1
|
Peng C, Wu F, Ma Y, Liu G, Huang Y, Tong R, Xu W. Ginkgolic acid inhibits Ebola virus transcription and replication by disrupting the interaction between nucleoprotein and VP30 protein. Antiviral Res 2025; 234:106074. [PMID: 39716669 DOI: 10.1016/j.antiviral.2024.106074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/08/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
The Ebola virus, a filovirus, has been responsible for significant human fatalities since its discovery. Despite extensive research, effective small-molecule drugs remain elusive due to its complex pathogenesis. Inhibition of RNA synthesis is a promising therapeutic target, and the VP30 protein plays a critical role in this process. The interaction between VP30 and the nucleoprotein (NP) is essential for viral replication. We identified ginkgolic acid as a small molecule with strong affinity for VP30, which was validated through multiple assays, including thermal shift, surface plasmon resonance, fluorescence polarization, pull-down, and co-immunoprecipitation. The antiviral efficacy of ginkgolic acid was demonstrated in the EBOV transcription- and replication-competent virus-like particle (trVLP) system. Furthermore, we resolved the crystal structure of the VP30-ginkgolic acid complex, revealing two ginkgolic acid molecules located at the VP30/NP interaction interface. This structural information provides insight into the molecular basis of ginkgolic acid's antiviral activity and suggests a novel therapeutic strategy targeting the VP30/NP interaction.
Collapse
Affiliation(s)
- Chiwei Peng
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Fang Wu
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Yanhong Ma
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Guolong Liu
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yin Huang
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Wei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Peng CC, Humeniuk R, Raut A, Kwan A, Mak L, Stacom C, Xiao D, Chen S, Davies S, Madera S, Koullias Y, Lichtman A, Llewellyn J, Amini E, Winter H, Caro L. Clinical Evaluation of Drug-Drug Interactions with Obeldesivir, an Orally Administered Antiviral Agent. Clin Pharmacol Ther 2025. [PMID: 39887351 DOI: 10.1002/cpt.3575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025]
Abstract
Obeldesivir is an oral nucleoside analog prodrug inhibitor of SARS-CoV-2 RNA-dependent RNA polymerase and other viral polymerases. Here, two Phase I studies evaluated potential drug-drug interactions between obeldesivir and substrates or inhibitors of cytochrome P450 and drug transporters in healthy participants. When obeldesivir was tested as a precipitant, pharmacokinetic parameter point estimates for midazolam (CYP3A4 inhibition/induction), caffeine (CYP1A2 inhibition), and metformin (organic cation transporter 1 inhibition) exposures were within 80-125% no-effect bounds representing the interval within which a systemic exposure change does not warrant clinical action based on EMA/FDA guidance. Dabigatran (P-glycoprotein substrate) and pitavastatin (organic anion transporting polypeptide 1B1/1B3 substrate) exposures decreased by approximately 25% and 30%, respectively, with obeldesivir coadministration; these were considered not clinically relevant, as these exposure changes are not associated with dose changes or precautions in the US prescribing information for these drugs. When obeldesivir was evaluated as an object, exposures of GS-441524, the parent nucleoside monophosphate metabolite of obeldesivir, were within the 80-125% no-effect bounds for ritonavir (P-glycoprotein inhibition) and cyclosporin A (breast cancer resistance protein inhibition) coadministration. Famotidine (gastric acid suppression) coadministration decreased GS-441524 exposure by approximately 26%; this was within the range of exposures observed in previous Phase III studies and was considered not clinically relevant. Obeldesivir was well tolerated, and adverse events were mild to moderate. These findings indicate that obeldesivir has low potential for drug-drug interactions. Obeldesivir remains a promising treatment against a broad spectrum of viruses given its antiviral activity and favorable safety profile.
Collapse
Affiliation(s)
- Chi-Chi Peng
- Gilead Sciences, Inc., Foster City, California, USA
| | | | - Anuja Raut
- Gilead Sciences, Inc., Foster City, California, USA
| | - Anna Kwan
- Gilead Sciences, Inc., Foster City, California, USA
| | - Lily Mak
- Gilead Sciences, Inc., Foster City, California, USA
| | | | - Deqing Xiao
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | | | | | | | | | - Elham Amini
- Gilead Sciences, Inc., Foster City, California, USA
| | - Helen Winter
- Gilead Sciences, Inc., Foster City, California, USA
| | | |
Collapse
|
3
|
Cross RW, Woolsey C, Prasad AN, Borisevich V, Agans KN, Deer DJ, Harrison MB, Dobias NS, Fenton KA, Cihlar T, Nguyen AQ, Babusis D, Bannister R, Vermillion MS, Chu VC, Geisbert TW. Oral obeldesivir provides postexposure protection against Marburg virus in nonhuman primates. Nat Med 2025:10.1038/s41591-025-03496-y. [PMID: 39805309 DOI: 10.1038/s41591-025-03496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
The recent outbreak of Marburg virus (MARV) in Rwanda underscores the need for effective countermeasures against this highly fatal pathogen, with case fatality rates reaching 90%. Currently, no vaccines or approved treatments exist for MARV infection, distinguishing it from related viruses such as Ebola. Our study demonstrates that the oral drug obeldesivir (ODV), a nucleoside analog prodrug, shows promising antiviral activity against filoviruses in vitro and offers significant protection in animal models. Here with cynomolgus macaques (n = 6), a 10 day regimen of once-daily ODV, initiated 24 h after exposure, provided 80% protection against a thousandfold lethal MARV challenge, delaying viral replication and disease onset. Transcriptome analysis revealed that early adaptive responses correlated with successful outcomes. Compared with intravenous options, oral antivirals such as ODV offer logistical advantages in outbreak settings, enabling easier administration and broader contact coverage. Our findings support the potential of ODV as a broad-spectrum, oral postexposure prophylaxis for filoviruses.
Collapse
Affiliation(s)
- Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Abhishek N Prasad
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel J Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mack B Harrison
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Natalie S Dobias
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Karla A Fenton
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
4
|
Spengler JR, Lo MK, Welch SR, Spiropoulou CF. Henipaviruses: epidemiology, ecology, disease, and the development of vaccines and therapeutics. Clin Microbiol Rev 2024:e0012823. [PMID: 39714175 DOI: 10.1128/cmr.00128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
SUMMARYHenipaviruses were first identified 30 years ago and have since been associated with over 30 outbreaks of disease in humans. Highly pathogenic henipaviruses include Hendra virus (HeV) and Nipah virus (NiV), classified as biosafety level 4 pathogens. In addition, NiV has been listed as a priority pathogen by the World Health Organization (WHO), the Coalition for Epidemic Preparedness Innovations (CEPI), and the UK Vaccines Research and Development Network (UKVN). Here, we re-examine epidemiological, ecological, clinical, and pathobiological studies of HeV and NiV to provide a comprehensive guide of the current knowledge and application to identify and evaluate countermeasures. We also discuss therapeutic and vaccine development efforts. Furthermore, with case identification, prevention, and treatment in mind, we highlight limitations in research and recognize gaps necessitating additional studies.
