1
|
Wu Y, Zeng X, Gao S, Liang Y, Liang Q, Yu Z. Characterizing organophosphate esters and chlorinated paraffins in surface soils affected by diverse e-waste disassembling process in South China: Occurrence, distinct emission, and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124843. [PMID: 39209053 DOI: 10.1016/j.envpol.2024.124843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
E-waste recycling activities are a crucial emission source of organic pollutants, posing potential risks to the surrounding environment and human health. To understand the potential impact related to diverse e-waste dismantling activities, we investigated two categories of popular flame retardants (i.e., organophosphate esters (OPEs) and chlorinated paraffins (CPs) and their resultant possible ecological risk in 53 surface soil samples from Qingyuan, a well-known e-waste recycling region in South China. Varied concentrations of ΣOPEs (20.5-8720 ng/g) and ΣCPs (920-16800 ng/g) were observed at diverse dismantling sites, while relatively low levels of ΣOPEs (6.13-1240 ng/g) and ΣCPs (14.8-2870 ng/g) were found in surrounding soils. These results indicated that primitive e-waste dismantling processes were the primary emission source of OPEs and CPs in the studied area, with e-waste dumping and manual dismantling being the most important emission sources for OPEs and CPs. More importantly, CPs could be degraded/transformed into more toxic intermediates via dechlorination and decarbonization during the burning of e-waste. Furthermore, our results indicated the potential ecological risks posed by OPEs and CPs related to e-waste recycling.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; National Engineering Research Center of Gas Hydrate Exploration and Development, Guangzhou Marine Geological Survey, Guangzhou, 511458, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Shutao Gao
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yi Liang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Qianyong Liang
- National Engineering Research Center of Gas Hydrate Exploration and Development, Guangzhou Marine Geological Survey, Guangzhou, 511458, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
2
|
Tue NM, Kimura E, Maekawa F, Goto A, Uramaru N, Kunisue T, Suzuki G. Uptake, Elimination and Metabolism of Brominated Dibenzofurans in Mice. TOXICS 2024; 12:656. [PMID: 39330584 PMCID: PMC11435657 DOI: 10.3390/toxics12090656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Polybrominated dibenzofurans (PBDFs) are major brominated dioxins in the environment, but information on their bioaccumulation potential and toxicokinetics is limited. This study conducted oral exposure experiments with C57BL/6J mice to investigate the uptake ratios, distribution in the liver, plasma and brain, metabolism, and elimination kinetics of four bromine/chlorine-substituted dibenzofurans (TrBDF: 2,3,8-tribromo, TeBDF: 2,3,7,8-tetrabromo, PeBDF: 1,2,3,7,8-pentabromo, TrBCDF: 2,3,7-tribromo-8-chloro) in comparison with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The hepatic uptake ratios of 2,3,7,8-substituted dibenzofurans were lower than that of TCDD (up to 84% of the administered doses) and decreased with the number of Br substitutions (42%, 33%, and 29% for TrBCDF, TeBDF, and PeBDF, respectively). The brain uptake ratios of these dibenzofurans were less than 0.05%, and the plasma-to-brain transfer ratio also decreased with the Br number. All 2,3,7,8-substituted compounds were eliminated from the liver following first-order kinetics, with half-times in the order of TrBCDF (5.6 days) < TeBDF (8.8 days) ≈ TCDD (8.7 days) < PeBDF (13 days). The non-2,3,7,8-substituted TrBDF was poorly retained in the liver (<0.01% of the dose at 1 day) and rapidly eliminated following two-phase kinetics. All dibenzofurans were metabolised into monohydroxylated products in the liver, but the contribution of this metabolic pathway to hepatic elimination was only significant for TrBDF. As the toxic effects of dioxin-like compounds are influenced by their biological persistence, the slow elimination of TrBCDF, TeBDF, and PeBDF observed in this study suggests that exposure risk of brominated dibenzofurans may be underestimated using the toxic equivalency factors of the less persistent chlorinated analogues.
Collapse
Affiliation(s)
- Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan; (A.G.)
| | - Eiki Kimura
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba 305-8506, Japan; (E.K.)
- Department of Environmental Health, School of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji 910-1193, Japan
| | - Fumihiko Maekawa
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba 305-8506, Japan; (E.K.)
| | - Akitoshi Goto
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan; (A.G.)
| | - Naoto Uramaru
- Division of Pharmaceutical Health Biosciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi, Saitama 362-0806, Japan
- School of Health and Social Services, Center for University-wide Education, Saitama Prefectural University, 820 San-Nomiya, Koshigaya, Saitama 343-8540, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan; (A.G.)
| | - Go Suzuki
- Material Cycles Division, NIES, 16-2 Onogawa, Tsukuba 305-8506, Japan;
| |
Collapse
|
3
|
Zhang C, Geng X, Zhu L, Xia D, Li X, Sun Y. Br-to-Cl Transformation Guided the Formation of Polyhalogenated Dibenzo- p-dioxins/Dibenzofurans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39096310 DOI: 10.1021/acs.est.4c06328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Polyhalogenated dibenzo-p-dioxins/dibenzofurans (PXDD/Fs) are commonly released into the environment as byproducts of combustion processes, accompanied by flue gases. Chlorinated (Cl) and brominated (Br) precursors play crucial roles in forming PXDD/Fs. However, the specific contributions of Cl-precursors and Br-precursors to PXDD/Fs formation have not been fully elucidated. Herein, we demonstrate that the formation of Br-precursors can increase the fraction of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) congeners substituted at specific positions, such as 1,2,3,4,6,7,8-HpCDD, OCDD, 2,3,4,7,8-PeCDF, and 2,3,4,6,7,8-HxCDF. This is attributed to the electrophilic chlorination reaction of the Br-precursors, which includes the Br-to-Cl transformation pathway, following the principle of regioselectivity. The observed formation of polybrominated/chlorinated dibenzo-p-dioxins/benzofurans (PBCDD/Fs) from 1,2-dibromobenzene (1,2-DiBBz) as a Br precursor provides direct evidence supporting the proposed Br-to-Cl transformation. Quantum chemical calculations are employed to discuss the principle of regioselectivity in the Br-to-Cl transformation, clarifying the priority of the position for electrophilic chlorination. Additionally, the concentration of PCDD/Fs formed from 1,2-DiBBz is 1.6 μg/kg, comparable to that of polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) (2.4 μg/kg), highlighting the potential of brominated organic pollutants as precursors for PCDD/Fs formation. This study provides three potential pathways for PCDD/Fs formation from Br-precursors, establishing a theoretical foundation for elucidating the formation mechanism of PXDD/Fs in the coexistence of Cl and Br.
Collapse
Affiliation(s)
- Congcong Zhang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Xuan Geng
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Lingfeng Zhu
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Dan Xia
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Xiang Li
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Yifei Sun
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
- Research Center for Advanced Energy and Carbon Neutrality, Beihang University, Beijing 100191, PR China
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, PR China
| |
Collapse
|
4
|
Okeke ES, Nwankwo CE, Ezeorba TPC, Iloh VC, Enochoghene AE. Occurrence and ecotoxicological impacts of polybrominated diphenyl ethers (PBDEs) in electronic waste (e-waste) in Africa: Options for sustainable and eco-friendly management strategies. Toxicology 2024; 506:153848. [PMID: 38825032 DOI: 10.1016/j.tox.2024.153848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent contaminants used as flame retardants in electronic products. PBDEs are contaminants of concern due to leaching and recalcitrance conferred by the stable and hydrophobic bromide residues. The near absence of legislatures and conscious initiatives to tackle the challenges of PBDEs in Africa has allowed for the indiscriminate use and consequent environmental degradation. Presently, the incidence, ecotoxicity, and remediation of PBDEs in Africa are poorly elucidated. Here, we present a position on the level of contamination, ecotoxicity, and management strategies for PBDEs with regard to Africa. Our review shows that Africa is inundated with PBDEs from the proliferation of e-waste due to factors like the increasing growth in the IT sector worsened by the procurement of second-hand gadgets. An evaluation of the fate of PBDEs in the African environment reveals that the environment is adequately contaminated, although reported in only a few countries like Nigeria and Ghana. Ultrasound-assisted extraction, microwave-assisted extraction, and Soxhlet extraction coupled with specific chromatographic techniques are used in the detection and quantification of PBDEs. Enormous exposure pathways in humans were highlighted with health implications. In terms of the removal of PBDEs, we found a gap in efforts in this direction, as not much success has been reported in Africa. However, we outline eco-friendly methods used elsewhere, including microbial degradation, zerovalent iron, supercritical fluid, and reduce, reuse, recycle, and recovery methods. The need for Africa to make and implement legislatures against PBDEs holds the key to reduced effect on the continent.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China; Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; College of Medicine and Veterinary Medicine, Deanery of Molecular, Genetic and Population Health Sciences, University of Edinburgh, United Kingdom.
