1
|
Tastet V, Le Vée M, Verger A, Brandhonneur N, Bruyère A, Fardel O. Lack of effects of polystyrene micro- and nanoplastics on activity and expression of human drug transporters. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104563. [PMID: 39260711 DOI: 10.1016/j.etap.2024.104563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Micro- and nanoplastics (MPs/NPs) constitute emerging and widely-distributed environmental contaminants to which humans are highly exposed. They possibly represent a threat for human health. In order to identify cellular/molecular targets for these plastic particles, we have analysed the effects of exposure to manufactured polystyrene (PS) MPs and NPs on in vitro activity and expression of human membrane drug transporters, known to interact with chemical pollutants. PS MPs and NPs, used at various concentrations (1, 10 or 100 µg/mL), failed to inhibit efflux activities of the ATP-binding cassette (ABC) transporters P-glycoprotein, MRPs and BCRP in ABC transporter-expressing cells. Furthermore, PS particles did not impair the transport of P-glycoprotein or BCRP substrates across intestinal Caco-2 cell monolayers. Uptake activities of solute carriers (SLCs) such as OCT1 and OCT2 (handling organic cations) or OATP1B1, OATP1B3, OATP2B1, OAT1 and OAT3 (handling organic anions) were additionally not altered by PS MPs/NPs in HEK-293 cells overexpressing these SLCs. mRNA expression of ABC transporters and of the SLCs OCT1 and OATP2B1 in Caco-2 cells and human hepatic HepaRG cells were finally not impaired by a 48-h exposure to MPs/NPs. Altogether, these data indicate that human drug transporters are unlikely to be direct and univocal targets for synthetic PS MPs/NPs.
Collapse
Affiliation(s)
- Valentin Tastet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes 35000, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes 35000, France
| | - Alexis Verger
- Univ Rennes, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Rennes 35000, France
| | - Nolwenn Brandhonneur
- Univ Rennes, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Rennes 35000, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes 35000, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes 35000, France.
| |
Collapse
|
2
|
Wang L, Zhong H, Chen X, Chen X, Zhou Q, Li A, Pan Y. A group of emerging heterocyclic nitrogenous disinfection byproducts: Formation and cytotoxicity of halopyridinols in drinking water. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134569. [PMID: 38743981 DOI: 10.1016/j.jhazmat.2024.134569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Recently, a new group of halopyridinol disinfection byproducts (DBPs) was reported in drinking water. The in vivo developmental and acute toxicity assays have shown that they were more toxic than a few commonly known aliphatic DBPs such as bromoform and iodoacetic acid. However, many pyridinol DBPs with the same main structures but different halogen substitutions were still unknown due to complicated water quality conditions and various disinfection methods applied in drinking water treatment plants. Studies on their transformation mechanisms in drinking water disinfection were quite limited. In this study, comprehensive detection and identification of halopyridinols were conducted, and five new halopyridinols were first reported, including 2-chloro-3-pyridinol, 2,6-dichloro-3-pyridinol, 2-bromo-5-chloro-3-pyridinol, 2,4,6-trichloro-3-pyridinol and 2,5,6-trichloro-3-pyridinol. Formation conditions and mechanisms of the halopyridinols were explored, and results showed that chlorination promoted their formation compared with chloramination. Halopyridinols were intermediate DBPs that could undergo further transformation/degradation with increasing contact time, disinfectant dose, bromide concentration, and pH. The in vitro cytotoxicity of the halopyridinols was evaluated using human hepatocellular carcinoma cells. Results showed that the cytotoxicity of 3,5,6-trichloro-2-pyridinol was the highest (EC50 = 474.3 μM), which was 13.0 and 1.6 times higher than that of 2-bromo-3-pyridinol (EC50 = 6214.5 μM) and tribromomethane (EC50 = 753.6 μM), respectively.
Collapse
Affiliation(s)
- Leyi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Hongli Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xueyao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xun Chen
- Yangtze River Innovation Center for Ecological Civilization, Nanjing 210019, Jiangsu, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
3
|
Yang H, Zhang X, Cui D, Zhu YG, Zhang Y, Zhang Z. Mechanism of flavonols on detoxification, migration and transformation of indium in rhizosphere system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172693. [PMID: 38663607 DOI: 10.1016/j.scitotenv.2024.172693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Soil contamination by toxic heavy metal induces serious environmental hazards. In recent years, the use of indium (In) in semiconductor products has increased considerably and the release of In is inevitable, which will pose great risk to the ecosystem. The interaction between metal and plants which are the fundamental components of all ecosystems are an indispensable aspect of indium assessment and remediation. The role of flavonols, which is essential to plant resistance to In stress, remains largely unknown. FLS1 related lines of A. thaliana (Col, fls1-3 and OE) were exposed to In stress in soil and flavonols as root exudates were analyzed in exogenous application test. The accumulation and release of flavonols could be induced by In stress. However, flavonols exhibited different function in vivo and in vitro of plant. The basic function of flavonols was to affect root morphology via regulating auxin, but being intervened by In stress. The synthesis and accumulation of flavonols in vivo could activate the antioxidant system and the metal detoxification system to alleviate the toxic effects of In on plant. In addition, plants could make phone calls to rhizosphere microbes for help when exposed to In. Flavonols in vitro might act as the information transmission. Combination of endogenous and exogenous flavonols could affect the migration and transformation of In in soil-plant system via metal complexation and transportation pathway.
Collapse
Affiliation(s)
- Huanhuan Yang
- School of Life Sciences, Qilu Normal University, Jinan 250200, China
| | - Xu Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Dayong Cui
- School of Life Sciences, Qilu Normal University, Jinan 250200, China
| | - Yong Guan Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanhao Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China.
| |
Collapse
|
4
|
Ding F, Wang H, Li Y, Leng X, Gao J, Huang D. Polystyrene microplastics with absorbed nonylphenol induce intestinal dysfunction in human Caco-2 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104426. [PMID: 38527597 DOI: 10.1016/j.etap.2024.104426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Due to the massive production and use of plastic, the chronic and evolving exposure to microplastics in our daily lives is omnipresent. Nonylphenol (NP), a persistent organic pollutant, may change toxicity when it co-exists with microplastics. In this study, polystyrene microplastics (PS-MPs), either alone or with pre-absorbed NP, generated oxidative stress and inflammatory lesions to Caco-2 cells, as well as affecting proliferation via the MAPK signaling pathway and causing apoptosis. Damage to cell membrane integrity and intestinal barrier (marked by lower transepithelial electric resistance, greater bypass transport, and tight junction structural changes) leads to enhanced internalization risk of PS-MPs. Some important intestinal functions including nutrient absorption and xenobiotic protection were also harmed. It is worth noting that the exposure of PS-MPs with a diameter of 0.1 μm improved intestinal functions quickly but acted as a chemosensitizer for a long time, inhibiting cell perception of other toxic substances and making the cells more vulnerable.
Collapse
Affiliation(s)
- Fangfang Ding
- State Key Laboratory of Food Science and Resource, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Huimei Wang
- State Key Laboratory of Food Science and Resource, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yingzhi Li
- State Key Laboratory of Food Science and Resource, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xueping Leng
- State Key Laboratory of Food Science and Resource, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiaming Gao
- State Key Laboratory of Food Science and Resource, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Danfei Huang
- State Key Laboratory of Food Science and Resource, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
5
|
Chen Z, Li Y, Xia H, Wang Y, Pang S, Ma C, Bi L, Wang F, Song M, Jiang G. Chronic exposure to polystyrene microplastics increased the chemosensitivity of normal human liver cells via ABC transporter inhibition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169050. [PMID: 38065500 DOI: 10.1016/j.scitotenv.2023.169050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Microplastics (MPs) are ubiquitous in environmental compartments and consumer products. Although liver is frequently reported to be a target organ of MP accumulation in mammals, few studies have focused on MP hepatoxicity in humans. In this study, we used normal human liver cells, THLE-2, to assess the acute and chronic toxicity of polystyrene (PS) MPs with sizes of 0.1 and 1 μm. The results showed that after 48 h of exposure, both kinds of PS MPs could enter THLE-2 cells and cause no obviously acute cytotoxicity at <20 μg/mL. In contrast, metabolomic analysis revealed that 90 days of PS MPs exposure at environmentally relevant dose (0.2 μg/mL) could significantly alter the metabolic profiles of the cells, especially the nanosized MPs. KEGG pathway analysis showed that the ATP-binding cassette (ABC) transporter pathway was the most significantly changed pathway. Cell functional tests confirmed that chronic PS MP treatment could inhibit the activity of the ABC efflux transporter and further increase the cytotoxicity of arsenic, indicating that the PS MPs had a chemosensitizing effect. These findings underline the chronic risk of MPs to human liver.
Collapse
Affiliation(s)
- Zihan Chen
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honghuan Xia
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shaochen Pang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Bi
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Li X, Zhang J, Wang M, Du C, Zhang W, Jiang Y, Zhang W, Jiang X, Ren D, Wang H, Zhang X, Zheng Y, Tang J. Pulmonary Surfactant Homeostasis Dysfunction Mediates Multiwalled Carbon Nanotubes Induced Lung Fibrosis via Elevating Surface Tension. ACS NANO 2024; 18:2828-2840. [PMID: 38101421 DOI: 10.1021/acsnano.3c05956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Multiwalled carbon nanotubes (MWCNTs) have been widely used in many disciplines and raised great concerns about their negative health impacts, especially environmental and occupational exposure. MWCNTs have been reported to induce fibrotic responses; however, the underlying mechanisms remain largely veiled. Here, we reported that MWCNTs inhalation induced lung fibrosis together with decreased lung compliance, increased elastance in the mice model, and elevated surface tension in vitro. Specifically, MWCNTs increased surface tension by impairing the function of the pulmonary surfactant. Mechanistically, MWCNTs induced lamellar body (LB) dysfunction through autophagy dysfunction, which then leads to surface tension elevated by pulmonary surfactant dysfunction in the context of lung fibrosis. This is a study to investigate the molecular mechanism of MWCNTs-induced lung fibrosis and focus on surface tension. A direct mechanistic link among impaired LBs, surface tension, and fibrosis has been established. This finding elucidates the detailed molecular mechanisms of lung fibrosis induced by MWCNTs. It also highlights that pulmonary surfactants are expected to be potential therapeutic targets for the prevention and treatment of lung fibrosis induced by MWCNTs.
Collapse
Affiliation(s)
- Xin Li
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jianzhong Zhang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Mingyue Wang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Chao Du
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wenjing Zhang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yingying Jiang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wanjun Zhang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xinmin Jiang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Dunqiang Ren
- Department of Respiratory Medicine, Affiliated Hospital of Medical College of Qingdao University, Qingdao 266021, China
| | - Hongmei Wang
- Department of Respiratory Medicine, Affiliated Hospital of Medical College of Qingdao University, Qingdao 266021, China
| | - Xinru Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuxin Zheng
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jinglong Tang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
7
|
He R, Wu X, Mu H, Chen L, Hu H, Wang J, Ren H, Wu B. Priority control sequence of 34 typical pollutants in effluents of Chinese wastewater treatment plants. WATER RESEARCH 2023; 243:120338. [PMID: 37473511 DOI: 10.1016/j.watres.2023.120338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/14/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
The identification of the priority control sequence of pollutants in effluents of wastewater treatment plants (WWTPs) has important implications for the management of water quality. This study chose 34 typical pollutants based on their representativeness and detection rates in municipal wastewater. The occurrence frequency and concentration of these pollutants in 168 Chinese WWTP effluents were measured at the national level. The data on in vitro toxicity (67 assays) and in vivo toxicity (216 species) for target pollutants were obtained from the public toxicity database and our experimental data. An environmental health prioritization index (EHPi) method was proposed to integrate the occurrence frequency, concentration, removal rate, and in vitro and in vivo toxicity to determine the priority control sequence of target pollutants. Ethynyl estradiol, 17β-estradiol, estrone, diclofenac, and atrazine were the top 5 pollutants identified by the EHPi score. Several pollutants with high EHPi scores showed spatial differences. Besides the EHPi method which was from the single pollutant perspective, the combined toxicity of pollutants (300 pairs of binary combinations) was also measured based on in vitro toxicity assays to evaluate the key pollutants from the pollutant-pollutant interacting perspective. The pollutants (such as ofloxacin and acetaminophen) that could have significant synergetic effects with many other pollutants are worthy of prior attention. This study shed new light on the identification of the priority control sequence of pollutants in WWTP effluents. The results provide meaningful data for the effective management and control of wastewater water quality.