Collapse
Affiliation(s)
- Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Rodriguez L, Lee HW, Li J, Martin R, Han D, Xu S, Moshiri J, Peinovich N, Camus G, Perry JK, Hyland RH, Porter DP, Abdelghany M, Götte M, Hedskog C. SARS-CoV-2 resistance analyses from the Phase 3 PINETREE study of remdesivir treatment in nonhospitalized participants. Antimicrob Agents Chemother 2024:e0123824. [PMID: 39699245 DOI: 10.1128/aac.01238-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Remdesivir inhibits the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp; Nsp12). Here, we conducted viral resistance analyses from the Phase 3 PINETREE trial of remdesivir in nonhospitalized participants at risk of severe COVID-19. Nasopharyngeal swabs (collected at baseline [Day 1], Days 2, 3, 7, and 14) were eligible for analysis if their viral load was above the lower limit of quantification for the RT-qPCR assay (2228 copies/mL). The SARS-CoV-2 genome was sequenced for all remdesivir participants and 50% of placebo participants (baseline, Days 3, 7, and 14) and for participants who progressed to COVID-19-related hospitalization or all-cause death (all time points). Emergent substitutions in Nsp12 and other replication complex proteins were phenotyped using site-directed mutagenesis in a SARS-CoV-2 subgenomic replicon system. Overall, emergent Nsp12 substitutions were detected in 8/115 (7.0%) remdesivir participants and 7/129 (5.4%) placebo participants (1 substitution overlap between groups). Based on a structural analysis, none of the emergent Nsp12 substitutions were in direct contact with the incoming nucleoside triphosphate substrate, the RNA, or the RNA template 5' overhang. One substitution (A376V) showed reduced susceptibility to remdesivir (12.6-fold change in remdesivir half-maximal concentration [EC50]); it also showed reduced fitness when introduced in the SARS-CoV-2 replicon and virus in vitro. Other substitutions had <1.1-fold change in remdesivir EC50. None of the emergent substitutions in Nsp8, Nsp10, Nsp13, or Nsp14 (remdesivir, 10/115 [8.7%]; placebo, 10/129 [7.8%]) showed reduced remdesivir susceptibility. In conclusion, emergent substitutions in the SARS-CoV-2 RdRp complex with reduced remdesivir susceptibility were uncommon, indicating a high barrier to remdesivir resistance.CLINICAL TRIALSThis study is registered with ClinicalTrials.gov as NCT04501952.
Collapse
Affiliation(s)
| | - Hery W Lee
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jiani Li
- Gilead Sciences, Inc., Foster City, California, USA
| | - Ross Martin
- Gilead Sciences, Inc., Foster City, California, USA
| | - Dong Han
- Gilead Sciences, Inc., Foster City, California, USA
| | - Simin Xu
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | | | | | | | | | | | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
6
|
Liu ZQ. How many organic small molecules might be used to treat COVID-19? From natural products to synthetic agents. Eur J Med Chem 2024; 278:116788. [PMID: 39236494 DOI: 10.1016/j.ejmech.2024.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
A large scale of pandemic coronavirus disease (COVID-19) in the past five years motivates a great deal of endeavors donating to the exploration on therapeutic drugs against COVID-19 as well as other diseases caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein is an overview on the organic small molecules that are potentially employed to treat COVID-19 and other SARS-CoV-2-related diseases. These organic small molecules are accessed from both natural resources and synthetic strategies. Notably, typical natural products presented herein consist of polyphenols, lignans, alkaloids, terpenoids, and peptides, which exert an advantage for the further discovery of novel anti-COVID-19 drugs from plant herbs. On the other hand, synthetic prodrugs are composed of a series of inhibitors towards RNA-dependent RNA polymerase (RdRp), main protease (Mpro), 3-chymotrypsin-like cysteine protease (3CLpro), spike protein, papain-like protease (PLpro) of the SARS-CoV-2 as well as the angiotensin-converting enzyme 2 (ACE2) in the host cells. Synthetic strategies are worth taken into consideration because they are beneficial for designing novel anti-COVID-19 drugs in the coming investigations. Although examples collected herein are just a drop in the bucket, developments of organic small molecules against coronavirus infections are believed to pave a promising way for the discovery of multi-targeted therapeutic drugs against not only COVID-19 but also other virus-mediated diseases.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, No.2519 Jiefang Road, Changchun, 130021, People's Republic of China.
| |
Collapse
|
7
|
Do TND, Abdelnabi R, Boda B, Constant S, Neyts J, Jochmans D. The triple combination of Remdesivir (GS-441524), Molnupiravir and Ribavirin is highly efficient in inhibiting coronavirus replication in human nasal airway epithelial cell cultures and in a hamster infection model. Antiviral Res 2024; 231:105994. [PMID: 39237005 PMCID: PMC11560660 DOI: 10.1016/j.antiviral.2024.105994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
The use of fixed dose-combinations of antivirals with different mechanisms of action has proven key in the successful treatment of infections with HIV and HCV. For the treatment of infections with SARS-CoV-2 and possible future epi-/pandemic coronaviruses, it will be important to explore the efficacy of combinations of different drugs, in particular to avoid resistance development, such as in patients with immunodeficiencies. This work explores the effect of a combination of 3 broad-spectrum antiviral nucleosides on the replication of coronaviruses. To that end, we made use of primary human airway epithelial cell (HAEC) cultures grown at the air-liquid interface that were infected with the beta coronavirus OC43. We found that the triple combination of GS-441524 (the parent nucleoside of remdesivir), molnupiravir and ribavirin resulted in a more pronounced antiviral efficacy than what could be expected from a purely additive antiviral effect. The potency of this triple combination was next tested in SARS-CoV-2 infected hamsters in a prophylactic setup. To that end, for each of the drugs, intentionally suboptimal or even ineffective doses were selected. Yet, in the lungs of all hamsters that received triple prophylactic therapy (but not in those that received the respective double combinations) no infectious virus was detectable. Our findings indicate that co-administration of approved drugs for the treatment of coronavirus infections should be further explored but also against other families of viruses with epidemic and pandemic potential for which no effective antiviral treatment is available.
Collapse
Affiliation(s)
- Thuc Nguyen Dan Do
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000, Leuven, Belgium
| | - Rana Abdelnabi
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000, Leuven, Belgium; The VirusBank Platform, Gaston Geenslaan, B-3000, Leuven, Belgium
| | - Bernadett Boda
- Epithelix Sàrl, 18 Chemin des Aulx, Plan-les-Ouates, CH-1228, Geneva, Switzerland
| | - Samuel Constant
- Epithelix Sàrl, 18 Chemin des Aulx, Plan-les-Ouates, CH-1228, Geneva, Switzerland
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000, Leuven, Belgium; The VirusBank Platform, Gaston Geenslaan, B-3000, Leuven, Belgium.
| | - Dirk Jochmans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000, Leuven, Belgium.
| |
Collapse
|
8
|
Anoshchenko O, Abdelghany M, Lichtman A, Duan R, Chen H, Shaik NA, Peng CC, Yue Q, Subramanian R, Hyland RH, Davies S, Castellanos K, Mak L, Shen G, Xiao D, Caro L, Winter H, Llewellyn J, Humeniuk R. Pharmacokinetics, Mass Balance, Safety, and Tolerability of Obeldesivir in Healthy Participants. Clin Pharmacol Ther 2024; 116:1231-1239. [PMID: 38940465 DOI: 10.1002/cpt.3337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024]
Abstract
There is an unmet need for safe and efficacious oral therapies for COVID-19 with low potential for drug-drug interactions. Obeldesivir is an orally administered nucleoside prodrug that has shown antiviral potency in nonclinical studies against SARS-CoV-2 and its circulating variants. Obeldesivir is metabolized to the active nucleoside triphosphate (GS-443902), which acts as an inhibitor of the SARS-CoV-2 RNA-dependent RNA polymerase, thereby inhibiting viral RNA synthesis. Here, we report the safety, tolerability, and pharmacokinetics from a first-in-human, randomized, placebo-controlled, phase I study following oral administration of obeldesivir and a phase I, open-label absorption, distribution, metabolism, and excretion study following oral administration of [14C]-obeldesivir. Overall, obeldesivir was safe and well tolerated at single and multiple doses between 100 and 1,600 mg, with low potential for QT prolongation as assessed by QT-concentration analysis. The exposures to GS-441524 increased dose proportionally in the 100-900-mg dose range. GS-441524 accumulated by 35% after twice-daily and 12% after once-daily dosing for 5 days. Dose-proportional increases in the intracellular concentration of GS-443902 were also observed in peripheral blood mononuclar cells. Plasma exposure of GS-441524 was not significantly altered by food intake. Following oral administration of [14C]-obeldesivir (500 mg; 100 μCi), the mean cumulative [14C]-dose recovery was 90.7% with 58.5% in urine and 32.2% in feces. GS-441524 was the predominant plasma component (90% of 14C-area under the concentration-time curve) and was primarily eliminated via renal excretion. Collectively, data from these studies support selection of the obeldesivir 350 mg twice-daily dosing regimen for further evaluation in phase III studies for COVID-19.
