael C Petriello
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States of America
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America; Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, United States of America.
| |
Collapse
|
8
|
He YJ, Liao H, Yang G, Qiu W, Xuan R, Zheng G, Xu B, Yang X, Magnuson JT, Schlenk D, Zheng C. Perfluorohexanesulfonic Acid (PFHxS) Impairs Lipid Homeostasis in Zebrafish Larvae through Activation of PPARα. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16258-16268. [PMID: 39146316 DOI: 10.1021/acs.est.4c03053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Perfluorohexanesulfonic acid (PFHxS), an emerging short-chain per- and polyfluoroalkyl substance, has been frequently detected in aquatic environments. Adverse outcome pathway studies have shown that perfluorinated compounds impair lipid homeostasis through peroxisome proliferator activated receptors (PPARs). However, many of these studies were performed at high concentrations and may thus be a result of overt toxicity. To better characterize the molecular and key events of PFHxS to biota, early life-stage zebrafish (Danio rerio) were exposed to concentrations detected in the environment (0.01, 0.1, 1, and 10 μg/L). Lipidomic and transcriptomic evaluations were integrated to predict potential molecular targets. PFHxS significantly impaired lipid homeostasis by the dysregulation of glycerophospholipids, fatty acyls, glycerolipids, sphingolipids, prenol lipids, and sterol lipids. Informatic analyses of the lipidome and transcriptome indicated alterations of the PPAR signaling pathway, with downstream changes to retinol, linoleic acid, and glycerophospholipid metabolism. To assess the role of PPARs, potential binding of PFHxS to PPARs was predicted and animals were coexposed to a PPAR antagonist (GW6471). Molecular simulation indicated PFHxS had a 27.1% better binding affinity than oleic acid, an endogenous agonist of PPARα. Antagonist coexposures rescued impaired glycerophosphocholine concentrations altered by PFHxS. These data indicate PPARα activation may be an important molecular initiating event for PFHxS.
Collapse
Affiliation(s)
- Ying-Jie He
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Haolin Liao
- Guangdong-Hong Kong Joint Laboratory for Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ge Yang
- Guangdong-Hong Kong Joint Laboratory for Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rongrong Xuan
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Guomao Zheng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bentuo Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jason T Magnuson
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri 65201, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315200, China
| |
Collapse
|
9
|
Liu S, Liu Y, Tang B, Wang Q, Zhang M, Qiu W, Luo X, Mai B, Hao Y, Zheng J, Wang K, Wang D. Spatial distribution, trophic magnification, and risk assessment of per- and polyfluoroalkyl substances in Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis): Risks of emerging alternatives. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135246. [PMID: 39032177 DOI: 10.1016/j.jhazmat.2024.135246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024]
Abstract
The Yangtze finless porpoise (YFP, Neophocaena asiaeorientalis asiaeorientalis) is the only freshwater cetacean found in China. However, per- and polyfluoroalkyl substances (PFASs) risks in YFPs remain unclear. In this study, legacy PFASs, their precursors and alternatives, were determined in YFP muscles (n = 32), liver (n = 29), kidney (n = 24), skin (n = 5), and blubbers (n = 25) collected from Poyang Lake (PL) and Yangtze River (YR) between 2017 and 2023. Perfluorooctane sulfonic acid (PFOS) was the predominant PFAS in all YFP tissues, with a median hepatic concentration of 1700 ng/g wet weight, which is higher than that in other finless porpoises worldwide. PFOS, chlorinated polyfluorinated ether sulfonates (Cl-PFESAs), and perfluoroalkane sulfonamides concentrations in YFP livers from PL were significantly higher than those from YR (p < 0.05); however, the opposite was observed for hexafluoropropylene oxide acids. Biomagnification and trophic magnification factors (BMF and TMF, respectively) of most PFASs in the YFP food web were > 1. Perfluoroheptane sulfonic acid had the highest BMF value (99), followed by 6:2 Cl-PFESA (94) and PFOS (81). The TMFmuscle and TMFliver values of the total PFASs were 3.4 and 6.6, respectively, and were significantly positively correlated with the fluorinated carbon chain length (p < 0.01). In addition, up to 62 % of the hazard quotients for 6:2 Cl-PFESA were > 1, which was higher than that of PFOS (48 %), suggesting a high hepatotoxicity of 6:2 Cl-PFESA to YFPs. Bioaccumulation and biotoxicity of legacy and emerging alternatives in aquatic organisms continue to be a concern, especially for underscoring the vulnerability of the long-lived and endangered species.
Collapse
Affiliation(s)
- Shuai Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Bin Tang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiyu Wang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Miao Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yujiang Hao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jinsong Zheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kexiong Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ding Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
10
|
Gou X, Tian M, Yan L, Xia P, Ji H, Tan H, Shi W, Yu H, Zhang X. A novel molecular pathway of lipid accumulation in human hepatocytes caused by PFOA and PFOS. ENVIRONMENT INTERNATIONAL 2024; 191:108962. [PMID: 39159514 DOI: 10.1016/j.envint.2024.108962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/14/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Exposed to ubiquitously perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) has been associated with non-alcoholic fatty liver disease (NAFLD), yet the underlying molecular mechanism remains elusive. The extrapolation of empirical studies correlating per- and polyfluoroalkyl substance (PFAS) exposure with NAFLD occurrence to real-life exposure was hindered by the limited availability of mechanistic data at environmentally relevant concentrations. Herein, a novel pathway mediating hepatocyte lipid accumulation by PFOA and PFOS at human-relevant dose (<10 μM) was identified by integrating CRISPR-Cas9 genome screening, concentration-dependent transcriptional assay in HepG2 cell and epidemiological data mining. 1) At genetic level, nudt7 showed the highest enriched potency among 569 NAFLD-related genes, and the transcription of nudt7 was significantly downregulated by PFOA and PFOS exposure (<7 μM). 2) At molecular pathway, upon exposure to ≤10-4 μM PFOA and PFOS, the downregulation of nudt7 transcriptional expression triggered the reduction of Ace-CoA hydrolase activity. 3) At cellular level, increased lipids were measured in HepG2 cells with PFOA and PFOS (<2 μM). Overall, we identified a novel mechanism mediated by transcriptional downregulation of nudt7 gene in hepatocellular lipid increase treated with PFOA and PFOS, which could potentially explain the NAFLD occurrence associated with exposure to PFASs in humans.
Collapse
Affiliation(s)
- Xiao Gou
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mingming Tian
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lu Yan
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of the Environment, Nanjing University, Nanjing 210023, China; College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Pu Xia
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Huimin Ji
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Haoyue Tan
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of the Environment, Nanjing University, Nanjing 210023, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China
| | - Wei Shi
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of the Environment, Nanjing University, Nanjing 210023, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China
| | - Hongxia Yu
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of the Environment, Nanjing University, Nanjing 210023, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China
| | - Xiaowei Zhang
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of the Environment, Nanjing University, Nanjing 210023, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China.
| |
Collapse
|
11
|
Meng X, Li W, Qian Y, Cai X, Wei J, Zhang L. Mechanisms of colon toxicity induced by long-term perfluorooctanoic acid exposure in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116762. [PMID: 39047366 DOI: 10.1016/j.ecoenv.2024.116762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Perfluorooctanoic acid (PFOA), a persistent organic pollutant known for its chemical stability, is widely dispersed in the environment, posing significant health risks to mammals through various exposure routes such as ingestion, inhalation, and dermal contact. In this study, mice were exposed to PFOA (0, 0.2, 2 mg/L) through drinking water for 180 days to investigate its toxic effects on the colon. We identified differentially expressed genes through RNA sequencing and validated the impact of PFOA on the expression of these genes in colon tissue. Our findings revealed that long-term exposure to PFOA caused inflammatory bowel disease (IBD)-like damage to the mouse colon. We found PFOA could induce damage to the intestinal barrier. Inhibition of the Wnt signaling pathway following PFOA exposure results in impaired stem cell function in the colon of mice. Furthermore, PFOA activated the PPAR signaling pathway, disrupting cellular lipid metabolism in colon tissues. Additionally, PFOA induced inflammatory responses in colon tissue, facilitating NLR family, pyrin domain containing 3 (NLRP3) inflammasome activation and cell apoptosis. This study offers a thorough understanding of the mechanisms responsible for the damage to mouse colon tissue resulting from long-term exposure to PFOA.