Collapse
Affiliation(s)
- Ruonan He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xingyue Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hongxin Mu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
8
|
Kong L, Yan G, Huang X, Wu Y, Che X, Liu J, Jia J, Zhou H, Yan B. Sequential exposures of single walled carbon nanotubes and heavy metal ions to macrophages induce different cytotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161059. [PMID: 36565863 DOI: 10.1016/j.scitotenv.2022.161059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The probability of occupational exposure rises with the increasing production and biomedical application of carbon nanotubes (CNTs). Thus, the risk of co-exposure of nanomaterials with environmental pollutants is also increasing. Although many studies have focused on the combined toxicity of nanomaterials and pollutants, more attention has been paid to the toxicity of nanomaterials after adsorbing pollutants or the toxicity of nanomaterials and pollutants exposed simultaneously. Few studies have been conducted on the toxicity and toxicity mechanisms of nanomaterials and environmental pollutants following sequential exposure. In this study, we employed THP-1 cells to investigate how pristine single walled CNTs (p-SWCNTs) and oxidized single walled CNTs (SWCNT-COOHs) pretreatments at a non-lethal dose of 10 μg/mL affect cell responses to metal ions (i. e., Pb2+, Cu2+, and Cr(VI)). We found that p-SWCNTs caused more significant damage to cell membrane integrity than SWCNT-COOHs, which led to higher metallothionein (MT) levels and increased transport of metal ions into cells. Pretreatment of p-SWCNTs in cells significantly increased the cytotoxicity of Pb2+, Cu2+, and Cr(VI) by 2-4-fold, whereas SWCNT-COOHs pretreated cells showed no noteworthy changes in response to heavy metals, which were further confirmed by the cellular reactive oxygen species (ROS) assays. These findings indicate that understanding the effects of the exposure sequence of engineered nanomaterials and environmental pollutants on their toxicity provides an excellent complement to combined toxicity evaluation.
Collapse
Affiliation(s)
- Long Kong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Guizhen Yan
- Department of Neurology, People's Hospital of Lixia District of Jinan, Shandong 250014, China
| | - Xinxin Huang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Yanxin Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Xin Che
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Jian Liu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Hongyu Zhou
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, Guangdong 510006, China.
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
9
|
Vijayalakshmi V, Sadanandan B, Anjanapura RV. In vitro comparative cytotoxic assessment of pristine and carboxylic functionalized multiwalled carbon nanotubes on LN18 cells. J Biochem Mol Toxicol 2023; 37:e23283. [PMID: 36541368 DOI: 10.1002/jbt.23283] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/20/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Multiwalled carbon nanotubes (MWCNTs) have been used in biomedical applications due to their ability to enter the cells. Carboxylic functionalization of MWCNT (MWCNT-COOH) is used to mitigate the toxicity of MWCNTs. Our study focuses on comparing the toxicity of MWCNT and MWCNT-COOH on the neuronal cells, LN18. Concentrations of 5, 10, 20, and 40 µg ml-1 were used for the study, and cytotoxicity was determined at 0, 1, 3, 6, 12, 24, and 48 h of incubation. Cell viability was assessed by Trypan Blue, MTT, and Live dead cell assays, and the oxidative stress produced was determined by reactive oxygen species (ROS) and Lipid peroxidation assays. MWCNT-COOH showed higher cell viability than MWCNT for 20 and 40 µg ml-1 at 24 and 48 h. This was also visually observed in the live dead cell imaging. However, at 48 h, the morphology of the cells appeared more stretched for all the concentrations of MWCNT and MWCNT-COOH in comparison to the control. A significant amount of ROS production can also be observed at the same concentration and time. Viability and oxidative stress results together revealed that MWCNT-COOH is less toxic when compared to MWCNT at longer incubation periods and higher concentrations. However, otherwise, the effect of both are comparable. A concentration of 5-10 µg ml-1 is ideal while using MWCNT and MWCNT-COOH as the toxicity is negligible. These findings can further be extended to various functionalizations of MWCNT for wider applications.
Collapse
Affiliation(s)
| | - Bindu Sadanandan
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Raghu V Anjanapura
- Department of Chemistry, Jain Deemed-to-be University, Bengaluru, Karnataka, India
- Faculty of Allied Health Sciences, BLDE (Deemed-to-be University), Vijayapura, Karnataka, India
| |
Collapse
|
10
|
Yadav P, Ambudkar SV, Rajendra Prasad N. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J Nanobiotechnology 2022; 20:423. [PMID: 36153528 PMCID: PMC9509578 DOI: 10.1186/s12951-022-01626-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer often develops multidrug resistance (MDR) when cancer cells become resistant to numerous structurally and functionally different chemotherapeutic agents. MDR is considered one of the principal reasons for the failure of many forms of clinical chemotherapy. Several factors are involved in the development of MDR including increased expression of efflux transporters, the tumor microenvironment, changes in molecular targets and the activity of cancer stem cells. Recently, researchers have designed and developed a number of small molecule inhibitors and derivatives of natural compounds to overcome various mechanisms of clinical MDR. Unfortunately, most of the chemosensitizing approaches have failed in clinical trials due to non-specific interactions and adverse side effects at pharmacologically effective concentrations. Nanomedicine approaches provide an efficient drug delivery platform to overcome the limitations of conventional chemotherapy and improve therapeutic effectiveness. Multifunctional nanomaterials have been found to facilitate drug delivery by improving bioavailability and pharmacokinetics, enhancing the therapeutic efficacy of chemotherapeutic drugs to overcome MDR. In this review article, we discuss the major factors contributing to MDR and the limitations of existing chemotherapy- and nanocarrier-based drug delivery systems to overcome clinical MDR mechanisms. We critically review recent nanotechnology-based approaches to combat tumor heterogeneity, drug efflux mechanisms, DNA repair and apoptotic machineries to overcome clinical MDR. Recent successful therapies of this nature include liposomal nanoformulations, cRGDY-PEG-Cy5.5-Carbon dots and Cds/ZnS core–shell quantum dots that have been employed for the effective treatment of various cancer sub-types including small cell lung, head and neck and breast cancers.
Collapse
|
11
|
Hu S, Chen X, Zhang B, Liu L, Gong T, Xian Q. Occurrence and transformation of newly discovered 2-bromo-6-chloro-1,4-benzoquinone in chlorinated drinking water. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129189. [PMID: 35739719 DOI: 10.1016/j.jhazmat.2022.129189] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Halobenzoquinones (HBQs) have been reported as an emerging category of disinfection byproducts (DBPs) in drinking water with relatively high toxicity, and the previously reported HBQs include 2,6-dichloro-1,4-benzoquinone, 2,3,6-trichloro-1,4-benzoquinone, 2,6-dichloro-3-methyl-1,4-benzoquinone, 2,6-dibromo-1,4-benzoquinone, 2,6-diiodo-1,4-benzoquinone, 2-chloro-6-iodo-1,4-benzoquinone, and 2-bromo-6-iodo-1,4-benzoquinone. In this study, another HBQ species, 2-bromo-6-chloro-1,4-benzoquinone (2,6-BCBQ), was newly detected and identified in drinking water. The occurrence frequency and levels of 2,6-BCBQ were investigated, and its cytotoxicity was evaluated. Since the formed 2,6-BCBQ was found to be not stable in chlorination, its transformation kinetics and mechanisms in chlorination were further studied. The results reveal that 2,6-BCBQ was generated from Suwannee River humic acid with concentrations in the range of 4.4-47.9 ng/L during chlorination within 120 h, and it was present in all the tap water samples with concentrations ranging from 1.5 to 15.7 ng/L. Among all the tested bromochloro-DBPs, 2,6-BCBQ showed the highest cytotoxicity on the human hepatoma cells. The transformation of 2,6-BCBQ in chlorination followed a pseudo-first-order decay, which was significantly affected by the chlorine dose, pH, and temperature. Seven polar chlorinated and brominated intermediates (including HBQs, halohydroxybenzoquinones, and halohydroxycyclopentenediones) were detected in chlorinated 2,6-BCBQ samples, according to which the transformation pathways of 2,6-BCBQ in chlorination were proposed. Besides, four trihalomethanes and four haloacetic acids were also generated during chlorination of 2,6-BCBQ with molar transformation percentages of 1.6-13.7%.
Collapse
Affiliation(s)
- Shaoyang Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao Chen
- Lower Changjiang River Bureau of Hydrological and Water Resources Survey, Nanjing 210011, China
| | - Beibei Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Lanyao Liu
- Water Resources Department of Linyi, Linyi 276037, China
| | - Tingting Gong
- School of Energy and Environment, Southeast University, Nanjing 210096, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
12
|
Liu Y, Li Y, Chen M, Liu Y, Liang J, Zhang Y, Qian ZJ. Mechanism of two alkaloids isolated from coral endophytic fungus for suppressing angiogenesis in atherosclerotic plaque in HUVEC. Int Immunopharmacol 2022; 109:108931. [PMID: 35704971 DOI: 10.1016/j.intimp.2022.108931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/20/2022] [Accepted: 06/05/2022] [Indexed: 11/05/2022]
Abstract
Atherosclerosis is a significant cause of many cardiovascular diseases. Oxidized low-density lipoproteins (ox-LDL) are crucial in developing atherosclerosis. In this study, we researched the effects of two alkaloids epi-aszonalenin A (EAA) and aszonalenin (AZN) of an endophytic fungus Aspergillus terreus C23-3 from coral Pavona, on ox-LDL-induced inflammation, apoptosis and angiogenesis in HUVEC, and evaluated related factors and mechanism. The results reveal that EAA and AZN inhibit HUVEC migration, invasion, angiogenesis and reactive oxygen species (ROS) accumulation on a non-cytotoxic basis. Then, EAA and AZN suppressed the ox-LDL-induced of LOX-1, VEGF protein expression, MAPK and PI3K/AKT pathways phosphorylation. Furthermore, AZN suppressed the ox-LDL-induced inflammatory factors (IL-6, IL-1β, and TNF-α), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and VEGF receptor VEGFR-2 and platelet-derived growth factor PDGF. In addition, it inhibited ox-LDL-induced atherosclerosis by blocking inflammation and apoptosis through nuclear factor κB (NF-κB), cleaved-caspase-3 and Bax/Bcl-2 pathways. Molecular docking results confirm that the effect of AZN on atherosclerosis inhibitory activity may be attributed to hydrogen bonds formed into LOX-1 and VEGFR-2. These data indicate that EAA and AZN can effectively prevent ox-LDL-induced HUVEC damage and angiogenesis by inhibiting inflammation and apoptosis. Therefore, EAA and AZN may have potential beneficial effects in regulating atherosclerosis and plaque angiogenesis.
