1
|
O'Connor LE, Hall KD, Herrick KA, Reedy J, Chung ST, Stagliano M, Courville AB, Sinha R, Freedman ND, Hong HG, Albert PS, Loftfield E. Metabolomic Profiling of an Ultraprocessed Dietary Pattern in a Domiciled Randomized Controlled Crossover Feeding Trial. J Nutr 2023; 153:2181-2192. [PMID: 37276937 PMCID: PMC10447619 DOI: 10.1016/j.tjnut.2023.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Objective markers of ultraprocessed foods (UPF) may improve the assessment of UPF intake and provide insight into how UPF influences health. OBJECTIVES To identify metabolites that differed between dietary patterns (DPs) high in or void of UPF according to Nova classification. METHODS In a randomized, crossover, controlled-feeding trial (clinicaltrials.govNCT03407053), 20 domiciled healthy participants (mean ± standard deviation: age 31 ± 7 y, body mass index [kg/m2] 22 ± 11.6) consumed ad libitum a UPF-DP (80% UPF) and an unprocessed DP (UN-DP; 0% UPF) for 2 wk each. Metabolites were measured using liquid chromatography with tandem mass spectrometry in ethylenediaminetetraacetic acid plasma, collected at week 2 and 24-h, and spot urine, collected at weeks 1 and 2, of each DP. Linear mixed models, adjusted for energy intake, were used to identify metabolites that differed between DPs. RESULTS After multiple comparisons correction, 257 out of 993 plasma and 606 out of 1279 24-h urine metabolites differed between UPF-DP and UN-DP. Overall, 21 known and 9 unknown metabolites differed between DPs across all time points and biospecimen types. Six metabolites were higher (4-hydroxy-L-glutamic acid, N-acetylaminooctanoic acid, 2-methoxyhydroquinone sulfate, 4-ethylphenylsulfate, 4-vinylphenol sulfate, and acesulfame) and 14 were lower following the UPF-DP; pimelic acid, was lower in plasma but higher in urine following the UPF-DP. CONCLUSIONS Consuming a DP high in, compared with 1 void of, UPF has a measurable impact on the short-term human metabolome. Observed differential metabolites could serve as candidate biomarkers of UPF intake or metabolic response in larger samples with varying UPF-DPs. This trial was registered at clinicaltrials.gov as NCT03407053 and NCT03878108.
Collapse
Affiliation(s)
- Lauren E O'Connor
- Food Components and Health Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA; Division of Cancer Control and Population Sciences, Risk Factor Assessment Branch, NCI, Bethesda, MD, USA
| | - Kevin D Hall
- Laboratory of Biological Modeling, NIDDK, Bethesda, MD, USA
| | - Kirsten A Herrick
- Division of Cancer Control and Population Sciences, Risk Factor Assessment Branch, NCI, Bethesda, MD, USA
| | - Jill Reedy
- Division of Cancer Control and Population Sciences, Risk Factor Assessment Branch, NCI, Bethesda, MD, USA
| | - Stephanie T Chung
- Diabetes, Endocrinology, and Obesity Branch, NIDDK, Bethesda, MD, USA
| | - Michael Stagliano
- Diabetes, Endocrinology, and Obesity Branch, NIDDK, Bethesda, MD, USA
| | - Amber B Courville
- Diabetes, Endocrinology, and Obesity Branch, NIDDK, Bethesda, MD, USA
| | - Rashmi Sinha
- Division of Cancer Epidemiology and Genetics, Metabolic Epidemiology Branch, NCI, Bethesda, MD, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, Metabolic Epidemiology Branch, NCI, Bethesda, MD, USA
| | - Hyokyoung G Hong
- Division of Cancer Epidemiology and Genetics, Biostatistics Branch, NCI, Bethesda, MD, USA
| | - Paul S Albert
- Division of Cancer Epidemiology and Genetics, Biostatistics Branch, NCI, Bethesda, MD, USA
| | - Erikka Loftfield
- Division of Cancer Epidemiology and Genetics, Metabolic Epidemiology Branch, NCI, Bethesda, MD, USA.
