1
|
Gweme DT, Styler SA. OH Radical Oxidation of Organosulfates in the Atmospheric Aqueous Phase. J Phys Chem A 2024; 128:9462-9475. [PMID: 39432465 DOI: 10.1021/acs.jpca.4c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Organosulfates (OS, ROSO3-), ubiquitous constituents of atmospheric particulate matter (PM), influence both the physicochemical and climatic properties of PM. Although the formation pathways of OS have been extensively researched, only a few studies have investigated the atmospheric fate of this class of compounds. Here, to better understand the reactivity and transformation of OS under cloudwater- and aerosol-relevant conditions, we investigate the hydroxyl radical (OH) oxidation bimolecular rate constants (kOS+OHII) and products of five atmospherically relevant OS as a function of pH and ionic strength: methyl sulfate (MeS), ethyl sulfate (EtS), propyl sulfate (PrS), hydroxyacetone sulfate (HaS) and phenyl sulfate (PhS). Our results show that OS are oxidized by OH with kOS+OHII between 108 - 109 M-1 s-1, which corresponds to atmospheric lifetimes of minutes in aqueous aerosol to days in cloudwater. We find that kOS+OHII increases with carbon chain length (MeS < EtS < PrS) and aromaticity (PrS < PhS), but does not depend on solution pH (2, 9). In addition, we find that whereas the OH reactivity of the aliphatic OS studied here decreases by ∼2× with increasing ionic strength (0-15 M), the reactivity of PhS decreases by ∼10×. The oxidation of EtS and PrS produced organic peroxides (ROOH) as first-generation oxidation products, which subsequently photolyzed; the oxidation of PhS resulted in hydroxylated aromatic products. These results highlight the need for inclusion of OS loss pathways in atmospheric models, and suggest caution in using ambient OS concentration measurements alone to estimate their production rates.
Collapse
Affiliation(s)
- Daniel T Gweme
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Sarah A Styler
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
2
|
Yu S, Jia L, Xu Y, Pan Y. Molecular interaction between ammonium sulfate and secondary organic aerosol from styrene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176414. [PMID: 39322076 DOI: 10.1016/j.scitotenv.2024.176414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Secondary organic aerosol (SOA) and inorganic aerosol (SIA) are two major constituents of PM2.5, which are well-studied separately. However, the molecular-level investigation of mechanical interactions between them is still limited, which will affect the understanding of toxicity and optical properties of PM2.5. Styrene contains a benzene ring and a highly reactive double bond, mainly contributing to urban SOA formation. Here, chamber experiments were conducted to explore the effects of the (NH4)2SO4 seeds, as an example of SIA, on styrene SOA formation under varying relative humidity (RH) conditions. The particle-phase products were determined based on a high-resolution orbitrap mass spectrometer. The results showed that in the styrene-H2O2-hv systems, (NH4)2SO4 seeds facilitated the gas-particle partitioning of SOA precursors, leading to slightly higher SOA yields than the unseeded systems at 8.5 % RH. While RH exceeded 44.3 %, the presence of (NH4)2SO4 seeds increased the particle liquid water content, thus enhancing the partitioning of hydrophilic H2O2 to particle phase and the further oxidation of SOA, finally decreasing SOA yields. In the styrene-NOx-hv systems, NH4+ and SO42- were involved in the particle-phase reactions, producing prominent nitrogen- and sulfur-containing compounds of C8H7O2N and C8H9O6NS. In the styrene-O3 dark reaction systems, the existence of (NH4)2SO4 seeds significantly changed the oligomer components under humid conditions. The particle-phase formation pathways of oligomers affected by (NH4)2SO4 seeds were also illustrated based on tandem mass spectra data. This study emphasizes the importance of inorganic seed effects on particle-phase reactions and improves our understanding of the SOA formation pathways in the ambient atmosphere.
Collapse
Affiliation(s)
- Shanshan Yu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Department of Atmospheric Chemistry and Environmental Sciences, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Jia
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Department of Atmospheric Chemistry and Environmental Sciences, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yongfu Xu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Department of Atmospheric Chemistry and Environmental Sciences, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuepeng Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Department of Atmospheric Chemistry and Environmental Sciences, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Wang Y, Liang S, Le Breton M, Wang QQ, Liu Q, Ho CH, Kuang BY, Wu C, Hallquist M, Tong R, Yu JZ. Field observations of C 2 and C 3 organosulfates and insights into their formation mechanisms at a suburban site in Hong Kong. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166851. [PMID: 37673264 DOI: 10.1016/j.scitotenv.2023.166851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/27/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Organosulfates (OSs) are formed from volatile organic compounds (VOCs) and their oxidation products in the presence of sulfate particles. While OSs represent an important component in secondary organic aerosol, the knowledge of their formation driving force, mechanisms, and environmental impact remain inadequately understood. In this study, we report ambient observations of C2-3 oxygenated VOCs derived OSs (C2-3 OSs) at a suburban location of Hong Kong during autumn 2016. The C2-3 OSs, including glycolaldehyde sulfate (GS), hydroxyacetone sulfate (HAS), glycolic acid sulfate (GAS), and lactic acid sulfate (LAS), were quantified/semi-quantified using offline liquid chromatography-mass spectrometry analysis of aerosol filter samples. The average sum concentration of C2-3 OSs was 36 ng/m3. Correlation analysis revealed that sulfate, surface area, and liquid water content were important factors influencing C2-3 OS formation. Online measurement with an iodide High-Resolution Time-of-Flight Chemical-Ionization Mass Spectrometer (HR-ToF-CIMS) coupled with the Filter Inlet for Gases and AEROsols (FIGAERO) was also conducted to monitor C2-3 OSs, and their potential oxygenated VOC precursors in both gas- and particle-phase, and aerosol acidity tracer simultaneously. Our measurements support that glycolaldehyde/glyoxal, hydroxyacetone, glycolic acid/glyoxal, and lactic acid/methylglyoxal are likely precursors for GS, HAS, GAS, and LAS, respectively. Additionally, we found strong correlation between C2-3 OSs and H3S2O8-, a marker for aerosol acidity, providing field observational evidence for acid-catalyzed formation of small OSs. Based on both online and offline measurements, acid-catalyzed formation mechanisms in particle/aqueous phase are proposed. Specifically, the unique structure of adjacent carbonyl and hydroxyl groups in the C2-3 oxygenated VOC precursors can facilitate the formation of (1) a five-member ring intermediate via intramolecular hydrogen bond to react with sulfur trioxide through heterogenous reaction or (2) cyclic sulfate intermediate via particle-phase reaction with sulfuric acid to generate C2-3 OSs. These proposed mechanisms provide an alternative pathway for the liquid-phase production of C2-3 OSs.
