1
|
Chen Y, Zhou H, Gao H, Su Z, Li X, Qi P, Li T, Hu C, Li Z, Bi Z, Xing X, Yang J, Chen C, Ma K, Chen J. Comprehensive comparison of water quality risk and microbial ecology between new and old cast iron pipe distribution systems. J Environ Sci (China) 2024; 146:55-66. [PMID: 38969462 DOI: 10.1016/j.jes.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2024]
Abstract
The effects of cast iron pipe corrosion on water quality risk and microbial ecology in drinking water distribution systems (DWDSs) were investigated. It was found that trihalomethane (THMs) concentration and antibiotic resistance genes (ARGs) increased sharply in the old DWDSs. Under the same residual chlorine concentration conditions, the adenosine triphosphate concentration in the effluent of old DWDSs (Eff-old) was significantly higher than that in the effluent of new DWDSs. Moreover, stronger bioflocculation ability and weaker hydrophobicity coexisted in the extracellular polymeric substances of Eff-old, meanwhile, iron particles could be well inserted into the structure of the biofilms to enhance the mechanical strength and stability of the biofilms, hence enhancing the formation of THMs. Old DWDSs significantly influenced the microbial community of bulk water and triggered stronger microbial antioxidant systems response, resulting in higher ARGs abundance. Corroded cast iron pipes induced a unique interaction system of biofilms, chlorine, and corrosion products. Therefore, as the age of cast iron pipes increases, the fluctuation of water quality and microbial ecology should be paid more attention to maintain the safety of tap water.
Collapse
Affiliation(s)
- Youyi Chen
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Huishan Zhou
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Hui Gao
- Zhejiang Xingtuo Ecological Environment Co., Ltd., Hangzhou 310051, China
| | - Ziliang Su
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xinjun Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Peng Qi
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tong Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Chun Hu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zesong Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhihao Bi
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xueci Xing
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jingxin Yang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Chaoxiang Chen
- Nanzhou Waterworks of Guangzhou Water Supply Co. Ltd., Guangzhou 510000, China
| | - Kunyu Ma
- Nanzhou Waterworks of Guangzhou Water Supply Co. Ltd., Guangzhou 510000, China
| | - Jinrong Chen
- Nanzhou Waterworks of Guangzhou Water Supply Co. Ltd., Guangzhou 510000, China
| |
Collapse
|
2
|
Zhang M, Liu J, Zhang W, Feng M, Yu X, Ye C. Neglected contributors to the transmission of bacterial antibiotic resistance in drinking water: Extracellular antibiotic resistance genes and the natural transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175970. [PMID: 39241883 DOI: 10.1016/j.scitotenv.2024.175970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Antibiotic resistance genes (ARGs) have increasingly gained recognition as an "emerging contaminant" that poses a threat to the biosafety of drinking water. However, previous researches have primarily focused on the intracellular state of ARGs and rarely investigated the ecological characteristics (e.g., distribution and origin), environmental behavior (spread), and risks of extracellular form (eARGs) within drinking water systems. Therefore, this review evaluated isolation strategies and extraction methods for recovering eARGs from drinking water, elucidated the distribution characteristics of eARGs, and examined their impact on the antibiotic resistome from source water to tap water. We emphasized that chlorination and biological treatments significantly contribute to the prevalence and persistence of eARGs in drinking water. Moreover, we highlighted the role of biological reactors (e.g., biofilter, biological activated carbon) and drinking water distribution systems in facilitating the natural transformation of eARGs while significantly contributing to bacterial antibiotic resistance (BAR) propagation. Finally, we summarized the current risk assessment systems for ARGs and critically address remaining challenging questions necessary for better forecasting health risks associated with eARGs in drinking water environments. Collectively, this review enhances the understanding of ecological characteristics and environmental behavior of eARGs in drinking water while providing important implications for controlling and reducing BAR contamination not only in drinking water but also in other aquatic environments.
Collapse
Affiliation(s)
- Menglu Zhang
- Postdoctoral Research Station of Ecology, Fujian Normal University, Fuzhou 350117, China; College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University), Fuzhou 350117, China.
| | - Jinchi Liu
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University), Fuzhou 350117, China
| | - Weifang Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University), Fuzhou 350117, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China
| | - Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Fan M, Ren A, Yao M, Li X, van der Meer W, Yu G, Medema G, Rose J, Liu G. Disruptive effects of sewage intrusion into drinking water: Microbial succession and organic transformation at molecular level. WATER RESEARCH 2024; 266:122281. [PMID: 39205336 DOI: 10.1016/j.watres.2024.122281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Drinking water distribution systems are increasingly vulnerable to sewage intrusion due to aging water infrastructure and intensifying water stress. While the health risks associated with sewage intrusion have been extensively studied, little is known about the impacts of intruded bacteria and dissolved organic matter (DOM) on microbiology in drinking water. In this dynamic study, we demonstrate that the intrusion of 1 % sewage into tap water resulted in immediate contamination, including an 8-fold increase in biomass (TCC), a 48.9 % increase in bacterial species (ASVs), a 12.5 % increase in organic carbon content (DOC), and a 13.5 % increase in unique DOM molecular formulae. Over time, sewage intrusion altered tap water microbiology by accelerating bacterial growth rates (5-fold faster), selectively promoting ASVs in community succession, and producing 998 more unique DOM formulae. More significantly, statistical analysis revealed that the intrusion of 1 % sewage shifted the driving force of bacterial and DOM composition covariance from a DOM-dependent process in tap water to a bacterial-governed process post-intrusion. Our results clearly demonstrate the disruptive effects of sewage intrusion into tap water, emphasizing the urgent need to consider the long-lasting impacts of sewage intrusion in drinking water distribution systems, in addition to its immediate health risks.
Collapse
Affiliation(s)
- Mengqing Fan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Sanitary Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
| | - Anran Ren
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Sanitary Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
| | - Mingchen Yao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Sanitary Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
| | - Xiaoming Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Walter van der Meer
- Membrane Science and Technology, Faculty of Science and Technology, Twente University, the Netherlands; Oasen Drinkwater, Gouda, the Netherlands
| | - Guo Yu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Gertjan Medema
- Sanitary Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands; KWR Watercycle Research Institute, PO Box 1072, 3430 ,BB Nieuwegein, the Netherlands
| | - Joan Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48823, USA
| | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Sanitary Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
4
|
Nakanishi T, Hirose M, Asada Y, Itoh S. Legionella community dynamics in a drinking water distribution system: Impact of residual chlorine depletion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177302. [PMID: 39488281 DOI: 10.1016/j.scitotenv.2024.177302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/08/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
This study investigated the occurrence of Legionella spp. in a chlorinated drinking water distribution system (DWDS), focusing on their community compositions and association with physicochemical water quality. Water samples were collected throughout the DWDS, covering from the treated water reservoir to distal ends. Although Legionella spp. genes were not detected at the reservoir, their abundance dramatically increased along the distribution network, reaching up to 4.4 log copies/L at distal sites. The Legionella communities were further characterized by high-throughput amplicon sequencing targeting the genus-specific 16S rRNA gene. The results revealed a diverse Legionella community, including amplicon sequence variants with high similarity (> 99 %) to potentially pathogenic species such as L. drozanskii and L. pneumophila, albeit at low levels. Moreover, Legionella community diversity increased significantly along the distribution system, leading to distinct community compositions at distal sites. Importantly, decay of residual chlorine concentration was identified as a key factor both in increasing the Legionella gene levels and shaping the community structure. Overall, this study underscores the importance of preventing pipe corrosion and maintaining adequate disinfectant residuals to minimize Legionella regrowth in DWDS.
Collapse
Affiliation(s)
- Tomohiro Nakanishi
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan.
| | - Madoka Hirose
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan
| | - Yasuhiro Asada
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Yumihama 1-2, Otsu, Shiga 520-0811, Japan; Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan
| | - Sadahiko Itoh
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan
| |
Collapse
|
5
|
Moulia V, Heran M, Lesage G, Hamelin J, Pinta J, Gazon A, Penlae M, Bru-Adan V, Wéry N, Ait-Mouheb N. Biofilm growth dynamics in a micro-irrigation with reclaimed wastewater in the field scale. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122976. [PMID: 39442395 DOI: 10.1016/j.jenvman.2024.122976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The dripper clogging due to the development of biofilm can reduce the benefits of micro-irrigation technology implementation using reclaimed wastewater. The narrow cross-section and labyrinth geometry of the dripper channel enhance the fouling mechanisms. The aim of this study was to evaluate the water distribution and biofouling of drip irrigation systems at the field scale during irrigation with treated wastewater. Six 100 m lines of commercial pipes with two pressure-compensating dripper types (flow rate, Q, of 0.65 L h-1 and 1.5 L h-1, respectively) were monitored for four months. Different zones along the pipes were selected to evaluate the influence of hydrodynamical conditions (Reynolds number = 5400 to 0) on biofouling. Destructive methods involving the biofilm extraction by mechanical means, showed little biofilm development without significant differences in dry and organic matter content in function of the sampling location along the pipe or dripper flow rate (Q0.65 and Q1.5). These results were confirmed by non-destructive methods, such as optical coherence tomography, that nevertheless showed that biofouling concerned 15-20% of the total dripper labyrinth volume. Total organic carbon monitoring and its composition (by three-dimensional excitation and emission matrix fluorescence microscopy) showed that the biofilm did not significantly influence the organic matter nature. Our results indicated that the biological activity and biofilm development in irrigation systems were more affected by the environmental conditions, particularly water temperature, rather than flow conditions. This confirmed that treated wastewater with low organic content can be used in micro-irrigation systems without significant loss of efficiency, even in conditions requiring intensive irrigation, such as the Mediterranean climate.
Collapse
Affiliation(s)
- Vincent Moulia
- INRAE, UMR G-EAU, University of Montpellier, Montpellier, France; IEM, University of Montpellier, Montpellier, France; INRAE, Univ Montpellier, LBE, 102 Avenue des Étangs, 11100, Narbonne, France
| | - Marc Heran
- IEM, University of Montpellier, Montpellier, France
| | | | - Jérôme Hamelin
- INRAE, Univ Montpellier, LBE, 102 Avenue des Étangs, 11100, Narbonne, France
| | - Jérôme Pinta
- INRAE, UMR G-EAU, University of Montpellier, Montpellier, France
| | - Aurélie Gazon
- INRAE, UMR G-EAU, University of Montpellier, Montpellier, France
| | | | - Valérie Bru-Adan
- INRAE, Univ Montpellier, LBE, 102 Avenue des Étangs, 11100, Narbonne, France
| | - Nathalie Wéry
- INRAE, Univ Montpellier, LBE, 102 Avenue des Étangs, 11100, Narbonne, France
| | | |
Collapse
|
6
|
Chen H, Zhang S, Wang H, Ma X, Wang M, Yu P, Shi B. Co-selective effect of dissolved organic matter and chlorine on the bacterial community and their antibiotic resistance in biofilm of drinking water distribution pipes. WATER RESEARCH 2024; 268:122664. [PMID: 39490093 DOI: 10.1016/j.watres.2024.122664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
The proliferation of pathogenic bacteria and antibiotic resistance genes (ARGs) in the biofilm of drinking water distribution pipes poses a serious threat to human health. This work adopted 15 polyethylene (PE) pipes to study the co-selective effect of dissolved organic matter (DOM) and chlorine on the bacterial community and their antibiotic resistance in biofilm. The results indicated that ozone and granular activated carbon (O3-GAC) filtration effectively removed lignins and proteins from DOM, and chlorine disinfection eliminated carbohydrate and unsaturated hydrocarbons, which both contributed to the inhibition of bacterial growth and biofilm formation. After O3-GAC and disinfection treatment, Porphyrobacter, unclassified_d_bacteria, and Sphingopyxis dominated in the biofilm bacterial community. Correspondingly, the bacterial metabolism pathways, including the phosphotransferase system, phenylalanine, tyrosine and tryptophan biosynthesis, ABC transporters, and starch and sucrose metabolism, were downregulated significantly (p < 0.05), compared to the sand filtration treatment. Under such a situation, extracellular polymeric substances (EPS) secretion was inhibited in biofilm after O3-GAC and disinfection treatment, postponing the interaction between EPS protein and pipe surface, preventing bacteria, especially pathogens, from adhering to the pipe surface to form biofilm, and restraining the spread of ARGs. This study revealed the effects of various water filtration and disinfection processes on bacterial growth, metabolism, and biofilm formation on a molecular level, and validated that the O3-GAC filtration followed by chlorine disinfection is an effective and promising pathway to control the microbial risk of drinking water.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuxin Zhang
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, USA
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xu Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Margot C, Rhoads W, Gabrielli M, Olive M, Hammes F. Dynamics of drinking water biofilm formation associated with Legionella spp. colonization. NPJ Biofilms Microbiomes 2024; 10:101. [PMID: 39368992 PMCID: PMC11455961 DOI: 10.1038/s41522-024-00573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024] Open
Abstract
Understanding how Legionella spp. proliferate in multispecies biofilms is essential to develop strategies to control their presence in building plumbing. Here, we analyzed biofilm formation and Legionella spp. colonization on new plumbing material during 8 weeks. Biofilm formation was characterized by an initial increase in intact cell concentrations up to 9.5 × 105 cells/cm2, followed by a steady decrease. We identified Comamonas, Caulobacter, Schlegella, Blastomonas and Methyloversatilis as pioneer genera in the biofilm formation process. Importantly, L. pneumophila was the dominant Legionella spp. and rapidly colonized the biofilms, with culturable cell concentrations peaking at 3.1 × 104 MPN/cm2 after 4 weeks already. Moreover, several Legionella species co-occurred and had distinct dynamics of biofilm colonization. Vermamoeba vermiformis (V. vermiformis) was the dominant protist identified with 18S rRNA gene amplicon sequencing. Together our results highlight that biofilm formation upon introduction of new building plumbing material is a dynamic process where pathogenic Legionella species can be part of the earliest colonizers.
