1
|
Khwaza V, Aderibigbe BA. Antibacterial Activity of Selected Essential Oil Components and Their Derivatives: A Review. Antibiotics (Basel) 2025; 14:68. [PMID: 39858354 PMCID: PMC11761885 DOI: 10.3390/antibiotics14010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Essential oils (EOs) are gaining ground and have been intensively studied due to their widespread use in the pharmaceutical, food, and cosmetics industries. The essential components of EOs have been recognized for diverse therapeutic activities and have gained significant attention for their potential antibacterial activities. Despite the popularity of EOs and potent biological properties, their bioactive components and their derivatives are still not comprehensively characterized. This review explores the antibacterial efficacy of selected EO components and their derivatives, focusing on monoterpenes chosen (i.e., carvacrol, menthol, and thymol) and phenylpropanoids (i.e., cinnamaldehyde and eugenol). Furthermore, this review highlights recent advancements in developing derivatives of these EO components, which have shown improved antibacterial activity with reduced toxicity. By summarizing recent studies, this review reveals the potential of these natural compounds and their derivatives as promising candidates for pharmaceuticals, food preservation, and as alternatives to synthetic antibiotics in combating bacterial resistance.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice Campus, Alice 5700, South Africa
| | - Blessing A. Aderibigbe
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice Campus, Alice 5700, South Africa
| |
Collapse
|
2
|
Chen S, Zhi Z, Wong WL, Yuan W, Sun N. Understanding the synergistic sensitization of natural products and antibiotics: An effective strategy to combat MRSA. Eur J Med Chem 2025; 281:117012. [PMID: 39509947 DOI: 10.1016/j.ejmech.2024.117012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common multi-resistant organisms found in hospital-acquired infections and is associated with high morbidity and mortality. The development of new drugs and promising therapeutic strategies against MRSA is thus an urgent request. In recent years, some natural products have been demonstrated to show great potential in improving the efficacy of antibiotics to treat various drug-resistant bacteria, particularly MRSA. In this context, we aimed to analyze systematically from the prior arts that investigated the synergy between natural products and antibiotics against MRSA. These findings not only give us a better understanding on the mechanism of actions but also shed light on the bioactive molecular scaffolds identified from diverse natural products. In the present study, we concentratedly reviewed the studies that utilized natural products to enhance the potency of conventional antibiotics against MRSA in the last decade. The timely information reported herein may give meaningful insights into the molecular design of novel and potent antibacterial agents and/or effective therapeutics to combat MRSA for practical applications.
Collapse
Affiliation(s)
- Sisi Chen
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, PR China
| | - Ziling Zhi
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, PR China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, PR China.
| | - Ning Sun
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, PR China.
| |
Collapse
|
3
|
Zhou R, Liu X, Hui T, Ye J, Chen G, Lei P, Li J, Feng J, Gao Y. Discovery of Novel Cyclobutyl Oxime Ester Derivatives Containing an α,β-Unsaturated Carbonyl Moiety as Potential Mitochondrial Toxins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22054-22062. [PMID: 39320050 DOI: 10.1021/acs.jafc.4c05066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
As part of continuous work to explore novel and efficient fungicides originating from natural products, a series of cyclobutyl oxime ester derivatives containing an α,β-unsaturated carbonyl moiety were designed and synthesized. In line with the primary evaluation of the inhibitory effect on common pathogenic fungi causing crop failure, a systematic study on the antifungal activity of target compounds against Rhizoctonia solani was carried out. Most target compounds exhibited satisfactory antifungal activity, and 10 of them were superior to the positive control trifloxystrobin. The most notable median effective concentration (EC50) of compound 6b was 1.70 μg/mL, which was considerable for an intensive study. The control efficacy of compound 6b on potted rice against R. solani was superior to trifloxystrobin at identical concentration. The mycelial morphology and cell membrane permeability of the treated fungi were disrupted, and the meaningful enzyme activities of SDH and POD were also restrained. The reactive oxygen species, nuclear morphology, and mitochondrial membrane potential of the treated hypha reflected an apparent difference compared with the normal morphology, which represented mitochondrial function damage. In addition, chemical features essential for the activity and docking mode within the compound and cytochrome bc1 complex were accessed by computer-aided technology. This study provided insights into the development of new green and efficient fungicides targeting the mitochondria.
Collapse
Affiliation(s)
- Rui Zhou
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tuoping Hui
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiuhui Ye
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guangyou Chen
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peng Lei
- Shaanxi Research Center of Biopesticide Engineering & Technology, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jian Li
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Juntao Feng
- Shaanxi Research Center of Biopesticide Engineering & Technology, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanqing Gao
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
4
|
Sbruzzi Fiebig M, Regina Mendes Andrade D, José de Oliveira Mindelo L, Santos de Gois J, Luna AS, Afonso Provenzi M, Luiz Esteves Magalhães W, Miotto M, Vieira Helm C, Schwinden Prudencio E. Pinhão potential and their parts (failures, shells, and almonds) in the elaboration of yogurts containing acai pulp: physicochemical, nutritional, and functional properties, antimicrobial activity, and multi-elemental profile. Food Res Int 2024; 192:114813. [PMID: 39147507 DOI: 10.1016/j.foodres.2024.114813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/06/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
This study applies natural resources, prioritizing recyclable and renewable inputs produced by pinhão cultivation, whose purpose is to use the failures, shells, and almonds as a source of bioactive compounds addition in yogurt, ensuring intelligent use of these natural resources. Thus, one açaí yogurt sample and eight yogurt formulations containing portions of pinhão byproducts between 5 % and 10 % were elaborated. These formulations were compared regarding their physicochemical, nutritional, functional properties, antimicrobial activity, and multi-elemental profile properties. Enriching açaí yogurt with pinhão byproducts does not significantly differ in protein, lipid, moisture, and mineral salt content between all samples with pinhão byproducts. Açaí yogurts enriched with pinhão byproducts had 5.71 to 26.07 % times total protein than the control sample, and total fiber also had a significant increase in samples ranging between 18.62 to 85.29 % times more than the control sample. Regarding color settings, all yogurt samples tended to be red-purple. A sample of açaí yogurt with pine nut flour and whole pine nut flour caused a biofilm mass amount of 46.58, 45.55, and 11.85 % for Listeria monocytogenes, Salmonella enteritidis and Pseudomonas aeruginosa. The behavior of pathogenic bacteria is related to the total polyphenol content in yogurts enriched with pinhão byproducts, which increased from 8.27 to 18.24 mg/100 g. Yogurt with açaí enriched with whole pinhão flour showed high antioxidant capacity. The sample's antioxidant activity results increased by 47.62 % and 130.38 % in the ABTS and DPPH analyses, respectively. The compounds in pinhão failure nanosuspensions, pinhão flour, whole pinhão flour, and yogurts were identified and divided into hydrophilic and lipophilic classes. Five classes (amino acids, organic acids, sugars, phenols, and cyclitols) were identified as hydrophilic. Lipophilic compounds were identified and separated into six classes (carboxylic acids, diterpenes, alcohols, Α-hydroxy acids, sterols, and triterpenes). The addition of pinhão byproducts increased the contents of Ca, Fe, K, Na, and P. Açaí yogurt with pinhão nanosuspension, pinhão flour, and whole pinhão flour had the highest Ca content (2164.38 ± 2.16 µg/L). Açaí yogurt with pinhão flour and whole pinhão flour had the highest Fe content (84.02 ± 0.08 µg/L).
