1
|
Paula GM, da Silva Menegasso AR, Dos-Santos-Pinto JRA, Malaspina O, Palma MS. Profiling the neuroproteomics of honeybee brain: A clue for understanding the role of neuropeptides in the modulation of aggressivity. J Proteomics 2024; 295:105089. [PMID: 38246419 DOI: 10.1016/j.jprot.2024.105089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
The aggressivity is modulated in honeybee brain through a series of actions in cascade mode, with the participation of the neuropeptides AmAST A (59-76) and AmTRP (254-262). The aggressivity of honeybees was stimulated by injecting both neuropeptides in the hemocoel of the worker honeybees, which were submitted to behavioral assays of aggression. The brain of stinger individuals were removed by dissection and submitted to proteomic analysis; shotgun proteomic approach of honeybee brain revealed that both neuropeptides activate a series of biochemical processes responsible by production of energy, neuronal plasticity and cell protection. In addition to this, AmTRP (254-262) elicited the expression of proteins related to the processing of the potential of action and lipid metabolism; meanwhile AmAST A (59-76) elicited the metabolism of steroids and Juvenile hormone-related metabolism, amongst others. Apparently, the most complex biochemical process seems to be the regulation of ATP production, which occurs at two levels: i) by a subgroup of proteins common to the three experimental groups, which are over-/under-regulated through glycolysis, pyruvate pathway, Krebbs cycle and oxidative phosphorylation; ii) by a subgroup of proteins unique to the each experimental group, which seems to be regulated through Protein-Protein Interactions, where the protein network regulated by AmTRP (254-262) seems to be more complex than the other two experimental groups. SIGNIFICANCE: Recently we reported the effect of the neuropeptides AmAST A (59-76) and AmTRP (254-262) in the modulation of the aggressive behavior of the worker honeybees. Up to now it is known that the simple presence of the allatostatin and tachykinin-related-peptide in bee brain, is enough for inducing the aggressive behavior. However, nothing was known about how these neuropeptides perform their action, inducing the aggressive behavior. The results of the present study elucidated some of the metabolic pathways that were activated or inhibited to support the complex defensive behavior, which includes the aggressivity. These results certainly will impact the behavioral research of honeybees, since we are paving the way for understanding the molecular base of regulation, of individual /nest defense of honeybees.
Collapse
Affiliation(s)
- Gabriela Mendonça Paula
- Department of Basic and Applied Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP 13506-900, Brazil
| | - Anally R da Silva Menegasso
- Department of Basic and Applied Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP 13506-900, Brazil
| | | | - Osmar Malaspina
- Department of Basic and Applied Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP 13506-900, Brazil
| | - Mario Sergio Palma
- Department of Basic and Applied Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP 13506-900, Brazil.
| |
Collapse
|
2
|
Cordero-Molina S, Fetter-Pruneda I, Contreras-Garduño J. Neural mechanisms involved in female mate choice in invertebrates. Front Endocrinol (Lausanne) 2024; 14:1291635. [PMID: 38269245 PMCID: PMC10807292 DOI: 10.3389/fendo.2023.1291635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Mate choice is a critical decision with direct implications for fitness. Although it has been recognized for over 150 years, our understanding of its underlying mechanisms is still limited. Most studies on mate choice focus on the evolutionary causes of behavior, with less attention given to the physiological and molecular mechanisms involved. This is especially true for invertebrates, where research on mate choice has largely focused on male behavior. This review summarizes the current state of knowledge on the neural, molecular and neurohormonal mechanisms of female choice in invertebrates, including behaviors before, during, and after copulation. We identify areas of research that have not been extensively explored in invertebrates, suggesting potential directions for future investigation. We hope that this review will stimulate further research in this area.
Collapse
Affiliation(s)
- Sagrario Cordero-Molina
- Laboratorio de Ecología Evolutiva. Escuela Nacional de Estudios Superiores. Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ingrid Fetter-Pruneda
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jorge Contreras-Garduño
- Laboratorio de Ecología Evolutiva. Escuela Nacional de Estudios Superiores. Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
3
|
Hou L, Wang N, Sun T, Wang X. Neuropeptide regulations on behavioral plasticity in social insects. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101119. [PMID: 37741615 DOI: 10.1016/j.cois.2023.101119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Social insects demonstrate remarkable behavioral flexibility in response to complex external and social environments. One of the most striking examples of this adaptability is the context-dependent division of labor among workers of bees and ants. Neuropeptides, the brain's most diverse group of messenger molecules, play an essential role in modulating this phenotypic plasticity related to labor division in social insects. Integrated omics research and mass spectrometry imaging technology have greatly accelerated the identification and spatiotemporal analysis of neuropeptides. Moreover, key roles of several neuropeptides in age- and caste-dependent behavioral plasticity have been uncovered. This review summarizes recent advances in the characterization, expression, distribution, and functions of neuropeptides in controlling behavioral plasticity in social insects, particularly bees and ants. The article concludes with a discussion of future directions and challenges in understanding the regulation of social behavior by neuropeptides.
Collapse
Affiliation(s)
- Li Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China.
| | - Nanying Wang
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Tianle Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
4
|
Phetsanthad A, Carr AV, Fields L, Li L. Definitive Screening Designs to Optimize Library-Free DIA-MS Identification and Quantification of Neuropeptides. J Proteome Res 2023; 22:1510-1519. [PMID: 36921255 DOI: 10.1021/acs.jproteome.3c00088] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Method optimization is crucial for successful mass spectrometry (MS) analysis. However, extensive method assessments, altering various parameters individually, are rarely performed due to practical limitations regarding time and sample quantity. To maximize sample space for optimization while maintaining reasonable instrumentation requirements, a definitive screening design (DSD) is leveraged for systematic optimization of data-independent acquisition (DIA) parameters to maximize crustacean neuropeptide identifications. While DSDs require several injections, a library-free methodology enables surrogate sample usage for comprehensive optimization of MS parameters to assess biomolecules from limited samples. We identified several parameters contributing significant first- or second-order effects to method performance, and the DSD model predicted ideal values to implement. These increased reproducibility and detection capabilities enabled the identification of 461 peptides, compared to 375 and 262 peptides identified through data-dependent acquisition (DDA) and a published DIA method for crustacean neuropeptides, respectively. Herein, we demonstrate a DSD optimization workflow, using standard material, not reliant on spectral libraries for the analysis of any low abundance molecules from previous samples of limited availability. This extends the DIA method to low abundance isoforms dysregulated or only detectable in disease samples, thus improving characterization of previously inaccessible biomolecules, such as neuropeptides. Data are available via ProteomeXchange with identifier PXD038520.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Austin V Carr
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
5
|
Phetsanthad A, Vu NQ, Yu Q, Buchberger AR, Chen Z, Keller C, Li L. Recent advances in mass spectrometry analysis of neuropeptides. MASS SPECTROMETRY REVIEWS 2023; 42:706-750. [PMID: 34558119 PMCID: PMC9067165 DOI: 10.1002/mas.21734] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 05/08/2023]
Abstract
Due to their involvement in numerous biochemical pathways, neuropeptides have been the focus of many recent research studies. Unfortunately, classic analytical methods, such as western blots and enzyme-linked immunosorbent assays, are extremely limited in terms of global investigations, leading researchers to search for more advanced techniques capable of probing the entire neuropeptidome of an organism. With recent technological advances, mass spectrometry (MS) has provided methodology to gain global knowledge of a neuropeptidome on a spatial, temporal, and quantitative level. This review will cover key considerations for the analysis of neuropeptides by MS, including sample preparation strategies, instrumental advances for identification, structural characterization, and imaging; insightful functional studies; and newly developed absolute and relative quantitation strategies. While many discoveries have been made with MS, the methodology is still in its infancy. Many of the current challenges and areas that need development will also be highlighted in this review.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Nhu Q. Vu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Qing Yu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Amanda R. Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
6
|
Effects of lifespan-extending interventions on cognitive healthspan. Expert Rev Mol Med 2022; 25:e2. [PMID: 36377361 DOI: 10.1017/erm.2022.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ageing is known to be the primary risk factor for most neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Huntington's disease. They are currently incurable and worsen over time, which has broad implications in the context of lifespan and healthspan extension. Adding years to life and even to physical health is suboptimal or even insufficient, if cognitive ageing is not adequately improved. In this review, we will examine how interventions that have the potential to extend lifespan in animals affect the brain, and if they would be able to thwart or delay the development of cognitive dysfunction and/or neurodegeneration. These interventions range from lifestyle (caloric restriction, physical exercise and environmental enrichment) through pharmacological (nicotinamide adenine dinucleotide precursors, resveratrol, rapamycin, metformin, spermidine and senolytics) to epigenetic reprogramming. We argue that while many of these interventions have clear potential to improve cognitive health and resilience, large-scale and long-term randomised controlled trials are needed, along with studies utilising washout periods to determine the effects of supplementation cessation, particularly in aged individuals.