Collapse
Affiliation(s)
- Céline Margot
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - William Rhoads
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Marco Gabrielli
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Margot Olive
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Frederik Hammes
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
| |
Collapse
|
8
|
Wang H, Tao X, Yin H, Xing X, Shi B. The perfluorooctanoic acid accumulation and release from pipelines promoted growth of bacterial communities and opportunistic pathogens with different antibiotic resistance genes in drinking water. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135600. [PMID: 39180999 DOI: 10.1016/j.jhazmat.2024.135600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The spread of opportunistic pathogens (OPs) and antibiotic resistance genes (ARGs) through drinking water has already caused serious human health issues. There is also an urgent need to know the effects of perfluorooctanoic acid (PFOA) on OPs with different ARGs in drinking water. Our results suggested that PFOA accumulation and release from the pipelines induced its concentration in pipelines effluents increase from 0.03 ± 0.01 μg/L to 0.70 ± 0.01 μg/L after 6 months accumulation. The PFOA also promoted the growth of Hyphomicrobium, Microbacterium, and Bradyrhizobium. In addition, PFOA accumulation and release from the pipelines enhanced the metabolism and tricarboxylic acid (TCA) cycle processes, resulting in more extracellular polymeric substances (EPS) production. Due to EPS protection, Pseudomonas aeruginosa and Legionella pneumophila increased to (7.20 ± 0.09) × 104 gene copies/mL, and (8.85 ± 0.11) × 102 gene copies/mL, respectively. Moreover, PFOA also enhanced the transfer potential of different ARGs, including emrB, mdtB, mdtC, mexF, and macB. The main bacterial community composition and the main OPs positively correlated with the main ARGs and mobile genetic elements (MGE)-ARGs significantly. Therefore, PFOA promoted the propagation of OPs with different ARGs. These results are meaningful for controlling the microbial risk caused by the OPs with ARGs and MGE-ARGs in drinking water.
Collapse
Affiliation(s)
- Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiangkai Tao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hong Yin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xueci Xing
- Key Laboratory for Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Zhou Y, Zhang G, Zhang D, Zhu N, Bo J, Meng X, Chen Y, Qin Y, Liu H, Li W. Microplastic biofilms promote the horizontal transfer of antibiotic resistance genes in estuarine environments. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106777. [PMID: 39368156 DOI: 10.1016/j.marenvres.2024.106777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/16/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
As emerging pollutants, microplastics can aggregate microorganisms on their surfaces and form biofilms, enriching antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Consequently, microplastic biofilms have become a focal point of research. Horizontal gene transfer is one of the primary mechanisms by which bacteria acquire antibiotic resistance, with much of the research focusing on suspended bacteria. However, microplastic biofilms, as hotspots for horizontal gene transfer, also merit significant investigation. This study primarily explored and compared the frequency of ARG conjugative transfer between suspended bacteria and microplastic biofilms. The results demonstrated that, compared to suspended bacteria, microplastic biofilms enhanced the frequency of ARG conjugative transfer by 7.2-19.6 times. Among them, biofilms on polyethylene microplastics showed the strongest promotion of conjugation. After the formation of microplastic biofilms, there was a significant increase in bacterial density within the biofilms, which raised the collision frequency of donor and recipient bacteria. Then microplastic biofilms facilitated the gene expression levels of outer membrane proteins, enhanced bacterial gene transfer capabilities, promoted the synthesis of conjugative pili, accelerated the formation of conjugative pairing systems, and elevated the expression levels of genes related to DNA replication and transfer systems, thereby enhancing the conjugative transfer of ARGs within microplastic biofilms. Among different types of microplastic biofilms, polyethylene biofilms exhibited the highest bacterial density, thus showing the highest frequency of ARG conjugation. This study highlights the risks associated with ARG conjugative transfer following the formation of microplastic biofilms and provides insights into the risks of microplastic and antibiotic resistance propagation in estuarine environments.
Collapse
Affiliation(s)
- Yangyuan Zhou
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, PR China
| | - Guosheng Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, PR China.
| | - Dawei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, PR China
| | - Ningzheng Zhu
- Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, PR China
| | - Jinpei Bo
- Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, PR China
| | - Xiangzhou Meng
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, PR China
| | - Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, PR China
| | - Yu Qin
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, PR China
| | - Huajie Liu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Weiying Li
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, PR China; School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, PR China.
| |
Collapse
|
10
|
Zhu M, Tang P, Yu X, Li F, Shi S, Zhang D, Shi J, Tao W, Ruan X, Liu L, Liu B. Effective and mechanistic insights into shale gas wastewater reverse osmosis concentrate treatment using ozonation-biological activated carbon process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174080. [PMID: 38906281 DOI: 10.1016/j.scitotenv.2024.174080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024]
Abstract
Reverse osmosis (RO) plays a pivotal role in shale gas wastewater resource utilization. However, managing the reverse osmosis concentrate (ROC) characterized by high salinity and increased concentrations of organic matter is challenging. In this study, we aimed to elucidate the enhancement effects and mechanisms of pre-ozonation on organic matter removal efficacy in ROC using a biological activated carbon (BAC) system. Our findings revealed that during the stable operation phase, the ozonation (O3 and O3/granular activated carbon)-BAC system removes 43.6-72.2 % of dissolved organic carbon, achieving a 4-7 fold increase in efficiency compared with that in the BAC system alone. Through dynamic analysis of influent and effluent water quality, biofilm performance, and microbial community structure, succession, and function prediction, we elucidated the following primary enhancement mechanisms: 1) pre-ozonation significantly enhances the biodegradability of ROC by 4.5-6 times and diminishes the organic load on the BAC system; 2) pre-ozonation facilitates the selective enrichment of microbes capable of degrading organic compounds in the BAC system, thereby enhancing the biodegradation capacity and stability of the microbial community; and 3) pre-ozonation accelerates the regeneration rate of the granular activated carbon adsorption sites. Collectively, our findings provide valuable insights into treating ROC through pre-oxidation combined with biotreatment.
Collapse
Affiliation(s)
- Mengting Zhu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Peng Tang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Xulin Yu
- Sinopec Petroleum Engineering Jianghan Co., Ltd., Wuhan, Hubei 430073, PR China
| | - Fengming Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Shuling Shi
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Di Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Jialin Shi
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Wei Tao
- Junji Environment Technology Co., Ltd., Wuhan, Hubei 430223, PR China
| | - Xia Ruan
- Junji Environment Technology Co., Ltd., Wuhan, Hubei 430223, PR China
| | - Lujian Liu
- Junji Environment Technology Co., Ltd., Wuhan, Hubei 430223, PR China
| | - Baicang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China.
| |
Collapse
|
11
|
Xia L, Chen M, Li G, An T. Can photocatalysis inhibit interspecies bacterial cooperation to quench the formation of robust complex bacterial biofilms in water environments? WATER RESEARCH 2024; 262:122137. [PMID: 39059198 DOI: 10.1016/j.watres.2024.122137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Bacterial biofilms pose significant a public health risk as an environmental reservoir for opportunistic aquatic bacterial pathogens. Understanding the interspecies roles of complex bacterial biofilms under different stimuli and regulatory mechanisms of stress responses is the key to controlling their dissemination. Herein, two-species mixture (TSM) biofilms (Staphylococcus aureus and Pseudomonas aeruginosa) were constructed in a flowthrough reactor. Compared with the single-species biofilms, the TSM biofilm had higher growth activity to reach maturity faster, forming a staggered community structure. Moreover, the TSM biofilm exhibited greatly improved resistance to different antibiotics (16-128 times higher), especially to those that act on protein synthesis and cell membrane integrity, when compared to single planktonic microorganisms. In the presence of stimuli, photocatalysis effectively inactivated the TSM biofilm within 10 h, a 4-fold shorter inactivation time compared to UVC irradiation. In addition, photocatalysis effectively depleted the extracellular polymers of the TSM biofilm and inhibited secretion of their interspecies quorum sensing signaling molecule autoinducer-2 (AI-2). However, the expression of AI-2 induced related virulence factors, and biofilm growth-related genes were initially up-regulated 3 - 10 fold for the TSM biofilm within the first 2 - 4 h of photocatalysis, followed by significant down-regulation. Furthermore, the addition of the AI-2 precursor 4,5-dihydroxy-2,3-pentanedione effectively delayed the photocatalytic inactivation efficiency of the TSM biofilm compared to the control. These results suggest that photocatalysis can effectively inactivate biofilms by inhibiting interspecies cooperation by quenching AI-2 in the TSM biofilm. This work sheds light on controlling biofilms in public health engineering systems.
Collapse
Affiliation(s)
- Longji Xia
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Min Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
12
|
Ke Y, Sun W, Xue Y, Yuan Z, Zhu Y, Chen X, Yan S, Li Y, Xie S. Pipe material and natural organic matter impact drinking water biofilm microbial community, pathogen profiles and antibiotic resistome deciphered by metagenomics assembly. ENVIRONMENTAL RESEARCH 2024; 262:119964. [PMID: 39260724 DOI: 10.1016/j.envres.2024.119964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Biofilms in drinking water distribution systems (DWDSs) are a determinant to drinking water biosafety. Yet, how and why pipe material and natural organic matter (NOM) affect biofilm microbial community, pathogen composition and antibiotic resistome remain unclear. We characterized the biofilms' activity, microbial community, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and pathogenic ARG hosts in Centers for Disease Control and Prevention (CDC) reactors with different NOM dosages and pipe materials based on metagenomics assembly. Biofilms in cast iron (CI) pipes exhibited higher activity than those in polyethylene (PE) pipes. NOM addition significantly decreased biofilm activity in CI pipes but increased it in PE pipes. Pipe material exerted more profound effects on microbial community structure than NOM. Azospira was significantly enriched in CI pipes and Sphingopyxis was selected in PE pipes, while pathogen (Ralstonia pickettii) increased considerably in NOM-added reactors. Microbial community network in CI pipes showed more edges (CI 13520, PE 7841) and positive correlation proportions (CI 72.35%, PE 61.69%) than those in PE pipes. Stochastic processes drove assembly of both microbial community and antibiotic resistome in DWDS biofilms based on neutral community model. Bacitracin, fosmidomycin and multidrug ARGs were predominant in both PE and CI pipes. Both pipe materials and NOM regulated the biofilm antibiotic resistome. Plasmid was the major MGE co-existing with ARGs, facilitating ARG horizontal transfer. Pathogens (Achromobacter xylosoxidans and Ralstonia pickettii) carried multiple ARGs (qacEdelta1, OXA-22 and aadA) and MGEs (integrase, plasmid and transposase), which deserved more attention. Microbial community contributed more to ARG change than MGEs. Structure equation model (SEM) demonstrated that turbidity and ammonia affected ARGs by directly mediating Shannon diversity and MGEs. These findings might provide a technical guidance for controlling pathogens and ARGs from the point of pipe material and NOM in drinking water.
Collapse
Affiliation(s)
- Yanchu Ke
- School of Environment, Tsinghua University, Beijing, 100084, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Fujian Provincial Key Laboratory of Soil Environment Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing, 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China.
| | - Yanei Xue
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong, SAR, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yangyang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
13
|
Pereira AR, Gomes IB. The effects of methylparaben exposure on biofilm tolerance to chlorine disinfection. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134883. [PMID: 38897118 DOI: 10.1016/j.jhazmat.2024.134883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/24/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Parabens are emerging contaminants that have been detected in drinking water. Their presence in DW distribution systems (DWDS) can alter bacterial behaviour, characteristics, and structure, which may compromise DW disinfection. This work provides insights into the impact of methylparaben (MP) on the tolerance to chlorine disinfection and antibiotics from dual-species biofilms formed by Acinetobacter calcoaceticus and Stenotrophomonas maltophilia isolated from DW and grown on high-density polyethylene (HDPE) and polypropylene (PPL). Results showed that dual-species biofilms grown on PPL were more tolerant to chlorine disinfection, expressing a decrease of over 50 % in logarithmic reduction values of culturable cells in relation to non-exposed biofilms. However, bacterial tolerance to antibiotics was not affected by MP presence. Although MP-exposed dual-species biofilms grown on HDPE and PPL were metabolically more active than non-exposed counterparts, HDPE seems to be the material with lower impact on DW risk management and disinfection, if MP is present. Overall, results suggest that MP presence in DW may compromise chlorine disinfection, and consequently affect DW quality and stability, raising potential public health issues.
