1
|
Wu S, Tong C, Liu J. Obesogenic effects of six classes of emerging contaminants. J Environ Sci (China) 2025; 151:252-272. [PMID: 39481937 DOI: 10.1016/j.jes.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 11/03/2024]
Abstract
There is growing concern about the concept that exposure to environmental chemicals may be contributing to the obesity epidemic. However, there is no consensus on the obesogenic effects of emerging contaminants from a toxicological and environmental perspective. The potential human exposure and experimental evidence for obesogenic effects of emerging contaminants need to be systematically discussed. The main objective of this review is to provide recommendations for further subsequent policy development following a critical analysis of the literature for humans and experimental animals exposed to emerging contaminants. This article reviews human exposure to emerging contaminants (with a focus on antimicrobials, preservatives, water and oil repellents, flame retardants, antibiotics and bisphenols) and the impact of emerging contaminants on obesity. These emerging contaminants have been widely detected in human biological samples. Epidemiological studies provide evidence linking exposure to emerging contaminants to the risks of obesity in humans. Studies based on animal models and adipose cells show the obesogenic effects of emerging contaminants and identify modes of action by which contaminants may induce changes in body fat accumulation and lipid metabolic homeostasis. Some knowledge gaps in this area and future directions for further investigation are discussed.
Collapse
Affiliation(s)
- Siying Wu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaoyu Tong
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Zhou J, Liang C, Li J, Gu J, Salamova A, Liu L. Consumer products are important reservoirs and sources of organophosphate tri-esters and di-esters: Characteristics, mass inventory, and implication for waste management. J Environ Sci (China) 2025; 151:550-559. [PMID: 39481961 DOI: 10.1016/j.jes.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 11/03/2024]
Abstract
Numerous studies documented the occurrence of organophosphate tri-esters (tri-OPEs) and di-esters (di-OPEs) in the environment. Little information is available on their occurrence in waste consumer products, reservoirs and sources of these chemicals. This study collected and analyzed 92 waste consumer products manufactured from diverse polymers, including polyurethane foam (PUF), polystyrene (PS), acrylonitrile butadiene styrene (ABS), polypropylene (PP), and polyethylene (PE) to obtain information on the occurrence and profiles of 16 tri-OPEs and 10 di-OPEs. Total concentrations of di-OPEs (18-370,000 ng/ g, median 1,700 ng/g) were one order of magnitude lower than those of tri-OPEs (94-4,500,000 ng/g, median 5,400 ng/g). The concentrations of both tri- and di-OPEs in products made of PUF, PS, and ABS were orders of magnitude higher than those made of PP and PE. The compositional patterns of OPEs varied among different polymer types but were generally dominated by bisphenol A bis(diphenyl phosphate), triphenyl phosphate, tris(1-chloro-2-propyl) phosphate, di-phenyl phosphate (DPHP), and bis (2-ethylhexyl) phosphate. Two industrially applied di-OPEs (di-n-butyl phosphate and DPHP) exhibited higher levels than their respective tri-OPEs, contrary to their production volumes. Some non-industrially applied chlorinated di-OPEs were also detected, with concentrations up to 97,000 ng/g. These findings suggest that degradation of tri-OPEs during the manufacturing and use of products is an important source of di-OPEs. The mass inventories of tri-OPEs and di-OPEs in consumer products were estimated at 3,100 and 750 tons/year, respectively. This study highlights the importance of consumer products as emission sources of a broad suite of OPEs.
Collapse
Affiliation(s)
- Jie Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Chan Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jinyun Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jiayi Gu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Amina Salamova
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Georgia 30322, USA
| | - Liangying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
3
|
Wu Y, Yao Y, Chen S, Li X, Wang Z, Wang J, Gao H, Chen H, Wang L, Sun H. Target and Nontarget Analysis of Organophosphorus Flame Retardants and Plasticizers in a River Impacted by Industrial Activity in Eastern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39723965 DOI: 10.1021/acs.est.4c09875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Industrial activities are a major source of organophosphorus flame retardants (OPFRs) and plasticizers in aquatic environments. This study investigated the distribution of 40 OPFRs in a river impacted by major industrial manufacturing plants in Eastern China by target analysis. Nontarget analysis using high-resolution mass spectrometry was further employed to identify novel organophosphorus compounds (NOPs). Thirty-four OPFRs were detected in river water samples, with total concentrations of 62.9-1.06 × 103 ng/L (median: 455 ng/L). Triphenylphosphine oxide and diphenyl phosphoric acid were ubiquitously detected up to 620 and 127 ng/L, respectively. Among 26 identified NOPs, 17 were reported for the first time in the environment, including 14 novel organophosphate esters (especially 4 heterocycles and 3 oligomers), 2 organophosphites, and an organophosphonate. Bis(2,4-di-tert-butylphenyl) hydrogen phosphate and 2,2-dimethylpropoxy(propyl)phosphinic acid with high predicted persistence or toxicity were widely detected, with semiquantified concentrations up to 990 and 1.0 × 103 ng/L, respectively. Structurally similar organophosphorus heterocycles exhibited consistent variation trends, suggesting a common emission source. Estimated annual river discharges to the sea were 20.6-37.0 kg/yr for OPFRs and 30.8-161 kg/yr for NOPs. These findings indicate that industrial activities contribute OPFRs and NOPs to the river catchment and its estuary, posing ecological risks to both terrestrial and marine environments.
Collapse
Affiliation(s)
- Yilin Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shijie Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ziyuan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jing Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Huixian Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
4
|
Zhang Y, Qin H, Li B, Yu Z, Zu B, Kong R, Letcher RJ, Liu C, Zhou B. A Novel Organophosphate Ester, Tris(2,4-di tert-butylphenyl) Phosphate, Induced Reproductive Toxicity in Male Zebrafish at Environmentally Relevant Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39718999 DOI: 10.1021/acs.est.4c10931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
As a novel organophosphate ester (NOPE), tris(2,4-ditert-butylphenyl) phosphate (TDtBPP) has attracted significant attention due to its unexpectedly high detection in natural environments. However, the ecological toxic effects of environmentally relevant concentrations of TDtBPP in organisms remain entirely unknown. In this study, 1 month old zebrafish were exposed to 0, 50, 500, or 5000 ng/L TDtBPP for 150 days, and the reproductive toxicity in male fish was evaluated. Results demonstrated that TDtBPP exposure significantly inhibited the maturation of spermatozoa and thus decreased spermatogenesis. Furthermore, abnormal sperm morphology and decreased sperm motility were also observed. The decrease in sperm quantity and quality eventually resulted in the declining fecundity. Moreover, TDtBPP exposure downregulated the expression of hsd3b1 in vivo and in vitro and subsequently inhibited the synthesis of androgens in zebrafish testes and Leydig cells. This inhibition of androgen synthesis appeared to be responsible for the observed reproductive toxicity in male fish. Molecular docking and dual-luciferase reporter gene experiments elucidated that TDtBPP inhibited the promotion of vitamin D on hsd3b1 transcription by the vitamin D receptor and thus downregulated the expression of hsd3b1. Our findings provide first time evidence that TDtBPP poses a risk to male fish reproduction at environmentally relevant levels.
Collapse
Affiliation(s)
- Yongkang Zhang
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Haiyu Qin
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Boqun Li
- College of Fisheries, Huazhong Agricultural University, Wuhan430070, China
| | - Zichen Yu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Bowen Zu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Ren Kong
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Robert J Letcher
- Departments of Chemistry and Biology, Carleton University, OttawaK1S 5B6, Ontario ,Canada
| | - Chunsheng Liu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
| |
Collapse
|
5
|
Feng X, Xu W, Ji X, Liang J, Liu X, Liu X, Liu C, Qu G, Liu R. First Evidence of Novel Organothiophosphate Esters as Prevalent New Pollutants in Dust from Automotive Repair Shops Discovered by High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22790-22798. [PMID: 39582259 DOI: 10.1021/acs.est.4c09683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The occurrence of organophosphorus compounds has garnered global concern due to their widespread production and potential environmental risks. Limited structural information has hindered a comprehensive understanding of their composition. By characteristic fragmentation-based nontarget analysis, the occurrence and composition of organothiophosphate esters (OTPEs), which are antiwear additives in lubricant oils that have received little attention previously, were investigated in dust from automotive repair shops and surrounding buildings. Fourteen OTPEs were tentatively identified, including four triarylphosphorothionates, six O,O-dialkyl phosphorothioates, and four O-alkyl O-alkyl sulfone phosphorothioates, among which four OTPEs were further confirmed by authentic standards or an industrial product. Triphenyl phosphorothioate (TPhPt) and tris(2,4-di-tert-butylphenyl) phosphorothioate (AO168=S) were prevalently detected in automotive repair shops with median concentrations of 230 and 246 ng/g, respectively, closely comparable to triphenyl phosphate (TPhP, median concentration: 302 ng/g). O,O-Dihexyl phosphorothioate (DHPt), O,O-dioctyl phosphorothioate (DOPt), O-hexyl O-hexyl sulfone phosphorothioate (DHSPt), and O-octyl O-octyl sulfone phosphorothioate (DOSPt) were the abundant analogues in automotive repair shops with semiquantitative median concentrations in the range of 119-1.05 × 103 ng/g. Hierarchical cluster analysis showed that OTPEs exhibited similar distribution patterns across automotive repair shops, indicating that these chemicals had similar sources. Moreover, the concentrations of OTPEs were usually higher in automotive repair shops than that in surrounding buildings, suggesting a motor vehicle related emission source. To our knowledge, 12 out of the 14 detected OPTEs were reported in the environment for the first time. The discovery of these OTPEs expanded the scope of known organophosphorus pollutants, highlighting the potential contaminants of OTPEs from lubricant oils for automotive and industrial applications.
Collapse
Affiliation(s)
- Xiaoxia Feng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Wenzhuo Xu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaomeng Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiefeng Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoyun Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xueke Liu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Chunguang Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
6
|
Cui J, Xiao S, Guo H, Wei Y, Shi X, Zhao F, Liu X, Zhou Z, Liu D, Wang P. Insights into organophosphorus insecticide malathion induced reproductive toxicity and intergenerational effect in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 959:178188. [PMID: 39709839 DOI: 10.1016/j.scitotenv.2024.178188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
The reproductive and transgenerational effects of malathion, a widely utilized low-toxicity organophosphorus insecticide, were explored using zebrafish as model animal. Adult zebrafish (F0) were exposed to malathion at 0.1-1.0 mg/L for 60 days for exploring the reproductive toxicity in sex differences and the potential mechanisms, and development and transcription levels in F1 offspring were assessed. Malathion significantly suppressed the fertility of zebrafish as evidenced by reduced spawning and lower fertilization rates in F1 offspring. Abnormal gonadal development and steroid hormone disorders were observed in F0 zebrafish, which was associated with the alterations in the transcription of core genes (such as cyp11a, cyp19a, vtg1, era) along the hypothalamus-pituitary-gonad-liver (HPGL) axis. The expression level of vtg1 played a key role in the malathion-induced sex dependence on E2 and VTG levels. The reduction of E2 and VTG could disrupt ovarian capability in females. E2 excess would cause feminization in males. Molecular docking indicated that reproductive disorders induced by malathion in zebrafish mainly through estrogen-like effects and CYP11A antagonism. Parental exposure to malathion abnormalized embryonic development in F1 offspring, comprising heartbeats decrease, deformities and body length reduction. Transcriptomics suggested that malathion-induced reproductive toxicity could be transmitted across generations, which may adversely affect fish populations.
Collapse
Affiliation(s)
- Jingna Cui
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Shouchun Xiao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Haoming Guo
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Yimu Wei
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Xinlei Shi
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Fanrong Zhao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Xueke Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China.
| |
Collapse
|
7
|
Eze OO, Ogbuene EB, Ibraheem O, Küster E, Eze CT. Novel Flame Retardants (NFRs) in E-waste: Environmental burdens, health implications, and recommendations for safety assessment and sustainable management. Toxicology 2024:154037. [PMID: 39716513 DOI: 10.1016/j.tox.2024.154037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Novel flame retardants (NFRs) have emerged as chemicals of environmental health concern due to their widespread use as an alternative to polybrominated diphenyl ethers (PBDE) in electrical and electronic devices. Humans and ecosystems are under threat because of e-waste recycling procedures that may emit NFRs and other anthropogenic chemicals into the e-waste workplace and the surrounding environment. The individual toxicity of NFRs including novel brominated flame retardants (NBFRs), their combined effects and the underlying mechanisms of toxicity have remained poorly understood. Exposure assessment as well as chemical safety testing should focus on prioritizing N(B)FRs for regulation and management. Here, the occurrence of N(B)FRs in the vicinity and surroundings of e-waste recycling sites are presented. Important knowledge gaps and prospects for a more integrated, harmonized, and mechanistically positioned risk assessment strategy for N(B)FRs as well as possible economically feasible and environmentally sustainable approaches for removing them from complex matrices are highlighted. Overall, data in the ng to µg-ranges of N(B)FR in soil, dust, sediment, water and fish were found. Dust and soil sample concentrations ranged from the low ng to low µg/g range while water concentrations were always in the low ng/L range (~0.5 to ~4ng/L). Concentration in fish was usually in the range of 3- ~300ng/g with two substances in the low to medium-high µg/g range (DBDPE, BTBPE). From the 20N(B)FR analysed in sediment samples only 10 were above detection limit. Most chemicals were found in a low ng/g range.