Collapse
Affiliation(s)
| | | | | | - Ran Duan
- Gilead Sciences, Inc., Foster City, California, USA
| | - Henry Chen
- Gilead Sciences, Inc., Foster City, California, USA
| | | | - Chi-Chi Peng
- Gilead Sciences, Inc., Foster City, California, USA
| | - Qin Yue
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | | | | | - Lily Mak
- Gilead Sciences, Inc., Foster City, California, USA
| | - Gong Shen
- Gilead Sciences, Inc., Foster City, California, USA
| | - Deqing Xiao
- Gilead Sciences, Inc., Foster City, California, USA
| | | | - Helen Winter
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | |
Collapse
|
9
|
Carlin AF, Beadle JR, Ardanuy J, Clark AE, Rhodes V, Garretson AF, Murphy JA, Valiaeva N, Schooley RT, Frieman MB, Hostetler KY. Oral pharmacokinetics and efficacy of oral phospholipid remdesivir nucleoside prodrugs against SARS-CoV-2 in mice. Antimicrob Agents Chemother 2024; 68:e0103924. [PMID: 39240093 PMCID: PMC11459966 DOI: 10.1128/aac.01039-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024] Open
Abstract
Oral broad-spectrum antivirals are urgently needed for the treatment of many emerging and contemporary RNA viruses. We previously synthesized 1-O-octadecyl-2-O-benzyl-sn-glyceryl-P-RVn (ODBG-P-RVn, V2043), a phospholipid prodrug of GS-441524 (remdesivir nucleoside, RVn), and demonstrated its in vivo efficacy in a SARS-CoV-2 mouse model. Structure-activity relationship studies focusing on the prodrug scaffold identified two modifications, 3-fluoro-4-methoxy-benzyl (V2053) and 4-cyano-benzyl (V2067), that significantly enhanced the in vitro broad-spectrum antiviral activity against multiple RNA viruses when compared to V2043. Here, we demonstrate that V2043, V2053, and V2067 are all orally bioavailable, well-tolerated, and achieve high sustained plasma levels after single oral daily dosing. All three phospholipid prodrugs are significantly more active than RVn in vitro and significantly reduce SARS-CoV-2 lung titers in prophylaxis and treatment mouse models of SARS-CoV-2 B.1.351 infection. On a molar basis, V2043 and V2067 are substantially more active than obeldesivir/GS-5245 and molnupiravir in vivo. Together, these data support the continued development of phospholipid RVn prodrugs for the treatment of SARS-CoV-2 and other RNA viruses of clinical concern.
Collapse
Affiliation(s)
- Aaron F. Carlin
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - James R. Beadle
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Jeremy Ardanuy
- Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alex E. Clark
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Victoria Rhodes
- Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aaron F. Garretson
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Joyce A. Murphy
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Nadejda Valiaeva
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Robert T. Schooley
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Matthew B. Frieman
- Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Karl Y. Hostetler
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
10
|
Hoffmann Dahl E, Mbala P, Juchet S, Touré A, Montoyo A, Serra B, Kojan R, D'Ortenzio E, Blomberg B, Jaspard M. Improving Ebola virus disease outbreak control through targeted post-exposure prophylaxis. Lancet Glob Health 2024; 12:e1730-e1736. [PMID: 39270687 DOI: 10.1016/s2214-109x(24)00255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 09/15/2024]
Abstract
Ebola virus disease kills more than half of people infected. Since the disease is transmitted via close human contact, identifying individuals at the highest risk of developing the disease is possible on the basis of the type of contact (correlated with viral exposure). Different candidates for post-exposure prophylaxis (PEP; ie, vaccines, antivirals, and monoclonal antibodies) each have their specific benefits and limitations, which we discuss in this Viewpoint. Approved monoclonal antibodies have been found to reduce mortality in people with Ebola virus disease. As monoclonal antibodies act swiftly by directly targeting the virus, they are promising candidates for targeted PEP in contacts at high risk of developing disease. This intervention could save lives, halt viral transmission, and, ultimately, help curtail outbreak propagation. We explore how a strategic integration of monoclonal antibodies and vaccines as PEP could provide both immediate and long-term protection against Ebola virus disease, highlighting ongoing clinical research that aims to refine this approach, and discuss the transformative potential of a successful PEP strategy to help control viral haemorrhagic fever outbreaks.
Collapse
Affiliation(s)
- Elin Hoffmann Dahl
- Médecins Sans Frontières, Oslo, Norway; Department of Infectious Diseases, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Placide Mbala
- Kingebeni Institut National de Recherche Biomédicale and University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Sylvain Juchet
- The Alliance for International Medical Action, Dakar, Senegal; UMR 1219 GHiGS unit, University of Bordeaux, National Institute for Health and Medical Research, Research Institute for Sustainable Development, Bordeaux Population Health Center, Bordeaux, France
| | - Abdoulaye Touré
- Centre de recherche et de formation en infectiologie de Guinea, University Gamal Abdel Nasser de Conakry, Conakry, Guinée
| | - Alice Montoyo
- The Alliance for International Medical Action, Dakar, Senegal; UMR 1219 GHiGS unit, University of Bordeaux, National Institute for Health and Medical Research, Research Institute for Sustainable Development, Bordeaux Population Health Center, Bordeaux, France
| | - Beatrice Serra
- The Alliance for International Medical Action, Dakar, Senegal; UMR 1219 GHiGS unit, University of Bordeaux, National Institute for Health and Medical Research, Research Institute for Sustainable Development, Bordeaux Population Health Center, Bordeaux, France
| | - Richard Kojan
- The Alliance for International Medical Action, Dakar, Senegal
| | - Eric D'Ortenzio
- ANRS Emerging infectious diseases, National Institute for Health and Medical Research, Paris, France; Infectious and Tropical Diseases Department, Bichat-Claude-Bernard Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Bjorn Blomberg
- Department of Clinical Science, University of Bergen, Bergen, Norway; National Centre for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| | - Marie Jaspard
- UMR 1136 IPLESP unit, Sorbonne Université, Paris, France; Infectious Disease Department, Hopital Saint Antoine, Paris, France.
| |
Collapse
|
11
|
Lin Y, Khan M, Weynand B, Laporte M, Coenjaerts F, Babusis D, Bilello JP, Mombaerts P, Jochmans D, Neyts J. A robust mouse model of HPIV-3 infection and efficacy of GS-441524 against virus-induced lung pathology. Nat Commun 2024; 15:7765. [PMID: 39237507 PMCID: PMC11377736 DOI: 10.1038/s41467-024-52071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
Human parainfluenza virus type 3 (HPIV-3) can cause severe respiratory tract infections. There are no convenient small-animal infection models. Here, we show viral replication in the upper and lower airways of AG129 mice (double IFNα/β and IFNγ receptor knockout mice) upon intranasal inoculation. By multiplex fluorescence RNAscope and immunohistochemistry followed by confocal microscopy, we demonstrate viral tropism to ciliated cells and club cells of the bronchiolar epithelium. HPIV-3 causes a marked lung pathology. No virus transmission of the virus was observed by cohousing HPIV-3-infected AG129 mice with other mice. Oral treatment with GS-441524, the parent nucleoside of remdesivir, reduced infectious virus titers in the lung, with a relatively normal histology. Intranasal treatment also affords an antiviral effect. Thus, AG129 mice serve as a robust preclinical model for developing therapeutic and prophylactic strategies against HPIV-3. We suggest further investigation of GS-441524 and its prodrug forms to treat HPIV-3 infection in humans.
Collapse
Affiliation(s)
- Yuxia Lin
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, Leuven, Belgium
| | - Mona Khan
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Birgit Weynand
- KU Leuven Department of Imaging and Pathology, Division of Translational Cell and Tissue Research, Leuven, Belgium
| | - Manon Laporte
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, Leuven, Belgium
| | - Frank Coenjaerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Dirk Jochmans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, Leuven, Belgium.