Collapse
Affiliation(s)
- Ana Rita Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
14
|
Wang H, Hu C, Li Y, Shen Y, Guo J, Shi B, Alvarez PJJ, Yu P. Nano-sized polystyrene and magnetite collectively promote biofilm stability and resistance due to enhanced oxidative stress response. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134974. [PMID: 38905973 DOI: 10.1016/j.jhazmat.2024.134974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/25/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Despite the growing prevalence of nanoplastics in drinking water distribution systems, the collective influence of nanoplastics and background nanoparticles on biofilm formation and microbial risks remains largely unexplored. Here, we demonstrate that nano-sized polystyrene modified with carboxyl groups (nPS) and background magnetite (nFe3O4) nanoparticles at environmentally relevant concentrations can collectively stimulate biofilm formation and prompt antibiotic resistance. Combined exposure of nPS and nFe3O4 by P. aeruginosa biofilm cells stimulated intracellular reactive oxidative species (ROS) production more significantly compared with individual exposure. The resultant upregulation of quorum sensing (QS) and c-di-GMP signaling pathways enhanced the biosynthesis of polysaccharides by 50 %- 66 % and increased biofilm biomass by 36 %- 40 % relative to unexposed control. Consistently, biofilm mechanical stability (measured as Young's modulus) increased by 7.2-9.1 folds, and chemical stress resistance (measured with chlorine disinfection) increased by 1.4-2.0 folds. For P. aeruginosa, the minimal inhibitory concentration of different antibiotics also increased by 1.1-2.5 folds after combined exposure. Moreover, at a microbial community-wide level, metagenomic analysis revealed that the combined exposure enhanced the multi-species biofilm's resistance to chlorine, enriched the opportunistic pathogenic bacteria, and promoted their virulence and antibiotic resistance. Overall, the enhanced formation of biofilms (that may harbor opportunistic pathogens) by nanoplastics and background nanoparticles is an overlooked phenomenon, which may jeopardize the microbial safety of drinking water distribution systems.
Collapse
Affiliation(s)
- Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chisheng Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yukang Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yun Shen
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, USA
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Ren K, Ming H, Liu S, Lang X, Jin Y, Fan J. Full-length 16S rRNA gene sequencing reveals the operating mode and chlorination-aggravated SWRO biofouling at a nuclear power plant. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1-17. [PMID: 39007303 DOI: 10.2166/wst.2024.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/24/2024] [Indexed: 07/16/2024]
Abstract
Reverse osmosis (RO) membrane fouling and biological contamination problems faced by seawater desalination systems are microbiologically related. We used full-length 16S rRNA gene sequencing to assess the bacterial community structure and chlorine-resistant bacteria (CRB) associated with biofilm growth in different treatment processes under the winter mode of a chlorinated seawater desalination system in China. At the outset of the winter mode, certain CRB, such as Acinetobacter, Pseudomonas, and Bacillus held sway over the bacterial community structure, playing a pivotal role in biofouling. At the mode's end, Deinococcus and Paracoccus predominated, with Pseudomonas and Roseovarius following suit, while certain CRB genera still maintained their dominance. RO and chlorination are pivotal factors in shaping the bacterial community structure and diversity, and increases in total heterotrophic bacterial counts and community diversity in safety filters may adversely affect the effectiveness of subsequent RO systems. Besides, the bacterial diversity and culturable biomass in the water produced by the RO system remain high, and some conditionally pathogenic CRBs pose a certain microbial risk as a source of drinking water. Targeted removal of these CRBs will be an important area of research for advancing control over membrane clogging and ensuring water quality safety in the future.
Collapse
Affiliation(s)
- Kaijia Ren
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China; These authors contributed equally to this work
| | - Hongxia Ming
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China; These authors contributed equally to this work
| | - Siyu Liu
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Xianlong Lang
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian 116021, China
| | - Yuan Jin
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China
| | - Jingfeng Fan
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China E-mail:
| |
Collapse
|
16
|
Gholipour S, Nikaeen M, Mohammadi F, Rabbani D. Antibiotic resistance pattern of waterborne causative agents of healthcare-associated infections: A call for biofilm control in hospital water systems. J Infect Public Health 2024; 17:102469. [PMID: 38838607 DOI: 10.1016/j.jiph.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND In recent years, the global spread of antimicrobial resistance has become a concerning issue, often referred to as a "silent pandemic". Healthcare-associated infections (HAIs) caused by antibiotic-resistant bacteria (ARB) are a recurring problem, with some originating from waterborne route. The study aimed to investigate the presence of clinically relevant opportunistic bacteria and antibiotic resistance genes (ARGs) in hospital water distribution systems (WDSs). METHODS Water and biofilm samples (n = 192) were collected from nine hospitals in Isfahan and Kashan, located in central Iran, between May 2022 and June 2023. The samples were analyzed to determine the presence and quantities of opportunistic bacteria and ARGs using cultural and molecular methods. RESULTS Staphylococcus spp. were highly detected in WDS samples (90 isolates), with 33 % of them harboring mecA gene. However, the occurrences of E. coli (1 isolate), Acinetobacter baumannii (3 isolates), and Pseudomonas aeruginosa (14 isolates) were low. Moreover, several Gram-negative bacteria containing ARGs were identified in the samples, mainly belonging to Stenotrophomonas, Sphingomonas and Brevundimonas genera. Various ARGs, as well as intI1, were found in hospital WDSs (ranging from 14 % to 60 %), with higher occurrences in the biofilm samples. CONCLUSION Our results underscore the importance of biofilms in water taps as hotspots for the dissemination of opportunistic bacteria and ARG within hospital environments. The identification of multiple opportunistic bacteria and ARGs raises concerns about the potential exposure and acquisition of HAIs, emphasizing the need for proactive measures, particularly in controlling biofilms, to mitigate infection risks in healthcare settings.
Collapse
Affiliation(s)
- Sahar Gholipour
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davarkhah Rabbani
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
17
|
Xiao R, Huang D, Du L, Tang X, Song B, Yin L, Chen Y, Zhou W, Gao L, Li R, Huang H, Zeng G. Molecular insights into linkages among free-floating macrophyte-derived organic matter, the fate of antibiotic residues, and antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134351. [PMID: 38653136 DOI: 10.1016/j.jhazmat.2024.134351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Macrophyte rhizospheric dissolved organic matter (ROM) served as widespread abiotic components in aquatic ecosystems, and its effects on antibiotic residues and antibiotic resistance genes (ARGs) could not be ignored. However, specific influencing mechanisms for ROM on the fate of antibiotic residues and expression of ARGs still remained unclear. Herein, laboratory hydroponic experiments for water lettuce (Pistia stratiotes) were carried out to explore mutual interactions among ROM, sulfamethoxazole (SMX), bacterial community, and ARGs expression. Results showed ROM directly affect SMX concentrations through the binding process, while CO and N-H groups were main binding sites for ROM. Dynamic changes of ROM molecular composition diversified the DOM pool due to microbe-mediated oxidoreduction, with enrichment of heteroatoms (N, S, P) and decreased aromaticity. Microbial community analysis showed SMX pressure significantly stimulated the succession of bacterial structure in both bulk water and rhizospheric biofilms. Furthermore, network analysis further confirmed ROM bio-labile compositions as energy sources and electron shuttles directly influenced microbial structure, thereby facilitating proliferation of antibiotic resistant bacteria (Methylotenera, Sphingobium, Az spirillum) and ARGs (sul1, sul2, intl1). This investigation will provide scientific supports for the control of antibiotic residues and corresponding ARGs in aquatic ecosystems.
Collapse
Affiliation(s)
- Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Lingshi Yin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yashi Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Lan Gao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Hai Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| |
Collapse
|
18
|
Waegenaar F, García-Timermans C, Van Landuyt J, De Gusseme B, Boon N. Impact of operational conditions on drinking water biofilm dynamics and coliform invasion potential. Appl Environ Microbiol 2024; 90:e0004224. [PMID: 38647288 PMCID: PMC11107155 DOI: 10.1128/aem.00042-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Biofilms within drinking water distribution systems serve as a habitat for drinking water microorganisms. However, biofilms can negatively impact drinking water quality by causing water discoloration and deterioration and can be a reservoir for unwanted microorganisms. In this study, we investigated whether indicator organisms for drinking water quality, such as coliforms, can settle in mature drinking water biofilms. Therefore, a biofilm monitor consisting of glass rings was used to grow and sample drinking water biofilms. Two mature drinking water biofilms were characterized by flow cytometry, ATP measurements, confocal laser scanning microscopy, and 16S rRNA sequencing. Biofilms developed under treated chlorinated surface water supply exhibited lower cell densities in comparison with biofilms resulting from treated groundwater. Overall, the phenotypic as well as the genotypic characteristics were significantly different between both biofilms. In addition, the response of the biofilm microbiome and possible biofilm detachment after minor water quality changes were investigated. Limited changes in pH and free chlorine addition, to simulate operational changes that are relevant for practice, were evaluated. It was shown that both biofilms remained resilient. Finally, mature biofilms were prone to invasion of the coliform, Serratia fonticola. After spiking low concentrations (i.e., ±100 cells/100 mL) of the coliform to the corresponding bulk water samples, the coliforms were able to attach and get established within the mature biofilms. These outcomes emphasize the need for continued research on biofilm detachment and its implications for water contamination in distribution networks. IMPORTANCE The revelation that even low concentrations of coliforms can infiltrate into mature drinking water biofilms highlights a potential public health concern. Nowadays, the measurement of coliform bacteria is used as an indicator for fecal contamination and to control the effectiveness of disinfection processes and the cleanliness and integrity of distribution systems. In Flanders (Belgium), 533 out of 18,840 measurements exceeded the established norm for the coliform indicator parameter in 2021; however, the source of microbial contamination is mostly unknown. Here, we showed that mature biofilms, are susceptible to invasion of Serratia fonticola. These findings emphasize the importance of understanding and managing biofilms in drinking water distribution systems, not only for their potential to influence water quality, but also for their role in harboring and potentially disseminating pathogens. Further research into biofilm detachment, long-term responses to operational changes, and pathogen persistence within biofilms is crucial to inform strategies for safeguarding drinking water quality.
Collapse
Affiliation(s)
- Fien Waegenaar
- Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium
| | - Cristina García-Timermans
- Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium
| | - Josefien Van Landuyt
- Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium
| | - Bart De Gusseme
- Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium
- Farys, Department R&D – Innovation Water, Ghent, Belgium
| | - Nico Boon
- Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium
| |
Collapse
|
19
|
Zheng S, Li J, Yan W, Zhao W, Ye C, Yu X. Biofilm formation and antioxidation were responsible for the increased resistance of N. eutropha to chloramination for drinking water treatment. WATER RESEARCH 2024; 254:121432. [PMID: 38461606 DOI: 10.1016/j.watres.2024.121432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Chloramination is an effective strategy for eliminating pathogens from drinking water and repressing their regrowth in water distribution systems. However, the inevitable release of NH4+ potentially promotes nitrification and associated ammonia-oxidizing bacteria (AOB) contamination. In this study, AOB (Nitrosomona eutropha) were isolated from environmental water and treated with two disinfection stages (chloramine disinfection and chloramine residues) to investigate the occurrence mechanisms of AOB in chloramination. The results showed that N. eutropha had considerable resistance to monochloramine compared to Escherichia coli, whose inactivation rate constant was 19.4-fold lower. The higher resistance was attributed to high levels of extracellular polymer substances (EPS) in AOB, which contribute to AOB surviving disinfection and entering the distribution system. In AOB response to the chloramine residues stage, the respiratory activity of N. eutropha remained at a high level after three days of continuous exposure to high chloramine residue concentrations (0.5-1.5 mg/L). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) suggested that the mechanism of N. eutropha tolerance involved a significantly high expression of the intracellular oxidative stress-regulating (sodB, txrA) and protein-related (NE1545, NE1546) genes. Additionally, this process enhanced EPS secretion and promoted biofilm formation. Adhesion predictions based on the XDLVO theory corroborated the trend of biofilm formation. Overall, the naturally higher resistance contributed to the survival of AOB in primary disinfection; the enhanced antioxidant response of surviving N. eutropha accompanied by biofilm formation was responsible for their increased resistance to the residual chloramines.
Collapse
Affiliation(s)
- Shikan Zheng
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, China
| | - Jianguo Li
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, China
| | - Wanli Yan
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, China
| | - Wenya Zhao
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, China
| | - Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, China.
