1
|
Shiryaev G, Maleva M, Borisova G, Tripti, Voropaeva O, Kumar A. Phytomitigation potential and adaptive responses of helophyte Typha latifolia L. to copper smelter-influenced heavily multi-metal contamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38821-38834. [PMID: 36862298 DOI: 10.1007/s11356-023-25973-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
The present study of phytomitigation potential and adaptive physiological and biochemical responses of helophyte Typha latifolia L. growing in water bodies at different distances from the century-old copper smelter (JSC "Karabashmed" Chelyabinsk Region, Russia) was conducted for the first time. This enterprise is one of the most dominant sources of multi-metal contamination for water and land ecosystems. The aim of the research was to assess the heavy metal (Cu, Ni, Zn, Pb, Cd, Mn, and Fe) accumulation, the photosynthetic pigment complex, and some redox reactions in T. latifolia from six differently technogenic impacted sites. In addition, the quantity of mesophilic aerobic and facultative anaerobic microorganisms (QMAFAnM) in rhizosphere sediments, as well as some plant growth-promoting (PGP) attributes of 50 isolates from each site, were determined. The water and sediment metal concentrations in highly contaminated sites exceeded the permissible/critical limits and were found much higher than that previously reported by other researchers while studying this helophyte. Both the degree of contamination and geoaccumulation indexes further elucidated extremely high contamination due to prolonged activity of copper smelter. T. latifolia accumulated significantly higher concentrations of the most of studied metals in its roost and rhizome with meager transfer to leaves (the translocation factors were less than one). Spearman's rank correlation coefficient showed a strong positive correlation between the metal concentration in sediments and its content in T. latifolia leaves (rs = 0.786 at p < 0.001 on average) and roots/rhizome (rs = 0.847 at p < 0.001 on average). In highly contaminated sites, the folia content of chlorophyll a and carotenoids decreased (by 30 and 38%, respectively), while lipid peroxidation enhanced (by 42%) on average compared to S1-S3 sites. These responses were accompanied by increasing non-enzymatic antioxidant content (soluble phenolic compounds, free proline, and soluble thiols) that allow plants to resist under significant anthropogenic loads. QMAFAnM in the five studied rhizosphere substrates varied insignificantly (2.5 × 106 - 3.8 × 107 cfu g-1 DW) and was decreased only in the most contaminated site (4.5 × 105). The proportion of rhizobacteria capable of fixing atmospheric nitrogen decreased by 1.7 times, solubilizing phosphates by 1.5 times, and synthesizing indol-3-acetic acid by 1.4 times in highly contaminated sites, while the amount of siderophore, 1-aminocyclopropane-1-carboxylate deaminase, and HCN producing bacteria did not considerably change. The results indicate high resistance of T. latifolia to prolonged technogenic impact, probably due to compensatory adaptive changes in the nonenzymatic antioxidant level and presence of beneficial microorganisms. Thus, T. latifolia was found to be a promising metal-tolerant helophyte that could help in mitigation of metal toxicity due to their phytostabilization even in heavily contaminated environment.
Collapse
Affiliation(s)
- Gregory Shiryaev
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia
| | - Maria Maleva
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia
| | - Galina Borisova
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia
| | - Tripti
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia
| | - Olga Voropaeva
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia
| | - Adarsh Kumar
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
2
|
Khelili A, Cloquet C, Dong S, Poszwa A, Mansuy-Huault L, Muel V, Gley R, Gauthier C, Fraysse F, Montargès-Pelletier E. Assessment of particulate Zn and Pb sources in the Orne watershed (Northeast France) using geochemical tools. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36663-36684. [PMID: 38750272 DOI: 10.1007/s11356-024-33600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/03/2024] [Indexed: 06/20/2024]
Abstract
The Orne River, a tributary of the Moselle River, was highly impacted by industrial activities for more than one century. Land use along the Orne River is highly contrasted, with local specificity from its source to its junction with the Moselle River. The intense industrial activity left behind tons of steelmaking wastes (SMW) on the land surface and within the Orne riverbed. To assess the sources of particulate Zn and Pb transported as suspended sediment in the Orne River, different sets of samples from likely Zn- and Pb-bearing particle sources within the Orne watershed were collected. Three sets of samples were taken from potential sources representing detrital, urban, and inherited industrial particles. Mineralogy, element contents, and Zn and Pb isotope compositions were obtained to characterize and reveal the fingerprint of each set of samples. Soil samples were collected on distinct geomorphological areas characterized by different soil types and land uses. They all display detrital minerals assigned to the geological background. Urban dusts and steelmaking residues display specific mineral phases (sulfates and iron oxides, respectively). Element compositions present strong discrepancies between the distinct sets of samples. SMWs are particularly enriched in Fe, Zn, and Pb. Concerning isotopic composition, SMWs exhibit δ66Zn values ranging from - 0.67 to 1.66‰. Urban samples display δ66Zn values between - 0.11 and 0.13‰, and soils present δ66Zn values between - 0.24 and 0.47‰. The 206Pb/204Pb ratio was estimated to range from 17.550 to 18.807 for soils, from 17.973 to 18.219 for urban samples, and from 18.313 to 18.826 for SMWs. For each of the three sets of samples (soils, urban, industrial), variations of geochemical fingerprint were observed. For soils, the relatively large variations of Zn and Pb isotopic compositions were attributed to distinct land use and the contribution of atmospheric deposition. For industrial samples, the variations were more intense and may be attributed either to distinct industrial processes in the production of pig iron or to distinct furnace-flume treatment modes. The three sets of samples (urban, industrial, and detrital) could be distinguished based on Zn and Pb contents and isotopes. Finally, this study not only highlighted the sources that released particulate Zn and Pb into the Orne River system, it also demonstrated that urban particles are well defined in terms of Zn and Pb isotopic signatures, and those isotopic signatures could be extrapolated to other case studies.
Collapse
Affiliation(s)
- Ayoub Khelili
- Centre de Recherches Pétrographiques Et Géochimiques, Université de Lorraine, CNRS, 54500, Vandœuvre-Lès-Nancy, France.
- Laboratoire Interdisciplinaire Des Environnements Continentaux, Université de Lorraine, CNRS, 54500, Vandœuvre-Lès-Nancy, France.