Collapse
Affiliation(s)
- Matheus Sbruzzi Fiebig
- Postgraduate Program in Food Engineering, Federal University of Santa Catarina, Technology Center, Trindade, 88034-001 Florianópolis, SC, Brazil
| | - Dayanne Regina Mendes Andrade
- Postgraduate Program in Food Engineering, Federal University of Paraná, Jardim das Américas, 82590-300, Curitiba, PR, Brazil
| | - Leandro José de Oliveira Mindelo
- Postgraduate Program in Food Engineering, Federal University of Santa Catarina, Technology Center, Trindade, 88034-001 Florianópolis, SC, Brazil
| | - Jefferson Santos de Gois
- Department of Analytical Chemistry, Rio de Janeiro State University, University City to Maracanã, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Aderval S Luna
- Department of Analytical Chemistry, Rio de Janeiro State University, University City to Maracanã, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Marcel Afonso Provenzi
- Postgraduate Program in Food Science, Federal University of Santa Catarina, Center of Agrarian Sciences, Itacorubi, 88034-001, Florianópolis, SC, Brazil
| | - Washington Luiz Esteves Magalhães
- Brazilian Agricultural Research Corporation (Embrapa Florestas), Estrada da Ribeira, km 111, Guaraituba, 83411-000, Colombo, PR, Brazil
| | - Marilia Miotto
- Department of Food Science and Technology, Federal University of Santa Catarina, Itacorubi, 88034-001, Florianópolis, SC, Brazil
| | - Cristiane Vieira Helm
- Brazilian Agricultural Research Corporation (Embrapa Florestas), Estrada da Ribeira, km 111, Guaraituba, 83411-000, Colombo, PR, Brazil
| | - Elane Schwinden Prudencio
- Postgraduate Program in Food Engineering, Federal University of Santa Catarina, Technology Center, Trindade, 88034-001 Florianópolis, SC, Brazil; Department of Food Science and Technology, Federal University of Santa Catarina, Itacorubi, 88034-001, Florianópolis, SC, Brazil.
| |
Collapse
|
5
|
Retnosari R, Ali AH, Zainalabidin S, Ugusman A, Oka N, Latip J. The recent discovery of a promising pharmacological scaffold derived from carvacrol: A review. Bioorg Med Chem Lett 2024; 109:129826. [PMID: 38830427 DOI: 10.1016/j.bmcl.2024.129826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Carvacrol, called CA, is a dynamic phytoconstituent characterized by a phenol ring abundantly sourced from various natural reservoirs. This versatile scaffold serves as a pivotal template for the design and synthesis of novel drug molecules, harboring promising biological activities. The active sites positioned at C-4, C-6, and the hydroxyl group (-OH) of CA offer fertile ground for creating potent drug candidates from a pharmacological standpoint. In this comprehensive review, we delve into diverse synthesis pathways and explore the biological activity of CA derivatives. We aim to illuminate the potential of these derivatives in discovering and developing efficacious treatments against a myriad of life-threatening diseases. By scrutinizing the structural modifications and pharmacophore placements that enhance the activity of CA derivatives, we aspire to inspire the innovation of novel therapeutics with heightened potency and effectiveness.
Collapse
Affiliation(s)
- Rini Retnosari
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; International Joint Department of Materials Science and Engineering Between National University of Malaysia and Gifu University, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Chemistry, Universitas Negeri Malang, Jl. Semarang No. 5 Malang, Indonesia
| | - Amatul Hamizah Ali
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Satirah Zainalabidin
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Natsuhisa Oka
- International Joint Department of Materials Science and Engineering Between National University of Malaysia and Gifu University, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Jalifah Latip
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
6
|
Sasi R, Vasu ST. Batch-mode degradation of high-strength phenolic pollutants by Pseudomonas aeruginosa strain STV1713 immobilized on single and hybrid matrices. Biodegradation 2024; 35:423-438. [PMID: 38310579 DOI: 10.1007/s10532-023-10067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
Controlled environments are pivotal in all bioconversion processes, influencing the efficacy of biocatalysts. In this study, we designed a batch bioreactor system with a packed immobilization column and a decontamination chamber to enhance phenol and 2,4-dichlorophenol degradation using the hyper-tolerant bacterium Pseudomonas aeruginosa STV1713. When free cells were employed to degrade phenol and 2,4-DCP at a concentration of 1000 mg/L, the cells completely removed the pollutants within 28 h and 66 h, respectively. Simultaneous reductions in chemical oxygen demand and biological oxygen demand were observed (phenol: 30.21 mg/L/h and 16.92 mg/L/h, respectively; 2,4-dichlorophenol: 12.85 mg/L/h and 7.21 mg/L/h, respectively). After assessing the degradation capabilities, the bacterium was immobilized on various matrices (sodium alginate, alginate-chitosan-alginate and polyvinyl alcohol-alginate) to enhance pollutant removal. Hybrid immobilized cells exhibited greater tolerance and degradation capabilities than those immobilized in a single matrix. Among them, polyvinyl alcohol-alginate immobilized cells displayed the highest degradation capacities (up to 2000 mg/L for phenol and 2500 mg/L for 2,4-dichlorophenol). Morphological analysis of the immobilized cells revealed enhanced cell preservation in hybrid matrices. Furthermore, the elucidation of the metabolic pathway through the catechol dioxygenase enzyme assay indicated higher activity of the catechol 1,2-dioxygenase enzyme, suggesting that the bacterium employed an ortho-degradation mechanism for pollutant removal. Additionally, enzyme zymography confirmed the presence of catechol 1,2-dioxygenase, with the molecular weight of the enzyme determined as 245 kDa.
Collapse
Affiliation(s)
- Reshmi Sasi
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, 673601, India
| | - Suchithra Tharamel Vasu
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, 673601, India.
| |
Collapse
|
7
|
Wang L, Zhao Z, Li X, Zhao X, Li S, Li H. Ecofriendly dual-function cotton fabric with antibacterial and anti-adhesion properties based on modified natural materials. Int J Biol Macromol 2024; 271:132698. [PMID: 38824104 DOI: 10.1016/j.ijbiomac.2024.132698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Ecofriendly fabrics with antibacterial and anti-adhesion properties have been attracted an increasing attention in recent years. Herein, natural menthol modified polyacrylate (PMCA) antibacterial adhesion agent was synthesized by esterification and polymerisation while natural pterostilbene-grafted-chitosan (PGC) antibacterial agent was prepared through Mannich reaction. The antibacterial and anti-adhesion cotton fabric was fabricated through durable PMCA dip finishing and then layer-by-layer self-assembly of PGC. The results showed that the antibacterial adhesion rates and antibacterial rates of the dual-function cotton fabric against Staphylococcus aureus and Escherichia coli reached up to 99.9 %. Its antibacterial adhesion rates improved by 36.1 % and 40.1 % in comparison with those of cotton fabric treated by menthol alone. Meanwhile against S. aureus, the dual-function cotton fabrics improved the antibacterial rates by 56.7 % and 36.4 %, respectively, from those of chitosan- and pterostilbene-treated fabrics. Against E. coli, the improvements were 89.4 % and 24.8 %, respectively. After 20 household washings, the dual-function cotton fabric maintained >80 % of its original anti-adhesion and antibacterial rates against both species. The dual-function cotton fabric also possessed safe and excellent wearability.
Collapse
Affiliation(s)
- Lili Wang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Tongxiang Research Institute, Zhejiang Sci-Tech University, Tongxiang 314500, PR China.
| | - Zhiqiang Zhao
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xiangyu Li
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xiaomin Zhao
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Shuokang Li
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Huijun Li
- Hangzhou Huasi Xiasha Textile Technology Co., LTD., Hangzhou 311199, PR China
| |
Collapse
|
8
|
Pinheiro PF, da Costa TLM, Corrêa KB, Bastos Soares TC, Parreira LA, Werner ET, de Paula MDSAT, Pereira UA, Praça-Fontes MM. Synthesis and Phytocytogenotoxic Activity of N-Phenyl-2-phenoxyacetamides Derived from Thymol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4610-4621. [PMID: 38380437 DOI: 10.1021/acs.jafc.3c06889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The excessive use of herbicides has caused a series of problems related to human health, environmental pollution, and an increase in the resistance of plants to commercial herbicides. As an alternative, natural compounds and their semisynthetic derivatives have been widely studied to obtain environmentally friendly and more effective herbicides than the usual ones. In view of these factors, the aim of this work was to synthesize new molecules with herbicidal potential using thymol as a starting material, a natural phenol that has a pronounced phytotoxic effect. Novel N-phenyl-2-thymoxyacetamides were synthesized and characterized by MS and by 1H and 13C NMR. All prepared molecules were subjected to phytotoxic and cytotoxic activity assays using Lactuca sativa L. and Sorghum bicolor L. as model plants. Molecules containing chlorine in the para position of the thymoxy group exhibited phytotoxic and cytogenotoxic effects superior to those of the commercial herbicides 2,4-D and glyphosate.