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
20
|
Oliveira IM, Gomes IB, Simões LC, Simões M. A review of research advances on disinfection strategies for biofilm control in drinking water distribution systems. WATER RESEARCH 2024; 253:121273. [PMID: 38359597 DOI: 10.1016/j.watres.2024.121273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
The presence of biofilms in drinking water distribution systems (DWDS) is responsible for water quality deterioration and a possible source of public health risks. Different factors impact the biological stability of drinking water (DW) in the distribution networks, such as the presence and concentration of nutrients, water temperature, pipe material composition, hydrodynamic conditions, and levels of disinfectant residual. This review aimed to evaluate the current state of knowledge on strategies for DW biofilm disinfection through a qualitative and quantitative analysis of the literature published over the last decade. A systematic review method was performed on the 562 journal articles identified through database searching on Web of Science and Scopus, with 85 studies selected for detailed analysis. A variety of disinfectants were identified for DW biofilm control such as chlorine, chloramine, UV irradiation, hydrogen peroxide, chlorine dioxide, ozone, and others at a lower frequency, namely, electrolyzed water, bacteriophages, silver ions, and nanoparticles. The disinfectants can impact the microbial communities within biofilms, reduce the number of culturable cells and biofilm biomass, as well as interfere with the biofilm matrix components. The maintenance of an effective residual concentration in the water guarantees long-term prevention of biofilm formation and improves the inactivation of detached biofilm-associated opportunistic pathogens. Additionally, strategies based on multi-barrier processes by optimization of primary and secondary disinfection combined with other water treatment methods improve the control of opportunistic pathogens, reduce the chlorine-tolerance of biofilm-embedded cells, as well as decrease the corrosion rate in metal-based pipelines. Most of the studies used benchtop laboratory devices for biofilm research. Even though these devices mimic the conditions found in real DWDS, future investigations on strategies for DW biofilm control should include the validity of the promising strategies against biofilms formed in real DW networks.
Collapse
Affiliation(s)
- Isabel Maria Oliveira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Inês Bezerra Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Lúcia Chaves Simões
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory in Biotechnology, Bioengineering and Microelectromechanical Systems, Braga/Guimarães, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
21
|
Xin C, Khu ST, Wang T, Zuo X, Zhang Y. Effect of flow fluctuation on water pollution in drinking water distribution systems. ENVIRONMENTAL RESEARCH 2024; 246:118142. [PMID: 38218524 DOI: 10.1016/j.envres.2024.118142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
The detachment of biofilm caused by changes in hydraulic conditions is an essential reason for the pollution of water in the drinking water distribution system (DWDS). In this research, the effect of flow fluctuation on bulk water quality was studied. The turbidity, iron concentration, manganese concentration, the total number of bacteria, biodegradable dissolved organic carbon (BDOC), bacterial community structure, and pathogenic genes in bacteria of bulk water were analyzed. The results indicate that the detachment of biofilm caused by fluctuant flow and reverse flow (especially instant reverse flow) can lead to the pollution of water. Throughout the entire experimental period, the turbidity under fluctuant flow velocity is 4.92%∼49.44% higher than that under other flow velocities. BDOC concentration is 5.68%∼53.99% higher than that under low and high flow velocities. The flow fluctuation increases bacterial regrowth potential (BRP) and reduces the biological stability of the bulk water. Low flow velocity is more conducive to the expression of pathogenic functional genes. In the short term, the water quality under low flow velocity is the best. Nevertheless, in a long-term operation (about seven days later), the water quality under high flow velocity is better than that under other flow velocities. This research brings new knowledge about the fluctuant hydraulic conditions on the bulk water quality within the DWDS and provides data support for stable drinking water distribution.
Collapse
Affiliation(s)
- Changchun Xin
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Soon-Thiam Khu
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China; Engineering Research Center of City Intelligence and Digital Governance, Ministry of Education of the People's Republic of China, Tianjin 300350, China
| | - Tianzhi Wang
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Xin Zuo
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Ying Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
22
|
Shende N, Singh I, Hippargi G, Ramesh Kumar A. Occurrence and Health Risk Assessment of Phthalates in Municipal Drinking Water Supply of a Central Indian City. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:288-303. [PMID: 38568248 DOI: 10.1007/s00244-024-01061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/12/2024] [Indexed: 04/21/2024]
Abstract
In this study, the occurrence of phthalates in the municipal water supply of Nagpur City, India, was studied for the first time. The study aimed to provide insights into the extent of phthalate contamination and identify potential sources of contamination in the city's tap water. We analyzed fifteen phthalates and the total concentration (∑15phthalates) ranged from 0.27 to 76.36 µg L-1. Prominent phthalates identified were di-n-butyl phthalate (DBP), di-isobutyl phthalate (DIBP), benzyl butyl phthalate (BBP), di (2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DNOP), and di-nonyl phthalate (DNP). Out of the fifteen phthalates analyzed, DEHP showed the highest concentration in all the samples with the median concentration of 2.27 µg L-1, 1.39 µg L-1, 1.83 µg L-1, 2.02 µg L-1, respectively in Butibori, Gandhibaag, Civil Lines, and Kalmeshwar areas of the city. In 30% of the tap water samples, DEHP was found higher than the EPA maximum contaminant level of 6 µg L-1. The average daily intake (ADI) of phthalates via consumption of tap water was higher for adults (median: 0.25 µg kg-1 day-1) compared to children (median: 0.07 µg kg-1 day-1). The hazard index (HI) calculated for both adults and children was below the threshold level, indicating no significant health risks from chronic toxic risk. However, the maximum carcinogenic risk (CR) for adults (8.44 × 10-3) and children (7.73 × 10-3) was higher than the threshold level. Knowledge of the sources and distribution of phthalate contamination in municipal drinking water is crucial for effective contamination control and management strategies.
Collapse
Affiliation(s)
- Nandini Shende
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Ishan Singh
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
- Stockholm Convention Regional Centre (SCRC India), CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - Girivvankatesh Hippargi
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.
| | - Asirvatham Ramesh Kumar
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.
- Stockholm Convention Regional Centre (SCRC India), CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
23
|
Kunz JM, Lawinger H, Miko S, Gerdes M, Thuneibat M, Hannapel E, Roberts VA. Surveillance of Waterborne Disease Outbreaks Associated with Drinking Water - United States, 2015-2020. MORBIDITY AND MORTALITY WEEKLY REPORT. SURVEILLANCE SUMMARIES (WASHINGTON, D.C. : 2002) 2024; 73:1-23. [PMID: 38470836 DOI: 10.15585/mmwr.ss7301a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Problem/Condition Public health agencies in U.S. states, territories, and freely associated states investigate and voluntarily report waterborne disease outbreaks to CDC through the National Outbreak Reporting System (NORS). This report summarizes NORS drinking water outbreak epidemiologic, laboratory, and environmental data, including data for both public and private drinking water systems. The report presents outbreak-contributing factors (i.e., practices and factors that lead to outbreaks) and, for the first time, categorizes outbreaks as biofilm pathogen or enteric illness associated. Period Covered 2015-2020. Description of System CDC launched NORS in 2009 as a web-based platform into which public health departments voluntarily enter outbreak information. Through NORS, CDC collects reports of enteric disease outbreaks caused by bacterial, viral, parasitic, chemical, toxin, and unknown agents as well as foodborne and waterborne outbreaks of nonenteric disease. Data provided by NORS users, when known, for drinking water outbreaks include 1) the number of cases, hospitalizations, and deaths; 2) the etiologic agent (confirmed or suspected); 3) the implicated type of water system (e.g., community or individual or private); 4) the setting of exposure (e.g., hospital or health care facility; hotel, motel, lodge, or inn; or private residence); and 5) relevant epidemiologic and environmental data needed to describe the outbreak and characterize contributing factors. Results During 2015-2020, public health officials from 28 states voluntarily reported 214 outbreaks associated with drinking water and 454 contributing factor types. The reported etiologies included 187 (87%) biofilm associated, 24 (11%) enteric illness associated, two (1%) unknown, and one (<1%) chemical or toxin. A total of 172 (80%) outbreaks were linked to water from public water systems, 22 (10%) to unknown water systems, 17 (8%) to individual or private systems, and two (0.9%) to other systems; one (0.5%) system type was not reported. Drinking water-associated outbreaks resulted in at least 2,140 cases of illness, 563 hospitalizations (26% of cases), and 88 deaths (4% of cases). Individual or private water systems were implicated in 944 (43%) cases, 52 (9%) hospitalizations, and 14 (16%) deaths.Enteric illness-associated pathogens were implicated in 1,299 (61%) of all illnesses, and 10 (2%) hospitalizations. No deaths were reported. Among these illnesses, three pathogens (norovirus, Shigella, and Campylobacter) or multiple etiologies including these pathogens resulted in 1,225 (94%) cases. The drinking water source was identified most often (n = 34; 7%) as the contributing factor in enteric disease outbreaks. When water source (e.g., groundwater) was known (n = 14), wells were identified in 13 (93%) of enteric disease outbreaks.Most biofilm-related outbreak reports implicated Legionella (n = 184; 98%); two nontuberculous mycobacteria (NTM) (1%) and one Pseudomonas (0.5%) outbreaks comprised the remaining. Legionella-associated outbreaks generally increased over the study period (14 in 2015, 31 in 2016, 30 in 2017, 34 in 2018, 33 in 2019, and 18 in 2020). The Legionella-associated outbreaks resulted in 786 (37%) of all illnesses, 544 (97%) hospitalizations, and 86 (98%) of all deaths. Legionella also was the outbreak etiology in 160 (92%) public water system outbreaks. Outbreak reports cited the premise or point of use location most frequently as the contributing factor for Legionella and other biofilm-associated pathogen outbreaks (n = 287; 63%). Legionella was reported to NORS in 2015 and 2019 as the cause of three outbreaks in private residences (2). Interpretation The observed range of biofilm and enteric drinking water pathogen contributing factors illustrate the complexity of drinking water-related disease prevention and the need for water source-to-tap prevention strategies. Legionella-associated outbreaks have increased in number over time and were the leading cause of reported drinking water outbreaks, including hospitalizations and deaths. Enteric illness outbreaks primarily linked to wells represented approximately half the cases during this reporting period. This report enhances CDC efforts to estimate the U.S. illness and health care cost impacts of waterborne disease, which revealed that biofilm-related pathogens, NTM, and Legionella have emerged as the predominant causes of hospitalizations and deaths from waterborne- and drinking water-associated disease. Public Health Action Public health departments, regulators, and drinking water partners can use these findings to identify emerging waterborne disease threats, guide outbreak response and prevention programs, and support drinking water regulatory efforts.
Collapse
|
24
|
Hu J, Chen Q, Liu F, Qiang Z, Yu J. Copper ion affects oxidant decay and combined aspartic acid transformation during chlorination in water pipes: Differentiated action on the yield of trihalomethanes and haloacetonitriles. WATER RESEARCH 2024; 251:121153. [PMID: 38246080 DOI: 10.1016/j.watres.2024.121153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
The chlorination of extracellular polymeric substances (EPS) secreted by biofilm often induces the formation of high-toxic disinfection byproducts (DBPs) in drinking water distribution systems. The protein components in EPS are the main precursors of DBPs, which mostly exist in the form of combined amino acids. The paper aimed to study the action of a pipe corrosion product (Cu2+) on the formation of DBPs (trihalomethanes, THMs; haloacetonitriles, HANs) with aspartic acid tetrapeptide (TAsp) as a precursor. Cu2+ mainly promoted the reaction of oxidants with TAsp (i.e., TAsp-induced decay) to produce DBPs, rather than self-decay of oxidants to generate BrO3‒ and ClO3‒. Cu2+ increased THMs yield, but decreased HANs yield due to the catalytic hydrolysis. Cu2+ was more prone to promote the reaction of TAsp with HOCl than with HOBr, leading to a DBPs shift from brominated to chlorinated species. The chemical characterizations of Cu2+-TAsp complexations demonstrate that Cu2+ combined with TAsp at the N and O sites in both amine and amide groups, and the intermediate identification suggests that Cu2+ enhanced the stepwise chlorination process by promoting the substitution of chlorine and the breakage of CC bonds. The effect of Cu2+ on THMs yield changed from promoting to inhibiting with the increase of pH, while that on HANs yield was inhibiting regardless of pH variation. Additionally, the impact of Cu2+ on the formation of DBPs was also affected by Cu2+ dose, Cl2/C ratio and Br- concentration. This study helps to understand the formation of EPS-derived DBPs in water pipes, and provides reference for formulating control strategies during biofilm outbreaks.