| | - Chidiebele Emmanuel Nwankwo
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Microbiology, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Veronica Chisom Iloh
- School of Pharmacy and Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | | |
Collapse
|
5
|
Njoku A, Agbalenyo M, Laude J, Ajibola TF, Attah MA, Sarko SB. Environmental Injustice and Electronic Waste in Ghana: Challenges and Recommendations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 21:25. [PMID: 38248490 PMCID: PMC10815197 DOI: 10.3390/ijerph21010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Electronic waste (e-waste) or discarded electronic devices that are unwanted, not working, or have reached their end of life pose significant threats to human and environmental health. This is a major concern in Africa, where the majority of e-waste is discarded. In the year 2021, an estimated 57.4 million metric tons of e-waste were generated worldwide. Globally, COVID-19 lockdowns have contributed to increased e-waste generation. Although Africa generates the least of this waste, the continent has been the dumping ground for e-waste from the developed world. The flow of hazardous waste from the prosperous 'Global North' to the impoverished 'Global South' is termed "toxic colonialism". Agbogbloshie, Ghana, an e-waste hub where about 39% of e-waste was treated, was listed among the top 10 most polluted places in the world. The discard of e-waste in Ghana presents an issue of environmental injustice, defined as the disproportionate exposure of communities of color and low-income communities to pollution, its associated health and environmental effects, and the unequal environmental protection provided through policies. Despite the economic benefits of e-waste, many civilians (low-income earners, settlers, children, and people with minimal education) are exposed to negative health effects due to poverty, lack of education, and weak regulations. We critically examine the existing literature to gather empirical information on e-waste and environmental injustice. Comprehensive policies and regulations are needed to manage e-waste locally and globally.
Collapse
Affiliation(s)
- Anuli Njoku
- Department of Public Health, College of Health and Human Services, Southern Connecticut State University, New Haven, CT 06515, USA;
| | - Martin Agbalenyo
- Southwestern AHEC, Inc., 5 Research Drive, Shelton, CT 06484, USA;
| | - Janaya Laude
- Department of Public Health, College of Health and Human Services, Southern Connecticut State University, New Haven, CT 06515, USA;
| | - Taiwo Folake Ajibola
- Department of Public Health Sciences, UConn School of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA;
| | - Mavis Asiwome Attah
- Department of Environmental Health and Sanitation, Akuapem North Municipal Assembly, Akropong-Akuapem P.O. Box 100, Ghana;
| | - Samuel Bruce Sarko
- Department of International Development, Presbyterian University, Akropong-Akuapem P.O. Box 393, Ghana;
| |
Collapse
|
6
|
Singh RR, Aminot Y, Héas-Moisan K, Preud'homme H, Munschy C. Cracked and shucked: GC-APCI-IMS-HRMS facilitates identification of unknown halogenated organic chemicals in French marine bivalves. ENVIRONMENT INTERNATIONAL 2023; 178:108094. [PMID: 37478678 DOI: 10.1016/j.envint.2023.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
High resolution mass spectrometry (HRMS)-based non-target analysis coupled with ion mobility spectrometry (IMS) is gaining momentum due to its ability to provide complementary information which can be useful in the identification of unknown organic chemicals in support of efforts in unraveling the complexity of the chemical exposome. The chemical exposome in the marine environment, though not as well studied as its freshwater counterparts, is not foreign to chemical diversity specially when it comes to potentially bioaccumulative and bioactive polyhalogenated organic contaminants and natural products. In this work we present in detail how we utilized IMS-HRMS coupled with gas chromatographic separation and atmospheric pressure chemical ionization (APCI) to annotate polyhalogenated organic chemicals in French bivalves collected from 25 sites along the French coasts. We describe how we used open cheminformatic tools to exploit isotopologue patterns, isotope ratios, Kendrick mass defect (Cl scale), and collisional cross section (CCS), in order to annotate 157 halogenated features (level 1: 54, level 2: 47, level 3: 50, and level 4: 6). Grouping the features into 11 compound classes was facilitated by a KMD vs CCS plot which showed co-clustering of potentially structurally-related compounds. The features were semi-quantified to gain insight into the distribution of these halogenated features along the French coast, ultimately allowing us to differentiate between sites that are more anthropologically impacted versus sites that are potentially biodiverse.
Collapse
Affiliation(s)
- Randolph R Singh
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France.
| | - Yann Aminot
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France
| | - Karine Héas-Moisan
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France
| | - Hugues Preud'homme
- IPREM-UMR5254, E2S UPPA, CNRS, Technopôle Helioparc, 2 Avenue P. Angot, 64053 Pau Cedex 9, France
| | - Catherine Munschy
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France
| |
Collapse
|
7
|
Du X, Li H, Liang J, Wang R, Huang K, Hayat W, Cai L, Tao X, Dang Z, Lu G. Hydrogen-Donor-Controlled Polybrominated Dibenzofuran (PBDF) Formation from Polybrominated Diphenyl Ether (PBDE) Photolysis in Solutions: Competition Mechanisms of Radical-Based Cyclization and Hydrogen Abstraction Reactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7777-7788. [PMID: 37115742 DOI: 10.1021/acs.est.2c08003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Polybrominated dibenzofurans (PBDFs) are characteristic dioxin-like products of polybrominated diphenyl ether (PBDE) photolysis. In this study, competition mechanisms of radical-based cyclization and hydrogen abstraction reactions are proposed in PBDF formation. Commonly, the ortho C-Br bond dissociation during photolysis generates aryl radicals, which undergo intramolecular cyclization to form PBDFs or hydrogen abstraction with hydrogen donors (such as organic solvents and water) to form lower brominated PBDEs. By using 2,4,4'-tribromodiphenyl ether (BDE-28) as the model reactant, the experimental PBDF formation ratios in various solutions are explained quantitatively by the calculated rate constants of cyclization and hydrogen abstraction reactions using the density functional theory (DFT) method. The solvent effect of pure and mixed solvents on PBDF formation is illustrated successfully. The structure-related hydrogen donation ability for hydrogen abstraction controls the bias of competition reactions and influences PBDF formation. Water resulted to be the most significant generation of PBDFs. Fulvic and humic acid display higher hydrogen donation ability than small-molecule organics due to the partitioning effect in aqueous solution. Quantitative structure-activity relationship (QSAR) models of the calculated rate constants for 512 cyclization and 319 hydrogen abstraction reactions using 189 PBDEs as the initial reactants in water are established, revealing the high risk of PBDF formation in aqueous solution.