Collapse
Affiliation(s)
- Xiannan Meng
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Wei Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Yongjing Qian
- Department of Histology and Embryology, School of Basic Medical Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Xiaojing Cai
- Department of Histology and Embryology, School of Basic Medical Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Jianfeng Wei
- Department of Histology and Embryology, School of Basic Medical Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Ling Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
12
|
Lin CY, Huey-Jen Hsu S, Lee HL, Wang C, Sung FC, Su TC. Examining a decade-long trend in exposure to per- and polyfluoroalkyl substances and their correlation with lipid profiles: Insights from a prospective cohort study on the young Taiwanese population. CHEMOSPHERE 2024; 364:143072. [PMID: 39128777 DOI: 10.1016/j.chemosphere.2024.143072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are artificial chemicals extensively utilized in everyday products, and numerous cross-sectional epidemiological studies consistently link PFAS exposure with lipid profiles across diverse populations and age groups. In longitudinal studies, the findings also indicate a positive correlation between PFAS and lipid profiles; however, this association remains unexplored in adolescents and young adults. Notably, previous research has predominantly focused on conventional lipid biomarkers, with limited exploration of the relationship between PFAS and diverse lipoprotein subfractions. Furthermore, there is a lack of comprehensive investigation into the temporal trends in PFAS concentrations in Taiwan. To address this research gap, we conducted a prospective study following 592 adolescents and young adults (12-30 years old at enrollment) from the YOung TAiwanese Cohort (YOTA) over a duration of 10 years. During the follow-up period, we measured 11 types of PFAS and various lipid profile biomarkers (low-density lipoprotein cholesterol (LDL-C), small dense LDL-C (sdLDL-C), low-density lipoprotein triglyceride (LDL-TG), high-density lipoprotein cholesterol (HDL-C), HDL3-C, lipoprotein(a), triglyceride). Our results revealed a general decline in PFAS concentrations in the study population. Regarding the correlation between the average levels (averaged across the initial and second tracking periods) of PFAS and lipid profiles (during the second tracking period), we observed positive correlations with total cholesterol and LDL-C for perfluorononanoic acid (PFNA), perfluoroundecanoic acid (PFUdA), perfluorododecanoic acid (PFDoA), N-methylperfluorooctane sulfonamide acetic acid (N-MeFOSAA), and the sum of PFAS (sum of the 11 kinds of PFAS). Additionally, average levels of PFUdA, N-MeFOSAA, and the sum of PFAS exhibited positive associations with sdLDL-C. This study unveiled an overall decrease in PFAS concentrations and underscores a potential link between PFAS exposure and adverse changes in lipid profiles among young populations, emphasizing the need for further exploration into the mechanisms of PFAS on lipid metabolism and atherosclerosis.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, 237, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan; Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Sandy Huey-Jen Hsu
- Department of Laboratory Medicine, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, 100, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Chikang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Fung-Chang Sung
- Department of Health Services Administration, China Medical University College of Public Health, Taichung, 404, Taiwan; Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan; Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan; School of Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
13
|
Liu X, Yu L, Zhang Y, Hua Z, Li X, Xue H, Chu K. Release of perfluoroalkyl acids from sediments under the effects of the discharge ratio and flow flux at a Y-shaped confluence. WATER RESEARCH 2024; 260:121947. [PMID: 38901312 DOI: 10.1016/j.watres.2024.121947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/22/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
The sediments in riverine environments contain notably high concentrations of perfluoroalkyl acids (PFAAs), which may be released into the water body under different hydrodynamic forces, such as those occurring at Y-shaped confluences. The release of PFAAs may pose a significant risk to the surrounding aquatic ecosystems. However, our understanding of the release and transport of PFAAs from sediments at Y-shaped confluences remains unclear. Thus, in this study, we performed a series of flume experiments to explore the effects of discharge ratio and total flow flux on the release and redistribution of PFAAs. The results indicated that these two parameters significantly affected the hydrodynamic features of confluences and the water physicochemical parameters. PFAA concentrations in the dissolved phase and suspended particulate matter (SPM) rose significantly as the discharge ratio and total flow flux increased. The dissolved phase was the predominant loading form of PFAAs, with short-chain PFAAs being the main kind, while long-chain PFAAs were dominant in the SPM. The spatial distribution pattern of PFAAs in sediments at the confluence exhibited a high degree of correspondence with hydrodynamic zones. The separation zone and maximum velocity zone were consistent with sediment regions with low and high capacities to release PFAAs, respectively. The patterns of variation in PFAA distribution were comparable to those observed in hydrodynamic zones as the discharge ratio and total flow flux varied. Furthermore, these two parameters altered the partitioning behaviors of PFAAs; specifically, the PFAAs in sediments tended to be released into the pore-water, while the liberated PFAAs tended to attach to SPM. Linear regression and correlation analyses suggested that the stream-wise and vertical flow velocity components near the sediment-water interface were the primary contributors to sediment suspension and PFAA exchange between the water column and pore-water. These findings will help us to understand the patterns of PFAA release in sediments at Y-shaped confluences and assist in the management of PFAA-contaminated sediments at these locations.
Collapse
Affiliation(s)
- Xiaodong Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| | - Liang Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China.
| | - Yuan Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| | - Xiaoqing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| | - Hongqin Xue
- School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Kejian Chu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| |
Collapse
|
14
|
Liu Z, Zhang Y, Jia X, Hoskins TD, Lu L, Han Y, Zhang X, Lin H, Shen L, Feng Y, Zheng Y, Hu C, Zhang H. Microcystin-LR Induces Estrogenic Effects at Environmentally Relevant Concentration in Black-Spotted Pond Frogs ( Pelophylax nigromaculatus): In Situ, In Vivo, In Vitro, and In Silico Investigations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9559-9569. [PMID: 38710655 DOI: 10.1021/acs.est.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Harmful cyanobacterial blooms are frequent and intense worldwide, creating hazards for aquatic biodiversity. The potential estrogen-like effect of Microcystin-LR (MC-LR) is a growing concern. In this study, we assessed the estrogenic potency of MC-LR in black-spotted frogs through combined field and laboratory approaches. In 13 bloom areas of Zhejiang province, China, the MC-LR concentrations in water ranged from 0.87 to 8.77 μg/L and were correlated with sex hormone profiles in frogs, suggesting possible estrogenic activity of MC-LR. Tadpoles exposed to 1 μg/L, an environmentally relevant concentration, displayed a female-biased sex ratio relative to controls. Transcriptomic results revealed that MC-LR induces numerous and complex effects on gene expression across multiple endocrine axes. In addition, exposure of male adults significantly increased the estradiol (E2)/testosterone (T) ratio by 3.5-fold relative to controls. Downregulation of genes related to male reproductive endocrine function was also identified. We also showed how MC-LR enhances the expression of specific estrogen receptor (ER) proteins, which induce estrogenic effects by activating the ER pathway and hypothalamic-pituitary-gonadal (HPG) axis. In aggregate, our results reveal multiple lines of evidence demonstrating that, for amphibians, MC-LR is an estrogenic endocrine disruptor at environmentally relevant concentrations. The data presented here support the need for a shift in the MC-LR risk assessment. While hepatoxicity has historically been the focus of MC-LR risk assessments, our data clearly demonstrate that estrogenicity is a major mode of toxicity at environmental levels and that estrogenic effects should be considered for risk assessments on MC-LR going forward.
Collapse
Affiliation(s)
- Zhiquan Liu
- School of Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yinan Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiuying Jia
- Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Tyler D Hoskins
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, Indiana 47907, United States
| | - Liping Lu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yu Han
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiaofang Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Huikang Lin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Lilai Shen
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yixuan Feng
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yueyue Zheng
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chao Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hangjun Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Hangzhou International Urbanology Research Center, Hangzhou 311121, China
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
15
|
Han Y, Liu Z, Lu L, Wang B, Li W, Yuan X, Ding J, Zhang H, Liu J. Tetrabromobisphenol A reduces male rats reproductive organ coefficients and disrupting sexual hormone by causing oxidative stress. Toxicology 2024; 505:153837. [PMID: 38763426 DOI: 10.1016/j.tox.2024.153837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Tetrabromobisphenol A (TBBPA) has become a topic of public attention due to its pervasive detection in the environment and organisms in recent decades. However, limited information is available regarding the toxicity of TBBPA on reproductive ability of male mammals. Herein, the reproductive toxicity of TBBPA was investigated in male rats to fill the knowledge gap. In this study, male rats were exposed to TBBPA (0, 10, 100, and 1000 mg/kg) for 6 weeks. Subsequently, body and organ indexes, histopathological evaluation of testis and epididymis, ultrastructural observation of sperm, testosterone and progesterone levels, and oxidative stress indicators were conducted to reveal corresponding mechanisms. Results obtained showed that compare to the control group, the body weight, testes weight, epididymis weight, seminal vesicle and coagulation glands weight of rats in the 1000 mg/kg group lost 8.30%, 16.84%, 20.16%, 19.72% and 26.42%, respectively. Intriguingly, exposure to TBBPA (10, 100, 100 mg/kg) resulted in substantial pathological damage in testis, epididymis and sperm. TBBPA exposure also increased malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, as well as superoxide dismutase (T-SOD) and catalase (CAT) activities in testicular tissue. What's more, the testosterone and progesterone levels in male rat serum were significantly decreased after exposure to TBBPA for 6 weeks. Meanwhile, results of molecular docking showed that TBBPA has a strong affinity with estrogen receptors (ERs). These findings demonstrated that TBBPA exposure negatively impacts the reproductive ability of male rats, thus providing new insights for risk assessment for reproductive health under TBBPA exposure.