Collapse
Affiliation(s)
- Obianuju Oluchukwu Eze
- Helmholtz Centre for Environmental Research - UFZ, Department Ecotoxicology, Leipzig, Germany
| | - Emeka Bright Ogbuene
- Centre for Environmental Management and Control, University of Nigeria, Enugu Campus, Nigeria
| | - Omodele Ibraheem
- Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | - Eberhard Küster
- Helmholtz Centre for Environmental Research - UFZ, Department Ecotoxicology, Leipzig, Germany.
| | - Chukwuebuka ThankGod Eze
- Helmholtz Centre for Environmental Research - UFZ, Department Ecotoxicology, Leipzig, Germany; Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels-Belgium
| |
Collapse
|
8
|
Chen R, Huang W, Sun L, Yang J, Ma T, Shi R. Distribution, transport and ecological risk prediction of organophosphate esters in China seas based on machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177559. [PMID: 39547374 DOI: 10.1016/j.scitotenv.2024.177559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/18/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Organophosphate esters (OPEs), widely used globally, have been detected in significant amounts in various environmental media, raising concerns about their persistence, bioaccumulation, and associated risks. Traditional sampling and detection methods are time-consuming and labor-intensive, limiting a comprehensive understanding. This study employs Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LGBM) models, using 12 feature variables and 463 OPEs concentration data points, to investigate the distribution and ecological risk of total OPEs (T-OPEs), chlorinated alkyl OPEs (Cl-OPEs), and aryl-OPEs in seawater of China Seas. The LGBM model proved optimal for predicting T-OPEs and Cl-OPEs concentrations, with RMSE of 0.48 and 0.46 and R2 values of 0.79 and 0.76. XGBoost was superior for aryl-OPEs, yielding an RMSE value of 0.82, and an R2 value of 0.87. Analysis revealed complex nonlinear relationships between features and OPEs concentrations. Maps showed higher OPEs pollution in urban agglomerations and estuaries, particularly in summer. The XGBoost model was the best predictor for ecological risks, with most sites categorized as low-risk, and a few as moderate-risk. This study offers valuable data and insights for managing OPEs pollution and ecological risks in the China Seas.
Collapse
Affiliation(s)
- Rui Chen
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China.
| | - Wenyang Huang
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Linlin Sun
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Jingyan Yang
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Tiantian Ma
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Rongguang Shi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
9
|
Li J, Yang L, Ding Y, Yang F, Tan H, Tang S, Chen D. Declining trends and regional variations of organophosphate ester contamination in indoor dust from mainland China: Insights from a filed study and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:178088. [PMID: 39705955 DOI: 10.1016/j.scitotenv.2024.178088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
This study investigated the presence of 20 organophosphate esters (OPEs) in indoor dust samples collected from the Chinese cities of Lanzhou, Xining, and Lhasa. The results demonstrate the ubiquitous presence of most OPEs in these three cities, with the highest concentrations of ΣOPEs found in Xining. We also summarized the occurrence of OPEs in indoor environments from 38 studies with 1875 samples collected across various regions of mainland China from 2012 to 2023. The weighted-median concentration of ΣOPEs in indoor dust exhibited region-specific variations, range from 381.9 to 6622.5 ng/g. Chloroalkyl-OPEs (Cl-OPEs) (e.g., tris(2-chloroethyl) phosphate (TCEP), tri(1-chloro-2-propyl) phosphate (TCIPP), and tri (1,3-dichloro-2-propyl) phosphate (TDCIPP)) predominated in all seven regions (range: 38.9 %-71.4 %). TCIPP was predominant in the Central China, North China, Northeast China, Northwest China, Southwest China, and Southwest China regions, while TCEP dominated in the Eastern China region. A significant downward trend in OPE concentrations in indoor environments was observed during the investigated period. Dust ingestion was identified as the predominant pathway of human exposure to OPEs indoors. The hazard quotients for Cl-OPEs were below the non-carcinogenic threshold, suggesting significant health risks are unlikely. This study underscores the widespread occurrence of OPEs in indoor dust across mainland China, emphasizing the necessity for ongoing monitoring and regulation of these chemicals.
Collapse
Affiliation(s)
- Jing Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Liu Yang
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Yuying Ding
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Hongli Tan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Shuqin Tang
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Da Chen
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
10
|
Liu S, Wang G, Xing Z, Xue H, Wang Y, Wang H, Dong X, Chen H, Liu Y. Stable Isotope and Multiomics Reveal Uptake, Translocation, and Transformation Mechanisms of Tris(2-chloroethyl) Phosphate in Wheat ( Triticum aestivum L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27797-27807. [PMID: 39654329 DOI: 10.1021/acs.jafc.4c08393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Uptake, translocation, and transformation mechanisms of tris(2-chloroethyl) phosphate (TCEP) in hydroponic wheat (Triticum aestivum L.) were systematically investigated using compound-specific stable isotope and multiomics analyses in this study. Results showed that TCEP was quickly adsorbed on root epidermis and then absorbed in roots via water and anion channels as well as an active process dependent on energy. Active process and anion channel preferentially translocated TCEP-containing light carbon isotopes and dominated the transmembrane transport of TCEP to enter vascular bundle. Transcriptomic and metabolomic analyses indicated gene-encoding ATP-binding cassette (ABC) transporters and purple acid phosphatases (PAPs) and glutathione S-transferases (GSTs) involved in TCEP transport and transformation, respectively. Molecular docking simulations showed that TCEP bound to the hydrophilic cavity of ABC transporter/PAP and hydrophobic cavity of GST, and hydrogen bonding was the important driving force. The results of this study offered insights for future effective mitigation of TCEP risk in edible plants.
Collapse
Affiliation(s)
- Shuaihao Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| | - Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| | - Ziao Xing
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| | - Hongyi Xue
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| | - Yana Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| | - Xu Dong
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| | - Haiyue Chen
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| |
Collapse
|
11
|
Gao N, Yang L, Zhu L, Zhu L, Feng J. New Insights into the Visual Toxicity of Organophosphate Esters: An Integrated Quantitative Adverse Outcome Pathway and Cross-chemical Extrapolation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22039-22052. [PMID: 39631370 DOI: 10.1021/acs.est.4c08176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Organophosphate esters (OPEs) have been documented to adversely affect visual function, potentially impacting wildlife survival and human health, thereby necessitating a comprehensive risk assessment. Despite the quantitative adverse outcome pathway (qAOP) holding promise for addressing this concern mechanistically, unclear mode of action and inadequate quantitative understanding across biological levels currently impede its development. Herein, we employed an integrated strategy, combining multiomics analyses, targeted bioassays, and modular model-fitting, to develop and validate a qAOP framework for visual toxicity of OPEs, exemplified by tris(2-butoxyethyl) phosphate, triphenyl phosphate, and tris(1,3-dichloro-2-propyl) phosphate. Our results revealed that these OPEs induce visual dysfunction in zebrafish larvae primarily via oxidative stress, then cascade to damaging photoreceptors and retinal structures, ultimately resulting in the disruption of visual behaviors (i.e., decreased optokinetic response, phototaxis, and visual motor response). The qAOP, validated through cross-chemical extrapolation, enabled the prediction for vision-related effects of OPEs within a certain domain. Integrating toxicokinetic modeling could compensate for the uncertainty in qAOP predictions, since adjusting for internal concentrations as inputs significantly enhanced the accuracy and applicability of the predictions. This work contributes to a better understanding of visual toxicity by OPEs and presents a promising paradigm for quantitative risk assessment based on the qAOP framework.
Collapse
Affiliation(s)
- Ning Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lanpeng Yang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Garner P, Davis AC, Bigley AN. PHP-Family Diesterase from Novosphingobium with Broad Specificity and High Catalytic Efficiency against Organophosphate Flame-Retardant Derived Diesters. Biochemistry 2024; 63:3189-3193. [PMID: 39622000 DOI: 10.1021/acs.biochem.4c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Organophosphate flame retardants have been widely used in plastic products since the early 2000s. Unfortunately, these compounds leach out of the plastics over time and are carcinogenic, developmental toxins, and endocrine disruptors. Due to the high usage levels and stable nature of the compounds, widespread contamination of the environment has now been observed. Despite their recent introduction into the environment, bacteria from the Sphingomonadaceae family have evolved a three-step hydrolytic pathway to utilize these compounds. The second step in this pathway in Sphingobium sp. TCM1 is catalyzed by Sb-PDE, which is a member of the polymerase and histidinol phosphatase (PHP) family of phosphatases. This enzyme is only the second case of a PHP-family enzyme capable of hydrolyzing phosphodiesters. Bioinformatics analysis has now been used to identify a second PHP diesterase from Novosphingobium sp. EMRT-2 (No-PDE). Kinetic characterization of Sb-PDE and No-PDE with authentic organophosphate flame-retardant diesters demonstrates that these enzymes are true diesterases with more than 1000-fold selectivity for the diesterase activity seen in some cases. Synthesis of a wide array of authentic flame-retardant diesters has allowed the substrate specificity of these enzymes to be determined, and mutagenic analysis of the active site residues has identified key residues that give rise to the high levels of diesterase activity. Despite high sequence identity, No-PDE is found to have a broader substrate specificity against flame-retardant derived diesters, and kcat/Km values greater than 104 M-1 s-1 are seen with the best substrates.
Collapse
Affiliation(s)
- Preston Garner
- Department of Chemistry and Physics, Southwestern Oklahoma State University, Weatherford, Oklahoma 73096, United States
| | - Andrew C Davis
- Department of Chemistry and Physics, Southwestern Oklahoma State University, Weatherford, Oklahoma 73096, United States
| | - Andrew N Bigley
- Department of Chemistry and Physics, Southwestern Oklahoma State University, Weatherford, Oklahoma 73096, United States
| |
Collapse
|
13
|
Alharbi A, Alhujaily M. Molecular Mechanism of Indoor Exposure to Airborne Halogenated Flame Retardants TCIPP (Tris(1,3-Dichloro-2-Propyl) Phosphate) and TCEP Tris(2-chloroethyl) Phosphate and Their Hazardous Effects on Biological Systems. Metabolites 2024; 14:697. [PMID: 39728479 DOI: 10.3390/metabo14120697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
TCIPP (tris(1,3-dichloro-2-propyl) phosphate) and TCEP (tris(2-chloroethyl) phosphate) are organophosphate ester flame retardants found in various consumer products, posing significant health and environmental risks through inhalation, ingestion, and dermal exposure. Research reveals these compounds cause oxidative stress, inflammation, endocrine disruption, genotoxicity, neurotoxicity, and potentially hepatotoxicity, nephrotoxicity, cardiotoxicity, developmental, reproductive, and immunotoxicity. This review summarizes the current knowledge on the toxicological mechanisms of TCIPP and TCEP and presents the latest data on their toxicological effects obtained in vitro and in vivo, using omic systems, and on the basis of computational modelling. It also elaborates on the scope of further toxicities and highlights the necessity of ongoing mechanistic research, integration of new technologies, and successful transfer of the acquired knowledge into risk evaluation, policies and regulations, and the creation of safer products. Since flame retardants are already present in homes, schools, offices, and daycare centres, efforts to scale back the exposure to these chemicals, most especially the hazardous ones, must be made to protect human health and the environment. Therefore, effective and timely prevention, based upon a deep knowledge of the entire toxicological profile of these substances, is the only way to face this difficult toxicological issue and provide for a healthy and safe future.
Collapse
Affiliation(s)
- Albatul Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Muhanad Alhujaily
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| |
Collapse
|
14
|
Wang S, Zheng N, An Q, Li X, Ji Y, Li Y, Chen C, Xiu Z. The effect of tris (1,3-dichloro-2-propyl) phosphate on the early embryonic heart development of Oryzias melastigma. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177313. [PMID: 39486542 DOI: 10.1016/j.scitotenv.2024.177313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The flame retardant tri (1, 3-dichloro-2-propyl) phosphate (TDCIPP) is widely present in environmental media and organisms. People have paid much attention to the growth and developmental toxicity of TDCIPP, but there is little information about its cardiotoxicity and potential mechanisms. In this study, marine medaka (Oryzias melastigma) embryos were exposed to TDCIPP solutions (0, 0.05, 0.5, 5, and 50 μg/L) for 21 days to investigate the adverse effects of TDCIPP on cardiac development. The results showed that TDCIPP exposure altered the heart rate at different stages of embryonic development. In addition, 50 μg/L TDCIPP resulted in increased sinus venosus (SV)-bulbus arteriosus (BA) distance, pericardial cysts, and cardiac linearization in newly hatched fish. During embryonic development, the expression level of key genes regulating cardiac development is disturbed. The early stage of cardiac development is the sensitive window period for the toxic effects of TDCIPP. Oxidative stress was observed in newly hatched juveniles, but no significant lipid peroxidation damage was observed. In addition, vitellogenin (VTG) levels in juvenile fish were significantly reduced. Our results show that TDCIPP exposure induces cardiotoxicity in marine medaka embryos, which is induced in the early stages and promotes heart defects by amplifying inflammatory responses at a later stage.
Collapse
Affiliation(s)
- Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China.
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Yining Ji
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Yunyang Li
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Changcheng Chen
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Zhifei Xiu
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| |
Collapse
|
15
|
Wu K, Chen R, Qiu Y, Zhang H, Zhu Z, Yin D. Organophosphate esters in vehicle interior dust from Chinese urban areas: What are the influencing factors of the occurrence? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177272. [PMID: 39477099 DOI: 10.1016/j.scitotenv.2024.177272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Organophosphate esters (OPEs) are a class of semi-volatile organic compounds frequently used to various products as flame retardants and plasticizers. As emerging pollutants, OPEs have attracted significant attention due to their potential impacts on human health and ecosystems. This study investigated the occurrence of OPEs in vehicle interior dust across 36 cities in China. The primary aims were to explore the correlations among OPE pollutants, identify potential emission sources, and examine the key factors influencing their distribution. The OPE concentrations ranged from 5450 ng/g to 63,700 ng/g, with the content of three categories of OPEs as follows: ΣChlorinated-OPEs (median: 17420 ng/g) > ΣAlkyl-OPEs (median: 3880 ng/g) > ΣAryl-OPEs (median: 1490 ng/g). In northern China, the aggregate concentration of OPEs in vehicle interior dust demonstrated higher levels compared to those in the western and mid-southeastern region, with the later two appeared to be comparable to each other. Coastal and inland cities displayed variations in OPE levels, with different representative OPEs. The occurrence of OPEs in vehicle interior dust was closely associated with regional economic development levels, motor vehicle parc, and road density. In contrast to other urban areas, first-tier cities showed the highest aggregate levels of OPEs in vehicle interior dust, with a significant increase observed specifically in the concentrations of Alkyl-OPEs and Aryl-OPEs.