Collapse
Affiliation(s)
- Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Haoliang Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jiahao Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Rui Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Kaibo Huang
- School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Waseem Hayat
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Limiao Cai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
8
|
Wang M, Liu G, Yang L, Zheng M. Framework of the Integrated Approach to Formation Mechanisms of Typical Combustion Byproducts─Polyhalogenated Dibenzo- p-dioxins/Dibenzofurans (PXDD/Fs). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2217-2234. [PMID: 36722466 DOI: 10.1021/acs.est.2c08064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Understanding the mechanisms through which persistent organic pollutants (POPs) form during combustion processes is critical for controlling emissions of POPs, but the mechanisms through which most POPs form are poorly understood. Polyhalogenated dibenzo-p-dioxins and dibenzofurans (PXDD/Fs) are typical toxic POPs, and the formation mechanisms of PXDD/Fs are better understood than the mechanisms through which other POPs form. In this study, a framework for identifying detailed PXDD/Fs formation mechanisms was developed and reviewed. The latest laboratory studies in which organic free radical intermediates of PXDD/Fs have been detected in situ and isotope labeling methods have been used to trace transformation pathways were reviewed. These studies provided direct evidence for PXDD/Fs formation pathways. Quantum chemical calculations were performed to determine the rationality of proposed PXDD/Fs formation pathways involving different elementary reactions. Many field studies have been performed, and the PXDD/Fs congener patterns found were compared with PXDD/Fs congener patterns obtained in laboratory simulation studies and theoretical studies to mutually verify the dominant PXDD/Fs formation mechanisms. The integrated method involving laboratory simulation studies, theoretical calculations, and field studies described and reviewed here can be used to clarify the mechanisms involved in PXDD/Fs formation. This review brings together information about PXDD/Fs formation mechanisms and provides a methodological framework for investigating PXDD/Fs and other POPs formation mechanisms during combustion processes, which will help in the development of strategies for controlling POPs emissions.
Collapse
Affiliation(s)
- Mingxuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, People's Republic of China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, People's Republic of China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, People's Republic of China
| |
Collapse
|
9
|
Liang J, Wang R, Liu H, Xie D, Tao X, Zhou J, Yin H, Dang Z, Lu G. Unintentional formation of mixed chloro-bromo diphenyl ethers (PBCDEs), dibenzo-p-dioxins and dibenzofurans (PBCDD/Fs) from pyrolysis of polybrominated diphenyl ethers (PBDEs). CHEMOSPHERE 2022; 308:136246. [PMID: 36044966 DOI: 10.1016/j.chemosphere.2022.136246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
This study presents the comprehensive investigation for formation pathways of chloro-bromo-mixed products from the pyrolysis of polybrominated diphenyl ethers (PBDEs). In the study, a total of 23 PBDEs with bromination levels from mono-to deca-were selected. Each PBDE standard was sealed in the glass vial and then heated under 450 °C in the muffle furnace to simulate the pyrolysis process. The results demonstrated that PBDEs in the glass vials can unintentionally transform into chloro-bromo diphenyl ethers (PBCDEs) and dibenzo-p-dioxin and dibenzofurans (PBCDD/Fs) during the pyrolysis process. Atmosphere pressure gas chromatography (APGC) coupled with high-resolution mass spectrometry (HRMS) was used to identify these pyrolysis products, which demonstrated that all investigated nPBDEs (n represents the number of bromine substituents) can unintentionally transform into Cl1-(n-1)BDEs, Cl2-(n-2)BDEs, Cl1-(n-1)BDFs, and Cl1-(n-3)BDDs, while some nPBDEs can transform into Cl1-(n-2)PBDD/Fs during pyrolysis. Experimental phenomena assisted with density functional theory (DFT) calculations reveal that Cl atom can substitute at C-Br rather than C-H, and Cl1-(n-1)BDEs can be easily generated by Cl atom attacking at C-Br sites with low energy barriers (3.66-11.9 kcal/mol). In addition, nPBDEs with lower bromination levels are more favorable to generate Cl1-(n-1)BDEs than those with higher bromination levels. Further DFT calculations suggest that PBDEs are preferentially first transformed into Cl1-(n-1)BDEs, then subsequentially transform into PBCDD/Fs. We believe the results of this study can greatly improve our understanding of the transformation mechanism from PBDEs to cholo-bromo-mixed products in thermal treatment processes and provide new insight into controlling the emission of toxic cholo-bromo-mixed products.
Collapse
Affiliation(s)
- Jiahao Liang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Rui Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - He Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Danping Xie
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jiangmin Zhou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China; Guangdong Provincial Key Lab of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Nakayama K, Tue NM, Fujioka N, Tokusumi H, Goto A, Uramaru N, Suzuki G. Determination of the relative potencies of brominated dioxins for risk assessment in aquatic environments using the early-life stage of Japanese medaka. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114227. [PMID: 36306615 DOI: 10.1016/j.ecoenv.2022.114227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/04/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
World Health Organization toxic equivalency factors (WHO-TEFs) are recommended for risk management of brominated dioxins in aquatic environments because limited information is available on their toxicity to fish. To validate this approach, we obtained the relative potencies of polybrominated dibenzo-p-dioxins and polybrominated dibenzofurans and mixed-halogenated furans (PXDF, X = Cl/Br) against 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) based on their toxicity to the early-life stage of Japanese medaka (Oryzias latipes). 2,3,7,8-substituted brominated dibenzofurans caused typical dioxin exposure effects, such as blue-sac disease. The TCDD-relative potency factors (REPs) of test substances were calculated based on the concentrations in water and eggs that caused 20% lethality on day 28 post-fertilization, and were in the order of: 2-chloro-3,7,8-tribromodibenzofuran (REPwater 3.3, REPegg 4.6) > 2,3,7,8-tetrabromodibenzofuran (0.85, 0.92) > 2,3,4,7,8-pentabromodibenzofuran (0.053, 0.55) > 1,2,3,7,8-pentabromodibenzofuran (0.0091, 0.19). The transfer rate from water to eggs was lower for pentabrominated furans than tetrabrominated congeners, and was expected to decrease with the log Kow of the test substance. Although the REPegg value can be used to compare the toxicity potential of brominated dioxins, REPwater may be more suitable for environmental risk assessment because the uptake potential of these compounds from water should be considered. This study is the first to report higher toxicity of a PXDF congener compared with TCDD in vivo, further investigations of the toxicity of mixed-halogenated dioxins and environmental behavior are necessary for environmental risk assessment.
Collapse
Affiliation(s)
- Kei Nakayama
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan.
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan.
| | - Naoto Fujioka
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan.
| | - Hideaki Tokusumi
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan.
| | - Akitoshi Goto
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan.
| | - Naoto Uramaru
- Nihon Pharmaceutical University, Ina-machi, Kitaadachi-gun 362-0806, Japan.
| | - Go Suzuki
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan.
| |
Collapse
|
11
|
Tian Y, Cheng J, Li S, Geng H, Huang C, Zhou Q, Liu W, Ma J. Recent Progress in the Determination of Polychlorodibenzo- p-Dioxins and Polychlorodibenzofurans by Mass Spectrometry: A Minireview. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Yong Tian
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Jiawen Cheng
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Shuang Li
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Hongshuai Geng
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Chaonan Huang
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Qian Zhou
- Environmental Technical Research Institute of Everbright Technology (Qingdao) Co., Ltd, Qingdao, China
| | - Weixun Liu
- Environmental Technical Research Institute of Everbright Technology (Qingdao) Co., Ltd, Qingdao, China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, China
| |
Collapse
|
12
|
Liu M, Li H, Chen P, Song A, Peng P, Hu J, Sheng G, Ying G. PCDD/Fs and PBDD/Fs in sediments from the river encompassing Guiyu, a typical e-waste recycling zone of China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113730. [PMID: 35691194 DOI: 10.1016/j.ecoenv.2022.113730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Severe pollution of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and their brominated analogues (PBDD/Fs) was frequently reported for the waters located near unregulated e-waste recycling areas. However, the migrations of these high-level dioxins via waterways and their potential threats to the lower reaches were seldom investigated. In this study, we analyzed PCDD/Fs and PBDD/Fs in 27 surficial sediments collected from the Lian River encompassing the Guiyu, China e-waste recycling zone, and investigated their distributions, sources, migration behaviors and risks. Both PCDD/Fs and PBDD/Fs in these sediments exhibited a spatial trend of Guiyu > Guiyu downriver > Guiyu upriver, illustrating that the Guiyu e-waste recycling activities were the uppermost dioxin contributors in this watershed. Sediments from different Guiyu villages demonstrated big gaps in PCDD/F concentrations and congener compositions, and the reason was attributed to the diverse e-waste recycling activities practiced in these villages. Sediments near the e-waste open-burning areas demonstrated extremely high PCDD/F concentrations and unique PCDD/F profiles featured by low-chlorinated PCDFs (tetra- to hexa-), which is quite different from the OCDD-dominant PCDD/F profile found in most of the Lian River sediments. The geographical distributions of PCDD/F concentrations and profiles illustrate that the substantial amount of PCDD/Fs in Guiyu sediments were mainly retained in local and vicinal water bodies. The principal component analysis (PCA) results further confirm that the high-level PCDD/Fs in Guiyu sediments exhibited quite limited translocations downstream and therefore exerted little influences on the lower reaches. Pentachlorophenol use in history, ceramic industry and vehicle exhaust were diagnosed as the major PCDD/F sources for most sediments of the Lian River. Total toxicity equivalent quantities (TEQs) of 70% of the Lian River sediments surpassed the high-risk limit specified for mammalian life by the U.S.EPA (25 pg TEQ g-1), and most of these sediments were from Guiyu and its near downstream, which merit continuous attention and necessary remediation measures.