| |
Collapse
|
2
|
Nieman DC, Sakaguchi CA, Omar AM, Davis KL, Shaffner CE, Strauch RC, Lila MA, Zhang Q. Blueberry intake elevates post-exercise anti-inflammatory oxylipins: a randomized trial. Sci Rep 2023; 13:11976. [PMID: 37488250 PMCID: PMC10366094 DOI: 10.1038/s41598-023-39269-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/22/2023] [Indexed: 07/26/2023] Open
Abstract
This study determined if 18 days of supplementation with blueberries (BL) compared to placebo (PL) could mitigate muscle soreness and damage and improve inflammation resolution in untrained adults (n = 49, ages 18-50 years) after engaging in a 90-min bout of "weekend warrior" eccentric exercise. The BL freeze dried supplement provided 1 cup of fresh blueberries per day equivalent with 805 mg/day total phenolics and 280 mg/day anthocyanins. Urine levels of eight BL gut-derived phenolics increased after 14- and 18-days supplementation with 83% higher concentrations in BL vs. PL (p < 0.001). The 90-min exercise bout caused significant muscle soreness and damage during 4d of recovery and a decrease in exercise performance with no significant differences between PL and BL. Plasma oxylipins were identified (n = 76) and grouped by fatty acid substrates and enzyme systems. Linoleic acid (LA) oxylipins generated from cytochrome P450 (CYP) (9,10-, 12,13-dihydroxy-9Z-octadecenoic acids) (diHOMEs) were lower in BL vs. PL (treatment effect, p = 0.051). A compositive variable of 9 plasma hydroxydocosahexaenoic acids (HDoHEs) generated from docosahexaenoic acid (DHA, 22:6) and lipoxygenase (LOX) was significantly higher in BL vs. PL (treatment effect, p = 0.008). The composite variable of plasma 14-HDoHE, 17-HDoHE, and the eicosapentaenoic acid (EPA)-derived oxylipin 18-hydroxyeicosapentaenoic acid (18-HEPE) (specialized pro-resolving lipid mediators, SPM, intermediates) was significantly higher in BL vs PL (treatment effect, p = 0.014). Pearson correlations showed positive relationships between post-exercise DHA-LOX HDoHEs and SPM intermediates with urine blueberry gut-derived phenolics (r = 0.324, p = 0.023, and r = 0.349, p = 0.015, respectively). These data indicate that 18d intake of 1 cup/day blueberries compared to PL was linked to a reduction in pro-inflammatory diHOMES and sustained elevations in DHA- and EPA-derived anti-inflammatory oxylipins in response to a 90-min bout of unaccustomed exercise by untrained adults.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Biology Department, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, USA.
| | - Camila A Sakaguchi
- Human Performance Laboratory, Biology Department, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Ashraf M Omar
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Kierstin L Davis
- Human Performance Laboratory, Biology Department, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Cameron E Shaffner
- Human Performance Laboratory, Biology Department, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Renee C Strauch
- Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Mary Ann Lila
- Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Qibin Zhang
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| |
Collapse
|
3
|
Giampaoli O, Ieno C, Sciubba F, Spagnoli M, Miccheli A, Tomassini A, Aureli W, Fattorini L. Metabolic Biomarkers of Red Beetroot Juice Intake at Rest and after Physical Exercise. Nutrients 2023; 15:2026. [PMID: 37432172 DOI: 10.3390/nu15092026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Red beetroot is known to be a health-promoting food. However, little attention is placed on intestinal bioactive compound absorption. The aim of the study was to assess the urinary red beetroot juice (RBJ) intake biomarkers and possible differences in RBJ's micronutrient absorption at rest or after physical exercise. METHODS This is a three-armed, single-blind study, involving seven healthy volunteers which were randomly divided into three groups and alternatively assigned to three experimental sessions: RBJ intake at rest, RBJ intake with physical activity, and placebo intake with physical activity. For each session, urine samples were collected before and 120, 180, and 240 min after the intake of RBJ or placebo. The same sampling times were employed for the experimental session at rest. The RBJ metabolic composition was also characterized to identify the urinary biomarkers derived from the intake. RESULTS 4-methylpyridine-2-carboxylic acid, dopamine-3-O-sulfate, glutamine, and 3-hydroxyisobutyrate were identified as RBJ intake biomarkers. Physical activity significantly increased only the dopamine-3-O-sulfate excretion 120 min after RBJ intake. CONCLUSIONS Urinary dopamine-3-O-sulfate is related to RBJ dopamine content, while 4-methylpyridine-2-carboxylic acid is a betanin or betalamic acid catabolite. The different excretions of these metabolites following physical activity suggest a possible effect on the RBJ uptake depending on different transport processes through the mucosa, namely diffusion-mediated transport for dopamine and saturable transcellular transport for betalamic acid derivatives. These results open new perspectives in improving the absorption of natural bioactive molecules through physical activity.