Collapse
Affiliation(s)
- Jun Hu
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou 310014, China; Innovation Research Center for Advanced Environmental Technology, Eco-industrial Innovation Institute ZJUT, 2 Rong-chang East Road, Quzhou 324400, China
| | - Qiaonv Chen
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou 310014, China
| | - Fei Liu
- Innovation Research Center for Advanced Environmental Technology, Eco-industrial Innovation Institute ZJUT, 2 Rong-chang East Road, Quzhou 324400, China; Zhejiang TianNeng Resource Recycling Technology Co., Ltd, Huzhou 313100, China
| | - Zhimin Qiang
- Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China.
| | - Jianming Yu
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou 310014, China.
| |
Collapse
|
25
|
Su Y, Gao R, Huang F, Liang B, Guo J, Fan L, Wang A, Gao SH. Occurrence, transmission and risks assessment of pathogens in aquatic environments accessible to humans. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120331. [PMID: 38368808 DOI: 10.1016/j.jenvman.2024.120331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Pathogens are ubiquitously detected in various natural and engineered water systems, posing potential threats to public health. However, it remains unclear which human-accessible waters are hotspots for pathogens, how pathogens transmit to these waters, and what level of health risk associated with pathogens in these environments. This review collaboratively focuses and summarizes the contamination levels of pathogens on the 5 water systems accessible to humans (natural water, drinking water, recreational water, wastewater, and reclaimed water). Then, we showcase the pathways, influencing factors and simulation models of pathogens transmission and survival. Further, we compare the health risk levels of various pathogens through Quantitative Microbial Risk Assessment (QMRA), and assess the limitations of water-associated QMRA application. Pathogen levels in wastewater are consistently higher than in other water systems, with no significant variation for Cryptosporidium spp. among five water systems. Hydraulic conditions primarily govern the transmission of pathogens into human-accessible waters, while environmental factors such as temperature impact pathogens survival. The median and mean values of computed public health risk levels posed by pathogens consistently surpass safety thresholds, particularly in the context of recreational waters. Despite the highest pathogens levels found in wastewater, the calculated health risk is significantly lower than in other water systems. Except pathogens concentration, variables like the exposure mode, extent, and frequency are also crucial factors influencing the public health risk in water systems. This review shares valuable insights to the more accurate assessment and comprehensive management of public health risk in human-accessible water environments.
Collapse
Affiliation(s)
- Yiyi Su
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Rui Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Fang Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| |
Collapse
|
26
|
Mikac L, Csáki A, Zentai B, Rigó I, Veres M, Tolić A, Gotić M, Ivanda M. UV Irradiation of Polyethylene Terephthalate and Polypropylene and Detection of Formed Microplastic Particles Down to 1 μm. Chempluschem 2024; 89:e202300497. [PMID: 37882964 DOI: 10.1002/cplu.202300497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 10/27/2023]
Abstract
The degradation of plastics upon UVC irradiation in aqueous solution and the formation of microplastic (MP) particles were investigated. Polypropylene (PP) and recycled and virgin polyethylene terephthalate (PET) were irradiated with a UV lamp emitting light at 254 nm. Irradiation was performed for 15 and 30 min, respectively, at an intensity of about 0.3 W cm-2 . The formation of MP was studied by Raman spectroscopy. The results showed that MP particles were formed after irradiation and that their number was significantly higher in the recycled PET than in the virgin material. The number of PP MP formed was lower compared to PET and was not significantly different after 15 and 30 min. In addition, ethanol was used as an alternative solvent to investigate how its chemical properties and interactions with UVC irradiation affect the degradation of PET and PP plastics. The use of ethanol and recycled PET resulted in a lower number of MP particles at both irradiation times. When ethanol was used after 30 min of irradiation, significantly more PP MP formed. The different chemical structures of PET and PP combined with the different solvent properties of water and ethanol contribute to the differences in their susceptibility to UVC degradation.
Collapse
Affiliation(s)
- Lara Mikac
- Molecular Physics and New Materials Synthesis Laboratory, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
- Department of Applied and Nonlinear Optics, Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - Attila Csáki
- Department of Applied and Nonlinear Optics, Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - Benedek Zentai
- Department of Applied and Nonlinear Optics, Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - István Rigó
- Department of Applied and Nonlinear Optics, Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - Miklós Veres
- Department of Applied and Nonlinear Optics, Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - Ana Tolić
- Molecular Physics and New Materials Synthesis Laboratory, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Marijan Gotić
- Molecular Physics and New Materials Synthesis Laboratory, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Mile Ivanda
- Molecular Physics and New Materials Synthesis Laboratory, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| |
Collapse
|
27
|
El-Newehy MH, Aldalbahi A, Thamer BM, Hameed MMA. Establishment and inactivation of mono-species biofilm in a semipilot-scale water distribution system using nanocomposite of silver nanoparticles/montmorillonite loaded cationic chitosan. Int J Biol Macromol 2024; 258:128874. [PMID: 38128797 DOI: 10.1016/j.ijbiomac.2023.128874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/10/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
This study presents a novel approach in the synthesis and characterization of nanocomposites comprising cationic chitosan (CCS) blended with varying concentrations of silver nanoparticles/montmorillonite (AgNPs/MMT). AgNPs/MMT was synthesized using soluble starch as a reducing and stabilizing agent. Subsequently, nanocomposites, namely CCS/AgMMT-0, CCS/AgMMT-0.5, CCS/AgMMT-1.5, and CCS/AgMMT-2.5, were developed by blending 2.5 g of CCS with 0, 0.5, 1.5, and 2.5 g of AgNPs/MMT, respectively, and the corresponding nanocomposites were prepared using ball milling technique. Transmission electron microscopy (TEM) analysis revealed the formation of nanocomposites that exhibiting nearly spherical morphologies. Dynamic light scattering (DLS) measurements displayed average particle sizes of 1183 nm, 131 nm, 140 nm, and 188 nm for CCS/AgMMT-0, CCS/AgMMT-0.5, CCS/AgMMT-1.5, and CCS/AgMMT-2.5, respectively. The narrow polydispersity index (~0.5) indicated uniform particle size distributions across the nanocomposites, affirming monodispersity. Moreover, the zeta potential values exceeding 30 mV across all nanocomposites that confirmed their stability against agglomeration. Notably, CCS/AgMMT-2.5 nanocomposite exhibited potent antibacterial and antibiofilm properties against diverse pipeline materials. Findings showed that after 15 days of incubation, the highest populations of biofilm cells, Pseudomonas aeruginosa biofilm, developed over UPVC, MDPE, DCI, and SS, with corresponding HPCs of 4.79, 6.38, 8.81, and 7.24 CFU/cm2. The highest cell densities of Enterococcus faecalis biofilm in the identical situation were 4.19, 5.89, 8.12, and 6.9 CFU/cm2. The nanocomposite CCS/AgMMT-2.5 exhibited the largest measured zone of inhibition (ZOI) against both P. aeruginosa and E. faecalis, with measured ZOI values of 19 ± 0.65 and 17 ± 0.21 mm, respectively. Remarkably, the research indicates that the youngest biofilm exhibited the most notable rate of inactivation when exposed to a dose of 150 mg/L, in comparison to the mature biofilm. These such informative findings could offer valuable insights into the development of effective antibiofilm agents and materials applicable in diverse sectors such as water treatment facilities, medical devices, and industrial pipelines.
Collapse
Affiliation(s)
- Mohamed H El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Badr M Thamer
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdul Hameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
28
|
Healy HG, Ehde A, Bartholow A, Kantor RS, Nelson KL. Responses of drinking water bulk and biofilm microbiota to elevated water age in bench-scale simulated distribution systems. NPJ Biofilms Microbiomes 2024; 10:7. [PMID: 38253591 PMCID: PMC10803812 DOI: 10.1038/s41522-023-00473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Reductions in nonresidential water demand during the COVID-19 pandemic highlighted the importance of understanding how water age impacts drinking water quality and microbiota in piped distribution systems. Using benchtop model distribution systems, we aimed to characterize the impacts of elevated water age on microbiota in bulk water and pipe wall biofilms. Five replicate constant-flow reactors were fed with municipal chloraminated tap water for 6 months prior to building closures and 7 months after. After building closures, chloramine levels entering the reactors dropped; in the reactor bulk water and biofilms the mean cell counts and ATP concentrations increased over an order of magnitude while the detection of opportunistic pathogens remained low. Water age, and the corresponding physicochemical changes, strongly influenced microbial abundance and community composition. Differential initial microbial colonization also had a lasting influence on microbial communities in each reactor (i.e., historical contingency).
Collapse
Affiliation(s)
- Hannah Greenwald Healy
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Aliya Ehde
- Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, USA
| | - Alma Bartholow
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Rose S Kantor
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, USA.
| | - Kara L Nelson
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
29
|
Abkar L, Moghaddam HS, Fowler SJ. Microbial ecology of drinking water from source to tap. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168077. [PMID: 37914126 DOI: 10.1016/j.scitotenv.2023.168077] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
As drinking water travels from its source, through various treatment processes, hundreds to thousands of kilometres of distribution network pipes, to the taps in private homes and public buildings, it is exposed to numerous environmental changes, as well as other microbes living in both water and on surfaces. This review aims to identify the key locations and factors that are associated with changes in the drinking water microbiome throughout conventional urban drinking water systems from the source to the tap water. Over the past 15 years, improvements in cultivation-independent methods have enabled studies that allow us to answer such questions. As a result, we are beginning to move towards predicting the impacts of disturbances and interventions resulting ultimately in management of drinking water systems and microbial communities rather than mere observation. Many challenges still exist to achieve effective management, particularly within the premise plumbing environment, which exhibits diverse and inconsistent conditions that may lead to alterations in the microbiota, potentially presenting public health risks. Finally, we recommend the establishment of global collaborative projects on the drinking water microbiome that will enhance our current knowledge and lead to tools for operators and researchers alike to improve global access to high-quality drinking water.
Collapse
Affiliation(s)
- Leili Abkar
- Civil Engineering Department, University of British Columbia, Canada.
| | | | - S Jane Fowler
- Department of Biological Sciences, Simon Fraser University, Canada.
| |
Collapse
|
30
|
Yang J, Hu Y, Zhang Y, Zhou S, Meng D, Xia S, Wang H. Deciphering the diversity and assemblage mechanisms of nontuberculous mycobacteria community in four drinking water distribution systems with different disinfectants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168176. [PMID: 37907107 DOI: 10.1016/j.scitotenv.2023.168176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Nontuberculous mycobacteria (NTM) represent an emerging health concern due to their escalating infections worldwide. Although drinking water distribution systems (DWDSs) have been considered as NTM reservoirs and a potential infection route, NTM community at the species level remain largely elusive in DWDSs. This study employed high-throughput sequencing coupled with qPCR to profile NTM community and estimate their abundances at the species level in water and biofilm samples in four DWDSs using three different disinfectants (i.e. free chlorine, chloramine and chlorine dioxide). Results demonstrated the dominance of Mycobacterium paragordonae and Mycobacterium mucogenicum in both biofilm and water across four DWDSs, whereas Mycobacterium abscessus and Mycobacterium chelonae, the two clinically significant species, exhibited low abundance but high prevalence. Comparable NTM community was observed in biofilm across these four DWDSs. Distinct separation of NTM community between SH-chloramine DWDSs water and other DWDSs highlighted the selective pressure of chloramine on NTM community. Furthermore, the research revealed that biofilm and water exhibited distinct NTM community structures, with biofilm harboring more diverse NTM community. Certain NTM species displayed a preference for biofilm, such as Mycobacterium gordonae, while others, like Mycobacterium mucogenicum, were more abundant in water samples (P < 0.05). In terms of NTM community assembly, stochastic processes dominated biofilm, while comparable role of stochastic and deterministic processes was observed in water. In conclusion, this study offers a pioneering and comprehensive insight into the dynamics and assembly mechanisms of NTM community within four DWDSs treated with three distinct disinfectants. These findings serve as a critical foundation for assessing NTM exposure risks and devising effective management strategies within DWDSs.
Collapse
Affiliation(s)
- Jinhao Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuxing Hu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yue Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shuang Zhou
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Die Meng
- Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
31
|
Kampouraki ZC, Petala M, Zacharias K, Konstantinidis A, Zabulis X, Karamaounas P, Kostoglou M, Karapantsios TD. Highly sensitive resistance spectroscopy technique for online monitoring of biofilm growth on metallic surfaces. ENVIRONMENTAL RESEARCH 2024; 240:117401. [PMID: 37918765 DOI: 10.1016/j.envres.2023.117401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
Online techniques for monitoring biofilm formation and evolution are limited, especially as regards its application in flowing water systems. This is chiefly due to the absence of efficient non-destructive and non-invasive sensing methods. In this study, a sensitive electrical resistance spectroscopy technique is developed to monitor non-invasively and in real time the growth of biofilms over metallic surfaces inside water flow systems. To this aim, Pseudomonas fluorescens strain is used for biofilm development lasting 72 h in a laboratory-scale test channel of orthogonal cross section. Biofilm development corresponds to a progressively increasing coverage of the metallic surface area up to full coverage and a progressively increasing thickness. Biofilm development is registered by continuous recording of electrical impedance signals (time series). Proper configuration and tuning of the electronics promote the resistive contribution to the signal whereas careful grounding diminishes electrical interferences and yields superb sensing sensitivity. An increase of relative electrical resistance of around 15% is noticed in 72 h flow experiments which is attributed to both an increase of metallic surface area coverage and an increase of biofilm thickness. An independent estimation of these quantities using imaging tools and microscopy analysis, indicates that full coverage of the metallic surface occurs after only 48 h of the flow experiment, whereas biofilm thickness increases gradually along the entire 72 h of the experiment. Cross-examination of electrical signals with biofilm characteristics (metallic surface coverage and biofilm thickness) reveals that, qualitatively speaking, electrical signals are rather more sensitive to metallic surface coverage than biofilm thickness.