Collapse
Affiliation(s)
- Yi Liu
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China
| | - Yanmei Li
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China
| | - Minqi Chen
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China
| | - Yayue Liu
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China
| | - Jinyue Liang
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China
| | - Yi Zhang
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China.
| | - Zhong-Ji Qian
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China.
| |
Collapse
|
13
|
Chetyrkina MR, Fedorov FS, Nasibulin AG. In vitro toxicity of carbon nanotubes: a systematic review. RSC Adv 2022; 12:16235-16256. [PMID: 35733671 PMCID: PMC9152879 DOI: 10.1039/d2ra02519a] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/19/2022] [Indexed: 12/20/2022] Open
Abstract
Carbon nanotube (CNT) toxicity-related issues provoke many debates in the scientific community. The controversial and disputable data about toxicity doses, proposed hazard effects, and human health concerns significantly restrict CNT applications in biomedical studies, laboratory practices, and industry, creating a barrier for mankind in the way of understanding how exactly the material behaves in contact with living systems. Raising the toxicity question again, many research groups conclude low toxicity of the material and its potential safeness at some doses for contact with biological systems. To get new momentum for researchers working on the intersection of the biological field and nanomaterials, i.e., CNT materials, we systematically reviewed existing studies with in vitro toxicological data to propose exact doses that yield toxic effects, summarize studied cell types for a more thorough comparison, the impact of incubation time, and applied toxicity tests. Using several criteria and different scientific databases, we identified and analyzed nearly 200 original publications forming a "golden core" of the field to propose safe doses of the material based on a statistical analysis of retrieved data. We also differentiated the impact of various forms of CNTs: on a substrate and in the form of dispersion because in both cases, some studies demonstrated good biocompatibility of CNTs. We revealed that CNTs located on a substrate had negligible impact, i.e., 90% of studies report good viability and cell behavior similar to control, therefore CNTs could be considered as a prospective conductive substrate for cell cultivation. In the case of dispersions, our analysis revealed mean values of dose/incubation time to be 4-5 μg mL-1 h-1, which suggested the material to be a suitable candidate for further studies to get a more in-depth understanding of its properties in biointerfaces and offer CNTs as a promising platform for fundamental studies in targeted drug delivery, chemotherapy, tissue engineering, biosensing fields, etc. We hope that the present systematic review will shed light on the current knowledge about CNT toxicity, indicate "dark" spots and offer possible directions for the subsequent studies based on the demonstrated here tabulated and statistical data of doses, cell models, toxicity tests, viability, etc.
Collapse
Affiliation(s)
| | - Fedor S Fedorov
- Skolkovo Institute of Science and Technology Nobel Str. 3 143026 Moscow Russia
| | - Albert G Nasibulin
- Skolkovo Institute of Science and Technology Nobel Str. 3 143026 Moscow Russia
- Aalto University FI-00076 15100 Espoo Finland
| |
Collapse
|
14
|
Zhang Y, Li X, Liang J, Luo Y, Tang N, Ye S, Zhu Z, Xing W, Guo J, Zhang H. Microcystis aeruginosa's exposure to an antagonism of nanoplastics and MWCNTs: The disorders in cellular and metabolic processes. CHEMOSPHERE 2022; 288:132516. [PMID: 34648785 DOI: 10.1016/j.chemosphere.2021.132516] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Nanoplastics and carbon nanotubes (CNTs) is one of the emerging environmental contaminants and a widely used engineering nanomaterial, and their biological toxicity has been frequently studied. However, there has been no research on the combined exposure of these two totally different shape nanoparticles. To explore their potential threat to freshwater ecosystems, Microcystis aeruginosa (M. aeruginosa) was exposed to concentration gradients of polystyrene nanoplastics (Nano-PS) and multi-walled carbon nanotubes (MWCNTs). The physiological analysis and whole-transcriptome sequencing were integrated to certify the cytotoxicity. As the physiological results showed, the low concentration (5 mg/L) of these two nanoparticles showed a stimulation on the growth (6.49%-12.2%) and photosynthesis (0-7.6%), and the coexposure was slightly higher than individuals. However, other concentrations showed inhibitory effect, especially at high concentration (50 mg/L), and all physical signs and electron microscope images showed obvious cytotoxicity. Compared with the individuals, the coexposure showed an antagonistic effect induced by the heterogeneous agglomeration which decreased the surface toxicity and the contact with algae of nanomaterials. Transcriptome results showed that coexposure treatment had the fewest differential genes, and the primary effects embodied in the disturbances of cellular and metabolic processes which were superior to the individuals. In the 50 mg/L Nano-PS, the translation process was significantly disordered, and MWCNTs could disrupted the photosynthesis, multiple metabolism processes, membrane transport, and translation. These findings demonstrated the aquatic toxic mechanism from cellular and metabolic processes of Nano-PS and MWCNTs for M. aeruginosa and provided valuable data for environmental risk assessment of them.
Collapse
Affiliation(s)
- Yafei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Yuan Luo
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Shujing Ye
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Ziqian Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wenle Xing
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Jiayin Guo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Hui Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
15
|
Xiao Z, Yang S, Liu Y, Zhou C, Hong P, Sun S, Qian ZJ. A novel glyceroglycolipid from brown algae Ishige okamurae improve photoaging and counteract inflammation in UVB-induced HaCaT cells. Chem Biol Interact 2022; 351:109737. [PMID: 34740599 DOI: 10.1016/j.cbi.2021.109737] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Excessive exposure to Ultraviolet (UV) rays can cause premature skin aging. Ishigoside (IGS) is a new glyceroglycolipid compound isolated from brown algal Ishige okamurae, However, whether it can protect the skin from (Ultraviolet-B) UVB damage has not been illuminated. METHODS The in vitro anti-photoaging effect of IGS was conducted in UVB-induced HaCaT. The HaCaT cells were divided into the following five groups: (1) cells didn't suffer from UVB irradiation or IGS treatment. (2-5) Cells were treated with various concentrations of IGS (0, 10, 50, and 100 μM) and irradiated by 40 mJ/cm2 UVB. The Matrix metalloproteinase (MMP) of photoaging process was determined by ELISA kits and the latent interaction between IGS and MMP was further performed by molecular docking. The crucial signaling pathway proteins involved in the collagen synthesis and degradation were subsequently evaluated by Western blotting, immunofluorescence and EMSA. RESULTS IGS effectively suppresses the high expressions and secretions of matrix metalloproteinases (MMPs) and photo-inflammation by blocking MAPKs, AP-1 and NF-κB. Meanwhile, increasing antioxidant enzyme expression. Molecular docking results suggest that inhibition of IGS on MMPs may be attributed to its hydrogen supply and hydrophobic capacity. In addition, IGS enhanced procollagen production by upregulating the TGF-β/Smad pathways. CONCLUSIONS IGS exhibited anti-photoaging activity in UVB-damage HaCaT. These effects might be a contribution by its suppression of MMPs expression via MAPKs, AP-1 and NF-κB pathway and have anti-oxidative and anti-inflammatory effects. Therefore, IGS has the great potential to become skin-care products or functional foods for preventing skin photoaging.
Collapse
Affiliation(s)
- Zhenbang Xiao
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shengtao Yang
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yi Liu
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chunxia Zhou
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Pengzhi Hong
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Shengli Sun
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhong-Ji Qian
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China.
| |
Collapse
|
16
|
Wu Y, Wei W, Luo J, Pan Y, Yang M, Hua M, Chu W, Shuang C, Li A. Comparative Toxicity Analyses from Different Endpoints: Are New Cyclic Disinfection Byproducts (DBPs) More Toxic than Common Aliphatic DBPs? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:194-207. [PMID: 34935353 DOI: 10.1021/acs.est.1c03292] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent years, dozens of halogenated disinfection byproducts (DBPs) with cyclic structures were identified and detected in drinking water globally. Previous in vivo toxicity studies have shown that a few new cyclic DBPs possessed higher developmental toxicity and growth inhibition rate than common aliphatic DBPs; however, in vitro toxicity studies have proved that the latter exhibited higher cytotoxicity and genotoxicity than the former. Thus, to provide a more comprehensive toxicity comparison of DBPs from different endpoints, 11 groups of cyclic DBPs and nine groups of aliphatic DBPs were evaluated for their comparative in vitro and in vivo toxicity using human hepatoma cells (Hep G2) and zebrafish embryos. Notably, results showed that the in vitro Hep G2 cytotoxicity index of the aliphatic DBPs was nearly eight times higher than that of the cyclic DBPs, whereas the in vivo zebrafish embryo developmental/acute toxicity indexes of the cyclic DBPs were roughly 48-50 times higher than those of the aliphatic DBPs, indicating that the toxicity rank order differed when different endpoints were applied. For a broader comparison, a Pearson correlation analysis of DBP toxicity data from nine different endpoints was conducted. It was found that the observed Hep G2 cytotoxicity and zebrafish embryo developmental/acute toxicity in this study were highly correlated with the previously reported in vitro CHO cytotoxicity and in vivo toxicity in aquatic organisms (P < 0.01), respectively. However, the observed in vitro toxicity had no correlation with the in vivo toxicity (P > 0.05), suggesting that the toxicity rank orders obtained from in vitro and in vivo bioassays had large discrepancies. According to the observed toxicity data in this study and the candidate descriptors, two quantitative structure-activity relationship (QSAR) models were established, which help to further interpret the toxicity mechanisms of DBPs from different endpoints.
Collapse
Affiliation(s)
- Yun Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Wenzhe Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Jiayi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Mengting Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Ming Hua
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chendong Shuang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
17
|
Lin P, Guo Y, He L, Liao X, Chen X, He L, Lu Z, Qian ZJ, Zhou C, Hong P, Sun S, Li C. Nanoplastics aggravate the toxicity of arsenic to AGS cells by disrupting ABC transporter and cytoskeleton. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112885. [PMID: 34634601 DOI: 10.1016/j.ecoenv.2021.112885] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
The coexistence of nanoplastics (NPs) and pollutants such as arsenic (As) has become an unignorable environmental problem. However, there is still a considerable knowledge gap about the impact of NPs and pollutants on human health risks. In this study, the human gastric adenocarcinoma (AGS) cells were used as a model to investigate the toxicity of NPs with different particle sizes and As by MTT assay, western blotting, immunofluorescence and so on. The results showed that 20 nm (8 μg/mL), 50 nm (128 μg/mL), 200 nm (128 μg/mL), 500 nm (128 μg/mL), 1000 nm (128 μg/mL) polystyrene (PS) did not affect cell viability, ROS, intracellular calcium and activate apoptosis pathway in AGS cells. However, noncytotoxic concentration of NPs enhanced the cytotoxicity and intracellular accumulation of As. NPs destroys the fluidity of cell membrane and cytoskeleton, inhibits the activity of ABC transporter, and leads to the accumulation of As in cells. This work highlights that the damage caused by NPs, especially at the level of noncytotoxicity, joint with As cannot be ignored and provides a specific toxicological mechanism of NPs accompanied by exposure to As.