Collapse
Affiliation(s)
- Mingyang Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiru Li
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Pei Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Aimin Song
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, China
| | - Jianfang Hu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guoying Sheng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guangguo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
13
|
Wang T, He ZX, Yang J, Wu L, Qiu XW, Bao LJ, Zeng EY. Riverine transport dynamics of PBDEs and OPFRs within a typical e-waste recycling zone: Implications for sink-source interconversion. WATER RESEARCH 2022; 220:118677. [PMID: 35667171 DOI: 10.1016/j.watres.2022.118677] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Despite ample evidence on spreading of e-waste derived hazardous materials, riverine transport of organic contaminants from e-waste recycling zones to surrounding areas has not been evaluated. To address this issue, passive and grab sampling methods were used to assess sediment-water diffusion and horizontal transport of polybrominated diphenyl ethers (PBDEs) and organophosphorus flame retardant (OPFRs) at upstream and downstream sites of two rivers in a typical e-waste recycling zone. Sediment acted as a source of BDE-17 with fluxes of 0.007-0.04 ng m-2 d-1 at all sampling sites. BDE-47 and BDE-99 reached equilibrium between overlying water and sediment porewater. Sediment interconverted from a sink at the upstream site to a source of OPFRs at the downstream site with a flux varying between -7.3 and 234 ng m-2 d-1. The amounts of OPFRs (11-45 g d-1) via horizontal riverine transport were greater than those of PBDEs (0.68-2 g d-1). The vertical sediment-water diffusion of PBDEs and OPFRs was not significant compared to horizontal riverine transport. The annual riverine outputs of PBDEs and OPFRs from the downstream sites were 250-330 g and 12,000-16,500 g, respectively, indicating the significance of riverine transport of organic contaminants from e-waste recycling zones to surrounding areas.
Collapse
Affiliation(s)
- Teng Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Zi-Xuan He
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jun Yang
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Liang Wu
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xia-Wen Qiu
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Lian-Jun Bao
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Eddy Y Zeng
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
14
|
Exploring the Potential of Hematite as a Debromination Agent for 2,4,6-Tribromophenol. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Folarin BT, Abdallah M, Oluseyi TO, Harrad S, Olayinka KO. Concentrations and Toxic Implications of Dioxin-Like Polychlorinated Biphenyls in Soil Samples from Electrical Power Stations in Lagos, Nigeria. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:800-809. [PMID: 34918382 DOI: 10.1002/etc.5277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/09/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Dioxin-like polychlorinated biphenyls (dl-PCBs) are ubiquitous chemicals which mediate toxicity in a way similar to polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. In silico modeling was used to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of eight dioxin-like PCBs in soil samples of 12 power stations in Lagos, Nigeria. Concentrations of Σdl-PCB8 in soil samples ranged from 490 to 61,000 pg g-1 , with mean concentrations of 17,000 pg g-1 . The corresponding toxic equivalent (TEQ) concentrations of Ʃdl-PCB8 ranged from 0.01 to 450 pg TEQ g-1 , with a mean value of 42 pg TEQ g-1 . Mean TEQ concentrations for Ʃdl-PCB8 in soil samples from all but one of the sites exceeded the Canadian guideline value of 4 pg TEQ g-1 and the US and German guideline values of 5-10 pg TEQ g-1 . However, the TEQ concentrations obtained were all below the US action level of 1000 pg TEQ g-1 . The ADMET predictions revealed that all studied dl-PCBs are inhibitors of three major isoforms (1A2, 2C9, and 2C19) of cytochrome P450 enzyme. Acute oral toxicity (median lethal dose) predictions revealed that all target dl-PCBs were class III compounds. Hepatotoxicity and carcinogenicity were positive, signifying that the studied compounds all have a tendency to elicit these effects. Occupational daily TEQ exposure via soil ingestion was estimated for an average adult worker weighing 70 kg. The maximum exposure obtained was 0.14 pg TEQ kg-1 body weight day-1 , which is half of the European Food Safety Authority (EFSA) tolerable daily intake (TDI) for dioxin-like compounds. This raises concern over the possible exceedance of the EFSA TDI for these workers if other dietary and nondietary exposure pathways and dioxin-like compounds are considered. Environ Toxicol Chem 2022;41:800-809. © 2021 SETAC.
Collapse
Affiliation(s)
- Bilikis T Folarin
- Department of Chemistry, University of Lagos, Lagos, Nigeria
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Chemistry, College of Natural and Applied Sciences, Chrisland University, Abeokuta, Nigeria
| | - Mohamed Abdallah
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Stuart Harrad
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
16
|
Ge X, Ma S, Huo Y, Yang Y, Luo X, Yu Y, An T. Mixed bromine/chlorine transformation products of tetrabromobisphenol A: Potential specific molecular markers in e-waste dismantling areas. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127126. [PMID: 34523476 DOI: 10.1016/j.jhazmat.2021.127126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Mixed bromine/chlorine transformation products (ClyBrxBPAs) of tetrabromobisphenol A (TBBPA) were recently identified for the first time in an electronic waste (e-waste) dismantling site. To determine whether these compounds can be used as specific molecular markers of e-waste dismantling activities, the environmental occurrences and distributions of TBBPA and its transformation products including debromination products (BrxBPAs) and ClyBrxBPAs were analyzed in soil samples from three sites in China: Guiyu (an e-waste site), Qingyuan (a former e-waste site now mainly used for old wire and cable recycling), and Shouguang (a flame retardant production base). Levels of the target analytes in Guiyu were significantly higher than in Qingyuan and Shouguang. BrxBPAs and ClyBrxBPAs were widely detected in Guiyu at concentrations between 1 and 4 orders of magnitude lower than their parent compound TBBPA. The highest concentration was found in an e-waste dismantling park, with lower concentrations in surrounding area. The levels of ClyBrxBPAs in Qingyuan were much lower, indicating that the ClyBrxBPAs may come from the processing of wires and cables, but not rule out the incubation on their own in soils. None of ClyBrxBPAs were detected in Shouguang. ClyBrxBPAs may thus be useful as specific molecular markers for determining the intensity of e-waste dismantling activities.
Collapse
Affiliation(s)
- Xiang Ge
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515041, PR China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yan Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515041, PR China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
17
|
Doan TQ, Pham AD, Brouhon JM, Lundqvist J, Scippo ML. Profile occurrences and in vitro effects of toxic organic pollutants in metal shredding facilities in Wallonia (Belgium). JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127009. [PMID: 34481394 DOI: 10.1016/j.jhazmat.2021.127009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
End-of-life vehicles and e-waste contain several hazardous substances that can contaminate the environment during treatment processes. Occurrences and adverse effects of toxic organic pollutants emitted from 3 shredder plants located in Wallonia, Belgium, were investigated by chemical and biological analyses of fluff, dust, and scrubbing sludge sampled in 2019. Site 1 showed the highest concentrations of chlorinated compounds in sludge with 7.5 ng/g polychlorinated dibenzo-dioxins/furans and 84.5 µg/g estimated total polychlorinated biphenyls, while site 3 led the brominated flame retardant levels in dust (53.4 µg/g). The level of polycyclic aromatic hydrocarbons was highest in the sludge samples, 78 and 71 µg/g for sites 2 and 3, respectively. The samples induced significant dioxin-like activities in murine and human cells at concentrations of around 0.01-0.1 and 0.5-1 ng (sample) per ml (medium), respectively, with the efficacy similar to 2,3,7,8-tetrachlorodibenzodioxin and EC50 values of around 1 and 10 ng/ml. The samples also displayed high estrogenic activities, already at 1 ng/ml, and several induced a response as efficient as 17β-estradiol, albeit a low androgenic activity. Shredder workers were estimated to be highly exposed to dioxin-like compounds through dust ingestion and dermal absorption, which is of concern.