Collapse
Affiliation(s)
- Zoi Christina Kampouraki
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | - Maria Petala
- Department of Civil Engineering, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Konstantinos Zacharias
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | - Avraam Konstantinidis
- Laboratory of Engineering Mechanics, School of Civil Engineering, Aristotle University of Thessaloniki, GR, 541 24, Thessaloniki, Greece
| | - Xenophon Zabulis
- Institute of Computer Science, Foundation for Research and Technology, 711 10, Heraklion, Greece
| | - Polykarpos Karamaounas
- Institute of Computer Science, Foundation for Research and Technology, 711 10, Heraklion, Greece
| | - Margaritis Kostoglou
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | - Thodoris D Karapantsios
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece.
| |
Collapse
|
32
|
Zhang T, Li K, Liu X. DBP-FP change of biofilm in drinking water distribution system induced by sequential UV and chlorine disinfection: Effect of UV dose and influencing mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122716. [PMID: 37832779 DOI: 10.1016/j.envpol.2023.122716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
The issue of biofilm-related disinfection byproducts (DBPs) in drinking water distribution system (DWDS) has garnered significant attention. This study sought to examine the changes in biofilm-originated halogenated DBP formation potential (biofilm DBP-FP) in simulated continuous-flow DWDSs subjected to sequential UV and chlorine disinfection (UV-Cl2) treatments with varying UV doses and to propose the underlying mechanism. The formation potential of trihalomethanes (THMs), haloacetic acids (HAAs), and the total organic halogen (TOX, X = Cl and Br) produced by biofilm were measured. Results showed that the biofilm TOCl-FP was at a minimum with a UV dose of 80 mJ/cm2, corresponding to the lowest amounts of protein and polysaccharides in the extracellular polymeric substances (EPS). Sphingobium, Methylobacterium, and Sphingomonas played a crucial role in protein and polysaccharide biosynthesis. Bacterial community composition characterization together with metabolic function analysis indicated that dominant bacteria varied and metabolic function shifted due to UV-Cl2 disinfection, with Alphaproteobacteria increasing in relative abundance and Bacteroidia showing the opposite trend with increasing UV doses. Correlation analysis suggested that the UV-Cl2 disinfection process led to changes in the water matrix, including organics, inorganics, bacteria, and components that provide environmental pressure for the biofilm. These changes ultimately influenced the properties of the biofilm EPS, which had a direct impact on biofilm DBP-FP.
Collapse
Affiliation(s)
- Tuqiao Zhang
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Zhejiang University, Hangzhou, 310058, PR China
| | - Kexin Li
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Zhejiang University, Hangzhou, 310058, PR China
| | - Xiaowei Liu
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Zhejiang University, Hangzhou, 310058, PR China; Ocean College, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
33
|
Niu J, Chen D, Shang C, Xiao L, Wang Y, Zeng W, Zheng X, Chen Z, Du X, Chen X. Niche Differentiation of Biofilm Microorganisms in a Full-scale Municipal Drinking Water Distribution System in China and Their Implication for Biofilm Control. MICROBIAL ECOLOGY 2023; 86:2770-2780. [PMID: 37542538 DOI: 10.1007/s00248-023-02274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/21/2023] [Indexed: 08/07/2023]
Abstract
Biofilms on the inner surface of a drinking water distribution system (DWDS) affect water quality and stability. Understanding the niche differentiation of biofilm microbial communities is necessary for the efficient control of DWDS biofilms. However, biofilm studies are difficult to conduct in the actual DWDS because of inaccessibility to the pipes buried underground. Taking the opportunity of infrastructure construction and relevant pipeline replacement in China, biofilms in a DWDS (a water main and its branch pipes) were collected in situ, followed by analysis on the abundances and community structures of bacterial and archaeal using quantitative PCR and high-throughput sequencing, respectively. Results showed that archaea were detected only in the biofilms of the water main, with a range of 9.4×103~1.1×105 copies/cm2. By contrast, bacteria were detected in the biofilms of branch pipes and the distal part of the water main, with a range of 8.8×103~9.6×106 copies/cm2. Among the biofilm samples, the archaeal community in the central part of the water main showed the highest richness and diversity. Nitrosopumilus was found to be predominant (86.22%) in the biofilms of the proximal part of the water main. However, Methanobrevibacter (87.15%) predominated in the distal part of the water main. The bacterial community of the water main and branch pipes was primarily composed of Firmicutes and Proteobacteria at the phylum level, respectively. Regardless of archaea or bacteria, only few operational taxonomic units (OTUs) (<0.5% of total OTUs) were shared by all the biofilms, indicating the niche differentiation of biofilm microorganisms. Moreover, the high Mn content in the biofilms of the distal sampling location (D3) in the water main was linked to the predominance of Bacillus. Functional gene prediction revealed that the proportion of infectious disease-related genes was 0.44-0.67% in the tested biofilms. Furthermore, functional genes related to the resistance of the bacterial community to disinfections and antibiotics were detected in all the samples, that is, glutathione metabolism-relating genes (0.14-0.65%) and beta-lactam resistance gene (0.01-0.05%). The results of this study indicate the ubiquity of archaea and bacteria in the biofilms of water main and branch pipes, respectively, and pipe diameters could be a major influencing factor on bacterial community structure. In the water main, the key finding was the predominant existence of archaea, particularly Nitrosopumilus and methanogen. Hence, their routine monitoring and probable influences on water quality in pipelines with large diameter should be given more attention. Besides, since Mn-related Bacillus and suspected pathogenic Enterococcus were detected in the biofilm, supplementation of disinfectant may be a feasible strategy for inhibiting their growth and ensuring water quality. In addition, the monitoring on their abundance variation could help to determine the frequency and methods of pipeline maintenance.
Collapse
Affiliation(s)
- Jia Niu
- Center of Safe and Energy-saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China
| | - Daogan Chen
- Center of Safe and Energy-saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China
| | - Chenghao Shang
- Center of Safe and Energy-saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China
| | - Liang Xiao
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Yue Wang
- Fuzhou Water Supply Company, Fuzhou, Fujian, 350001, People's Republic of China
| | - Wuqiang Zeng
- Center of Safe and Energy-saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China
| | - Xianliang Zheng
- Center of Safe and Energy-saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China
| | - Ziyi Chen
- Center of Safe and Energy-saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China
| | - Xupu Du
- Center of Safe and Energy-saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China
| | - Xiaochen Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| |
Collapse
|
34
|
Khu ST, Changchun X, Wang T. Effects of flow velocity on biofilm composition and microbial molecular ecological network in reclaimed water distribution systems. CHEMOSPHERE 2023; 341:140010. [PMID: 37652246 DOI: 10.1016/j.chemosphere.2023.140010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 08/03/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
The existence of biofilm on the reclaimed water pipeline seriously affects the safety of water distribution. And the flow regimes in the pipeline play a crucial role in the growth of biofilms. In this study, the biofilm composition, surface topography and bacterial community were detected under eight levels of flow velocity in the range of 0.10-1.40 m s-1. The results showed that the dry weight, the concentration of extracellular protein and extracellular polysaccharide in the biofilm reached a dynamic stable period after 640 h. The biofilm composition and surface topography of biofilm were significantly different under the different flow regimes (laminar flow belongs to [0.10, 0.19] m s-1, and turbulent flow belongs to [0.29, 1.40] m s-1). As the flow velocity range increases, the concentration of each component in the biofilm and the parameters of biofilm surface topography increased and then decreased. The flow velocity could be a strong environmental stimulus resulting in the succession of bacterial community in biofilm. As the flow velocity increased from 0.10 m s-1 to 1.40 m s-1, at the phylum level, the average relative abundance of Firmicutes mainly showed a trend of first increasing and then decreasing with the highest abundance value of 71.57% at 0.49 m s-1. The flow velocity increased from 0.10 m s-1 to 0.49 m s-1, a significant increase in microbial diversity could be detected. The increase in flow velocity promoted the proliferation of microorganisms, and the interaction between different microbial components was enhanced. At 0.49 m s-1, the function of the biofilm is complex, and the ability to resist environmental stress is the strongest. This study can effectively improve the cognition depth of biofilms under the influence of flow velocity in the reclaimed water distribution systems, and provide an important theoretical support for the safe distribution of reclaimed water.
Collapse
Affiliation(s)
- Soon-Thiam Khu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China; Engineering Research Center of City intelligence and Digital Governance, Ministry of Education of the People's Republic of China, Tianjin, 300350, China
| | - Xin Changchun
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China
| | - Tianzhi Wang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
35
|
Tsagkari E, Sloan W. The Role of Chlorine in the Formation and Development of Tap Water Biofilms under Different Flow Regimes. Microorganisms 2023; 11:2680. [PMID: 38004692 PMCID: PMC10673482 DOI: 10.3390/microorganisms11112680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Water companies make efforts to reduce the risk of microbial contamination in drinking water. A widely used strategy is to introduce chlorine into the drinking water distribution system (DWDS). A subtle potential risk is that non-lethal chlorine residuals may select for chlorine resistant species in the biofilms that reside in DWDS. Here, we quantify the thickness, density, and coverage of naturally occurring multi-species biofilms grown on slides in tap water with and without chlorine, using fluorescence microscopy. We then place the slides in an annular rotating reactor and expose them to fluid-wall shears, which are redolent of those on pipe walls in DWDS. We found that biofilms in chlorine experiment were thicker, denser and with higher coverage than in non-chlorine conditions under all flow regimes and during incubation. This suggests that the formation and development of biofilms was promoted by chlorine. Surprisingly, for both chlorinated and non-chlorinated conditions, biofilm thickness, density and coverage were all positively correlated with shear stress. More differences were detected in biofilms under the different flow regimes in non-chlorine than in chlorine experiments. This suggests a more robust biofilm under chlorine conditions. While this might imply less mobilization of biofilms in high shear events in pipe networks, it might also provide refuge from chlorine residuals for pathogens.
Collapse
Affiliation(s)
- Erifyli Tsagkari
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK;
| | | |
Collapse
|
36
|
Oliveira IM, Gomes IB, Moniz T, Simões LC, Rangel M, Simões M. Realism-based assessment of the efficacy of potassium peroxymonosulphate on Stenotrophomonas maltophilia biofilm control. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132348. [PMID: 37625295 DOI: 10.1016/j.jhazmat.2023.132348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
The potential of pentapotassium bis(peroxymonosulphate) bis(sulphate) (OXONE) to control biofilms in drinking water distribution systems (DWDS) was evaluated and compared to chlorine disinfection. Mature biofilms of drinking water (DW)-isolated Stenotrophomonas maltophilia were formed using a simulated DWDS with a rotating cylinder reactor (RCR). After 30 min of exposure, OXONE at 10 × minimum bactericidal concentration (MBC) caused a significant 4 log reduction of biofilm culturability in comparison to the unexposed biofilms and a decrease in the number of non-damaged cells below the detection limit (4.8 log cells/cm2). The effects of free chlorine were restricted to approximately 1 log reduction in both biofilm culturability and non-damaged cells. OXONE in synthetic tap water (STW) at 25 ºC was more stable over 40 days than free chlorine in the same conditions. OXONE solution exhibited a disinfectant decrease of about 10% of the initial concentration during the first 9 days, and after this time the values remained stable. Whereas possible reaction of chlorine with inorganic and organic substances in STW contributed to free chlorine depletion of approximately 48% of the initial concentration. Electron paramagnetic resonance (EPR) spectroscopy studies confirmed the presence of singlet oxygen and other free radicals during S. maltophilia disinfection with OXONE. Overall, OXONE constitutes a relevant alternative to conventional DW disinfection for effective biofilm control in DWDS.