Collapse
Affiliation(s)
- Ottavia Giampaoli
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185 Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Cristian Ieno
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Fabio Sciubba
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185 Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Mariangela Spagnoli
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185 Rome, Italy
- Department of Occupational Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00078 Rome, Italy
| | - Alfredo Miccheli
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185 Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Alberta Tomassini
- R&D Aureli Mario S. S. Agricola, Via Mario Aureli 7, 67050 Ortucchio, Italy
| | - Walter Aureli
- R&D Aureli Mario S. S. Agricola, Via Mario Aureli 7, 67050 Ortucchio, Italy
| | - Luigi Fattorini
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
4
|
Carbohydrates and Endurance Exercise: A Narrative Review of a Food First Approach. Nutrients 2023; 15:nu15061367. [PMID: 36986096 PMCID: PMC10054587 DOI: 10.3390/nu15061367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Carbohydrate (CHO) supplements such as bars, gels, drinks and powders have become ubiquitous as effective evidence-based CHO sources that improve endurance exercise performance. However, athletes are increasingly turning to more cost-effective ‘food-first’ approaches for CHO ingestion to improve exercise performance. Mixed CHO foods including cooked lentils, oats, honey, raisins, rice, and potatoes are all effective pre-exercise CHO food sources. Caution is advised when selecting some of these foods as a primary CHO source, as some athletes may be prone to gastrointestinal discomfort—especially regarding those foods where the quantities required for recommended CHO intake may be voluminous (e.g., potatoes). Palatability may be another barrier to the ingestion of some of these CHO-rich foods. Although most of these CHO-rich foods appear effective for exercise performance or recovery when consumed pre- and post-exercise, not all are viable to ingest during exercise due to difficulties in the quantities required, transport, and/or gastrointestinal discomfort. Raisins, bananas and honey may be particularly useful CHO foods for consumption during exercise, as they are easily transportable. Athletes should trial CHO food sources before, during and/or following training before implementation during competition.
Collapse
|
5
|
Single and Joined Behaviour of Circulating Biomarkers and Metabolic Parameters in High-Fit and Low-Fit Healthy Females. Int J Mol Sci 2023; 24:ijms24044202. [PMID: 36835625 PMCID: PMC9960642 DOI: 10.3390/ijms24044202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/13/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Biomarkers are important in the assessment of health and disease, but are poorly studied in still healthy individuals with a (potential) different risk for metabolic disease. This study investigated, first, how single biomarkers and metabolic parameters, functional biomarker and metabolic parameter categories, and total biomarker and metabolic parameter profiles behave in young healthy female adults of different aerobic fitness and, second, how these biomarkers and metabolic parameters are affected by recent exercise in these healthy individuals. A total of 102 biomarkers and metabolic parameters were analysed in serum or plasma samples from 30 young, healthy, female adults divided into a high-fit (V̇O2peak ≥ 47 mL/kg/min, N = 15) and a low-fit (V̇O2peak ≤ 37 mL/kg/min, N = 15) group, at baseline and overnight after a single bout of exercise (60 min, 70% V̇O2peak). Our results show that total biomarker and metabolic parameter profiles were similar between high-fit and low-fit females. Recent exercise significantly affected several single biomarkers and metabolic parameters, mostly related to inflammation and lipid metabolism. Furthermore, functional biomarker and metabolic parameter categories corresponded to biomarker and metabolic parameter clusters generated via hierarchical clustering models. In conclusion, this study provides insight into the single and joined behavior of circulating biomarkers and metabolic parameters in healthy females, and identified functional biomarker and metabolic parameter categories that may be used for the characterisation of human health physiology.