Collapse
|
7
|
Multiplexed quantitative neuropeptidomics via DiLeu isobaric tagging. Methods Enzymol 2022; 663:235-257. [DOI: 10.1016/bs.mie.2021.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Transcriptome Profiling of the Pacific Oyster Crassostrea gigas Visceral Ganglia over a Reproduction Cycle Identifies Novel Regulatory Peptides. Mar Drugs 2021; 19:md19080452. [PMID: 34436291 PMCID: PMC8398477 DOI: 10.3390/md19080452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
The neuropeptides involved in the regulation of reproduction in the Pacific oyster (Crassostrea gigas) are quite diverse. To investigate this diversity, a transcriptomic survey of the visceral ganglia (VG) was carried out over an annual reproductive cycle. RNA-seq data from 26 samples corresponding to VG at different stages of reproduction were de novo assembled to generate a specific reference transcriptome of the oyster nervous system and used to identify differentially expressed transcripts. Transcriptome mining led to the identification of novel neuropeptide precursors (NPPs) related to the bilaterian Eclosion Hormone (EH), crustacean female sex hormone/Interleukin 17, Nesfatin, neuroparsin/IGFBP, prokineticins, and urotensin I; to the protostome GNQQN, pleurin, prohormones 3 and 4, prothoracotropic hormones (PTTH), and QSamide/PXXXamide; to the lophotrochozoan CCWamide, CLCCY, HFAamide, and LXRX; and to the mollusk-specific NPPs CCCGS, clionin, FYFY, GNamide, GRWRN, GSWN, GWE, IWMPxxGYxx, LXRYamide, RTLFamide, SLRFamide, and WGAGamide. Among the complete repertoire of NPPs, no sex-biased expression was observed. However, 25 NPPs displayed reproduction stage-specific expression, supporting their involvement in the control of gametogenesis or associated metabolisms.
Collapse
|
9
|
Sauer CS, Phetsanthad A, Riusech OL, Li L. Developing mass spectrometry for the quantitative analysis of neuropeptides. Expert Rev Proteomics 2021; 18:607-621. [PMID: 34375152 PMCID: PMC8522511 DOI: 10.1080/14789450.2021.1967146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Neuropeptides are signaling molecules originating in the neuroendocrine system that can act as neurotransmitters and hormones in many biochemical processes. Their exact function is difficult to characterize, however, due to dependence on concentration, post-translational modifications, and the presence of other comodulating neuropeptides. Mass spectrometry enables sensitive, accurate, and global peptidomic analyses that can profile neuropeptide expression changes to understand their roles in many biological problems, such as neurodegenerative disorders and metabolic function. AREAS COVERED We provide a brief overview of the fundamentals of neuropeptidomic research, limitations of existing methods, and recent progress in the field. This review is focused on developments in mass spectrometry and encompasses labeling strategies, post-translational modification analysis, mass spectrometry imaging, and integrated multi-omic workflows, with discussion emphasizing quantitative advancements. EXPERT OPINION Neuropeptidomics is critical for future clinical research with impacts in biomarker discovery, receptor identification, and drug design. While advancements are being made to improve sensitivity and accuracy, there is still room for improvement. Better quantitative strategies are required for clinical analyses, and these methods also need to be amenable to mass spectrometry imaging, post-translational modification analysis, and multi-omics to facilitate understanding and future treatment of many diseases.
Collapse
Affiliation(s)
- Christopher S. Sauer
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Olga L. Riusech
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53075, USA
| |
Collapse
|
10
|
Hou L, Guo S, Wang Y, Nie X, Yang P, Ding D, Li B, Kang L, Wang X. Neuropeptide ACP facilitates lipid oxidation and utilization during long-term flight in locusts. eLife 2021; 10:e65279. [PMID: 34151772 PMCID: PMC8324298 DOI: 10.7554/elife.65279] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 06/18/2021] [Indexed: 11/25/2022] Open
Abstract
Long-term flight depends heavily on intensive energy metabolism in animals; however, the neuroendocrine mechanisms underlying efficient substrate utilization remain elusive. Here, we report that the adipokinetic hormone/corazonin-related peptide (ACP) can facilitate muscle lipid utilization in a famous long-term migratory flighting species, Locusta migratoria. By peptidomic analysis and RNAi screening, we identified brain-derived ACP as a key flight-related neuropeptide. ACP gene expression increased notably upon sustained flight. CRISPR/Cas9-mediated knockout of ACP gene and ACP receptor gene (ACPR) significantly abated prolonged flight of locusts. Transcriptomic and metabolomic analyses further revealed that genes and metabolites involved in fatty acid transport and oxidation were notably downregulated in the flight muscle of ACP mutants. Finally, we demonstrated that a fatty-acid-binding protein (FABP) mediated the effects of ACP in regulating muscle lipid metabolism during long-term flight in locusts. Our results elucidated a previously undescribed neuroendocrine mechanism underlying efficient energy utilization associated with long-term flight.
Collapse
Affiliation(s)
- Li Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Siyuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Yuanyuan Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Xin Nie
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Pengcheng Yang
- Beijing Institutes of Life Science, Chinese Academy of SciencesBeijingChina
| | - Ding Ding
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Beibei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
11
|
Kang I, Kim W, Lim JY, Lee Y, Shin C. Organ-specific transcriptome analysis reveals differential gene expression in different castes under natural conditions in Apis cerana. Sci Rep 2021; 11:11267. [PMID: 34050219 PMCID: PMC8163739 DOI: 10.1038/s41598-021-90635-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/12/2021] [Indexed: 02/04/2023] Open
Abstract
Honeybees are one of the most environmentally important insects, as their pollination of various plant species contributes to the balance among different ecosystems. It has been studied extensively for their unique attribute of forming a caste society. Unlike other insects, honeybees communicate socially by secreting pheromones or by exhibiting specific patterns of motion. In the honeybee industry, the Asian honeybees (Apis cerana) and the Western honeybees (Apis mellifera) are dominant species. However, molecular research on the transcriptomes of A. cerana has not been studied as extensively as those of A. mellifera. Therefore, in this study, caste-specific transcriptional differences were analyzed, which provides a comprehensive analysis of A. cerana. In our dataset, we analyzed gene expression profiles using organs from worker, drone, and queen bees. This gene-expression profile helped us obtain more detailed information related to organ-specific genes, immune response, detoxification mechanisms, venom-specific genes, and ovary development. From our result, we found 4096 transcripts representing different gene-expression pattern in each organ. Our results suggest that caste-specific transcripts of each organ were expressed differently even under natural conditions. These transcriptome-wide analyses provide new insights into A. cerana and that promote honeybee research and conservation.