Collapse
Affiliation(s)
- Isabel M Oliveira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Tânia Moniz
- REQUIMTE, LAQV - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 40169-007 Porto, Portugal; REQUIMTE, LAQV - Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, Rua de Jorge Viterbo de Ferreira, 228, 4050-313 Porto, Portugal
| | - Lúcia Chaves Simões
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory in Biotechnology, Bioengineering and Microelectromechanical Systems, Braga/Guimarães, Portugal
| | - Maria Rangel
- REQUIMTE, LAQV - Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, Rua de Jorge Viterbo de Ferreira, 228, 4050-313 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
37
|
Song X, Zhang G, Zhou Y, Li W. Behaviors and mechanisms of microbially-induced corrosion in metal-based water supply pipelines: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165034. [PMID: 37355127 DOI: 10.1016/j.scitotenv.2023.165034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
Microbially-induced corrosion (MIC) is unstoppable and extensively spread throughout drinking water distribution systems (DWDSs) as the cause of pipe leakage and deteriorating water quality. For maintaining drinking water safety and reducing capital inputs in pipe usage, the possible consequences from MIC in DWDSs is still a research hotspot. Although most studies have investigated the effects of changing environmental factors on MIC corrosion, the occurrence of MIC in DWDSs has not been discussed sufficiently. This review aims to fill this gap by proposing that the formation of deposits with microbial capture may be a source of MIC in newly constructed DWDSs. The microbes early attaching to the rough pipe surface, followed by chemically and microbially-induced mineral deposits which confers resistance to disinfectants is ascribed as the first step of MIC occurrence. MIC is then activated in the newly-built, viable, and accessible microenvironment while producing extracellular polymers. With longer pipe service, oligotrophic microbes slowly grow, and metal pipe materials gradually dissolve synchronously with electron release to microbes, resulting in pipe-wall damage. Different corrosive microorganisms using pipe material as a reaction substrate would directly or indirectly cause different types of corrosion. Correspondingly, the formation of scale layers may reflect the distribution of microbial species and possibly biogenic products. It is therefore assumed that the porous and loose layer is an ideal microbial-survival environment, capable of providing diverse and sufficient ecological niches. The usage and chelation of metabolic activities and metabolites, such as acetic, oxalic, citric and glutaric acids, may lead to the formation of a porous scale layer. Therefore, the microbial interactions within the pipe scale reinforce the stability of microbial communities and accelerate MIC. Finally, a schematic model of the MIC process is presented to interpret MIC from its onset to completion.
Collapse
Affiliation(s)
- Xin Song
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Guosheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yu Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Weiying Li
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
38
|
Nisar MA, Ross KE, Brown MH, Bentham R, Xi J, Hinds J, Jamieson T, Leterme SC, Whiley H. The composition of planktonic prokaryotic communities in a hospital building water system depends on both incoming water and flow dynamics. WATER RESEARCH 2023; 243:120363. [PMID: 37494744 DOI: 10.1016/j.watres.2023.120363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
In recent years, the frequency of nosocomial infections has increased. Hospital water systems support the growth of microbes, especially opportunistic premise plumbing pathogens. In this study, planktonic prokaryotic communities present in water samples taken from hospital showers and hand basins, collected over three different sampling phases, were characterized by 16S rRNA gene amplicon sequencing. Significant differences in the abundance of various prokaryotic taxa were found through univariate and multivariate analysis. Overall, the prokaryotic communities of hospital water were taxonomically diverse and dominated by biofilm forming, corrosion causing, and potentially pathogenic bacteria. The phyla Proteobacteria, Actinobacteriota, Bacteroidota, Planctomycetota, Firmicutes, and Cyanobacteria made up 96% of the relative abundance. The α-diversity measurements of prokaryotic communities showed no difference in taxa evenness and richness based on sampling sites (shower or hand basins), sampling phases (months), and presence or absence of Vermamoeba vermiformis. However, β-diversity measurements showed significant clustering of prokaryotic communities based on sampling phases, with the greatest difference observed between the samples collected in phase 1 vs phase 2/3. Importantly, significant difference was observed in prokaryotic communities based on flow dynamics of the incoming water. The Pielou's evenness diversity index revealed a significant difference (Kruskal Wallis, p < 0.05) and showed higher species richness in low flow regime (< 13 minutes water flushing per week and ≤ 765 flushing events per six months). Similarly, Bray-Curtis dissimilarity index found significant differences (PERMANOVA, p < 0.05) in the prokaryotic communities of low vs medium/high flow regimes. Furthermore, linear discriminant analysis effect size showed that several biofilm forming (e.g., Pseudomonadales), corrosion causing (e.g., Desulfobacterales), extremely environmental stress resistant (e.g., Deinococcales), and potentially pathogenic (e.g., Pseudomonas) bacterial taxa were in higher amounts under low flow regime conditions. This study demonstrated that a hospital building water system consists of a complex microbiome that is shaped by incoming water quality and the building flow dynamics arising through usage.
Collapse
Affiliation(s)
- Muhammad Atif Nisar
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Kirstin E Ross
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Melissa H Brown
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; ARC Training Centre for Biofilm Research and Innovation, Flinders University, Bedford Park, SA, Australia
| | - Richard Bentham
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - James Xi
- Enware Australia Pty Ltd, Caringbah, NSW, Australia
| | - Jason Hinds
- Enware Australia Pty Ltd, Caringbah, NSW, Australia
| | - Tamar Jamieson
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; Institute for Nanoscience and Technology, Flinders University, Bedford Park, SA, Australia
| | - Sophie C Leterme
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; ARC Training Centre for Biofilm Research and Innovation, Flinders University, Bedford Park, SA, Australia; Institute for Nanoscience and Technology, Flinders University, Bedford Park, SA, Australia
| | - Harriet Whiley
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; ARC Training Centre for Biofilm Research and Innovation, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
39
|
Verma S, Kuila A, Jacob S. Role of Biofilms in Waste Water Treatment. Appl Biochem Biotechnol 2023; 195:5618-5642. [PMID: 36094648 DOI: 10.1007/s12010-022-04163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 11/02/2022]
Abstract
Biofilm cells have a different physiology than planktonic cells, which has been the focus of most research. Biofilms are complex biostructures that form on any surface that comes into contact with water on a regular basis. They are dynamic, structurally complex systems having characteristics of multicellular animals and multiple ecosystems. The three themes covered in this review are biofilm ecology, biofilm reactor technology and design, and biofilm modeling. Membrane-supported biofilm reactors, moving bed biofilm reactors, granular sludge, and integrated fixed-film activated sludge processes are all examples of biofilm reactors used for water treatment. Biofilm control and/or beneficial application in membrane processes are improving. Biofilm models have become critical tools for biofilm foundational research as well as biofilm reactor architecture and design. At the same time, the differences between biofilm modeling and biofilm reactor modeling methods are acknowledged.
Collapse
Affiliation(s)
- Samakshi Verma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Arindam Kuila
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India.
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu Dist., Kattankulathur, 603203, Tamil Nadu, India.
| |
Collapse
|
40
|
Wang Q, Miao Q, Huang K, Lin Y, Wang T, Bai X, Xu Q. Spatial-temporal clogging development in leachate collection systems of landfills: Insight into chemical and biological clogging characteristics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:163-172. [PMID: 37660629 DOI: 10.1016/j.wasman.2023.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
The clogging of leachate collection systems (LCSs) is a typical challenge for landfills operation. Although clogging occurs in different LCS components, its spatial-temporal distributions remain unclear. This study aimed to systematically investigate the dynamic clogging development in simulated LCSs by monitoring changes in clogging characteristics over time. Results revealed that clogging accumulated in all components of the simulated LCS during a 215-day period, including chemical clogging and bio-clogging. Distinct spatial variations in clogging components were observed along the leachate flow of the simulated LCS, with the geotextile being severely clogged due to bio-clogging (70.1 ± 3.0%-80.0 ± 0.5%). Additionally, chemical clogging mainly occurred at the top (85.4 ± 0.8%-95.0 ± 0.9%) and middle (91.2 ± 0.8%-94.9 ± 1.1%) gravel layers. Nevertheless, the percentage of chemical clogging decreased from 72.0 ± 2.1% (day 42) to 42.5 ± 2.7% (day 215) at the bottom gravel layer. Chemical clogging was the main type in the pipe, accounting for 69.6 ± 0.5% (day 215). In addition, the ratios of bio-clogging to chemical clogging changed over time in all LCS components. The spatial-temporal characteristics of clogging across LCS components can enhance the understanding of clogging mechanisms, facilitate the design optimization of LCSs, and promote the formulation of effective control strategies.
Collapse
Affiliation(s)
- Qian Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Qianming Miao
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Ke Huang
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Yeqi Lin
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Tong Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Xinyue Bai
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Qiyong Xu
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China.
| |
Collapse
|
41
|
Wu J, Liu C, Wang R, Yan S, Chen B, Zhu X. Enhanced bacterial adhesion force by rifampicin resistance promotes microbial colonization on PE plastic compared to non-resistant biofilm formation. WATER RESEARCH 2023; 242:120319. [PMID: 37441870 DOI: 10.1016/j.watres.2023.120319] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
The microbial biofilm formed on plastics, is ubiquitous in the environment. However, the effects of antibiotic resistance on the development of the biofilm on plastics, especially with regard to initial cell attachment, remain unclear. In this study, we investigated the initial bacterial adhesion and subsequent biofilm growth of a rifampin (Rif) resistant E. coli (RRE) and a normal gram-positive B. subtilis on a typical plastic (polyethylene, PE). The experiments were conducted in different antibiotic solutions, including Rif, sulfamethoxazole (SMX), and kanamycin (KM), with concentrations ranging from 1 to 1000 μg/L to simulate different aquatic environments. The AFM-based single-cell adhesion force determination revealed that Rif resistance strengthened the adhesion force of RRE to PE in the environment rich in Rif rather than SMX and KM. The enhanced adhesion force may be due to the higher secretion of extracellular polymeric substances (EPS), particularly proteins, by RRE in the presence of Rif compared to the other two antibiotics. In addition, the higher ATP level of RRE would facilitate the initial adhesion and subsequent biofilm growth. Transcriptome analysis of RRE separately cultured in Rif and SMX environments demonstrated a clear correlation between the expression of Rif resistance and the augmented bacterial adhesion and cellular activity. Biofilm biomass analysis confirmed the promotion effect of Rif resistance on biofilm growth when compared to non-resistant biofilms, establishing a novel association with the augmentation of microbial adhesion force. Our study highlights concerns related to the dissemination of antibiotic resistance during microbial colonization on plastic that may arise from antibiotic resistance.
Collapse
Affiliation(s)
- Jiayi Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Congcong Liu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Rui Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Saitao Yan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
42
|
Ke Y, Sun W, Chen X, Zhu Y, Guo X, Yan W, Xie S. Seasonality Determines the Variations of Biofilm Microbiome and Antibiotic Resistome in a Pilot-Scale Chlorinated Drinking Water Distribution System Deciphered by Metagenome Assembly. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11430-11441. [PMID: 37478472 DOI: 10.1021/acs.est.3c01980] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Understanding the biofilm microbiome and antibiotic resistome evolution in drinking water distribution systems (DWDSs) is crucial to ensure the safety of drinking water. We explored the 10 month evolution of the microbial community, antibiotic resistance genes (ARGs), mobile gene elements (MGEs) co-existing with ARGs and pathogenic ARG hosts, and the ARG driving factors in DWDS biofilms using metagenomics assembly. Sampling season was critical in determining the microbial community and antibiotic resistome shift. Pseudomonas was the primary biofilm colonizer, and biofilms diversified more as the formation time increased. Most genera tended to cooperate to adapt to an oligotrophic environment with disinfectant stress. Biofilm microbial community and antibiotic resistome assembly were mainly determined by stochastic processes and changed with season. Metagenome assembly provided the occurrence and fates of MGEs co-existing with ARGs and ARG hosts in DWDS biofilms. The abundance of ARG- and MGE-carrying pathogen Stenotrophomonas maltophilia was high in summer. It primarily harbored the aph(3)-IIb, multidrug transporter, smeD, and metallo-beta-lactamase ARGs, which were transferred via recombination. The microbial community was the most crucial factor driving the antibiotic resistance shift. We provide novel insights about the evolution of pathogens and ARGs and their correlations in DWDS biofilms to ensure the safety of drinking water.
Collapse
Affiliation(s)
- Yanchu Ke
- School of Environment, Tsinghua University, Beijing 100084, China
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xu Guo
- Fangshan District Water Bureau, Beijing 102445, China
| | - Weixin Yan
- Beijing BiSheng United Water Company, Beijing 102400, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
43
|
Barton F, Spencer BF, Tartèse R, Graham J, Shaw S, Morris K, Lloyd JR. The potential role of biofilms in promoting fouling formation in radioactive discharge pipelines. BIOFOULING 2023; 39:785-799. [PMID: 37877442 DOI: 10.1080/08927014.2023.2269532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023]
Abstract
Nuclear facility discharge pipelines accumulate inorganic and microbial fouling and radioactive contamination, however, research investigating the mechanisms that lead to their accumulation is limited. Using the Sellafield discharge pipeline as a model system, this study utilised modified Robbins devices to investigate the potential interplay between inorganic and biological processes in supporting fouling formation and radionuclide uptake. Initial experiments showed polyelectrolytes (present in pipeline effluents), had minimal effects on fouling formation. Biofilms were, however, found to be the key component promoting fouling, leading to increased uptake of inorganic particulates and metal contaminants (Cs, Sr, Co, Eu and Ru) compared to a non-biofilm control system. Biologically-mediated uptake mechanisms were implicated in Co and Ru accumulation, with a potential bioreduced Ru species identified on the biofilm system. This research emphasised the key role of biofilms in promoting fouling in discharge pipelines, advocating for the use of biocide treatments methods.