Collapse
Affiliation(s)
- Yuchen Wang
- College of Environmental Science and Engineering, Hunan University, Hunan, China; Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Shumin Liang
- Department of Chemistry, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Michael Le Breton
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Qiong Qiong Wang
- Department of Chemistry, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Qianyun Liu
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Chin Hung Ho
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Bin Yu Kuang
- Department of Chemistry, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Cheng Wu
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China; Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou, China
| | - Mattias Hallquist
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Rongbiao Tong
- Department of Chemistry, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Jian Zhen Yu
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China; Department of Chemistry, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
4
|
Ng SIM, Chan MN. Beyond the formation: unveiling the atmospheric transformation of organosulfates via heterogeneous OH oxidation. Chem Commun (Camb) 2023; 59:13919-13938. [PMID: 37933441 DOI: 10.1039/d3cc03700b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Organosulfates (OSs), characterized with a sulfate ester group (R-OSO3-), are abundant constituents in secondary organic aerosols. Recent laboratory-based investigations have revealed that OSs can undergo efficient chemical transformation through heterogeneous oxidation by hydroxyl radicals (˙OH, interchangeably termed as OH in this article), which freshly derives functionalized and fragmented OSs. The reaction not only contributes to the presence of structurally transformed OSs in the atmosphere of which sources were unidentified, but it also leads to the formation of inorganic sulfates (e.g., SO42-) with profound implication on the form of aerosol sulfur. In this article, we review the current state of knowledge regarding the heterogeneous OH oxidation of OSs based on state-of-the-art designs of experiments, computational approaches, and chemical analytical techniques. Here, we discuss the formation potential of new OSs and SO42-, in light of the influence of diverse OS structures on the relative importance of different reaction pathways. We propose future research directions to advance our mechanistic understanding of these reactions, taking into account aerosol matrix effects, interactions with other atmospheric pollutants, and the incorporation of experimental findings into atmospheric chemical transport models.
Collapse
Affiliation(s)
- Sze In Madeleine Ng
- Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China.
| | - Man Nin Chan
- Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China.
- The Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Bain A, Chan MN, Bzdek BR. Physical properties of short chain aqueous organosulfate aerosol. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2023; 3:1365-1373. [PMID: 38013727 PMCID: PMC10500313 DOI: 10.1039/d3ea00088e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 11/29/2023]
Abstract
Organosulfates comprise up to 30% of the organic fraction of aerosol. Organosulfate aerosol physical properties, such as water activity, density, refractive index, and surface tension, are key to predicting their impact on global climate. However, current understanding of these properties is limited. Here, we measure the physical properties of aqueous solutions containing sodium methyl or ethyl sulfate and parameterise the data as a function of solute concentration. The experimental data are compared to available literature data for organosulfates, as well as salts (sodium sulfate and sodium bisulfate) and organics (short alkyl chain length alcohols and carboxylic acids) to determine if the physical properties of organosulfates can be approximated by molecules of similar functionality. With the exception of water activity, we find that organosulfates have intermediate physical properties between those of the salts and short alkyl chain organics. This work highlights the importance of measuring and developing models for the physical properties of abundant atmospheric organosulfates in order to better describe aerosol's impact on climate.
Collapse
Affiliation(s)
- Alison Bain
- School of Chemistry, University of Bristol Bristol UK
| | - Man Nin Chan
- Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong Hong Kong China
- The Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong Hong Kong China
| | - Bryan R Bzdek
- School of Chemistry, University of Bristol Bristol UK
| |
Collapse
|
6
|
Ning C, Gao Y, Zhang H, Yu H, Cao R, Chen J. Urban particulate water-soluble organic matter in winter: Size-resolved molecular characterization, role of the S-containing compounds on haze formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162657. [PMID: 36878301 DOI: 10.1016/j.scitotenv.2023.162657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Water-soluble organic matter (WSOM), as a group of ubiquitous components in atmospheric PM, plays a crucial role in global climate change and carbon cycle. In this study, the size-resolved molecular characterization of WSOM in the range of 0.010-18 μm PM was studied to gain insights into their formation processes. The CHO, CHNO, CHOS, CHNOS compounds were identified by the ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry in ESI source mode. A bimodal pattern of the PM mass concentrations was found in the accumulation and coarse mode. The increasing mass concentration of PM was mainly attributed to the growth of large-size PM with the occurrence of haze. Both Aiken-mode (70.5-75.6 %) and coarse-mode (81.7-87.9 %) particles were proven the main carriers of the CHO compounds, the majority of which were indicated to be the saturated fatty acids and their oxidized derivatives. The S-containing (CHOS and CHNOS) compounds in accumulation-mode (71.5-80.9 %) increased significantly in hazy days, where organosulfates (C11H20O6S, C12H22O7S) and nitrooxy-organosulfates (C9H19NO8S, C9H17NO8S) were confirmed in majority. The S-containing compounds in accumulation-mode particle with high oxygen content (6-8 oxygen atoms), unsaturation degree (DBE < 4), and reactivity could facilitate the particle agglomeration and accelerate the haze formation.