Collapse
Affiliation(s)
- Patrícia Fontes Pinheiro
- Department of Chemistry, Federal University of Viçosa, Avenida Peter Henry Rolfs, s/n, 36570-900, Viçosa, Minas Gerais Brazil
| | - Thais Lazarino Maciel da Costa
- Department of Biology, Federal University of the Espírito Santo, Alto Universitário, s/n, 29500-000, Alegre, Espírito Santo Brazil
| | - Kellen Barelo Corrêa
- Department of Chemistry and Physics, Federal University of the Espírito Santo, Alto Universitário, s/n, 29500-000, Alegre, Espírito Santo Brazil
| | - Taís Cristina Bastos Soares
- Department of Pharmacy and Nutricion, Federal University of the Espírito Santo, Alto Universitário, s/n, 29500-000, Alegre, Espírito Santo Brazil
| | - Luciana Alves Parreira
- Department of Chemistry and Physics, Federal University of the Espírito Santo, Alto Universitário, s/n, 29500-000, Alegre, Espírito Santo Brazil
| | - Elias Terra Werner
- Department of Biology, Federal University of the Espírito Santo, Alto Universitário, s/n, 29500-000, Alegre, Espírito Santo Brazil
| | | | - Ulisses Alves Pereira
- Federal University of Minas Gerais, Montes Claros Regional Campus, Institute of Agricultural Sciences, Avenida Universitária 1000, Bairro Universitário, CEP 39404-547, Montes Claros, Minas Gerais Brazil
| | - Milene Miranda Praça-Fontes
- Department of Biology, Federal University of the Espírito Santo, Alto Universitário, s/n, 29500-000, Alegre, Espírito Santo Brazil
| |
Collapse
|
9
|
Kavaliauskas P, Grybaitė B, Sapijanskaitė-Banevič B, Vaickelionienė R, Petraitis V, Petraitienė R, Naing E, Garcia A, Grigalevičiūtė R, Mickevičius V. Synthesis of 3-((4-Hydroxyphenyl)amino)propanoic Acid Derivatives as Promising Scaffolds for the Development of Antimicrobial Candidates Targeting Multidrug-Resistant Bacterial and Fungal Pathogens. Antibiotics (Basel) 2024; 13:193. [PMID: 38391579 PMCID: PMC10886201 DOI: 10.3390/antibiotics13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
Infections caused by multidrug-resistant bacterial and fungal pathogens represent a significant global health concern, contributing to increased morbidity and mortality rates. Therefore, it is crucial to develop novel compounds targeting drug-resistant microbial strains. Herein, we report the synthesis of amino acid derivatives bearing an incorporated 4-hydroxyphenyl moiety with various substitutions. The resultant novel 3-((4-hydroxyphenyl)amino)propanoic acid derivatives 2-37 exhibited structure-dependent antimicrobial activity against both ESKAPE group bacteria and drug-resistant Candida species. Furthermore, these derivatives demonstrated substantial activity against Candida auris, with minimum inhibitory concentrations ranging from 0.5 to 64 µg/mL. Hydrazones 14-16, containing heterocyclic substituents, showed the most potent and broad-spectrum antimicrobial activity. This activity extended to methicillin-resistant Staphylococcus aureus (MRSA) with MIC values ranging from 1 to 8 µg/mL, vancomycin-resistant Enterococcus faecalis (0.5-2 µg/mL), Gram-negative pathogens (MIC 8-64 µg/mL), and drug-resistant Candida species (MIC 8-64 µg/mL), including Candida auris. Collectively, these findings underscore the potential utility of the novel 3-((4-hydroxyphenyl)amino)propanoic acid scaffold for further development as a foundational platform for novel antimicrobial agents targeting emerging and drug-resistant bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu rd. 19, LT-50254 Kaunas, Lithuania
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birstono Street 38A, LT-59116 Prienai, Lithuania
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu rd. 19, LT-50254 Kaunas, Lithuania
| | | | - Rita Vaickelionienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu rd. 19, LT-50254 Kaunas, Lithuania
| | - Vidmantas Petraitis
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birstono Street 38A, LT-59116 Prienai, Lithuania
| | - Rūta Petraitienė
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birstono Street 38A, LT-59116 Prienai, Lithuania
| | - Ethan Naing
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Andrew Garcia
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Ramunė Grigalevičiūtė
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
- Department of Animal Nutrition, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu rd. 19, LT-50254 Kaunas, Lithuania
| |
Collapse
|
10
|
Sasi R, Tharamel Vasu S. Revealing the degradation mechanisms of the hyper-tolerant bacterium Pseudomonas aeruginosa STV1713 under high phenol and 2,4-DCP-induced stress conditions through RNA-seq analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5625-5640. [PMID: 38123774 DOI: 10.1007/s11356-023-31500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
The ability of bacteria to efficiently remove phenolic pollutants depends on their genetic makeup and environmental conditions. This study examined a novel strain, Pseudomonas aeruginosa STV1713, for degrading higher concentrations of phenol and 2,4-dichlorophenol. After optimization, a combination of degradation parameters, such as pH (7.0), temperature (32.5 °C), and ammonium nitrate concentration (0.7 g/L), was found to reduce degradation time while promoting cell growth. Under these optimal conditions, the bacterium effectively degraded up to 2000 mg/L of phenol and 1400 mg/L of 2,4-dichlorophenol, while maximum tolerance was observed till 2100 mg/L and 1500 mg/L, respectively. Metabolic profiling identified crucial metabolites in the ortho-degradation pathway during pollutant removal. Additionally, transcriptome analysis revealed that P. aeruginosa STV1713 utilizes different branches of the beta ketoadipate pathway for phenol and 2,4-DCP removal. Moreover, under high pollutant stress, the bacterium survived through differential gene expression in ribosome biogenesis, chemotaxis, membrane transport, and other pathways.
Collapse
Affiliation(s)
- Reshmi Sasi
- School of Biotechnology, National Institute of Technology Calicut, Kozhikode, Kerala, India, 673601
| | - Suchithra Tharamel Vasu
- School of Biotechnology, National Institute of Technology Calicut, Kozhikode, Kerala, India, 673601.
| |
Collapse
|
11
|
Guo T, Lin Y, Pan D, Zhang X, Zhu W, Cai XM, Huang G, Wang H, Xu D, Kühn FE, Zhang B, Zhang T. Towards bioresource-based aggregation-induced emission luminogens from lignin β-O-4 motifs as renewable resources. Nat Commun 2023; 14:6076. [PMID: 37770462 PMCID: PMC10539282 DOI: 10.1038/s41467-023-41681-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
One-pot synthesis of heterocyclic aromatics with good optical properties from phenolic β-O-4 lignin segments is of high importance to meet high value added biorefinery demands. However, executing this process remains a huge challenge due to the incompatible reaction conditions of the depolymerization of lignin β-O-4 segments containing γ-OH functionalities and bioresource-based aggregation-induced emission luminogens (BioAIEgens) formation with the desired properties. In this work, benzannulation reactions starting from lignin β-O-4 moieties with 3-alkenylated indoles catalyzed by vanadium-based complexes have been successfully developed, affording a wide range of functionalized carbazoles with up to 92% yield. Experiments and density functional theory calculations suggest that the reaction pathway involves the selective cleavage of double C-O bonds/Diels-Alder cycloaddition/dehydrogenative aromatization. Photophysical investigations show that these carbazole products represent a class of BioAIEgens with twisted intramolecular charge transfer. Distinctions of emission behavior were revealed based on unique acceptor-donor-acceptor-type molecular conformations as well as molecular packings. This work features lignin β-O-4 motifs with γ-OH functionalities as renewable substrates, without the need to apply external oxidant/reductant systems. Here, we show a concise and sustainable route to functional carbazoles with AIE properties, building a bridge between lignin and BioAIE materials.