Collapse
Affiliation(s)
- Kaixuan Wu
- Key laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Rui Chen
- Key laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yanling Qiu
- Key laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Hua Zhang
- Key laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhiliang Zhu
- Key laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daqiang Yin
- Key laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
16
|
Fricano A, Bianchi F, Di Filippo P, Pomata D, Riccardi C, Simonetti G, Buiarelli F. Determination of additives as markers of microplastic contamination in the environment. Talanta 2024; 285:127344. [PMID: 39667269 DOI: 10.1016/j.talanta.2024.127344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Microplastics are mostly inert particles and, therefore, may exhibit low toxicity, but adverse health effects may result from chemical additives commonly added to plastics. Plastic additives serve to make the material workable and thermodynamically stable as well as acting as softeners, fillers and colorants. They may include hazardous chemicals, such as organic phosphates, phthalates, terephthalates, adipates, benzoates, citrates, sebacates, trimellitates, etc. The use of chromatography coupled to Mass Spectrometry for the analysis of plastic additives can constitute a valid support for the determination of microplastics in the environment. In this paper, results of investigation by chromatographic techniques coupled with mass spectrometry for analysis of phosphates, phthalates, terephthalates, adipates, benzoates, citrates, sebacates, trimellitates in settled dust of a workplace are reported. Both gas and liquid chromatography were used to separate the analytes with different chemical-physical properties. An excellent extraction and evaporation method preceded by an efficient clean-up process were fundamental steps for the subsequent proper detection of the analytes. LOD and LOQ values sufficiently low to detect the analytes in the environmental samples and good instrumental repeatability were obtained as a result of thorough cleaning cycles of sorbents and extraction cells, prior to the treatment of real samples. Such a step was crucial due to the ubiquity of many of the analytes investigated. Their presence in blank samples was minimized, obtaining statistically acceptable values to be subtracted from real samples. Our optimized method enabled the detection in samples of settled dust of most of the analytes investigated, some known as substances of very high concern and/or persistent, bioaccumulative, and possible reprotoxic endocrine disruptors. Safe, non-toxic, and biodegradable plasticizers were also found. This search for plastic additives in dust samples to which workers may be exposed has the dual purpose of identifying the presence of toxic chemicals and detecting the presence of microplastics.
Collapse
Affiliation(s)
- Andrea Fricano
- Department of Chemistry, Sapienza University of Rome, 00185, Rome, Italy
| | - Federica Bianchi
- Department of Chemistry, Sapienza University of Rome, 00185, Rome, Italy
| | | | - Donatella Pomata
- DIT, Italian Workers' Compensation Authority (INAIL), 00143, Rome, Italy
| | - Carmela Riccardi
- DIT, Italian Workers' Compensation Authority (INAIL), 00143, Rome, Italy
| | - Giulia Simonetti
- Department of Chemistry, Sapienza University of Rome, 00185, Rome, Italy
| | | |
Collapse
|
17
|
Li D, Xie C, Fan Z, Ding R, Wang X, Liao Y. Evidence that cadmium aggravate the toxicity of triphenyl phosphate in aquatic sediments to Corbicula fluminea. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136407. [PMID: 39522218 DOI: 10.1016/j.jhazmat.2024.136407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/02/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
The ubiquitous co-existence of triphenyl phosphate (TPhP) and heavy metals in sediments raises significant biotoxicity concerns. However, uncertainty still exists regarding their combined toxicity to benthic organisms. Therefore, this research was conducted to elucidate the influences of cadmium (Cd) on TPhP toxicity to Corbicula fluminea (C. fluminea) in sediments. As a result, Cd promoted the accumulation of TPhP in C. fluminea and enhanced TPhP toxicity, manifested by damaged cell membranes and pronounced histological alterations. Molecular docking revealed that TPhP-Cd complexes exhibit greater binding affinity to cytochrome P4501A1 (CYP1A1) compared to TPhP alone. With the activity of CYP1A1 increasing, the biotransformation of TPhP was promoted in low-TPhP+Cd treatments (T5C0/T5C5/T5C35). Additionally, metabolites related to antioxidant defence and repair processes were reinforced to alleviate the toxicity of TPhP and Cd. However, excessive oxidative stress impaired the CYP1A1 activity in high-TPhP+Cd treatments (T35C0/T35C5/T35C35). Furthermore, metabolic pathway analysis revealed significant perturbations in the citrate cycle, alanine, aspartate and glutamate metabolism, purine metabolism, and pyrimidine metabolism. These disruptions weakened the repair capacity and aggravated apoptosis in digestive glands, potentially contributing to the synergistic toxicity of TPhP and Cd. The results highlight the ecological risks posed by TPhP in combination with heavy metals to benthic organisms.
Collapse
Affiliation(s)
- Dandan Li
- Nanjing Hydraulic Research Institute, Nanjing 210029, China; Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Wuxi 214131, China
| | - Chen Xie
- Nanjing Hydraulic Research Institute, Nanjing 210029, China; Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Wuxi 214131, China
| | - Ziwu Fan
- Nanjing Hydraulic Research Institute, Nanjing 210029, China; Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Wuxi 214131, China.
| | - Rui Ding
- Nanjing Hydraulic Research Institute, Nanjing 210029, China; Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Wuxi 214131, China
| | - Xiaoyu Wang
- Nanjing Hydraulic Research Institute, Nanjing 210029, China; Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Wuxi 214131, China.
| | - Yipeng Liao
- Nanjing Hydraulic Research Institute, Nanjing 210029, China; Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Wuxi 214131, China
| |
Collapse
|
18
|
de Carvalho LMS, de Souza NRD, Wanderlind EH. Catalytic strategies for detoxifying phosphorus(V) biocides. Chem Commun (Camb) 2024. [PMID: 39629671 DOI: 10.1039/d4cc03116d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Organophosphorus substances are employed in several industrial segments, albeit they may feature high toxicity levels depending on their structures. Based on previous extensive investigations of structure-reactivity patterns, researchers have been working on the development of catalysts as a means to detoxify phosphorus(V) organic compounds rapidly and safely through specific reaction pathways. This highlight reviews some recent advances in the utilization of catalytic systems for the decomposition of organophosphorus(V) compounds, in most cases using simulants of nerve agents. The nature of the catalysts is wide, including heterogeneous, colloidal and supramolecular systems, and although not all cases may be practical for the detoxification of phosphorus(V) organic structures, they are certainly useful for future research on this theme.
Collapse
Affiliation(s)
- Larissa Maria S de Carvalho
- Federal Rural University of Rio de Janeiro (UFRRJ), Institute of Chemistry, Department of Organic Chemistry, BR 465, Km 7, CEP 23.897-000, Seropédica (Rio de Janeiro), Brazil.
| | - Nathália R D de Souza
- Federal Rural University of Rio de Janeiro (UFRRJ), Institute of Chemistry, Department of Organic Chemistry, BR 465, Km 7, CEP 23.897-000, Seropédica (Rio de Janeiro), Brazil.
| | - Eduardo H Wanderlind
- Federal Rural University of Rio de Janeiro (UFRRJ), Institute of Chemistry, Department of Organic Chemistry, BR 465, Km 7, CEP 23.897-000, Seropédica (Rio de Janeiro), Brazil.
| |
Collapse
|
19
|
Schkoda S, Horman B, Witchey S, St Armour G, Nelson M, Gaeta E, Scott M, Patisaul HB. Sex-specific effects on elements of the social brain neural network in Wistar rats from perinatal exposure to FireMaster 550 or its components. Neurotoxicology 2024; 105:111-120. [PMID: 39241866 DOI: 10.1016/j.neuro.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Developmental exposure to chemical flame retardants (FRs) has been linked to a variety of neurodevelopmental disorders and abnormal socioemotional behaviors in human and laboratory animal studies. We have previously shown in Wistar rats that gestational and lactational exposure to the FR mixture Firemaster 550 (FM 550) or its brominated or organophosphate ester (OPFR) components (at 2000 µg, 1000 µg, and 1000 µg oral to the dam respectively (absolute and not by bodyweight)) results in increased anxiety-like behaviors in females and decreased sociality in both sexes. Using their siblings, this study characterized sex and chemical specific targets of disruption in brain regions underlying each behavioral phenotype. Offspring were exposed across gestation and lactation then prepared for either immunohistochemistry or autoradiography at postnatal day 90 to quantify expression of serotonin, estrogen receptor α (ERα), and oxytocin receptor (OTR) in multiple brain regions. No effect of exposure was found in males for any biological target. In females, serotonin innervation was increased in the medial amygdala of FM 550 exposed animals while ERα expression in the bed nucleus of the stria terminalis (BNST) was reduced by FM 550 and OPFR. Evidence of disrupted OTR was observed in males, particularly the BNST but considered an exploratory finding given the small sample size. These results begin to shed light on the mechanisms by which developmental FR exposure alters socioemotional behaviors of relevance to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Stacy Schkoda
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Brian Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Shannah Witchey
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Genevieve St Armour
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States
| | - Mason Nelson
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Emily Gaeta
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Madeline Scott
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
20
|
Folarin BT, Poma G, Yin S, Altamirano JC, Cleys P, Oluseyi T, Covaci A. Source identification and human exposure assessment of organophosphate flame retardants and plasticisers in soil and outdoor dust from Nigerian e-waste dismantling and dumpsites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124998. [PMID: 39313125 DOI: 10.1016/j.envpol.2024.124998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Electronic waste (e-waste) dismantling and dumpsite processes are major sources of organophosphate flame retardant and plasticiser emissions and may pose potentially adverse effects on environment and human health. In 20 outdoor dust and 49 soil samples collected from four e-waste dismantling and three e-waste dumpsites in two States of Nigeria (Lagos and Ogun), we identified 13 alternative plasticisers (APs), 7 legacy phthalate plasticisers (LPs), and 17 organophosphorus flame retardants (OPFRs) for the first time in African e-waste streams. In the samples from dismantling sites, the range (median) concentrations of ∑13APs, ∑7LPs, and ∑17OPFRs were 11-2747 μg/g (144 μg/g), 11-396 μg/g (125 μg/g), and 0.2-68 μg/g (5.5 μg), in dust respectively and 1.8-297 μg/g (55 μg/g), 1.3-274 μg/g (48.5 μg/g), and 1.6-62 μg/g (1.6 μg/g), in soil respectively. Results for soil samples from e-waste dumpsites were (6.6-195 μg/g (23.7 μg/g), 6.0-295 μg/g (54.8), and 0.4-42.3 μg/g (9.0 μg/g) for ∑13APs, ∑7LPs, and ∑17OPFRs respectively. Overall, concentrations of APs were significantly higher at the dismantling sites (p = 0.005) compared to dumpsites, levels of LPs were higher at dismantling sites but not significant, while OPFR concentrations were significantly higher in dumpsite samples (p = 0.005). Plasticisers were found to be major contributors to pollution at e-waste dismantling sites, while OPFRs were associated with both automobile dismantling and e-waste dumpsite processes. Following particle size fractionation of selected soil samples, higher concentrations of targeted compounds were observed in the smaller mesh (180 μm) soil sieve fraction. For dust, the total median estimated daily intake via ingestion and dermal adsorption (EDIing and EDIderm) ranged from 43 to 74 ng/kg bw/day and 0.4-0.7 ng/kg bw/day, respectively. Correspondingly, 4.6-45 ng/kg bw/day and 0.015-0.57 ng/kg bw/day were the values found for soil, respectively. According to these results, the targeted chemicals do not appear to pose a non-carcinogenic risk to e-waste workers through ingestion or dermal contact of bio-accessible fractions of the chemicals. Human biomonitoring campaigns are recommended in the Nigerian e-waste environment considering the elevated concentration levels found for the majority of targeted compounds and that risk parameters required for exposure assessment were only available for a limited number of compounds.
Collapse
Affiliation(s)
- Bilikis T Folarin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Department of Chemistry, University of Lagos, Lagos State, Nigeria; Chemistry Department, Chrisland University, Ogun State, 23409, Nigeria
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Shanshan Yin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jorgelina C Altamirano
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CONICET-UNCuyo-Government of Mendoza, P.O. Box. 331, 5500, Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, 5500, Mendoza, Argentina
| | - Paulien Cleys
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Temilola Oluseyi
- Department of Chemistry, University of Lagos, Lagos State, Nigeria; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
21
|
Peng MQ, Dabelea D, Adgate JL, Perng W, Calafat AM, Kannan K, Starling AP. Associations of urinary biomarkers of phthalates, phenols, parabens, and organophosphate esters with glycemic traits in pregnancy: The Healthy Start Study. ENVIRONMENTAL RESEARCH 2024; 262:119810. [PMID: 39155036 PMCID: PMC11568925 DOI: 10.1016/j.envres.2024.119810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/27/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Certain endocrine-disrupting chemicals (EDCs) are widespread in consumer products and may alter glucose metabolism. However, the impact of EDC exposures on glucose and insulin regulation during pregnancy is incompletely understood, despite potential adverse consequences for maternal and infant health. We estimated associations between 37 urinary biomarkers of EDCs and glucose-insulin traits among pregnant women. METHODS Seventeen phthalate or phthalate substitute metabolites, six environmental phenols, four parabens, and ten organophosphate ester metabolites were quantified in mid-pregnancy urine from 298 participants in the Healthy Start Study. Fasting blood glucose, insulin, and hemoglobin A1c were assessed concurrently, and Homeostasis Model Assessment 2-Insulin Resistance (HOMA2-IR) was calculated. Gestational diabetes diagnoses and screening results were obtained from medical records for a subset of participants. We estimated associations between each EDC and outcome separately using linear and robust Poisson regression models and analyzed EDC mixture effects. RESULTS The EDC mixture was positively associated with glucose, insulin, and HOMA2-IR, although overall associations were attenuated after adjustment for maternal BMI. Two mixture approaches identified di(2-ethylhexyl) phthalate (DEHP) metabolites as top contributors to the mixture's positive associations. In single-pollutant models, DEHP metabolites were positively associated with fasting glucose, fasting insulin, and HOMA2-IR even after adjustment for maternal BMI. For example, each interquartile range increase in log2-transformed mono(2-ethyl-5-oxohexyl) phthalate was associated with 2.4 mg/dL (95% confidence interval (CI): 1.1, 3.6) higher fasting glucose, 11.8% (95%CI: 3.6, 20.5) higher fasting insulin, and 12.3% (95%CI: 4.2, 21.1) higher HOMA2-IR. Few EDCs were associated with hemoglobin A1c or with a combined outcome of impaired glucose tolerance or gestational diabetes. DISCUSSION Exposures to phthalates and particularly DEHP during pregnancy are associated with altered glucose-insulin regulation. Disruptions in maternal glucose metabolism during pregnancy may contribute to adverse pregnancy outcomes including gestational diabetes and fetal macrosomia, and associated long-term consequences for maternal and child health.