Collapse
Affiliation(s)
- Yu Han
- School of Life Sciences, Central South University, Changsha 410083, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhiquan Liu
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Liping Lu
- School of Public Health Hangzhou Normal University, Hangzhou 311121, China
| | - Binhao Wang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenbing Li
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xia Yuan
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiafeng Ding
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Hangjun Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jing Liu
- School of Life Sciences, Central South University, Changsha 410083, China; Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China.
| |
Collapse
|
16
|
Zhang X, Sands M, Lin M, Guelfo J, Irudayaraj J. In vitro toxicity of Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) on Human Renal and Hepatoma Cells. Toxicol Rep 2024; 12:280-288. [PMID: 38469334 PMCID: PMC10925923 DOI: 10.1016/j.toxrep.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/11/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
We evaluate the cytotoxicity, intracellular redox conditions, apoptosis, and methylation of DNMTs/TETs upon exposure to LiTFSI, a novel Per and Polyfluoroalkyl Substances (PFAS) commonly found in lithium-ion batteries, on human renal carcinoma cells (A498) and hepatoma cells (HepG2). The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay showed both Perfluorooctane sulfonate (PFOS) and Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) had a dose-dependent effect on A498 and HepG2, with LiTFSI being less toxic. Intracellular redox conditions were assessed with a microplate reader and confocal, which showed a significant decrease in Reactive Oxygen Species (ROS) levels and an increase in Superoxide dismutase (SOD) content in both cells. Exposure to LiTFSI enhanced cell apoptosis, with HepG2 being more susceptible than A498. Quantitative analysis of mRNA expression levels of 19 genes associated with kidney injury, methylation, lipid metabolism and transportation was performed. LiTFSI exposure impacted kidney function by downregulating smooth muscle alpha-actin (Acta2) and upregulating transforming growth factor beta 1 (Tgfb1), B-cell lymphoma 2-like 1) Bcl2l1, hepatitis A virus cellular receptor 1 (Harvcr1), nuclear factor erythroid 2-like 2 (Nfe2l2), and hairy and enhancer of split 1 (Hes1) expression. LiTFSI exposure also affected the abundance of transcripts associated with DNA methylation by the expression of ten-eleven translocation (TET) and DNA methyltransferase (DNMT) genes. Furthermore, LiTFSI exposure induced an increase in lipid anabolism and alterations in lipid catabolism in HepG2. Our results provide new insight on the potential role of a new contaminant, LiTFSI in the regulation of oxidative stress, apoptosis and methylation in human renal carcinoma and hepatoma cells.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Mia Sands
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Mindy Lin
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Jennifer Guelfo
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
17
|
Yi W, Shi J, Wang L, Wang D, Wang Y, Song J, Xin L, Jiang F. Maternal PFOS exposure in mice induces hepatic lipid accumulation and inflammation in adult female offspring: Involvement of microbiome-gut-liver axis and autophagy. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134177. [PMID: 38565010 DOI: 10.1016/j.jhazmat.2024.134177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Perfluorooctane sulfonates (PFOS) are the persistent organic pollutants. In the present study, 0, 0.3, or 3-mg/kg PFOS were administered to pregnant mice from GD 11 to GD 18. The histopathology of liver and intestine, serum and hepatic lipid levels, lipid metabolism related genes, and gut microbiota were examined in adult female offspring. The results suggested that maternal PFOS exposure increased serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and induced F4/80+ macrophage infiltration in adult female offspring, in addition to the elevation of TNF-α and IL-1β mRNA levels in low-dose and high-dose groups, respectively. Furthermore, maternal exposure to PFOS increased serum triglyceride (TG) and hepatic total cholesterol (TC) levels, which was associated with the alteration of the process of fatty acid transport and β-oxidation, TG synthesis and transport, cholesterol synthesis and excretion in the liver. The AMPK/mTOR/autophagy signaling was also inhibited in the liver of adult female offspring. Moreover, changes in gut microbiota were also related to lipid metabolism, especially for the Desulfovibrio, Ligilactobacillus, Enterorhabdus, HT002 and Peptococcaceae_unclassified. Additionally, maternal exposure to PFOS decreased mRNA expressions of the tight junction protein and AB+ goblet cells in the colon, while increasing the overproduction of lipopolysaccharides (LPS) and F4/80+ macrophage infiltration. Collectively, maternal PFOS exposure induced liver lipid accumulation and inflammation, which strongly correlated with the disruption of the gut-liver axis and autophagy in adult female offspring, highlighting the persistent adverse effects in offspring exposed to PFOS.
Collapse
Affiliation(s)
- Wenjie Yi
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, China
| | - Junwen Shi
- Suzhou Industrial Park Center for Disease Control and Prevention, Suzhou, Jiangsu, China
| | - Liying Wang
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, China
| | - Dongxuan Wang
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, China
| | - Yiting Wang
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, China
| | - Jingwen Song
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, China
| | - Lili Xin
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, China.
| | - Fei Jiang
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, China; School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
18
|
Li J, Chen R, Liu P, Zhang X, Zhou Y, Xing Y, Xiao X, Huang Z. Association of Di(2-ethylhexyl) Terephthalate and Its Metabolites with Nonalcoholic Fatty Liver Disease: An Epidemiology and Toxicology Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8182-8193. [PMID: 38691136 DOI: 10.1021/acs.est.3c09503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
As an alternative plasticizer to conventional phthalates, di(2-ethylhexyl) terephthalate (DEHTP) has attracted considerable concerns, given its widespread detection in the environment and humans. However, the potential toxicity, especially liver toxicity, posed by DEHTP remains unclear. In this study, based on the 2017-2018 National Health and Nutrition Examination Survey, two metabolites of DEHTP, i.e., mono(2-ethyl-5-hydroxyhexyl) terephthalate (MEHHTP) and mono(2-ethyl-5-carboxypentyl) terephthalate (MECPTP), were found to be present in the urine samples of nearly all representative U.S. adults. Moreover, a positive linear correlation was observed between the concentrations of the two metabolites and the risk of nonalcoholic fatty liver disease (NAFLD) in the population. Results of weighted quantile sum and Bayesian kernel machine regression indicated that MEHHTP contributed a greater weight to the risk of NAFLD in comparison with 12 conventional phthalate metabolites. In vitro experiments with hepatocyte HepG2 revealed that MEHHTP exposure could increase lipogenic gene programs, thereby promoting a dose-dependent hepatic lipid accumulation. Activation of liver X receptor α may be an important regulator of MEHHTP-induced hepatic lipid disorders. These findings provide new insights into the liver lipid metabolism toxicity potential of DEHTP exposure in the population.
Collapse
Affiliation(s)
- Jiaoyang Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, P.R. China
| | - Rongbin Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, P.R. China
| | - Peng Liu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, P.R. China
| | - Xin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, P.R. China
| | - Yan Zhou
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, P.R. China
| | - Yudong Xing
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, P.R. China
| | - Xinhua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, P.R. China
| | - Zhenzhen Huang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, P.R. China
| |
Collapse
|
19
|
Liu Z, Shi C, Wang B, Zhang X, Ding J, Gao P, Yuan X, Liu Z, Zhang H. Cytochrome P450 enzymes in the black-spotted frog ( Pelophylax nigromaculatus): molecular characterization and upregulation of expression by sulfamethoxazole. Front Physiol 2024; 15:1412943. [PMID: 38784115 PMCID: PMC11112259 DOI: 10.3389/fphys.2024.1412943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Cytochrome P450 (CYP) enzymes are crucial for the detoxification of xenobiotics, cellular metabolism, and homeostasis. This study investigated the molecular characterization of CYP enzymes in the black-spotted frog, Pelophylax nigromaculatus, and examined the regulation of CYP expression in response to chronic exposure to the antibiotic sulfamethoxazole (SMX) at various environmental concentrations (0, 1, 10, and 100 μg/L). The full-length cDNA of Pn-CYP26B1 was identified. The sequence included open reading frames of 1,536 bp, encoding proteins comprising 511 amino acids. The signature motif, FxxGxxxCxG, was highly conserved when compared with a number of selected animal species. SMX significantly upregulated the expression of the protein CYP26B1 in frog livers at concentrations of 1 and 10 μg/L. SMX showed an affinity for CYP26B1 of -7.6 kcal/mol, indicating a potential mechanism for SMX detoxification or adaptation of the frog. These findings contributed to our understanding of the environmental impact of antibiotics on amphibian species and underscored the importance of CYP enzymes in maintaining biochemical homeostasis under exposure to xenobiotic stress.