- LTSER FRANCE Zone Atelier Moselle, LTSER France, 54500, Vandœuvre-Lès-Nancy, France.
| | - Christophe Cloquet
- Centre de Recherches Pétrographiques Et Géochimiques, Université de Lorraine, CNRS, 54500, Vandœuvre-Lès-Nancy, France
| | - Shuofei Dong
- Centre de Recherches Pétrographiques Et Géochimiques, Université de Lorraine, CNRS, 54500, Vandœuvre-Lès-Nancy, France
| | - Anne Poszwa
- Laboratoire Interdisciplinaire Des Environnements Continentaux, Université de Lorraine, CNRS, 54500, Vandœuvre-Lès-Nancy, France
- LTSER FRANCE Zone Atelier Moselle, LTSER France, 54500, Vandœuvre-Lès-Nancy, France
| | - Laurence Mansuy-Huault
- Laboratoire Interdisciplinaire Des Environnements Continentaux, Université de Lorraine, CNRS, 54500, Vandœuvre-Lès-Nancy, France
- LTSER FRANCE Zone Atelier Moselle, LTSER France, 54500, Vandœuvre-Lès-Nancy, France
| | - Victor Muel
- Laboratoire Interdisciplinaire Des Environnements Continentaux, Université de Lorraine, CNRS, 54500, Vandœuvre-Lès-Nancy, France
| | - Renaud Gley
- Laboratoire Interdisciplinaire Des Environnements Continentaux, Université de Lorraine, CNRS, 54500, Vandœuvre-Lès-Nancy, France
- LTSER FRANCE Zone Atelier Moselle, LTSER France, 54500, Vandœuvre-Lès-Nancy, France
| | - Christophe Gauthier
- Laboratoire Interdisciplinaire Des Environnements Continentaux, Université de Lorraine, CNRS, 54500, Vandœuvre-Lès-Nancy, France
- LTSER FRANCE Zone Atelier Moselle, LTSER France, 54500, Vandœuvre-Lès-Nancy, France
| | - Fabrice Fraysse
- Laboratoire Interdisciplinaire Des Environnements Continentaux, Université de Lorraine, CNRS, 54500, Vandœuvre-Lès-Nancy, France
- LTSER FRANCE Zone Atelier Moselle, LTSER France, 54500, Vandœuvre-Lès-Nancy, France
| | - Emmanuelle Montargès-Pelletier
- Laboratoire Interdisciplinaire Des Environnements Continentaux, Université de Lorraine, CNRS, 54500, Vandœuvre-Lès-Nancy, France
- LTSER FRANCE Zone Atelier Moselle, LTSER France, 54500, Vandœuvre-Lès-Nancy, France
| |
Collapse
|
3
|
Liu X, Huang Y, Guan H, Wiggenhauser M, Caggìa V, Schlaeppi K, Mestrot A, Bigalke M. Soil (microbial) disturbance affect the zinc isotope biogeochemistry but has little effect on plant zinc uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162490. [PMID: 36871705 DOI: 10.1016/j.scitotenv.2023.162490] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Zinc (Zn) is an important micronutrient but can be toxic at elevated concentrations. We conducted an experiment to test the effect of plant growth and soil microbial disturbance on Zn in soil and plants. Pots were prepared with and without maize and in an undisturbed soil, a soil that was disturbed by X-ray sterilization and a soil that was sterilized but reconditioned with the original microbiome. The Zn concentration and isotope fractionation between the soil and the soil pore water increased with time, which is probably due to physical disturbance and fertilization. The presence of maize increased the Zn concentration and isotope fractionation in pore water. This was likely related to the uptake of light isotopes by plants and root exudates that solubilized heavy Zn from the soil. The sterilization disturbance increased the concentration of Zn in the pore water, because of abiotic and biotic changes. Despite a threefold increase in Zn concentration and changes in the Zn isotope composition in the pore water, the Zn content and isotope fractionation in the plant did not change. These results have implications for Zn mobility and uptake in crop plants and are relevant in terms of Zn nutrition.
Collapse
Affiliation(s)
- Xiaowen Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Science, Chengdu University of Technology, Chengdu 610059, China; Institute of Geography, University of Bern, Hallerstrasse 12, CH-3012 Bern, Switzerland; Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Science, Chengdu University of Technology, Chengdu 610059, China.
| | - Hang Guan
- Institute of Geography, University of Bern, Hallerstrasse 12, CH-3012 Bern, Switzerland
| | - Matthias Wiggenhauser
- Institute of Agricultural Sciences, Group of Plant Nutrition, ETH Zürich, Switzerland
| | - Veronica Caggìa
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Klaus Schlaeppi
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland; Department of Environmental Sciences, Faculty of Science, University of Basel, 4056 Basel, Switzerland
| | - Adrien Mestrot
- Institute of Geography, University of Bern, Hallerstrasse 12, CH-3012 Bern, Switzerland
| | - Moritz Bigalke
- Institute of Geography, University of Bern, Hallerstrasse 12, CH-3012 Bern, Switzerland; Institute of Applied Geosciences, Technical University of Darmstadt, Schnittspahnstrasse 9, 64287 Darmstadt, Germany.
| |
Collapse
|
4
|
Yan X, Li W, Zhu C, Peacock CL, Liu Y, Li H, Zhang J, Hong M, Liu F, Yin H. Zinc Stable Isotope Fractionation Mechanisms during Adsorption on and Substitution in Iron (Hydr)oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6636-6646. [PMID: 37042830 DOI: 10.1021/acs.est.2c08028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The Zn isotope fingerprint is widely used as a proxy of various environmental geochemical processes, so it is crucial to determine which are the mechanisms responsible for isotopic fractionation. Iron (Fe) (hydr)oxides greatly control the cycling and fate and thus isotope fractionation factors of Zn in terrestrial environments. Here, Zn isotope fractionation and related mechanisms during adsorption on and substitution in three FeOOH polymorphs are explored. Results demonstrate that heavy Zn isotopes are preferentially enriched onto solids, with almost similar isotopic offsets (Δ66/64Znsolid-solution = 0.25-0.36‰) for goethite, lepidocrocite, and feroxyhyte. This is consistent with the same average Zn-O bond lengths for adsorbed Zn on these solids as revealed by Zn K-edge X-ray absorption fine structure spectroscopy. In contrast, at an initial Zn/Fe molar ratio of 0.02, incorporation of Zn into goethite and lepidocrocite by substituting for lattice Fe preferentially sequesters light Zn isotopes with Δ66/64Znsubstituted-stock solution of -1.52 ± 0.09‰ and -1.18 ± 0.15‰, while Zn-substituted feroxyhyte (0.06 ± 0.11‰) indicates almost no isotope fractionation. This is closely related to the different crystal nucleation and growth rates during the Zn-doped FeOOH formation processes. These results provide direct experimental evidence of incorporation of isotopically light Zn into Fe (hydr)oxides and improve our understanding of Zn isotope fractionation mechanisms during mineral-solution interface processes.