- VirusBank Platform, KU Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Bolinger AA, Li J, Xie X, Li H, Zhou J. Lessons learnt from broad-spectrum coronavirus antiviral drug discovery. Expert Opin Drug Discov 2024; 19:1023-1041. [PMID: 39078037 PMCID: PMC11390334 DOI: 10.1080/17460441.2024.2385598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Highly pathogenic coronaviruses (CoVs), such as severe acute respiratory syndrome CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and the most recent SARS-CoV-2 responsible for the COVID-19 pandemic, pose significant threats to human populations over the past two decades. These CoVs have caused a broad spectrum of clinical manifestations ranging from asymptomatic to severe distress syndromes (ARDS), resulting in high morbidity and mortality. AREAS COVERED The accelerated advancements in antiviral drug discovery, spurred by the COVID-19 pandemic, have shed new light on the imperative to develop treatments effective against a broad spectrum of CoVs. This perspective discusses strategies and lessons learnt in targeting viral non-structural proteins, structural proteins, drug repurposing, and combinational approaches for the development of antivirals against CoVs. EXPERT OPINION Drawing lessons from the pandemic, it becomes evident that the absence of efficient broad-spectrum antiviral drugs increases the vulnerability of public health systems to the potential onslaught by highly pathogenic CoVs. The rapid and sustained spread of novel CoVs can have devastating consequences without effective and specifically targeted treatments. Prioritizing the effective development of broad-spectrum antivirals is imperative for bolstering the resilience of public health systems and mitigating the potential impact of future highly pathogenic CoVs.
Collapse
Affiliation(s)
- Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jun Li
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
13
|
Chen P, Van Oers TJ, Arutyunova E, Fischer C, Wang C, Lamer T, van Belkum MJ, Young HS, Vederas JC, Lemieux MJ. A Structural Comparison of Oral SARS-CoV-2 Drug Candidate Ibuzatrelvir Complexed with the Main Protease (M pro) of SARS-CoV-2 and MERS-CoV. JACS AU 2024; 4:3217-3227. [PMID: 39211604 PMCID: PMC11350714 DOI: 10.1021/jacsau.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Ibuzatrelvir (1) was recently disclosed and patented by Pfizer for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has received fast-track status from the USA Food and Drug Administration (FDA) and has entered phase III clinical trials as a possible replacement for Paxlovid. Like nirmatrelvir (2) in Paxlovid, this orally active drug candidate is designed to target viral main proteases (Mpro) through reversible covalent interaction of its nitrile warhead with the active site thiol of the chymotrypsin-like cysteine protease (3CL protease). Inhibition of Mpro hinders the processing of the proteins essential for viral replication in vivo. However, ibuzatrelvir apparently does not require ritonavir (3), which is coadministered in Paxlovid to block human oxidative metabolism of nirmatrelvir. Here, we report the crystal structure of the complex of ibuzatrelvir with the active site of SARS-CoV-2 Mpro at 2.0 Å resolution. In addition, we show that ibuzatrelvir also potently inhibits the Mpro of Middle East respiratory syndrome-related coronavirus (MERS-CoV), which is fortunately not widespread but can be dangerously lethal (∼36% mortality). Co-crystal structures show that the binding mode of the drug to both active sites is similar and that the trifluoromethyl group of the inhibitor fits precisely into a critical S2 substrate binding pocket of the main proteases. However, our results also provide a rationale for the differences in potency of ibuzatrelvir for these two proteases due to minor differences in the substrate preferences leading to a weaker H-bond network in MERS-CoV Mpro. In addition, we examined the reversibility of compound binding to both proteases, which is an important parameter in reducing off-target effects as well as the potential immunogenicity. The crystal structures of the ibuzatrelvir complexes with Mpro of SARS-CoV-2 and of MERS-CoV will further assist drug design for coronaviral infections in humans and animals.
Collapse
Affiliation(s)
- Pu Chen
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Li Ka
Shing Institute of Virology, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Tayla J. Van Oers
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Elena Arutyunova
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Li Ka
Shing Institute of Virology, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Conrad Fischer
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Chaoxiang Wang
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tess Lamer
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Marco J. van Belkum
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Howard S. Young
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - John C. Vederas
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - M. Joanne Lemieux
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Li Ka
Shing Institute of Virology, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
14
|
Allerton CN, Arcari JT, Aschenbrenner LM, Avery M, Bechle BM, Behzadi MA, Boras B, Buzon LM, Cardin RD, Catlin NR, Carlo AA, Coffman KJ, Dantonio A, Di L, Eng H, Farley KA, Ferre RA, Gernhardt SS, Gibson SA, Greasley SE, Greenfield SR, Hurst BL, Kalgutkar AS, Kimoto E, Lanyon LF, Lovett GH, Lian Y, Liu W, Martínez Alsina LA, Noell S, Obach RS, Owen DR, Patel NC, Rai DK, Reese MR, Rothan HA, Sakata S, Sammons MF, Sathish JG, Sharma R, Steppan CM, Tuttle JB, Verhoest PR, Wei L, Yang Q, Yurgelonis I, Zhu Y. A Second-Generation Oral SARS-CoV-2 Main Protease Inhibitor Clinical Candidate for the Treatment of COVID-19. J Med Chem 2024; 67:13550-13571. [PMID: 38687966 PMCID: PMC11345836 DOI: 10.1021/acs.jmedchem.3c02469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/13/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Despite the record-breaking discovery, development and approval of vaccines and antiviral therapeutics such as Paxlovid, coronavirus disease 2019 (COVID-19) remained the fourth leading cause of death in the world and third highest in the United States in 2022. Here, we report the discovery and characterization of PF-07817883, a second-generation, orally bioavailable, SARS-CoV-2 main protease inhibitor with improved metabolic stability versus nirmatrelvir, the antiviral component of the ritonavir-boosted therapy Paxlovid. We demonstrate the in vitro pan-human coronavirus antiviral activity and off-target selectivity profile of PF-07817883. PF-07817883 also demonstrated oral efficacy in a mouse-adapted SARS-CoV-2 model at plasma concentrations equivalent to nirmatrelvir. The preclinical in vivo pharmacokinetics and metabolism studies in human matrices are suggestive of improved oral pharmacokinetics for PF-07817883 in humans, relative to nirmatrelvir. In vitro inhibition/induction studies against major human drug metabolizing enzymes/transporters suggest a low potential for perpetrator drug-drug interactions upon single-agent use of PF-07817883.