Collapse
Affiliation(s)
- Igojo Kang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Woojin Kim
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jae Yun Lim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun Lee
- Department of Applied Biology and Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chanseok Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
12
|
Habenstein J, Schmitt F, Liessem S, Ly A, Trede D, Wegener C, Predel R, Rössler W, Neupert S. Transcriptomic, peptidomic, and mass spectrometry imaging analysis of the brain in the ant Cataglyphis nodus. J Neurochem 2021; 158:391-412. [PMID: 33704768 DOI: 10.1111/jnc.15346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022]
Abstract
Behavioral flexibility is an important cornerstone for the ecological success of animals. Social Cataglyphis nodus ants with their age-related polyethism characterized by age-related behavioral phenotypes represent a prime example for behavioral flexibility. We propose neuropeptides as powerful candidates for the flexible modulation of age-related behavioral transitions in individual ants. As the neuropeptidome of C. nodus was unknown, we collected a comprehensive peptidomic data set obtained by transcriptome analysis of the ants' central nervous system combined with brain extract analysis by Q-Exactive Orbitrap mass spectrometry (MS) and direct tissue profiling of different regions of the brain by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. In total, we identified 71 peptides with likely bioactive function, encoded on 49 neuropeptide-, neuropeptide-like, and protein hormone prepropeptide genes, including a novel neuropeptide-like gene (fliktin). We next characterized the spatial distribution of a subset of peptides encoded on 16 precursor proteins with high resolution by MALDI MS imaging (MALDI MSI) on 14 µm brain sections. The accuracy of our MSI data were confirmed by matching the immunostaining patterns for tachykinins with MSI ion images from consecutive brain sections. Our data provide a solid framework for future research into spatially resolved qualitative and quantitative peptidomic changes associated with stage-specific behavioral transitions and the functional role of neuropeptides in Cataglyphis ants.
Collapse
Affiliation(s)
- Jens Habenstein
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Würzburg, Germany
| | - Franziska Schmitt
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Würzburg, Germany
| | - Sander Liessem
- Department of Biology, Institute for Zoology, University of Cologne, Cologne, Germany
| | - Alice Ly
- Bruker Daltonik GmbH, Bremen, Germany
| | - Dennis Trede
- SCiLS, Zweigniederlassung Bremen der Bruker Daltonik GmbH, Bremen, Germany
| | - Christian Wegener
- Theodor-Boveri-Institute, Neurobiology and Genetics, Würzburg Insect Research, University of Würzburg, Würzburg, Germany
| | - Reinhard Predel
- Department of Biology, Institute for Zoology, University of Cologne, Cologne, Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Würzburg, Germany
| | - Susanne Neupert
- Department of Biology, Institute for Zoology, University of Cologne, Cologne, Germany.,Department of Biology, University of Kassel, Kassel, Germany
| |
Collapse
|
13
|
Han B, Wei Q, Wu F, Hu H, Ma C, Meng L, Zhang X, Feng M, Fang Y, Rueppell O, Li J. Tachykinin signaling inhibits task-specific behavioral responsiveness in honeybee workers. eLife 2021; 10:64830. [PMID: 33760729 PMCID: PMC8016481 DOI: 10.7554/elife.64830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Behavioral specialization is key to the success of social insects and leads to division of labor among colony members. Response thresholds to task-specific stimuli are thought to proximally regulate behavioral specialization, but their neurobiological regulation is complex and not well understood. Here, we show that response thresholds to task-relevant stimuli correspond to the specialization of three behavioral phenotypes of honeybee workers in the well-studied and important Apis mellifera and Apis cerana. Quantitative neuropeptidome comparisons suggest two tachykinin-related peptides (TRP2 and TRP3) as candidates for the modification of these response thresholds. Based on our characterization of their receptor binding and downstream signaling, we confirm a functional role of tachykinin signaling in regulating specific responsiveness of honeybee workers: TRP2 injection and RNAi-mediated downregulation cause consistent, opposite effects on responsiveness to task-specific stimuli of each behaviorally specialized phenotype but not to stimuli that are unrelated to their tasks. Thus, our study demonstrates that TRP signaling regulates the degree of task-specific responsiveness of specialized honeybee workers and may control the context specificity of behavior in animals more generally.
Collapse
Affiliation(s)
- Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China.,Department of Biology, University of North Carolina Greensboro, Greensboro, United States
| | - Qiaohong Wei
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Fan Wu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China.,Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Chuan Ma
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Lifeng Meng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Xufeng Zhang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China.,Institute of Horticultural Research, Shanxi Academy of Agricultural Sciences, Shanxi Agricultural University, Taiyuan, China
| | - Mao Feng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Yu Fang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Olav Rueppell
- Department of Biology, University of North Carolina Greensboro, Greensboro, United States.,Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| |
Collapse
|
14
|
Uversky VN, Albar AH, Khan RH, Redwan EM. Multifunctionality and intrinsic disorder of royal jelly proteome. Proteomics 2021; 21:e2000237. [PMID: 33463023 DOI: 10.1002/pmic.202000237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/16/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Abstract
Royal Jelly (RJ) is a gelatinous white-yellowish fluid, possessing a sour taste and a slight phenolic smell that is secreted by the hypopharyngeal and mandibular salivary glands of the nurse honeybees, and is used in nutrition of larvae and adult queens. Similar to other substances associated with the activities of honeybees, RJ not only contains nutritive components, such as carbohydrates, proteins, peptides, lipids, vitamins, and mineral salts, but also represents a natural ingredient with cosmetic and health-promoting properties. RJ is characterized by remarkable multifunctionality, possessing numerous biological activities. Although this multifunctionality of RJ can be considered as a consequence of its complex nature, many proteins and peptides in RJ are polyfunctional entities themselves. In this article, we show that RJ proteins contain different levels of intrinsic disorder, have sites of post-translational modifications, can be found in multiple isoforms, and many of them possess disorder-based binding sites, suggesting that the conformational ensembles of the RJ proteins might undergo change as a result of their interaction with specific binding partners. All these observations suggest that the multifunctionality of proteins and peptides from RJ is determined by their structural heterogeneity and polymorphism, and serve as an illustration of the protein structure-function continuum concept.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589 80203, Saudi Arabia.,Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region 142290, Russia.,Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Abdulgader H Albar
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589 80203, Saudi Arabia
| | - Rizwan H Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589 80203, Saudi Arabia
| |
Collapse
|
15
|
Anton S, Rössler W. Plasticity and modulation of olfactory circuits in insects. Cell Tissue Res 2020; 383:149-164. [PMID: 33275182 PMCID: PMC7873004 DOI: 10.1007/s00441-020-03329-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
Olfactory circuits change structurally and physiologically during development and adult life. This allows insects to respond to olfactory cues in an appropriate and adaptive way according to their physiological and behavioral state, and to adapt to their specific abiotic and biotic natural environment. We highlight here findings on olfactory plasticity and modulation in various model and non-model insects with an emphasis on moths and social Hymenoptera. Different categories of plasticity occur in the olfactory systems of insects. One type relates to the reproductive or feeding state, as well as to adult age. Another type of plasticity is context-dependent and includes influences of the immediate sensory and abiotic environment, but also environmental conditions during postembryonic development, periods of adult behavioral maturation, and short- and long-term sensory experience. Finally, plasticity in olfactory circuits is linked to associative learning and memory formation. The vast majority of the available literature summarized here deals with plasticity in primary and secondary olfactory brain centers, but also peripheral modulation is treated. The described molecular, physiological, and structural neuronal changes occur under the influence of neuromodulators such as biogenic amines, neuropeptides, and hormones, but the mechanisms through which they act are only beginning to be analyzed.