Collapse
Affiliation(s)
- Xinran Yan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Li
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chuanwei Zhu
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550002, China
| | | | - Yizhang Liu
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550002, China
| | - Hui Li
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China
| | - Mei Hong
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Fan Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Barati E, Moore RET, Ullah I, Kreissig K, Coles BJ, Dunwell JM, Rehkämper M. An investigation of zinc isotope fractionation in cacao (Theobroma cacao L.) and comparison of zinc and cadmium isotope compositions in hydroponic plant systems under high cadmium stress. Sci Rep 2023; 13:4682. [PMID: 36949227 PMCID: PMC10033898 DOI: 10.1038/s41598-023-30899-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/03/2023] [Indexed: 03/24/2023] Open
Abstract
This study aims to establish whether zinc (Zn) and cadmium (Cd) share similar physiological mechanisms for uptake and translocation in cacao plants (Theobroma cacao L.). Multiple-collector ICP-MS was used to determine the Zn stable isotope compositions in the roots, stems and leaves of 19 diverse cacao genotypes grown in hydroponics with 20 µmol L-1 CdCl2. Additional plants of one genotype were grown in hydroponic solutions containing lower Cd concentrations (0 and 5 µmol L-1 added CdCl2). Regardless of the Cd concentration used in the exposures, the Zn stable isotope compositions show the same systematic patterns in plant organs, with δ66Znroot > δ66Znstem > δ66Znleaf (δ66Zn denotes relative differences in 66Zn/64Zn ratios in parts per thousand). The mean Zn stable isotope fractionation between the plants and the hydroponic solutions was ε66Znuptake = -1.15 ± 0.36‰ (2SD), indicating preferential uptake of isotopically light Zn by plants from the hydroponic solution. The mean stable isotope fractionation factor associated with translocation of Zn from roots to shoots, ε66Znseq-mob = + 0.52 ± 0.36‰ (2SD), shows that isotopically heavy Zn is preferentially sequestered in the cacao roots, whilst isotopically light Zn is mobilised to the leaves. A comparison with the Cd stable isotope compositions of the same plants shows that both isotopically light Zn and Cd are preferentially taken up by cacao plants. In contrast to Zn, however, the cacao roots retain isotopically light Cd and transfer isotopically heavy Cd to the leaves.
Collapse
Affiliation(s)
- Elnaz Barati
- Department of Earth Science and Engineering, Imperial College London, London, UK.
| | - Rebekah E T Moore
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Ihsan Ullah
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Katharina Kreissig
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Barry J Coles
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Jim M Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Mark Rehkämper
- Department of Earth Science and Engineering, Imperial College London, London, UK
| |
Collapse
|
6
|
Wang J, Man Y, Yin R, Feng X. Isotopic and Spectroscopic Investigation of Mercury Accumulation in Houttuynia cordata Colonizing Historically Contaminated Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7997-8007. [PMID: 35618674 DOI: 10.1021/acs.est.2c00909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Houttuynia cordata Thunb (H. cordata) is a native vegetable colonizing mercury (Hg) mining sites in the southwest of China; it can accumulate high Hg concentrations in the rhizomes and roots (edible sections), and thus consumption of H. cordata represents an important Hg exposure source to human. Here, we studied the spatial distribution, chemical speciation, and stable isotope compositions of Hg in the soil-H. cordata system at the Wuchuan Hg mining region in China, aiming to provide essential knowledge for assessing Hg risks and managing the transfer of Hg from soils to plants and agricultural systems. Mercury was mainly compartmentalized in the outlayer (periderm) of the underground tissues, with little Hg being translocated to the vascular bundle of the stem. Mercury presented as Hg-thiolates (94% ± 8%), with minor fractional amount of nanoparticulate β-HgS (β-HgSNP, 15% ± 4%), in the roots and rhizomes. Analysis of Hg stable isotope ratios showed that cysteine-extractable soil Hg pool (δ202Hgcys), root and rhizome Hg (δ202Hgroot, δ202Hgrhizome) were isotopically lighter than Hg in the bulk soils. A significant positive correlation between δ202Hgcys and δ202Hgroot was observed, suggesting that cysteine-extractable soil Hg pool was an important Hg source to H. cordata. The slightly positive Δ199Hg value in the plant (Δ199Hgroot = 0.07 ± 0.07‰, 2SD, n = 21; Δ199Hgrhizome = 0.06 ± 0.06‰, 2SD, n = 22) indicated that minor Hg was sourced from the surface water. Our results are important to assess the risks of Hg in H. cordata, and to develop sustainable methods to manage the transfer of Hg from soils to agricultural systems.
Collapse
Affiliation(s)
- Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, China
| | - Yi Man
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
| |
Collapse
|
7
|
Wiggenhauser M, Moore RET, Wang P, Bienert GP, Laursen KH, Blotevogel S. Stable Isotope Fractionation of Metals and Metalloids in Plants: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:840941. [PMID: 35519812 PMCID: PMC9063737 DOI: 10.3389/fpls.2022.840941] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
This work critically reviews stable isotope fractionation of essential (B, Mg, K, Ca, Fe, Ni, Cu, Zn, Mo), beneficial (Si), and non-essential (Cd, Tl) metals and metalloids in plants. The review (i) provides basic principles and methodologies for non-traditional isotope analyses, (ii) compiles isotope fractionation for uptake and translocation for each element and connects them to physiological processes, and (iii) interlinks knowledge from different elements to identify common and contrasting drivers of isotope fractionation. Different biological and physico-chemical processes drive isotope fractionation in plants. During uptake, Ca and Mg fractionate through root apoplast adsorption, Si through diffusion during membrane passage, Fe and Cu through reduction prior to membrane transport in strategy I plants, and Zn, Cu, and Cd through membrane transport. During translocation and utilization, isotopes fractionate through precipitation into insoluble forms, such as phytoliths (Si) or oxalate (Ca), structural binding to cell walls (Ca), and membrane transport and binding to soluble organic ligands (Zn, Cd). These processes can lead to similar (Cu, Fe) and opposing (Ca vs. Mg, Zn vs. Cd) isotope fractionation patterns of chemically similar elements in plants. Isotope fractionation in plants is influenced by biotic factors, such as phenological stages and plant genetics, as well as abiotic factors. Different nutrient supply induced shifts in isotope fractionation patterns for Mg, Cu, and Zn, suggesting that isotope process tracing can be used as a tool to detect and quantify different uptake pathways in response to abiotic stresses. However, the interpretation of isotope fractionation in plants is challenging because many isotope fractionation factors associated with specific processes are unknown and experiments are often exploratory. To overcome these limitations, fundamental geochemical research should expand the database of isotope fractionation factors and disentangle kinetic and equilibrium fractionation. In addition, plant growth studies should further shift toward hypothesis-driven experiments, for example, by integrating contrasting nutrient supplies, using established model plants, genetic approaches, and by combining isotope analyses with complementary speciation techniques. To fully exploit the potential of isotope process tracing in plants, the interdisciplinary expertise of plant and isotope geochemical scientists is required.