Collapse
Affiliation(s)
- Cuiping Ning
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Yuan Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Haijun Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haoran Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Cao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
7
|
Wang J, Ma X, Ji Y, Ji Y, Gao Y, Xiao Y, Li G, An T. Competing esterification and oligomerization reactions of typical long-chain alcohols to secondary organic aerosol formation. J Environ Sci (China) 2023; 126:103-112. [PMID: 36503740 DOI: 10.1016/j.jes.2022.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 06/17/2023]
Abstract
Organosulfate (OSA) nanoparticles, as secondary organic aerosol (SOA) compositions, are ubiquitous in urban and rural environments. Hence, we systemically investigated the mechanisms and kinetics of aqueous-phase reactions of 1-butanol/1-decanol (BOL/DOL) and their roles in the formation of OSA nanoparticles by using quantum chemical and kinetic calculations. The mechanism results show that the aqueous-phase reactions of BOL/DOL start from initial protonation at alcoholic OH-groups to form carbenium ions (CBs), which engage in the subsequent esterification or oligomerization reactions to form OSAs/organosulfites (OSIs) or dimers. The kinetic results reveal that dehydration to form CBs for BOL and DOL reaction systems is the rate-limiting step. Subsequently, about 18% of CBs occur via oligomerization to dimers, which are difficult to further oligomerize because all reactive sites are occupied. The rate constant of BOL reaction system is one order of magnitude larger than that of DOL reaction system, implying that relative short-chain alcohols are more prone to contribute OSAs/OSIs than long-chain alcohols. Our results reveal that typical long-chain alcohols contribute SOA formation via esterification rather than oligomerization because OSA/OSI produced by esterification engages in nanoparticle growth through enhancing hygroscopicity.
Collapse
Affiliation(s)
- Jiaxin Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaohui Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuemeng Ji
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yongpeng Ji
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Gao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuqi Xiao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
8
|
Rafferty A, Vennes B, Bain A, Preston TC. Optical trapping and light scattering in atmospheric aerosol science. Phys Chem Chem Phys 2023; 25:7066-7089. [PMID: 36852581 DOI: 10.1039/d2cp05301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Aerosol particles are ubiquitous in the atmosphere, and currently contribute a large uncertainty to climate models. Part of the endeavour to reduce this uncertainty takes the form of improving our understanding of aerosol at the microphysical level, thus enabling chemical and physical processes to be more accurately represented in larger scale models. In addition to modeling efforts, there is a need to develop new instruments and methodologies to interrogate the physicochemical properties of aerosol. This perspective presents the development, theory, and application of optical trapping, a powerful tool for single particle investigations of aerosol. After providing an overview of the role of aerosol in Earth's atmosphere and the microphysics of these particles, we present a brief history of optical trapping and a more detailed look at its application to aerosol particles. We also compare optical trapping to other single particle techniques. Understanding the interaction of light with single particles is essential for interpreting experimental measurements. In the final part of this perspective, we provide the relevant formalism for understanding both elastic and inelastic light scattering for single particles. The developments discussed here go beyond Mie theory and include both how particle and beam shape affect spectra. Throughout the entirety of this work, we highlight numerous references and examples, mostly from the last decade, of the application of optical trapping to systems that are relevant to the atmospheric aerosol.
Collapse
Affiliation(s)
| | - Benjamin Vennes
- Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada.
| | - Alison Bain
- School of Chemistry, University of Bristol, Bristol, UK
| | - Thomas C Preston
- Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada. .,Department of Chemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Malek KA, Rastogi D, Al-Abadleh HA, Asa-Awuku AA. Hygroscopicity of nitrogen-containing organic carbon compounds: o-aminophenol and p-aminophenol. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:229-240. [PMID: 35815759 DOI: 10.1039/d2em00163b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nitrogen-containing Organic Carbon (NOC) is a major constituent of atmospheric aerosols and they have received significant attention in the atmospheric science community. While extensive research and advancements have been made regarding their emission sources, concentrations, and their secondary formation in the atmosphere, little is known about their water uptake efficiencies and their subsequent role in climate, air quality, and visibility. In this study, we investigated the water uptake of two sparingly soluble aromatic NOCs: o-aminophenol (oAP) and p-aminophenol (pAP) under subsaturated and supersaturated conditions using a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) and a Cloud Condensation Nuclei Counter (CCNC), respectively. Our results show that oAP and pAP are slightly hygroscopic with comparable hygroscopicities to various studied organic aerosols. The supersaturated single hygroscopicity parameter (κCCN) was measured and reported to be 0.18 ± 0.05 for oAP and 0.04 ± 0.02 for pAP, indicating that oAP is more hygroscopic than pAP despite them having the same molecular formulae. The observed disparity in hygroscopicity is attributed to the difference in functional group locations, interactions with gas phase water molecules, and the reported bulk water solubilities of the NOC. Under subsaturated conditions, both oAP and pAP aerosols showed size dependent water uptake. Both species demonstrated growth at smaller dry particle sizes, and shrinkage at larger dry particle sizes. The measured growth factor (Gf) range, at RH = 85%, for oAP was 1.60-0.74 and for pAP was 1.53-0.74 with increasing particle size. The growth and shrinkage dichotomy is attributed to morphological particle differences verified by TEM images of small and large particles. Subsequently, aerosol physicochemical properties must be considered to properly predict the droplet growth of NOC aerosols in the atmosphere.