Collapse
Affiliation(s)
- Sylvia Anton
- IGEPP, INRAE, Institut Agro, Univ Rennes, INRAE, 49045, Angers, France.
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
16
|
Zhang X, Hu H, Han B, Wei Q, Meng L, Wu F, Fang Y, Feng M, Ma C, Rueppell O, Li J. The Neuroproteomic Basis of Enhanced Perception and Processing of Brood Signals That Trigger Increased Reproductive Investment in Honeybee ( Apis mellifera) Workers. Mol Cell Proteomics 2020; 19:1632-1648. [PMID: 32669299 PMCID: PMC8014994 DOI: 10.1074/mcp.ra120.002123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/08/2020] [Indexed: 12/30/2022] Open
Abstract
The neuronal basis of complex social behavior is still poorly understood. In honeybees, reproductive investment decisions are made at the colony-level. Queens develop from female-destined larvae that receive alloparental care from nurse bees in the form of ad-libitum royal jelly (RJ) secretions. Typically, the number of raised new queens is limited but genetic breeding of "royal jelly bees" (RJBs) for enhanced RJ production over decades has led to a dramatic increase of reproductive investment in queens. Here, we compare RJBs to unselected Italian bees (ITBs) to investigate how their cognitive processing of larval signals in the mushroom bodies (MBs) and antennal lobes (ALs) may contribute to their behavioral differences. A cross-fostering experiment confirms that the RJB syndrome is mainly due to a shift in nurse bee alloparental care behavior. Using olfactory conditioning of the proboscis extension reflex, we show that the RJB nurses spontaneously respond more often to larval odors compared with ITB nurses but their subsequent learning occurs at similar rates. These phenotypic findings are corroborated by our demonstration that the proteome of the brain, particularly of the ALs differs between RJBs and ITBs. Notably, in the ALs of RJB newly emerged bees and nurses compared with ITBs, processes of energy and nutrient metabolism, signal transduction are up-regulated, priming the ALs for receiving and processing the brood signals from the antennae. Moreover, highly abundant major royal jelly proteins and hexamerins in RJBs compared with ITBs during early life when the nervous system still develops suggest crucial new neurobiological roles for these well-characterized proteins. Altogether, our findings reveal that RJBs have evolved a strong olfactory response to larvae, enabled by numerous neurophysiological adaptations that increase the nurse bees' alloparental care behavior.
Collapse
Affiliation(s)
- Xufeng Zhang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; Institute of Horticultural Research, Shanxi Academy of Agricultural Sciences, Shanxi Agricultural University, Taiyuan, China
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiaohong Wei
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lifeng Meng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Wu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Fang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mao Feng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chuan Ma
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
17
|
Gas chromatography-mass spectrometry analysis reveals the differences in volatile components of royal jelly from different honeybee stocks. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Duerrauer L, Muratspahić E, Gattringer J, Keov P, Mendel HC, Pfleger KDG, Muttenthaler M, Gruber CW. I8-arachnotocin-an arthropod-derived G protein-biased ligand of the human vasopressin V 2 receptor. Sci Rep 2019; 9:19295. [PMID: 31848378 PMCID: PMC6917733 DOI: 10.1038/s41598-019-55675-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
The neuropeptides oxytocin (OT) and vasopressin (VP) and their G protein-coupled receptors OTR, V1aR, V1bR, and V2R form an important and widely-distributed neuroendocrine signaling system. In mammals, this signaling system regulates water homeostasis, blood pressure, reproduction, as well as social behaviors such as pair bonding, trust and aggression. There exists high demand for ligands with differing pharmacological profiles to study the physiological and pathological functions of the individual receptor subtypes. Here, we present the pharmacological characterization of an arthropod (Metaseiulus occidentalis) OT/VP-like nonapeptide across the human OT/VP receptors. I8-arachnotocin is a full agonist with respect to second messenger signaling at human V2R (EC50 34 nM) and V1bR (EC50 1.2 µM), a partial agonist at OTR (EC50 790 nM), and a competitive antagonist at V1aR [pA2 6.25 (558 nM)]. Intriguingly, I8-arachnotocin activated the Gαs pathway of V2R without recruiting either β-arrestin-1 or β-arrestin-2. I8-arachnotocin might thus be a novel pharmacological tool to study the (patho)physiological relevance of β-arrestin-1 or -2 recruitment to the V2R. These findings furthermore highlight arthropods as a novel, vast and untapped source for the discovery of novel pharmacological probes and potential drug leads targeting neurohormone receptors.
Collapse
Affiliation(s)
- Leopold Duerrauer
- Institute of Pharmacology, Center for Pharmacology and Physiology, Medical University of Vienna, Vienna, Austria.,School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Edin Muratspahić
- Institute of Pharmacology, Center for Pharmacology and Physiology, Medical University of Vienna, Vienna, Austria
| | - Jasmin Gattringer
- Institute of Pharmacology, Center for Pharmacology and Physiology, Medical University of Vienna, Vienna, Austria
| | - Peter Keov
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Helen C Mendel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Kevin D G Pfleger
- Centre for Medical Research, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christian W Gruber
- Institute of Pharmacology, Center for Pharmacology and Physiology, Medical University of Vienna, Vienna, Austria. .,School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
19
|
Robinson KJ, Bosch OJ, Levkowitz G, Busch KE, Jarman AP, Ludwig M. Social creatures: Model animal systems for studying the neuroendocrine mechanisms of social behaviour. J Neuroendocrinol 2019; 31:e12807. [PMID: 31679160 PMCID: PMC6916380 DOI: 10.1111/jne.12807] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/11/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022]
Abstract
The interaction of animals with conspecifics, termed social behaviour, has a major impact on the survival of many vertebrate species. Neuropeptide hormones modulate the underlying physiology that governs social interactions, and many findings concerning the neuroendocrine mechanisms of social behaviours have been extrapolated from animal models to humans. Neurones expressing neuropeptides show similar distribution patterns within the hypothalamic nucleus, even when evolutionarily distant species are compared. During evolution, hypothalamic neuropeptides and releasing hormones have retained not only their structures, but also their biological functions, including their effects on behaviour. Here, we review the current understanding of the mechanisms of social behaviours in several classes of animals, such as worms, insects and fish, as well as laboratory, wild and domesticated mammals.
Collapse
Affiliation(s)
- Kelly J. Robinson
- Sea Mammal Research UnitScottish Oceans InstituteUniversity of St AndrewsSt AndrewsUK
| | - Oliver J. Bosch
- Department of Behavioural and Molecular NeurobiologyUniversity of RegensburgRegensburgGermany
| | - Gil Levkowitz
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | | | - Andrew P. Jarman
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Mike Ludwig
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- Centre for NeuroendocrinologyDepartment of ImmunologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
20
|
Altaye SZ, Meng L, Lu Y, Li J. The Emerging Proteomic Research Facilitates in-Depth Understanding of the Biology of Honeybees. Int J Mol Sci 2019; 20:ijms20174252. [PMID: 31480282 PMCID: PMC6747239 DOI: 10.3390/ijms20174252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
Advances in instrumentation and computational analysis in proteomics have opened new doors for honeybee biological research at the molecular and biochemical levels. Proteomics has greatly expanded the understanding of honeybee biology since its introduction in 2005, through which key signaling pathways and proteins that drive honeybee development and behavioral physiology have been identified. This is critical for downstream mechanistic investigation by knocking a gene down/out or overexpressing it and being able to attribute a specific phenotype/biochemical change to that gene. Here, we review how emerging proteome research has contributed to the new understanding of honeybee biology. A systematic and comprehensive analysis of global scientific progress in honeybee proteome research is essential for a better understanding of research topics and trends, and is potentially useful for future research directions.