Collapse
Affiliation(s)
- Matthias Wiggenhauser
- Group of Plant Nutrition, Department of Environmental System Science, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Rebekah E. T. Moore
- MAGIC Group, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Peng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Gerd Patrick Bienert
- Crop Physiology, Molecular Life Sciences, Technical University of Munich, Freising, Germany
| | - Kristian Holst Laursen
- Plant Nutrients and Food Quality Research Group, Plant and Soil Science Section and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Simon Blotevogel
- Laboratoire Matériaux et Durabilité des Constructions (LMDC), UPS/INSA, Université Paul Sabatier - Toulouse III, Toulouse, France
| |
Collapse
|
8
|
Kińska K, Cruzado-Tafur E, Parailloux M, Torró L, Lobinski R, Szpunar J. Speciation of metals in indigenous plants growing in post-mining areas: Dihydroxynicotianamine identified as the most abundant Cu and Zn ligand in Hypericum laricifolium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151090. [PMID: 34688754 DOI: 10.1016/j.scitotenv.2021.151090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Ag, As, Cu, Pb and Zn were found to be the principal metallic contaminants of a post-mining area of Peru (Hualgayoc, Cajamarca). Study of metal distribution amongst roots, stems, and leaves of four indigenous hypertolerant plant species, Arenaria digyna, Puya sp., Hypericum laricifolium, Nicotiana thyrsiflora indicated significant translocation of Zn (0.6 < TF ≤ 10.0) and Cu (0.4 < TF ≤ 6.5) into aerial plant organs and substantial water-extractable fraction (20-60%) of these metals, except for A. digyna (root and stems). A study of the metal speciation by ultrahigh-performance size-exclusion (fast-SEC) and hydrophilic ion interaction (HILIC) liquid chromatography with dual ICP (inductively coupled plasma) and electrospray (ESI) Orbitrap MS detection revealed the presence of nicotianamine and deoxymugineic acid copper and zinc complexes in roots, stem and leaves of N. thyrsiflora and Puya sp., and nicotianamine alone in A. digyna. A previously unreported compound, dihydroxy-nicotianamine was identified as the most abundant Cu and Zn ligand in H. laricifolium. The presence of arsenobetaine and an arsenosugar was confirmed by ESI MS. Ag and Pb were hardly translocated to leaves and were found as high molecular species; one of the Pb-containing species co-eluted in fast-SEC-ICP MS with rhamnogalacturonan-II-Pb complex commonly found in in the walls of plants.
Collapse
Affiliation(s)
- Katarzyna Kińska
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France.
| | - Edith Cruzado-Tafur
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France; Geological Engineering Program, Faculty of Sciences and Engineering, Pontifical Catholic University of Peru (PUCP), Av. Universitaria 180, San Miguel, Lima 15088, Peru
| | - Maroussia Parailloux
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France
| | - Lisard Torró
- Geological Engineering Program, Faculty of Sciences and Engineering, Pontifical Catholic University of Peru (PUCP), Av. Universitaria 180, San Miguel, Lima 15088, Peru
| | - Ryszard Lobinski
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France; Department of Analytical Chemistry, Warsaw Technical University, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Joanna Szpunar
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France
| |
Collapse
|
9
|
Zhong S, Li X, Li F, Huang Y, Liu T, Yin H, Qiao J, Chen G, Huang F. Cadmium uptake and transport processes in rice revealed by stable isotope fractionation and Cd-related gene expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150633. [PMID: 34592274 DOI: 10.1016/j.scitotenv.2021.150633] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Multiple processes are involved in Cd transfer in rice plants, including root uptake, xylem loading, and immobilization. These processes can be mediated by membrane transporters and can alter Cd speciation by binding Cd to different organic ligands. However, it remains unclear which processes control Cd transport in rice in response to different watering conditions in soil. Herein, Cd isotope fractionation and Cd-related gene expression were employed to investigate the key regulatory mechanisms during uptake, root-to-shoot, and stem-to-leaf transport of Cd in rice grown in pot experiments with Cd-contaminated soil under flooded and non-flooded conditions, respectively. The results showed that soil flooding decreased the Cd concentration in soil porewater and, thereby, Cd uptake and transport in rice. Cd isotopes fractionated negatively from soil porewater to the whole rice (flooded: ∆114/110Cdrice-porewater = -0.15‰, non-flooded: ∆114/110Cdrice-porewater = -0.39‰), suggesting that Cd transporters preferentially absorbed light Cd isotopes. The non-flooded treatment revealed an upregulated expression of OsNRAMP1 and OsNRAMP5 genes compared to the flooded treatment, which may partially contribute to its more pronounced porewater-to-rice fractionation. Cd isotopes fractionated positively from roots to shoots under flooded conditions (∆114/110Cdshoot-root = 0.19‰). However, a reverse direction of fractionation was observed under non-flooded conditions (∆114/110Cdshoot-root = -0.67‰), which was associated with the substantial upregulation of CAL1 in roots, facilitating xylem loading of Cd-CAL1 complexes with lighter isotopes. After being transported to the shoots, the majority of Cd were detained in stems (44%-55%), which were strongly enriched in lighter isotopes than in the leaves (∆114/110Cdleaf-stem = 0.77 to 1.01‰). Besides the Cd-CAL1 transported from the roots, the expression of OsPCS1 and OsHMA3 in the stems could also favor the enrichment of Cd-PCs with lighter isotopes, leaving heavier isotopes to be transported to the leaves. The higher expression levels of OsMT1e in older leaves than in younger leaves implied that Cd immobilization via binding to metallothioneins like OsMT1e may favor the enrichment of lighter isotopes in older leaves. The non-flooded treatment showed lighter Cd isotopes in younger leaves than the flooded treatment, suggesting that more Cd-CAL1 in the stems and Cd-PCs in the older leaves might be transported to the younger leaves under non-flooded conditions. Our results demonstrate that isotopically light Cd can be preferentially transported from roots to shoots when more Cd is absorbed by rice under non-flooded conditions, and isotope fractionation signature together with gene expression quantification has the potential to provide a better understanding of the key processes regulating Cd transfer in rice.
Collapse
Affiliation(s)
- Songxiong Zhong
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yingmei Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Haoming Yin
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Jiangtao Qiao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guojun Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fang Huang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Zhou J, Li Z, Zhang X, Yu H, Wu L, Huang F, Luo Y, Christie P. Zinc uptake and replenishment mechanisms during repeated phytoextraction using Sedum plumbizincicola revealed by stable isotope fractionation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151306. [PMID: 34743872 DOI: 10.1016/j.scitotenv.2021.151306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Improving phytoremediation techniques requires a thorough understanding of the mechanisms of plant uptake and the replenishment of the bioavailable pool of the target element, and this may be effectively explored using stable isotope methods. A repeated phytoextraction experiment over five successive crops of cadmium (Cd) and zinc (Zn) hyperaccumulator Sedum plumbizincicola X.H. Guo et S.B. Zhou ex L.H. Wu (Crassulaceae) was conducted using four agricultural soils differing in soil pH and clay content. The isotopic composition of total Zn and NH4OAc-extractable Zn in soils before phytoextraction and after the fifth crop were determined, together with Zn in shoot samples in the first crop. S. plumbizincicola preferentially took up light Zn isotopes from the NH4OAc-extractable pool (Δ66Znshoot-extract = -0.42 to -0.16‰), indicating the predominance of Zn low-affinity transport. However, after long-term phytoextraction NH4OAc-extractable Zn became isotopically lighter than prior to phytoextraction in three of the soils (Δ66Znextract: P5-P0 = -0.39 to -0.10‰). This was resulted from the equilibrium replenishment of Zn bound to iron (Fe) and manganese (Mn) oxides based on Zn isotopic and chemical speciation analysis. Zinc showed opposite fractionation patterns to Cd in the same plant-soil system with heavy Cd isotope enrichment in S. plumbizincicola (Δ114/110Cdshoot-extract = 0.02-0.17‰) and in the NH4OAc-extractable pool after repeated phytoextraction (Δ114/110Cdextract: P5-P0 = 0.07-0.18‰). This indicates different mechanisms of membrane transport (high-affinity transport of Cd) and supplementation of the bioavailable pool in soil (Cd supplied mainly through complexation with root-derived organic ligands) of the two metals. The combination of chemical speciation and stable Zn isotope ratios in the plant and the bioavailable soil pool reveal that the Zn pool related to Fe and Mn oxides became increasingly bioavailable with increasing crop generations. Capsule: Stable isotope analysis indicates that soil Fe- and Mn-oxide bound Zn replenishment boosted Zn uptake by the hyperaccumulator Sedum plumbizincicola during long-term remediation.