Collapse
|
6
|
Huang B, Cui J, Ran Y, Chen C, Li F, Zhang Y, Li Z, Xie E. Mechanism of macroalgae Gracilaria bailiniae responding to cadmium and lanthanum. FRONTIERS IN PLANT SCIENCE 2022; 13:1076526. [PMID: 36531398 PMCID: PMC9756850 DOI: 10.3389/fpls.2022.1076526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Macroalgae can accumulate a wide array of metals, leading to their appliance as biomonitors of aquatic environments. With the rapid development of industrial and agricultural-based activities, Cd pollution in aquatic environments is considered an increasingly severe problem worldwide. Although La could alleviate the Cd stress in higher terrestrial plants, the response mechanisms of macroalgae to Cd and La are unknown. Along these lines, in this work, Cd significantly affected the growth, internal cellular structure, photosynthesis, pigment content, antioxidant enzyme activity, and lipid peroxidation level of G. bailiniae. However, the presence of La alleviated these adverse effects from Cd. Furthermore, the response mechanism of G. bailiniae to Cd was attributed to the self-antioxidant ability enhancement, membrane defense, and programmed-cellular regulation. However, the presence of La mediated the biosynthesis of both flavonoids and lipids, which inhibited the Cd accumulation, modulated algal stress signalling networks, renewed the impaired chlorophyll molecule, maintained the activity of the crucial enzyme, enhanced antioxidant ability, and maintained the stabilization of redox homeostasis, alleviating the adverse impact from Cd and improve the growth of G. bailiniae. The experimental results successfully demonstrate a new detoxicant to alleviate Cd stress, promoting a more comprehensive array of macroalgal applications.
Collapse
Affiliation(s)
- Bowen Huang
- Fishery College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Laboratory of Marine Ecology Environment Monitoring and Warning, Zhanjiang, China
| | - Jianjun Cui
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Yu Ran
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Chunli Chen
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Feng Li
- Fishery College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Laboratory of Marine Ecology Environment Monitoring and Warning, Zhanjiang, China
| | - Yulei Zhang
- Fishery College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Laboratory of Marine Ecology Environment Monitoring and Warning, Zhanjiang, China
| | - Zailiang Li
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Enyi Xie
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
7
|
Zhou N, Fan Y, Wang X, Wang J, Wu H. Acute enteric-coated sodium bicarbonate has negligible effect on anaerobic performance but affects metabolomics and attenuates the gastrointestinal response. Front Physiol 2022; 13:996381. [PMID: 36311224 PMCID: PMC9606751 DOI: 10.3389/fphys.2022.996381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Sodium bicarbonate ingestion before exercise has a performance-enhancing effect on high-intensity exercise. However, gastrointestinal symptoms can be a problematic side-effect. Enteric-coated sodium bicarbonate can attenuate gastrointestinal symptoms following acute bicarbonate loading. In addition, the subsequent effects on exercise performance and metabolomics have not been investigated. The purpose of this study was to investigate the acute effect of enteric-coated sodium bicarbonate supplementation on the anaerobic performance, physiological profile, and symptoms of gastrointestinal discomfort after severe-intensity intermittent exercise. At the same time, targeted metabolomics was used to study the changes in urine metabolism after ingestion of enteric-coated sodium bicarbonate and to explore the characteristics of biological metabolism. In a randomized crossover design, twelve male college students completed four Wingate anaerobic 30-s cycling tests (WACT) after consuming a placebo (PL) and two experimental conditions: 0.2 g/kg body mass in enteric-coated sodium bicarbonate pills (ES) or general sodium bicarbonate pills (GS). Blood lactate (BLA), heart rate (HR), ratings of perceived exertion (RPE), and gastrointestinal–symptoms assessment questionnaire (GSAQ) were measured pre-exercise and post-exercise. In contrast, mean power (MP) and peak power (PP) were recorded immediately post-exercise. Urine samples were collected before formal tests and 50 min after the third WACT. Our findings indicate the following: 1) mean power and peak power showed no significant difference among conditions (MP: F2.0, 33 = 0.541, p = 0.587, η2 = 0.032; PP: F2.0, 33 = 0.526, p = 0.596, η2 = 0.031). The PP decline of the ES and GS after the third WACT was lower than that of the PL; 2) There were no significant differences in physiological responses, such as BLA (F2.0, 33.0 = 0.191, p = 0.827, η2 = 0.011) and heart rate (F2, 33 = 0.418, p = 0.662, η2 = 0.025), between the three conditions. Although blood lactate concentration after 10 min of the third WACT was lower with ES and GS than with placebo; 3) Fewer participants experienced gastrointestinal symptoms with enteric-coated than with general sodium bicarbonate; 4) The metabolites with differences among the three conditions 50 min after exercise were 3-phospho-d-glycerate, d-Glucose 6-phosphate, pyruvate, cis-aconitate, oxaloacetate, and citrate. ES had higher levels of 3-phospho-d-glycerate, d-Glucose 6-phosphate, pyruvate, and cis-aconitate than GS. The 3-phospho-d-glycerate, d-Glucose 6-phosphate, pyruvate, and cis-aconitate levels in GS were significantly lower than in PL. In contrast, the citrate level in GS was significantly higher than that in other experimental conditions. Compared to PL, the level of oxaloacetate was higher after exercise in ES. This data suggests that supplementation of enteric-coated and general sodium bicarbonate before exercise can alter energy metabolism following anaerobic exercise, involving the metabolism of 3-phospho-d-glycerate, D-Glucose 6-phosphate, pyruvate, cis-aconitate, oxaloacetate, citrate, and lactate. However, they do not affect anaerobic performance and blood lactate. The supplementation of acute enteric-coated sodium bicarbonate and general sodium bicarbonate can enhance some of the weak effects of blood lactate clearance during anaerobic exercise, which may be beneficial for glycolytic energy supply. In addition, enteric-coated sodium bicarbonate intake mitigates gastrointestinal symptoms compared to general sodium bicarbonate.