Collapse
Affiliation(s)
- Zhiqun Liu
- Hangzhou Normal University, Hangzhou, China
| | - Chaoli Shi
- Hangzhou Normal University, Hangzhou, China
| | | | | | - Jiafeng Ding
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
| | - Panpan Gao
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
| | - Xia Yuan
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai, China
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
| |
Collapse
|
20
|
Chen P, Zhao N, Wang R, Chen G, Hu Y, Dou Z, Ban C. Hepatotoxicity and lipid metabolism disorders of 8:2 polyfluoroalkyl phosphate diester in zebrafish: In vivo and in silico evidence. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133807. [PMID: 38412642 DOI: 10.1016/j.jhazmat.2024.133807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
8:2 polyfluoroalkyl phosphate diester (8:2 diPAP) has been shown to accumulate in the liver, but whether it induces hepatotoxicity and lipid metabolism disorders remains largely unknown. In this study, zebrafish embryos were exposed to 8:2 diPAP for 7 d. Hepatocellular hypertrophy and karyolysis were noted after exposure to 0.5 ng/L 8:2 diPAP, suggesting suppressed liver development. Compared to the water control, 8:2 diPAP led to significantly higher triglyceride and total cholesterol levels, but markedly lower levels of low-density lipoprotein, implying disturbed lipid homeostasis. The levels of two peroxisome proliferator activated receptor (PPAR) subtypes (pparα and pparγ) involved in hepatotoxicity and lipid metabolism were significantly upregulated by 8:2 diPAP, consistent with their overexpression as determined by immunohistochemistry. In silico results showed that 8:2 diPAP formed hydrogen bonds with PPARα and PPARγ. Among seven machine learning models, Adaptive Boosting performed the best in predicting the binding affinities of PPARα and PPARγ on the test set. The predicted binding affinity of 8:2 diPAP to PPARα (7.12) was higher than that to PPARγ (6.97) by Adaptive Boosting, which matched well with the experimental results. Our results revealed PPAR - mediated adverse effects of 8:2 diPAP on the liver and lipid metabolism of zebrafish larvae.
Collapse
Affiliation(s)
- Pengyu Chen
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China; Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210024, China.
| | - Na Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Ruihan Wang
- Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Geng Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxi Hu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Zhichao Dou
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Chenglong Ban
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| |
Collapse
|
21
|
Chen S, Ren X, Yu Y, Cheng L, Ding G, Yang H, Zhang H, Chen J, Geng N. Metabolic disturbance of short- and medium-chain chlorinated paraffins to zebrafish larva. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171372. [PMID: 38431168 DOI: 10.1016/j.scitotenv.2024.171372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Chlorinated paraffins (CPs) are widely produced chemicals. Short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) were listed as Persistent Organic Pollutants (POPs) and candidate POPs under the Stockholm Convention, respectively. The present study explored the developmental toxicity and metabolic disruption caused by SCCPs and MCCPs in zebrafish (Danio rerio) larvae. CPs exposure at environmentally relevant levels caused no obvious phenotypic changes with zebrafish larvae except that the body length shortening was observed after exposure to CPs at 1-200 μg/L for 7 day post fertilization. A further metabolomic approach was conducted to explore the early biological responses of developmental toxicity induced by CPs at low dose (1, 5, and 10 μg/L). The results of metabolic disorder, pathway analysis and chronic values indicated that, compared with SCCPs, MCCPs exhibited more risks to zebrafish larvae at low doses. Lipid metabolism was markedly affected in SCCPs exposure group, whereas MCCPs primarily disturbed lipid metabolism, amino acid, and nucleotide metabolisms. Compare with SCCPs, the relatively higher lipid solubility, protein affinity and metabolic rate of MCCPs can probably explain why MCCP-mediated metabolic disruption was significantly higher than that of SCCP. Notably, SCCPs and MCCPs have the same potential to cause cancer, but no evidence indicates the mutagenicity. In summary, our study provides insight into the potential adverse outcome for SCCP and MCCP at low doses.
Collapse
Affiliation(s)
- Shuangshuang Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China; College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xiaoqian Ren
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Yu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Lin Cheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Hairong Yang
- Safety Evaluation Center of Shenyang SYRICI Testing Co., Ltd., Shenyang, Liaoning 110141, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.
| |
Collapse
|
22
|
Li S, Wu L, Zeng H, Zhang J, Qin S, Liang LX, Andersson J, Meng WJ, Chen XY, Wu QZ, Lin LZ, Chou WC, Dong GH, Zeng XW. Hepatic injury and ileitis associated with gut microbiota dysbiosis in mice upon F-53B exposure. ENVIRONMENTAL RESEARCH 2024; 248:118305. [PMID: 38307183 DOI: 10.1016/j.envres.2024.118305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
Chlorinated polyfluorinated ether sulfonate (F-53B), a substitute of perfluorooctane sulfonic acid (PFOS), has attracted significant attention for its link to hepatotoxicity and enterotoxicity. Nevertheless, the underlying mechanisms of F-53B-induced enterohepatic toxicity remain incompletely understood. This study aimed to explore the role of F-53B exposure on enterohepatic injury based on the gut microbiota, pathological and molecular analysis in mice. Here, we exposed C57BL/6 mice to F-53B (0, 4, 40, and 400 μg/L) for 28 days. Our findings revealed a significant accumulation of F-53B in the liver, followed by small intestines, and feces. In addition, F-53B induced pathological collagen fiber deposition and lipoid degeneration, up-regulated the expression of fatty acid β-oxidation-related genes (PPARα and PPARγ, etc), while simultaneously down-regulating pro-inflammatory genes (Nlrp3, IL-1β, and Mcp1) in the liver. Meanwhile, F-53B induced ileal mucosal barrier damage, and an up-regulation of pro-inflammatory genes and mucosal barrier-related genes (Muc1, Muc2, Claudin1, Occludin, Mct1, and ZO-1) in the ileum. Importantly, F-53B distinctly altered gut microbiota compositions by increasing the abundance of Akkermansia and decreasing the abundance of Prevotellaceae_NK3B31_group in the feces. F-53B-altered microbiota compositions were significantly associated with genes related to fatty acid β-oxidation, inflammation, and mucosal barrier. In summary, our results demonstrate that F-53B is capable of inducing hepatic injury, ileitis, and gut microbiota dysbiosis in mice, and the gut microbiota dysbiosis may play an important role in the F-53B-induced enterohepatic toxicity.
Collapse
Affiliation(s)
- Shenpan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - LuYin Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - HuiXian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Jing Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - ShuangJian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Li-Xia Liang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - John Andersson
- Department of Psychology Umeå University, Umeå, SE-90187, Sweden.
| | - Wen-Jie Meng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xing-Yu Chen
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Wei-Chun Chou
- Center for Environmental and Human Toxicology, Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, United States.
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
23
|
Gonkowski S, Ochoa-Herrera V. Poly- and perfluoroalkyl substances (PFASs) in amphibians and reptiles - exposure and health effects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106907. [PMID: 38564994 DOI: 10.1016/j.aquatox.2024.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Poly- and perfluoroalkyl substances (PFASs) are commonly used in various industries and everyday products, including clothing, electronics, furniture, paints, and many others. PFASs are primarily found in aquatic environments, but also present in soil, air and plants, making them one of the most important and dangerous pollutants of the natural environment. PFASs bioaccumulate in living organisms and are especially dangerous to aquatic and semi-aquatic animals. As endocrine disruptors, PFASs affect many internal organs and systems, including reproductive, endocrine, nervous, cardiovascular, and immune systems. This manuscript represents the first comprehensive review exclusively focusing on PFASs in amphibians and reptiles. Both groups of animals are highly vulnerable to PFASs in the natural habitats. Amphibians and reptiles, renowned for their sensitivity to environmental changes, are often used as crucial bioindicators to monitor ecosystem health and environmental pollution levels. Furthermore, the decline in amphibian and reptile populations worldwide may be related to increasing environmental pollution. Therefore, studies investigating the exposure of amphibians and reptiles to PFASs, as well as their impacts on these organisms are essential in modern toxicology. Summarizing the current knowledge on PFASs in amphibians and reptiles in a single manuscript will facilitate the exploration of new research topics in this field. Such a comprehensive review will aid researchers in understanding the implications of PFASs exposure on amphibians and reptiles, guiding future investigations to mitigate their adverse effects of these vital components of ecosystems.
Collapse
Affiliation(s)
- Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland
| | - Valeria Ochoa-Herrera
- Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito (USFQ), Quito, 170901, Ecuador; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
24
|
Liu Y, Zhang H, Xu F, Zhang X, Zhao N, Ding L. Associations between serum per- and polyfluoroalkyl substances as mixtures and lipid levels: A cross-sectional study in Jinan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171305. [PMID: 38423340 DOI: 10.1016/j.scitotenv.2024.171305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are known to be linked with dyslipidemia. Between March and June 2022, we collected 575 fasting serum samples from individuals without occupational exposure in Jinan, China. Eighteen PFASs were analyzed using UHPLC-Orbitrap MS. Multiple linear regression (MLR), Bayesian kernel machine regression (BKMR), and Quantile g-computation (QGC) models were utilized to assess the effects of both individual PFAS and PFAS mixtures on serum lipid levels, including triglycerides (TG), cholesterol (CHO), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). The PFAS mixture, composed of perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorododecanoic acid (PFDoDA), perfluorotridecanoic acid (PFTrDA), perfluorohexane sulfonate (PFHxS), perfluoroheptane sulfonic acid (PFHpS), perfluorooctane sulfonate (PFOS), and 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA), showed a positive association with CHO and LDL levels, while no distinct trend was noted in HDL and TG levels about changes in PFAS mixtures levels in BKMR and QGC models, adjusted for gender, age, BMI, occupation, and educational level. The effects of individual PFASs on lipid levels were in general consistent across MLR, BKMR and QGC models. PFUnDA and PFTrDA demonstrated greater impacts on blood lipid levels compared to other PFAS, albeit with varied directional effects. Age-stratified analysis revealed PFAS mixture effect was more pronounced in participants aged higher than 40. No obvious trend in lipid levels with changes in PFAS mixture levels in participants with age ranged from 18 to 40, while positive association between PFAS mixture and CHO and LDL was detected in participants aged higher than 40.