Collapse
Affiliation(s)
- Thi Que Doan
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden; Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège 4000, Belgium.
| | - Anh Duc Pham
- Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jean-Marc Brouhon
- Walloon Agency for Air and Climate, Public Service of Wallonia, Jambes, Belgium
| | - Johan Lundqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège 4000, Belgium
| |
Collapse
|
18
|
Song A, Li H, Liu M, Peng P, Hu J, Sheng G, Ying G. Polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) in soil around municipal solid waste incinerator: A comparison with polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118563. [PMID: 34838709 DOI: 10.1016/j.envpol.2021.118563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) and polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) share similar toxicities and thermal origins, e.g., municipal solid waste incinerator (MSWI). Recently, PBDD/Fs from MSWI attracted rising concern because their important precursors, i.e., brominated flame retardants (BFRs), were frequently found in various wastes for landfill or MSWI feedstock. So far, however, little is known about PBDD/Fs and their associated risks in the vicinal environments of MSWI. Here we analyzed PBDD/Fs and PCDD/Fs in 29 soil samples collected around a multiyear large-scale MSWI, and compared their spatial distributions, sources and risks. PBDD/Fs demonstrated comparable concentrations and toxic equivalent quantities (TEQs) to PCDD/Fs in these samples. Spatially, both the concentrations of PBDD/Fs and PCDD/Fs decreased outwards from the MSWI, and exhibited significant linear correlations with the distances from the MSWI in the southeast downwind soil, suggesting the influence of the MSWI on its vicinal soil environment. However, the existence of other dioxin sources concealed its influence beyond 6 km. PBDD/Fs in the soils were characterized by highly-brominated PBDFs, especially Octa-BDF, and their sources were diagnosed as the MSWI and diesel exhaust; PCDD/Fs, however, were dominated by highly-chlorinated PCDDs, particularly Octa-CDD, and were contributed individually or jointly by the MSWI, automobile exhaust and pentachlorophenol (PCP)/Na-PCP. The non-carcinogenic risks of dioxins in all the soil samples were acceptable, but their carcinogenic risks in 17% of the samples were unacceptable. These samples were all located close to the MSWI and highways, therefore, the land use of these two high-risk zones should be cautiously planed.
Collapse
Affiliation(s)
- Aimin Song
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiru Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China.
| | - Mingyang Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou, 510640, China
| | - JianFang Hu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Guoying Sheng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Guangguo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
19
|
Avenbuan ON, Meltzer GY, Awada C, Raja A, Holian A, Zelikoff JT. A contemporary review of electronic waste through the lens of inhalation toxicology. Inhal Toxicol 2021; 33:285-294. [PMID: 34715768 DOI: 10.1080/08958378.2021.1996493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Inhalation is a significant route of exposure to toxic chemicals for electronic waste (e-waste) workers, especially for those whose activities take place in the informal sector. However, there remains a dearth of research on the health effects produced by the hazardous dismantling of e-waste and associated outcomes and biological mechanisms that occur as a result of inhalation exposure. This contemporary review highlights a number of the toxicological and epidemiological studies published on this topic to bring to light the many knowledge gaps that require further research, including in vitro and ex vivo investigations to address the health outcomes and underlying mechanisms of inhaled e-waste-associated pulmonary disease.
Collapse
Affiliation(s)
- Oyemwenosa N Avenbuan
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Gabriella Y Meltzer
- Department of Social and Behavioral Sciences, New York University School of Global Public Health, New York, NY, USA
| | - Christina Awada
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Amna Raja
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, University of Montana College of Health, Missoula, MT, USA
| | - Judith T Zelikoff
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
20
|
Tue NM, Goto A, Fumoto M, Nakatsu S, Tanabe S, Kunisue T. Nontarget Screening of Organohalogen Compounds in the Liver of Wild Birds from Osaka, Japan: Specific Accumulation of Highly Chlorinated POP Homologues in Raptors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8691-8699. [PMID: 34100289 DOI: 10.1021/acs.est.1c00357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nontarget screening studies have recently revealed the accumulation of typically unmonitored organohalogen compounds (OHCs) in various marine animals, but information for terrestrial food chains is still lacking. This study investigated the accumulation profiles of known and unknown OHCs in the liver of representative wild bird specimens from Osaka, Japan using nontarget analysis based on two-dimensional gas chromatography-time-of-flight mass spectrometry. A large number of unmonitored OHCs were identified, including anthropogenic contaminants and marine halogenated natural products (HNPs), and their accumulation profiles were considered to be influenced by terrestrial and brackish water-based diets. Anthropogenic OHCs were highly accumulated in terrestrial predator species (peregrine falcon, hawks, and black kite), and some unmonitored highly chlorinated contaminants reached the levels of microgram per gram lipid in the liver, i.e., C10-/C15-based chlordane related compounds (CHLs) and their epoxides, dichlorodiphenyldichloroethylene (DDE) homologues, and polychlorinated terphenyls (PCTs). In contrast, HNPs were accumulated at higher levels in piscivorous birds (gray heron and common cormorant). Considering the enrichment of the unmonitored C10-/C15-based CHLs, PCTs, and DDE homologues relative to structurally similar persistent organic pollutants (POPs) in high trophic-level species such as raptors, further studies are needed to elucidate their environmental levels, behavior in terrestrial food chains, and ecotoxicological impacts.
Collapse
Affiliation(s)
- Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Akitoshi Goto
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Mitsuo Fumoto
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Susumu Nakatsu
- Nakatsu Veterinary Surgery, 2-2-15 Shorinjichonishi, Sakai 590-0960, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| |
Collapse
|
21
|
Yang L, Liu G, Shen J, Wang M, Yang Q, Zheng M. Environmental characteristics and formations of polybrominated dibenzo-p-dioxins and dibenzofurans. ENVIRONMENT INTERNATIONAL 2021; 152:106450. [PMID: 33684732 DOI: 10.1016/j.envint.2021.106450] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/23/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Polybrominated dibenzo-p-dioxins and furans (PBDD/Fs) are emerging persistent organic pollutants (POPs) that have similar or higher toxicities than the notorious dioxins. Toxicities, formation mechanisms, and environmental fates of PBDD/Fs are lacking because accurate quantification, especially of higher brominated congeners, is challenging. PBDD/F analysis is difficult because of photolysis and thermal degradation and interference from polybrominated diphenyl ethers. Here, literatures on PBDD/F analysis and environmental occurrences are reviewed to improve our understanding of PBDD/F environmental pollution and human exposure levels. Although PBDD/Fs behave similarly to dioxins, different congener profiles between PBDD/Fs and dioxins in the environment indicates their different sources and formation mechanisms. Herein, potential sources and formation mechanisms of PBDD/Fs were critically discussed, and current knowledge gaps and future directions for PBDD/F research are highlighted. An understanding of PBDD/F formation pathways will allow for development of synergistic control strategies for PBDD/Fs, dioxins, and other dioxin-like POPs.