Collapse
Affiliation(s)
- Mia Q Peng
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Wei Perng
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Environmental Health Sciences, State University of New York University at Albany, NY, USA
| | - Anne P Starling
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
22
|
Lueth AJ, Bommarito PA, Stevens DR, Welch BM, Cantonwine DE, Ospina M, Calafat AM, Meeker JD, McElrath TF, Ferguson KK. Exposure to organophosphate ester flame retardants and plasticizers and associations with preeclampsia and blood pressure in pregnancy. ENVIRONMENTAL RESEARCH 2024; 262:119910. [PMID: 39233027 PMCID: PMC11568915 DOI: 10.1016/j.envres.2024.119910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Organophosphate esters (OPEs), flame retardants and plasticizers found widely in consumer products, may impact vascularization processes in pregnancy. Yet, the association between maternal exposure to OPEs and both preeclampsia and blood pressure during pregnancy remains understudied. METHODS Within the LIFECODES Fetal Growth Study (N = 900), we quantified 8 OPE metabolites from maternal urine collected at up to 3 time points during pregnancy and created within-subject geometric means. Outcomes included diagnosis of preeclampsia and longitudinal systolic (SBP) and diastolic (DBP) blood pressure measurements (mean = 14 per participant). Cox proportional hazards models were used to estimate associations between OPE metabolites and preeclampsia. Associations between average OPE metabolite concentrations and repeated blood pressure measurements were estimated using generalized estimating equations. RESULTS Five OPE metabolites were detected in at least 60% of samples; 3 metabolites detected less frequently (5-39%) were examined in an exploratory analysis as ever vs. never detectable in pregnancy. There were 46 cases of preeclampsia in our study population. Associations between OPE metabolites and preeclampsia were null. We noted several divergent associations between OPE metabolites and longitudinal blood pressure measurements. An interquartile range (IQR) difference in average bis(2-chloroethyl) phosphate concentrations was associated with a decrease in SBP (-0.81 mmHg, 95% confidence interval [CI]: -1.62, 0.00), and, conversely, bis(1-chloro-2-propyl) phosphate was associated with a slight increase in SBP (0.94 mmHg, 95% CI: 0.28, 1.61). We also noted a decrease in SBP in association with several metabolites with low detection frequency. CONCLUSIONS We observed null associations between OPE metabolites and preeclampsia, but some positive and some inverse associations with blood pressure in pregnancy. While our study was well-designed to assess associations with blood pressure, future studies with a larger number of preeclampsia cases may be better poised to investigate the association between OPE metabolites and phenotypes of this heterogenous hypertensive disorder of pregnancy.
Collapse
Affiliation(s)
- Amir J Lueth
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Paige A Bommarito
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Danielle R Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Barrett M Welch
- School of Public Health, University of Nevada Reno, Reno, NV, USA
| | - David E Cantonwine
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Ospina
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John D Meeker
- School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Thomas F McElrath
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA.
| |
Collapse
|
23
|
Mok S, Lee S, Lee N, Kim S, Choi K, Park J, Kho Y, Moon HB. Nationwide human biomonitoring strategy in Korea: Prioritization of novel contaminants using GC/TOF-MS with suspect and non-target screening. CHEMOSPHERE 2024; 369:143814. [PMID: 39608654 DOI: 10.1016/j.chemosphere.2024.143814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/12/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
According to global regulations on hazardous chemicals, numerous alternatives have been manufactured and used in various consumer products. Suspect and non-target analyses are advanced analytical techniques used for identifying novel contaminants. In the present study, suspect and non-target analytical approaches using a gas chromatography coupled to a time-of-flight mass spectrometer were applied to identify novel contaminants in 40 pooled serum samples from a sub-population (n = 400) of the 2015-2017 national biomonitoring program. Suspect screening analysis was performed using an in-house library based on retention times and quantifier and qualifier ions for 222 contaminants, including persistent organic pollutants and emerging contaminants. Non-target analysis was performed by matching deconvoluted mass spectra to the spectral library from the National Institute of Standards and Technology. The suspect screening analysis identified organochlorinated pesticides, organophosphate esters, phthalate esters, and alternative plasticizers. Among the 68 compounds identified in the non-target analysis, siloxanes, novel organophosphate esters, and UV ink photoinitiators were considered candidates for future inclusion in the biomonitoring program based upon significant human exposure. Our findings demonstrate the feasibility of suspect and non-target analysis to identify novel contaminants to prioritize for inclusion within a national human biomonitoring program.
Collapse
Affiliation(s)
- Sori Mok
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sunggyu Lee
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Nahyun Lee
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sungkyoon Kim
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeongim Park
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Gyeonggi-do, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
24
|
Wang LJ, Chao HR, Chen CC, Chen CM, You HL, Tsai CC, Tsai CS, Chou WJ, Li CJ, Tsai KF, Cheng FJ, Kung CT, Li SH, Wang CC, Ou YC, Lee WC, Huang WT. Effects of urinary organophosphate flame retardants in susceptibility to attention-deficit/hyperactivity disorder in school-age children. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117281. [PMID: 39509783 DOI: 10.1016/j.ecoenv.2024.117281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Our previous studies have revealed a correlation between urinary phthalates (PAE) metabolites and parabens and PM2.5 exposure and susceptibility to attention-deficit/hyperactivity disorder (ADHD) in school-age children. Our goal was to examine the relationships between urinary organophosphate flame retardants (OPFRs) and their metabolites and the susceptibility to ADHD in the same cohort of children. We recruited 186 school children, including 132 with ADHD and 54 normal controls, living in southern Taiwan to investigate five OPFRs (1,3-dichloro-2-propyl phosphate (TDCPP), tri-n-butyl phosphate (TnBP), tris (2-chloroethyl) phosphate (TCEP), tris(2-butoxyethyl) phosphate (TBEP), and triphenyl phosphate (TPHP)) and five OPFR metabolites (bis(1,3-dichloro-2-propyl) phosphate (BDCPP), di-n-butyl phosphate (DNBP), bis(2-chloroethyl) hydrogen phosphate (BCEP), di-(2-butoxyethyl) phosphate (DBEP), and diphenyl phosphate (DPHP)) in urine. ADHD patients' behavioral symptoms and neuropsychological function were assessed using the Swanson, Nolan, and Pelham Version IV Scale (SNAP-IV) and the Conners' Continuous Performance Test 3rd Edition (Conners CPT3), respectively. BCEP was predominant among urinary OPFRs and the metabolites in both the ADHD and control groups. ADHD children had significantly higher levels of urinary BDCPP, BCEP, DBEP, DPHP, TCEP, TBEP, TNBP, TPHP, and Σ10OPFR compared to the controls. After controlling for age, gender, body mass index, PM2.5 exposure scenarios, and urinary phthalate metabolites, parabens, bisphenol-A and creatinine, levels of urinary BDCPP, TDCPP, and TBEP in ADHD children showed significant and dose-dependent effects on core behavioral symptoms of inattention. DNBP levels were positively correlated with neuropsychological deficits (CPT detectability, omission, and commission), while urinary DPHP in ADHD children were negatively related to CPT detectability and commission. Hyperactivity and impulsivity were not correlated with urinary OPFRs and their metabolites in ADHD children. In conclusion, the ADHD symptom of inattention and CPT performance may be closely associated with certain urinary OPFRs and their metabolites, independent of urinary PAE metabolites, parabens, and bisphenol-A in school-age-ADHD children.
Collapse
Affiliation(s)
- Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - How-Ran Chao
- Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Cheng Chen
- Section of Neonatology, Department of Pediatrics, Kaohsiung Chang-Gung Memorial Hospital, Taiwan; Department of Early Childhood Care and Education, Cheng-Shiu University, Kaohsiung 83301, Taiwan
| | - Ching-Me Chen
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan
| | - Ching-Chang Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Shu Tsai
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Jiun Chou
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Jung Li
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai Fan Tsai
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shau-Hsuan Li
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chin-Chou Wang
- Department of Occupational Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Che Ou
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wan-Ting Huang
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan.
| |
Collapse
|
25
|
Lang Q, Qin X, Yu X, Wei S, Wei J, Zhang M, Zhao C, Zhang J, Zeng D, Zhang X, Huang B. Association of joint exposure to organophosphorus flame retardants and phthalate acid esters with gestational diabetes mellitus: a nested case-control study. BMC Pregnancy Childbirth 2024; 24:736. [PMID: 39516746 PMCID: PMC11549849 DOI: 10.1186/s12884-024-06925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Organic phosphate flame retardants (OPFRs) and phthalate acid esters (PAEs) are common endocrine-disrupting chemicals that cause metabolic disorders. This study aimed to assess the association between joint exposure to OPFRs and PAEs during early pregnancy in women with gestational diabetes mellitus (GDM). METHODS Seven OPFRs and five PAEs were detected in the urine of 65 GDM patients and 100 controls using gas chromatography-tandem triple quadrupole mass spectrometry (GC-MS). The association of OPFRs and PAEs with GDM was assessed using logistic regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) models. RESULTS Levels of dibutyl phthalate (DBP), di-2-ethylhexyl phthalate (DEHP), diethyl phthalate (DEP), dimethyl phthalate (DMP), tris (2-butoxyethyl) phosphate (TBEP), tributyl phosphate (TBP), tris (2-chloroethyl) phosphate (TCEP), tris (1,3-dichloro-2-propyl) phosphate (TDCPP), tri-ortho-cresyl phosphate (TOCP), and triphenyl phosphate (TPHP) increased in the GDM group, and the OPFRs and PAEs, except for BBP and TMCP, were associated with GDM in the logistic regression analysis. In the WQS model, the mixture of OPFRs and PAEs was significantly positively associated with GDM (OR = 3.29, 95%CI = 1.27-8.51, P = 0.014), with TDCPP having the highest WQS index weight. BKMR analysis reinforced these results, showing that the overall association of joint exposure to the OPFRs and PAEs with GDM increased at exposure levels of the 55th to 75th percentiles. Independent exposure to TDCPP (OR = 1.42, 95%CI = 1.09-1.86, P = 0.011) and TBEP (OR = 1.29, 95%CI = 1.04-1.60, P = 0.023) were associated with an increased risk of GDM. CONCLUSIONS Environmental exposure to OPFRs and PAEs is significantly associated with GDM. These findings provide evidence for the adverse effects of exposure to OPFRs and PAEs on the health of pregnant women.
Collapse
Affiliation(s)
- Qi Lang
- Clinical Laboratory Center, the First Affiliated Hospital of Guilin Medical University, 109 Ring City North Second Road, Guilin, 541004, Guangxi, China
| | - Xianfeng Qin
- Guangxi Key Laboratory of Environmental Exposomics and Life-Course Health, Health Commission Key Laboratory of Life-Course Health and Care, School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, Guangxi, China
| | - Xiangyuan Yu
- Guangxi Key Laboratory of Environmental Exposomics and Life-Course Health, Health Commission Key Laboratory of Life-Course Health and Care, School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, Guangxi, China
| | - Shudan Wei
- Guangxi Key Laboratory of Environmental Exposomics and Life-Course Health, Health Commission Key Laboratory of Life-Course Health and Care, School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, Guangxi, China
| | - Jinyan Wei
- Guangxi Key Laboratory of Environmental Exposomics and Life-Course Health, Health Commission Key Laboratory of Life-Course Health and Care, School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, Guangxi, China
| | - Min Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Life-Course Health, Health Commission Key Laboratory of Life-Course Health and Care, School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, Guangxi, China
| | - Chaochao Zhao
- Guangxi Key Laboratory of Environmental Exposomics and Life-Course Health, Health Commission Key Laboratory of Life-Course Health and Care, School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, Guangxi, China
| | - Jun Zhang
- Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Ministry of Education, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Dingyuan Zeng
- Guangxi Health Commission Key Laboratory of Birth Cohort Study in Pregnant Women with Advanced Age, Liuzhou Maternity and Child Healthcare Hospital, 50 Yingshan Street, Liuzhou, 545001, Guangxi, China
| | - Xiaoying Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Life-Course Health, Health Commission Key Laboratory of Life-Course Health and Care, School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, Guangxi, China.
| | - Bo Huang
- Guangxi Key Laboratory of Environmental Exposomics and Life-Course Health, Health Commission Key Laboratory of Life-Course Health and Care, School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, Guangxi, China.
| |
Collapse
|
26
|
Kim D, Na K, Choi J. Mechanism-based toxicity screening of organophosphate flame retardants using Tox21 assays and molecular docking analysis. CHEMOSPHERE 2024; 368:143772. [PMID: 39566687 DOI: 10.1016/j.chemosphere.2024.143772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/01/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
As brominated flame retardants are phased out and regulations on their use become stricter, concerns over organophosphate flame retardants (OPFRs) have increased due to their high production. In response, this study aimed to screen the potential toxicity of emerging OPFRs using in vitro Tox21 assays and in silico molecular docking analysis. For 48 OPFRs collected from the literature, we investigated their bioactivity with human nuclear receptors using Tox21 data, focusing on pathways related to endocrine disruption (ERs, AR), stress response (GR), energy homeostasis (PPARs, FXR), and detoxification (PXR, CAR). For OPFRs not tested in Tox21 assays, molecular docking simulations were performed to predict binding potential. Results showed that CAR/PXR and FXR had relatively high reactivity with diverse OPFRs, indicating potential molecular initiating events (MIEs). Among the 48 OPFRs, 28 interacted with one or more receptors, suggesting they may act as potential stressors of adverse outcome pathways (AOPs) leading to various human diseases. Aryl- and halogenated-OPFRs displayed higher bioactivity compared to alkyl-OPFRs. Additionally, as the logKow value and carbon number of OPFRs increased, their interaction with nuclear receptors also increased. These structure- and physicochemistry-dependent bioactivities provide insights for designing safer OPFRs to avoid regrettable substitutions. Of these prioritized OPFRs, 13 showed low oral points-of-departure (POD) values under 100 mg/kg/day. In contrast, the other 15 OPFRs lacked sufficient data or exhibited less severe toxicity, despite being predicted to be of high concern in our analysis. Since several OPFRs are commonly used in consumer products that can lead to daily human exposure, we suggest that these OPFRs have the potential to reveal undisclosed effects and should therefore undergo further assessment.