Collapse
Affiliation(s)
- Peichun Lin
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Yitao Guo
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xiuchun Liao
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xueru Chen
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Liuying He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zifan Lu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| | - Zhong-Ji Qian
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Chunxia Zhou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China; School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Pengzhi Hong
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China; School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Shengli Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| |
Collapse
|
18
|
Pei Y, Yang S, Xiao Z, Zhou C, Hong P, Qian ZJ. Structural Characterization of Sulfated Polysaccharide Isolated From Red Algae ( Gelidium crinale) and Antioxidant and Anti-Inflammatory Effects in Macrophage Cells. Front Bioeng Biotechnol 2021; 9:794818. [PMID: 34869300 PMCID: PMC8637441 DOI: 10.3389/fbioe.2021.794818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
Gelidium crinale, the red algae belonging to Geliaceae Gelidium, is a traditional edible and industrial alga in China. A sulfated polysaccharide (GNP) is successfully separated from Gelidium crinale by acid extraction and two-step column chromatography. Chemical analysis showed that the molecular weight of GNP was 25.8 kDa and the monosaccharide composition had the highest galactose content and confirmed the presence and content (16.5%) of sulfate by Fourier transform infrared spectroscopy (FT-IR) spectrometry as well as barium chloride-gelatin methods. In addition, the effect of GNP on lipopolysaccharide (LPS)-induced oxidative stress and inflammation in macrophages was also evaluated. The research results showed that GNP had fairly strong scavenging activities on 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical, hydroxyl radical, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and had Fe2+-chelating ability in a dose-dependent manner. At the same time, it significantly inhibits the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and the production of pro-inflammatory cytokines in RAW 264.7 cells induced by LPS through blocking the mitogen-activated protein kinase (MAPK)/nuclear factor kappa beta (NF-κB) signaling pathway. These results indicate that GNP may be a latent component anti-inflammation in pharmaceutical and functional food industries.
Collapse
Affiliation(s)
- Yu Pei
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Shengtao Yang
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Zhenbang Xiao
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Chunxia Zhou
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Pengzhi Hong
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Zhong-Ji Qian
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| |
Collapse
|
19
|
Abd-Elhakim YM, Hashem MM, Abo-EL-Sooud K, Hassan BA, Elbohi KM, Al-Sagheer AA. Effects of Co-Exposure of Nanoparticles and Metals on Different Organisms: A Review. TOXICS 2021; 9:284. [PMID: 34822675 PMCID: PMC8623643 DOI: 10.3390/toxics9110284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/24/2022]
Abstract
Wide nanotechnology applications and the commercialization of consumer products containing engineered nanomaterials (ENMs) have increased the release of nanoparticles (NPs) to the environment. Titanium dioxide, aluminum oxide, zinc oxide, and silica NPs are widely implicated NPs in industrial, medicinal, and food products. Different types of pollutants usually co-exist in the environment. Heavy metals (HMs) are widely distributed pollutants that could potentially co-occur with NPs in the environment. Similar to what occurs with NPs, HMs accumulation in the environment results from anthropogenic activities, in addition to some natural sources. These pollutants remain in the environment for long periods and have an impact on several organisms through different routes of exposure in soil, water, and air. The impact on complex systems results from the interactions between NPs and HMs and the organisms. This review describes the outcomes of simultaneous exposure to the most commonly found ENMs and HMs, particularly on soil and aquatic organisms.
Collapse
Affiliation(s)
- Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Mohamed M. Hashem
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; (M.M.H.); (K.A.-E.-S.)
| | - Khaled Abo-EL-Sooud
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; (M.M.H.); (K.A.-E.-S.)
| | - Bayan A. Hassan
- Pharmacology Department, Faculty of Pharmacy, Future University, Cairo 41639, Egypt;
| | - Khlood M. Elbohi
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Adham A. Al-Sagheer
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
20
|
Li Y, Wang WX. Uptake, intracellular dissolution, and cytotoxicity of silver nanowires in cell models. CHEMOSPHERE 2021; 281:130762. [PMID: 34020191 DOI: 10.1016/j.chemosphere.2021.130762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
The uptake, intracellular dissolution, and cytotoxicity of silver nanowires (AgNWs) in two cell models (human keratinocytes - HaCaT cells and murine macrophages) were systemically investigated for the first time. Cellular uptake of AgNWs occurred mainly via pathways of clathrin-dependent endocytosis, caveolae-dependent endocytosis, and phagocytosis. AgNWs could be internalized by two types of cells with numerous lysosomal vesicles detected in close vicinity to AgNWs. Meanwhile, AgNWs exposure caused lysosomal permeabilization and release of cathepsisn B into cytoplasm. Furthermore, for the first time, this study found that AgNWs exposure inhibited the transmembrane ATP binding cassette (ABC) efflux transporter activity, which could make AgNWs as chemosensitizers to increase the toxicity of other xenobiotic pollutants. Toxicity assays evaluating reactive oxygen species production and mitochondrial activity indicated that cytotoxicity differed for different cell types and particles. The intracellular presence of AgNWs with different diameters induced similar toxic events but to different extents. AgNWs were absorbed by macrophages more efficiently than HaCaT cells, while AgNWs exhibited only marginal cytotoxicity towards macrophages compared to HaCaT cells. Using an Ag+ fluorescence probe, it was found that a fraction of AgNWs was dissolved inside the lysosomes. A higher amount of released Ag+ was detected in HaCaT cells than in macrophages, which might partially contribute to their higher cytotoxicity in HaCaT cells. The toxicity of AgNWs in HaCaT cells and macrophages is due to the high-aspect nature of the nanowires rather than the extracellular release of Ag+. This study may be useful for risk assessments of AgNWs in their practical applications in the biomedical field.
Collapse
Affiliation(s)
- Yiling Li
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
21
|
Mao L, Zheng L, You H, Ullah MW, Cheng H, Guo Q, Zhu Z, Xi Z, Li R. A comparison of hepatotoxicity induced by different lengths of tungsten trioxide nanorods and the protective effects of melatonin in BALB/c mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40793-40807. [PMID: 33772475 DOI: 10.1007/s11356-021-13558-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Tungsten trioxide nanoparticles (WO3 NPs) have shown increasing promise in biological and biomedical fields in recent years. However, their possible hazards, especially the adverse effects related to their sizes on human health and environment, are still yet poorly understood. In this study, we compared the hepatotoxicity in mice induced by WO3 nanorods of two different lengths (125-200 nm and 0.8-2 μm) via intraperitoneal injection, and explored the protective role of melatonin, an antioxidant, against the hepatotoxicity. The results showed that 10 mg/kg/day of shorter WO3 nanorods could cause obvious hepatic function impairment, histopathological lesions, and significant enhancement in levels of oxidative stress and inflammation in mouse liver. However, similar effects were found only in the 20 mg/kg/day longer WO3 nanorods-treated mice, and these adverse effects were attenuated by pretreatment with melatonin. These findings indicate that WO3 nanorods can exert hepatotoxicity in mice in a dose- and length-dependent manner, and that shorter WO3 nanorods cause more severe hepatotoxicity than their longer counterparts. Melatonin could serve as an effective protective agent against the longer WO3 nanorods-induced hepatotoxicity by decreasing the oxidative stress level. This study is important for determining the environmental and human health risks of exposure to WO3 NPs and their size-dependent toxicity, and provides an appealing strategy to avoid the adverse effects. WO3 nanorods with different lengths can exert hepatotoxicity in mice, in a dose- and length-dependent manner. Short WO3 nanorods causes more severe hepatic injury than long ones. Melatonin exhibits an effectively protective effects against WO3 nanorods-induced hepatic injury through reducing the oxidative stress level.
Collapse
Affiliation(s)
- Lin Mao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lifang Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Huihui You
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Haoyan Cheng
- Institute of Nano-Science and Nano-Technology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, China
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Qing Guo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Zhihong Zhu
- Institute of Nano-Science and Nano-Technology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, China
| | - Zhuge Xi
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Rui Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
22
|
Liu S, Khan AR, Yang X, Dong B, Ji J, Zhai G. The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. J Control Release 2021; 335:1-20. [PMID: 33991600 DOI: 10.1016/j.jconrel.2021.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) of cancer is a persistent problem in chemotherapy. Scientists have considered the overexpressed efflux transporters responsible for MDR and chemotherapy failure. MDR extremely limits the therapeutic effect of chemotherapy in cancer treatment. Many strategies have been applied to solve this problem. Multifunctional nanoparticles may be one of the most promising approaches to reverse MDR of tumor. These nanoparticles can keep stability in the blood circulation and selectively accumulated in the tumor microenvironment (TME) either by passive or active targeting. The stimuli-sensitive or organelle-targeting nanoparticles can release the drug at the targeted-site without exposure to normal tissues. In order to better understand reversal of MDR, three main strategies are concluded in this review. First strategy is the synergistic effect of chemotherapeutic drugs and ABC transporter inhibitors. Through directly inhibiting overexpressed ABC transporters, chemotherapeutic drugs can enter into resistant cells without being efflux. Second strategy is based on nanoparticles circumventing over-expressed efflux transporters and directly targeting resistance-related organelles. Third approach is the combination of multiple therapy modes overcoming cancer resistance. At last, numerous researches demonstrated cancer stem-like cells (CSCs) had a deep relation with drug resistance. Here, we discuss two different drug delivery approaches of nanomedicine based on CSC therapy.
Collapse
Affiliation(s)
- Shangui Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Abdur Rauf Khan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Bo Dong
- Department of cardiovascular medicine, Shandong Provincial Hospital, Jinan 250021, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
23
|
Understanding the interactions of poly(methyl methacrylate) and poly(vinyl chloride) nanoparticles with BHK-21 cell line. Sci Rep 2021; 11:2089. [PMID: 33483569 PMCID: PMC7822812 DOI: 10.1038/s41598-020-80708-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/21/2020] [Indexed: 01/12/2023] Open
Abstract
Microplastic and nanoplastic particles are prevalent in the environment and are beginning to enter the living system through multiple channels. Currently, little is known about the impact of plastic nanoparticles in living organisms. In order to investigate the health impact of micro- and nanoparticles of common polymers in a systematic way, luminescent plastic nanoparticles from two common polymers, polyvinyl chloride (PVC) and poly (methyl methacrylate) (PMMA) with relatively narrow size distribution are prepared using a nanoprecipitation method. As a model system, BHK-21 cells were exposed to polymer nanoparticles to understand the mode of uptake, internalization and biochemical changes inside the cells. The cellular effects of the nanoparticles were evaluated by monitoring the changes in cell viability, cell morphology, concentrations of reactive oxygen species (ROS), adenine triphosphate (ATP) and lactate dehydrogenase at different concentrations of the nanoparticles and time of exposure. PVC and PMMA nanoparticles induced a reduction in the cell viability along with a reduction of ATP and increase of ROS concentrations in a dose- and time-dependent manner. The plastic nanoparticles are internalized into the cell via endocytosis, as confirmed by Dynasore inhibition assay and colocalization with latex beads. Our findings suggest that plastic nanoparticle internalization could perturb cellular physiology and affect cell survival under laboratory conditions.
Collapse
|
24
|
Hu LX, Xiong Q, Shi WJ, Huang GY, Liu YS, Ying GG. New insight into the negative impact of imidazolium-based ionic liquid [C 10mim]Cl on Hela cells: From membrane damage to biochemical alterations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111629. [PMID: 33396149 DOI: 10.1016/j.ecoenv.2020.111629] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 05/08/2023]
Abstract
As an alternative to volatile organic solvents, ionic liquids (ILs) are known as "green solvents", and widely used in industrial applications. However, due to their high solubility and stability, ILs have tendency to persist in the water environment, thus having potential negative impacts on the aquatic ecosystem. For assessing the environmental risks of ILs, a fundamental understanding of the toxic effects and mechanisms of ILs is needed. Here we evaluated the cytotoxicity of 1-methyl-3-decylimidazolium chloride ([C10mim]Cl) and elucidated the main toxic mechanism of [C10mim]Cl in human cervical carcinoma (Hela) cells. Microstructural analysis revealed that [C10mim]Cl exposure caused the cell membrane breakage, swollen and vacuolated mitochondria, and spherical cytoskeletal structure. Cytotoxicity assays found that [C10mim]Cl exposure increased ROS production, decreased mitochondrial membrane potential, induced cell apoptosis and cell cycle arrest. These results indicated that [C10mim]Cl could induce damage to cellular membrane structure, affect the integrity of cell ultrastructure, cause the oxidative damage and ultimately lead to the inhibition of cell proliferation. Moreover, alterations of biochemical information including the increased ratios of unsaturated fatty acid and carbonyl groups to lipid, and lipid to protein, and the decreased ratios of Amide I to Amide II, and α-helix to β-sheet were observed in [C10mim]Cl treated cells, suggesting that [C10mim]Cl could affect the structure of membrane lipid alkyl chain and cell membrane fluidity, promote the lipid peroxidation and alter the protein secondary structure. The findings from this work demonstrated that membrane structure is the key target, and membrane damage is involved in [C10mim]Cl induced cytotoxicity.