Collapse
Affiliation(s)
- Solomon Zewdu Altaye
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lifeng Meng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Lu
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
21
|
Kim MA, Markkandan K, Han NY, Park JM, Lee JS, Lee H, Sohn YC. Neural Ganglia Transcriptome and Peptidome Associated with Sexual Maturation in Female Pacific Abalone ( Haliotis discus hannai). Genes (Basel) 2019; 10:genes10040268. [PMID: 30987054 PMCID: PMC6523705 DOI: 10.3390/genes10040268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/13/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022] Open
Abstract
Genetic information of reproduction and growth is essential for sustainable molluscan fisheries and aquaculture management. However, there is limited knowledge regarding the reproductive activity of the commercially important Pacific abalone Haliotisdiscushannai. We performed de novo transcriptome sequencing of the ganglia in sexually immature and mature female Pacific abalone to better understand the sexual maturation process and the underlying molecular mechanisms. Of the ~305 million high-quality clean reads, 76,684 transcripts were de novo-assembled with an average length of 741 bp, 28.54% of which were annotated and classified according to Gene Ontology terms. There were 256 differentially expressed genes between the immature and mature abalone. Tandem mass spectrometry analysis, as compared to the predicted-peptide database of abalone ganglia transcriptome unigenes, identified 42 neuropeptide precursors, including 29 validated by peptidomic analyses. Label-free quantification revealed differential occurrences of 18 neuropeptide families between immature and mature abalone, including achatin, FMRFamide, crustacean cardioactive peptide, and pedal peptide A and B that were significantly more frequent at the mature stage. These results represent the first significant contribution to both maturation-related transcriptomic and peptidomic resources of the Pacific abalone ganglia and provide insight into the roles of various neuropeptides in reproductive regulation in marine gastropods.
Collapse
Affiliation(s)
- Mi Ae Kim
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung 25457, Korea.
- The East Coast Research Institute of Life Science, Gangneung-Wonju National University, Gangneung 25457, Korea.
| | | | - Na-Young Han
- College of Pharmacy, Gachon University, Incheon 21936, Korea.
| | - Jong-Moon Park
- College of Pharmacy, Gachon University, Incheon 21936, Korea.
| | - Jung Sick Lee
- Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Korea.
| | - Hookeun Lee
- College of Pharmacy, Gachon University, Incheon 21936, Korea.
| | - Young Chang Sohn
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung 25457, Korea.
| |
Collapse
|
22
|
Hu H, Bezabih G, Feng M, Wei Q, Zhang X, Wu F, Meng L, Fang Y, Han B, Ma C, Li J. In-depth Proteome of the Hypopharyngeal Glands of Honeybee Workers Reveals Highly Activated Protein and Energy Metabolism in Priming the Secretion of Royal Jelly. Mol Cell Proteomics 2019; 18:606-621. [PMID: 30617159 PMCID: PMC6442370 DOI: 10.1074/mcp.ra118.001257] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Indexed: 11/06/2022] Open
Abstract
Royal jelly (RJ) is a secretion of the hypopharyngeal glands (HGs) of honeybee workers. High royal jelly producing bees (RJBs), a stock of honeybees selected from Italian bees (ITBs), have developed a stronger ability to produce RJ than ITBs. However, the mechanism underpinning the high RJ-producing performance in RJBs is still poorly understood. We have comprehensively characterized and compared the proteome across the life span of worker bees between the ITBs and RJBs. Our data uncover distinct molecular landscapes that regulate the gland ontogeny and activity corresponding with age-specific tasks. Nurse bees (NBs) have a well-developed acini morphology and cytoskeleton of secretory cells in HGs to prime the gland activities of RJ secretion. In RJB NBs, pathways involved in protein synthesis and energy metabolism are functionally induced to cement the enhanced RJ secretion compared with ITBs. In behavior-manipulated RJB NBs, the strongly expressed proteins implicated in protein synthesis and energy metabolism further demonstrate their critical roles in the regulation of RJ secretion. Our findings provide a novel understanding of the mechanism consolidating the high RJ-output in RJBs.
Collapse
Affiliation(s)
- Han Hu
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Gebreamlak Bezabih
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Mao Feng
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Qiaohong Wei
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Xufeng Zhang
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Fan Wu
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Lifeng Meng
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Yu Fang
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Bin Han
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Chuan Ma
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Jianke Li
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China.
| |
Collapse
|
23
|
Yan S, Li Q, Xue X, Wang K, Zhao L, Wu L. Analysis of improved nutritional composition of bee pollen (
Brassica campestris
L.) after different fermentation treatments. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14124] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sha Yan
- Institute of Apicultural Research Chinese Academy of Agricultural Sciences Beijing 100093 China
- College of Food Science and Engineering Shanxi Agricultural University Taigu 030801 China
| | - Qiangqiang Li
- Institute of Apicultural Research Chinese Academy of Agricultural Sciences Beijing 100093 China
| | - Xiaofeng Xue
- Institute of Apicultural Research Chinese Academy of Agricultural Sciences Beijing 100093 China
| | - Kai Wang
- Institute of Apicultural Research Chinese Academy of Agricultural Sciences Beijing 100093 China
| | - Liuwei Zhao
- Institute of Apicultural Research Chinese Academy of Agricultural Sciences Beijing 100093 China
| | - Liming Wu
- Institute of Apicultural Research Chinese Academy of Agricultural Sciences Beijing 100093 China
| |
Collapse
|
24
|
Sequence and structural properties of circular RNAs in the brain of nurse and forager honeybees (Apis mellifera). BMC Genomics 2019; 20:88. [PMID: 30683059 PMCID: PMC6347836 DOI: 10.1186/s12864-018-5402-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Background The honeybee (Apis mellifera) represents a model organism for social insects displaying behavioral plasticity. This is reflected by an age-dependent task allocation. The most protruding tasks are performed by young nurse bees and older forager bees that take care of the brood inside the hive and collect food from outside the hive, respectively. The molecular mechanism leading to the transition from nurse bees to foragers is currently under intense research. Circular RNAs, however, were not considered in this context so far. As of today, this group of non-coding RNAs was only known to exist in two other insects, Drosophila melanogaster and Bombyx mori. Here we complement the state of circular RNA research with the first characterization in a social insect. Results We identified numerous circular RNAs in the brain of A. mellifera nurse bees and forager bees using RNA-Seq with exonuclease enrichment. Presence and circularity were verified for the most abundant representatives. Back-splicing in honeybee occurs further towards the end of transcripts and in transcripts with a high number of exons. The occurrence of circularized exons is correlated with length and CpG-content of their flanking introns. The latter coincides with increased DNA-methylation in the respective loci. For two prominent circular RNAs the abundance in worker bee brains was quantified in TaqMan assays. In line with previous findings of circular RNAs in Drosophila, circAmrsmep2 accumulates with increasing age of the insect. In contrast, the levels of circAmrad appear age-independent and correlate with the bee’s task. Its parental gene is related to amnesia-resistant memory. Conclusions We provide the first characterization of circRNAs in a social insect. Many of the RNAs identified here show homologies to circular RNAs found in Drosophila and Bombyx, indicating that circular RNAs are a common feature among insects. We find that exon circularization is correlated to DNA-methylation at the flanking introns. The levels of circAmrad suggest a task-dependent abundance that is decoupled from age. Moreover, a GO term analysis shows an enrichment of task-related functions. We conclude that circular RNAs could be relevant for task allocation in honeybee and should be investigated further in this context. Electronic supplementary material The online version of this article (10.1186/s12864-018-5402-6) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Schatton A, Agoro J, Mardink J, Leboulle G, Scharff C. Identification of the neurotransmitter profile of AmFoxP expressing neurons in the honeybee brain using double-label in situ hybridization. BMC Neurosci 