Collapse
Affiliation(s)
- Jiawen Zhou
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhu Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xingchao Zhang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Huimin Yu
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Fang Huang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peter Christie
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
11
|
Zhong S, Li X, Li F, Liu T, Huang F, Yin H, Chen G, Cui J. Water Management Alters Cadmium Isotope Fractionation between Shoots and Nodes/Leaves in a Soil-Rice System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12902-12913. [PMID: 34520188 DOI: 10.1021/acs.est.0c04713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The drainage of rice soils increases Cd solubility and results in high Cd concentrations in rice grains. However, plant Cd uptake is limited by sorption to iron plaques, and Cd redistribution in the plant is regulated by the nodes. To better understand the interplay of Cd uptake and redistribution in rice under drained and flooded conditions, we determined stable Cd isotope ratios and the expression of genes coding transporters that can transport Cd into the plant cells in a pot experiment. In soil, both water management practices showed similar patterns of isotope variation: the soil solution was enriched in heavy isotopes, and the root Fe plaque was enriched in light isotopes. In rice, the leaves were heavier (Δ114/110Cdleaf-shoot = 0.17 to 0.96‰) and the nodes were moderately lighter (Δ114/110Cdnode-shoot = -0.26 to 0.00‰) relative to the shoots under flooded conditions, indicating preferential retention of light isotopes in nodes and export of heavy isotopes toward leaves. This is generally reversed under drained conditions (Δ114/110Cdleaf-shoot = -0.25 to -0.04‰, Δ114/110Cdnode-shoot = 0.10 to 0.19‰). The drained treatment resulted in significantly higher expression of OsHMA2 and OsLCT1 (phloem loading) but lower expression of OsHMA3 (vacuolar sequestration) in nodes and flag leaves relative to the flooded treatment. It appeared that OsHMA2 and OsLCT1 might preferentially transport isotopically heavier Cd, and the excess Cd was purposefully retranslocated via the phloem under drained conditions when the vacuoles could not retain more Cd. Cd in seeds was isotopically heavier than that in stems under both water management practices, indicating that heavy isotopes were preferentially transferred toward seeds via the phloem, leaving light isotopes retained in stems. These findings demonstrate that the Fe plaque preferentially adsorbs and occludes light Cd isotopes on the root surface, and distinct water management practices alter the gene expression of key transporters in the nodes, which corresponds to a change in isotope fractionation between shoots and nodes/leaves.
Collapse
Affiliation(s)
- Songxiong Zhong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fang Huang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Haoming Yin
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Guojun Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jianghu Cui
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
12
|
van der Ent A, Nkrumah PN, Aarts MGM, Baker AJM, Degryse F, Wawryk C, Kirby JK. Isotopic signatures reveal zinc cycling in the natural habitat of hyperaccumulator Dichapetalum gelonioides subspecies from Malaysian Borneo. BMC PLANT BIOLOGY 2021; 21:437. [PMID: 34579652 PMCID: PMC8474765 DOI: 10.1186/s12870-021-03190-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Some subspecies of Dichapetalum gelonioides are the only tropical woody zinc (Zn)-hyperaccumulator plants described so far and the first Zn hyperaccumulators identified to occur exclusively on non-Zn enriched 'normal' soils. The aim of this study was to investigate Zn cycling in the parent rock-soil-plant interface in the native habitats of hyperaccumulating Dichapetalum gelonioides subspecies (subsp. pilosum and subsp. sumatranum). We measured the Zn isotope ratios (δ66Zn) of Dichapetalum plant material, and associated soil and parent rock materials collected from Sabah (Malaysian Borneo). RESULTS We found enrichment in heavy Zn isotopes in the topsoil (δ66Zn 0.13 ‰) relative to deep soil (δ66Zn -0.15 ‰) and bedrock (δ66Zn -0.90 ‰). This finding suggests that both weathering and organic matter influenced the Zn isotope pattern in the soil-plant system, with leaf litter cycling contributing significantly to enriched heavier Zn in topsoil. Within the plant, the roots were enriched in heavy Zn isotopes (δ66Zn ~ 0.60 ‰) compared to mature leaves (δ66Zn ~ 0.30 ‰), which suggests highly expressed membrane transporters in these Dichapetalum subspecies preferentially transporting lighter Zn isotopes during root-to-shoot translocation. The shoots, mature leaves and phloem tissues were enriched in heavy Zn isotopes (δ66Zn 0.34-0.70 ‰) relative to young leaves (δ66Zn 0.25 ‰). Thisindicates that phloem sources are enriched in heavy Zn isotopes relative to phloem sinks, likely because of apoplastic retention and compartmentalization in the Dichapetalum subspecies. CONCLUSIONS The findings of this study reveal Zn cycling in the rock-soil-plant continuum within the natural habitat of Zn hyperaccumulating subspecies of Dichapetalum gelonioides from Malaysian Borneo. This study broadens our understanding of the role of a tropical woody Zn hyperaccumulator plant in local Zn cycling, and highlights the important role of leaf litter recycling in the topsoil Zn budget. Within the plant, phloem plays key role in Zn accumulation and redistribution during growth and development. This study provides an improved understanding of the fate and behaviour of Zn in hyperaccumulator soil-plant systems, and these insights may be applied in the biofortification of crops with Zn.
Collapse
Affiliation(s)
- Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Queensland, 4072, St Lucia, Australia
- Laboratoire Sols et Environnement, Université de Lorraine-INRAE, UMR 1120, Nancy, France
| | - Philip Nti Nkrumah
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Queensland, 4072, St Lucia, Australia.