Collapse
Affiliation(s)
- Nihong Zhou
- Graduate School, Capital University of Physical Education and Sports, Beijing, China
| | - Yongzhao Fan
- Graduate School, Capital University of Physical Education and Sports, Beijing, China
| | - Xiangyu Wang
- Graduate School, Capital University of Physical Education and Sports, Beijing, China
| | - Junde Wang
- Qingdao Shengbang Health Food Co., Qingdao, China
| | - Hao Wu
- School of Kinesiology and Health, Capital University of Physical Education and Sports, Comprehensive Key Laboratory of Sports Ability Evaluation and Research of the General Administration of Sport of China, Beijing Key Laboratory of Sports Function Assessment and Technical Analysis, Beijing, China
- *Correspondence: Hao Wu,
| |
Collapse
|
8
|
Gonçalves AC, Gaspar D, Flores-Félix JD, Falcão A, Alves G, Silva LR. Effects of Functional Phenolics Dietary Supplementation on Athletes' Performance and Recovery: A Review. Int J Mol Sci 2022; 23:4652. [PMID: 35563043 PMCID: PMC9102074 DOI: 10.3390/ijms23094652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, many efforts have been made to identify micronutrients or nutritional strategies capable of preventing, or at least, attenuating, exercise-induced muscle damage and oxidative stress, and improving athlete performance. The reason is that most exercises induce various changes in mitochondria and cellular cytosol that lead to the generation of reactive species and free radicals whose accumulation can be harmful to human health. Among them, supplementation with phenolic compounds seems to be a promising approach since their chemical structure, composed of catechol, pyrogallol, and methoxy groups, gives them remarkable health-promoting properties, such as the ability to suppress inflammatory processes, counteract oxidative damage, boost the immune system, and thus, reduce muscle soreness and accelerate recovery. Phenolic compounds have also already been shown to be effective in improving temporal performance and reducing psychological stress and fatigue. Therefore, the aim of this review is to summarize and discuss the current knowledge on the effects of dietary phenolics on physical performance and recovery in athletes and sports practitioners. Overall, the reports show that phenolics exert important benefits on exercise-induced muscle damage as well as play a biological/physiological role in improving physical performance.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Dário Gaspar
- Department of Sport Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal;
| | - José David Flores-Félix
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CPIRN-UDI/IPG—Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
9
|
Stander Z, Luies L, van Reenen M, Howatson G, Keane KM, Clifford T, Stevenson EJ, Loots DT. Beetroot juice - a suitable post-marathon metabolic recovery supplement? J Int Soc Sports Nutr 2021; 18:72. [PMID: 34861868 PMCID: PMC8642879 DOI: 10.1186/s12970-021-00468-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/28/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Red beetroot (Beta vulgaris L.) is a multifunctional functional food that reportedly exhibits potent anti-inflammatory, antioxidant, vasodilation, and cellular regulatory properties. This vegetable has gained a fair amount of scientific attention as a possible cost-effective supplement to enhance performance and expedite recovery after physical exercise. To date, no study has investigated the effects of incremental beetroot juice ingestion on the metabolic recovery of athletes after an endurance race. Considering this, as well as the beneficial glucose and insulin regulatory roles of beetroot, this study investigated the effects of beetroot juice supplementation on the metabolic recovery trend of athletes within 48 h after completing a marathon. METHODS By employing an untargeted two-dimensional gas chromatography time-of-flight mass spectrometry approach, serum samples (collected pre-, post-, 24 h post-, and 48 h post-marathon) of 31 marathon athletes that ingested a series (n = 7; 250 ml) of either beetroot juice (n = 15 athletes) or isocaloric placebo (n = 16 athletes) supplements within 48 h post-marathon, were analysed and statistically compared. RESULTS The metabolic profiles of the beetroot-ingesting cohort recovered to a pre-marathon-related state within 48 h post-marathon, mimicking the metabolic recovery trend observed in the placebo cohort. Since random inter-individual variation was observed immediately post-marathon, only metabolites with large practical significance (p-value ≤0.05 and d-value ≥0.5) within 24 h and 48 h post-marathon were considered representative of the effects of beetroot juice on metabolic recovery. These (n = 4) mainly included carbohydrates (arabitol and xylose) and odd-chain fatty acids (nonanoate and undecanoate). The majority of these were attributed to beetroot content and possible microbial fermentation thereof. CONCLUSION Apart from the global metabolic recovery trends of the two opposing cohorts, it appears that beetroot ingestion did not expedite metabolic recovery in athletes within 48 h post-marathon.