Collapse
Affiliation(s)
- Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Shen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Minxiang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Qiuting Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
22
|
Côté D, Gravel S, Gladu S, Bakhiyi B, Gravel S. Worker health in formal electronic waste recycling plants. INTERNATIONAL JOURNAL OF WORKPLACE HEALTH MANAGEMENT 2021. [DOI: 10.1108/ijwhm-04-2020-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeThis article explores the protective measures and the occupational health and safety (OHS) prevention strategies in place in the formal electronic equipment recycling (e-recycling) industry, more specifically in the Greater Montreal area (Quebec, Canada) and their consequences: health inequalities and level of compliance with environmental standards.Design/methodology/approachSemi-structured interviews were conducted using two respondent-specific questionnaires, one for workers and one for supervisors. Data collection and analytic procedures drew from qualitative content analysis. It was tempted to identify differences in OHS practices in relation to the workers' employment status and to link the companies' OHS concerns to their level of compliance with environmental standards.FindingsThe article highlights specific OHS issues in the formal e-recycling industry. Enforcing compliance with environmental standards as a lever for promoting OHS appears to be a promising strategy. Another main finding was the workforce diversity and related OHS vulnerabilities in this industry and the challenges they pose to employers' ability to adequately and equally reach and protect all workers involved.Originality/valueTo date, too little attention appears to have been paid to working conditions and worker protection in this rapidly growing sector. Specific prevention programmes could be implemented and adapted to the industry's diverse workforce and its multiple OHS vulnerabilities. This issue calls for the international community to take responsibility, as many electronic waste (e-waste) generated worldwide is shipped to developing countries, where lack of regulation and control is much more striking in a sector that remains very largely informal.
Collapse
|
23
|
Fernandes AR, Falandysz J. Polybrominated dibenzo-p-dioxins and furans (PBDD/Fs): Contamination in food, humans and dietary exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143191. [PMID: 33160676 DOI: 10.1016/j.scitotenv.2020.143191] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 05/11/2023]
Abstract
Polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) have been recognised as environmental pollutants for decades but their occurrence in food has only recently been reported. They elicit the same type of toxic response as analogous polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) with similar potencies and effects, and share similar origins - inadvertent production during combustion and occurrence as by-products in industrial chemicals. Surprisingly, PBDD/Fs have received considerably less attention than PCDD/Fs, perhaps because determination requires a higher degree of analytical competence, a result of the higher adsorptivity and lability associated with carbon-bromine bonding. For most populations, the principal exposure pathway is dietary intake. The PBDD/F toxicity arising from occurrence in foods has often been expressed as toxic equivalents (TEQs) using the same scheme developed for PCDD/Fs. This approach is convenient, but resulting TEQ estimates are more uncertain, given the known differences in response for some analogous congeners and also the different patterns of PBDD/F occurrence confirmed by the newer data. Further studies to consolidate potency factors would help to refine TEQ estimates. Characteristically, most foods and human tissues show more frequent and higher PBDF concentrations relative to PBDDs, reflecting major source patterns. Occurrence in food ranges from <0.01 to several thousand pg/g (or up to 0.3 pg TEQ/g whole weight) which is comparable to PCDD/F occurrence (ΣPBDD/F TEQs are underestimated as not all relevant congeners are included). Plant based foods show higher PBDD/F: PCDD/F TEQ ratios. Reported PBDD/F dietary intakes suggest that some population groups, particularly young children, may exceed the revised tolerable weekly intake for dioxin-like contaminants (2 pg TEQ/kg bw/week), even for mean consumption estimated with lower bound data. It is evident that the omission of PBDD/Fs from the TEQ scheme results in a significant underestimation of the cumulative toxicity and associated risk arising from this mode of action.
Collapse
Affiliation(s)
- Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Jerzy Falandysz
- University of Gdańsk, Environmental Chemistry and Ecotoxicology, 80-308 Gdańsk, Poland
| |
Collapse
|
24
|
Kojima Y, Fujimori T, Goto A, Shiota K, Kunisue T, Takaoka M. Bromination of Carbon and Formation of PBDD/Fs by Copper Bromide in Oxidative Thermal Process. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123878. [PMID: 33264949 DOI: 10.1016/j.jhazmat.2020.123878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/12/2020] [Accepted: 08/29/2020] [Indexed: 06/12/2023]
Abstract
Brominated aromatic compounds are unintentionally generated during various thermal processes, including municipal solid waste incineration, electric-waste open burning, and secondary copper smelting. Copper (Cu) plays an important role in the formation of brominated aromatic compounds. In the present study, the thermochemical behaviors of Cu and Br in model samples, including copper bromide (CuBr2) and activated carbon, were studied using in situ X-ray absorption near-edge structure (XANES) and thermogravimetry. Quantification of polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) was also conducted by gas chromatograph-high resolution mass spectrometer. Three key reactions were identified: (i) the reduction of CuBr2 to CuBr (room temperature to 300 °C), (ii) the generation of Br bonded with aromatic carbon (150-350 °C), and (iii) the oxidation of copper (>350 °C). Maximum amounts of PBDD/Fs were found in residual solid phase after heating at 300 °C. The analytical results indicated the direct bromination of aromatic carbon by the debromination of copper bromides (I, II) and that CuBr and CuO acted as catalysts in the oxidation of the carbon matrix. The bromination mechanisms revealed in this study are essential to the de novo formation of PBDD/Fs and other brominated aromatic compounds.
Collapse
Affiliation(s)
- Yusuke Kojima
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nisikyo-ku, Kyoto 615-8540, Japan
| | - Takashi Fujimori
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nisikyo-ku, Kyoto 615-8540, Japan; Department of Global Ecology, Graduate School of Global Environmental Studies, Japan.
| | - Akitoshi Goto
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Kenji Shiota
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nisikyo-ku, Kyoto 615-8540, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Masaki Takaoka
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nisikyo-ku, Kyoto 615-8540, Japan; Department of Global Ecology, Graduate School of Global Environmental Studies, Japan
| |
Collapse
|
25
|
Zhou Y, Sun J, Wang L, Zhu G, Li M, Liu J, Li Z, Gong H, Wu C, Yin G. Multiple classes of chemical contaminants in soil from an e-waste disposal site in China: Occurrence and spatial distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141924. [PMID: 32898803 DOI: 10.1016/j.scitotenv.2020.141924] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
E-waste recycling is well known for releasing halogenated organic compounds (HOCs) and heavy metals. This study investigated the occurrence and distribution of traditional and novel classes of contaminants, including chlorinated, brominated, and mixed halogenated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs, PBDD/Fs, PXDD/Fs), polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and polyhalogenated carbazoles (PHCZs), in soil from an e-waste disposal site in Hangzhou. PBDEs were the most abundant, at 343-69306 ng kg-1, followed by PHCZs (896-41,362 ng kg-1), PCDD/Fs (349-19,396 ng kg-1), PCBs (51.3-1834 ng kg-1), PBDD/Fs (2.99-524 ng kg-1) and PXDD/Fs (0.104-21.2 ng kg-1). The detected target compound concentrations were generally lower than those reported in the literature for informal e-waste sites. Nevertheless, they can serve as a basis of information for evaluation and subsequent control. The toxic equivalent (TEQ) contributions from these contaminants (except PBDEs) decreased as follows: PCDD/Fs > PXDD/Fs > PHCZs > PCBs > PBDD/Fs. ΣDioxins (PCDD/Fs + PBDD/Fs + PXDD/Fs) accounted for 47.7%-97.2% of the total TEQs in the soil. OCDD, 1,2,3,4,6,7,8-HpBDF and OBDF were the dominant congeners, mainly derived from combustion and transport because of their low saturated vapor pressure. PXDFs were more abundant than PXDDs, and homologue profiles suggested a similar formation mechanism for PXDFs and PBDFs involving successive Br-to-Cl exchange. PHCZs were reported in soil from an e-waste disposal area for the first time, and their concentrations were several orders of magnitude higher than those of the other contaminants. Although the risk of human exposure in this study was estimated to be lower than the values recommended by the WHO (1-4 pg TEQ/kg bw/day), health implications still exist, and further investigations are necessary.