Collapse
Affiliation(s)
- Yi Liu
- School of Public Health, Shandong University, Jinan 250012, China
| | - Haoyu Zhang
- Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Fei Xu
- Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Xiaozhen Zhang
- School of environmental science and engineering, Shandong University, Qingdao 266237, China
| | - Nan Zhao
- School of environmental science and engineering, Shandong University, Qingdao 266237, China
| | - Lei Ding
- Environmental Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
25
|
Wang Q, Gu X, Mo L, Wan N, Wu L, Liu S, Zhang M, Li M, Liu X, Liu Y. Per- and polyfluoroalkyl substances induce lipid metabolic impairment in fish: Integration on field investigation and laboratory study. ENVIRONMENT INTERNATIONAL 2024; 187:108687. [PMID: 38677088 DOI: 10.1016/j.envint.2024.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
The biotoxicity of perfluoroalkyl and polyfluoroalkyl substances (PFASs) to aquatic organisms has been widely concerned. However, studies on toxic effects of PFASs are usually evaluated directly by using laboratory exposure rather than laboratory validation based on data obtained in the field. In this study, wild catfish (Silurus meridinalis) was explored on the relationship between PFASs bioaccumulation and lipid disorders. Nine and thirteen lipid metabolites were significantly associated with perfluorooctane sulfonate (PFOS) and 6:2/8:2Cl-PFESA (trade name F-53B) exposures, respectively; and the correlated lipid metabolites were the fatty acid (FA) and conjugates, FA esters, steroids, and glycerophosphate subclasses. The effects of PFASs on lipid metabolism of fish and its mechanism were further analyzed through exposure experiments. Zebrafish (Danio rerio) of different sexes underwent PFOS and F-53B exposures for 21 days at 100 ng/L and 100 μg/L. By determining gene expression levels, hepatic lipid contents, and histopathological change, the adverse effects order on lipid metabolism in male or female was 100 μg/L F-53B > 100 μg/L PFOS > 100 ng/L F-53B > 100 ng/L PFOS; the stress response in male was more intensive than that in female. PFOS and F-53B activated the peroxisome proliferator-activated receptor pathway, promoting the processes of FA and total cholesterol (T-CHO) transport, FA β-oxidation, FA synthesis, and finally induced FA and T-CHO transportation from blood into liver, then accelerated FA to FA ester transformation, and CHO into steroids. Laboratory experiments confirmed the field analysis. This study innovatively explored the adverse effects of PFOS and F-53B on lipid metabolism and their mechanisms at field and laboratory levels, highlighting concerns regarding PFASs health risks.
Collapse
Affiliation(s)
- Qiyu Wang
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Xueyan Gu
- Physical Education College, Jiangxi Normal University, Nanchang 330022, China
| | - Limin Mo
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China; School of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Nannan Wan
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Liu Wu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Shuai Liu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Miao Zhang
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Mingqi Li
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Xi Liu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Yu Liu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China.
| |
Collapse
|
26
|
Kirkwood-Donelson KI, Chappel J, Tobin E, Dodds JN, Reif DM, DeWitt JC, Baker ES. Investigating mouse hepatic lipidome dysregulation following exposure to emerging per- and polyfluoroalkyl substances (PFAS). CHEMOSPHERE 2024; 354:141654. [PMID: 38462188 PMCID: PMC10995748 DOI: 10.1016/j.chemosphere.2024.141654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are environmental pollutants that have been associated with adverse health effects including liver damage, decreased vaccine responses, cancer, developmental toxicity, thyroid dysfunction, and elevated cholesterol. The specific molecular mechanisms impacted by PFAS exposure to cause these health effects remain poorly understood, however there is some evidence of lipid dysregulation. Thus, lipidomic studies that go beyond clinical triglyceride and cholesterol tests are greatly needed to investigate these perturbations. Here, we have utilized a platform coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) separations to simultaneously evaluate PFAS bioaccumulation and lipid metabolism disruptions. For the study, liver samples collected from C57BL/6 mice exposed to either of the emerging PFAS hexafluoropropylene oxide dimer acid (HFPO-DA or "GenX") or Nafion byproduct 2 (NBP2) were assessed. Sex-specific differences in PFAS accumulation and liver size were observed for both PFAS, in addition to disturbed hepatic liver lipidomic profiles. Interestingly, GenX resulted in less hepatic bioaccumulation than NBP2 yet gave a higher number of significantly altered lipids when compared to the control group, implying that the accumulation of substances in the liver may not be a reliable measure of the substance's capacity to disrupt the liver's natural metabolic processes. Specifically, phosphatidylglycerols, phosphatidylinositols, and various specific fatty acyls were greatly impacted, indicating alteration of inflammation, oxidative stress, and cellular signaling processes due to emerging PFAS exposure. Overall, these results provide valuable insight into the liver bioaccumulation and molecular mechanisms of GenX- and NBP2-induced hepatotoxicity.
Collapse
Affiliation(s)
- Kaylie I Kirkwood-Donelson
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, USA; Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Jessie Chappel
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Emma Tobin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - James N Dodds
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Jamie C DeWitt
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Erin S Baker
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
27
|
Kim JH, Kroh G, Chou HA, Yang SH, Frese A, Lynn M, Chu KH, Shan L. Perfluorooctanesulfonic Acid Alters the Plant's Phosphate Transport Gene Network and Exhibits Antagonistic Effects on the Phosphate Uptake. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5405-5418. [PMID: 38483317 DOI: 10.1021/acs.est.3c10930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs), with significant health risks to humans and wildlife, bioaccumulate in plants. However, the mechanisms underlying plant uptake remain poorly understood. This study deployed transcriptomic analysis coupled with genetic and physiological studies using Arabidopsis to investigate how plants respond to perfluorooctanesulfonic acid (PFOS), a long-chain PFAS. We observed increased expressions of genes involved in plant uptake and transport of phosphorus, an essential plant nutrient, suggesting intertwined uptake and transport processes of phosphorus and PFOS. Furthermore, PFOS-altered response differed from the phosphorus deficiency response, disrupting phosphorus metabolism to increase phosphate transporter (PHT) transcript. Interestingly, pht1;2 and pht1;8 mutants showed reduced sensitivity to PFOS compared to that of the wild type, implying an important role of phosphate transporters in PFOS sensing. Furthermore, PFOS accumulated less in the shoots of the pht1;8 mutant, indicating the involvement of PHT1;8 protein in translocating PFOS from roots to shoots. Supplementing phosphate improved plant's tolerance to PFOS and reduced PFOS uptake, suggesting that manipulating the phosphate source in PFOS-contaminated soils may be a promising strategy for minimizing PFOS uptake by edible crops or promoting PFOS uptake during phytoremediation. This study highlighted the critical role of phosphate sensing and transport system in the uptake and translocation of PFOS in plants.
Collapse
Affiliation(s)
- Jun Hyeok Kim
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Gretchen Kroh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Hsiu-An Chou
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Shih-Hung Yang
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Addison Frese
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Michael Lynn
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
28
|
Sun Z, Zhao L, Peng X, Yan M, Ding S, Sun J, Kang B. Tissue damage, antioxidant capacity, transcriptional and metabolic regulation of red drum Sciaenops ocellatus in response to nanoplastics exposure and subsequent recovery. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116175. [PMID: 38458070 DOI: 10.1016/j.ecoenv.2024.116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Nanoplastics are recognized as emerging contaminants that can cause severe toxicity to marine fishes. However, limited researches were focusing on the toxic effects of nanoplastics on marine fish, especially the post-exposure resilience. In this study, red drum (Sciaenops ocellatus) were exposed to 5 mg/L polystyrene nanoplastics (100 nm, PS-NPs) for a 7-day exposure experiment, and a 14-day recovery experiment that followed. The aim was to evaluate the dynamic alterations in hepatic and branchial tissue damage, hepatic antioxidant capacity, as well as hepatic transcriptional and metabolic regulation in the red drum during exposure and post-exposure to PS-NPs. Histopathological observation found that PS-NPs primarily triggered hepatic lipid droplets and branchial epithelial liftings, a phenomenon persistently discernible up to the 14 days of recovery. Although antioxidant capacity partially recovered during recovery periods, PS-NPs resulted in a sustained reduction in hepatic antioxidant activity, causing oxidative damage throughout the entire exposure and recovery phases, as evidenced by decreased total superoxide dismutase activities and increased malondialdehyde content. At the transcriptional and metabolic level, PS-NPs primarily induced lipid metabolism disorders, DNA damage, biofilm disruption, and mitochondrial dysfunction. In the gene-metabolite correlation interaction network, numerous CcO (cytochrome c oxidase) family genes and lipid metabolites were identified as key regulatory genes and metabolites in detoxification processes. Among them, the red drum possesses one additional CcO6B in comparison to human and zebrafish, which potentially contributes to its enhanced capacity for maintaining a stable and positive regulatory function in detoxification. This study revealed that nanoplastics cause severe biotoxicity to red drum, which may be detrimental to the survival of wild populations and affect the economics of farmed populations.