Collapse
Affiliation(s)
| | - Joel T. Arcari
- Pfizer
Research & Development, Groton, Connecticut 06340, United States
| | | | - Melissa Avery
- Pfizer
Research & Development, Groton, Connecticut 06340, United States
| | - Bruce M. Bechle
- Pfizer
Research & Development, Groton, Connecticut 06340, United States
| | | | - Britton Boras
- Pfizer
Research & Development, La
Jolla, California 92121, United States
| | - Leanne M. Buzon
- Pfizer
Research & Development, Groton, Connecticut 06340, United States
| | - Rhonda D. Cardin
- Pfizer
Research & Development, Pearl
River, New York 10965, United States
| | - Natasha R. Catlin
- Pfizer
Research & Development, Groton, Connecticut 06340, United States
| | - Anthony A. Carlo
- Pfizer
Research & Development, Groton, Connecticut 06340, United States
| | - Karen J. Coffman
- Pfizer
Research & Development, Groton, Connecticut 06340, United States
| | - Alyssa Dantonio
- Pfizer
Research & Development, Groton, Connecticut 06340, United States
| | - Li Di
- Pfizer
Research & Development, Groton, Connecticut 06340, United States
| | - Heather Eng
- Pfizer
Research & Development, Groton, Connecticut 06340, United States
| | | | - Rose Ann Ferre
- Pfizer
Research & Development, La
Jolla, California 92121, United States
| | | | - Scott A. Gibson
- Institute
for Antiviral Research, Department of Animal, Dairy, and Veterinary
Sciences, Utah State University, Logan, Utah 84322, United States
| | | | | | - Brett L. Hurst
- Institute
for Antiviral Research, Department of Animal, Dairy, and Veterinary
Sciences, Utah State University, Logan, Utah 84322, United States
| | - Amit S. Kalgutkar
- Pfizer
Research & Development, Cambridge, Massachusetts 02139, United States
| | - Emi Kimoto
- Pfizer
Research & Development, Groton, Connecticut 06340, United States
| | | | - Gabrielle H. Lovett
- Pfizer
Research & Development, Cambridge, Massachusetts 02139, United States
| | - Yajing Lian
- Pfizer
Research & Development, Groton, Connecticut 06340, United States
| | - Wei Liu
- Pfizer
Research & Development, La
Jolla, California 92121, United States
| | | | - Stephen Noell
- Pfizer
Research & Development, Groton, Connecticut 06340, United States
| | - R. Scott Obach
- Pfizer
Research & Development, Groton, Connecticut 06340, United States
| | - Dafydd R. Owen
- Pfizer
Research & Development, Cambridge, Massachusetts 02139, United States
| | - Nandini C. Patel
- Pfizer
Research & Development, Cambridge, Massachusetts 02139, United States
| | - Devendra K. Rai
- Pfizer
Research & Development, Groton, Connecticut 06340, United States
| | - Matthew R. Reese
- Pfizer
Research & Development, Groton, Connecticut 06340, United States
| | - Hussin A. Rothan
- Pfizer
Research & Development, Pearl
River, New York 10965, United States
| | - Sylvie Sakata
- Pfizer
Research & Development, La
Jolla, California 92121, United States
| | - Matthew F. Sammons
- Pfizer
Research & Development, Cambridge, Massachusetts 02139, United States
| | - Jean G. Sathish
- Pfizer
Research & Development, Pearl
River, New York 10965, United States
| | - Raman Sharma
- Pfizer
Research & Development, Groton, Connecticut 06340, United States
| | - Claire M. Steppan
- Pfizer
Research & Development, Groton, Connecticut 06340, United States
| | - Jamison B. Tuttle
- Pfizer
Research & Development, Cambridge, Massachusetts 02139, United States
| | - Patrick R. Verhoest
- Pfizer
Research & Development, Cambridge, Massachusetts 02139, United States
| | - Liuqing Wei
- Pfizer
Research & Development, Groton, Connecticut 06340, United States
| | - Qingyi Yang
- Pfizer
Research & Development, Cambridge, Massachusetts 02139, United States
| | - Irina Yurgelonis
- Pfizer
Research & Development, Pearl
River, New York 10965, United States
| | - Yuao Zhu
- Pfizer
Research & Development, Pearl
River, New York 10965, United States
| |
Collapse
|
15
|
Raczkiewicz I, Rivière C, Bouquet P, Desmarets L, Tarricone A, Camuzet C, François N, Lefèvre G, Silva Angulo F, Robil C, Trottein F, Sahpaz S, Dubuisson J, Belouzard S, Goffard A, Séron K. Hyperforin, the major metabolite of St. John's wort, exhibits pan-coronavirus antiviral activity. Front Microbiol 2024; 15:1443183. [PMID: 39176276 PMCID: PMC11339956 DOI: 10.3389/fmicb.2024.1443183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction The COVID-19 pandemic caused by the SARS-CoV-2 virus has underscored the urgent necessity for the development of antiviral compounds that can effectively target coronaviruses. In this study, we present the first evidence of the antiviral efficacy of hyperforin, a major metabolite of St. John's wort, for which safety and bioavailability in humans have already been established. Methods Antiviral assays were conducted in cell culture with four human coronaviruses: three of high virulence, SARS-CoV-2, SARS-CoV, and MERS-CoV, and one causing mild symptoms, HCoV-229E. The antiviral activity was also evaluated in human primary airway epithelial cells. To ascertain the viral step inhibited by hyperforin, time-of-addition assays were conducted. Subsequently, a combination assay of hyperforin with remdesivir was performed. Results The results demonstrated that hyperforin exhibited notable antiviral activity against the four tested human coronaviruses, with IC50 values spanning from 0.24 to 2.55 µM. Kinetic studies indicated that the observed activity occur at a post-entry step, potentially during replication. The antiviral efficacy of hyperforin was additionally corroborated in human primary airway epithelial cells. The results demonstrated a reduction in both intracellular and extracellular SARS-CoV-2 viral RNA, confirming that hyperforin targeted the replication step. Finally, an additive antiviral effect on SARS-CoV-2 was observed when hyperforin was combined with remdesivir. Discussion In conclusion, hyperforin has been identified as a novel pan-coronavirus inhibitor with activity in human primary airway epithelial cells, a preclinical model for coronaviruses. These findings collectively suggest that hyperforin has potential as a candidate antiviral agent against current and future human coronaviruses.
Collapse
Affiliation(s)
- Imelda Raczkiewicz
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Céline Rivière
- BioEcoAgro, Joint Research Unit 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, Lille, France
| | - Peggy Bouquet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Lowiese Desmarets
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Audrey Tarricone
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Charline Camuzet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Nathan François
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Gabriel Lefèvre
- BioEcoAgro, Joint Research Unit 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, Lille, France
| | - Fabiola Silva Angulo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Cyril Robil
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - François Trottein
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Sevser Sahpaz
- BioEcoAgro, Joint Research Unit 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, Lille, France
| | - Jean Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Sandrine Belouzard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Anne Goffard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Karin Séron
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| |
Collapse
|
16
|
Gordon CJ, Walker SM, Tchesnokov EP, Kocincova D, Pitts J, Siegel DS, Perry JK, Feng JY, Bilello JP, Götte M. Mechanism and spectrum of inhibition of a 4'-cyano modified nucleotide analog against diverse RNA polymerases of prototypic respiratory RNA viruses. J Biol Chem 2024; 300:107514. [PMID: 38945449 PMCID: PMC11345399 DOI: 10.1016/j.jbc.2024.107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024] Open
Abstract
The development of safe and effective broad-spectrum antivirals that target the replication machinery of respiratory viruses is of high priority in pandemic preparedness programs. Here, we studied the mechanism of action of a newly discovered nucleotide analog against diverse RNA-dependent RNA polymerases (RdRps) of prototypic respiratory viruses. GS-646939 is the active 5'-triphosphate metabolite of a 4'-cyano modified C-adenosine analog phosphoramidate prodrug GS-7682. Enzyme kinetics show that the RdRps of human rhinovirus type 16 (HRV-16) and enterovirus 71 incorporate GS-646939 with unprecedented selectivity; GS-646939 is incorporated 20-50-fold more efficiently than its natural ATP counterpart. The RdRp complex of respiratory syncytial virus and human metapneumovirus incorporate GS-646939 and ATP with similar efficiency. In contrast, influenza B RdRp shows a clear preference for ATP and human mitochondrial RNA polymerase does not show significant incorporation of GS-646939. Once incorporated into the nascent RNA strand, GS-646939 acts as a chain terminator although higher NTP concentrations can partially overcome inhibition for some polymerases. Modeling and biochemical data suggest that the 4'-modification inhibits RdRp translocation. Comparative studies with GS-443902, the active triphosphate form of the 1'-cyano modified prodrugs remdesivir and obeldesivir, reveal not only different mechanisms of inhibition, but also differences in the spectrum of inhibition of viral polymerases. In conclusion, 1'-cyano and 4'-cyano modifications of nucleotide analogs provide complementary strategies to target the polymerase of several families of respiratory RNA viruses.
Collapse
Affiliation(s)
- Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Simon M Walker
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Dana Kocincova
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jared Pitts
- Gilead Sciences, Inc, Foster City, California, USA
| | | | | | - Joy Y Feng
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
17
|
Felicetti T, Sarnari C, Gaito R, Tabarrini O, Manfroni G. Recent Progress toward the Discovery of Small Molecules as Novel Anti-Respiratory Syncytial Virus Agents. J Med Chem 2024; 67:11543-11579. [PMID: 38970494 DOI: 10.1021/acs.jmedchem.4c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Respiratory syncytial virus (RSV) stands as the foremost cause of infant hospitalization globally, ranking second only to malaria in terms of infant mortality. Although three vaccines have recently been approved for the prophylaxis of adults aged 60 and above, and pregnant women, there is currently no effective antiviral drug for treating RSV infections. The only preventive measure for infants at high risk of severe RSV disease is passive immunization through monoclonal antibodies. This Perspective offers an overview of the latest advancements in RSV drug discovery of small molecule antivirals, with particular focus on the promising findings from agents targeting the fusion and polymerase proteins. A comprehensive reflection on the current state of RSV research is also given, drawing inspiration from the lessons gleaned from HCV and HIV, while also considering the impact of the recent approval of the three vaccines.