Collapse
Affiliation(s)
- Yanxiao Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junjun Sun
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Ling Wang
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Guohua Zhu
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Mufei Li
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Jinsong Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China.
| | - Zuguang Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hongping Gong
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Chenwang Wu
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Ge Yin
- Shimadzu (China) Co., Ltd., Shanghai 200233, China
| |
Collapse
|
26
|
Vaezzadeh V, Thomes MW, Kunisue T, Tue NM, Zhang G, Zakaria MP, Affendi YA, Yap FC, Chew LL, Teoh HW, Lee CW, Bong CW. Examination of barnacles' potential to be used as bioindicators of persistent organic pollutants in coastal ecosystem: A Malaysia case study. CHEMOSPHERE 2021; 263:128272. [PMID: 33297216 DOI: 10.1016/j.chemosphere.2020.128272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Barnacles are ubiquitous in coastal ecosystems of different geographical regions worldwide. This is the first study attempting to assess the suitability of barnacles as bioindicators of persistent organic pollutants (POPs) in coastal environments. Barnacles were collected from the coasts around Peninsular Malaysia and analyzed for POPs including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and organochlorine pesticides (OCPs). Among POPs, PCBs showed the highest concentrations with elevated contributions of CB28 and CB153. As for PBDEs, BDE47 was the most frequently detected congener, while BDE209 was detected in barnacles from two stations in Port Klang and the levels reached up to >70% of total PBDE concentrations. Concentrations of OCPs detected in barnacles were in the order of CHLs > DDTs > HCHs > HCB and 4,4'-DDE and cis- and trans-chlordane were the predominant OCP compounds. A comparison with previous studies in Malaysia showed consistent levels of POPs. Green mussels collected from selected barnacles' habitats, for the sake of a comparison, showed almost similar profiles but lower concentrations of POPs. The spatial distribution of POPs observed in barnacles and comparison of POP levels and profiles with mussels indicated that barnacles can be useful bioindicators for monitoring POPs contamination in the coastal ecosystems.
Collapse
Affiliation(s)
- Vahab Vaezzadeh
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, GD 510640, China; Institute of Ocean and Earth Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Margaret William Thomes
- Institute of Ocean and Earth Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia; Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, 790 8577, Ehime Prefecture, Japan
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, 790 8577, Ehime Prefecture, Japan
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, GD 510640, China
| | - Mohamad Pauzi Zakaria
- Institute of Ocean and Earth Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yang Amri Affendi
- Institute of Ocean and Earth Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Fook Choy Yap
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, 11529, Taiwan
| | - Li Lee Chew
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Hong Wooi Teoh
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900, Sepang, Selangor, Malaysia
| | - Choon Weng Lee
- Institute of Ocean and Earth Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chui Wei Bong
- Institute of Ocean and Earth Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia; Laboratory of Microbial Ecology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
27
|
Kanerva M, Tue NM, Kunisue T, Vuori K, Iwata H. Effects on the Liver Transcriptome in Baltic Salmon: Contributions of Contamination with Organohalogen Compounds and Origin of Salmon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15246-15256. [PMID: 33166131 DOI: 10.1021/acs.est.0c04763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hatchery-reared Atlantic salmon (Salmo salar) has been released to support the wild salmon stocks in the Baltic Sea for decades. During their feeding migration, salmon are exposed to organohalogen compounds (OHCs). Here, we investigated the OHC levels and transcriptome profiles in the liver of wild and hatchery-reared salmon collected from the Baltic main basin (BMB), the Bothnian Sea (BS), and the Gulf of Finland (GoF) and examined whether salmon origin and OHC levels contributed to the hepatic transcriptome profiles. There were no differences in the OHC concentrations between wild and reared fish but larger differences between areas. Several transcript levels were associated with non-dioxin-like polychlorinated biphenyls, polybrominated diphenylethers, chlordanes, and dichlorodiphenyltrichloroethane in a concentration-dependent manner. Between wild and reared salmon, lipid metabolism and related signaling pathways were enriched within the BMB and BS, while amino acid metabolism was altered within the GoF. When comparing the different areas, lipid metabolism, environmental stress and cell growth, and death-related pathways were enriched. Class coinertia analysis showed that the covariation in the OHC levels and the transcriptome were significantly similar. These results suggest that the hepatic transcriptomes in wild and hatchery-reared salmon are more affected by the OHC levels rather than the origin of salmon.
Collapse
Affiliation(s)
- Mirella Kanerva
- CMES, Lab. of Environmental Toxicology, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Nguyen Minh Tue
- CMES, Lab. of Environmental Chemistry, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Tatsuya Kunisue
- CMES, Lab. of Environmental Chemistry, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Kristiina Vuori
- Department of Equine and Small Animal Medicine, University of Helsinki, P.O. Box 57, Koetilantie 2, Helsinki FI-00014, Finland
| | - Hisato Iwata
- CMES, Lab. of Environmental Toxicology, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| |
Collapse
|
28
|
Liu J, Ma S, Lin M, Tang J, Yue C, Zhang Z, Yu Y, An T. New Mixed Bromine/Chlorine Transformation Products of Tetrabromobisphenol A: Synthesis and Identification in Dust Samples from an E-Waste Dismantling Site. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12235-12244. [PMID: 32885965 DOI: 10.1021/acs.est.0c04494] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The large-scale production and usage of tetrabromobisphenol A (TBBPA) and its analogues have caused widespread contamination, raising concern about their potential endocrine disruption effects on both humans and ecosystems. In the present study, debromination and unknown mixed bromine/chlorine transformation products of TBBPA (X-BBPA) were screened in dust samples from an e-waste dismantling site. Five monochloro products (2-chloro-2',6,6'-TriBBPA, 2-chloro-2',6-DiBBPA, 2-chloro-2',6'-DiBBPA, 2-chloro-2'-MoBBPA, and 2-chloro-6-MoBBPA) and two dichloro products (2,2'-dichloro-6,6'-DiBBPA and 2,2'-dichloro-6-MoBBPA) were successfully synthesized and structurally identified. TBBPA and its transformation products were detected by comparison of their mass spectra and retention times with those of synthetic standards. The mean concentration of X-BBPA was 1.63 × 104 ng/g in e-waste dismantling workshop dust samples based on dry weight, which was at a similar level to TBBPA. However, it was 1 order of magnitude lower than the concentrations of the debromination congeners. Thus, both debromination and chlorine-bromine exchange may be important reactions during the thermal processing of e-waste. The results on mixed chlorinated/brominated TBBPA transformation products provided new insights into TBBPA transformation. The elevated levels of the transformation products of TBBPA suggested that these products should be targeted to avoid underestimation of possible health risks.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Synergy Innovation Institute of GDUT, Shantou 515100, China
| | - Meiqing Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Congcong Yue
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhang Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
29
|
Falandysz J, Smith F, Fernandes AR. Polybrominated dibenzo-p-dioxins (PBDDs) and - dibenzofurans (PBDFs) in cod (Gadus morhua) liver-derived products from 1972 to 2017. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137840. [PMID: 32349199 DOI: 10.1016/j.scitotenv.2020.137840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/11/2020] [Accepted: 03/08/2020] [Indexed: 06/11/2023]
Abstract
Literature data on the occurrence and prevalence of polybrominated dibenzo-p-dioxins (PBDDs) and polybrominated dibenzofurans (PBDFs) in foods including seafood are scarce. In this study, a number of cod-derived products including medicinal grade cod liver oils sourced from Northern Atlantic waters (Iceland, Norway) and the Baltic Sea (Poland) during 1972-2001 and canned cod liver sourced from the Baltic Sea in 2017, showed detectable levels of PBDFs: such as 2,3,8-TrBDF at 0.57 to 5.249 pg g-1 fat and 1,2,3,4,6,7,8-HpBDF at <0.018 to 0.302 pg g-1 fat. PBDDs were not detected in the cod liver oils. Canned cod liver products showed low levels of 2,3,7,8-TeBDD in the range <0.017 to 0.022 pg g-1 whole weight and 1,2,3,7,8-PeBDD at <0.03 to 0.039 pg g-1 whole weight. These concentrations were computed to yield upper bound toxic equivalences (TEQs) of 0.14 to 0.17 pg g-1 for the oils and 0.12 to 0.25 pg g-1 for the canned products (0.08 pg g-1 ww for both products). The resulting supplementary and dietary intakes are low (0.02 to 0.11 pg kg-1 bm day-1 for the oils and 0.07 to 0.17 pg kg-1 bm week-1 for the canned livers) in comparison to the recently expressed tolerable weekly intake of 2 pg kg-1 bm week-1. However, the intakes are underestimates, as due to a lack of analytical standards not all PBDD/F TEQ contributing congeners could be included. The PBDD/F TEQ contributes to the cumulative toxicity arising from other contaminants such as chlorinated dioxins and polychlorinated biphenyls.