Collapse
Affiliation(s)
- Zhicheng Sun
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China; Fisheries College, Ocean University of China, Qingdao, China
| | - Linlin Zhao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Xin Peng
- Marine Academy of Zhejiang Province, Hangzhou, China; Key Laboratory of Ocean Space Resource Management Technology, Hangzhou, China
| | - Meng Yan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Shaoxiong Ding
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jiachen Sun
- College of Marine Life Science, Ocean University of China, Qingdao, China.
| | - Bin Kang
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China; Fisheries College, Ocean University of China, Qingdao, China.
| |
Collapse
|
29
|
Zheng J, Chen S, Lu H, Xia M, Wang S, Li X, Li H, Wang Y, Ge RS, Liu Y. Enhanced inhibition of human and rat aromatase activity by benzene ring substitutions in bisphenol A: QSAR structure-activity relationship and in silico docking analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133252. [PMID: 38128231 DOI: 10.1016/j.jhazmat.2023.133252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Bisphenol A (BPA) is a widely used plastic material, but its potential endocrine disrupting effect has restricted its use. The BPA alternatives have raised concerns. This study aimed to compare inhibitory potencies of 11 BPA analogues on human and rat placental aromatase (CYP19A1). The inhibitory potency on human CYP19A1 ranged from bisphenol H (IC50, 0.93 μM) to tetramethyl BPA and tetrabromobisphenol S (ineffective at 100 μM) when compared to BPA (IC50, 73.48 μM). Most of them were mixed/competitive inhibitors and inhibited estradiol production in human BeWo cells. Molecular docking analysis showed all BPA analogues bind to steroid active site or in between steroid and heme of CYP19A1 and form a hydrogen bond with catalytic residue Met374. Pharmacophore analysis showed that there were 4 hydrophobic regions for BPA analogues, with bisphenol H occupying 4 regions. Bivariate correlation analysis showed that LogP (lipophilicity) and LogS (water solubility) of BPA analogues were correlated with their IC50 values. Computerized drug metabolism and pharmacokinetics analysis showed that bisphenol H, tetrabromobisphenol A, and tetrachlorobisphenol A had low solubility, which might explain their weaker inhibition on estradiol production on BeWo cells. In conclusion, BPA analogues mostly can inhibit CYP19A1 and the lipophilicity determines their inhibitory strength.
Collapse
Affiliation(s)
- Jingyi Zheng
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China
| | - Sailing Chen
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China
| | - Han Lu
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China
| | - Miaomiao Xia
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China
| | - Shaowei Wang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China
| | - Xiaoheng Li
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China
| | - Huitao Li
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China
| | - Yiyan Wang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China.
| | - Ren-Shan Ge
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China.
| | - Yi Liu
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
30
|
Li Y, Ye Y, Rihan N, Zhu B, Jiang Q, Liu X, Zhao Y, Che X. Polystyrene nanoplastics induce lipid metabolism disorder and alter fatty acid composition in the hepatopancreas of Pacific whiteleg shrimp (Litopenaeus vannamei). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167616. [PMID: 37832676 DOI: 10.1016/j.scitotenv.2023.167616] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
The impact of nanoplastics (NPs) on environmental pollution and aquatic organisms has gradually attracted attention, but there are relatively few reports of the effects of NPs on the lipid metabolism of crustaceans. In this study, we exposed Pacific whiteleg shrimp (Litopenaeus vannamei) to different concentrations of polystyrene NPs (0, 0.1, 1, 5, and 10 mg/L) for 28 days. We then evaluated the effects of NP exposure on metabolite content, histology, lipid metabolism-related enzyme activity, and gene expression. Our results showed that with increasing NPs concentrations and exposure time, (1) the crude protein and crude fat content decreased and fatty acid composition changed; (2) the tissue structure was destroyed and the number of lipid droplets increased in the hepatopancreas; (3) the activities of acetyl-CoA carboxylase, fatty acid synthase, carnitine palmitoyl transferase-1, pyruvate kinase and low-density lipoprotein content tended to decrease and that of lipase and high-density lipoprotein content first increased and then decreased; the content of triglycerides and total carbohydrate first decreased and then increased; (4) the expression of fatty acid synthesis-related genes (Fas, SREBP, and FAD), fatty acid transport-related genes (FATP, FABP, and ACBP), and fatty acid decomposition-related genes (Ampk and lip1) first increased and then decreased. These results indicate that exposure to NPs can cause physiological disorders of fat metabolism in L.vannamei and that high concentrations of NPs have a negative impact on lipid metabolism. These results of this study provide valuable ecotoxicological data for better interpretation of the mechanism of action of NPs in crustaceans.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Na Rihan
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Bihong Zhu
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| |
Collapse
|
31
|
Wang Y, Liu Y, Wang Y, Zhang A, Xie W, Zhang H, Weng Q, Xu M. Investigation of seasonal changes in lipid synthesis and metabolism-related genes in the oviduct of Chinese brown frog (<em>Rana dybowskii</em>). Eur J Histochem 2023; 67:3890. [PMID: 38116875 PMCID: PMC10773197 DOI: 10.4081/ejh.2023.3890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023] Open
Abstract
A peculiar physiological characteristic of the Chinese brown frog (Rana dybowskii) is that its oviduct dilates during pre-brumation rather than during the breeding season. This research aimed to examine the expression of genes connected with lipid synthesis and metabolism in the oviduct of R. dybowskii during both the breeding season and pre-brumation. We observed significant changes in the weight and size of the oviduct between the breeding season and pre-brumation. Furthermore, compared to the breeding season, pre-brumation exhibited significantly lower triglyceride content and a marked increase in free fatty acid content. Immunohistochemical results revealed the spatial distribution of triglyceride synthase (Dgat1), triglyceride hydrolase (Lpl and Hsl), fatty acid synthase (Fasn), and fatty acid oxidases (Cpt1a, Acadl, and Hadh) in oviductal glandular cells and epithelial cells during both the breeding season and pre-brumation. While the mRNA levels of triglycerides and free fatty acid synthesis genes (dgat1 and fasn) did not show a significant difference between the breeding season and pre-brumation, the mRNA levels of genes involved in triglycerides and free fatty acid metabolism (lpl, cpt1a, acadl, acox and hadh) were considerably higher during pre-brumation. Furthermore, the R. dybowskii oviduct's transcriptomic and metabolomic data confirmed differential expression of genes and metabolites enriched in lipid metabolism signaling pathways during both the breeding season and pre-brumation. Overall, these results suggest that alterations in lipid synthesis and metabolism during pre-brumation may potentially influence the expanding size of the oviduct, contributing to the successful overwintering of R. dybowskii.
Collapse
Affiliation(s)
- Yankun Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Yuning Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Yawei Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Ao Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Wenqian Xie
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Haolin Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Qiang Weng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Meiyu Xu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| |
Collapse
|
32
|
Han Y, Yang H, Liu Z, Hu C, Lamine I, Liu Z, Gao P, Sui Y, Zheng P, Zhang H, Jia X. Tetrabromobisphenol a and its alternative tetrachlorobisphenol a induce oxidative stress, lipometabolism disturbance, and autophagy in the liver of male Pelophylax nigromaculatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166421. [PMID: 37619733 DOI: 10.1016/j.scitotenv.2023.166421] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/30/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA) have been widely used as flame retardants. However, their potential health risks to organisms have raised concerns, particularly for liver toxicity. Present study aimed to explore the toxic effects of TCBPA and TBBPA on black-spotted frogs (Pelophylax nigromaculatus) liver oxidative stress, autophagy, and lipid accumulation. After exposure to 0.001, 0.01, 0.1, and 1 mg/L TBBPA and TCBPA for 14 days, the content of cholesterol and triglyceride were significantly elevated. In addition, the malondialdehyde level rose greatly in dose dependent. However, the glutathione level declined in high TBBPA groups (0.01 and 0.1 mg/L). Furthermore, expressions of Beclin1, Atg5, and Atg7 were significantly increased, while p62 was markedly declined, respectively. Results obstained suggested that TBBPA and TCBPA exposure induced liver toxicity in black-spotted frog. This study provided insights into the toxicity mechanism of bisphenol flame retardants in amphibians and will aid in the ecological risk assessment of flame retardants.