Collapse
Affiliation(s)
- Donghyeon Kim
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Kimoon Na
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
27
|
Xu W, Zhang W, Yu Z, Gai X, Fu J, Hu L, Fu J, Zhang H, Jiang G. A comparative study for organophosphate triesters and diesters in mice via oral gavage exposure: Tissue distribution, excreta elimination, metabolites and toxicity. ENVIRONMENT INTERNATIONAL 2024; 193:109114. [PMID: 39509842 DOI: 10.1016/j.envint.2024.109114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/06/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Organophosphate triesters (tri-OPEs) and diesters (di-OPEs) may threaten human health through dietary intake, whereas little information is available about their fate in mammals. Herein, mice exposure experiments were carried out through gavage with six tri-OPEs and six di-OPEs, respectively. The residual levels of di-OPEs in mice were generally higher than those of tri-OPEs. The residual di-OPEs mainly distributed in the liver and blood while the most tri-OPEs remained in stomach, indicating easier transfer and lower metabolism levels of di-OPEs. The accumulation of tri- and di-OPEs with large octanol-water partition coefficients and long carbon chain were observed in tissues and feces, implying that the elimination of these OPEs through fecal excretion is an important elimination pathway. A total of 86 OPE metabolites were found in murine urine and feces, 57 of which were identified for the first time. For tri-OPEs, carboxylated OPEs had higher peak intensities and fewer interference factors among the metabolites, which could serve as ideal biomarkers. The predicted oral median lethal doses of OPEs and corresponding metabolites showed an increased toxicity of some hydroxylated OPEs and di-OPEs, needing further attention. These results provided new insights and evidence on the fates and biomarkers of OPEs exposure for mammals.
Collapse
Affiliation(s)
- Wenyu Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Wei Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zechen Yu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiaoyu Gai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Haiyan Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
28
|
Kang D, Jang H, Mok S, Kim JY, Choi Y, Lee SH, Han S, Park TJ, Moon HB, Jeon J. Nationwide profiling and source identification of organophosphate esters in Korean surface waters using target, suspect, and non-target HRMS analysis. CHEMOSPHERE 2024; 367:143579. [PMID: 39428021 DOI: 10.1016/j.chemosphere.2024.143579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Organophosphate esters (OPEs) are emerging contaminants that serve as alternatives to regulated substances in aquatic environments. A nationwide large-scale assessment for OPEs, including point sources, remains insufficient. To address this issue, we aimed to investigate OPEs occurrence and novel OPEs via comprehensive target, suspect and non-target analysis. Among the 11 target OPEs, 10 were detected at sampling sites distributed evenly nationwide. The highest mean concentrations were measured for tris-(2-butoxyethyl) phosphate (TBOEP) and tris(2-chloroisopropyl) phosphate (TCIPP). The multivariate statistical analysis revealed that TBOEP and TCIPP are essential components for assessing total OPEs pollution. The systematic risk assessment results evaluated the overall risk contribution of TBOEP and the significant risk impact of 2-ethylhexyl diphenyl phosphate. Promising suspect and non-target analysis enabled frequent detection and identification of 6 antioxidant transformation products (TPs), as well as the tentative identification of 14 OPEs and TPs, including 3 di-OPEs. Based on sampling site classification, we confirmed that major OPEs are significantly discharged near point sources. We believe that this is the first attempt to assess the nationwide risk and potential sources of OPEs in Korean surface waters, providing insights that could support further prioritization and regulation efforts.
Collapse
Affiliation(s)
- Daeho Kang
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnam-do, 51140, Republic of Korea
| | - Heewon Jang
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnam-do, 51140, Republic of Korea
| | - Sori Mok
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jun Yub Kim
- Graduate School of AI Policy and Strategy, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Gwangju, 61005, Republic of Korea
| | - Younghun Choi
- Water Environmental Management Dept., Korea Water Resources Corporation (K-water), 200 Sintanjin-ro, Daedeok-gu, Daejeon, 34350, Republic of Korea
| | - Sun-Hong Lee
- Water Environmental Management Dept., Korea Water Resources Corporation (K-water), 200 Sintanjin-ro, Daedeok-gu, Daejeon, 34350, Republic of Korea
| | - Sojeong Han
- Water Environmental Engineering Research Division, National Institute of Environmental Research, Environmental Research Complex, Incheon, 22689, Republic of Korea
| | - Tae Jin Park
- Water Environmental Engineering Research Division, National Institute of Environmental Research, Environmental Research Complex, Incheon, 22689, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnam-do, 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnam-do, 51140, Republic of Korea.
| |
Collapse
|
29
|
Pavlíková N, Šrámek J, Němcová V, Bajard L. Effects of novel flame retardants tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPhP) on function and homeostasis in human and rat pancreatic beta-cell lines. Arch Toxicol 2024; 98:3859-3874. [PMID: 39192017 PMCID: PMC11489283 DOI: 10.1007/s00204-024-03841-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Despite the fact that environmental pollution has been implicated in the global rise of diabetes, the research on the impact of emerging pollutants such as novel flame retardants remains limited. In line with the shift towards the use of non-animal approaches in toxicological testing, this study aimed to investigate the effects of two novel flame retardants tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPhP) in rat (INS1E) and human (NES2Y) pancreatic beta-cell lines. One-week exposure to 1 μM and 10 μM TDCIPP and TPhP altered intracellular insulin and proinsulin levels, but not the levels of secreted insulin (despite the presence of a statistically insignificant trend). The exposures also altered the protein expression of several factors involved in beta-cell metabolic pathways and signaling, including ATP citrate lyase, isocitrate dehydrogenase 1, perilipins, glucose transporters, ER stress-related factors, and antioxidant enzymes. This study has brought new and valuable insights into the toxicity of TDCIPP and TPhP on beta-cell function and revealed alterations that might impact insulin secretion after more extended exposure. It also adds to the scarce studies using in vitro pancreatic beta-cells models in toxicological testing, thereby promoting the development of non-animal testing strategy for identifying pro-diabetic effects of chemical pollutants.
Collapse
Affiliation(s)
- Nela Pavlíková
- 3LF UK, Departement of Biochemistry, Cell and Molecular Biology & Center for Research On Nutrition, Metabolism, and Diabetes, Third Faculty of Medicine, Charles University, Ruska 87, 100 00, Prague, Czech Republic.
| | - Jan Šrámek
- 3LF UK, Departement of Biochemistry, Cell and Molecular Biology & Center for Research On Nutrition, Metabolism, and Diabetes, Third Faculty of Medicine, Charles University, Ruska 87, 100 00, Prague, Czech Republic
| | - Vlasta Němcová
- 3LF UK, Departement of Biochemistry, Cell and Molecular Biology & Center for Research On Nutrition, Metabolism, and Diabetes, Third Faculty of Medicine, Charles University, Ruska 87, 100 00, Prague, Czech Republic
| | - Lola Bajard
- Faculty of Science, RECETOX, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| |
Collapse
|
30
|
Hoang J, Wiegand J, Mersman Z, Michalicek K, Jimenez N, Volz DC. Aryl phosphate ester-induced pericardial edema in zebrafish embryos is influenced by the ionic composition of exposure media. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107121. [PMID: 39423744 PMCID: PMC11560604 DOI: 10.1016/j.aquatox.2024.107121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Pericardial edema - fluid accumulation within the pericardium - is a frequently observed malformation in zebrafish embryo-based chemical toxicity screens. We recently discovered that the severity of triphenyl phosphate (TPHP)-induced pericardial edema was dependent on the ionic strength of exposure media. TPHP is an aryl phosphate ester (APE) widely used as a plasticizer and flame retardant. APEs are characterized by having one or more aryl groups bound to a phosphate center, with TPHP containing only unsubstituted aryl groups. Therefore, the objective of this study was to begin investigating whether, similar to TPHP, pericardial edema induced by other structurally related APEs is dependent on the ionic composition of exposure media. We first mined the peer-reviewed literature to identify other APEs that 1) induced pericardial edema in zebrafish embryos within a minimum of three peer-reviewed publications, and 2) demonstrated a statistically significant induction of pericardial edema in at least 70 % of the studies evaluated. Based on this meta-analysis, we identified four other APEs that caused pericardial edema in zebrafish embryos: isopropylated triphenyl phosphate (IPTPP), cresyl diphenyl phosphate (CDP), tricresyl phosphate (TMPP), and 2-ethylhexyl diphenyl phosphate (EDHPHP). Using TPHP as a positive control and pericardial edema as a readout, we developed concentration-response curves for all four APEs based on static exposure from 24 to 72 h post-fertilization (hpf). We then conducted co-exposures with D-Mannitol (an osmotic diuretic) and exposures within reverse osmosis (RO) water determine whether the ionic composition of exposure media mitigated APE-induced pericardial edema at 72 hpf. Using pericardial edema as an endpoint, the approximate EC50s for TPHP (positive control), IPTPP, CDP, TMPP, and EDHPHP were 6.25, 3.125, 3.125, 25, and 100 µM, respectively, based on exposure from 24 to 72 hpf. Interestingly, similar to our findings with TPHP, co-exposure with D-Mannitol and exposure within ion-deficient water significantly mitigated IPTPP- CDP-, TMPP-, and EDHPHP-induced pericardial edema in zebrafish embryos, suggesting that chemically-induced pericardial edema may be 1) dependent on the ionic composition of exposure media and 2) driven by a disruption in osmoregulation across the embryonic epidermis. Therefore, similar to other assay parameters, our findings underscore the need to standardize the osmolarity of exposure media in order to minimize the potential for false positive/negative hits in zebrafish embryo-based chemical toxicity screens conducted around the world.
Collapse
Affiliation(s)
- John Hoang
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - Jenna Wiegand
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - Zoe Mersman
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - Kevin Michalicek
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - Nicholas Jimenez
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States.
| |
Collapse
|
31
|
Zhang J, Ma Y, Lin P, Cai M. Regulation of Ocean Surface Currents and Seasonal Sea Ice Variations on the Occurrence and Transport of Organophosphate Esters in the Central Arctic Ocean. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18950-18958. [PMID: 39315435 DOI: 10.1021/acs.est.4c05620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Organophosphate esters (OPEs) have been observed in the remote Arctic Ocean, yet the influence of hydrodynamics and seasonal sea ice variations on the occurrence and transport of waterborne OPEs remains unclear. This study comprehensively examines OPEs in surface seawater of the central Arctic Ocean during the summer of 2020, integrating surface ocean current and sea ice concentration data. The results confirm significant spatiotemporal variations of the OPEs, with the total concentration of seven major OPEs averaging 780 ± 970 pg/L. Chlorinated OPEs, particularly tris(1-chloro-2-propyl) phosphate (TCPP), were dominant. The significant impact of hydrodynamics on the OPE transport is demonstrated by higher OPE concentrations in regions with strong surface currents, especially at the edge of the Beaufort Gyre and the confluence of the Beaufort Gyre and the Transpolar Drift. Furthermore, OPE levels were generally higher in drifting-ice-covered regions compared to ice-free regions, attributed to the volatilization of dissolved OPEs formerly trapped below the sea ice or newly released from melting snow and sea ice. Notably, TCPP decreased by only 19% in the ice-free area, while the more volatile triphenyl phosphate decreased by 63% compared with the partial ice region.