Collapse
Affiliation(s)
- Tenglong Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuting Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Deng Pan
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Xuedan Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Wenqing Zhu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xu-Min Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China.
| | - Hua Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Dezhu Xu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Fritz E Kühn
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, D-85748, Garching bei München, Germany
| | - Bo Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
12
|
Li J, Feng S, Liu X, Jia X, Qiao F, Guo J, Deng S. Effects of Traditional Chinese Medicine and its Active Ingredients on Drug-Resistant Bacteria. Front Pharmacol 2022; 13:837907. [PMID: 35721131 PMCID: PMC9204478 DOI: 10.3389/fphar.2022.837907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The increasing and widespread application of antibacterial drugs makes antibiotic resistance a prominent and growing concern in clinical practice. The emergence of multidrug-resistant bacteria presents a global threat. However, the development and use of novel antibacterial agents involves time-consuming and costly challenges that may lead to yet further drug resistance. More recently, researchers have turned to traditional Chinese medicine to stem the rise of antibiotic resistance in pathogens. Many studies have shown traditional Chinese medicines to have significant bacteriostatic and bactericidal effects, with the advantage of low drug resistance. Some of which when combined with antibiotics, have also demonstrated antibacterial activity by synergistic effect. Traditional Chinese medicine has a variety of active components, including flavonoids, alkaloids, phenols, and quinones, which can inhibit the growth of drug-resistant bacteria and be used in combination with a variety of antibiotics to treat various drug-resistant bacterial infections. We reviewed the interaction between the active ingredients of traditional Chinese medicines and antibiotic-resistant bacteria. At present, flavonoids and alkaloids are the active ingredients that have been most widely studied, with significant synergistic activity demonstrated when used in combination with antibiotics against drug-resistant bacteria. The reviewed studies show that traditional Chinese medicine and its active ingredients have antimicrobial activity on antibiotic-resistant bacteria, which may enhance the susceptibility of antibiotic-resistant bacteria, potentially reduce the required dosage of antibacterial agents and the rate of drug resistance. Our results provide direction for finding and developing alternative methods to counteract drug-resistant bacteria, offering a new therapeutic strategy for tackling antibiotic resistance.
Collapse
Affiliation(s)
- Jimin Li
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Shanshan Feng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Liu
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Xu Jia
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China.,School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Fengling Qiao
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlin Guo
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shanshan Deng
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China.,School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| |
Collapse
|
13
|
Szostek T, Szulczyk D, Szymańska-Majchrzak J, Koliński M, Kmiecik S, Otto-Ślusarczyk D, Zawodnik A, Rajkowska E, Chaniewicz K, Struga M, Roszkowski P. Design and Synthesis of Menthol and Thymol Derived Ciprofloxacin: Influence of Structural Modifications on the Antibacterial Activity and Anticancer Properties. Int J Mol Sci 2022; 23:ijms23126600. [PMID: 35743043 PMCID: PMC9224473 DOI: 10.3390/ijms23126600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022] Open
Abstract
Sixteen new Ciprofloxacin derivatives were designed and successfully synthesized. In an in silico experiment, lipophilicity was established for obtained compounds. All compounds were screened for antimicrobial activity using standard and clinical strains. As for Gram-positive hospital microorganisms, all tested derivatives were active. Measured MICs were in the range 1–16 µg/mL, confirming high antimicrobial potency. Derivative 12 demonstrated activity against all standard Gram-positive Staphylococci, within the range of 0.8–1.6 µg/mL and was confirmed as the leading structure with MICs 1 µg/mL for S. pasteuri KR 4358 and S. aureus T 5591 (clinical strains). All compounds were screened for their in vitro cytotoxic properties via the MTT method. Three of the examined compounds (3, 11 and 16) showed good activity against cancer cells, and in parallel were found not to be cytotoxic toward normal cells. Doxorubicin SI ranged 0.14–1.11 while the mentioned three ranged 1.9–3.4. Selected Ciprofloxacin derivatives were docked into the crystal structure of topoisomerase II (DNA gyrase) in complex with DNA (PDB ID: 5BTC). In summary, leading structures were established (3, 11, 12 and 16). We have observed poor results in preformed studies for disubstituted derivatives, suggesting that 3-oxo-4-carboxylic acid core is the active DNA-gyrase binding site, and when structural changes were made in this fragment, there was an observed decrease in antibacterial potency.
Collapse
Affiliation(s)
- Tomasz Szostek
- Biochemical Research Scientific Association, Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Daniel Szulczyk
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.S.-M.); (D.O.-Ś.); (M.S.)
- Correspondence: (D.S.); (P.R.)
| | - Jolanta Szymańska-Majchrzak
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.S.-M.); (D.O.-Ś.); (M.S.)
| | - Michał Koliński
- Bioinformatics Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego St., 02-106 Warsaw, Poland;
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland;
| | - Dagmara Otto-Ślusarczyk
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.S.-M.); (D.O.-Ś.); (M.S.)
| | - Aleksandra Zawodnik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Eliza Rajkowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (E.R.); (K.C.)
| | - Kinga Chaniewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (E.R.); (K.C.)
| | - Marta Struga
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.S.-M.); (D.O.-Ś.); (M.S.)
| | - Piotr Roszkowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (E.R.); (K.C.)
- Correspondence: (D.S.); (P.R.)
| |
Collapse
|
14
|
Liu X, Liu R, Zhao R, Wang J, Cheng Y, Liu Q, Wang Y, Yang S. Synergistic Interaction Between Paired Combinations of Natural Antimicrobials Against Poultry-Borne Pathogens. Front Microbiol 2022; 13:811784. [PMID: 35602084 PMCID: PMC9115557 DOI: 10.3389/fmicb.2022.811784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Natural antimicrobials (NAM) are promising candidates for the successful control of poultry-borne bacteria, carrying potent antimicrobial activity (AMA) against a wide range of multidrug-resistant pathogens. Individual activities of carvacrol, eugenol, trans-cinnamaldehyde, oregano, and thymol, along with the combined activity of paired compounds, were examined using broth microdilution and checkerboard techniques. The characteristic interactions between the compounds were calculated using an improved method, based on combination index (CI) values. The bacteria examined herein were selected due to their known genetic resistance to at least one antibiotic. Our results indicated that thymol was most effective, exhibiting the lowest minimum inhibitory concentration (MIC) value against Salmonella pullorum, Escherichia coli, and Klebsiella pneumoniae, establishing the order of antimicrobial efficacy as: thymol > oregano > carvacrol > trans-cinnamaldehyde > eugenol. In the interaction study, the paired combination of carvacrol and thymol showed synergistic effects and was highly effective in reducing the antibiotic resistance of all the evaluated pathogens. Notably, all CI values were <1.0 in evaluations of S. pullorum, indicating the absence of antagonism between eugenol and thymol (or oregano). In K. pneumoniae, majority of CI values, which had a few concentration points, were smaller than 1.0, indicating a synergistic effect between eugenol and carvacrol (oregano or thymol), and trans-cinnamaldehyde and carvacrol. In E. coli, apart from some concentration points, some CI values were smaller than 1.0, demonstrating a synergistic effect between eugenol and carvacrol, and thymol and carvacrol (eugenol or oregano). It is therefore of great significance to investigate and illuminate the minimal effect concentration of these five components when they are used in combination as feed additives. Moreover, the improved evaluation method of this study provides a precise and extensive means to assess the synergistic effects of NAM.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Liu
- School of Investigation, People's Public Security University of China, Beijing, China
| | - Ruting Zhao
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jishi Wang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Yongyou Cheng
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Liu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanyun Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuming Yang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Liu Z, Li QX, Song B. Pesticidal Activity and Mode of Action of Monoterpenes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4556-4571. [PMID: 35380824 DOI: 10.1021/acs.jafc.2c00635] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Synthetic pesticides are often associated with issues such as pest resistance, persistent residue, nontarget toxicity, and environmental issues. Therefore, the research and development of novel, safe, and effective pesticides has become a focus in pesticide discovery. Monoterpenes are secondary plant metabolites that commonly have multiple action targets and have been used in aromatherapy, alternative medicine, and food industries. Some are highly potent and stereoselective. They can potentially be botanical pesticides and serve as lead candidates for the design and synthesis of new monoterpenoid pesticides for agricultural applications. This article reviews publications and patents found in SciFinder Scholar between 2000 and May 2021 on monoterpenes and mainly focuses on pesticidal activities of frequently studied monoterpenes and their modes of action. The presented information and our views are hopefully useful for the development of monoterpenes as biopesticides and monoterpenoid pesticides.