2018; 19:69. [PMID: 30400853 PMCID: PMC6219247 DOI: 10.1186/s12868-018-0469-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND FoxP transcription factors play crucial roles for the development and function of vertebrate brains. In humans the neurally expressed FOXPs, FOXP1, FOXP2, and FOXP4 are implicated in cognition, including language. Neural FoxP expression is specific to particular brain regions but FoxP1, FoxP2 and FoxP4 are not limited to a particular neuron or neurotransmitter type. Motor- or sensory activity can regulate FoxP2 expression, e.g. in the striatal nucleus Area X of songbirds and in the auditory thalamus of mice. The DNA-binding domain of FoxP proteins is highly conserved within metazoa, raising the possibility that cellular functions were preserved across deep evolutionary time. We have previously shown in bee brains that FoxP is expressed in eleven specific neuron populations, seven tightly packed clusters and four loosely arranged groups. RESULTS The present study examined the co-expression of honeybee FoxP (AmFoxP) with markers for glutamatergic, GABAergic, cholinergic and monoaminergic transmission. We found that AmFoxP could co-occur with any one of those markers. Interestingly, AmFoxP clusters and AmFoxP groups differed with respect to homogeneity of marker co-expression; within a cluster, all neurons co-expressed the same neurotransmitter marker, within a group co-expression varied. We also assessed qualitatively whether age or housing conditions providing different sensory and motor experiences affected the AmFoxP neuron populations, but found no differences. CONCLUSIONS Based on the neurotransmitter homogeneity we conclude that AmFoxP neurons within the clusters might have a common projection and function whereas the AmFoxP groups are more diverse and could be further sub-divided. The obtained information about the neurotransmitters co-expressed in the AmFoxP neuron populations facilitated the search of similar neurons described in the literature. These comparisons revealed e.g. a possible function of AmFoxP neurons in the central complex. Our findings provide opportunities to focus future functional studies on invertebrate FoxP expressing neurons. In a broader context, our data will contribute to the ongoing efforts to discern in which cases relationships between molecular and phenotypic signatures are linked evolutionary.
Collapse
Affiliation(s)
- Adriana Schatton
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Julia Agoro
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- Department of Neurobiology, Freie Universität Berlin, Königin-Luise-Straße 28-30, 14195 Berlin, Germany
| | - Janis Mardink
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Gérard Leboulle
- Department of Neurobiology, Freie Universität Berlin, Königin-Luise-Straße 28-30, 14195 Berlin, Germany
| | - Constance Scharff
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| |
Collapse
|
26
|
Pratavieira M, Menegasso ARDS, Esteves FG, Sato KU, Malaspina O, Palma MS. MALDI Imaging Analysis of Neuropeptides in Africanized Honeybee (Apis mellifera) Brain: Effect of Aggressiveness. J Proteome Res 2018; 17:2358-2369. [DOI: 10.1021/acs.jproteome.8b00098] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marcel Pratavieira
- Institute of Biosciences, Department of Biology, Center of the Study of Social Insects, University of São Paulo State (UNESP), Rio Claro, São Paulo 13506-900, Brazil
| | - Anally Ribeiro da Silva Menegasso
- Institute of Biosciences, Department of Biology, Center of the Study of Social Insects, University of São Paulo State (UNESP), Rio Claro, São Paulo 13506-900, Brazil
| | - Franciele Grego Esteves
- Institute of Biosciences, Department of Biology, Center of the Study of Social Insects, University of São Paulo State (UNESP), Rio Claro, São Paulo 13506-900, Brazil
| | - Kenny Umino Sato
- Institute of Biosciences, Department of Biology, Center of the Study of Social Insects, University of São Paulo State (UNESP), Rio Claro, São Paulo 13506-900, Brazil
| | - Osmar Malaspina
- Institute of Biosciences, Department of Biology, Center of the Study of Social Insects, University of São Paulo State (UNESP), Rio Claro, São Paulo 13506-900, Brazil
| | - Mario Sergio Palma
- Institute of Biosciences, Department of Biology, Center of the Study of Social Insects, University of São Paulo State (UNESP), Rio Claro, São Paulo 13506-900, Brazil
| |
Collapse
|
27
|
Hora ZA, Altaye SZ, Wubie AJ, Li J. Proteomics Improves the New Understanding of Honeybee Biology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3605-3615. [PMID: 29558123 DOI: 10.1021/acs.jafc.8b00772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The honeybee is one of the most valuable insect pollinators, playing a key role in pollinating wild vegetation and agricultural crops, with significant contribution to the world's food production. Although honeybees have long been studied as model for social evolution, honeybee biology at the molecular level remained poorly understood until the year 2006. With the availability of the honeybee genome sequence and technological advancements in protein separation, mass spectrometry, and bioinformatics, aspects of honeybee biology such as developmental biology, physiology, behavior, neurobiology, and immunology have been explored to new depths at molecular and biochemical levels. This Review comprehensively summarizes the recent progress in honeybee biology using proteomics to study developmental physiology, task transition, and physiological changes in some of the organs, tissues, and cells based on achievements from the authors' laboratory in this field. The research advances of honeybee proteomics provide new insights for understanding of honeybee biology and future research directions.
Collapse
Affiliation(s)
- Zewdu Ararso Hora
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Solomon Zewdu Altaye
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Abebe Jemberie Wubie
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| |
Collapse
|
28
|
Insight into stem cell regulation from sub-lethally irradiated worms. Gene 2018; 662:37-45. [PMID: 29627527 DOI: 10.1016/j.gene.2018.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/24/2018] [Accepted: 04/05/2018] [Indexed: 12/30/2022]
Abstract
Despite the significant advances in the comprehension of stem cell control network, the nature of extrinsic signals regulating their dynamic remains to be understood. In this paper, we take advantage of the stem cell repopulation process that follows low-dose X-ray treatment in planarians to identify genes, preferentially enriched in differentiated cells, whose expression is activated during the process. Genetic silencing of some of them impaired the stem cell repopulation, suggesting a tight extrinsic control of stem cell activity.
Collapse
|
29
|
Gómez-Ramos MDM, Gómez Ramos MJ, Martínez Galera M, Gil García MD, Fernández-Alba AR. Analysis and evaluation of (neuro)peptides in honey bees exposed to pesticides in field conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:750-760. [PMID: 29339344 DOI: 10.1016/j.envpol.2017.12.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/30/2017] [Accepted: 12/23/2017] [Indexed: 06/07/2023]
Abstract
During the last years, declines in honey bee colonies are being registered worldwide. Cholinergic pesticides and their extensive use have been correlated to the decline of pollinators and there is evidence that pesticides act as neuroendocrine disruptors affecting the metabolism of neuropeptides. However, there is a big absence of studies with quantitative results correlating the effect of pesticide exposure with changes on neuropeptides insects, and most of them are conducted under laboratory conditions, typically with individual active ingredients. In this study, we present an analytical workflow to evaluate pesticide effects on honey bees through the analysis of (neuro)peptides. The workflow consists of a rapid extraction method and liquid chromatography with triple quadrupole for preselected neuropeptides. For non-target analysis, high resolution mass spectrometry, multivariate analysis and automatic identification of discriminated peptides using a specific software and protein sequence databases. The analytical method was applied to the analysis of target and non-target (neuro)peptides in honey bees with low and high content of a wide range of pesticides to which have been exposed in field conditions. Our findings show that the identification frequency of target neuropeptides decreases significantly in honey bees with high concentration of pesticides (pesticide concentrations ≥ 500 μg kg-1) in comparison with the honey bees with low content of pesticides (pesticide concentrations ≤ 20 μg kg-1). Moreover, the principal component analysis in non-target search shows a clear distinction between peptide concentration in honey bees with high level of pesticides and honey bees with low level. The use of high resolution mass spectrometry has allowed the identification of 25 non-redundant peptides responsible for discrimination between the two groups, derived from 18 precursor proteins.