Collapse
Affiliation(s)
- Jinghua Zhang
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education; and School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Yuxin Ma
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education; and School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- Key Laboratory of Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai 200136, China
| | - Peigen Lin
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education; and School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Minghong Cai
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education; and School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- Key Laboratory of Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai 200136, China
| |
Collapse
|
32
|
Hernandez-Castro I, Eckel SP, Howe CG, Aung MT, Kannan K, Robinson M, Foley HB, Yang T, Vigil MJ, Chen X, Grubbs B, Al-Marayati L, Toledo-Corral CM, Habre R, Dunton GF, Farzan SF, Morales S, Breton CV, Bastain TM. Organophosphate ester flame retardant chemicals and maternal depression during pregnancy. ENVIRONMENTAL RESEARCH 2024; 259:119581. [PMID: 38992754 PMCID: PMC11365806 DOI: 10.1016/j.envres.2024.119581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Depression substantially contributes to pregnancy-related morbidity, and pregnancy is increasingly recognized as a vulnerable window for exposure effects on maternal mental health. Exposures to organophosphate esters (OPEs) are ubiquitous and may have neurotoxic effects; however, their impacts on prenatal depression remain unknown. We evaluated associations of third trimester OPE metabolites on maternal depressive symptoms during pregnancy. METHODS This study included 422 participants in the Maternal and Developmental Risks from Environmental and Social Stressors (MADRES) cohort, a prospective pregnancy cohort of primarily low-income and Hispanic participants residing in Los Angeles, California. We measured concentrations of nine OPEs in third trimester spot urine samples (mean gestational age = 31.5 ± 2.0 weeks). Using the Center for Epidemiologic Studies-Depression (CES-D) scale, we classified participants as having probable depression during pregnancy (N = 137) or not (N = 285) if one or more CES-D scores administered at each trimester met the suggested cutoff score for clinically significant depressive symptoms (≥16). We estimated associations of prenatal OPE metabolite concentrations in tertiles and risk of prenatal depression using modified Log-Poisson regression. We examined associations of the OPE mixture on depression during pregnancy using Bayesian kernel machine regression (BKMR). RESULTS Participants with the highest tertiles of DPHP and BDCIPP exposure had a 67% (95% CI: 22%, 128%) and 47% (95% CI: 4%, 108%) increased risk of maternal depressive symptoms during pregnancy, respectively. No associations between other OPE metabolites and maternal depression symptoms were observed. In mixture analyses, we observed a positive and linear association between higher exposure to the OPE metabolite mixture and odds of prenatal maternal depression, primarily driven by DPHP. CONCLUSIONS Our findings provide new evidence of associations between frequently detected OPE metabolites on maternal depression symptoms during pregnancy. Results could inform future intervention efforts aimed at reducing perinatal maternal depression.
Collapse
Affiliation(s)
- Ixel Hernandez-Castro
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Epidemiology and Population Health, Stanford Medicine, Stanford, CA, USA
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, New Hampshire, USA
| | - Max T Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Morgan Robinson
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Helen B Foley
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tingyu Yang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mario J Vigil
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xinci Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brendan Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Laila Al-Marayati
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Claudia M Toledo-Corral
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Health Sciences, California State University Northridge, Northridge, CA, USA
| | - Rima Habre
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Genevieve F Dunton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Santiago Morales
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Carrie V Breton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theresa M Bastain
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
33
|
Feng J, Ma X, Liu Y, Shi X, Jin L, Le Y, Zhang Q, Wang C. The Role of Human Adiponectin Receptor 1 in 2-Ethylhexyl Diphenyl Phosphate Induced Lipid Metabolic Disruption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18190-18201. [PMID: 39364562 DOI: 10.1021/acs.est.4c07051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Epidemiological evidence links exposure to 2-ethylhexyl diphenyl phosphate (EHDPP) with lipid metabolic disruption, typically attributed to nuclear receptors, while the role of membrane receptors remains underexplored. This study explored the role of adiponectin receptor 1 (AdipoR1) in EHDPP-induced lipid metabolic disturbances. We examined EHDPP's binding affinity and transcriptional impact on AdipoR1. AdipoR1 knockdown (AdipoR1kd) human liver cells and coculture experiments with AdipoR1 activator (AdipoRon) were used to investigate the effect and the mechanism. EHDPP disrupted triglyceride and phospholipid synthesis and altered corresponding gene expression, mirroring effects in AdipoR1kd cells but diminishing in EHDPP-treated AdipoR1kd cells. RNA sequencing revealed that EHDPP primarily disrupted oxidative phosphorylation and insulin signaling dependent on AdipoR1. Mechanistically, EHDPP interacted with AdipoR1 and reduced AdipoR1 protein levels at 10-7 mol/L or higher, weakening the activation of the calmodulin dependent protein kinase β (CaMKKβ)/AMPK/acetyl CoA carboxylase pathway. Furthermore, EHDPP pretreatment blocked the increase in Ca2+ flux and the corresponding kinase CaMKKβ, as well as liver kinase B1 (LKB1) activation induced by AdipoRon, which is necessary for AMPK activation. Collectively, these findings demonstrate that EHDPP-induced lipid imbalance is partially dependent on AdipoR1, expanding the understanding of environmental metabolic disruptors beyond nuclear receptors.
Collapse
Affiliation(s)
- Jiafan Feng
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xiaochun Ma
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Ying Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xiaoliu Shi
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Lingbing Jin
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yifei Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Quan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Cui Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
34
|
Fang B, Wang C, Du X, Sun G, Jia B, Liu X, Qu Y, Zhang Q, Yang Y, Li YQ, Li W. Structure-dependent destructive adsorption of organophosphate flame retardants on lipid membranes. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135494. [PMID: 39141940 DOI: 10.1016/j.jhazmat.2024.135494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The widespread use of organophosphate flame retardants (OPFRs), a serious type of pervasive environmental contaminants, has led to a global concern regarding their diverse toxicities to living beings. Using a combination of experimental and theoretical approaches, we systematically studied the adsorption, accumulation, and influence of a series of OPFRs on the lipid membranes of bacteria and cells. Our results revealed that OPFRs can aggregate in lipid membranes, leading to the destruction of membrane integrity. During this process, the molecular structure of the OPFRs is a dominant factor that significantly influences the strength of their interaction with the lipid membrane, resulting in varying degrees of biotoxicity. Triphenyl phosphate (TPHP), owing to its large molecular size and strong hydrophobicity, causes severe membrane disruption through the formation of nanoclusters. The corresponding severe toxicity originates from the phase transitions of the lipid membranes. In contrast, smaller OPFRs such as triethyl phosphate (TEP) and tris(2-chloroethyl) phosphate (TCEP) have weaker hydrophobicity and induce minimal membrane disturbance and ineffective damage. In vivo, gavage of TPHP induced more severe barrier damage and inflammatory infiltration in mice than TEP or TCEP, confirming the higher toxicity of TPHP. Overall, our study elucidates the structure-dependent adsorption of OPFRs onto lipid membranes, highlighting their destructive interactions with membranes as the origin of OPFR toxicity.
Collapse
Affiliation(s)
- Bing Fang
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Chunzhen Wang
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Xuancheng Du
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Guochao Sun
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Bingqing Jia
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Xiangdong Liu
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Yuanyuan Qu
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Qingmeng Zhang
- Department of Orthopaedics Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| | - Yanmei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yong-Qiang Li
- School of Physics, Shandong University, Jinan, Shandong 250100, China.
| | - Weifeng Li
- School of Physics, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
35
|
Dong C, Zhang G, Pei Z, Yang R, Li Y, Zhang Q, Jiang G. Organophosphate esters in terrestrial environments of Fildes Peninsula, Antarctica: Occurrence, potential sources, and bioaccumulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135519. [PMID: 39151362 DOI: 10.1016/j.jhazmat.2024.135519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Despite growing concerns regarding the long-range transport (LRT) and ecological risks of organophosphate esters (OPEs), information on the environmental behaviors of OPEs in polar terrestrial ecosystems remains inadequate. In the present study, 10 OPEs were analyzed in soil and vegetation samples collected from Fildes Peninsula, Antarctica. The OPE concentrations in Antarctic soils, mosses, and lichens ranged from 0.87 to 15.7 ng/g dry weight (dw), 9.8 to 113 ng/g dw, and 3.6 to 75.2 ng/g dw, respectively. Non-chlorinated OPEs predominated in terrestrial matrices, accounting for approximately 76 % of the OPE composition. Source identification indicated that OPE contamination in Antarctica likely resulted from local anthropogenic sources and LRT. Moreover, the bioaccumulation behavior of OPEs from soil to vegetation was assessed using bioconcentration factors (BCFs), revealing a significant non-linear trend of initial increase and subsequent decrease in BCFs relative to the lipophilicities of the octanol-air partition coefficient (log KOA) and octanol-water partition coefficient (log KOW). While low levels of OPEs in Antarctic terrestrial environments were reported in this study, their sustained inputs and potential ecological risks in polar regions warrant further attention.
Collapse
Affiliation(s)
- Cheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
36
|
Cao J, Lei Y, Li W, Jiang X, Li M. Coupled digital visualization and multi-omics uncover neurobehavioral dysfunction in zebrafish induced by resorcinol bis(diphenylphosphate). ENVIRONMENT INTERNATIONAL 2024; 192:109023. [PMID: 39321538 DOI: 10.1016/j.envint.2024.109023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Resorcinol bis(diphenylphosphate) (RDP) is an emerging pollutant that has been frequently detected in aquatic environments, although its toxicity is poorly characterized. To understand how RDP affects the neural system, two-month-old zebrafish were exposed to RDP at concentrations of 0.1 and 10 μg/L for 60 days. Following exposure, behavioral assessments were conducted, revealing the emergence of anxiety-like symptoms and memory deficits among the adult fish exposed to RDP, especially at the higher concentration. The increased blood-brain barrier (BBB) permeability (4.67-5.58-fold higher than the control group), reduced expression of tight junction proteins and the rapid brain RDP bioaccumulation (15.63 ± 2.34 ng/g wet weight) indicated the neurotoxicity of RDP. Excess reactive oxygen species synthesis (2.20-2.50-fold) was induced by RDP, leading to mitochondrial dysfunction and decreased production of neurotransmitters in the brain, specifically serotonin (5-HT; 16.3 %) and dopamine (DA; 18.1 %). Metabolomic analysis revealed that the low-toxicity RDP dose up-regulated lipid-related metabolites, while the high-toxicity dose up-regulated arachidonic acid metabolism and disrupted amino acid metabolism, including tryptophan and tyrosine metabolism related to dopaminergic and serotonergic pathways. The dysregulation of genes in various cellular processes was identified by transcriptomics, mainly involved in cell adhesion molecules and gap junctions, and oxidative phosphorylation, which were directly associated with BBB permeability and oxidative stress, respectively. Correlation analysis of microbiome-metabolite-host links built a mechanistic hypothesis for alterations in gut microbiota (Actinobacteriota and Proteobacteria) induced by high-dose RDP leading to the alteration of tryptophan, tyrosine, and arachidonic acid metabolism, decreasing the production of 5-HT and DA through the gut-brain axis. This study provides valuable insights into the mechanism underlying RDP-induced neurotoxicity in zebrafish, which can inform ecological risk assessments.
Collapse
Affiliation(s)
- Jing Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yumeng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wenhao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiaofeng Jiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
37
|
Seltenrich N. Regrettable Substitution? Organophosphate Flame Retardants and Macrophage Activity. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:104001. [PMID: 39404824 PMCID: PMC11477087 DOI: 10.1289/ehp15994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Certain immune cells exposed to a mixture of organophosphate esters showed changes in their function and biology. The mixture included chemicals detected in samples of house dust.
Collapse
|
38
|
Liu M, Brandsma SH, Schreder E. From e-waste to living space: Flame retardants contaminating household items add to concern about plastic recycling. CHEMOSPHERE 2024; 365:143319. [PMID: 39271080 DOI: 10.1016/j.chemosphere.2024.143319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/15/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Brominated flame retardants (BFRs) and organophosphate flame retardants (OPFRs) are commonly used in electric and electronic products in high concentrations to prevent or retard fire. Health concerns related to flame retardants (FRs) include carcinogenicity, endocrine disruption, neurotoxicity, and reproductive and developmental toxicity. Globally, a lack of transparency related to chemicals in products and limited restrictions on use of FRs in electronics have led to widespread use and dissemination of harmful FRs. Despite the lack of transparency and restrictions, plastics from electronics are often recycled and can be incorporated in household items that do not require flame retardancy, resulting in potentially high and unnecessary exposure. This study sought to determine whether black plastic household products sold on the U.S. market contained emerging and phased-out FRs and whether polymer type was predictive of contamination. A total of 203 products were screened for bromine (Br), and products containing >50 ppm Br were analyzed for BFRs, OPFRs, and plastic polymers (e.g. acrylonitrile butadiene styrene, high impact polystyrene, polypropylene). FRs were found in 85% of analyzed products, with total FR concentrations ranging up to 22,800 mg/kg. FRs detected include the restricted compound deca-BDE, which was used widely in electronics casings, as well as its replacements decabromodiphenyl ethane (DBDPE) and 2,4,6-Tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TBPP-TAZ) along with associated compound 2,4,6-tribromophenol (2,4,6-TBP), recently detected in breast milk. Plastic typically used in electronics (styrene-based) contained significantly higher levels of ∑FRs than plastics less typically used for electronics (polypropylene and nylon). Estimation of exposure to BDE-209 from contaminated kitchen utensils indicated users would have a median intake of 34,700 ng/day, exceeding estimates for intake from dust and diet. The detection of FRs in collected household products indicates that recycling, without the necessary transparency and restrictions to ensure safety, is resulting in unexpected exposure to toxic flame retardants in household items.