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
| | - Alan J M Baker
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Queensland, 4072, St Lucia, Australia
- Laboratoire Sols et Environnement, Université de Lorraine-INRAE, UMR 1120, Nancy, France
- School of BioSciences, The University of Melbourne, Victoria, Melbourne, Australia
| | - Fien Degryse
- Soil Sciences, University of Adelaide, South Australia, Adelaide, Australia
| | - Chris Wawryk
- Industry Environments Program, CSIRO Land and Water, Environmental Assessment and Technologies, Adelaide, South Australia, Australia
| | - Jason K Kirby
- Industry Environments Program, CSIRO Land and Water, Environmental Assessment and Technologies, Adelaide, South Australia, Australia
| |
Collapse
|
13
|
Wiggenhauser M, Aucour AM, Telouk P, Blommaert H, Sarret G. Changes of Cadmium Storage Forms and Isotope Ratios in Rice During Grain Filling. FRONTIERS IN PLANT SCIENCE 2021; 12:645150. [PMID: 33995443 PMCID: PMC8116553 DOI: 10.3389/fpls.2021.645150] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/08/2021] [Indexed: 05/10/2023]
Abstract
Rice poses a major source of the toxic contaminant cadmium (Cd) for humans. Here, we elucidated the role of Cd storage forms (i.e., the chemical Cd speciation) on the dynamics of Cd within rice. In a pot trial, we grew rice on a Cd-contaminated soil in upland conditions and sampled roots and shoots parts at flowering and maturity. Cd concentrations, isotope ratios, Cd speciation (X-ray absorption spectroscopy), and micronutrient concentrations were analyzed. During grain filling, Cd and preferentially light Cd isotopes were strongly retained in roots where the Cd storage form did not change (Cd bound to thiols, Cd-S = 100%). In the same period, no net change of Cd mass occurred in roots and shoots, and the shoots became enriched in heavy isotopes (Δ114/110Cd maturity-flowering = 0.14 ± 0.04‰). These results are consistent with a sequestration of Cd in root vacuoles that includes strong binding of Cd to thiol containing ligands that favor light isotopes, with a small fraction of Cd strongly enriched in heavy isotopes being transferred to shoots during grain filling. The Cd speciation in the shoots changed from predominantly Cd-S (72%) to Cd bound to O ligands (Cd-O, 80%) during grain filling. Cd-O may represent Cd binding to organic acids in vacuoles and/or binding to cell walls in the apoplast. Despite this change of ligands, which was attributed to plant senescence, Cd was largely immobile in the shoots since only 0.77% of Cd in the shoots were transferred into the grains. Thus, both storage forms (Cd-S and Cd-O) contributed to the retention of Cd in the straw. Cd was mainly bound to S in nodes I and grains (Cd-S > 84%), and these organs were strongly enriched in heavy isotopes compared to straw (Δ114/110Cd grains/nodes- straw = 0.66-0.72‰) and flag leaves (Δ114/110Cd grains/nodes-flag leaves = 0.49-0.52‰). Hence, xylem to phloem transfer in the node favors heavy isotopes, and the Cd-S form may persist during the transfer of Cd from node to grain. This study highlights the importance of Cd storage forms during its journey to grain and potentially into the food chain.
Collapse
Affiliation(s)
- Matthias Wiggenhauser
- Institute of Agricultural Sciences, Department of Environmental Systems Science, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
- ISTerre, Université Grenoble Alpes, Université Savoie Mont Blanc, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux, Grenoble, France
| | - Anne-Marie Aucour
- Laboratoire de Geologie de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Université de Lyon, Centre National de la Recherche Scientifique, Lyon, France
| | - Philippe Telouk
- Laboratoire de Geologie de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Université de Lyon, Centre National de la Recherche Scientifique, Lyon, France
| | - Hester Blommaert
- ISTerre, Université Grenoble Alpes, Université Savoie Mont Blanc, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux, Grenoble, France
| | - Géraldine Sarret
- ISTerre, Université Grenoble Alpes, Université Savoie Mont Blanc, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux, Grenoble, France
| |
Collapse
|
14
|
Tonhá MS, Garnier J, Araújo DF, Cunha BCA, Machado W, Dantas E, Araújo R, Kutter VT, Bonnet MP, Seyler P. Behavior of metallurgical zinc contamination in coastal environments: A survey of Zn from electroplating wastes and partitioning in sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140610. [PMID: 32659555 DOI: 10.1016/j.scitotenv.2020.140610] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
The contamination of coastal environments by metallurgical wastes involves multiple biogeochemical processes; accordingly, understanding metal behavior and risk evaluation of contaminated areas, such as Sepetiba Bay (Rio de Janeiro, Brazil), remains challenging. This study coupled Zn isotopic analyses with sequential extractions (BCR) to investigate the mechanisms of Zn transfer between legacy electroplating waste and the main environments in Sepetiba Bay. This metallurgical waste showed a light bulk isotopic signature (δ66/64ZnbulkJMC = +0.30 ± 0.01‰, 2 s, n = 3) that was not distinct from the lithogenic geochemical baseline, but was different from signature of mangrove sediment considered as anthropogenic end member (δ66/64ZnJMC = +0.86 ± 0.15‰) in a previous isotopic study in this area. Zn isotopic compositions of sediment samples (ranging from +0.20 to +0.98‰) throughout the bay fit a mixing model involving multiple sources, consistent with previous studies. In the metallurgic zone, the exchangeable/carbonate fraction (ZnF1) exhibited high Zn concentrations (ZnF1 = 9840 μg g-1) and a heavy isotopic composition (δ66/64ZnF1JMC = +1.10 ± 0.01‰). This finding showed that, in some cases, the bulk isotopic signature of waste is not the most relevant criterion for evaluating trace metal dispersion in the environment. Indeed, based on the BCR, it was observed that part of the anthropogenic metallurgical Zn was redistributed from the exchangeable/carbonate fraction in the waste to the surrounding mangrove sediment. Then, this contaminated sediment with heavy δ66/64Zn values was exported to other coastal environments. In Sepetiba Bay, contaminated sediments revealed a large concentration of ZnF1 fraction (up to 400 μg g-1) with a heavy Zn isotopic signature. This signature also matched the Zn isotopic signature of oysters in Sepetiba Bay reported by other studies; hence, measurement of the isotopic exchangeable/carbonate fraction has important implications for tracing the transfer of anthropogenic Zn to biota.
Collapse
Affiliation(s)
- Myller S Tonhá
- Universidade de Brasília, Instituto de Geociências, Campus Darcy Ribeiro, L2, Asa Norte, Brasília, Distrito Federal, Brazil
| | - Jeremie Garnier
- Universidade de Brasília, Instituto de Geociências, Campus Darcy Ribeiro, L2, Asa Norte, Brasília, Distrito Federal, Brazil; Laboratoire Mixte International "Observatoire des Changements Environnementaux" (LMI OCE), Institut de Recherche pour le Développement/University of Brasilia, Campus Darcy Ribeiro, Brasilia, Brazil.