Collapse
Affiliation(s)
- Franky Barton
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
| | - Ben F Spencer
- Henry Royce Institute and Department of Materials, School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
| | - Romain Tartèse
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
| | - James Graham
- National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale, Cumbria, United Kingdom
| | - Samuel Shaw
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
| | - Katherine Morris
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
| | - Jonathan R Lloyd
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
44
|
Oliveira IM, Gomes IB, Plácido A, Simões LC, Eaton P, Simões M. The impact of potassium peroxymonosulphate and chlorinated cyanurates on biofilms of Stenotrophomonas maltophilia: effects on biofilm control, regrowth, and mechanical properties. BIOFOULING 2023; 39:691-705. [PMID: 37811587 DOI: 10.1080/08927014.2023.2254704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/27/2023] [Indexed: 10/10/2023]
Abstract
The activity of two chlorinated isocyanurates (NaDCC and TCCA) and peroxymonosulphate (OXONE) was evaluated against biofilms of Stenotrophomonas maltophilia, an emerging pathogen isolated from drinking water (DW), and for the prevention of biofilm regrowth. After disinfection of pre-formed 48 h-old biofilms, the culturability was reduced up to 7 log, with OXONE, TCCA, and NaDCC showing more efficiency than free chlorine against biofilms formed on stainless steel. The regrowth of biofilms previously exposed to OXONE was reduced by 5 and 4 log CFU cm-2 in comparison to the unexposed biofilms and biofilms exposed to free chlorine, respectively. Rheometry analysis showed that biofilms presented properties of viscoelastic solid materials, regardless of the treatment. OXONE reduced the cohesiveness of the biofilm, given the significant decrease in the complex shear modulus (G*). AFM analysis revealed that biofilms had a fractured appearance and smaller bacterial aggregates dispersed throughout the surface after OXONE exposure than the control sample. In general, OXONE has been demonstrated to be a promising disinfectant to control DW biofilms, with a higher activity than chlorine. The results also show the impact of the biofilm mechanical properties on the efficacy of the disinfectants in biofilm control.
Collapse
Affiliation(s)
- I M Oliveira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - I B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - A Plácido
- REQUIMTE/LAQV - Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - L C Simões
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory in Biotechnology, Bioengineering and Microelectromechanical Systems, Braga/Guimarães, Portugal
| | - P Eaton
- REQUIMTE/LAQV - Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- The Bridge, School of Chemistry, University of Lincoln, Lincoln, UK
| | - M Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
45
|
Zou Q, Meng W, Wang C, Wang T, Liu X, Li D. Sodium dichloroisocyanurate: improving broiler health by reducing harmful microbial levels in the waterline. Front Vet Sci 2023; 10:1234949. [PMID: 37588972 PMCID: PMC10427219 DOI: 10.3389/fvets.2023.1234949] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Sodium dichloroisocyanurate (NaDCC) is commonly used for treating drinking water, industrial water, and wastewater. This study aimed to investigate the potential effects of NaDCC-treated waterline drinking water on the growth of AA+ broilers by reducing microbial levels in the waterline. A total of 480 healthy 1-day-old AA+ broilers (46.77 ± 0.50 g) were selected for the experiment and randomly divided into four groups with six replicates of 20 birds each. The control group received regular drinking water, while the test groups received drinking water with NaDCC concentrations of 10, 30, and 50 mg/L. The test groups consumed the treated water on specific days throughout the 42-day experimental period. Results showed that NaDCC treatment significantly reduced the levels of E. coli, Salmonella, S. aureus and Moulds in the drinking water at the waterline (p < 0.05). Drinking water with NaDCC also led to reduced broiler fecal emissions of NH3 and H2S, as well as reduced counts of E. coli, Salmonella, S. aureus and Moulds (p < 0.05), particularly at 30 mg/L and 50 mg/L concentrations. Broilers consuming NaDCC at 50 mg/L exhibited a significant increase in ADG from days 1-42 (p < 0.05). The levels of E. coli, Salmonella, S. aureus and Moulds in the drinking water at the waterline were significantly and positively correlated with the bacterial count in the feces (p < 0.05, R > 0.6). Additionally, bacterial levels in drinking water and broiler feces were negatively correlated with broiler production performance indicators, including ADG, ADFI, F/G and AWC. In conclusion, NaDCC can indirectly enhance broiler performance by reducing the levels of harmful bacteria in the waterline without affecting normal drinking water. The addition of 30 mg/L or 50 mg/L of NaDCC to the waterline in poultry production can effectively control harmful microorganisms and improve poultry health. Based on the experiment's results, it is recommended to preferentially use 30 mg/L NaDCC in the waterline to reduce farming costs.
Collapse
Affiliation(s)
- Qiangqiang Zou
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Weishuang Meng
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Chunqiang Wang
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Tieliang Wang
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
- Liaoning Kaiwei Biotechnology Co., Ltd., Jinzhou, China
| | - Xiao Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Desheng Li
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
46
|
Hsieh PC, Chien HW. Biomimetic surfaces: Insights on the role of surface topography and wetting properties in bacterial attachment and biofilm formation. Colloids Surf B Biointerfaces 2023; 228:113389. [PMID: 37290200 DOI: 10.1016/j.colsurfb.2023.113389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
The study explores the impact of biomimetic surfaces on bacterial attachment and biofilm formation. Specifically, it investigates the effects of topographic scale and wetting behavior on the attachment and growth of Staphylococcus aureus and Escherichia coli on four different biomimetic surfaces: rose petals, Paragrass leaves, shark skin, and goose feathers. Using soft lithography, epoxy replicas with surface topographies similar to those of the natural surfaces were created. The static water contact angles of the replicas exceeded the hydrophobic threshold of 90°, while the hysteresis angles were found to be in the order of goose feathers, shark skin, Paragrass leaves, and rose petals. The results showed that bacterial attachment and biofilm formation were the lowest on rose petals and the highest on goose feathers, regardless of the bacterial strain. Additionally, the study revealed that surface topography had a significant impact on biofilm formation, with smaller feature sizes inhibiting biofilm formation. Hysteresis angle, rather than static water contact angle, was identified as a critical factor to consider when evaluating bacterial attachment behavior. These unique insights have the potential to lead to the development of more effective biomimetic surfaces for the prevention and eradication of biofilms, ultimately improving human health and safety.
Collapse
Affiliation(s)
- Po-Cheng Hsieh
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan; Photo-Sensitive Material Advanced Research and Technology Center (Photo-SMART Center), National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
| |
Collapse
|
47
|
Wang M, Liu X, Qu L, Wang T, Zhu L, Feng J. Untangling microbiota diversity and assembly patterns in the world's longest underground culvert water diversion canal. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:981. [PMID: 37480396 DOI: 10.1007/s10661-023-11593-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
The long-distance underground box culvert water transport system (LUBWT) is a crucial link between the source of drinking water and the consumers. It must ensure the stability of water quality during transportation. However, uncontrollable microbial growth can develop in the water delivery system during the long delivery process, posing a risk to health and safety. Therefore, we applied 16 s and 18 s gene sequence analysis in order to study microbial communities in box culvert waters sampled in 2021, as well as a molecular ecological network-based approach to decipher microbial interactions and stability. Our findings revealed that, in contrast to natural freshwater ecosystems, micro-eukaryotes in LUBWT have complex interactions such as predation, parasitism, and symbiosis due to their semi-enclosed box culvert environment. Total nitrogen may be the primary factor affecting bacterial community interactions in addition to temperature. Moreover, employing stability indicators such as robustness and vulnerability, we also found that microbial stability varied significantly from season to season, with summer having the higher stability of microbial communities. Not only that but also the stability of the micronuclei also varied greatly during water transport, which might also be related to the complex interactions among the micro-eukaryotes. To summarize, our study reveals the microbial interactions and stability in LUBWT, providing essential ecological knowledge to ensure the safety of LUBWT's water quality.
Collapse
Affiliation(s)
- Mengyao Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Xinyong Liu
- Tianjin Branch of China South to North Water Diversion Middle Route Construction Management Bureau, Tianjin, People's Republic of China.
| | - Liang Qu
- Tianjin Branch of China South to North Water Diversion Middle Route Construction Management Bureau, Tianjin, People's Republic of China
| | - Tongtong Wang
- Tianjin Branch of China South to North Water Diversion Middle Route Construction Management Bureau, Tianjin, People's Republic of China
| | - Lin Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Jianfeng Feng
- College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
48
|
Zhou Q, Bian Z, Yang D, Fu L. Stability of Drinking Water Distribution Systems and Control of Disinfection By-Products. TOXICS 2023; 11:606. [PMID: 37505570 PMCID: PMC10385944 DOI: 10.3390/toxics11070606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
The stability of drinking water distribution systems and the management of disinfection by-products are critical to ensuring public health safety. In this paper, the interrelationships between corrosion products in the network, microbes, and drinking water quality are elucidated. This review also discusses the mechanisms through which corrosive by-products from the piping network influence the decay of disinfectants and the formation of harmful disinfection by-products. Factors such as copper corrosion by-products, CuO, Cu2O, and Cu2+ play a significant role in accelerating disinfectant decay and catalyzing the production of by-products. Biofilms on pipe walls react with residual chlorine, leading to the formation of disinfection by-products (DBPs) that also amplify health risks. Finally, this paper finally highlights the potential of peroxymonosulfate (PMS), an industrial oxidant, as a disinfectant that can reduce DBP formation, while acknowledging the risks associated with its corrosive nature. Overall, the impact of the corrosive by-products of pipe scale and microbial communities on water quality in pipe networks is discussed, and recommendations for removing DBPs are presented.
Collapse
Affiliation(s)
- Qingwei Zhou
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhengfu Bian
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Dejun Yang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
49
|
Liu S, Liu B, Zhu Y, Qiu Y, Li B. The Spatial-Temporal Effects of Bacterial Growth Substrates on Antibiotic Resistance Gene Spread in the Biofilm. Antibiotics (Basel) 2023; 12:1154. [PMID: 37508250 PMCID: PMC10376823 DOI: 10.3390/antibiotics12071154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Biofilm is considered as the hotspot of antibiotic resistance gene (ARG) dissemination. Bacterial growth substrates are important factors for biofilm formation, but its spatial-temporal effects on ARG spread in biofilm is still unclear. In this study, microfluidics combined with microscopic observation were used to reveal spatial-temporal effects of bacterial growth substrates on ARG transfer at real time. The initial horizontal gene transfer events were found to be independent of substrate levels. However, subsequent transfer processes varied greatly depending on the availability of growth substrates. The proportion of transconjugants was much higher (~12%) when observed in substrate-rich regions (under the channel) at 24 h, followed by an exponential decline, with the distance far from the channel. Furthermore, three-dimensional observation revealed that vertical gene transfer influenced by the concentrations of bacterial growth substrates was important for ARG spread in biofilm. The transfer frequency was 8.2 times higher in the high substrate concentration (50×) compared to low concentration (0.5×) in simulated sewage, underscoring the substantial impact of bacterial growth substrate variability on ARG dissemination. This study is helpful for in-depth understanding of ARG dissemination through biofilms and indicates that reducing pollutant emission is important for ARG control in the environment.
Collapse
Affiliation(s)
- Shuzhen Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Bingwen Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yin Zhu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Qiu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
50
|
Gholipour S, Shamsizadeh Z, Gwenzi W, Nikaeen M. The bacterial biofilm resistome in drinking water distribution systems: A systematic review. CHEMOSPHERE 2023; 329:138642. [PMID: 37059195 DOI: 10.1016/j.chemosphere.2023.138642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/04/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Antibiotic resistance in drinking water systems poses human health risks. Earlier studies, including reviews on antibiotic resistance in drinking water systems are limited to the occurrence, behaviour and fate in bulk raw water and drinking water treatment systems. By comparison, reviews on the bacterial biofilm resistome in drinking water distribution systems are still limited. Therefore, the present systematic review investigates the occurrence, behaviour and fate and, detection methods of bacterial biofilm resistome in the drinking water distribution systems. A total of 12 original articles drawn from 10 countries were retrieved and analyzed. Antibiotic resistant bacteria and antibiotic resistance genes detected in biofilms include those for sulfonamides, tetracycline, and beta-lactamase. The genera detected in biofilms include Staphylococcus, Enterococcus, Pseudomonas, Ralstonia, Mycobacteria, as well as Enterobacteriaceae family and other gram-negative bacteria. The presence of Enterococcus faecium, Staphylococcusaureus, Klebsiella pneumoniae, Acinetobacterbaumannii, Pseudomonas aeruginosa, and Enterobacter species (ESKAPE bacteria) among the detected bacteria points to potential human exposure and health risks especially for susceptible individuals via the consumption of drinking water. Besides, the effects of water quality parameter and residual chlorine, the physico-chemical factors controlling the emergence, persistence and fate of the biofilm resistome are still poorly understood. Culture-based methods, and molecular methods, and their advantages and limitations are discussed. The limited data on the bacterial biofilm resistome in drinking water distribution system points to the need for further research. To this end, future research directions are discussed including understanding the formation, behaviour, and fate of the resistome and the controlling factors.
Collapse
Affiliation(s)
- Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Shamsizadeh
- Department of Environmental Health Engineering, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Willis Gwenzi
- Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, University of Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|