Collapse
Affiliation(s)
- María Del Mar Gómez-Ramos
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain
| | - María José Gómez Ramos
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain.
| | - María Martínez Galera
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain
| | - María Dolores Gil García
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain
| | - Amadeo R Fernández-Alba
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain
| |
Collapse
|
30
|
Ararso Z, Ma C, Qi Y, Feng M, Han B, Hu H, Meng L, Li J. Proteome Comparisons between Hemolymph of Two Honeybee Strains (Apis mellifera ligustica) Reveal Divergent Molecular Basis in Driving Hemolymph Function and High Royal Jelly Secretion. J Proteome Res 2017; 17:402-419. [DOI: 10.1021/acs.jproteome.7b00621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zewdu Ararso
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuan Ma
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuping Qi
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mao Feng
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Han
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Han Hu
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lifeng Meng
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianke Li
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
31
|
Meng L, Huo X, Feng M, Fang Y, Han B, Hu H, Wu F, Li J. Proteomics Reveals the Molecular Underpinnings of Stronger Learning and Memory in Eastern Compared to Western Bees. Mol Cell Proteomics 2017; 17:255-269. [PMID: 29187519 PMCID: PMC5795390 DOI: 10.1074/mcp.ra117.000159] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/11/2017] [Indexed: 11/06/2022] Open
Abstract
The eastern (Apis cerana cerana, Acc) and western (Apis mellifera ligustica, Aml) honeybee are two major honeybee species. Surprisingly, little is known about the fundamental molecular neurobiology of brain suborgans of Acc and Aml. We characterized and compared the proteomes of mushroom bodies (MBs), antennal lobes (ALs) and optical lobes (OLs) in the brain of both species, and biologically validated the functions related to learning and memory. Acc and Aml have evolved similar proteome signatures in MBs and OLs to drive the domain-specific neural activities. In MBs of both species, commonly enriched and enhanced functional groups related to protein metabolism and Ca2+ transport relative to ALs and OLs, suggests that proteins and Ca2+ are vital for consolidating learning and memory via modulation of synaptic structure and signal transduction. Furthermore, in OLs of both species, the mainly enriched ribonucleoside metabolism suggests its vital role as second messenger in promoting phototransduction. Notably, in ALs of both species, distinct proteome settings have shaped to prime olfactory learning and memory. In ALs of Acc, this is supported by the enriched cytoskeleton organization to sustain olfactory signaling through modulation of plasticity in glomeruli and intracellular transport. In ALs of Aml, however, the enriched functional groups implicated in hydrogen ion transport are indicative of their importance in supporting olfactory processes by regulation of synaptic transmission. The biological confirmation of enhanced activities of protein metabolism and signal transduction in ALs and MBs of Acc relative to in Aml demonstrates that a stronger sense of olfactory learning and memory has evolved in Acc. The reported first in-depth proteome data of honeybee brain suborgans provide a novel insight into the molecular basis of neurobiology, and is potentially useful for further neurological studies in honeybees and other insects.
Collapse
Affiliation(s)
- Lifeng Meng
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Xinmei Huo
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Mao Feng
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Yu Fang
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Bin Han
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Han Hu
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Fan Wu
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Jianke Li
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| |
Collapse
|
32
|
Han B, Fang Y, Feng M, Hu H, Hao Y, Ma C, Huo X, Meng L, Zhang X, Wu F, Li J. Brain Membrane Proteome and Phosphoproteome Reveal Molecular Basis Associating with Nursing and Foraging Behaviors of Honeybee Workers. J Proteome Res 2017; 16:3646-3663. [DOI: 10.1021/acs.jproteome.7b00371] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Bin Han
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Yu Fang
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Mao Feng
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Han Hu
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Yue Hao
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Chuan Ma
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Xinmei Huo
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Lifeng Meng
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Xufeng Zhang
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Fan Wu
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Jianke Li
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| |
Collapse
|
33
|
Acevedo FE, Stanley BA, Stanley A, Peiffer M, Luthe DS, Felton GW. Quantitative proteomic analysis of the fall armyworm saliva. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 86:81-92. [PMID: 28591565 DOI: 10.1016/j.ibmb.2017.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/22/2017] [Accepted: 06/02/2017] [Indexed: 06/07/2023]
Abstract
Lepidopteran larvae secrete saliva on plant tissues during feeding. Components in the saliva may aid in food digestion, whereas other components are recognized by plants as cues to elicit defense responses. Despite the ecological and economical importance of these plant-feeding insects, knowledge of their saliva composition is limited to a few species. In this study, we identified the salivary proteins of larvae of the fall armyworm (FAW), Spodoptera frugiperda; determined qualitative and quantitative differences in the salivary proteome of the two host races-corn and rice strains-of this insect; and identified changes in total protein concentration and relative protein abundance in the saliva of FAW larvae associated with different host plants. Quantitative proteomic analyses were performed using labeling with isobaric tags for relative and absolute quantification followed by liquid chromatography-tandem mass spectrometry. In total, 98 proteins were identified (>99% confidence) in the FAW saliva. These proteins were further categorized into five functional groups: proteins potentially involved in (1) plant defense regulation, (2) herbivore offense, (3) insect immunity, (4) detoxification, (5) digestion, and (6) other functions. Moreover, there were differences in the salivary proteome between the FAW strains that were identified by label-free proteomic analyses. Thirteen differentially identified proteins were present in each strain. There were also differences in the relative abundance of eleven salivary proteins between the two FAW host strains as well as differences within each strain associated with different diets. The total salivary protein concentration was also different for the two strains reared on different host plants. Based on these results, we conclude that the FAW saliva contains a complex mixture of proteins involved in different functions that are specific for each strain and its composition can change plastically in response to diet type.
Collapse
Affiliation(s)
- Flor E Acevedo
- Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, PA 16802, USA.
| | - Bruce A Stanley
- Section of Research Resources, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Anne Stanley
- Section of Research Resources, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Michelle Peiffer
- Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, PA 16802, USA.
| | - Dawn S Luthe
- Department of Plant Science, Pennsylvania State University, 216 Agricultural Sciences and Industries Building, University Park, PA 16802, USA.
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, PA 16802, USA.
| |
Collapse
|
34
|
Xu F, Wang L, Ju X, Zhang J, Yin S, Shi J, He R, Yuan Q. Transepithelial Transport of YWDHNNPQIR and Its Metabolic Fate with Cytoprotection against Oxidative Stress in Human Intestinal Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2056-2065. [PMID: 28218523 DOI: 10.1021/acs.jafc.6b04731] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Studies on antioxidant peptides extracted from foodstuff sources have included not only experiments to elucidate their chemical characteristics but also to investigate their bioavailability and intracellular mechanisms. This study was designed to clarify the absorption and antioxidative activity of YWDHNNPQIR (named RAP), which is derived from rapeseed protein using a Caco-2 cell transwell model. Results showed that 0.8% RAP (C0 = 0.2 mM, t = 90 min) could maintain the original structure across the Caco-2 cell monolayers via the intracellular transcytosis pathway, and the apparent drug absorption rate (Papp) was (6.6 ± 1.24) × 10-7 cm/s. Three main fragments (WDHNNPQIR, DHNNPQIR, and YWDHNNPQ) and five modified peptides derived from RAP were found in both the apical and basolateral side of the Caco-2 cell transwell model. Among these new metabolites, WDHNNPQIR had the greatest antioxidative activity in Caco-2 cells apart from the DPPH assay. With a RAP concentration of 200 μM, there were significant differences in four antioxidative indicators (T-AOC, GSH-Px, SOD, and MDA) compared to the oxidative stress control (P < 0.05). In addition, RAP may also influence apoptosis of the Caco-2 cells, which was caused by AAPH-induced oxidative damage.