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Chiara Sarnari
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Roberta Gaito
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| |
Collapse
|
18
|
Siegel DS, Hui HC, Pitts J, Vermillion MS, Ishida K, Rautiola D, Keeney M, Irshad H, Zhang L, Chun K, Chin G, Goyal B, Doerffler E, Yang H, Clarke MO, Palmiotti C, Vijjapurapu A, Riola NC, Stray K, Murakami E, Ma B, Wang T, Zhao X, Xu Y, Lee G, Marchand B, Seung M, Nayak A, Tomkinson A, Kadrichu N, Ellis S, Barauskas O, Feng JY, Perry JK, Perron M, Bilello JP, Kuehl PJ, Subramanian R, Cihlar T, Mackman RL. Discovery of GS-7682, a Novel 4'-Cyano-Modified C-Nucleoside Prodrug with Broad Activity against Pneumo- and Picornaviruses and Efficacy in RSV-Infected African Green Monkeys. J Med Chem 2024. [PMID: 39018526 DOI: 10.1021/acs.jmedchem.4c00899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Acute respiratory viral infections, such as pneumovirus and respiratory picornavirus infections, exacerbate disease in COPD and asthma patients. A research program targeting respiratory syncytial virus (RSV) led to the discovery of GS-7682 (1), a novel phosphoramidate prodrug of a 4'-CN-4-aza-7,9-dideazaadenosine C-nucleoside GS-646089 (2) with broad antiviral activity against RSV (EC50 = 3-46 nM), human metapneumovirus (EC50 = 210 nM), human rhinovirus (EC50 = 54-61 nM), and enterovirus (EC50 = 83-90 nM). Prodrug optimization for cellular potency and lung cell metabolism identified 5'-methyl [(S)-hydroxy(phenoxy)phosphoryl]-l-alaninate in combination with 2',3'-diisobutyrate promoieties as being optimal for high levels of intracellular triphosphate formation in vitro and in vivo. 1 demonstrated significant reductions of viral loads in the lower respiratory tract of RSV-infected African green monkeys when administered once daily via intratracheal nebulized aerosol. Together, these findings support additional evaluation of 1 and its analogues as potential therapeutics for pneumo- and picornaviruses.
Collapse
Affiliation(s)
- Dustin S Siegel
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Hon C Hui
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Jared Pitts
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Meghan S Vermillion
- Gilead Sciences, Inc., Foster City, California 94404, United States
- Lovelace Biomedical, Albuquerque, New Mexico 87108, United States
| | - Kazuya Ishida
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Davin Rautiola
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Michael Keeney
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Hammad Irshad
- Lovelace Biomedical, Albuquerque, New Mexico 87108, United States
| | - Lijun Zhang
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Kwon Chun
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Gregory Chin
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Bindu Goyal
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Edward Doerffler
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Hai Yang
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Michael O Clarke
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Chris Palmiotti
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Arya Vijjapurapu
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Nicholas C Riola
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Kirsten Stray
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Eisuke Murakami
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Bin Ma
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Ting Wang
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Xiaofeng Zhao
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Yili Xu
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Gary Lee
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Bruno Marchand
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Minji Seung
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Arabinda Nayak
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Adrian Tomkinson
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Nani Kadrichu
- Inspired - Pulmonary Solutions, San Carlos, California 94070, United States
| | - Scott Ellis
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Ona Barauskas
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Joy Y Feng
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Jason K Perry
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Michel Perron
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - John P Bilello
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Philip J Kuehl
- Lovelace Biomedical, Albuquerque, New Mexico 87108, United States
| | - Raju Subramanian
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Tomas Cihlar
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | | |
Collapse
|
19
|
Martinez DR, Moreira FR, Catanzaro NJ, Diefenbacher MV, Zweigart MR, Gully KL, De la Cruz G, Brown AJ, Adams LE, Yount B, Baric TJ, Mallory ML, Conrad H, May SR, Dong S, Scobey DT, Nguyen C, Montgomery SA, Perry J, Babusis D, Barrett KT, Nguyen AH, Nguyen AQ, Kalla R, Bannister R, Feng JY, Cihlar T, Baric RS, Mackman RL, Bilello JP, Schäfer A, Sheahan TP. The oral nucleoside prodrug GS-5245 is efficacious against SARS-CoV-2 and other endemic, epidemic, and enzootic coronaviruses. Sci Transl Med 2024; 16:eadj4504. [PMID: 38776389 PMCID: PMC11333937 DOI: 10.1126/scitranslmed.adj4504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Despite the wide availability of several safe and effective vaccines that prevent severe COVID-19, the persistent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that can evade vaccine-elicited immunity remains a global health concern. In addition, the emergence of SARS-CoV-2 VOCs that can evade therapeutic monoclonal antibodies underscores the need for additional, variant-resistant treatment strategies. Here, we characterize the antiviral activity of GS-5245, obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which targets the highly conserved viral RNA-dependent RNA polymerase (RdRp). We show that GS-5245 is broadly potent in vitro against alphacoronavirus HCoV-NL63, SARS-CoV, SARS-CoV-related bat-CoV RsSHC014, Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 WA/1, and the highly transmissible SARS-CoV-2 BA.1 Omicron variant. Moreover, in mouse models of SARS-CoV, SARS-CoV-2 (WA/1 and Omicron B1.1.529), MERS-CoV, and bat-CoV RsSHC014 pathogenesis, we observed a dose-dependent reduction in viral replication, body weight loss, acute lung injury, and pulmonary function with GS-5245 therapy. Last, we demonstrate that a combination of GS-5245 and main protease (Mpro) inhibitor nirmatrelvir improved outcomes in vivo against SARS-CoV-2 compared with the single agents. Together, our data support the clinical evaluation of GS-5245 against coronaviruses that cause or have the potential to cause human disease.
Collapse
Affiliation(s)
- David R. Martinez
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Fernando R. Moreira
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nicholas J. Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Meghan V. Diefenbacher
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark R. Zweigart
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kendra L. Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gabriela De la Cruz
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Ariane J. Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lily E. Adams
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Thomas J. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Michael L. Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Helen Conrad
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Samantha R. May
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephanie Dong
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - D. Trevor Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Cameron Nguyen
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jason Perry
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | | | | | | | | | - Rao Kalla
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | | | - Joy Y. Feng
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | - Tomas Cihlar
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | | | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Timothy P. Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
20
|
Do TND, Abdelnabi R, Boda B, Constant S, Neyts J, Jochmans D. The triple combination of Remdesivir (GS-441524), Molnupiravir and Ribavirin is highly efficient in inhibiting coronavirus replication in human nasal airway epithelial cell cultures and in a hamster infection model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594200. [PMID: 38798406 PMCID: PMC11118304 DOI: 10.1101/2024.05.14.594200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The use of fixed dose-combinations of antivirals with different mechanisms of action has proven a key in the successful treatment of infections with HIV and HCV. For the treatment of infections with SARS-CoV-2 and possible future epi-/pandemic coronaviruses, it will be important to explore the efficacy of combinations of different drugs, in particular to avoid resistance development, such as in patients with immunodeficiencies. As a first effort, we studied the antiviral potency of combinations of antivirals. To that end, we made use of primary human airway epithelial cell (HAEC) cultures grown at the air-liquid interface that were infected with the beta coronavirus OC43. We found that the triple combination of GS-441524 (parent nucleoside of remdesivir), molnupiravir, and ribavirin resulted in a more pronounced antiviral efficacy than what could be expected from a purely additive antiviral effect. The potency of this triple combination was next tested in SARS-CoV-2 infected hamsters. To that end, for each of the drugs, intentionally suboptimal or even ineffective doses were selected. Yet, in the lungs of all hamsters that received triple prophylactic therapy with suboptimal/inactive doses of GS-441524, molnupiravir, and ribavirin, no infectious virus was detectable. Our finding indicate that co-administration of approved drugs for the treatment of coronavirus infections should be further explored but also against other families of viruses with epidemic and pandemic potential for which no effective antiviral treatment is available.