Collapse
Affiliation(s)
- Kotiba A Malek
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Dewansh Rastogi
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Hind A Al-Abadleh
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada.
| | - Akua A Asa-Awuku
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
10
|
Zhang X, Tan S, Chen X, Yin S. Computational chemistry of cluster: Understanding the mechanism of atmospheric new particle formation at the molecular level. CHEMOSPHERE 2022; 308:136109. [PMID: 36007737 DOI: 10.1016/j.chemosphere.2022.136109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
New particle formation (NPF), which exerts significant influence over human health and global climate, has been a hot topic and rapidly expands field of research in the environmental and atmospheric chemistry recent years. Generally, NPF contains two processes: formation of critical nucleus and further growth of the nucleus. However, due to the complexity of the atmospheric nucleation, which is a multicomponent process, formation of critical clusters as well as their growth is still connected to large uncertainties. Detection limits of instruments in measuring specific gaseous aerosol precursors and chemical compositions at the molecular level call for computational studies. Computational chemistry could effectively compensate the deficiency of laboratory experiments as well as observations and predict the nucleation mechanisms. We review the present theoretical literatures that discuss nucleation mechanism of atmospheric clusters. Focus of this review is on different nucleation systems involving sulfur-containing species, nitrogen-containing species and iodine-containing species. We hope this review will provide a deep insight for the molecular interaction of nucleation precursors and reveal nucleation mechanism at the molecular level.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Shendong Tan
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Xi Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Shi Yin
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
11
|
Al-Abadleh HA, Motaghedi F, Mohammed W, Rana MS, Malek KA, Rastogi D, Asa-Awuku AA, Guzman MI. Reactivity of aminophenols in forming nitrogen-containing brown carbon from iron-catalyzed reactions. Commun Chem 2022; 5:112. [PMID: 36697654 PMCID: PMC9814260 DOI: 10.1038/s42004-022-00732-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/07/2022] [Indexed: 01/28/2023] Open
Abstract
Nitrogen-containing organic carbon (NOC) in atmospheric particles is an important class of brown carbon (BrC). Redox active NOC like aminophenols received little attention in their ability to form BrC. Here we show that iron can catalyze dark oxidative oligomerization of o- and p-aminophenols under simulated aerosol and cloud conditions (pH 1-7, and ionic strength 0.01-1 M). Homogeneous aqueous phase reactions were conducted using soluble Fe(III), where particle growth/agglomeration were monitored using dynamic light scattering. Mass yield experiments of insoluble soot-like dark brown to black particles were as high as 40%. Hygroscopicity growth factors (κ) of these insoluble products under sub- and super-saturated conditions ranged from 0.4-0.6, higher than that of levoglucosan, a prominent proxy for biomass burning organic aerosol (BBOA). Soluble products analyzed using chromatography and mass spectrometry revealed the formation of ring coupling products of o- and p-aminophenols and their primary oxidation products. Heterogeneous reactions of aminophenol were also conducted using Arizona Test Dust (AZTD) under simulated aging conditions, and showed clear changes to optical properties, morphology, mixing state, and chemical composition. These results highlight the important role of iron redox chemistry in BrC formation under atmospherically relevant conditions.
Collapse
Affiliation(s)
- Hind A Al-Abadleh
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| | - Fatemeh Motaghedi
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Wisam Mohammed
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Md Sohel Rana
- Department of Chemistry, University of Kentucky, Kentucky, 40506, USA
| | - Kotiba A Malek
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Dewansh Rastogi
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Akua A Asa-Awuku
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA.
| | - Marcelo I Guzman
- Department of Chemistry, University of Kentucky, Kentucky, 40506, USA.
| |
Collapse
|
12
|
Tran LN, Abellar KA, Cope JD, Nguyen TB. Second-Order Kinetic Rate Coefficients for the Aqueous-Phase Sulfate Radical (SO 4•-) Oxidation of Some Atmospherically Relevant Organic Compounds. J Phys Chem A 2022; 126:6517-6525. [PMID: 36069746 PMCID: PMC9511566 DOI: 10.1021/acs.jpca.2c04964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The sulfate anion radical (SO4•–) is a reactive oxidant formed in the autoxidation chain of sulfur
dioxide, among other sources. Recently, new formation pathways toward
SO4•– and other reactive sulfur
species have been reported. This work investigated the second-order
rate coefficients for the aqueous SO4•– oxidation of the following important organic aerosol compounds (kSO4): 2-methyltetrol, 2-methyl-1,2,3-trihydroxy-4-sulfate,
2-methyl-1,2-dihydroxy-3-sulfate, 1,2-dihydroxyisoprene, 2-methyl-2,3-dihydroxy-1,4-dinitrate,
2-methyl-1,2,4-trihydroxy-3-nitrate, 2-methylglyceric acid, 2-methylglycerate,
lactic acid, lactate, pyruvic acid, pyruvate. The rate coefficients
of the unknowns were determined against that of a reference in pure
water in a temperature range of 298–322 K. The decays of each
reagent were measured with nuclear magnetic resonance (NMR) and high-performance
liquid chromatography–high-resolution mass spectrometry (HPLC-HRMS).
Incorporating additional SO4•– reactions into models may aid in the understanding of organosulfate
formation, radical propagation, and aerosol mass sinks.
Collapse
Affiliation(s)
- Lillian N Tran
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| | - Karizza A Abellar
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - James D Cope
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| | - Tran B Nguyen
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
13
|
Guo C, Xu L, Zhang C. Study on heterogeneous OH oxidation of 3-methyltetraol sulfate in the atmosphere under high NO conditions. RSC Adv 2022; 12:21103-21109. [PMID: 35975045 PMCID: PMC9341440 DOI: 10.1039/d2ra02958h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Organosulfates (OSs), also known as organic sulfate esters, are ubiquitous in atmospheric particles and used as secondary organic aerosol (SOA) markers. However, the chemical transformation mechanism of these OSs remains unclear. Therefore, we investigated the heterogeneous OH oxidation of 3-methyltetraol sulfate (3-MTS), which is one of the most abundant particulate organosulfates, by using quantum chemical and kinetic calculations. 3-MTS can easily undergo abstraction reaction with OH radicals, and the reaction rate constant is about 7.87 × 10-12 cm3 per molecule per s. The generated HCOOH, CH3COOH, HCHO, CH3CHO and 2-methyl-2,3-dihydroxypropionic acid are low-volatility species with increased water solubility, which are the main components of SOA. In addition, the OH radicals obtained from the reaction can continue to promote the oxidation reaction. The results of this study provide insights into the heterogeneous OH reactivity of other organosulfates in atmospheric aerosols, and it also provides a new understanding of the conversion of sulfur (S) between its organic and inorganic forms during the heterogeneous OH oxidation of organic sulfates.