Collapse
Affiliation(s)
- Yu Han
- Hangzhou Normal University, Hangzhou, 311121, China
| | - Hongmei Yang
- Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhiqun Liu
- Hangzhou Normal University, Hangzhou, 311121, China
| | - Chao Hu
- Hangzhou Normal University, Hangzhou, 311121, China
| | - Imane Lamine
- Laboratory of Aquatic Systems, Marine and Continental Ecosystems, Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou, 311121, China
| | - Panpan Gao
- Hangzhou Normal University, Hangzhou, 311121, China
| | - Yanming Sui
- School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224002, China
| | - Pei Zheng
- Dianshan branch of Ecological Environment Bureau, Zhoushan, 316299, China
| | | | - Xiuying Jia
- Hangzhou Normal University, Hangzhou, 311121, China; Hangzhou City University, Hangzhou, 310015, China.
| |
Collapse
|
33
|
Andrews DQ, Stoiber T, Temkin AM, Naidenko OV. Discussion. Has the human population become a sentinel for the adverse effects of PFAS contamination on wildlife health and endangered species? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165939. [PMID: 37769722 DOI: 10.1016/j.scitotenv.2023.165939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 10/03/2023]
Abstract
Global contamination with per- and polyfluoroalkyl substances (PFAS) poses a threat to both human health and the environment, with significant implications for ecological conservation policies. A growing list of peer-reviewed publications indicates that PFAS can harm wildlife health and that the adverse effects associated with PFAS exposure in wildlife are in concordance with human epidemiological studies. The correlation of cross-species data supports a unique perspective that humans can be regarded as a sentinel for PFAS effects in other species. The health harms due to PFAS are potentially most concerning for populations of endangered and threatened species that are simultaneously exposed to PFAS and other toxic pollutants, and also face threats to their survival due to habitat loss, degradation of ecosystems, and over-harvesting. Human epidemiological studies on the PFAS doses associated with health harm present a rich source of information about potential impacts on wildlife health due to PFAS. Our analysis suggests that national and international efforts to restrict the discharges of PFAS into the environment and to clean up PFAS-contaminated sites present an opportunity to protect wildlife from chemical pollution and to advance species conservation worldwide.
Collapse
Affiliation(s)
- David Q Andrews
- Environmental Working Group, 1250 I Street NW Suite 1000, Washington DC 20005, United States of America.
| | - Tasha Stoiber
- Environmental Working Group, 1250 I Street NW Suite 1000, Washington DC 20005, United States of America
| | - Alexis M Temkin
- Environmental Working Group, 1250 I Street NW Suite 1000, Washington DC 20005, United States of America
| | - Olga V Naidenko
- Environmental Working Group, 1250 I Street NW Suite 1000, Washington DC 20005, United States of America
| |
Collapse
|
34
|
Shu Y, Wang Q, Hong P, Ruan Y, Lin H, Xu J, Zhang H, Deng S, Wu H, Chen L, Leung KMY. Legacy and Emerging Per- and Polyfluoroalkyl Substances Surveillance in Bufo gargarizans from Inlet Watersheds of Chaohu Lake, China: Tissue Distribution and Bioaccumulation Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13148-13160. [PMID: 37565447 DOI: 10.1021/acs.est.3c02660] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Amphibians are sensitive biomonitors of environmental pollutants but reports regarding per- and polyfluoroalkyl substances (PFAS), a class of synthetic organofluorine substances, are limited. In this study, samples of water and Chinese toads (Bufo gargarizans) were collected in Chaohu Lake, China. Tissue-specific bioaccumulation characteristics of 39 PFAS, including 19 perfluoroalkyl acids (PFAAs), 8 emerging PFAS, and 12 PFAA precursors, were investigated, and the levels of some biochemical indicators were determined. The highest PFAS concentrations were found in the liver [215.97 ng/g dry weight (dw)] of Chinese toads, followed by gonads (135.42 ng/g dw) and intestine (114.08 ng/g dw). A similar tissue distribution profile was found between legacy and emerging PFAS in the toads, and the occurrence of two emerging PFAS, 2,3,3,3-tetrafluoro-2-propanoate (HFPO-DA) and 6:2 hydrogen-substituted polyfluorooctane ether sulfonate (6:2 H-PFESA) in the amphibians were for the first time reported. Field-based bioaccumulation factors of HFPO-DA were higher than perfluorooctanoic acid, indicating the higher bioaccumulation potential of this emerging PFAS than the legacy C8 compound. Males had significantly higher gonad PFAS levels than females while estradiol levels in gonads increased with increasing concentrations of certain PFAS (e.g., 6:2 H-PFESA), implying that PFAS may trigger estrogenic effects in the toads, especially for male toads.
Collapse
Affiliation(s)
- Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Pei Hong
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Huiju Lin
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Jing Xu
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Huijuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Shuaitao Deng
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
- Shanghai Wildlife and Protected Natural Areas Research Center, Shanghai 200336, China
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| |
Collapse
|
35
|
Zhao J, Shi X, Wang Z, Xiong S, Lin Y, Wei X, Li Y, Tang X. Hepatotoxicity assessment investigations on PFASs targeting L-FABP using binding affinity data and machine learning-based QSAR model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115310. [PMID: 37523843 DOI: 10.1016/j.ecoenv.2023.115310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are persistent organic pollutants that have been detected in various environmental media and human serum, but their safety assessment remains challenging. PFASs may accumulate in liver tissues and cause hepatotoxicity by binding to liver fatty acid binding protein (L-FABP). Therefore, evaluating the binding affinity of PFASs to L-FABP is crucial in assessing the potential hepatotoxic effects. In this study, two binding sites of L-FABP were evaluated, results suggested that the outer site possessed high affinity to polyfluoroalkyl sulfates and the inner site preferred perfluoroalkyl sulfonamides, overall, the inner site of L-FABP was more sensitive to PFASs. The binding affinity data of PFASs to L-FABP were used as training set to develop a machine learning model-based quantitative structure-activity relationship (QSAR) for efficient prediction of potentially hazardous PFASs. Further Bayesian Kernel Machine Regression (BKMR) model disclosed flexibility as the determinant molecular property on PFASs-induced hepatotoxicity. It can influence affinity of PFASs to target protein through affecting binding conformations directly (individual effect) as well as integrating with other molecular properties (joint effect). Our present work provided more understanding on hepatotoxicity of PFASs, which could be significative in hepatotoxicity gradation, administration guidance, and safer alternatives development of PFASs.
Collapse
Affiliation(s)
- Jiayi Zhao
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao 266071, China; Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaoyue Shi
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Zhiqin Wang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Sijie Xiong
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yongfeng Lin
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaoran Wei
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xiaowen Tang
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
36
|
Yang Z, Liu R, Liu H, Wei J, Lin X, Zhang M, Chen Y, Zhang J, Sun M, Feng Z, Liu J, Liu X, Huo X, Men K, Yang Q, Chen X, Tang NJ. Sex-specific effect of perfluoroalkyl substances exposure on liver and thyroid function biomarkers: A mixture approach. Int J Hyg Environ Health 2023; 251:114189. [PMID: 37210847 DOI: 10.1016/j.ijheh.2023.114189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Although studies have investigated the effects of perfluoroalkyl substances (PFASs) on liver and thyroid function, little is known about its combined and sex-specific effect. A total of 688 participants were interviewed and serum PFASs concentration was measured using liquid chromatography/mass spectrometry. Five biomarkers of liver and thyroid function (ALT, GGT, TSH, FT3 and FT4) were chosen as outcomes. A restriction cubic spline function was applied to capture the dose-response relationship between PFASs and liver enzymes and thyroid hormones. Multivariable regression and Bayesian kernel machine regression (BKMR) models were performed to assess the single and overall associations of PFASs with targeted biomarkers. Single-pollutant analyses indicated that increased PFASs concentrations were associated with elevated ALT and GGT levels. BKMR models suggested positive dose-response relationships between PFASs mixtures and ALT and GGT levels. Significant associations were only detected between several PFASs and thyroid hormones, and joint effect of PFASs mixtures on FT3 levels was found at higher concentrations. Meanwhile, sex differences were found in the associations of PFASs with ALT and GGT levels, with significant results only in males. Our findings provide epidemiological evidence for combined and sex-specific effects of PFASs on ALT and GGT levels.