Collapse
Affiliation(s)
- Thuc Nguyen Dan Do
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Rana Abdelnabi
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
- The VirusBank Platform, Gaston Geenslaan, B-3000 Leuven, Belgium
| | - Bernadett Boda
- Epithelix Sàrl, 18 Chemin des Aulx, Plan-les-Ouates, CH-1228, Geneva, Switzerland
| | - Samuel Constant
- Epithelix Sàrl, 18 Chemin des Aulx, Plan-les-Ouates, CH-1228, Geneva, Switzerland
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
- The VirusBank Platform, Gaston Geenslaan, B-3000 Leuven, Belgium
| | - Dirk Jochmans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| |
Collapse
|
21
|
Mesaros EF, Dugan BJ, Gao M, Sheraz M, McGovern-Gooch K, Xu F, Fan KY, Nguyen D, Kultgen SG, Lindstrom A, Stever K, Tercero B, Binder RJ, Liu F, Micolochick Steuer HM, Mani N, Harasym TO, Thi EP, Cuconati A, Dorsey BD, Cole AG, Lam AM, Sofia MJ. Discovery of C-Linked Nucleoside Analogues with Antiviral Activity against SARS-CoV-2. ACS Infect Dis 2024; 10:1780-1792. [PMID: 38651692 DOI: 10.1021/acsinfecdis.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The recent COVID-19 pandemic underscored the limitations of currently available direct-acting antiviral treatments against acute respiratory RNA-viral infections and stimulated major research initiatives targeting anticoronavirus agents. Two novel nsp5 protease (MPro) inhibitors have been approved, nirmatrelvir and ensitrelvir, along with two existing nucleos(t)ide analogues repurposed as nsp12 polymerase inhibitors, remdesivir and molnupiravir, but a need still exists for therapies with improved potency and systemic exposure with oral dosing, better metabolic stability, and reduced resistance and toxicity risks. Herein, we summarize our research toward identifying nsp12 inhibitors that led to nucleoside analogues 10e and 10n, which showed favorable pan-coronavirus activity in cell-infection screens, were metabolized to active triphosphate nucleotides in cell-incubation studies, and demonstrated target (nsp12) engagement in biochemical assays.
Collapse
Affiliation(s)
- Eugen F Mesaros
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Benjamin J Dugan
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Min Gao
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Muhammad Sheraz
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | | | - Fran Xu
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Kristi Yi Fan
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Duyan Nguyen
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Steven G Kultgen
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Aaron Lindstrom
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Kim Stever
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Breanna Tercero
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Randall J Binder
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Fei Liu
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | | | - Nagraj Mani
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Troy O Harasym
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Emily P Thi
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Andrea Cuconati
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Bruce D Dorsey
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Andrew G Cole
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Angela M Lam
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Michael J Sofia
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| |
Collapse
|
22
|
Hurwitz SJ, De R, LeCher JC, Downs-Bowen JA, Goh SL, Zandi K, McBrayer T, Amblard F, Patel D, Kohler JJ, Bhasin M, Dobosh BS, Sukhatme V, Tirouvanziam RM, Schinazi RF. Why Certain Repurposed Drugs Are Unlikely to Be Effective Antivirals to Treat SARS-CoV-2 Infections. Viruses 2024; 16:651. [PMID: 38675992 PMCID: PMC11053489 DOI: 10.3390/v16040651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Most repurposed drugs have proved ineffective for treating COVID-19. We evaluated median effective and toxic concentrations (EC50, CC50) of 49 drugs, mostly from previous clinical trials, in Vero cells. Ratios of reported unbound peak plasma concentrations, (Cmax)/EC50, were used to predict the potential in vivo efficacy. The 20 drugs with the highest ratios were retested in human Calu-3 and Caco-2 cells, and their CC50 was determined in an expanded panel of cell lines. Many of the 20 drugs with the highest ratios were inactive in human Calu-3 and Caco-2 cells. Antivirals effective in controlled clinical trials had unbound Cmax/EC50 ≥ 6.8 in Calu-3 or Caco-2 cells. EC50 of nucleoside analogs were cell dependent. This approach and earlier availability of more relevant cultures could have reduced the number of unwarranted clinical trials.
Collapse
Affiliation(s)
- Selwyn J. Hurwitz
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Ramyani De
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Julia C. LeCher
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Jessica A. Downs-Bowen
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Shu Ling Goh
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Keivan Zandi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Tamara McBrayer
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Dharmeshkumar Patel
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - James J. Kohler
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Manoj Bhasin
- Center for Cystic Fibrosis & Airways Disease Research, Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis and Sleep, Emory University and Children’s Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; (M.B.); (B.S.D.); (R.M.T.)
| | - Brian S. Dobosh
- Center for Cystic Fibrosis & Airways Disease Research, Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis and Sleep, Emory University and Children’s Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; (M.B.); (B.S.D.); (R.M.T.)
| | - Vikas Sukhatme
- Morningside Center for Innovative and Affordable Medicine, Departments of Medicine and Hematology and Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Rabindra M. Tirouvanziam
- Center for Cystic Fibrosis & Airways Disease Research, Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis and Sleep, Emory University and Children’s Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; (M.B.); (B.S.D.); (R.M.T.)
| | - Raymond F. Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| |
Collapse
|
23
|
Meyerowitz EA, Li Y. Review: The Landscape of Antiviral Therapy for COVID-19 in the Era of Widespread Population Immunity and Omicron-Lineage Viruses. Clin Infect Dis 2024; 78:908-917. [PMID: 37949817 PMCID: PMC11487108 DOI: 10.1093/cid/ciad685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023] Open
Abstract
The goals of coronavirus disease 2019 (COVID-19) antiviral therapy early in the pandemic were to prevent severe disease, hospitalization, and death. As these outcomes have become infrequent in the age of widespread population immunity, the objectives have shifted. For the general population, COVID-19-directed antiviral therapy should decrease symptom severity and duration and minimize infectiousness, and for immunocompromised individuals, antiviral therapy should reduce severe outcomes and persistent infection. The increased recognition of virologic rebound following ritonavir-boosted nirmatrelvir (NMV/r) and the lack of randomized controlled trial data showing benefit of antiviral therapy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection for standard-risk, vaccinated individuals remain major knowledge gaps. Here, we review data for selected antiviral agents and immunomodulators currently available or in late-stage clinical trials for use in outpatients. We do not review antibody products, convalescent plasma, systemic corticosteroids, IL-6 inhibitors, Janus kinase inhibitors, or agents that lack Food and Drug Administration approval or emergency use authorization or are not appropriate for outpatients.
Collapse
Affiliation(s)
- Eric A Meyerowitz
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Yijia Li
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
24
|
Hedskog C, Spinner CD, Protzer U, Hoffmann D, Ko C, Gottlieb RL, Askar M, Roestenberg M, de Vries JJC, Carbo EC, Martin R, Li J, Han D, Rodriguez L, Parvangada A, Perry JK, Ferrer R, Antón A, Andrés C, Casares V, Günthard HF, Huber M, McComsey GA, Sadri N, Aberg JA, van Bakel H, Porter DP. No Remdesivir Resistance Observed in the Phase 3 Severe and Moderate COVID-19 SIMPLE Trials. Viruses 2024; 16:546. [PMID: 38675889 PMCID: PMC11053423 DOI: 10.3390/v16040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Remdesivir (RDV) is a broad-spectrum nucleotide analog prodrug approved for the treatment of COVID-19 in hospitalized and non-hospitalized patients with clinical benefit demonstrated in multiple Phase 3 trials. Here we present SARS-CoV-2 resistance analyses from the Phase 3 SIMPLE clinical studies evaluating RDV in hospitalized participants with severe or moderate COVID-19 disease. The severe and moderate studies enrolled participants with radiologic evidence of pneumonia and a room-air oxygen saturation of ≤94% or >94%, respectively. Virology sample collection was optional in the study protocols. Sequencing and related viral load data were obtained retrospectively from participants at a subset of study sites with local sequencing capabilities (10 of 183 sites) at timepoints with detectable viral load. Among participants with both baseline and post-baseline sequencing data treated with RDV, emergent Nsp12 substitutions were observed in 4 of 19 (21%) participants in the severe study and none of the 2 participants in the moderate study. The following 5 substitutions emerged: T76I, A526V, A554V, E665K, and C697F. The substitutions T76I, A526V, A554V, and C697F had an EC50 fold change of ≤1.5 relative to the wildtype reference using a SARS-CoV-2 subgenomic replicon system, indicating no significant change in the susceptibility to RDV. The phenotyping of E665K could not be determined due to a lack of replication. These data reveal no evidence of relevant resistance emergence and further confirm the established efficacy profile of RDV with a high resistance barrier in COVID-19 patients.