Collapse
Affiliation(s)
- Zhengjun Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P. R. China
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, Guizhou 561000, P. R. China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P. R. China
| |
Collapse
|
16
|
Alfieri ML, Panzella L, Amorati R, Cariola A, Valgimigli L, Napolitano A. Role of Sulphur and Heavier Chalcogens on the Antioxidant Power and Bioactivity of Natural Phenolic Compounds. Biomolecules 2022; 12:90. [PMID: 35053239 PMCID: PMC8774257 DOI: 10.3390/biom12010090] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
The activity of natural phenols is primarily associated to their antioxidant potential, but is ultimately expressed in a variety of biological effects. Molecular scaffold manipulation of this large variety of compounds is a currently pursued approach to boost or modulate their properties. Insertion of S/Se/Te containing substituents on phenols may increase/decrease their H-donor/acceptor ability by electronic and stereo-electronic effects related to the site of substitution and geometrical constrains. Oxygen to sulphur/selenium isosteric replacement in resveratrol or ferulic acid leads to an increase in the radical scavenging activity with respect to the parent phenol. Several chalcogen-substituted phenols inspired by Vitamin E and flavonoids have been prepared, which in some cases prove to be chain-breaking antioxidants, far better than the natural counterparts. Conjugation of catechols with biological thiols (cysteine, glutathione, dihydrolipoic acid) is easily achieved by addition to the corresponding ortho-quinones. Noticeable examples of compounds with potentiated antioxidant activities are the human metabolite 5-S-cysteinyldopa, with high iron-induced lipid peroxidation inhibitory activity, due to strong iron (III) binding, 5-S-glutathionylpiceatannol a most effective inhibitor of nitrosation processes, and 5-S-lipoylhydroxytyrosol, and its polysulfides that proved valuable oxidative-stress protective agents in various cellular models. Different methodologies have been used for evaluation of the antioxidant power of these compounds against the parent compounds. These include kinetics of inhibition of lipid peroxidation alkylperoxyl radicals, common chemical assays of radical scavenging, inhibition of the OH• mediated hydroxylation/oxidation of model systems, ferric- or copper-reducing power, scavenging of nitrosating species. In addition, computational methods allowed researchers to determine the Bond Dissociation Enthalpy values of the OH groups of chalcogen modified phenolics and predict the best performing derivative. Finally, the activity of Se and Te containing compounds as mimic of glutathione peroxidase has been evaluated, together with other biological activities including anticancer action and (neuro)protective effects in various cellular models. These and other achievements are discussed and rationalized to guide future development in the field.
Collapse
Affiliation(s)
- Maria Laura Alfieri
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, I-80126 Naples, Italy; (M.L.A.); (L.P.)
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, I-80126 Naples, Italy; (M.L.A.); (L.P.)
| | - Riccardo Amorati
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy; (R.A.); (A.C.)
| | - Alice Cariola
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy; (R.A.); (A.C.)
| | - Luca Valgimigli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy; (R.A.); (A.C.)
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, I-80126 Naples, Italy; (M.L.A.); (L.P.)
| |
Collapse
|
17
|
Li Q, Yu S, Han J, Wu J, You L, Shi X, Wang S. Synergistic antibacterial activity and mechanism of action of nisin/carvacrol combination against Staphylococcus aureus and their application in the infecting pasteurized milk. Food Chem 2022; 380:132009. [PMID: 35077986 DOI: 10.1016/j.foodchem.2021.132009] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/14/2021] [Accepted: 12/14/2021] [Indexed: 11/04/2022]
Abstract
Synergistic antibacterial effect is a promising way to overcome the challenge of microbial contamination in food. In this study, we detected the synergistic interactions of nisin and carvacrol. The MIC of nisin and carvacrol against S. aureus were 60 and 125 μg/mL, respectively. The FICI and FBCI were 0.28125 and 0.09375, which suggested that the nisin/carvacrol combination presented synergistic antibacterial effect against S. aureus. The antibacterial activity of nisin/carvacrol combination was much higher than their individuals and the dose of antibacterials was obviously reduced. The combination could completely kill S. aureus within 8 h, accelerate the destruction of cell membrane, and inhibit formation of biofilm. Under the intervention of nisin, more CAR could enter cell to hunt intracellular targets, leading to an increase in intracellular antibacterial level. Besides, in the storage of pasteurized milk, the combinational treatment successfully inhibited microbial reproduction at 25 °C and 4 °C. Thus, the combination of nisin and carvacrol was a potential synergistic strategy for food preservation.
Collapse
Affiliation(s)
- Qingxiang Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Shuna Yu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Jinzhi Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Jiulin Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China.
| | - Lijun You
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Xiaodan Shi
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China.
| |
Collapse
|
18
|
Chen R, Zhao C, Chen Z, Shi X, Zhu H, Bu Q, Wang L, Wang C, He H. A bionic cellulose nanofiber-based nanocage wound dressing for NIR-triggered multiple synergistic therapy of tumors and infected wounds. Biomaterials 2021; 281:121330. [PMID: 34973556 DOI: 10.1016/j.biomaterials.2021.121330] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022]
Abstract
Tumor recurrence and drug-resistant bacterial infection are the main reasons that wounds heal with difficulty after skin tumor treatment. The near infrared- (NIR-) and pH-responsive, bionic, cellulose nanofiber-based (CNF-based) nanocage wound dressing with biocompatibility, bioviscosity, and shape adaptability is designed for dual NIR-triggered photothermal therapy of tumor and infection-induced wound healing. The wound dressing with the intertwining three dimensional (3D) nanocage network structure is skillfully constructed using NIR-responsive cellulose nanofibers and pH-responsive cellulose nanofibers as the skeleton, which endows the dressing with a high drug-loading capacity of doxorubicin (400 mg·g-1), and indocyanine green (25 mg·g-1). Moreover, the NIR- and pH-responsive bionic "On/Off" switches of the dressing enable a controllable and efficient drug release onto the wound area. The dual NIR-triggered wound dressing with excellent photothermal conversion performance possesses good antibacterial properties against Escherichia coli, Staphylococcus aureus, and drug-resistant Staphylococcus aureus. It could effectively eliminate bacterial biofilms and kill A375 tumor cells. Interestingly, the bionic wound dressing with shape adaptability could adapt and treat irregular postoperative skin tumor wounds and drug-resistant bacterial infection via the synergistic therapy of photothermal, photodynamic, and chemotherapy, which provides an ideal strategy for clinical intervention.
Collapse
Affiliation(s)
- Rimei Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, PR China
| | - Chao Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, PR China
| | - Zhiping Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, PR China
| | - Xiaoyu Shi
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, PR China
| | - Hongxiang Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, PR China
| | - Qing Bu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China
| | - Lei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, PR China
| | - Chunfang Wang
- Affilated Hospital of You Jiang Medical College for Nationalities, Baise, 533099, PR China
| | - Hui He
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, PR China.
| |
Collapse
|
19
|
Floris B, Galloni P, Conte V, Sabuzi F. Tailored Functionalization of Natural Phenols to Improve Biological Activity. Biomolecules 2021; 11:1325. [PMID: 34572538 PMCID: PMC8467377 DOI: 10.3390/biom11091325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Phenols are widespread in nature, being the major components of several plants and essential oils. Natural phenols' anti-microbial, anti-bacterial, anti-oxidant, pharmacological and nutritional properties are, nowadays, well established. Hence, given their peculiar biological role, numerous studies are currently ongoing to overcome their limitations, as well as to enhance their activity. In this review, the functionalization of selected natural phenols is critically examined, mainly highlighting their improved bioactivity after the proper chemical transformations. In particular, functionalization of the most abundant naturally occurring monophenols, diphenols, lipidic phenols, phenolic acids, polyphenols and curcumin derivatives is explored.
Collapse
Affiliation(s)
- Barbara Floris
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Pierluca Galloni
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Valeria Conte
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Federica Sabuzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| |
Collapse
|
20
|
Natural Methoxyphenol Compounds: Antimicrobial Activity against Foodborne Pathogens and Food Spoilage Bacteria, and Role in Antioxidant Processes. Foods 2021; 10:foods10081807. [PMID: 34441583 PMCID: PMC8392586 DOI: 10.3390/foods10081807] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
The antibacterial and antioxidant activities of three methoxyphenol phytometabolites, eugenol, capsaicin, and vanillin, were determined. The in vitro antimicrobial potential was tested on three common foodborne pathogens (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus) and three food spoilage bacteria (Shewanella putrefaciens, Brochothrix thermosphacta, and Lactobacillus plantarum). The antioxidant assays were carried out for studying the free radical scavenging capacity and the anti-lipoperoxidant activity. The results showed that eugenol and capsaicin were the most active against both pathogens and spoilage bacteria. S. aureus was one of the most affected strains (median concentration of growth inhibition: IC50 eugenol = 0.75 mM; IC50 capsaicin = 0.68 mM; IC50 vanillin = 1.38 mM). All phytochemicals slightly inhibited the growth of L. plantarum. Eugenol was the most active molecule in the antioxidant assays. Only in the oxygen radical absorbing capacity (ORAC) test did vanillin show an antioxidant activity comparable to eugenol (eugenol ORAC value = 2.12 ± 0.08; vanillin ORAC value = 1.81 ± 0.19). This study, comparing the antimicrobial and antioxidant activities of three guaiacol derivatives, enhances their use in future applications as food additives for contrasting both common pathogens and spoilage bacteria and for improving the shelf life of preserved food.