Collapse
Affiliation(s)
- Chuanen Guo
- Judicial Expertise Center, Shandong University of Political Science and Law Jinan 250014 P. R. China
| | - Luyao Xu
- Environment Research Institute, Shandong University Qingdao 266200 P. R. China
| | - Chenxi Zhang
- Jia Si-xie Agricultural College, Weifang University of Science and Technology Weifang 262700 P. R. China
| |
Collapse
|
14
|
Ma J, Ungeheuer F, Zheng F, Du W, Wang Y, Cai J, Zhou Y, Yan C, Liu Y, Kulmala M, Daellenbach KR, Vogel AL. Nontarget Screening Exhibits a Seasonal Cycle of PM 2.5 Organic Aerosol Composition in Beijing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7017-7028. [PMID: 35302359 PMCID: PMC9179655 DOI: 10.1021/acs.est.1c06905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
The molecular composition of atmospheric particulate matter (PM) in the urban environment is complex, and it remains a challenge to identify its sources and formation pathways. Here, we report the seasonal variation of the molecular composition of organic aerosols (OA), based on 172 PM2.5 filter samples collected in Beijing, China, from February 2018 to March 2019. We applied a hierarchical cluster analysis (HCA) on a large nontarget-screening data set and found a strong seasonal difference in the OA chemical composition. Molecular fingerprints of the major compound clusters exhibit a unique molecular pattern in the Van Krevelen-space. We found that summer OA in Beijing features a higher degree of oxidation and a higher proportion of organosulfates (OSs) in comparison to OA during wintertime, which exhibits a high contribution from (nitro-)aromatic compounds. OSs appeared with a high intensity in summer-haze conditions, indicating the importance of anthropogenic enhancement of secondary OA in summer Beijing. Furthermore, we quantified the contribution of the four main compound clusters to total OA using surrogate standards. With this approach, we are able to explain a small fraction of the OA (∼11-14%) monitored by the Time-of-Flight Aerosol Chemical Speciation Monitor (ToF-ACSM). However, we observe a strong correlation between the sum of the quantified clusters and OA measured by the ToF-ACSM, indicating that the identified clusters represent the major variability of OA seasonal cycles. This study highlights the potential of using nontarget screening in combination with HCA for gaining a better understanding of the molecular composition and the origin of OA in the urban environment.
Collapse
Affiliation(s)
- Jialiang Ma
- Institute
for Atmospheric and Environmental Sciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Florian Ungeheuer
- Institute
for Atmospheric and Environmental Sciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Feixue Zheng
- Aerosol
and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University
of Chemical Technology, 100029 Beijing, P. R. China
| | - Wei Du
- Aerosol
and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University
of Chemical Technology, 100029 Beijing, P. R. China
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Yonghong Wang
- Aerosol
and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University
of Chemical Technology, 100029 Beijing, P. R. China
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, 100085 Beijing, P. R. China
| | - Jing Cai
- Aerosol
and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University
of Chemical Technology, 100029 Beijing, P. R. China
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Ying Zhou
- Aerosol
and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University
of Chemical Technology, 100029 Beijing, P. R. China
| | - Chao Yan
- Aerosol
and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University
of Chemical Technology, 100029 Beijing, P. R. China
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Yongchun Liu
- Aerosol
and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University
of Chemical Technology, 100029 Beijing, P. R. China
| | - Markku Kulmala
- Aerosol
and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University
of Chemical Technology, 100029 Beijing, P. R. China
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Kaspar R. Daellenbach
- Aerosol
and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University
of Chemical Technology, 100029 Beijing, P. R. China
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Laboratory
of Atmospheric Chemistry, Paul Scherrer
Institute, 5232 Villigen, Switzerland
| | - Alexander L. Vogel
- Institute
for Atmospheric and Environmental Sciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
15
|
Xie Q, Su S, Chen S, Zhang Q, Yue S, Zhao W, Du H, Ren H, Wei L, Cao D, Xu Y, Sun Y, Wang Z, Fu P. Molecular characterization of size-segregated organic aerosols in the urban boundary layer in wintertime Beijing by FT-ICR MS. Faraday Discuss 2021; 226:457-478. [PMID: 33237085 DOI: 10.1039/d0fd00084a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic aerosols, complicated mixtures of organic compounds, are important constituents of atmospheric particulate matter. However, little is known about the size distributions and vertical profiles of these constituents at a molecular level in the urban boundary layer. Here, we characterized the molecular compositions of size-segregated samples collected simultaneously at two heights (8 m and 260 m above ground level) in urban Beijing during the winter of 2018. The CHO, CHNO, CHOS, and CHNOS subgroups in water-soluble organic carbon were characterized using a 15-T ultrahigh-resolution Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer. We found that both their numbers and magnitudes increased with a decrease in the particle size, especially for high molecular weight (HMW) compounds, except CHNOS. The number of CHNOS species also increased in the coarse mode, presumably because the alkalinity could inhibit their hydrolysis in the coarse mode. The compounds in small particles with higher O/C ratios and carbon oxidation state were possibly more aged, while the coarse particles with more lipid- and peptide-like compounds should originate from fresh emissions. Moreover, as the oxidation state increases in small particles, functionalization is enhanced for sulfur-containing compounds with fracturing of the benzene ring, while CHO and CHNO are potentially dominated by demethylation with ring-retaining products. It is worth noting that common compounds with the same molecular characteristics accounted for more than 86% of the total compounds between 260 m and ground level (8 m), demonstrating that the aerosols were well mixed in the urban boundary layer. Nonetheless, the relative content of the compounds was higher at ground level due to the impact of primary emissions, which increased with the particle size. In addition, the compounds in submicron particles were more oxidized at 260 m, while the opposite was observed in the coarse mode.