Collapse
Affiliation(s)
- Ze Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Ruifang Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Hongbo Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Jiemin Wei
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Xiaohui Lin
- Sanitary Inspection Institute, Tianjin Centers for Disease Control and Prevention, Tianjin, 300171, China
| | - Mingyue Zhang
- Sanitary Inspection Institute, Tianjin Centers for Disease Control and Prevention, Tianjin, 300171, China
| | - Yu Chen
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, 300202, China
| | - Jingyun Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Meiqing Sun
- Wuqing District Center for Disease Control and Prevention, Tianjin, 301700, China
| | - Zhe Feng
- Wuqing District Center for Disease Control and Prevention, Tianjin, 301700, China
| | - Jian Liu
- Wuqing District Center for Disease Control and Prevention, Tianjin, 301700, China
| | - Xiangyang Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Xiaoxu Huo
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Kun Men
- Department of Laboratory, The Second Hospital of Tianjin Medical University, Tianjin, 300202, China
| | - Qiaoyun Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China.
| |
Collapse
|
37
|
Hall AM, Braun JM. Per- and Polyfluoroalkyl Substances and Outcomes Related to Metabolic Syndrome: A Review of the Literature and Current Recommendations for Clinicians. Am J Lifestyle Med 2023. [DOI: 10.1177/15598276231162802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of toxic, ubiquitous, anthropogenic chemicals known to bioaccumulate in humans. Substantial concern exists regarding the human health effects of PFAS, particularly metabolic syndrome (MetS), a precursor to cardiovascular disease, the leading cause of mortality worldwide. This narrative review provides an overview of the PFAS literature on 4 specific components of MetS: insulin resistance/glucose dysregulation, central adiposity, dyslipidemia, and blood pressure. We focus on prospective cohort studies as these provide the best body of evidence compared to other study designs. Available evidence suggests potential associations between some PFAS and type-2 diabetes in adults, dyslipidemia in children and adults, and blood pressure in adults. Additionally, some studies found that sex and physical activity may modify these relationships. Future studies should consider modification by sex and lifestyle factors (e.g., diet and physical activity), as well quantifying the impact of PFAS mixtures on MetS features and related clinical disease. Finally, clinicians can follow recently developed clinical guidance to screen for PFAS exposure in patients, measure PFAS levels, conduct additional clinical care based on PFAS levels, and advise on PFAS exposure reduction.
Collapse
Affiliation(s)
- Amber M. Hall
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| |
Collapse
|
38
|
Chen M, Chen X, Wang K, Cai L, Liu N, Zhou D, Jia W, Gong P, Liu N, Sun Y. Effects of kiwi fruit ( Actinidia chinensis) polysaccharides on metabolites and gut microbiota of acrylamide-induced mice. Front Nutr 2023; 10:1080825. [PMID: 36814509 PMCID: PMC9939636 DOI: 10.3389/fnut.2023.1080825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction Kiwifruit (Actinidia chinensis) has rich nutritious and medicinal properties. It is widely consumed worldwide for the intervention of metabolism disorders, however, the underlying mechanism remains unclear. Acrylamide, a well-known toxic ingredient, mainly forms in high-temperature processed carbohydrate-rich food and causes disorders of gut microbiota and systemic metabolism. Methods This study explored the protective effects and underlying mechanisms of kiwifruit polysaccharides against acrylamide-induced disorders of gut microbiota and systemic metabolism by measuring the changes of gut microbiota and serum metabolites in mice. Results The results showed that kiwifruit polysaccharides remarkably alleviated acrylamide-induced toxicity in mice by improving their body features, histopathologic morphology of the liver, and decreased activities of liver function enzymes. Furthermore, the treatment restored the healthy gut microbiota of mice by improving the microbial diversity and abundance of beneficial bacteria such as Lactobacillus. Metabolomics analysis revealed the positive effects of kiwifruit polysaccharides mainly occurred through amino and bile acid-related metabolism pathways including nicotinate and nicotinamide metabolism, primary bile acid biosynthesis, and alanine, aspartate and glutamate metabolism. Additionally, correlation analysis indicated that Lactobacillus exhibited a highly significant correlation with critical metabolites of bile acid metabolism. Discussion Concisely, kiwifruit polysaccharides may protect against acrylamide-induced toxicity by regulating gut microbiota and metabolism.
Collapse
Affiliation(s)
- Mengyin Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xuefeng Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China,*Correspondence: Xuefeng Chen ✉
| | - Ketang Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Luyang Cai
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Nannan Liu
- College of Chemistry and Materials Science, Weinan Normal University, Weinan, China
| | - Duan Zhou
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Wei Jia
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Pin Gong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Ning Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yujiao Sun
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China,Yujiao Sun ✉
| |
Collapse
|
39
|
Liu Z, Lin H, Zheng Y, Feng Y, Shi C, Zhu R, Shen X, Han Y, Zhang H, Zhong Y. Perfluorooctanoic acid and perfluorooctanesulfonic acid induce immunotoxicity through the NF-κB pathway in black-spotted frog (Rana nigromaculata). CHEMOSPHERE 2023; 313:137622. [PMID: 36565765 DOI: 10.1016/j.chemosphere.2022.137622] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are widely detected in the environment and wild animals, thus posing a threat to wildlife and public health; however, knowledge about their immunotoxicity and the underlying mechanism remains limited. In the present study, male black-spotted frogs (Rana nigromaculata) were exposed to environmentally relevant concentrations (0, 1, and 10 μg/L) of PFOA or PFOS for 21 days; subsequently, biochemical analysis, molecular docking, and gene expression determination were conducted. The results indicated that exposure to 10 μg/L PFOA decreased the serum levels of immunoglobulin A. PFOS exposure significantly increased the hepatic levels of interleukin-1β, interleukin-6, tumor necrosis factor-α, interferon-γ, and nitric oxide; but PFOA significantly increased the levels of only tumor necrosis factor-α. Furthermore, PFOA and PFOS exposure significantly decreased the activity of inducible nitric oxide synthase and total nitric oxide synthase. IBRv2 analysis indicated that PFOA and PFOS had a similar effect on these immune indicators, but PFOS was more toxic than PFOA. Molecular docking revealed that PFOA and PFOS can bind to nuclear factor-κB (NF-κB) by forming stable hydrogen bonds. PFOA and PFOS exposure upregulated the gene expression of NF-κB and its downstream genes. Significant correlations between the expression of genes involved in the NF-κB pathway and immune-related indicators suggests that PFOA- and PFOS-induced immunotoxicity was associated with the activation of NF-κB. Our findings provide novel insights into the potential role of NF-κB in immunotoxicity induced by PFOA and PFOS in frogs.
Collapse
Affiliation(s)
- Zhiquan Liu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China
| | - Huikang Lin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yueyue Zheng
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yixuan Feng
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chaoli Shi
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ruoxin Zhu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xingyao Shen
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yu Han
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China
| | - Hangjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China
| | - Yuchi Zhong
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China.
| |
Collapse
|
40
|
PFOS Induces Lipometabolism Change, Immune Defense, and Endocrine Disorders in Black-Spotted Frogs: Application of Transcriptome Profiling. DIVERSITY 2023. [DOI: 10.3390/d15020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Amphibian population declines are closely linked to increasingly serious environmental pollution. Field investigations revealed that perfluorooctane sulfonic acid (PFOS) distribution was detected in 100% of amphibians. In the present study, global transcriptome sequencing was determined on black-spotted frogs to quantify transcript expression levels and the development of an adverse outcome pathway for PFOS. A total of 1441 differentially expressed genes were identified in the PFOS exposure for 21 d, with 645 being downregulated and 796 upregulated. The gene functions and pathways for lipid metabolism, endocrine system, and immune defense were enriched. An adverse outcome pathway has been proposed, including PPAR (peroxisome proliferator-activated receptors) as the molecular initiating events; followed by changes in lipid metabolism, endocrine system, and immune defense; with an end result of liver damage or even population decline. This research provides molecular insight into the toxicity of PFOS. More research about differentially expressed genes is warranted to further provide the underlying mechanism that is altered as a result of PFOS toxicity in organisms.
Collapse
|
41
|
Wang W, Li Z, Zhang X, Zhang J, Ru S. Bisphenol S Impairs Behaviors through Disturbing Endoplasmic Reticulum Function and Reducing Lipid Levels in the Brain of Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:582-594. [PMID: 36520979 DOI: 10.1021/acs.est.2c07828] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The number of neurotoxic pollutants is increasing, but their mechanism of action is unclear. Here, zebrafish were exposed to 0, 1, 10, and 100 μg/L bisphenol S (BPS) for different durations beginning at 2 h postfertilization (hpf) to explore the neurotoxic mechanisms of BPS. Zebrafish larvae exposed to BPS displayed abnormal neurobehaviors. At 48 and 120 hpf, BPS inhibited yolk lipid consumption and reduced the lipid distribution in the zebrafish brain. Moreover, BPS downregulated the mRNA levels of genes involved in fatty acid elongation in the endoplasmic reticulum (ER) and activated ER stress pathways at 48 and 120 hpf, and KEGG analysis after RNA-seq showed that the protein processing pathway in the ER was significantly enriched after BPS exposure. Exposure to ER toxicants (thapsigargin and tunicamycin), two positive controls, induced neurotoxic effects on zebrafish embryos and larvae similar to those of BPS exposure. These data suggested that BPS and ER toxicants disturbed ER function and reduced brain lipid levels. Continued exposure to BPS into adulthood not only inhibited brain fatty acid elongation and ER function but also caused abnormal swelling of the ER in zebrafish. Our data provide new insights into the neurotoxic mechanism of BPS.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ze Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jie Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|