Collapse
|
21
|
Walczak M, Michalska-Sionkowska M, Olkiewicz D, Tarnawska P, Warżyńska O. Potential of Carvacrol and Thymol in Reducing Biofilm Formation on Technical Surfaces. Molecules 2021; 26:molecules26092723. [PMID: 34066411 PMCID: PMC8125478 DOI: 10.3390/molecules26092723] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 01/18/2023] Open
Abstract
Polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), and stainless steel (SS) are commonly used in medicine and food production technologies. During contact with microorganisms on the surface of these materials, a microbial biofilm is formed. The biofilm structure is difficult to remove and promotes the development of pathogenic bacteria. For this reason, the inhibition of biofilm formation in medical and food production environments is very important. For this purpose, five naturally occurring compounds were used for antimicrobial screening tests. The two with the best antimicrobial properties were chosen to inhibit the biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa. After 3 days of exposure, thymol reduced the amount of biofilm of Pseudomonas aeruginosa within the range of 70–77% and 52–75% for Staphylococcus aureus. Carvacrol inhibited the formation of biofilms by up to 74–88% for Pseudomonas aeruginosa and up to 86–100% for Staphylococcus aureus. Those phenols decreased the enzyme activity of the biofilm by up to 40–100%. After 10 days of exposure to thymol, biofilm formation was reduced by 80–100% for Pseudomonas aeruginosa and by about 79–100% for Staphylococcus aureus. Carvacrol reduced the amount of biofilm by up to 91–100% for Pseudomonas aeruginosa and up to 95–100% for Staphylococcus aureus.
Collapse
|
22
|
Samoilova NA, Krayukhina MA, Anuchina NM, Popov DA. Study of Antimicrobial Properties of Preparations Based on Maleic-Acid Copolymers Containing Silver Nanoparticles and Phenolic Residues. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s000368382103011x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Mohammed HB, Rayyif SMI, Curutiu C, Birca AC, Oprea OC, Grumezescu AM, Ditu LM, Gheorghe I, Chifiriuc MC, Mihaescu G, Holban AM. Eugenol-Functionalized Magnetite Nanoparticles Modulate Virulence and Persistence in Pseudomonas aeruginosa Clinical Strains. Molecules 2021; 26:molecules26082189. [PMID: 33920270 PMCID: PMC8069135 DOI: 10.3390/molecules26082189] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
Efficient antibiotics to cure Pseudomonas aeruginosa persistent infections are currently insufficient and alternative options are needed. A promising lead is to design therapeutics able to modulate key phenotypes in microbial virulence and thus control the progression of the infectious process without selecting resistant mutants. In this study, we developed a nanostructured system based on Fe3O4 nanoparticles (NPs) and eugenol, a natural plant-compound which has been previously shown to interfere with microbial virulence when utilized in subinhibitory concentrations. The obtained functional NPs are crystalline, with a spherical shape and 10-15 nm in size. The subinhibitory concentrations (MIC 1/2) of the eugenol embedded magnetite NPs (Fe3O4@EUG) modulate key virulence phenotypes, such as attachment, biofilm formation, persister selection by ciprofloxacin, and the production of soluble enzymes. To our knowledge, this is the first report on the ability of functional magnetite NPs to modulate P. aeruginosa virulence and phenotypic resistance; our data highlights the potential of these bioactive nanostructures to be used as anti-pathogenic agents.
Collapse
Affiliation(s)
- Hamzah Basil Mohammed
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (H.B.M.); (S.M.I.R.); (C.C.); (L.-M.D.); (I.G.); (M.C.C.); (G.M.)
| | - Sajjad Mohsin I. Rayyif
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (H.B.M.); (S.M.I.R.); (C.C.); (L.-M.D.); (I.G.); (M.C.C.); (G.M.)
| | - Carmen Curutiu
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (H.B.M.); (S.M.I.R.); (C.C.); (L.-M.D.); (I.G.); (M.C.C.); (G.M.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
| | - Alexandra Catalina Birca
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.C.B.); (O.-C.O.)
| | - Ovidiu-Cristian Oprea
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.C.B.); (O.-C.O.)
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.C.B.); (O.-C.O.)
| | - Lia-Mara Ditu
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (H.B.M.); (S.M.I.R.); (C.C.); (L.-M.D.); (I.G.); (M.C.C.); (G.M.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
| | - Irina Gheorghe
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (H.B.M.); (S.M.I.R.); (C.C.); (L.-M.D.); (I.G.); (M.C.C.); (G.M.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
| | - Mariana Carmen Chifiriuc
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (H.B.M.); (S.M.I.R.); (C.C.); (L.-M.D.); (I.G.); (M.C.C.); (G.M.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
| | - Grigore Mihaescu
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (H.B.M.); (S.M.I.R.); (C.C.); (L.-M.D.); (I.G.); (M.C.C.); (G.M.)
| | - Alina-Maria Holban
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (H.B.M.); (S.M.I.R.); (C.C.); (L.-M.D.); (I.G.); (M.C.C.); (G.M.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Correspondence:
| |
Collapse
|
24
|
Marinho TA, Oliveira MG, Menezes-Filho ACP, Castro CFS, Oliveira IMM, Borges LL, Melo-Reis PR, Silva-Jr NJ. Phytochemical characterization, and antioxidant and antibacterial activities of the hydroethanolic extract of Anadenanthera peregrina stem bark. BRAZ J BIOL 2021; 82:e234476. [PMID: 33681898 DOI: 10.1590/1519-6984.234476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/03/2020] [Indexed: 02/05/2023] Open
Abstract
The Brazilian Cerrado biome consists of a great variety of endemic species with several bioactive compounds, and Anadenanthera peregrina (L.) Speg is a promising species. In this study, we aimed to perform phytochemical characterization and evaluate the antioxidant and antibacterial activities against Staphylococcus aureus and Escherichia coli of the hydroethanolic extract of A. peregrina stem bark. The barks were collected in the Botanical Garden of Goiânia, Brazil. The hydroethanolic extract was obtained by percolation and subjected to physicochemical screening, total phenolic content estimation, high-performance liquid chromatography (HPLC) fingerprinting, and antioxidant (IC50 values were calculated for the 2,2-diphenyl-1-picrylhydrazyl assay - DPPH) and antibacterial activity determination. The pH of the extract was 5.21 and density was 0.956 g/cm3. The phytochemical screening indicated the presence of cardiac glycosides, organic acids, reducing sugars, hemolytic saponins, phenols, coumarins, condensed tannins, flavonoids, catechins, depsides, and depsidones derived from benzoquinones. The extract showed intense hemolytic activity. The total phenolic content was 6.40 g GAE 100 g-1. The HPLC fingerprinting analysis revealed the presence of gallic acid, catechin, and epicatechin. We confirmed the antioxidant activity of the extract. Furthermore, the extract did not inhibit the growth of E. coli colonies at any volume tested, but there were halos around S. aureus colonies at all three volumes tested. These results contribute to a better understanding of the chemical composition of A. peregrina stem bark and further support the medicinal applications of this species.