Collapse
Affiliation(s)
- Qiaorong Xie
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yee LD, Isaacman-VanWertz G, Wernis RA, Kreisberg NM, Glasius M, Riva M, Surratt JD, de Sá SS, Martin ST, Alexander ML, Palm BB, Hu W, Campuzano-Jost P, Day DA, Jimenez JL, Liu Y, Misztal PK, Artaxo P, Viegas J, Manzi A, de Souza RAF, Edgerton ES, Baumann K, Goldstein AH. Natural and Anthropogenically Influenced Isoprene Oxidation in Southeastern United States and Central Amazon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5980-5991. [PMID: 32271021 DOI: 10.1021/acs.est.0c00805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anthropogenic emissions alter secondary organic aerosol (SOA) formation chemistry from naturally emitted isoprene. We use correlations of tracers and tracer ratios to provide new perspectives on sulfate, NOx, and particle acidity influencing isoprene-derived SOA in two isoprene-rich forested environments representing clean to polluted conditions-wet and dry seasons in central Amazonia and Southeastern U.S. summer. We used a semivolatile thermal desorption aerosol gas chromatograph (SV-TAG) and filter samplers to measure SOA tracers indicative of isoprene/HO2 (2-methyltetrols, C5-alkene triols, 2-methyltetrol organosulfates) and isoprene/NOx (2-methylglyceric acid, 2-methylglyceric acid organosulfate) pathways. Summed concentrations of these tracers correlated with particulate sulfate spanning three orders of magnitude, suggesting that 1 μg m-3 reduction in sulfate corresponds with at least ∼0.5 μg m-3 reduction in isoprene-derived SOA. We also find that isoprene/NOx pathway SOA mass primarily comprises organosulfates, ∼97% in the Amazon and ∼55% in Southeastern United States. We infer under natural conditions in high isoprene emission regions that preindustrial aerosol sulfate was almost exclusively isoprene-derived organosulfates, which are traditionally thought of as representative of an anthropogenic influence. We further report the first field observations showing that particle acidity correlates positively with 2-methylglyceric acid partitioning to the gas phase and negatively with the ratio of 2-methyltetrols to C5-alkene triols.
Collapse
Affiliation(s)
- Lindsay D Yee
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
| | - Gabriel Isaacman-VanWertz
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
| | - Rebecca A Wernis
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | | | - Marianne Glasius
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Matthieu Riva
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Suzane S de Sá
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 01451, United States
| | - Scot T Martin
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 01451, United States
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 01451, United States
| | - M Lizabeth Alexander
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Brett B Palm
- Department of Chemistry & Biochemistry and Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado 80309, United States
| | - Weiwei Hu
- Department of Chemistry & Biochemistry and Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado 80309, United States
| | - Pedro Campuzano-Jost
- Department of Chemistry & Biochemistry and Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado 80309, United States
| | - Douglas A Day
- Department of Chemistry & Biochemistry and Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado 80309, United States
| | - Jose L Jimenez
- Department of Chemistry & Biochemistry and Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado 80309, United States
| | - Yingjun Liu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 01451, United States
| | - Pawel K Misztal
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
| | - Paulo Artaxo
- Universidade de São Paulo, São Paulo, Brazil 05508-020
| | - Juarez Viegas
- Instituto Nacional de Pesquisas da Amazonia, Manaus, Amazonas, Brazil 69060-001
| | - Antonio Manzi
- Instituto Nacional de Pesquisas da Amazonia, Manaus, Amazonas, Brazil 69060-001
| | | | - Eric S Edgerton
- Atmospheric Research & Analysis, Inc., Cary, North Carolina 27513, United States
| | - Karsten Baumann
- Atmospheric Research & Analysis, Inc., Cary, North Carolina 27513, United States
| | - Allen H Goldstein
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Brüggemann M, Xu R, Tilgner A, Kwong KC, Mutzel A, Poon HY, Otto T, Schaefer T, Poulain L, Chan MN, Herrmann H. Organosulfates in Ambient Aerosol: State of Knowledge and Future Research Directions on Formation, Abundance, Fate, and Importance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3767-3782. [PMID: 32157872 DOI: 10.1021/acs.est.9b06751] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Organosulfates (OSs), also referred to as organic sulfate esters, are well-known and ubiquitous constituents of atmospheric aerosol particles. Commonly, they are assumed to form upon mixing of air masses of biogenic and anthropogenic origin, that is, through multiphase reactions between organic compounds and acidic sulfate particles. However, in contrast to this simplified picture, recent studies suggest that OSs may also originate from purely anthropogenic precursors or even directly from biomass and fossil fuel burning. Moreover, besides classical OS formation pathways, several alternative routes have been discovered, suggesting that OS formation possibly occurs through a wider variety of formation mechanisms in the atmosphere than initially expected. During the past decade, OSs have reached a constantly growing attention within the atmospheric science community with evermore studies reporting on large numbers of OS species in ambient aerosol. Nonetheless, estimates on OS concentrations and implications on atmospheric physicochemical processes are still connected to large uncertainties, calling for combined field, laboratory, and modeling studies. In this Critical Review, we summarize the current state of knowledge in atmospheric OS research, discuss unresolved questions, and outline future research needs, also in view of reductions of anthropogenic sulfur dioxide (SO2) emissions. Particularly, we focus on (1) field measurements of OSs and measurement techniques, (2) formation pathways of OSs and their atmospheric relevance, (3) transformation, reactivity, and fate of OSs in atmospheric particles, and (4) modeling efforts of OS formation and their global abundance.