Collapse
Affiliation(s)
- Feiran Xu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics , Nanjing 210023, P.R. China
| | - Lifeng Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics , Nanjing 210023, P.R. China
| | - Xingrong Ju
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics , Nanjing 210023, P.R. China
| | - Jing Zhang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics , Nanjing 210023, P.R. China
| | - Shi Yin
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics , Nanjing 210023, P.R. China
| | - Jiayi Shi
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics , Nanjing 210023, P.R. China
| | - Rong He
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics , Nanjing 210023, P.R. China
| | - Qiang Yuan
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics , Nanjing 210023, P.R. China
| |
Collapse
|
35
|
Cunningham CB, Badgett MJ, Meagher RB, Orlando R, Moore AJ. Ethological principles predict the neuropeptides co-opted to influence parenting. Nat Commun 2017; 8:14225. [PMID: 28145404 PMCID: PMC5296637 DOI: 10.1038/ncomms14225] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/08/2016] [Indexed: 01/29/2023] Open
Abstract
Ethologists predicted that parental care evolves by modifying behavioural precursors in the asocial ancestor. As a corollary, we predict that the evolved mechanistic changes reside in genetic pathways underlying these traits. Here we test our hypothesis in female burying beetles, Nicrophorus vespilloides, an insect where caring adults regurgitate food to begging, dependent offspring. We quantify neuropeptide abundance in brains collected from three behavioural states: solitary virgins, individuals actively parenting or post-parenting solitary adults and quantify 133 peptides belonging to 18 neuropeptides. Eight neuropeptides differ in abundance in one or more states, with increased abundance during parenting in seven. None of these eight neuropeptides have been associated with parental care previously, but all have roles in predicted behavioural precursors for parenting. Our study supports the hypothesis that predictable traits and pathways are targets of selection during the evolution of parenting and suggests additional candidate neuropeptides to study in the context of parenting.
Collapse
Affiliation(s)
| | - Majors J. Badgett
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Richard B. Meagher
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Ron Orlando
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Allen J. Moore
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
36
|
Schoofs L, De Loof A, Van Hiel MB. Neuropeptides as Regulators of Behavior in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2017; 62:35-52. [PMID: 27813667 DOI: 10.1146/annurev-ento-031616-035500] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Neuropeptides are by far the largest and most diverse group of signaling molecules in multicellular organisms. They are ancient molecules important in regulating a multitude of processes. Their small proteinaceous character allowed them to evolve and radiate quickly into numerous different molecules. On average, hundreds of distinct neuropeptides are present in animals, sometimes with unique classes that do not occur in distantly related species. Acting as neurotransmitters, neuromodulators, hormones, or growth factors, they are extremely diverse and are involved in controlling growth, development, ecdysis, digestion, diuresis, and many more physiological processes. Neuropeptides are also crucial in regulating myriad behavioral actions associated with feeding, courtship, sleep, learning and memory, stress, addiction, and social interactions. In general, behavior ensures that an organism can survive in its environment and is defined as any action that can change an organism's relationship to its surroundings. Even though the mode of action of neuropeptides in insects has been vigorously studied, relatively little is known about most neuropeptides and only a few model insects have been investigated. Here, we provide an overview of the roles neuropeptides play in insect behavior. We conclude that multiple neuropeptides need to work in concert to coordinate certain behaviors. Additionally, most neuropeptides studied to date have more than a single function.
Collapse
Affiliation(s)
- Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium; , ,
| | - Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium; , ,
| | - Matthias Boris Van Hiel
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium; , ,
| |
Collapse
|
37
|
Ma C, Cao J, Li J, Zhou B, Tang J, Miao A. Phenotypic, histological and proteomic analyses reveal multiple differences associated with chloroplast development in yellow and variegated variants from Camellia sinensis. Sci Rep 2016; 6:33369. [PMID: 27633059 PMCID: PMC5025893 DOI: 10.1038/srep33369] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/26/2016] [Indexed: 11/20/2022] Open
Abstract
Leaf colour variation is observed in several plants. We obtained two types of branches with yellow and variegated leaves from Camellia sinensis. To reveal the mechanisms that underlie the leaf colour variations, combined morphological, histological, ionomic and proteomic analyses were performed using leaves from abnormal branches (variants) and normal branches (CKs). The measurement of the CIE-Lab coordinates showed that the brightness and yellowness of the variants were more intense than the CKs. When chloroplast profiles were analysed, HY1 (branch with yellow leaves) and HY2 (branch with variegated leaves) displayed abnormal chloroplast structures and a reduced number and size compared with the CKs, indicating that the abnormal chloroplast development might be tightly linked to the leaf colour variations. Moreover, the concentration of elemental minerals was different between the variants and the CKs. Furthermore, DEPs (differentially expressed proteins) were identified in the variants and the CKs by a quantitative proteomics analysis using the label-free approach. The DEPs were significantly involved in photosynthesis and included PSI, PSII, cytochrome b6/f complex, photosynthetic electron transport, LHC and F-type ATPase. Our results suggested that a decrease in the abundance of photosynthetic proteins might be associated with the changes of leaf colours in tea plants.
Collapse
Affiliation(s)
- Chengying Ma
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation &Utilization, Guangzhou 510640, China
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation &Utilization, Guangzhou 510640, China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Bo Zhou
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation &Utilization, Guangzhou 510640, China
| | - Jinchi Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation &Utilization, Guangzhou 510640, China
| | - Aiqing Miao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation &Utilization, Guangzhou 510640, China
| |
Collapse
|
38
|
Huo X, Wu B, Feng M, Han B, Fang Y, Hao Y, Meng L, Wubie AJ, Fan P, Hu H, Qi Y, Li J. Proteomic Analysis Reveals the Molecular Underpinnings of Mandibular Gland Development and Lipid Metabolism in Two Lines of Honeybees (Apis mellifera ligustica). J Proteome Res 2016; 15:3342-57. [DOI: 10.1021/acs.jproteome.6b00526] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xinmei Huo
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Bin Wu
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Mao Feng
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Bin Han
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Yu Fang
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Yue Hao
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Lifeng Meng
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Abebe Jenberie Wubie
- Department
of Animal production and Technology, College of Agriculture and Environmental
Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Pei Fan
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Han Hu
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Yuping Qi
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Jianke Li
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| |
Collapse
|
39
|
McAfee A, Harpur BA, Michaud S, Beavis RC, Kent CF, Zayed A, Foster LJ. Toward an Upgraded Honey Bee (Apis mellifera L.) Genome Annotation Using Proteogenomics. J Proteome Res 2016; 15:411-21. [DOI: 10.1021/acs.jproteome.5b00589] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Alison McAfee
- Department of Biochemistry & Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Brock A. Harpur
- Department
of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Sarah Michaud
- Department of Biochemistry & Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ronald C. Beavis
- Department
of Biochemistry and Medical Genetics, Faculty of Health Sciences, University of Manitoba, 336-745 Bannatyne Avenue, Winnipeg, Manitoba R3E
0J9, Canada
| | - Clement F. Kent
- Department
of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Amro Zayed
- Department
of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|