Collapse
Affiliation(s)
- Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Qian Xiong
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
25
|
Qiu J, Huang Y, Wu Y, Shi P, Xu B, Chu W, Pan Y. Detection, transformation, and toxicity of indole-derivative nonsteroidal anti-inflammatory drugs during chlorine disinfection. CHEMOSPHERE 2020; 260:127579. [PMID: 32679375 DOI: 10.1016/j.chemosphere.2020.127579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
As important emerging contaminants, nonsteroidal anti-inflammatory drugs (NSAIDs) are the most intensively prescribed pharmaceuticals introduced to drinking water due to their incomplete removal in wastewater treatment. While concentrations of NSAIDs in drinking water are generally low, they have been attracting increasing concern as a result of their disinfection byproducts (DBPs) generated in drinking water disinfection. In this work, detection methods were set up for four representative indole-derivative NSAIDs (indomethacin, acemetacin, sulindac, and etodolac) using ultra performance liquid chromatography/electrospray ionization-triple quadruple mass spectrometry (UPLC/ESI-tqMS). ESI+ was better for detection of indomethacin and sulindac, whereas ESI- was suitable to detection of acemetacin and etodolac. With optimized MS parameters, the instrument detection and quantitation limits of the four indole derivatives were achieved to be 1.1-24.6 ng/L and 3.7-41.0 ng/L, respectively. During chlorination, indomethacin and acemetacin could undergo five major reaction types (chlorine substitution, hydrolysis, decarboxylation, C-C coupling, and C-N cleavage) to form a series of DBPs, among which 19 were proposed/identified with structures. Based on the revealed structures of DBPs, transformation pathways of indomethacin and acemetacin in chlorination were partially elucidated. Notably, individual and mixture toxicity of indomethacin and acemetacin before/after chlorination were evaluated using a well-established acute toxicity assessment and a Hep G2 cell cytotoxicity assay, respectively. Results showed that the predicted acute toxicity of a few chlorination DBPs were higher than their precursors; chlorination substantially enhanced the mixture cytotoxicity of indomethacin by over 10 times and slightly increased the mixture cytotoxicity of acemetacin.
Collapse
Affiliation(s)
- Jingfan Qiu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yan Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Yun Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
26
|
Deline AR, Frank BP, Smith CL, Sigmon LR, Wallace AN, Gallagher MJ, Goodwin DG, Durkin DP, Fairbrother DH. Influence of Oxygen-Containing Functional Groups on the Environmental Properties, Transformations, and Toxicity of Carbon Nanotubes. Chem Rev 2020; 120:11651-11697. [DOI: 10.1021/acs.chemrev.0c00351] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Alyssa R. Deline
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Benjamin P. Frank
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Casey L. Smith
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Leslie R. Sigmon
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Alexa N. Wallace
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Miranda J. Gallagher
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - David G. Goodwin
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P. Durkin
- Department of Chemistry, United States Naval Academy, 572M Holloway Road, Annapolis, Maryland 21402, United States
| | - D. Howard Fairbrother
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
27
|
Rezazadeh Azari M, Mohammadian Y. Comparing in vitro cytotoxicity of graphite, short multi-walled carbon nanotubes, and long multi-walled carbon nanotubes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15401-15406. [PMID: 32077025 DOI: 10.1007/s11356-020-08036-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Occupational and environmental exposures to carbon-based materials in nano- and micro-size have been reported. There is incomplete information on the impact of size on the toxicity of carbon-based materials. The objective of this study is to compare the toxicity of graphite, short multi-walled carbon nanotubes (S-MWCNTs), and long multi-walled carbon nanotubes (L-MWCNTs) in lung cells (A 549). The physicochemical properties of MWCNTs were determined using analytical instruments. The fibers of MWCNTs were dispersed in the sterile-filtered 0.05% bovine serum albumin in MilliQ water. Cytotoxicity of graphite and MWCNTs were assessed using the cell viability, reactive oxygen species (ROS), and lipid peroxidation experiments. Results showed that MWCNTs induced cytotoxicity through the generation of oxidative stress in the exposed lung cells. Mean cytotoxicity of S-MWCNTs was statistically more than that of L-MWCNTs. The graphite induced cytotoxicity only at high concentrations. The mean cytotoxicity of both S-MWCNTs and L-MWCNTs was statistically more than that of graphite. The results also indicated that oxidative stress was the probable toxicity mechanism of carbon-based materials. The decreasing size of carbon-based materials could increase their toxicity. Because of the toxicity of MWCNTs, it is imperative to consider health and safety issues in working with nanomaterials.
Collapse
Affiliation(s)
- Mansour Rezazadeh Azari
- School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Mohammadian
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
28
|
Rosário F, Bessa MJ, Brandão F, Costa C, Lopes CB, Estrada AC, Tavares DS, Teixeira JP, Reis AT. Unravelling the Potential Cytotoxic Effects of Metal Oxide Nanoparticles and Metal(Loid) Mixtures on A549 Human Cell Line. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E447. [PMID: 32131449 PMCID: PMC7153484 DOI: 10.3390/nano10030447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022]
Abstract
Humans are typically exposed to environmental contaminants' mixtures that result in different toxicity than exposure to the individual counterparts. Yet, the toxicology of chemical mixtures has been overlooked. This work aims at assessing and comparing viability and cell cycle of A549 cells after exposure to single and binary mixtures of: titanium dioxide nanoparticles (TiO2NP) 0.75-75 mg/L; cerium oxide nanoparticles (CeO2NP) 0.0.75-10 μg/L; arsenic (As) 0.75-2.5 mg/L; and mercury (Hg) 5-100 mg/L. Viability was assessed through water-soluble tetrazolium (WST-1) and thiazolyl blue tetrazolium bromide (MTT) (24 h exposure) and clonogenic (seven-day exposure) assays. Cell cycle alterations were explored by flow cytometry. Viability was affected in a dose- and time-dependent manner. Prolonged exposure caused inhibition of cell proliferation even at low concentrations. Cell-cycle progression was affected by TiO2NP 75 mg/L, and As 0.75 and 2.5 μg/L, increasing the cell proportion at G0/G1 phase. Combined exposure of TiO2NP or CeO2NP mitigated As adverse effects, increasing the cell surviving factor, but cell cycle alterations were still observed. Only CeO2NP co-exposure reduced Hg toxicity, translated in a decrease of cells in Sub-G1. Toxicity was diminished for both NPs co-exposure compared to its toxicity alone, but a marked toxicity for the highest concentrations was observed for longer exposures. These findings prove that joint toxicity of contaminants must not be disregarded.
Collapse
Grants
- PTDC/SAU-PUB/29651/2017 COMPETE 2020, Portugal 2020 and European Union, through FEDER
- SFRH/BPD/122112/2016 (A.T.Reis) FCT - Fundação para a Ciência e a Tecnologia, I.P.
- contract foreseen in the numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19 (C.B. Lopes and A.C. Estrada) FCT - Fundação para a Ciência e a Tecnologia, I.P.
- SFRH/BD/101060/2014 (F. Brandão) FCT - Fundação para a Ciência e a Tecnologia, I.P.
- SFRH/BD/12046/2016 (M.J. Bessa) FCT - Fundação para a Ciência e a Tecnologia, I.P.
Collapse
Affiliation(s)
- Fernanda Rosário
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal; (F.R.); (M.J.B.); (F.B.); (C.C.); (J.P.T.)
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| | - Maria João Bessa
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal; (F.R.); (M.J.B.); (F.B.); (C.C.); (J.P.T.)
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- ICBAS—Institute of Biomedical Sciences Abel Salazar, U. Porto—University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Fátima Brandão
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal; (F.R.); (M.J.B.); (F.B.); (C.C.); (J.P.T.)
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- ICBAS—Institute of Biomedical Sciences Abel Salazar, U. Porto—University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carla Costa
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal; (F.R.); (M.J.B.); (F.B.); (C.C.); (J.P.T.)
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| | - Cláudia B. Lopes
- Department of Chemistry and Aveiro Institute of Materials (CICECO), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (C.B.L.); (A.C.E.); (D.S.T.)
| | - Ana C. Estrada
- Department of Chemistry and Aveiro Institute of Materials (CICECO), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (C.B.L.); (A.C.E.); (D.S.T.)
| | - Daniela S. Tavares
- Department of Chemistry and Aveiro Institute of Materials (CICECO), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (C.B.L.); (A.C.E.); (D.S.T.)
- Department of Chemistry and Center of Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - João Paulo Teixeira
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal; (F.R.); (M.J.B.); (F.B.); (C.C.); (J.P.T.)
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| | - Ana Teresa Reis
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal; (F.R.); (M.J.B.); (F.B.); (C.C.); (J.P.T.)
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
29
|
Azari MR, Mohammadian Y, Peirovi H, Omidi M, Khodagholi F, Pourahmad J, Mehrabi Y, Rafieepour A. Antagonistic effect of co-exposure to short-multiwalled carbon nanotubes and benzo[a]pyrene in human lung cells (A549). Toxicol Ind Health 2019; 35:445-456. [PMID: 31244407 DOI: 10.1177/0748233719854570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In theenvironment, co-exposure to short-multiwalled carbon nanotubes (S-MWCNTs) and polycyclic aromatic compounds (PAHs) has been reported. In the co-exposure condition, the adsorption of PAHs onto MWCNTs may reduce PAHs toxic effect. The objective of this study was to investigate the cytotoxicity of S-MWCNTs and benzo[a]pyrene (B[a]P) individually, and in combination in human lung cell lines (A549). The adsorption of B[a]P onto MWCNTs was measured spectrometrically. In vitro toxicity was assessed through cell viability, reactive oxygen species (ROS) generation, apoptosis, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) generation experiments. The S-MWCNTs demonstrated cytotoxicity through the generation of ROS, apoptosis, and 8-OHdG in A549 cells. Co-exposure to S-MWCNTs and B[a]P demonstrated a significant reduction in ROS generation and apoptosis compared with the sum of their separate toxic effects at the same concentrations. Decreasing the bioavailability of B[a]P by MWCNT interaction is the probable reason for the antagonistic effects of the co-exposure condition. The findings of this study will contribute to a better understanding of the health effects of co-exposures to air pollutants and could be a starting point for modifying future health risk assessments.