Collapse
Affiliation(s)
- Martin Brüggemann
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Rongshuang Xu
- Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Andreas Tilgner
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Kai Chung Kwong
- Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Anke Mutzel
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Hon Yin Poon
- Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Tobias Otto
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thomas Schaefer
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Laurent Poulain
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Man Nin Chan
- Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
- The Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
18
|
Wach P, Spólnik G, Surratt JD, Blaziak K, Rudzinski KJ, Lin YH, Maenhaut W, Danikiewicz W, Claeys M, Szmigielski R. Structural Characterization of Lactone-Containing MW 212 Organosulfates Originating from Isoprene Oxidation in Ambient Fine Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1415-1424. [PMID: 31917550 DOI: 10.1021/acs.est.9b06190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Isoprene (C5H8) is the main non-methane hydrocarbon emitted into the global atmosphere. Despite intense research, atmospheric transformations of isoprene leading to secondary organic aerosol (SOA) are still not fully understood, including its multiphase chemical reactions. Herein, we report on the detailed structural characterization of atmospherically relevant isoprene-derived organosulfates (OSs) with a molecular weight (MW) of 212 (C5H8SO7), which are abundantly present in both ambient fine aerosol (PM2.5) and laboratory-generated isoprene SOA. The results obtained from smog chamber-generated isoprene SOA and aqueous-phase laboratory experiments coupled to the S(IV)-autooxidation chemistry of isoprene, 3-methyl-2(5H)-furanone, and 4-methyl-2(5H)-furanone, allowed us for the first time to fully elucidate the isomeric structures of the MW 212 OSs. By applying liquid chromatography interfaced to electrospray ionization high-resolution mass spectrometry, we firmly confirmed six positional isomers of the MW 212 OSs in PM2.5 collected from different sites in Europe and the United States. Our results also show that despite the low solubility of isoprene in water, aqueous-phase or multiphase chemistry can play an important role in the formation of OSs from isoprene. Possible formation mechanisms for the MW 212 OSs are also tentatively proposed.
Collapse
Affiliation(s)
- Paulina Wach
- Institute of Physical Chemistry , Polish Academy of Sciences , 01-224 Warsaw , Poland
- Institute of Organic Chemistry , Polish Academy of Sciences , 01-224 Warsaw , Poland
| | - Grzegorz Spólnik
- Institute of Organic Chemistry , Polish Academy of Sciences , 01-224 Warsaw , Poland
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Kacper Blaziak
- Faculty of Chemistry , University of Warsaw , Pasteura 1 , 02-093 Warsaw , Poland
| | - Krzysztof J Rudzinski
- Institute of Physical Chemistry , Polish Academy of Sciences , 01-224 Warsaw , Poland
| | - Ying-Hsuan Lin
- Department of Environmental Sciences , University of California Riverside , Riverside , California 92521 , United States
| | - Willy Maenhaut
- Department of Chemistry , Ghent University , BE 9000 Ghent , Belgium
| | - Witold Danikiewicz
- Institute of Organic Chemistry , Polish Academy of Sciences , 01-224 Warsaw , Poland
| | - Magda Claeys
- Department of Pharmaceutical Sciences , University of Antwerp , BE 2610 Antwerp , Belgium
| | - Rafal Szmigielski
- Institute of Physical Chemistry , Polish Academy of Sciences , 01-224 Warsaw , Poland
| |
Collapse
|
19
|
Chen Y, Xu L, Humphry T, Hettiyadura APS, Ovadnevaite J, Huang S, Poulain L, Schroder JC, Campuzano-Jost P, Jimenez JL, Herrmann H, O'Dowd C, Stone EA, Ng NL. Response of the Aerodyne Aerosol Mass Spectrometer to Inorganic Sulfates and Organosulfur Compounds: Applications in Field and Laboratory Measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5176-5186. [PMID: 30939000 DOI: 10.1021/acs.est.9b00884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Organosulfur compounds are important components of secondary organic aerosols (SOA). While the Aerodyne high-resolution time-of-flight aerosol mass spectrometer (AMS) has been extensively used in aerosol studies, the response of the AMS to organosulfur compounds is not well-understood. Here, we investigated the fragmentation patterns of organosulfurs and inorganic sulfates in the AMS, developed a method to deconvolve total sulfate into components of inorganic and organic origins, and applied this method in both laboratory and field measurements. Apportionment results from laboratory isoprene photooxidation experiment showed that with inorganic sulfate seed, sulfate functionality of organic origins can contribute ∼7% of SOA mass at peak growth. Results from measurements in the Southeastern U.S. showed that 4% of measured sulfate is from organosulfur compounds. Methanesulfonic acid was estimated for measurements in the coastal and remote marine boundary layer. We explored the application of this method to unit mass-resolution data, where it performed less well due to interferences. Our apportionment results demonstrate that organosulfur compounds could be a non-negligible source of sulfate fragments in AMS laboratory and field data sets. A reevaluation of previous AMS measurements over the full range of atmospheric conditions using this method could provide a global estimate/constraint on the contribution of organosulfur compounds.