Collapse
Affiliation(s)
- Megan Liu
- Toxic-Free-Future, 4649 Sunnyside Ave N Suite 540, Seattle, WA 98103, United States.
| | - Sicco H Brandsma
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ, Amsterdam, the Netherlands
| | - Erika Schreder
- Toxic-Free-Future, 4649 Sunnyside Ave N Suite 540, Seattle, WA 98103, United States
| |
Collapse
|
39
|
Zhu Z, Ewen JP, Kritikos EM, Giusti A, Dini D. Effect of Electric Fields on the Decomposition of Phosphate Esters. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:15959-15973. [PMID: 39355011 PMCID: PMC11440609 DOI: 10.1021/acs.jpcc.4c04412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
Phosphate esters decompose on metal surfaces and form protective polyphosphate films. For many applications, such as in lubricants for electric vehicles and wind turbines, an understanding of the effect of electric fields on molecular decomposition is urgently required. Experimental investigations have yielded contradictory results, with some suggesting that electric fields improve tribological performance, while others have reported the opposite effect. Here, we use nonequilibrium molecular dynamics (NEMD) simulations to study the decomposition of tri-n-butyl phosphate (TNBP) molecules nanoconfined between ferrous surfaces (iron and iron oxide) under electrostatic fields. The reactive force field (ReaxFF) method is used to model the effects of chemical bonding and molecular dissociation. We show that the charge transfer with the polarization current equalization (QTPIE) method gives more realistic behavior compared to the standard charge equilibration (QEq) method under applied electrostatic fields. The rate of TNBP decomposition via carbon-oxygen bond dissociation is faster in the nanoconfined systems than that in the bulk due to the catalytic action of the surfaces. In all cases, the application of an electric field accelerates TNBP decomposition. When electric fields are applied to the confined systems, the phosphate anions are pulled toward the surface with high electric potential, while the alkyl cations are pulled to the surface with lower potential, leading to asymmetric film growth. Analysis of the temperature- and electric field strength-dependent dissociation rate constants using the Arrhenius equation suggests that, on reactive iron surfaces, the increased reactivity under an applied electric field is driven mostly by an increase in the pre-exponential factor, which is linked to the number of molecule-surface collisions. Conversely, the accelerated decomposition of TNBP on iron oxide surfaces can be attributed to a reduction in the activation energy with increasing electric field strength. Single-molecule nudged-elastic band (NEB) calculations also show a linear reduction in the energy barrier for carbon-oxygen bond breaking with electric field strength, due to stabilization of the charged transition state. The simulation results are consistent with experimental observations of enhanced and asymmetric tribofilm growth under electrostatic fields.
Collapse
Affiliation(s)
- Zhaoran Zhu
- Department
of Mechanical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - James P. Ewen
- Department
of Mechanical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Efstratios M. Kritikos
- Department
of Mechanical Engineering, Imperial College
London, London SW7 2AZ, U.K.
- Department
of Applied Physics and Materials Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Andrea Giusti
- Department
of Mechanical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Daniele Dini
- Department
of Mechanical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| |
Collapse
|
40
|
Zhou G, Zhang Y, Wang Z, Li M, Li H, Shen C. Distribution Characteristics and Ecological Risk Assessment of Organophosphate Esters in Surface Soils of China. TOXICS 2024; 12:686. [PMID: 39330614 PMCID: PMC11435882 DOI: 10.3390/toxics12090686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024]
Abstract
The chemical flame retardants represented by organophosphate esters (OPEs) are widely used and have a serious impact on the environment. In this study, we collected data on the exposure levels of ten OPEs in Chinese soils in recent years and performed an ecological risk assessment. The results showed that the levels of OPEs varied considerably throughout different regions of China, with high exposure levels in highly urbanized or industrialized areas such as Guangdong Province and Northeast China, where the mean value was >200 ng/g. The content of OPEs in the soil in industrial and commercial areas was significantly higher than in other regions, indicating that the concentration of OPEs in the soil is closely related to local economic development and the degree of industrialization. Meanwhile, the number of studies reporting on OPEs and their exposure concentrations have increased significantly since 2018. Through the ecological risk assessment, it was found that TCP, EHDPP and TEHP pose high ecological risks. Although some OPEs, such as TCIPP, have low ecological risk levels overall, their high exposure concentrations are still worthy of attention. This study details the general status of OPE contamination in Chinese soils, which can serve as a reference for ecological environmental supervision.
Collapse
Affiliation(s)
- Guorui Zhou
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China;
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Y.Z.); (Z.W.); (M.L.)
| | - Yizhang Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Y.Z.); (Z.W.); (M.L.)
| | - Ziye Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Y.Z.); (Z.W.); (M.L.)
| | - Mingrui Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Y.Z.); (Z.W.); (M.L.)
| | - Haiming Li
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China;
| | - Chen Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Y.Z.); (Z.W.); (M.L.)
| |
Collapse
|
41
|
Papas W, Aranda-Rodriguez R, Fan X, Kubwabo C, Lee JSL, Fantin E, Zheng ED, Keir JLA, Matschke D, Blais JM, White PA. Occupational Exposure of On-Shift Ottawa Firefighters to Flame Retardants and Polycyclic Aromatic Hydrocarbons. TOXICS 2024; 12:677. [PMID: 39330605 PMCID: PMC11435908 DOI: 10.3390/toxics12090677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Firefighters can be exposed to complex mixtures of airborne substances, including hazardous substances released during structural fires. This study employed silicone wristbands (SWBs) as passive samplers to investigate potential exposure to polycyclic aromatic hydrocarbons (PAHs) and flame retardants (FRs). SWBs were deployed at different areas of four fire stations, in four truck cabins, and at an office control location; they were also donned outside the jackets of 18 firefighters who responded to fire calls. Overall, office areas had significantly lower PAHs than fire station areas. Vehicle bays and truck cabins had significantly higher concentrations of low molecular weight (LMW) PAHs than sleeping and living room areas. For organophosphate ester flame retardants (OPFRs), tri-n-butyl phosphate (TnBP) and tris(1-chloro-2-propyl) phosphate (TCPP) were detected in all the samples; 2-ethylhexyl diphenyl phosphate (EHDPP) was more frequently detected in the fire station areas. Triphenyl phosphate (TPP) concentrations were highest in the truck cabin and office areas, and tris(1,3-dichloro-2-propyl)phosphate (TDCPP) was highest in truck cabins. Thirteen of 16 PAHs and nine of 36 OPFRs were detected in all the SWBs worn by firefighters, and tris (2-butoxyethyl) phosphate (TBEP) was the predominant OPFR. Levels of LMW PAHs were significantly lower when firefighters did not enter the fire. LMW PAHs, HMW (high molecular weight) PAHs, and EHDPP were significantly elevated when heavy smoke was reported. This work highlights the potential for occupational exposure to PAHs and flame retardants in some fire station areas; moreover, factors that may influence exposure during fire suppression. Whilst firefighters' occupational exposure to PAHs is likely related to fire suppression and exposure to contaminated gear and trucks, exposure to OPFRs may be more related to their presence in truck interiors and electronics.
Collapse
Affiliation(s)
- William Papas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A0K9, Canada
| | - Rocio Aranda-Rodriguez
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A0K9, Canada
| | - Xinghua Fan
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A0K9, Canada
| | - Cariton Kubwabo
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A0K9, Canada
| | - Janet S L Lee
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A0K9, Canada
| | - Emma Fantin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A0K9, Canada
| | - Elita D Zheng
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A0K9, Canada
| | - Jennifer L A Keir
- Department of Biology, University of Ottawa. Ottawa, ON, K1N 6N5, Canada
| | | | - Jules M Blais
- Department of Biology, University of Ottawa. Ottawa, ON, K1N 6N5, Canada
| | - Paul A White
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A0K9, Canada
- Department of Biology, University of Ottawa. Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
42
|
Jiang X, Xu C, Xu C, Liu Y, Li L, Li Q, Huang C, Hu J. 2-Ethylhexyl Diphenyl Phosphate Induces Autism Spectrum Disorder-Like Behaviors in Offspring Mice by Disrupting Postsynaptic Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16347-16356. [PMID: 39234944 DOI: 10.1021/acs.est.4c06087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
As organophosphorus flame retardants (OPFRs) are constantly detected in human samples, the neurotoxicity of OPFRs is of concern. In this study, pregnant ICR mice were exposed to 2-ethylhexyl diphenyl phosphate (EHDPP) in drinking water from gestation to lactation to investigate its effects on autism spectrum disorder-like (ASD-like) behaviors in offspring. Serum EHDPP concentrations in dams in the 0.4, 2, and 10 mg/kg groups were 0.282 ± 0.051, 0.713 ± 0.115, and 0.974 ± 0.048 ng/mL, respectively, within the concentration range in humans. At the highest dose, EHDPP exposure induced ASD-like behaviors in both female and male offspring. Significant reductions in mature dendritic spines and structural damage to the postsynaptic density zone were noted in all but the lowest exposure groups, indicating postsynaptic membrane impairment. Mechanistically, EHDPP significantly downregulated disc large MAGUK scaffold protein 4 expression by inhibiting protein kinase B and type 1 insulin-like growth factor receptor phosphorylation. In the heterologous synapse formation assay in vivo, EHDPP significantly reduced the levels of postsynaptic density protein 95 expression in neurons at 1 μM. Overall, the study utilized in vitro and in vivo experiments to confirm that EHDPP damaged postsynaptic membrane formation and might increase the incidence of ASD in offspring.
Collapse
Affiliation(s)
- Xianlei Jiang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Chenke Xu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Cheng Xu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yanan Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Linwan Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qiang Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Chong Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
43
|
Negi CK, Bláhová L, Phan A, Bajard L, Blaha L. Triphenyl Phosphate Alters Methyltransferase Expression and Induces Genome-Wide Aberrant DNA Methylation in Zebrafish Larvae. Chem Res Toxicol 2024; 37:1549-1561. [PMID: 39205618 PMCID: PMC11409374 DOI: 10.1021/acs.chemrestox.4c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Emerging environmental contaminants, organophosphate flame retardants (OPFRs), pose significant threats to ecosystems and human health. Despite numerous studies reporting the toxic effects of OPFRs, research on their epigenetic alterations remains limited. In this study, we investigated the effects of exposure to 2-ethylhexyl diphenyl phosphate (EHDPP), tricresyl phosphate (TMPP), and triphenyl phosphate (TPHP) on DNA methylation patterns during zebrafish embryonic development. We assessed general toxicity and morphological changes, measured global DNA methylation and hydroxymethylation levels, and evaluated DNA methyltransferase (DNMT) enzyme activity, as well as mRNA expression of DNMTs and ten-eleven translocation (TET) methylcytosine dioxygenase genes. Additionally, we analyzed genome-wide methylation patterns in zebrafish larvae using reduced-representation bisulfite sequencing. Our morphological assessment revealed no general toxicity, but a statistically significant yet subtle decrease in body length following exposure to TMPP and EHDPP, along with a reduction in head height after TPHP exposure, was observed. Eye diameter and head width were unaffected by any of the OPFRs. There were no significant changes in global DNA methylation levels in any exposure group, and TMPP showed no clear effect on DNMT expression. However, EHDPP significantly decreased only DNMT1 expression, while TPHP exposure reduced the expression of several DNMT orthologues and TETs in zebrafish larvae, leading to genome-wide aberrant DNA methylation. Differential methylation occurred primarily in introns (43%) and intergenic regions (37%), with 9% and 10% occurring in exons and promoter regions, respectively. Pathway enrichment analysis of differentially methylated region-associated genes indicated that TPHP exposure enhanced several biological and molecular functions corresponding to metabolism and neurological development. KEGG enrichment analysis further revealed TPHP-mediated potential effects on several signaling pathways including TGFβ, cytokine, and insulin signaling. This study identifies specific changes in DNA methylation in zebrafish larvae after TPHP exposure and brings novel insights into the epigenetic mode of action of TPHP.
Collapse
Affiliation(s)
- Chander K Negi
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Lucie Bláhová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Audrey Phan
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Lola Bajard
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| |
Collapse
|
44
|
Jin X, Yao R, Yao S, Yu X, Tang J, Huang J, Yao R, Jin L, Liang Q, Sun J. Metabolic perturbation and oxidative damage induced by tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tris(2-ethylhexyl) phosphate (TEHP) on Escherichia coli through integrative analyses of metabolome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116797. [PMID: 39067080 DOI: 10.1016/j.ecoenv.2024.116797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/28/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Organophosphate esters (OPEs) are one of the emerging environmental threats, causing the hazard to ecosystem safety and human health. Yet, the toxic effects and metabolic response mechanism after Escherichia coli (E.coli) exposed to TDCIPP and TEHP is inconclusive. Herein, the levels of SOD and CAT were elevated in a concentration-dependent manner, accompanied with the increase of MDA contents, signifying the activation of antioxidant response and occurrence of lipid peroxidation. Oxidative damage mediated by excessive accumulation of ROS decreased membrane potential and inhibited membrane protein synthesis, causing membrane protein dysfunction. Integrative analyses of GC-MS and LC-MS based metabolomics evinced that significant perturbation to the carbohydrate metabolism, nucleotide metabolism, lipids metabolism, amino acid metabolism, organic acids metabolism were induced following exposure to TDCIPP and TEHP in E.coli, resulting in metabolic reprogramming. Additionally, metabolites including PE(16:1(5Z)/15:0), PA(17:0/15:1(9Z)), PC(20:2(11Z,14Z)/12:0), LysoPC(18:3(6Z,9Z,12Z)/0:0) were significantly upregulated, manifesting that cell membrane protective molecule was afforded by these differential metabolites to improve permeability and fluidity. Overall, current findings generate new insights into the molecular toxicity mechanism by which E.coli respond to TDCIPP and TEHP stress and supply valuable information for potential ecological risks of OPEs on aquatic ecosystems.