Collapse
Affiliation(s)
- Mansour Rezazadeh Azari
- 1 School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Mohammadian
- 2 Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habibollah Peirovi
- 3 Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Omidi
- 4 Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- 5 Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- 6 Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yadollah Mehrabi
- 1 School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Athena Rafieepour
- 1 School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Shen Z, Wu J, Yu Y, Liu S, Jiang W, Nurmamat H, Wu B. Comparison of cytotoxicity and membrane efflux pump inhibition in HepG2 cells induced by single-walled carbon nanotubes with different length and functional groups. Sci Rep 2019; 9:7557. [PMID: 31101842 PMCID: PMC6525162 DOI: 10.1038/s41598-019-43900-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Environmental risk of single-walled carbon nanotubes (SWCNTs) is receiving increasing attentions owing to their wide study and application. However, little is known on the influence of length and functional groups on SWCNT cytotoxicity. In this study, six types of SWCNTs with different functional groups (pristine, carboxyl group and hydroxyl group) and lengths (1-3 μm and 5-30 μm) were chosen. Cytotoxicities in human hepatoma HepG2 cells induced by these SWCNTs were compared based on cell viability, oxidative stress, plasma membrane fluidity and ABC transporter activity assays. Results showed that all the SWCNTs decreased cell viability of HepG2, increased intracellular reactive oxygen species (ROS) level, and damaged plasma membrane in a concentration-dependent manner. Long SWCNTs had stronger cytotoxic effects than short SWCNTs, which might be due to weaker aggregation for the long SWCNTs. Functionalization changed the toxic effects of the SWCNTs, and different influence was found between long SWCNTs and short SWCNTs. Moreover, the six types of SWCNTs at low concentrations changed plasma membrane fluidity, inhibited transmembrane ABC transporter (efflux pump) activity, and acted as chemosensitizer to improve the sensitivity of cells to arsenic, indicating the chemosensitive effect should be considered as toxic endpoint of SWCNTs. Comparison of different toxic endpoints among the six types of SWCNTs showed that short hydroxyl-SWCNT might be safer than other SWCNTs. This study provides insights into toxicities of SWCNTs, which is of great value for the risk assessment and application of SWCNTs.
Collapse
Affiliation(s)
- Zhuoyan Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P.R. China
| | - Jialu Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P.R. China
| | - Yue Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P.R. China
| | - Su Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P.R. China
| | - Wei Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P.R. China
| | - Habiba Nurmamat
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P.R. China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P.R. China.
| |
Collapse
|
31
|
Yan Z, Lu G, Sun H, Bao X, Jiang R, Liu J, Ji Y. Comparison of the accumulation and metabolite of fluoxetine in zebrafish larva under different environmental conditions with or without carbon nanotubes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:240-245. [PMID: 30711858 DOI: 10.1016/j.ecoenv.2019.01.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Few studies have focused on the influence of environmental conditions on the bioavailability of pollutants interacted with nanomaterials in organisms. In this study, we primarily compared the influence of multiwalled carbon nanotubes (MWCNTs) on the bioavailability of fluoxetine in zebrafish (Danio rerio) larva under different environmental conditions: natural organic matter (NOM) and salinity. The results showed that fluoxetine accumulated in the larvae and then transformed into the metabolite norfluoxetine, with the metabolic rates from 2.8 to 3.5. Following co-exposure to MWCNTs, the accumulation of fluoxetine and norfluoxetine were further enhanced, suggesting a superior carrier of MWCNTs for fluoxetine, especially the functional MWCNTs. The consistent increase in the fluoxetine and norfluoxetine accumulation highlights the bioavailability of absorbed fluoxetine on MWCNTs in zebrafish larvae. The presence of NOM promoted the accumulation of fluoxetine and norfluoxetine in zebrafish, but alleviated the carrier effects of MWCNTs, acting as a natural antidote. Salinity negatively influenced the bioavailability of fluoxetine in the larvae, and further reversed the enhancements caused by MWCNTs. These findings provide a new insight into the influence of environmental conditions on the interactions between nanomaterials and pollutants in organisms.
Collapse
Affiliation(s)
- Zhenhua Yan
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China.
| | - Hongwei Sun
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xuhui Bao
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yong Ji
- School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang 330099, China
| |
Collapse
|
32
|
Wu B, Wu X, Liu S, Wang Z, Chen L. Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2 cells. CHEMOSPHERE 2019; 221:333-341. [PMID: 30641374 DOI: 10.1016/j.chemosphere.2019.01.056] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 05/23/2023]
Abstract
Microplastics in the environment may gain entry the human gastrointestinal tract through the food chain. However, information on different adverse effects of microplastics at nanometer or micrometer scales in human intestine cells is limited. This study compared the cytotoxicity and efflux pump inhibition ability of 0.1 μm and 5 μm polystyrene microplastics (PS-MPs) in the human colon adenocarcinoma Caco-2 cells. Both PS-MP sizes exhibited low toxicity on cell viability, oxidative stress, and membrane integrity and fluidity. However, the mitochondrial membrane potential was disrupted by both sizes of PS-MPs, and the 5 μm PS-MPs induced higher effects than 0.1 μm PS-MPs. Furthermore, 0.1 μm (≥20 μg/mL) or 5 μm (≥80 μg/mL) PS-MPs inhibited plasma membrane ATP-binding cassette (ABC) transporter activity and increased arsenic (one substrate of ABC transporter) toxicity. The 0.1 μm PS-MPs might act as substrates of ABC transporter to reduce the transport capacity of other substrates. However, high concentrations of 5 μm PS-MPs might reduce ABC transporter activity through induction of mitochondrial depolarization and potential depletion of ATP. This study provides basic information on the toxicity of 0.1 μm and 5 μm PS-MPs in human intestine cells, which are useful for assessing the risk of PS-MPs in humans.
Collapse
Affiliation(s)
- Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| | - Xiaomei Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Su Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China; Department of Environmental Science, School of Engineering, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zhizhi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| |
Collapse
|
33
|
Comparative analysis of toxicity reduction of wastewater in twelve industrial park wastewater treatment plants based on battery of toxicity assays. Sci Rep 2019; 9:3751. [PMID: 30842527 PMCID: PMC6403317 DOI: 10.1038/s41598-019-40154-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/08/2019] [Indexed: 12/20/2022] Open
Abstract
Wastewater treatment plants (WWTPs) in industrial parks provide centralized treatment for industrial and domestic wastewater. However, the information on toxicity reduction of wastewater and its correlation with treatment process in industrial park is limited. This study compared the toxicity reduction of wastewater in 12 industrial park WWTPs based on battery of toxicity assays. Nine toxic endpoints involving microorganism, phytoplankton, zooplankton, plant and human cell lines were applied. All the influents of WWTPs induced high toxicities, which were significantly reduced after the treatments from 7 of the studied WWTPs. However, the effluents of five WWTPs induced higher toxicity in one or more toxic endpoints compared to the influents. This study also found that most of anaerobic-anoxic-oxic (A2/O)-based processes had good removal efficiency of wastewater toxicity, while the sequencing batch reactor (SBR)-based processes had the lowest removal efficiency. Moreover, low correlation coefficients were obtained among all toxic endpoints, indicating that battery of toxicity assays was necessary to completely characterize the toxicity and risk of wastewater in industrial parks. This study shed new lights to the toxicity reduction of wastewater and its correlation with treatment process, which is very useful for the design, management and operation of WWTPs in industrial parks.
Collapse
|
34
|
Tian J, Hu J, Liu G, Yin H, Chen M, Miao P, Bai P, Yin J. Altered Gene expression of ABC transporters, nuclear receptors and oxidative stress signaling in zebrafish embryos exposed to CdTe quantum dots. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:588-599. [PMID: 30384064 DOI: 10.1016/j.envpol.2018.10.092] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
Adenosine triphosphate-binding cassette (ABC) transporters, including P-glycoprotein (Pgp) and multi-resistance associated proteins (Mrps), have been considered important participants in the self-protection of zebrafish embryos against environmental pollutants, but their possible involvement in the efflux and detoxification of quantum dots (QDs), as well as their regulation mechanism are currently unclear. In this work, gene expression alterations of ABC transporters, nuclear receptors, and oxidative stress signaling in zebrafish embryos after the treatment of mercaptopropionic acid (MPA)CdTe QDs and MPA-CdSCdTe QDs were investigated. It was observed that both QDs caused concentration-dependent delayed hatching effects and the subsequent induction of transporters like mrp1&2 in zebrafish embryos, indicating the protective role of corresponding proteins against CdTe QDs. Accompanying these alterations, expressions of nuclear receptors including the pregnane X receptor (pxr), aryl hydrocarbon receptor (ahr) 1b, and peroxisome proliferator-activated receptor (ppar)-β were induced by QDs in a concentration- and time-dependent manner. Moreover, elevated oxidative stress, reflected by the reduction of glutathione (GSH) level and superoxide dismutase (SOD) activities, as well as the dramatic induction of nuclear factor E2 related factor (nrf) 2, was also found. More importantly, alterations of pxr and nrf2 were more pronounced than that of mrps, and these receptors exhibited an excellent correlation with delayed hatching rate in the same embryos (R2 > 0.8). Results from this analysis demonstrated that the induction of mrp1 and mrp2 could be important components for the detoxification of QDs in zebrafish embryos. These transporters could be modulated by nuclear receptors and oxidative stress signaling. In addition, up-regulation of pxr and nrf2 could be developed as toxic biomarkers of CdTe QDs.
Collapse
Affiliation(s)
- Jingjing Tian
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; Academy for Engineering & Technology, Fudan University, Shanghai 200433, PR China
| | - Jia Hu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Guangxing Liu
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Huancai Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Mingli Chen
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Peng Miao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Pengli Bai
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Jian Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China.
| |
Collapse
|
35
|
Hu S, Gong T, Xian Q, Wang J, Ma J, Li Z, Yin J, Zhang B, Xu B. Formation of iodinated trihalomethanes and haloacetic acids from aromatic iodinated disinfection byproducts during chloramination. WATER RESEARCH 2018; 147:254-263. [PMID: 30315993 DOI: 10.1016/j.watres.2018.09.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/29/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
Iodinated disinfection byproducts (DBPs) are widely present in disinfected drinking waters and wastewater effluents, and they have drawn increasing concern owing to their high toxicity. To date, the reported iodinated DBPs mainly include aliphatic and aromatic ones, and iodinated trihalomethanes (THMs) and haloacetic acids (HAAs) are the most commonly detected aliphatic iodinated DBPs in disinfected waters. In this study, the formation of iodinated THMs and HAAs from aromatic iodinated DBPs during chloramination was investigated. The decomposition kinetics of the aromatic iodinated DBPs and the formation of iodinated THMs and HAAs were studied, the formation pathways of iodinated THMs and HAAs from the aromatic iodinated DBPs were explored, the factors affecting the formation were examined, and the toxicity change was evaluated. The results revealed that four aromatic iodinated DBPs (2,4,6-triiodophenol, 3,5-diiodo-4-hydroxybenzaldehyde, 3,5-diiodosalicylic acid, and 2,6-diiodo-4-nitrophenol) all underwent transformation to form triiodomethane (TIM), monoiodoacetic acid (MIAA), and diiodoacetic acid (DIAA) during chloramination. The decomposition of the aromatic iodinated DBPs all followed a pseudo-first-order decay during chloramination, and the rank order of the decomposition rate constants was as follows: 2,4,6-triiodophenol > 3,5-diiodo-4-hydroxybenzaldehyde ≥ 3,5-diiodosalicylic acid > 2,6-diiodo-4-nitrophenol. Several polar iodinated intermediates were detected and identified (e.g., 2,6-diiodo-1,4-benzoquinone and iodobutenedioic acid) during chloramination of 2,4,6-triiodophenol, based on which the formation pathways of TIM, MIAA, and DIAA from 2,4,6-triiodophenol during chloramination were proposed and further validated. The results also revealed that monochloramine dose, pH, temperature, and short free chlorine contact time all affected the formation of TIM, MIAA, and DIAA from 2,4,6-triiodophenol during chloramination. The cytotoxicity order of the eight iodinated DBPs was MIAA > 2,6-diiodo-4-nitrophenol > 2,4,6-triiodophenol > 2,6-diiodo-1,4-benzoquinone > DIAA ≥ 3,5-diiodosalicylic acid >3,5-diiodo-4-hydroxybenzaldehyde > TIM. The toxicity of the chloraminated 2,4,6-triiiodophenol sample first decreased and then increased over time due to the transformation.