Collapse
Affiliation(s)
- Zinandré Stander
- Human Metabolomics, North-West University, Potchefstroom, 2531 South Africa
- North-West University, Potchefstroom Campus, Private Bag X6001, Box 269, Potchefstroom, 2520 South Africa
| | - Laneke Luies
- Human Metabolomics, North-West University, Potchefstroom, 2531 South Africa
| | - Mari van Reenen
- Human Metabolomics, North-West University, Potchefstroom, 2531 South Africa
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, NE1 8ST UK
- Water Research Group, School of Environmental Sciences and Development, North-West University, Potchefstroom, 2531 South Africa
| | - Karen M. Keane
- School of Science and computing, Department of Sport Exercise and Nutrition, Galway Mayo Institute of Technology, Galway, Republic of Ireland
| | - Tom Clifford
- Human Nutrition Research Centre, Faculty of Medicine, Newcastle University, Newcastle upon Tyne, England
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Emma J. Stevenson
- School of Science and computing, Department of Sport Exercise and Nutrition, Galway Mayo Institute of Technology, Galway, Republic of Ireland
| | - Du Toit Loots
- Human Metabolomics, North-West University, Potchefstroom, 2531 South Africa
| |
Collapse
|
10
|
Margolis LM, Karl JP, Wilson MA, Coleman JL, Whitney CC, Pasiakos SM. Serum Branched-Chain Amino Acid Metabolites Increase in Males When Aerobic Exercise Is Initiated with Low Muscle Glycogen. Metabolites 2021; 11:metabo11120828. [PMID: 34940586 PMCID: PMC8708125 DOI: 10.3390/metabo11120828] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 12/03/2022] Open
Abstract
This study used global metabolomics to identify metabolic factors that might contribute to muscle anabolic resistance, which develops when aerobic exercise is initiated with low muscle glycogen using global metabolomics. Eleven men completed this randomized, crossover study, completing two cycle ergometry glycogen depletion trials, followed by 24 h of isocaloric refeeding to elicit low (LOW; 1.5 g/kg carbohydrate, 3.0 g/kg fat) or adequate (AD; 6.0 g/kg carbohydrate 1.0 g/kg fat) glycogen. Participants then performed 80 min of cycling (64 ± 3% VO2 peak) while ingesting 146 g carbohydrate. Serum was collected before glycogen depletion under resting and fasted conditions (BASELINE), and before (PRE) and after (POST) exercise. Changes in metabolite profiles were calculated by subtracting BASELINE from PRE and POST within LOW and AD. There were greater increases (p < 0.05, Q < 0.10) in 64% of branched-chain amino acids (BCAA) metabolites and 69% of acyl-carnitine metabolites in LOW compared to AD. Urea and 3-methylhistidine had greater increases (p < 0.05, Q < 0.10) in LOW compared to AD. Changes in metabolomics profiles indicate a greater reliance on BCAA catabolism for substrate oxidation when exercise is initiated with low glycogen stores. These findings provide a mechanistic explanation for anabolic resistance associated with low muscle glycogen, and suggest that exogenous BCAA requirements to optimize muscle recovery are likely greater than current recommendations.
Collapse
Affiliation(s)
- Lee M. Margolis
- U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA; (J.P.K.); (M.A.W.); (J.L.C.); (C.C.W.); (S.M.P.)
- Correspondence: ; Tel.: +508-206-2335
| | - J Philip Karl
- U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA; (J.P.K.); (M.A.W.); (J.L.C.); (C.C.W.); (S.M.P.)
| | - Marques A. Wilson
- U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA; (J.P.K.); (M.A.W.); (J.L.C.); (C.C.W.); (S.M.P.)
| | - Julie L. Coleman
- U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA; (J.P.K.); (M.A.W.); (J.L.C.); (C.C.W.); (S.M.P.)