Collapse
Affiliation(s)
- Charlotte Hedskog
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (R.M.); (J.L.); (D.H.); (L.R.); (A.P.); (J.K.P.); (D.P.P.)
| | - Christoph D. Spinner
- TUM School of Medicine and Health, Department of Clinical Medicine—Clinical Department for Internal Medicine II, University Medical Center, Technical University of Munich, 81675 Munich, Germany;
| | - Ulrike Protzer
- German Center for Infection Research (DZIF), Munich Partner Site, 81675 Munich, Germany; (U.P.); (D.H.)
- Institute of Virology, Technical University of Munich School of Medicine, 81675 Munich, Germany;
- Institute of Virology, Helmholtz Munich, 85764 Munich, Germany
| | - Dieter Hoffmann
- German Center for Infection Research (DZIF), Munich Partner Site, 81675 Munich, Germany; (U.P.); (D.H.)
- Institute of Virology, Technical University of Munich School of Medicine, 81675 Munich, Germany;
| | - Chunkyu Ko
- Institute of Virology, Technical University of Munich School of Medicine, 81675 Munich, Germany;
- Institute of Virology, Helmholtz Munich, 85764 Munich, Germany
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Robert L. Gottlieb
- Center for Advanced Heart and Lung Disease, Department of Internal Medicine, Baylor University Medical Center, Dallas, TX 75246, USA; (R.L.G.); (M.A.)
- Baylor Scott & White Research Institute, Dallas, TX 75246, USA
- Department of Internal Medicine, Texas A&M Health Science Center, Dallas, TX 75246, USA
- Department of Internal Medicine, Burnett School of Medicine at TCU, Fort Worth, TX 76109, USA
| | - Medhat Askar
- Center for Advanced Heart and Lung Disease, Department of Internal Medicine, Baylor University Medical Center, Dallas, TX 75246, USA; (R.L.G.); (M.A.)
- QU Health and Department of Immunology, College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar
| | - Meta Roestenberg
- Leiden University Medical Center for Infectious Diseases (LUCID), 2333 ZA Leiden, The Netherlands; (M.R.); (J.J.C.d.V.); (E.C.C.)
| | - Jutte J. C. de Vries
- Leiden University Medical Center for Infectious Diseases (LUCID), 2333 ZA Leiden, The Netherlands; (M.R.); (J.J.C.d.V.); (E.C.C.)
| | - Ellen C. Carbo
- Leiden University Medical Center for Infectious Diseases (LUCID), 2333 ZA Leiden, The Netherlands; (M.R.); (J.J.C.d.V.); (E.C.C.)
| | - Ross Martin
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (R.M.); (J.L.); (D.H.); (L.R.); (A.P.); (J.K.P.); (D.P.P.)
| | - Jiani Li
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (R.M.); (J.L.); (D.H.); (L.R.); (A.P.); (J.K.P.); (D.P.P.)
| | - Dong Han
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (R.M.); (J.L.); (D.H.); (L.R.); (A.P.); (J.K.P.); (D.P.P.)
| | - Lauren Rodriguez
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (R.M.); (J.L.); (D.H.); (L.R.); (A.P.); (J.K.P.); (D.P.P.)
| | - Aiyappa Parvangada
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (R.M.); (J.L.); (D.H.); (L.R.); (A.P.); (J.K.P.); (D.P.P.)
| | - Jason K. Perry
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (R.M.); (J.L.); (D.H.); (L.R.); (A.P.); (J.K.P.); (D.P.P.)
| | - Ricard Ferrer
- Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (R.F.); (A.A.); (C.A.); (V.C.)
| | - Andrés Antón
- Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (R.F.); (A.A.); (C.A.); (V.C.)
| | - Cristina Andrés
- Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (R.F.); (A.A.); (C.A.); (V.C.)
| | - Vanessa Casares
- Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (R.F.); (A.A.); (C.A.); (V.C.)
| | - Huldrych F. Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8057 Zurich, Switzerland;
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Grace A. McComsey
- Department of Medicine, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA; (G.A.M.); (N.S.)
| | - Navid Sadri
- Department of Medicine, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA; (G.A.M.); (N.S.)
| | - Judith A. Aberg
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Danielle P. Porter
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (R.M.); (J.L.); (D.H.); (L.R.); (A.P.); (J.K.P.); (D.P.P.)
| |
Collapse
|
25
|
Cross RW, Woolsey C, Chu VC, Babusis D, Bannister R, Vermillion MS, Geleziunas R, Barrett KT, Bunyan E, Nguyen AQ, Cihlar T, Porter DP, Prasad AN, Deer DJ, Borisevich V, Agans KN, Martinez J, Harrison MB, Dobias NS, Fenton KA, Bilello JP, Geisbert TW. Oral administration of obeldesivir protects nonhuman primates against Sudan ebolavirus. Science 2024; 383:eadk6176. [PMID: 38484056 DOI: 10.1126/science.adk6176] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/24/2024] [Indexed: 03/19/2024]
Abstract
Obeldesivir (ODV, GS-5245) is an orally administered prodrug of the parent nucleoside of remdesivir (RDV) and is presently in phase 3 trials for COVID-19 treatment. In this work, we show that ODV and its circulating parent nucleoside metabolite, GS-441524, have similar in vitro antiviral activity against filoviruses, including Marburg virus, Ebola virus, and Sudan virus (SUDV). We also report that once-daily oral ODV treatment of cynomolgus monkeys for 10 days beginning 24 hours after SUDV exposure confers 100% protection against lethal infection. Transcriptomics data show that ODV treatment delayed the onset of inflammation and correlated with antigen presentation and lymphocyte activation. Our results offer promise for the further development of ODV to control outbreaks of filovirus disease more rapidly.
Collapse
Affiliation(s)
- Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | - Abhishek N Prasad
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel J Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jasmine Martinez
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mack B Harrison
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Natalie S Dobias
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Karla A Fenton
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
26
|
Wong XK, Ng CS, Yeong KY. Shaping the future of antiviral Treatment: Spotlight on Nucleobase-Containing drugs and their revolutionary impact. Bioorg Chem 2024; 144:107150. [PMID: 38309002 DOI: 10.1016/j.bioorg.2024.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Nucleobases serve as essential molecular frameworks present in both natural and synthetic compounds that exhibit notable antiviral activity. Through molecular modifications, novel nucleobase-containing drugs (NCDs) have been developed, exhibiting enhanced antiviral activity against a wide range of viruses, including the recently emerged SARS‑CoV‑2. This article provides a detailed examination of the significant advancements in NCDs from 2015 till current, encompassing various aspects concerning their mechanisms of action, pharmacology and antiviral properties. Additionally, the article discusses antiviral prodrugs relevant to the scope of this review. It fills in the knowledge gap by examining the structure-activity relationship and trend of NCDs as therapeutics against a diverse range of viral diseases, either as approved drugs, clinical candidates or as early-stage development prospects. Moreover, the article highlights on the status of this field of study and addresses the prevailing limitations encountered.
Collapse
Affiliation(s)
- Xi Khai Wong
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Chen Seng Ng
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|