Collapse
Affiliation(s)
- Jerzy Falandysz
- University of Gdańsk, Environmental Chemistry and Ecotoxicology, 80-308 Gdańsk, Poland; Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130015 Cartagena, Colombia.
| | | | - Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
30
|
Badea SL, Geana EI, Niculescu VC, Ionete RE. Recent progresses in analytical GC and LC mass spectrometric based-methods for the detection of emerging chlorinated and brominated contaminants and their transformation products in aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137914. [PMID: 32208267 DOI: 10.1016/j.scitotenv.2020.137914] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
This paper is an overview of screening methods recently developed for emerging halogenated contaminants and their transformation products. The target screening methods are available only for a limited number of emerging pollutants since the reference standards for these compounds are not always available, but a risk assessment of those micropollutants in environment must be performed anyhow. Therefore, the chromatographic techniques hyphenated with high resolution mass spectrometry (HRMS) trend to become indispensable methods for suspect and non-target screening of emerging halogenated contaminants. HRMS is also an effective tool for tentatively identification of the micropollutants' transformation products existing in much lower concentrations. To assess the transformation pathway of halogenated contaminants in environment, the non-target screening methods must be combined with biodegradation lab experiments and also with advanced oxidation and reduction processes that can mimic the transformation on these contaminants in environment. It is expected that in the future, the accurate-mass full-spectra of transformation products recorded by HRMS will be the basic information needed to elucidate the transformation pathways of emerging halogenated contaminants in aquatic environment.
Collapse
Affiliation(s)
- Silviu-Laurentiu Badea
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4th Uzinei Street, 240050 Râmnicu Vâlcea, Romania.
| | - Elisabeta-Irina Geana
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4th Uzinei Street, 240050 Râmnicu Vâlcea, Romania
| | - Violeta-Carolina Niculescu
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4th Uzinei Street, 240050 Râmnicu Vâlcea, Romania
| | - Roxana-Elena Ionete
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4th Uzinei Street, 240050 Râmnicu Vâlcea, Romania
| |
Collapse
|
31
|
Dai Q, Xu X, Eskenazi B, Asante KA, Chen A, Fobil J, Bergman Å, Brennan L, Sly PD, Nnorom IC, Pascale A, Wang Q, Zeng EY, Zeng Z, Landrigan PJ, Bruné Drisse MN, Huo X. Severe dioxin-like compound (DLC) contamination in e-waste recycling areas: An under-recognized threat to local health. ENVIRONMENT INTERNATIONAL 2020; 139:105731. [PMID: 32315892 DOI: 10.1016/j.envint.2020.105731] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 02/05/2023]
Abstract
Electrical and electronic waste (e-waste) burning and recycling activities have become one of the main emission sources of dioxin-like compounds (DLCs). Workers involved in e-waste recycling operations and residents living near e-waste recycling sites (EWRS) are exposed to high levels of DLCs. Epidemiological and experimental in vivo studies have reported a range of interconnected responses in multiple systems with DLC exposure. However, due to the compositional complexity of DLCs and difficulties in assessing mixture effects of the complex mixture of e-waste-related contaminants, there are few studies concerning human health outcomes related to DLC exposure at informal EWRS. In this paper, we have reviewed the environmental levels and body burdens of DLCs at EWRS and compared them with the levels reported to be associated with observable adverse effects to assess the health risks of DLC exposure at EWRS. In general, DLC concentrations at EWRS of many countries have been decreasing in recent years due to stricter regulations on e-waste recycling activities, but the contamination status is still severe. Comparison with available data from industrial sites and well-known highly DLC contaminated areas shows that high levels of DLCs derived from crude e-waste recycling processes lead to elevated body burdens. The DLC levels in human blood and breast milk at EWRS are higher than those reported in some epidemiological studies that are related to various health impacts. The estimated total daily intakes of DLCs for people in EWRS far exceed the WHO recommended total daily intake limit. It can be inferred that people living in EWRS with high DLC contamination have higher health risks. Therefore, more well-designed epidemiological studies are urgently needed to focus on the health effects of DLC pollution in EWRS. Continuous monitoring of the temporal trends of DLC levels in EWRS after actions is of highest importance.
Collapse
Affiliation(s)
- Qingyuan Dai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, China
| | - Brenda Eskenazi
- School of Public Health, University of California, Berkeley, USA
| | | | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, USA
| | - Julius Fobil
- School of Public Health, University of Ghana, Ghana
| | - Åke Bergman
- Department of Environmental Science, Stockholm University, Sweden; Department of Science and Technology, Örebro University, Sweden; College of Environmental Science and Engineering, Tongji University, China
| | - Lesley Brennan
- Department of Obstetrics and Gynaecology, University of Alberta, Canada
| | - Peter D Sly
- Child Health Research Centre, University of Queensland, Australia
| | | | - Antonio Pascale
- Department of Toxicology, University of the Republic, Uruguay
| | - Qihua Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, China
| | | | - Marie-Noel Bruné Drisse
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Xia Huo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, China.
| |
Collapse
|
32
|
Amaral MSS, Nolvachai Y, Marriott PJ. Comprehensive Two-Dimensional Gas Chromatography Advances in Technology and Applications: Biennial Update. Anal Chem 2019; 92:85-104. [DOI: 10.1021/acs.analchem.9b05412] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michelle S. S. Amaral
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Yada Nolvachai
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Philip J. Marriott
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
33
|
Mukai K, Fujimori T, Shiota K, Takaoka M. Quantitative speciation of insoluble chlorine in E-waste open burning soil: Implications of the presence of unidentified aromatic-Cl and insoluble chlorides. CHEMOSPHERE 2019; 233:493-502. [PMID: 31185333 DOI: 10.1016/j.chemosphere.2019.05.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/26/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Open burning of electronic waste (E-waste) produces numerous organochlorine compounds (OCs). Although the presence of unidentified OCs has been suggested, the mass balance of identified and unidentified OCs in E-waste open burning soils (EOBSs) still remains unknown. In this study, the concentrations of Cl bonded with aromatic carbon (aromatic-Cl) and aliphatic carbon (aliphatic-Cl), and inorganic Cl in EOBSs were determined by focusing on chlorine (Cl) in water-insoluble fractions (insoluble Cl) and applying Cl K-edge X-ray absorption spectroscopy in conjunction with combustion ion chromatography. The concentrations of identified Cl (Cl in five individual OCs: polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, chlorinated polycyclic aromatic hydrocarbons and chlorinated benzenes) were calculated from the concentrations previously reported for the same samples. The proportions of identified Cl were less than 1% to aromatic-Cl, indicating the abundance of unidentified OCs. The concentrations of both aromatic-Cl and identified Cl were highest in the sample collected from the site in Vietnam (VN), where wires and cables were mainly burned, suggesting that unidentified aromatic-Cl were produced through pathways similar to those of identified OCs, and the pathway could be related to burning of wires and cables. Further, insoluble Cu (II) compound, Cu2(OH)3Cl were assumed to be present in EOBSs and the concentration was highest in VN, implying that insoluble inorganic chlorides could be related to the formation of aromatic-Cl and identified Cl.
Collapse
Affiliation(s)
- Kota Mukai
- Department of Environmental Engineering, Graduate School of Engineering, Japan
| | - Takashi Fujimori
- Department of Environmental Engineering, Graduate School of Engineering, Japan; Department of Global Ecology, Graduate School of Global Environmental Studies, Kyoto University, Katsura, Nisikyo-ku, Kyoto, 615-8540, Japan.
| | - Kenji Shiota
- Department of Environmental Engineering, Graduate School of Engineering, Japan
| | - Masaki Takaoka
- Department of Environmental Engineering, Graduate School of Engineering, Japan; Department of Global Ecology, Graduate School of Global Environmental Studies, Kyoto University, Katsura, Nisikyo-ku, Kyoto, 615-8540, Japan
| |
Collapse
|