Collapse
Affiliation(s)
- Shaoyang Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Tingting Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Junjie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jian Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhigang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jinbao Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Beibei Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
36
|
Yan Z, Sun H, Jiang R, Dong H, Yang H, Liu J, Lu G, Ji Y. Accumulation, metabolite and active defence system responses of fluoxetine in zebrafish embryos: Influence of multiwalled carbon nanotubes with different functional groups. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 205:204-212. [PMID: 30399532 DOI: 10.1016/j.aquatox.2018.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Studies on the bioavailability of organic contaminants adsorbed to nanomaterials are increasing. In this study, we investigated the interaction between fluoxetine (FLX) and three multiwalled carbon nanotubes (MWCNTs) with different functional groups in zebrafish (Danio rerio) embryos, focusing on the FLX accumulation, the formation of the metabolite norfluoxetine (NFLX), and the active defence system responses. The accumulation of FLX in zebrafish was intensified by MWCNTs (46-99%), which simultaneously facilitated the formation of the metabolite NFLX by 23-167%. The consistent enhancement revealed that the absorbed FLX is bioavailable in zebrafish. Moreover, the coexisting MWCNTs further promoted the influences of FLX on the active defence system in zebrafish (e.g. antioxidant and metabolic function), eliciting the defence function. The influences of MWCNTs on the bioavailability of FLX in zebrafish could be ordered as OH-MWCNTs > COOH-MWCNTs > pristine MWCNTs. The release of FLX from MWCNTs in biofluids may partially contribute to these significant alterations. In particular, MWCNTs themselves may also modulate the bioavailability of FLX in zebrafish by downregulating the gene expression of membrane ATP-binding cassette transporter (abcb4). These findings demonstrated that MWCNTs increased the bioavailability of FLX in zebrafish, especially the functionalized MWCNTs. The production of metabolites may be a useful bio-endpoint to evaluate the bioavailability of adsorbed contaminants on nanomaterials.
Collapse
Affiliation(s)
- Zhenhua Yan
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Hongwei Sun
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Huike Dong
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Haohan Yang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China.
| | - Yong Ji
- School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang, 330099, China
| |
Collapse
|
37
|
Liu Y, Nie Y, Wang J, Wang J, Wang X, Chen S, Zhao G, Wu L, Xu A. Mechanisms involved in the impact of engineered nanomaterials on the joint toxicity with environmental pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:92-102. [PMID: 29990744 DOI: 10.1016/j.ecoenv.2018.06.079] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Emerging nanoscience and nanotechnology inevitably facilitate discharge of engineered nanomaterials (ENMs) into the environment. Owing to their versatile physicochemical properties, ENMs invariably come across and interact with various pollutants already existing in the environment, leading to considerable uncertainty regarding the risk assessment of pollutants. Nevertheless, the underlying mechanisms of the complicated joint toxicity are still largely unexplored. This review aims to aid in understanding the interaction of ENMs and pollutants from the perspective of ecological and environmental health risk assessment. Based on related research published from 2005 to 2018, this review focuses on summarizing the effect of ENMs on the toxicity of pollutants both in vivo and in vitro. Physicochemical interaction appears as a main factor affecting ENMs-pollutants joint toxicity, with the mechanisms and the resultants for ENM-pollutant adsorption been illustrated. Cellular and molecular mechanisms involved in the joint toxicity of ENMs and pollutants are discussed, including the effect of ENMs on the bioaccumulation, biodistribution, and metabolism of pollutants, as well as the defense responses of organisms against such pollutants. Future in-depth investigation are suggested to focus on further exploring biological mechanisms (especially for the antagonized effect of ENMs against pollutants), using more advanced mammalian models, and paying more attention to the realistic exposure scenarios.
Collapse
Affiliation(s)
- Yun Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Yaguang Nie
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Jingjing Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Juan Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xue Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Shaopeng Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Guoping Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Lijun Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China.
| |
Collapse
|
38
|
Kou L, Sun R, Bhutia YD, Yao Q, Chen R. Emerging advances in P-glycoprotein inhibitory nanomaterials for drug delivery. Expert Opin Drug Deliv 2018; 15:869-879. [PMID: 30169976 DOI: 10.1080/17425247.2018.1517749] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Rui Sun
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Yangzom D. Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Qing Yao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
39
|
Somasundaram S. Silane coatings of metallic biomaterials for biomedical implants: A preliminary review. J Biomed Mater Res B Appl Biomater 2018; 106:2901-2918. [PMID: 30091505 DOI: 10.1002/jbm.b.34151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 02/24/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
Abstract
In response to increased attention in literature, this work provides a qualitative review surrounding the application of silane-based coatings of metallic biomaterials for biomedical implants. Included herein is both a brief summary of existing knowledge and concepts regarding silane-based thin films, along with an analysis of recent peer-reviewed publications and advances towards their practical application for biomedical coatings. Specifically, the review identifies innovative silane-based coatings according to their molecular identity and film structure and analyses their impact on the biocorrosion resistance, protein adsorption, cell viability, and antimicrobial properties of the overall coated implant. It is shown that a range of common silanes clearly exhibit promising properties for biomedical implant coatings, but further work is needed, particularly on mechanisms of physiological interaction and characteristic effects of silane functional groups, before seeing clinical use. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2901-2918, 2018.
Collapse
Affiliation(s)
- Sahadev Somasundaram
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Queensland, Australia
| |
Collapse
|
40
|
Huo T, Dong F, Deng J, Zhang Q, Ye W, Zhang W, Wang P, Sun D. In vitro genotoxicity of asbestos substitutes induced by coupled stimulation of dissolved high-valence ions and oxide radicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22356-22367. [PMID: 28766145 DOI: 10.1007/s11356-017-9796-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
The wide use of asbestos and its substitutes has given rise to studies on their possible harmful effects on human health and environment. However, their toxic effects remain unclear. The present study was aimed to disclose the coupled effects of dissolved high-valence ions and oxide radicals using the in vitro cytotoxicity and genotoxicity of chrysotile (CA), nano-SiO2 (NS), ceramic fiber (CF), glass fiber (GF), and rock wool (RW) on Chinese hamster lung cells V79. All samples induced cell mortality correlated well with the chemical SiO2 content of asbestos substitutes and the amount of dissolved Si. Alkali or alkaline earth metal elements relieved mortality of V79 cells; Al2O3 reinforced toxicity of materials. Asbestos substitutes generated lasting, increasing amount of acellular ·OH which formed at the fiber surface at sites with loose/unsaturated bonds, as well as by catalytic reaction through dissolved iron. Accumulated mechanical and radical stimulation induced the intracellular reactive oxygen species (ROS) elevation, morphology change, and deviating trans-membrane ion flux. The cellular ROS appeared as NS > GF > CF ≈ CA > RW, consistent with cell mortality rather than with acellular ·OH generation. Chromosomal and DNA lesions in V79 cells were not directly associated with the cellular ROS, while influenced by dissolved high-valence irons in the co-culture medium. In conclusion, ions from short-time dissolution of dust samples and the generation of extracellular ·OH presented combined effects in the elevation of intracellular ROS, which further synergistically induced cytotoxicity and genotoxicity.
Collapse
Affiliation(s)
- Tingting Huo
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
- Institute of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Jianjun Deng
- Clinical Laboratory, Mianyang 404 Hospital, Mianyang, 621010, China
- School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Qingbi Zhang
- School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Wei Ye
- School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Wei Zhang
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Pingping Wang
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Dongping Sun
- Institute of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
41
|
Morozesk M, Franqui LS, Mansano AS, Martinez DST, Fernandes MN. Interactions of oxidized multiwalled carbon nanotube with cadmium on zebrafish cell line: The influence of two co-exposure protocols on in vitro toxicity tests. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:136-147. [PMID: 29751160 DOI: 10.1016/j.aquatox.2018.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 05/26/2023]
Abstract
The widespread production and application of carbon nanotubes (CNT) have raising concerns about their release into the environment and, the joint toxicity of CNT with pre-existing contaminants needs to be assessed. This is the first study that investigated the co-exposure of oxidized multiwalled carbon nanotubes (ox-MWCNT) and cadmium (Cd) using a zebrafish liver cell line (ZFL). Two in vitro co-exposure protocols differing by the order of ox-MWCNT interaction with Cd and fetal bovine serum (FBS) proteins were evaluated. Ox-MWCNT was physical and chemical characterized and its adsorption capacity and colloidal stability in cell culture medium was determined in both protocols. Cytotoxicity was investigated by MTT, neutral red, trypan blue, lactate dehydrogenase assays and the necrosis and apoptosis events were determined using flow cytometer. The Cd presence in medium did not interfere in the protein corona composition of MWCNT but the order of interaction of FBS and Cd interfered in its colloidal stability and metal adsorption rate. The ox-MWCNT increased Cd toxicity at low concentration probably by a "Trojan horse" and/or synergistic effect, and induced apoptosis and necrosis in ZFL cells. Although it was not observed differences of toxicity between protocols, the interaction of ox-MWCNT first with Cd led to its precipitation in cell culture medium and, as a consequence, to a possible false viability result by neutral red assay. Taken together, it was evident that the order of compounds interactions disturbs the colloidal stability and affects the in vitro toxicological assays. Considering that Protocol A showed more ox-MWCNT stability after interaction with Cd, this protocol is recommended to be adopted in future studies.
Collapse
Affiliation(s)
- Mariana Morozesk
- Physiological Science Department, Federal University of São Carlos (UFSCar), Washington Luiz Hwy, Km 235, 13565-905, São Carlos, São Paulo, Brazil
| | - Lidiane S Franqui
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Maximo Scolfaro St., 10.000, Polo II de Alta Tecnologia de Campinas, 13083-970, Campinas, São Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Paschoal Marmo St., 1888, 13484-332, Limeira, São Paulo, Brazil
| | - Adrislaine S Mansano
- Department of Ecology and Evolutionary Biology, Federal University of Sao Carlos (UFSCar), Washington Luiz Hwy, Km 235, 13565-905, São Carlos, São Paulo, Brazil
| | - Diego Stéfani T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Maximo Scolfaro St., 10.000, Polo II de Alta Tecnologia de Campinas, 13083-970, Campinas, São Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Paschoal Marmo St., 1888, 13484-332, Limeira, São Paulo, Brazil.
| | - Marisa N Fernandes
- Physiological Science Department, Federal University of São Carlos (UFSCar), Washington Luiz Hwy, Km 235, 13565-905, São Carlos, São Paulo, Brazil.
| |
Collapse
|
42
|
Yan Z, Liu Y, Sun H, Lu G. Influence of multiwall carbon nanotubes on the toxicity of 17β-estradiol in the early life stages of zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:7566-7574. [PMID: 29282666 DOI: 10.1007/s11356-017-1063-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
Due to increasing use and release, both multiwall carbon nanotubes (MWCNTs) and 17β-estradiol (E2) may co-exist and interact with each other in aquatic environments. However, little is known about their combined effects on non-target organisms, especially in the presence of other environmental factors. In this study, the interplay between MWCNTs and E2 in the early life stages of zebrafish was investigated, focusing on the alterations in estrogenic responses with and without other environmental factors. There were no significant differences in the hatchability, mortality, or physical development of zebrafish in any treatments. Compared with E2 exposure, the E2-induced estrogenic responses (vtg1, vtg3, and esr1 genes) in zebrafish were markedly reduced to baseline by the presence of MWCNTs in most cases, indicating a strong protective effect. Furthermore, this inhibitive effect was not significantly changed by the preloading of natural organic matter (NOM) on MWCNTs. Nevertheless, the addition of ammonia nitrogen in the mixtures of MWCNTs and E2 alleviated the protective effect of MWCNTs, resuscitating the E2-induced estrogenic responses in zebrafish. These findings highlight the influence of carbon nanomaterials on the bioavailability of co-contaminants in organisms. The widespread environmental factors in natural environments should also be taken into consideration when the combined toxicity of nanomaterials and contaminants is discussed.