Collapse
Affiliation(s)
- T A Marinho
- Universidade Federal de Goiás - UFG, Rede Pró Centro-Oeste, Programa de Pós-graduação em Biotenologia e Biodiversidade - PGBB, Goiânia, GO, Brasil.,Instituto Federal de Educação, Ciência e Tecnologia de Goiás - IFG, Núcleo de Estudos e Pesquisas em Promoção da Saúde - NUPPS, Goiânia, GO, Brasil
| | - M G Oliveira
- Universidade Federal de Goiás - UFG, Programa de Pós-graduação em Ciências Farmacêticas, Goiânia, GO, Brasil
| | - A C P Menezes-Filho
- Instituto Federal de Ciência e Tecnologia Goiano - IFGoiano, Programa de Pós-graduação em Agroquímica - PPGAq, Rio Verde, GO, Brasil
| | - C F S Castro
- Instituto Federal de Ciência e Tecnologia Goiano - IFGoiano, Programa de Pós-graduação em Agroquímica - PPGAq, Rio Verde, GO, Brasil
| | - I M M Oliveira
- Pontifícia Universidade Católica de Goiás - PUCGO, Programa de Pós-graduação em Genética, Goiânia, GO, Brasil
| | - L L Borges
- Universidade Estadual de Goiás - UEG, Programa de Pós-graduação em Recursos Naturais do Cerrado - RENAC, Anápolis, GO, Brasil
| | - P R Melo-Reis
- Pontifícia Universidade Católica de Goiás - PUCGO, Programa de Pós-graduação em Ciências Ambientas e Saúde, Goiânia, GO, Brasil
| | - N J Silva-Jr
- Pontifícia Universidade Católica de Goiás - PUCGO, Programa de Pós-graduação em Ciências Ambientas e Saúde, Goiânia, GO, Brasil
| |
Collapse
|
25
|
β-Cyclodextrin Inclusion Complex Containing Litsea cubeba Essential Oil: Preparation, Optimization, Physicochemical, and Antifungal Characterization. COATINGS 2020. [DOI: 10.3390/coatings10090850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Litsea cubeba essential oil (LCEO), as naturally plant-derived products, possess good antimicrobial activities against many pathogens, but their high volatility and poor water solubility limit greatly the application in food industry. In this research, inclusion complex based on β-cyclodextrin (β-CD) and LCEO, was prepared by saturated aqueous solution method. An optimum condition using the response surface methodology (RSM) based on Box–Behnken design (BBD) was obtained with the inclusion time of 2 h and β-CD/LCEO ratio of 4.2 at 44 °C. Under the condition, the greatest yield of 71.71% with entrapment efficiency of 33.60% and loading capacity of 9.07% was achieved. In addition, the structure and characteristic of LCEO/β-CD inclusion complex (LCEO/βCD-IC) were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR), which indicated that LCEO/βCD-IC was successfully formed. The particle size of LCEO/βCD-IC was determined to be 17.852 μm. Thermal properties of LCEO/βCD-IC evaluated by thermogravimetric-differential scanning calorimetry (TG-DTA) illustrated better thermal stability of the aimed product compared with the physical mixture. Furthermore, the tests of antifungal activity showed that LCEO/βCD-IC was able to control the growth of Penicillium italicum, Penicillium digitatum, and Geotrichum citri-aurantii isolated from postharvest citrus. Our present study confirmed that LCEO/βCD-IC might be further applied as an alternative to chemical fungicides for protecting citrus fruit from postharvest disease.
Collapse
|
26
|
Walsh DJ, Livinghouse T, Durling GM, Chase-Bayless Y, Arnold AD, Stewart PS. Sulfenate Esters of Simple Phenols Exhibit Enhanced Activity against Biofilms. ACS OMEGA 2020; 5:6010-6020. [PMID: 32226882 PMCID: PMC7098047 DOI: 10.1021/acsomega.9b04392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
The recalcitrance exhibited by microbial biofilms to conventional disinfectants has motivated the development of new chemical strategies to control and eradicate biofilms. The activities of several small phenolic compounds and their trichloromethylsulfenyl ester derivatives were evaluated against planktonic cells and mature biofilms of Staphylococcus epidermidis and Pseudomonas aeruginosa. Some of the phenolic parent compounds are well-studied constituents of plant essential oils, for example, eugenol, menthol, carvacrol, and thymol. The potency of sulfenate ester derivatives was markedly and consistently increased toward both planktonic cells and biofilms. The mean fold difference between the parent and derivative minimum inhibitory concentration against planktonic cells was 44 for S. epidermidis and 16 for P. aeruginosa. The mean fold difference between the parent and derivative biofilm eradication concentration for 22 tested compounds against both S. epidermidis and P. aeruginosa was 3. This work demonstrates the possibilities of a new class of biofilm-targeting disinfectants deploying a sulfenate ester functional group to increase the antimicrobial potency toward microorganisms in biofilms.
Collapse
Affiliation(s)
- Danica J Walsh
- Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Tom Livinghouse
- Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Greg M Durling
- Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Yenny Chase-Bayless
- Fish and Wildlife, Montana State University, Bozeman, Montana 59717, United States
| | - Adrienne D Arnold
- Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, United States
| | - Philip S Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
27
|
Cellular apoptosis and necrosis as therapeutic targets for novel Eugenol Tosylate Congeners against Candida albicans. Sci Rep 2020; 10:1191. [PMID: 31988394 PMCID: PMC6985109 DOI: 10.1038/s41598-020-58256-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Despite the rise of new Candida species, Candida albicans tops the list with high morbidity and mortality rates. To tackle this problem there is a need to explore new antifungals that could replace or augment the current treatment options. We previously reported that tosylation of eugenol on hydroxyl group resulted in molecules with enhanced antifungal potency. In line with that work, we synthesized new eugenol tosylate congeners (ETC-1–ETC-7) with different substituents on pendent sulfonyl group and tested their susceptibility against different fluconazole susceptible and resistant C. albicans strains. We evaluated physiology and mode of cell death in response to the most active derivatives by analyzing major apoptotic markers in yeast such as phosphatidylserine externalization, DNA fragmentation, mitochondrial depolarization and decrease in cytochrome c oxidase activity. The results demonstrated that all C. albicans strains were variably susceptible to the test compounds with MIC ranging from 0.125–512 µg/ml, and the most active compounds (ETC-5, ETC-6 and ETC-7) actuate apoptosis and necrosis in Candida cells in a dose-dependent manner via metacaspase-dependent pathway. Furthermore haemolytic assay showed low cytotoxicity effect of these ETCs. Overall the results indicated that ETCs exhibit potential antifungal activity against C. albicans by activating apoptotic and necrotic pathways.
Collapse
|
28
|
Wang Y, Zhao B, Liu Y, Mao L, Zhang X, Meng W, Liu K, Chu J. A novel trehalosamine isolated from Bacillus amyloliquefaciens and its antibacterial activities. AMB Express 2020; 10:6. [PMID: 31938970 PMCID: PMC6960277 DOI: 10.1186/s13568-019-0943-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/28/2019] [Indexed: 12/17/2022] Open
Abstract
Bacillus amyloliquefaciens has been widely used as a probiotic in the field of biological control,and its antibacterial compounds plays an important role in the prevention and control of plant, livestock and poultry diseases. It has the advantages of green, safe and efficiency. This study aims to separate and purify active ingredient from Bacillus amyloliquefaciens GN59 and study its antibacterial activity. A novel compound was isolated from GN59 by column chromatography on silica gel and HPLC purification. The chemical structure was identified as α-D-glucopyranosyl-(1 → 1')-3'-amino-3'-deoxy-β-D-glucopyranoside (a,β-3-trehalosamine) on the basis of spectroscopic analysis. This is the first report about a,β-3-trehalosamine isolated from biological resources on an antibiotic activity against pathogenic bacterium. The 3'-neotrehalosamine displayed antibacterial activity across a broad spectrum of microorganisms, including different gram-positive and gram-negative bacteria, with minimal inhibitory concentration (MIC) values ranging from 0.5 to 0.7 mg/mL. The results indicated that the 3'-neotrehalosamine from GN59 might be a potential candidate for bactericide.
Collapse
|
29
|
Walsh DJ, Livinghouse T, Goeres DM, Mettler M, Stewart PS. Antimicrobial Activity of Naturally Occurring Phenols and Derivatives Against Biofilm and Planktonic Bacteria. Front Chem 2019; 7:653. [PMID: 31632948 PMCID: PMC6779693 DOI: 10.3389/fchem.2019.00653] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/11/2019] [Indexed: 12/28/2022] Open
Abstract
Biofilm-forming bacteria present formidable challenges across diverse settings, and there is a need for new antimicrobial agents that are both environmentally acceptable and relatively potent against microorganisms in the biofilm state. The antimicrobial activity of three naturally occurring, low molecular weight, phenols, and their derivatives were evaluated against planktonic and biofilm Staphylococcus epidermidis and Pseudomonas aeruginosa. The structure activity relationships of eugenol, thymol, carvacrol, and their corresponding 2- and 4-allyl, 2-methallyl, and 2- and 4-n-propyl derivatives were evaluated. Allyl derivatives showed a consistent increased potency with both killing and inhibiting planktonic cells but they exhibited a decrease in potency against biofilms. This result underscores the importance of using biofilm assays to develop structure-activity relationships when the end target is biofilm.