| | - Daniel F Araújo
- Laboratoire de Biogéochimie des Contaminants Métalliques, Ifremer, Centre Atlantique, F44311 Nantes Cedex 3, France
| | - Bruno C A Cunha
- Institute of Geosciences, University of São Paulo, rua do Lago, 562, São Paulo 05508-080, Brazil
| | - Wilson Machado
- Universidade Federal Fluminense, Departamento de Geoquímica, Campus do Valonguinho, Niterói, Rio de Janeiro, Brazil
| | - Elton Dantas
- Universidade de Brasília, Instituto de Geociências, Campus Darcy Ribeiro, L2, Asa Norte, Brasília, Distrito Federal, Brazil
| | - Rafael Araújo
- Universidade de Brasília, Instituto de Geociências, Campus Darcy Ribeiro, L2, Asa Norte, Brasília, Distrito Federal, Brazil
| | - Vinicius T Kutter
- Programa de Pós Graduação em Geociências (Geoquímica), Universidade Federal Fluminense, Outeiro São João Batista s/n - Centro, Niterói, RJ 24020-141, Brazil
| | - Marie-Paule Bonnet
- Laboratoire Mixte International "Observatoire des Changements Environnementaux" (LMI OCE), Institut de Recherche pour le Développement/University of Brasilia, Campus Darcy Ribeiro, Brasilia, Brazil
| | - Patrick Seyler
- Laboratoire Mixte International "Observatoire des Changements Environnementaux" (LMI OCE), Institut de Recherche pour le Développement/University of Brasilia, Campus Darcy Ribeiro, Brasilia, Brazil; Unité Mixte de Recherche 5569 Hydrosciences Montpellier, Institut de Recherche pour le développement, Université de Montpellier, Montpellier, France
| |
Collapse
|
15
|
Lamboux A, Hassler A, Davechand P, Balter V. Absence of temperature effect on elution profiles on anionic and cationic ion-exchange resins from 4°C to 28°C. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8806. [PMID: 32285969 DOI: 10.1002/rcm.8806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE In labs devoted to the geochemistry of non-traditional isotopes, chemical elution is necessary to purify the element of interest. Elution is always performed in over-pressured and air-conditioned clean rooms. We took advantage of an air-conditioning failure in our lab during summer 2018 to study the effect of temperature on the characteristics of the elution profiles of ion-exchange resins. METHODS We performed the ion-exchange separation of copper, iron and zinc on macroporous anionic AG MP-1 resin and that of calcium on cationic AG 50W-X12 resin, at 28°C, prior to the measurement of their isotopic ratios by mass spectrometry. We further performed these experiments in a clean hood in a cold room at 4°C. The elution curves were processed on biological standards, i.e. bovine liver (SRM-1577c), fetal bovine serum (FBS), bone meal (SRM-1486) and the seawater IAPSO standard. RESULTS The elution profiles of major elements for each matrix, and those of copper, iron, zinc and calcium, were compared with those classically achieved at 20°C in air-conditioned conditions. The results show that the elution profiles preserve their characteristics whatever the temperature, suggesting that partitioning coefficients between resin and solution are thermo-independent in the range of temperature from 4°C to 28°C. CONCLUSIONS If generalized to other matrices, notably inorganic, and to other elements, notably the extreme case of the separation of Rare Earth Elements, the present results suggest that clean labs may not have to be air-conditioned. This would reduce installation and operating costs and have a positive effect on the environment, paving the way for the development of a "green geochemistry".
Collapse
Affiliation(s)
- Aline Lamboux
- Univ Lyon, ENSL, Univ Lyon 1, CNRS UMR 5276, LGL-TPE, F-69007 Lyon, France
| | - Auguste Hassler
- Univ Lyon, ENSL, Univ Lyon 1, CNRS UMR 5276, LGL-TPE, F-69007 Lyon, France
| | - Priyanka Davechand
- School of Geoscience, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, 2000, South Africa
| | - Vincent Balter
- Univ Lyon, ENSL, Univ Lyon 1, CNRS UMR 5276, LGL-TPE, F-69007 Lyon, France
| |
Collapse
|
16
|
Xia Y, Gao T, Liu Y, Wang Z, Liu C, Wu Q, Qi M, Lv Y, Li F. Zinc isotope revealing zinc's sources and transport processes in karst region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138191. [PMID: 32247133 DOI: 10.1016/j.scitotenv.2020.138191] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 05/16/2023]
Abstract
The heavy metal pollution, mainly caused by mining-related activities over extended period of time, is imposing a severe threat to environments and human health. Environmental systems, including rivers and paddy soils, have been widely established as one of the key sinks of potentially harmful metals. Aiming to understand contamination sources and pathways of Zn in karst area, we studied the Zn concentration and isotope composition of river waters, sediments, mine tailings, paddy soils, dust and three soil profiles with different levels of Zn-pollution around a Zn-mine, southwestern China. The distinct Zn isotope compositions among tailing (-0.42 ± 0.02‰), dust (-0.24 ± 0.02‰), and geogenic soil (-0.16 ± 0.03‰) allowed for separation of anthropogenic-Zn from native Zn. In the plot of δ66Zn value and 1/Zn, all samples can be explained by the mixing of three components: mining-input, agricultural input, and background. Evolution of these three components helps produce direct sources: dust and geogenic soil. Under this framework, the Zn pollution in paddy soil and sediment can be explained by mixing of mine-tailing, dust, and geogenic soil. Our study shows that the contamination of mine drainage is limited in the area due to the relatively high pH buffered by carbonate in karst area. While the dust contributes most of the anthropogenic Zn with an average value of 19.5%. The dominant pathway of anthropogenic Zn from dust to paddy soil or sediment is through the long-term wind dispersion of fine-grained material from the tailing and the physical transmission. Under the special hydrogeological conditions of karst, mining activities will increase the migration of heavy metals. The Fe-Al oxides control the migration of Zn in soil profile, but probably do not lead to significantly Zn isotopes fractionation. This further enhances the reliability of Zn isotopes as a "fingerprint" in karst area.
Collapse
Affiliation(s)
- Yafei Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ting Gao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuhui Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhengrong Wang
- Department of Earth & Atmospheric Sciences, City College of New York, CUNY, New York 10031, USA
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Sciences & Technology, Guangzhou 510650, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, PR China; Guangdong Academy of Sciences, Guangzhou 510650, PR China.
| | - Qiqi Wu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Sciences & Technology, Guangzhou 510650, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, PR China; Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Meng Qi
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yiwen Lv
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Sciences & Technology, Guangzhou 510650, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, PR China; Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Sciences & Technology, Guangzhou 510650, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, PR China; Guangdong Academy of Sciences, Guangzhou 510650, PR China
| |
Collapse
|
17
|
Cui JL, Zhao YP, Chan TS, Zhang LL, Tsang DCW, Li XD. Spatial distribution and molecular speciation of copper in indigenous plants from contaminated mine sites: Implication for phytostabilization. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:121208. [PMID: 31563672 DOI: 10.1016/j.jhazmat.2019.121208] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/20/2019] [Accepted: 09/10/2019] [Indexed: 05/10/2023]
Abstract
Contaminated mining sites require ecological restoration work, of which phytoremediation using appropriate plant species is an attractive option. Our present study is focused on one typical contaminated mine site with indigenous plant cover. The X-ray absorption near edge structure (XANES) analysis indicated that Cu (the major contaminant) was primarily associated with goethite (adsorbed fraction), with a small amount of Cu oxalate-like species (organic fraction) in mine affected soil. With growth of plant species like Miscanthus floridulus and Stenoloma chusanum, the Cu-oxalate like organic species in rhizosphere soil significantly increased, with corresponding decrease in Cu-goethite. In the root cross-section of Miscanthus floridulus, synchrotron-based micro-X-ray fluorescence (μ-XRF) microscopy and micro-XANES results indicated that most Cu was sequestered around the root surface/epidermis, primarily forming Cu alginate-like species as a Cu-tolerance mechanism. From the root epidermis to the cortex and vascular bundle, more Cu(I)-glutathione was observed, suggesting reductive detoxification ability of Cu(II) to Cu(I) during the transport of Cu in the root. The observation of Cu-histidine in root internal cell layers showed another Cu detoxification pathway based on coordinating amino ligands. Miscanthus floridulus showed ability to accumulate phosphorous and nitrogen nutrients in rhizosphere and may be an option for in situ phytostabilization of metals in contaminated mining area.