Collapse
Affiliation(s)
- Yunle Chen
- School of Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Lu Xu
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
- Now at Division of Geological and Planetary Sciences , California Institute of Technology , Pasadena , California 91125 , United States
| | - Tim Humphry
- Department of Chemistry , Truman State University , Kirksville , Missouri 63501 , United States
| | | | - Jurgita Ovadnevaite
- School of Physics and Centre for Climate and Air Pollution Studies, Ryan Institute , National University of Ireland Galway , Galway H91 TK33 , Ireland
| | - Shan Huang
- Now at Institute for Environmental and Climate Research , Jinan University , Guangzhou , Guangdong 511443 , China
- Leibniz Institute for Tropospheric Research , Leipzig , Sachsen 04318 , Germany
| | - Laurent Poulain
- Leibniz Institute for Tropospheric Research , Leipzig , Sachsen 04318 , Germany
| | - Jason C Schroder
- Department of Chemistry , University of Colorado , Boulder , Colorado 80309 , United States
- Cooperative Institute for Research in the Environmental Sciences (CIRES) , University of Colorado , Boulder , Colorado 80309 , United States
| | - Pedro Campuzano-Jost
- Department of Chemistry , University of Colorado , Boulder , Colorado 80309 , United States
- Cooperative Institute for Research in the Environmental Sciences (CIRES) , University of Colorado , Boulder , Colorado 80309 , United States
| | - Jose L Jimenez
- Department of Chemistry , University of Colorado , Boulder , Colorado 80309 , United States
- Cooperative Institute for Research in the Environmental Sciences (CIRES) , University of Colorado , Boulder , Colorado 80309 , United States
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research , Leipzig , Sachsen 04318 , Germany
| | - Colin O'Dowd
- School of Physics and Centre for Climate and Air Pollution Studies, Ryan Institute , National University of Ireland Galway , Galway H91 TK33 , Ireland
| | - Elizabeth A Stone
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Nga Lee Ng
- School of Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
20
|
Yang H, Wang N, Pang SF, Zheng CM, Zhang YH. Chemical reaction between sodium pyruvate and ammonium sulfate in aerosol particles and resultant sodium sulfate efflorescence. CHEMOSPHERE 2019; 215:554-562. [PMID: 30342400 DOI: 10.1016/j.chemosphere.2018.10.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/29/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
The hygroscopicity of aerosols is dependent upon their chemical composition. When their chemical compositions are altered, the water content in aerosols often changes, which may further modify phase behaviour. However, the study of phase behaviour dependence on chemical reactions is still limited. In this work, internally mixed sodium pyruvate (SP)/ammonium sulfate (AS) droplets were studied using an in-situ ATR-FTIR spectrometer. FTIR spectral analysis showed that solid sodium sulfate (SS) formed during the dehydration process, indicating a chemical reaction between SP and AS. In addition, the water content decreased after a dehydration-hydration process despite organic salt (SS) to inorganic salt (AS) mole ratios (OIRs) During the second relative humidity (RH) cycle, the water content remained constant, however, the efflorescence relative humidity (ERH) was lower than that in the first dehydration. The crystal relative humidities (CRHs) of SS are 66.7-53.1%, 66.0-58.2%, 62.2-57.1% and 49.6-43.6% for OIRs of 3:1, 2:1, 1:1 and 1:3, respectively, suggesting the crystallization of SS was favoured by higher SP content. For 2:1 OIRs, the solid SS was the greatest and an excess of either SP or AS blocked the solid SS formation. At a constant 80% RH, depletion of reagents was ∼0.97, and water loss was ∼0.6 in ∼40 min. After 90 min, solid SS formed. The chemical reaction was faster than water loss; furthermore, water loss from the chemical reaction led to solid SS above the ERH of pure SS particles (∼75% RH). When the RH changed rapidly, the reaction was slow and solid SS decreased.
Collapse
Affiliation(s)
- Hui Yang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Na Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Shu-Feng Pang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China.
| | - Chuan-Ming Zheng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yun-Hong Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China.
| |
Collapse
|
21
|
Bondy AL, Craig RL, Zhang Z, Gold A, Surratt JD, Ault AP. Isoprene-Derived Organosulfates: Vibrational Mode Analysis by Raman Spectroscopy, Acidity-Dependent Spectral Modes, and Observation in Individual Atmospheric Particles. J Phys Chem A 2017; 122:303-315. [DOI: 10.1021/acs.jpca.7b10587] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Amy L. Bondy
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 United States
| | - Rebecca L. Craig
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 United States
| | - Zhenfa Zhang
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Avram Gold
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jason D. Surratt
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew P. Ault
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 United States
- Department
of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
22
|
Wang Y, Ren J, Huang XHH, Tong R, Yu JZ. Synthesis of Four Monoterpene-Derived Organosulfates and Their Quantification in Atmospheric Aerosol Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6791-6801. [PMID: 28549212 DOI: 10.1021/acs.est.7b01179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Monoterpenes, a major class of biogenic volatile organic compounds, are known to produce oxidation products that further react with sulfate to form organosulfates. The accurate quantification of monoterpene-derived organosulfates (OSs) is necessary for quantifying this controllable aerosol source; however, it has been hampered by a lack of authentic standards. Here we report a unified synthesis strategy starting from the respective monoterpene through Upjohn dihydroxylation or Sharpless asymmetric dihydroxylation followed by monosulfation with the sulfur trioxide-pyridine complex. We demonstrate the successful synthesis of four monoterpene-derived OS compounds, including α-pinene OS, β-pinene OS, limonene OS, and limonaketone OS. Quantification of OSs is commonly achieved using liquid chromatography-mass spectrometry (LC-MS) by either monitoring the [M-H]- ion or through multiple reaction monitoring (MRM) of mass transitions between the [M-H]- and m/z 97 ions. Comparison between the synthesized standards and previously adopted quantification surrogates reveals that camphor-10-sulfonic acid is a better quantification surrogate using [M-H]- as the quantification ion, while the highly compound-specific nature of MRM quantification makes it difficult to choose a suitable surrogate. Both could be rationalized in accordance to their respective MS quantification mechanisms. The in-house availability of the authentic standards enables us to discover that β-pinene OS, due to the sulfate group at the primary carbon, partially degrades to a dehydrogenated OS compound during LC/MS analysis and a hydroperoxy OS over a prolonged storage period (>5 month) and forms a regioisomer through intermolecular isomerization. Limonene OS was positively identified for the first time in ambient samples and found to be more abundant than α-/β-pinene OS in the Pearl River Delta, China. This work highlights the critical importance of having authentic standards in advancing our understanding of the interactions between biogenic VOC emissions and anthropogenic sulfur pollution.
Collapse
Affiliation(s)
- Yuchen Wang
- Environmental Science Programs, §Institute of Environment, and ‡Department of Chemistry, Hong Kong University of Science & Technology , Hong Kong, China
| | - Jingyun Ren
- Environmental Science Programs, §Institute of Environment, and ‡Department of Chemistry, Hong Kong University of Science & Technology , Hong Kong, China
| | - X H Hilda Huang
- Environmental Science Programs, §Institute of Environment, and ‡Department of Chemistry, Hong Kong University of Science & Technology , Hong Kong, China
| | - Rongbiao Tong
- Environmental Science Programs, §Institute of Environment, and ‡Department of Chemistry, Hong Kong University of Science & Technology , Hong Kong, China
| | - Jian Zhen Yu
- Environmental Science Programs, §Institute of Environment, and ‡Department of Chemistry, Hong Kong University of Science & Technology , Hong Kong, China
| |
Collapse
|