Collapse
Affiliation(s)
- Xu Jin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology Maoming, Guangdong 525000, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Runlin Yao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Siyu Yao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology Maoming, Guangdong 525000, China.
| | - Jin Tang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology Maoming, Guangdong 525000, China
| | - Jiaxing Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology Maoming, Guangdong 525000, China
| | - Ruipu Yao
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology Maoming, Guangdong 525000, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Qianwei Liang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology Maoming, Guangdong 525000, China.
| |
Collapse
|
45
|
Sjöström Y, Tao F, Ricklund N, de Wit CA, Hagström K, Hagberg J. Children's exposure to halogenated flame retardants and organophosphate esters through dermal absorption and hand-to-mouth ingestion in Swedish preschools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173635. [PMID: 38821289 DOI: 10.1016/j.scitotenv.2024.173635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Children are exposed to endocrine disrupting chemicals (EDCs) through inhalation and ingestion, as well as through dermal contact in their everyday indoor environments. The dermal loadings of EDCs may contribute significantly to children's total EDC exposure due to dermal absorption as well as hand-to-mouth behaviors. The aim of this study was to measure potential EDCs, specifically halogenated flame retardants (HFRs) and organophosphate esters (OPEs), on children's hands during preschool attendance and to assess possible determinants of exposure in preschool indoor environments in Sweden. For this, 115 handwipe samples were collected in winter and spring from 60 participating children (arithmetic mean age 4.5 years, standard deviation 1.0) and analyzed for 50 compounds. Out of these, 31 compounds were identified in the majority of samples. Levels were generally several orders of magnitude higher for OPEs than HFRs, and 2-ethylhexyl diphenyl phosphate (EHDPP) and tris(2-butoxyethyl) phosphate (TBOEP) were detected in the highest median masses, 61 and 56 ng/wipe, respectively. Of the HFRs, bis(2-ethyl-1-hexyl)-2,3,4,5-tetrabromobenzoate (BEH-TEBP) and 2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether (BDE-209) were detected in the highest median masses, 2.8 and 1.8 ng/wipe, respectively. HFR and/or OPE levels were found to be affected by the number of plastic toys, and electrical and electronic devices, season, municipality, as well as building and/or renovation before/after 2004. Yet, the calculated health risks for single compounds were below available reference dose values for exposure through dermal uptake as well as for ingestion using mean hand-to-mouth contact rate. However, assuming a high hand-to-mouth contact rate, at the 95th percentile, the calculated hazard quotient was above 1 for the maximum handwipe mass of TBOEP found in this study, suggesting a risk of negative health effects. Furthermore, considering additive effects from similar compounds, the results of this study indicate potential concern if additional exposure from other routes is as high.
Collapse
Affiliation(s)
- Ylva Sjöström
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, SE 70182 Örebro, Sweden
| | - Fang Tao
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China; Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Niklas Ricklund
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, SE 70182 Örebro, Sweden
| | - Cynthia A de Wit
- Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Katja Hagström
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, SE 70182 Örebro, Sweden
| | - Jessika Hagberg
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, SE 70182 Örebro, Sweden
| |
Collapse
|
46
|
Li K, Qi Z, Xie Z, Li W, Yang X, Zhai Y, Zhou X, Xie X, Song W. TDMPP activation of estrogen receptor 2a regulates smc2 and p53 signaling to interfere with liver development in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135379. [PMID: 39096633 DOI: 10.1016/j.jhazmat.2024.135379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
Tris (2,6-dimethylphenyl) phosphate (TDMPP), a novel organic phosphorus flame retardant (OPFR), has been found to have estrogenic activity. Estrogens are critical in regulating various biological responses during liver development. However, the effects of TDMPP on zebrafish liver development remain largely unexplored. Here, we utilized a chemical genetic screening approach to assess the estrogenic effects of TDMPP on liver development and to elucidate the underlying molecular mechanism. Our findings revealed that zebrafish larvae exposed to environmentally relevant concentrations of TDMPP (0.05 and 0.5 μM) exhibited concentration-dependent liver impairments, including reduced liver size, histopathological changes, and hepatocyte apoptosis. In addition, E2 caused similar adverse effects to TDMPP, but the pharmacological blockade of estrogen synthesis alleviated the effects on liver development. Chemical inhibitors and morpholino knockdown assays indicated that the reduction of esr2a blocked TDMPP-induced liver impairments, which was further confirmed in the esr2a-/- mutant line. Subsequently, transcriptomic analysis showed that the estrogen receptor activated by TDMPP inhibited the expression of smc2, which was linked to the suppression of liver development through p53 activation. Consistently, overexpression of smc2 and inhibition of p53 evidently rescued hepatic damages induced by TDMPP. Taken together, the above findings identified esr2a, downstream smc2, and p53 as important regulators for the estrogenic effects of TDMPP on liver development. Our work fills crucial gaps in the current knowledge of TDMPP's hepatotoxicity, providing new insights into the adverse effects of TDMPP and the molecular mechanisms of action. These findings underscore the need for further ecological risk assessment and regulatory considerations.
Collapse
Affiliation(s)
- Keying Li
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Zhipeng Qi
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Zhuoyi Xie
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Wei Li
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Xinxin Yang
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Yue Zhai
- School of Nursing, Jilin University, Changchun, China
| | - Xiaomai Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Xunwei Xie
- China Zebrafish Resource Center, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Weiyi Song
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
47
|
Wager JL, Thompson JA. Development and child health in a world of synthetic chemicals. Pediatr Res 2024:10.1038/s41390-024-03547-z. [PMID: 39277650 DOI: 10.1038/s41390-024-03547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/13/2024] [Indexed: 09/17/2024]
Abstract
Chemical pollution is one of today's most significant threats to the developmental potential of children worldwide. Maternal exposure to toxicants can perturb sensitive windows of fetal development, indirectly through promoting antenatal disorders, abnormal placental adaptation, or directly through maternal-fetal transport. Current evidence clearly shows that persistent organic chemicals promote hypertensive disorders of pregnancy, placental abnormalities, and fetal growth restriction, whereas findings are less consistent for phthalates and bisphenols. Prospective birth cohorts strongly support a link between adverse neurodevelopmental outcomes and prenatal exposure to flame retardants and organophosphate pesticides. Emerging evidence reveals a potential association between in utero exposure to bisphenols and childhood behavioral disorders, while childhood metabolic health is more consistently associated with postnatal exposure to phthalates and bisphenols. IMPACT: Synthesizes emerging evidence linking modern forms of chemical pollution to antenatal disorders, fetal growth restriction and childhood disorders. Highlights potential developmental impacts of emerging pollutants of concern now ubiquitous in our environment but without regulatory restrictions.
Collapse
Affiliation(s)
- Jessica L Wager
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Jennifer A Thompson
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Libin Cardiovascular Institute, Calgary, Alberta, Canada.
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.
| |
Collapse
|
48
|
Huang YS, Shi HZ, Huang X, Pan YM, Wang YC, Gao ZJ, Jiang PY, Yang WY. Urinary Concentrations of Organophosphate Flame-Retardant Metabolites in the US Population. JAMA Netw Open 2024; 7:e2435484. [PMID: 39320888 PMCID: PMC11425145 DOI: 10.1001/jamanetworkopen.2024.35484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/31/2024] [Indexed: 09/26/2024] Open
Abstract
Importance Organophosphate flame retardants (OPFRs) are an important group of pollutants associated with endocrine disorders, cancer, and nephrotoxicity. However, temporal trends in OPFR metabolite concentrations remain understudied. Objectives To examine changes in urinary concentrations of OPFR metabolites among US children, youths, and adults from 2011 to 2020, and to evaluate whether sociodemographic factors were associated with variations in temporal trends. Design, Setting, and Participants This population-based cross-sectional study used data from 4 US National Health and Nutrition Examination Survey (NHANES) cycles (2011-2012, 2013-2014, 2015-2016, and 2017-2020 [to March 2020 before the COVID-19 pandemic]). The study included children and youths (aged 6-19 years) and adults (aged ≥20 years) with valid urinary concentrations of the following OPFR metabolites: bis(2-chloroethyl) phosphate (BCEtP), bis(1-chloro-2-propyl) phosphate (BCPP), diphenyl phosphate (DPhP), and dibutyl phosphate (DBuP). Data analysis was performed between February and May 2024. Exposures Calendar year and key sociodemographic subgroups (age, race and ethnicity, sex, educational attainment, and poverty-to-income ratio). Main Outcomes and Measures The main outcome was urinary concentrations of OPFR metabolites among children, youths, and adults. Survey-weighted linear regression models were applied to estimate trends. Results The study population of 10 549 NHANES participants included 3154 children and youths (mean [SE] age, 12.5 [0.1] years; 51.2% were male) and 7395 adults (mean [SE] age, 47.8 [0.4] years; 52.0% were women). Among children and youths, mean (95% CI) BCEtP concentrations decreased from 0.68 (0.60-0.77) μg/L in 2011-2012 to 0.41 (0.37-0.45) μg/L in 2017-2020 (P for trend < .001). Among adults, mean (95% CI) BCEtP concentrations decreased from 0.43 (0.37-0.50) μg/L in 2011-2012 to 0.29 (0.27-0.33) μg/L in 2017-2020 (P for trend < .001), and mean BCPP concentrations decreased from 0.15 (0.14-0.17) μg/L to 0.13 (0.12-0.14) μg/L (P for trend = .002). Parent level of educational attainment was associated with concentrations of BCPP and BCEtP among children and youths; however, no significant differences among adults were observed. Conclusions and Relevance This study identified variations in temporal trends in urinary concentrations of OPFR metabolites among the US population from 2011 to 2020. In addition, substantial disparities in exposure levels persisted among children with different levels of parent educational attainment. These findings suggest that policy makers should consider socioeconomic factors to further reduce OPFR exposure and promote equity, ensuring a safe living environment for all individuals.
Collapse
Affiliation(s)
- Yu-Song Huang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Zhong Shi
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Huang
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Ming Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Sichuan, China
| | - Yu-Chen Wang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zi-Jun Gao
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei-Yao Jiang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Yi Yang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Lin J, Ding X, Gu J, Zhang L, Chao J, Zhang H, Feng S, Guo C, Xu J, Gao Z. Organophosphate esters (OPEs) pollution characteristics, bioaccumulation and human consumption implication in wild marine organisms from the Yellow River Estuary, China. MARINE POLLUTION BULLETIN 2024; 206:116708. [PMID: 38986395 DOI: 10.1016/j.marpolbul.2024.116708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
As the substitutes of polybrominated diphenyl ethers, organophosphate esters (OPEs) with high concentrations have accumulated in the estuaries, bays, and harbors. However, limited information is available about the OPEs in the estuary organism categories, especially under the multiple industrial pressure. This study investigated the occurrence, bioaccumulation and human consumption implication in wild marine organisms from the Yellow River Estuary, where located many petroleum and chemical manufacturing industries. This study found that concentrations of Σ13OPEs ranged from 547 ng/L to 1164 ng/L in seawater (median: 802 ng/L), from 384 to 1366 ng/g dw in the sediment (median: 601 ng/g dw), and from 419 to 959 ng/g dw (median: 560 ng/g dw) in the marine organisms. The congener compositions in the organisms were dominated by alkyl-OPEs (80.7 %), followed by halogenated-OPEs (18.8 %) and aryl-OPEs (0.5 %). Based on the principal component analysis, petrochemical pollution, and industrial wastewater discharge were distinguished as the main plausible sources of OPEs to the YRE ecosystem. Most OPEs had potential or strong bioaccumulation capacity on the organisms, with a positive correlation between log BAF (Bioaccumulation Factor) and log Kow of OPEs. The highest estimated daily intake value of OPEs was tri-n-propyl phosphate, exceeding 300 ng/kg·bw/day via consuming fish. The highest hazard quotients from OPEs ranged from 0.001 to 0.1, indicating a low risk to human health by consuming marine organisms in the YRE. As the consumption of OPEs increases year by year, the risks of OPEs still cannot be ignored.
Collapse
Affiliation(s)
- Jianing Lin
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xinshu Ding
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Jinzeng Gu
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Lutao Zhang
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Jinyu Chao
- School of Civil Engineering and Construction and Environment of Xihua University, Chengdu 610039, PR China
| | - Heng Zhang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Song Feng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Changsheng Guo
- Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Jian Xu
- Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Zhenhui Gao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
50
|
Barrett ES, Ames JL, Eick SM, Peterson AK, Rivera-Núñez Z, Starling AP, Buckley JP. Advancing Understanding of Chemical Exposures and Maternal-child Health Through the U.S. Environmental Influences on Child Health Outcomes (ECHO) Program: A Scoping Review. Curr Environ Health Rep 2024; 11:390-403. [PMID: 38985433 PMCID: PMC11324705 DOI: 10.1007/s40572-024-00456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE OF REVIEW Environmental chemical exposures may disrupt child development, with long-lasting health impacts. To date, U.S. studies of early environmental exposures have been limited in size and diversity, hindering power and generalizability. With harmonized data from over 60,000 participants representing 69 pregnancy cohorts, the National Institutes of Health's Environmental influences on Child Health Outcomes (ECHO) Program is the largest study of U.S. children's health. Here, we: (1) review ECHO-wide studies of chemical exposures and maternal-child health; and (2) outline opportunities for future research using ECHO data. RECENT FINDINGS As of early 2024, in addition to over 200 single-cohort (or award) papers on chemical exposures supported by ECHO, ten collaborative multi-cohort papers have been made possible by ECHO data harmonization and new data collection. Multi-cohort papers have examined prenatal exposure to per- and polyfluoroalkyl substances (PFAS), phthalates, phenols and parabens, organophosphate esters (OPEs), metals, melamine and aromatic amines, and emerging contaminants. They have primarily focused on describing patterns of maternal exposure or examining associations with maternal and infant outcomes; fewer studies have examined later child outcomes (e.g., autism) although follow up of enrolled ECHO children continues. The NICHD's Data and Specimen Hub (DASH) database houses extensive ECHO data including over 470,000 chemical assay results and complementary data on priority outcome areas (pre, peri-, and postnatal, airway, obesity, neurodevelopment, and positive health), making it a rich resource for future analyses. ECHO's extensive data repository, including biomarkers of chemical exposures, can be used to advance our understanding of environmental influences on children's health. Although few published studies have capitalized on these unique harmonized data to date, many analyses are underway with data now widely available.
Collapse
Affiliation(s)
- Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health; Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA.
| | - Jennifer L Ames
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Stephanie M Eick
- Gangarosa Department of Environmental Health and Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Alicia K Peterson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Zorimar Rivera-Núñez
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health; Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
| | - Anne P Starling
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jessie P Buckley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|