Collapse
Affiliation(s)
- Jin-Li Cui
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yan-Ping Zhao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu, 30076, Taiwan
| | - Li-Li Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201214, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Xiang-Dong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
18
|
Barraza F, Moore RET, Rehkämper M, Schreck E, Lefeuvre G, Kreissig K, Coles BJ, Maurice L. Cadmium isotope fractionation in the soil – cacao systems of Ecuador: a pilot field study. RSC Adv 2019; 9:34011-34022. [PMID: 35528875 PMCID: PMC9073709 DOI: 10.1039/c9ra05516a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/14/2019] [Indexed: 12/22/2022] Open
Abstract
The often high Cd concentrations of cacao beans are a serious concern for producers in Latin America due to the implementation of stricter Cd limits for cocoa products by the European Union in 2019. This is the first investigation to employ coupled Cd isotope and concentration measurements to study soil – cacao systems. Analyses were carried out for 29 samples of soils, soil amendments and cacao tree organs from organic farms in Ecuador that harvest three distinct cacao cultivars. The majority of soils from 0–80 cm depth have very similar δ114/110Cd of about −0.1‰ to 0‰. Two 0–5 cm topsoils, however, have high Cd concentrations coupled with heavy Cd isotope compositions of δ114/110Cd ≈ 0.2%, possibly indicating Cd additions from the tree litter used as organic fertilizer. Whilst cacao leaves, pods and beans are ubiquitously enriched in Cd relative to soils there are distinct Cd isotope signatures. The leaves and pods are isotopically heavier than the soils, with similar Δ114/110Cdleaf–soil values of 0.22 ± 0.07‰ to 0.41 ± 0.09‰. In contrast, the data reveal differences in Δ114/110Cdbean–leaf that may be linked to distinct cacao cultivars. In detail, Δ114/110Cdbean–leaf values of −0.34‰ to −0.40‰ were obtained for Nacional cacao from two farms, whilst CCN-51 hybrid cacao from a third farm showed no fractionation within error (−0.08 ± 0.13‰). As such, further work to investigate whether Cd isotopes are indeed useful for tracing sources of Cd enrichments in soils and to inform genetic efforts to reduce the Cd burden of cocoa is indicated. Cd isotope composition in cacao seems to be cultivar-specific whereas Cd in soil is probably due to tree litter recycling.![]()
Collapse
Affiliation(s)
- Fiorella Barraza
- Géosciences Environnement Toulouse (GET)
- Observatoire Midi-Pyrénées
- CNRS
- IRD
- Université de Toulouse
| | - Rebekah E. T. Moore
- Department of Earth Science & Engineering
- Imperial College London
- London SW7 2AZ
- UK
| | - Mark Rehkämper
- Department of Earth Science & Engineering
- Imperial College London
- London SW7 2AZ
- UK
| | - Eva Schreck
- Géosciences Environnement Toulouse (GET)
- Observatoire Midi-Pyrénées
- CNRS
- IRD
- Université de Toulouse
| | - Grégoire Lefeuvre
- Géosciences Environnement Toulouse (GET)
- Observatoire Midi-Pyrénées
- CNRS
- IRD
- Université de Toulouse
| | - Katharina Kreissig
- Department of Earth Science & Engineering
- Imperial College London
- London SW7 2AZ
- UK
| | - Barry J. Coles
- Department of Earth Science & Engineering
- Imperial College London
- London SW7 2AZ
- UK
| | - Laurence Maurice
- Géosciences Environnement Toulouse (GET)
- Observatoire Midi-Pyrénées
- CNRS
- IRD
- Université de Toulouse
| |
Collapse
|
19
|
Wiggenhauser M, Bigalke M, Imseng M, Keller A, Archer C, Wilcke W, Frossard E. Zinc isotope fractionation during grain filling of wheat and a comparison of zinc and cadmium isotope ratios in identical soil-plant systems. THE NEW PHYTOLOGIST 2018; 219:195-205. [PMID: 29696652 DOI: 10.1111/nph.15146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/02/2018] [Indexed: 05/15/2023]
Abstract
Remobilization of zinc (Zn) from shoot to grain contributes significantly to Zn grain concentrations and thereby to food quality. On the other hand, strong accumulation of cadmium (Cd) in grain is detrimental for food quality. Zinc concentrations and isotope ratios were measured in wheat shoots (Triticum aestivum) at different growth stages to elucidate Zn pathways and processes in the shoot during grain filling. Zinc mass significantly decreased while heavy Zn isotopes accumulated in straw during grain filling (Δ66 Znfull maturity-flowering = 0.21-0.31‰). Three quarters of the Zn mass in the shoot moved to the grains, which were enriched in light Zn isotopes relative to the straw (Δ66 Zngrain-straw -0.21 to -0.31‰). Light Zn isotopes accumulated in phloem sinks while heavy isotopes were retained in phloem sources likely because of apoplastic retention and compartmentalization. Unlike for Zn, an accumulation of heavy Cd isotopes in grains has previously been shown. The opposing isotope fractionation of Zn and Cd might be caused by distinct affinities of Zn and Cd to oxygen, nitrogen, and sulfur ligands. Thus, combined Zn and Cd isotope analysis provides a novel tool to study biochemical processes that separate these elements in plants.
Collapse
Affiliation(s)
- Matthias Wiggenhauser
- Institute of Agricultural Sciences, ETH Zürich, Eschikon 33, CH-8315, Lindau, Switzerland
| | - Moritz Bigalke
- Institute of Geography, University of Bern, Hallerstr. 12, CH-3012, Bern, Switzerland
| | - Martin Imseng
- Institute of Geography, University of Bern, Hallerstr. 12, CH-3012, Bern, Switzerland
| | - Armin Keller
- Swiss Soil Monitoring Network (NABO), Agroscope, Reckenholzstrasse 191, CH-8046, Zürich 11, Switzerland
| | - Corey Archer
- Department of Earth Science, ETH Zurich, Clausiusstrasse 25, CH-8092, Zürich, Switzerland
| | - Wolfgang Wilcke
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT), PO Box 6980, D-76049, Karlsruhe, Germany
| | - Emmanuel Frossard
- Institute of Agricultural Sciences, ETH Zürich, Eschikon 33, CH-8315, Lindau, Switzerland
| |
Collapse
|