Collapse
Affiliation(s)
- Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yuxuan Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Hongwei Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
- College of Hydraulic and Civil Engineering, XiZang Agricultural and Animal Husbandry College, Linzhi, 860000, China.
| |
Collapse
|
43
|
Weng J, Jia H, Wu B, Pan B. Is ozonation environmentally benign for reverse osmosis concentrate treatment? Four-level analysis on toxicity reduction based on organic matter fractionation. CHEMOSPHERE 2018; 191:971-978. [PMID: 29145142 DOI: 10.1016/j.chemosphere.2017.10.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/01/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Ozonation is a promising option to treat reverse osmosis concentrate (ROC). However, a systematic understanding and assessment of ozonation on toxicity reduction is insufficient. In this study, ROC sampled from a typical industrial park wastewater treatment plant of China was fractionated into hydrophobic acid (HOA), hydrophobic base (HOB), hydrophobic neutral (HON), and hydrophilic fraction (HI). Systematic bioassays covering bacteria, algae, fish, and human cell lines were conducted to reveal the role of ozonation in toxicity variation of the four ROC fractions. HOA in the raw ROC exhibited the highest toxicity, followed by HON and HI. Ozonation significantly reduced total organic carbon (TOC) and UV254 values in HOA, HON, and HI and their toxicity except in HOB. Correlation analysis indicated that chemical data (TOC and UV254) of HOA and HON correlated well with their toxicities; however, poor correlations were observed for HOB and HI, suggesting that a battery of toxicity assays is necessary. This study indicates that TOC reduction during ozonation could not fully reflect the toxicity issue, and toxicity assessment is required in conjunction with the chemical data to evaluate the effectiveness of ozonation.
Collapse
Affiliation(s)
- Jingxia Weng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Huichao Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
44
|
Liu S, Shen Z, Wu B, Yu Y, Hou H, Zhang XX, Ren HQ. Cytotoxicity and Efflux Pump Inhibition Induced by Molybdenum Disulfide and Boron Nitride Nanomaterials with Sheetlike Structure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10834-10842. [PMID: 28841301 DOI: 10.1021/acs.est.7b02463] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sheetlike molybdenum disulfide (MoS2) and boron nitride (BN) nanomaterials have attracted attention in the past few years due to their unique material properties. However, information on adverse effects and their underlying mechanisms for sheetlike MoS2 and BN nanomaterials is rare. In this study, cytotoxicities of sheetlike MoS2 and BN nanomaterials on human hepatoma HepG2 cells were systematically investigated at different toxic end points. Results showed that MoS2 and BN nanomaterials decreased cell viability at 30 μg/mL and induced adverse effects on intracellular ROS generation (≥2 μg/mL), mitochondrial depolarization (≥4 μg/mL), and membrane integrity (≥8 μg/mL for MoS2 and ≥2 μg/mL for BN). Furthermore, this study first found that low exposure concentrations (0.2-2 μg/mL) of MoS2 and BN nanomaterials could increase plasma membrane fluidity and inhibit transmembrane ATP binding cassette (ABC) efflux transporter activity, which make both nanomaterials act as a chemosensitizer (increasing arsenic toxicity). Damage to plasma membrane and release of soluble Mo or B species might be two reasons that both nanomaterials inhibit efflux pump activities. This study provides a systematic understanding of the cytotoxicity of sheetlike MoS2 and BN nanomaterials at different exposure levels, which is important for their safe use.
Collapse
Affiliation(s)
- Su Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P. R. China
| | - Zhuoyan Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P. R. China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P. R. China
| | - Yue Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P. R. China
| | - Hui Hou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P. R. China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P. R. China
| | - Hong-Qiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P. R. China
| |
Collapse
|
45
|
Gong T, Tao Y, Zhang X, Hu S, Yin J, Xian Q, Ma J, Xu B. Transformation among Aromatic Iodinated Disinfection Byproducts in the Presence of Monochloramine: From Monoiodophenol to Triiodophenol and Diiodonitrophenol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10562-10571. [PMID: 28806073 DOI: 10.1021/acs.est.7b03323] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Aromatic iodinated disinfection byproducts (DBPs) are a newly identified category of highly toxic DBPs. Among the identified aromatic iodinated DBPs, 2,4,6-triiodophenol and 2,6-diiodo-4-nitrophenol have shown relatively widespread occurrence and high toxicity. In this study, we found that 4-iodophenol underwent transformation to form 2,4,6-triiodophenol and 2,6-diiodo-4-nitrophenol in the presence of monochloramine. The transformation pathways were investigated, the decomposition kinetics of 4-iodophenol and the formation of 2,4,6-triiodophenol and 2,6-diiodo-4-nitrophenol were studied, the factors affecting the transformation were examined, the toxicity change during the transformation was evaluated, and the occurrence of the proposed transformation pathways during chloramination of source water was verified. The results revealed that 2,4,6-triiodophenol and 2,6-diiodo-4-nitrophenol, which could account for 71.0% of iodine in the transformed 4-iodophenol, were important iodinated transformation products of 4-iodophenol in the presence of monochloramine. The transformation pathways of 4-iodophenol in the presence of monochloramine were proposed and verified. The decomposition of 4-iodophenol in the presence of monochloramine followed a pseudo-second-order decay. Various factors including monochloramine dose, pH, temperature, nitrite concentration, and free chlorine contact time (before chloramination) affected the transformation. The cytotoxicity of the chloraminated 4-iodophenol samples increased continuously with contact time. The proposed transformation pathways occurred during chloramination of source water.
Collapse
Affiliation(s)
- Tingting Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
| | - Yuxian Tao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology , Hong Kong SAR, China
| | - Shaoyang Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
| | - Jinbao Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
| | - Jian Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai 200092, China
| |
Collapse
|
46
|
Deng R, Lin D, Zhu L, Majumdar S, White JC, Gardea-Torresdey JL, Xing B. Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicology 2017. [DOI: 10.1080/17435390.2017.1343404] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Rui Deng
- Department of Environmental Science, Zhejiang University, Hangzhou, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, China
| | | | - Jason C. White
- The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Jorge L. Gardea-Torresdey
- Department of Chemistry, The University of Texas at El Paso, El Paso, TX, USA
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, El Paso, TX, USA
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
47
|
Yan Z, Lu G, Sun H, Ma B. Influence of multi-walled carbon nanotubes on the effects of roxithromycin in crucian carp (Carassius auratus) in the presence of natural organic matter. CHEMOSPHERE 2017; 178:165-172. [PMID: 28324838 DOI: 10.1016/j.chemosphere.2017.03.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 06/06/2023]
Abstract
Carbon nanotubes are increasingly entering the aquatic environment and may interact with other co-existing contaminants, such as antibiotics. However, whether these interactions may affect their bioavailability in aquatic organisms is the subject of considerable debate. The primary objective of this study was to assess the risks arising from the coexistence of roxithromycin (ROX) and multi-walled carbon nanotubes (MWCNTs) in waters containing natural organic matter (NOM), focusing on the distribution and bioaccumulation of ROX in crucian carp (Carassius auratus), and the related biochemical status. There were no significant differences in ROX bioaccumulation in fish following exposure to ROX with and without NOM. However, the further addition of MWCNTs significantly facilitated the bioaccumulation of ROX in the liver (32-80%), gill (15-74%), intestine (51-113%), and bile (15-67%) in different exposure periods. Meanwhile, a 0.3-fold increase in the metabolic enzyme activity and oxidative stress in the liver were markedly accelerated by the co-exposed MWCNTs compared to ROX alone. The findings imply that the ROX adsorbed on MWCNTs may be a higher threat to fish than ROX alone. The high and fast release of ROX from MWCNTs in bile salts and serum albumin may contribute to the enhancement in bioaccumulation and bioactivity of ROX in fish with MWCNTs.
Collapse
Affiliation(s)
- Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Hydraulic and Civil Engineering, XiZang Agricultural and Animal Husbandry College, Linzhi 860000, China.
| | - Hongwei Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Binni Ma
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
48
|
Wang S, Zhuang C, Du J, Wu C, You H. The presence of MWCNTs reduces developmental toxicity of PFOS in early life stage of zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:201-209. [PMID: 28063710 DOI: 10.1016/j.envpol.2016.12.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/13/2016] [Accepted: 12/18/2016] [Indexed: 06/06/2023]
Abstract
Both carbon nanotubes (CNTs) and perfluorooctane sulfonate (PFOS) are used widely. There is considerable concern regarding their ecotoxicity. CNTs might interact with PFOS in water and result in different impacts compared with those after single exposures. To our knowledge, the developmental toxicity of PFOS in the presence of multi-walled carbon nanotubes (MWCNTs) in the early life stage of zebrafish (from 3 h post fertilization (hpf) to 96 hpf) was investigated for the first time in this study. The embryos and larvae were exposed to PFOS (0.2, 0.4, 0.8, and 1.6 mg/L), MWCNTs (50 mg/L), and a mixture of both. Compared with PFOS exposure, the adverse effects induced by PFOS on the hatching rate of zebrafish embryos and the heart rate and body length of zebrafish larvae were reduced in the presence of MWCNTs, and mortality and malformation were also alleviated. In addition, zebrafish larvae exposed to PFOS showed decreased activities of superoxide dismutase, catalase, and glutathione peroxidase, as well as decreased levels of reactive oxygen species and malondialdehyde, in the presence of MWCNTs, indicating that oxidative stress and lipid peroxidation was relieved. Thus, the presence of MWCNTs reduces the developmental toxicity of PFOS in the early life stage of zebrafish.
Collapse
Affiliation(s)
- Shutao Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150028, China.
| | - Changlu Zhuang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150028, China; Life Science and Environmental Science Research Center, Harbin Institute of Commerce, Harbin 150028, China.
| | - Jia Du
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150028, China.
| | - Chuan Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150028, China.
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150028, China.
| |
Collapse
|
49
|
Cherr GN, Fairbairn E, Whitehead A. Impacts of Petroleum-Derived Pollutants on Fish Development. Annu Rev Anim Biosci 2017; 5:185-203. [DOI: 10.1146/annurev-animal-022516-022928] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The teleost fish embryo is particularly sensitive to petroleum hydrocarbons (polycyclic aromatic hydrocarbons, PAHs) at two distinct stages of development. The first is early during cleavage stages when PAHs alter normal signaling associated with establishment of the dorsal-ventral axis. This disruption involves the Wnt/β-catenin pathway and results in hyperdorsalized embryos that do not survive to hatching. The second, more sensitive period is during heart development, when oil and PAHs cause abnormal development of the heart as well as cardiac edema and arrhythmia. Even at extremely low levels (ng/L), PAHs cause subtle edema and altered contractility and heart rate, which impair swimming performance. Some PAHs are extremely phototoxic, such that exposures to trace concentrations result in severe membrane damage and mortality in sunlight. The developing fish embryo is a sensitive indicator of petroleum constituents in the environment, and healthy populations of fish likely require limited PAH exposure during development.
Collapse
Affiliation(s)
- Gary N. Cherr
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, California 94923;,
- Department of Environmental Toxicology, University of California, Davis, California 95616
- Department of Nutrition, University of California, Davis, California 95616
| | - Elise Fairbairn
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, California 94923;,
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California, Davis, California 95616
| |
Collapse
|