- Oak Ridge Institute of Science and Education, Oak Ridge, TN 37830, USA
| | - Claire C. Whitney
- U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA; (J.P.K.); (M.A.W.); (J.L.C.); (C.C.W.); (S.M.P.)
| | - Stefan M. Pasiakos
- U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA; (J.P.K.); (M.A.W.); (J.L.C.); (C.C.W.); (S.M.P.)
| |
Collapse
|
11
|
Khoramipour K, Sandbakk Ø, Keshteli AH, Gaeini AA, Wishart DS, Chamari K. Metabolomics in Exercise and Sports: A Systematic Review. Sports Med 2021; 52:547-583. [PMID: 34716906 DOI: 10.1007/s40279-021-01582-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Metabolomics is a field of omics science that involves the comprehensive measurement of small metabolites in biological samples. It is increasingly being used to study exercise physiology and exercise-associated metabolism. However, the field of exercise metabolomics has not been extensively reviewed or assessed. OBJECTIVE This review on exercise metabolomics has three aims: (1) to provide an introduction to the general workflow and the different metabolomics technologies used to conduct exercise metabolomics studies; (2) to provide a systematic overview of published exercise metabolomics studies and their findings; and (3) to discuss future perspectives in the field of exercise metabolomics. METHODS We searched electronic databases including Google Scholar, Science Direct, PubMed, Scopus, Web of Science, and the SpringerLink academic journal database between January 1st 2000 and September 30th 2020. RESULTS Based on our detailed analysis of the field, exercise metabolomics studies fall into five major categories: (1) exercise nutrition metabolism; (2) exercise metabolism; (3) sport metabolism; (4) clinical exercise metabolism; and (5) metabolome comparisons. Exercise metabolism is the most popular category. The most common biological samples used in exercise metabolomics studies are blood and urine. Only a small minority of exercise metabolomics studies employ targeted or quantitative techniques, while most studies used untargeted metabolomics techniques. In addition, mass spectrometry was the most commonly used platform in exercise metabolomics studies, identified in approximately 54% of all published studies. Our data indicate that biomarkers or biomarker panels were identified in 34% of published exercise metabolomics studies. CONCLUSION Overall, there is an increasing trend towards better designed, more clinical, mass spectrometry-based metabolomics studies involving larger numbers of participants/patients and larger numbers of metabolites being identified.
Collapse
Affiliation(s)
- Kayvan Khoramipour
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran. .,Department of Physiology and Pharmacology, Medical Faculty, Kerman University of Medical Sciences, Blvd. 22 Bahman, Kerman, Iran.
| | - Øyvind Sandbakk
- Department of Neuromedicine and Movement Science, Centre for Elite Sports Research, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Abbas Ali Gaeini
- Department of Exercise Physiology, University of Tehran, Tehran, Iran
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.,Department of Computing Science, University of Alberta, AB, T6G 2E9, Edmonton, Canada
| | - Karim Chamari
- ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
12
|
Folz JS, Shalon D, Fiehn O. Metabolomics analysis of time-series human small intestine lumen samples collected in vivo. Food Funct 2021; 12:9405-9415. [PMID: 34606553 DOI: 10.1039/d1fo01574e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human small intestine remains an elusive organ to study due to the difficulty of retrieving samples in a non-invasive manner. Stool samples as a surrogate do not reflect events in the upper gut intestinal tract. As proof of concept, this study investigates time-series samples collected from the upper gastrointestinal tract of a single healthy subject. Samples were retrieved using a small diameter tube that collected samples in the stomach and duodenum as the tube progressed to the jejunum, and then remained positioned in the jejunum during the final 8.5 hours of the testing period. Lipidomics and metabolomics liquid chromatography tandem mass spectrometry (LC-MS/MS) assays were employed to annotate 828 unique metabolites using accurate mass with retention time and/or tandem MS library matches. Annotated metabolites were clustered based on correlation to reveal sets of biologically related metabolites. Typical clusters included bile metabolites, food metabolites, protein breakdown products, and endogenous lipids. Acylcarnitines and phospholipids were clustered with known human bile components supporting their presence in human bile, in addition to novel human bile compounds 4-hydroxyhippuric acid, N-acetylglucosaminoasparagine and 3-methoxy-4-hydroxyphenylglycol sulfate. Food metabolites were observed passing through the small intestine after meals. Acetaminophen and its human phase II metabolism products appeared for hours after the initial drug treatment, due to excretion back into the gastrointestinal tract after initial absorption. This exploratory study revealed novel trends in timing and chemical composition of the human jejunum under standard living conditions.