Collapse
Affiliation(s)
- Danica J. Walsh
- Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Tom Livinghouse
- Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Darla M. Goeres
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Madelyn Mettler
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Philip S. Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| |
Collapse
|
30
|
Liu X, Meng Y, Zhang Z, Wang Y, Geng X, Li M, Li Z, Zhang D. Functional nano-catalyzed pyrolyzates from branch of Cinnamomum camphora. Saudi J Biol Sci 2019; 26:1227-1246. [PMID: 31516353 PMCID: PMC6733784 DOI: 10.1016/j.sjbs.2019.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 12/19/2022] Open
Abstract
Cinnamomum camphora is an excellent tree species for construction of forest construction of Henan Province, China. The diverse bioactive components of nano-catalyzed pyrolyzates form cold-acclimated C. camphora branch (CCB) in North China were explored. The raw powder of CCB treated with nano-catalyst (Ag, NiO, 1/2Ag + 1/2NiO) were pyrolyzed at two temperatures (550 °C and 700 °C), respectively. The main pyrolyzates are bioactive components of bioenergy, biomedicines, food additive, spices, cosmetics and chemical, whose total relative contents at 550 °C pyrolyzates are higher than those at 700 °C pyrolyzates. There are abundant components of spices and biomedicine at 550 °C pyrolyzates, while more spices and food additive at 700 °C pyrolyzates. At 550 °C, the content of biomedicine components reaches the highest by 1/2Ag + 1/2NiO nanocatalysis, while the contents of spices and food additive components reach the highest by NiO nanocatalysis. At 700 °C, the content of bioenergy components reaches the highest by 1/2Ag + 1/2NiO nanocatalysis, and the content of cosmetics components reaches the highest by Ag nanocatalysis. The findings suggested that the branch of the cold-acclimated C. camphora have the potential to develop into valued-added products of bioenergy, biomedicine, cosmetics, spices and food additive by nanocatalysis.
Collapse
Affiliation(s)
- Xue Liu
- College of Forestry/Henan Province Engineering Research Center for Forest Biomass Value-added Products, Henan Agricultural University, Zhengzhou 450002, China
| | - Yu Meng
- College of Forestry/Henan Province Engineering Research Center for Forest Biomass Value-added Products, Henan Agricultural University, Zhengzhou 450002, China
| | - Zanpei Zhang
- College of Forestry/Henan Province Engineering Research Center for Forest Biomass Value-added Products, Henan Agricultural University, Zhengzhou 450002, China
| | - Yihan Wang
- College of Forestry/Henan Province Engineering Research Center for Forest Biomass Value-added Products, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaodong Geng
- College of Forestry/Henan Province Engineering Research Center for Forest Biomass Value-added Products, Henan Agricultural University, Zhengzhou 450002, China
| | - Mingwan Li
- College of Forestry/Henan Province Engineering Research Center for Forest Biomass Value-added Products, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhi Li
- College of Forestry/Henan Province Engineering Research Center for Forest Biomass Value-added Products, Henan Agricultural University, Zhengzhou 450002, China
| | - Dangquan Zhang
- College of Forestry/Henan Province Engineering Research Center for Forest Biomass Value-added Products, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
31
|
Marques CS, Carvalho SG, Bertoli LD, Villanova JCO, Pinheiro PF, dos Santos DCM, Yoshida MI, de Freitas JCC, Cipriano DF, Bernardes PC. β-Cyclodextrin inclusion complexes with essential oils: Obtention, characterization, antimicrobial activity and potential application for food preservative sachets. Food Res Int 2019; 119:499-509. [DOI: 10.1016/j.foodres.2019.01.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/17/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
|
32
|
Cottaz A, Bouarab L, De Clercq J, Oulahal N, Degraeve P, Joly C. Potential of Incorporation of Antimicrobial Plant Phenolics Into Polyolefin-Based Food Contact Materials to Produce Active Packaging by Melt-Blending: Proof of Concept With Isobutyl-4-Hydroxybenzoate. Front Chem 2019; 7:148. [PMID: 30968015 PMCID: PMC6439309 DOI: 10.3389/fchem.2019.00148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/28/2019] [Indexed: 01/22/2023] Open
Abstract
There is an increasing interest for active food packaging incorporated with natural antimicrobial agents rather than synthetic preservatives. However, most of plastics for direct contact with food are made of polyolefins, usually processed by extrusion, injection, or blow-molding methods while most of natural antimicrobial molecules are thermolabile compounds (e.g., essential oils). Therefore, addition of plant phenolics (with low volatility) to different polyolefins might be promising to design active controlled release packaging processed by usual plastic compounding and used for direct contact with food products. Therefore, up to 2% (wt/wt) of isobutyl-4-hydroxybenzoate (IBHB) was mixed with 3 polyolefins: EVA poly(ethylene-co-vinyl acetate), LLDPE (Linear Low Density Polyethylene), and PP (PolyPropylene) by melt-blending from 75 to 170°C and then pelletized in order to prepare heat-pressed films. IBHB was chosen as an antibacterial phenolic active model molecule against Staphylococcus aureus to challenge the entire processing. Antibacterial activity of films against S. aureus (procedure adapted from ISO 22196 standard) were 4, 6, and 1 decimal reductions in 24 h for EVA, LLDPE, and PP films, respectively, demonstrating the preservation of the antibacterial activity after melt processing. For food contact materials, the efficacy of antimicrobial packaging depends on the release of the antimicrobial molecules. Therefore, the three types of films were placed at 23°C in 95% (v/v) ethanol and the release rates of IBHB were monitored: 101 ± 1%, 32 ± 7%, and 72 ± 9% at apparent equilibrium for EVA, LLDPE, and PP films, respectively. The apparent diffusion coefficients of IBHB in EVA and PP films were 2.8 ± 0.3 × 10−12 and 4.0 ± 1.0 × 10−16 m2s−1. For LLDPE films, IBHB crystals were observed on the surface of films by SEM (Scanning Electron Microscopy): this blooming effect was due the partial incompatibility of IBHB in LLDPE and its fast diffusion out of the polymer matrix onto the film surface. In conclusion, none of these three materials was suitable for a relevant controlled release packaging targeting the preservation of fresh food, but a combination of two of them is promising by the design of a multilayer packaging: the release could result from permeation through an inner PE layer combined with an EVA one acting as a reservoir.
Collapse
Affiliation(s)
- Amandine Cottaz
- Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| | - Lynda Bouarab
- Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| | - Justine De Clercq
- Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| | - Nadia Oulahal
- Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| | - Pascal Degraeve
- Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| | - Catherine Joly
- Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| |
Collapse
|
33
|
Maurya AK, Agarwal K, Gupta AC, Saxena A, Nooreen Z, Tandon S, Ahmad A, Bawankule DU. Synthesis of eugenol derivatives and its anti-inflammatory activity against skin inflammation. Nat Prod Res 2018; 34:251-260. [PMID: 30580605 DOI: 10.1080/14786419.2018.1528585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eugenol is a phytochemical present in aromatic plants has generated considerable interest in the pharmaceutical industries mainly in cosmetics. A series of eugenol esters (ST1-ST7) and chloro eugenol (ST8) have been synthesized. The structures of newly synthesized compounds were confirmed by 1H and 13C NMR and mass spectrometry. In an effort to evaluate the pharmacological activity of eugenol derivatives, we explored its anti-inflammatory potential against skin inflammation using in-vitro and in-vivo bioassay. Synthesized derivatives significantly inhibited the production of pro-inflammatory cytokines against LPS-induced inflammation in macrophages. Among all derivatives, ST8 [Chloroeugenol (6-chloro, 2-methoxy-4-(prop-2-en-1-yl)-phenol)] exhibited most potent anti-inflammatory activity without any cytotoxic effect. We have further evaluated the efficacy and safety in in-vivo condition. ST8 exhibited significant anti-inflammatory activity against TPA-induced skin inflammation without any skin irritation effect on experimental animals. These findings suggested that ST8 may be a useful therapeutic candidate for the treatment of skin inflammation.
Collapse
Affiliation(s)
- Anil Kumar Maurya
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.,Sai Nath University, Ranchi, India
| | - Karishma Agarwal
- Process Chemistry and Technology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.,Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Amit Chand Gupta
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Archana Saxena
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Zulfa Nooreen
- Process Chemistry and Technology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Sudeep Tandon
- Process Chemistry and Technology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.,Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Ateeque Ahmad
- Process Chemistry and Technology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.,Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Dnyaneshwar Umrao Bawankule
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.,Academy of Scientific and Innovative Research, New Delhi 110025, India
| |
Collapse
|
34
|
Krupa J, Pagacz-Kostrzewa M, Wierzejewska M. UV laser-induced photolysis of matrix isolated o-guaiacol. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.05.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|