Collapse
Affiliation(s)
- Jacob S Folz
- West Coast Metabolomics Center and Department of Food Science and Technology, University of California Davis, Davis, CA, USA.
| | | | - Oliver Fiehn
- West Coast Metabolomics Center and Department of Food Science and Technology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
13
|
Hong SY, Lansky E, Kang SS, Yang M. A review of pears (Pyrus spp.), ancient functional food for modern times. BMC Complement Med Ther 2021; 21:219. [PMID: 34470625 PMCID: PMC8409479 DOI: 10.1186/s12906-021-03392-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pears have been world-widely used as a sweet and nutritious food and a folk medicine for more than two millennia. METHODS We conducted a review from ancient literatures to current reports to extract evidence-based functions of pears. RESULTS We found that pears have many active compounds, e.g., flavonoids, triterpenoids, and phenolic acids including arbutin, chlorogenic acid, malaxinic acid, etc. Most of researchers agree that the beneficial compounds are concentrated in the peels. From various in vitro, in vivo, and human studies, the medicinal functions of pears can be summarized as anti-diabetic,-obese, -hyperlipidemic, -inflammatory, -mutagenic, and -carcinogenic effects, detoxification of xenobiotics, respiratory and cardio-protective effects, and skin whitening effects. Therefore, pears seem to be even effective for prevention from Covid-19 or PM2.5 among high susceptible people with multiple underlying diseases. CONCLUSION For the current or post Covid-19 era, pears have potential for functional food or medicine for both of communicable and non-communicable disease.
Collapse
Affiliation(s)
- Sung-Yong Hong
- College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | | | - Sam-Sog Kang
- Pear Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Naju, South Korea
| | - Mihi Yang
- College of Pharmacy, Sookmyung Women's University, Seoul, South Korea.
| |
Collapse
|
14
|
Phenol Biological Metabolites as Food Intake Biomarkers, a Pending Signature for a Complete Understanding of the Beneficial Effects of the Mediterranean Diet. Nutrients 2021; 13:nu13093051. [PMID: 34578929 PMCID: PMC8471182 DOI: 10.3390/nu13093051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 01/14/2023] Open
Abstract
The Mediterranean diet (MD) has become a dietary pattern of reference due to its preventive effects against chronic diseases, especially relevant in cardiovascular diseases (CVD). Establishing an objective tool to determine the degree of adherence to the MD is a pending task and deserves consideration. The central axis that distinguishes the MD from other dietary patterns is the choice and modality of food consumption. Identification of intake biomarkers of commonly consumed foods is a key strategy for estimating the degree of adherence to the MD and understanding the protective mechanisms that lead to a positive impact on health. Throughout this review we propose potential candidates to be validated as MD adherence biomarkers, with particular focus on the metabolites derived from the phenolic compounds that are associated with the consumption of typical Mediterranean plant foods. Certain phenolic metabolites are good indicators of the intake of specific foods, but others denote the intake of a wide-range of foods. For this, it is important to emphasise the need to increase the number of dietary interventions with specific foods in order to validate the biomarkers of MD adherence. Moreover, the identification and quantification of food phenolic intake biomarkers encouraging scientific research focuses on the study of the biological mechanisms in which polyphenols are involved.
Collapse
|
15
|
The perceived benefit of intraoperative stress modifiers for surgeons: an experimental simulation study in volunteers. Patient Saf Surg 2021; 15:23. [PMID: 34051829 PMCID: PMC8164765 DOI: 10.1186/s13037-021-00294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022] Open
Abstract
Background During surgery, surgeons often work under stressful conditions, which could affect patient safety. Reducing intraoperative stress for surgeons could benefit surgeons and subsequently patients. It is difficult to study stress and stress relief in real life situations due to the multitude of confounding factors. The aim of this study was to evaluate simulated intraoperative stressors on surgeons’ stress levels and the effect of an intervention (pause including a sugar-containing drink) during standardized experiments (simulated operations). Methods An experimental interventional study was conducted using a simulator. The healthy surgeon volunteers were randomized to intervention and control in a cross-over design. Primary endpoint was salivary cortisol difference between a pause including a sugar containing drink (intervention) and controls. Secondary endpoints were change in heart rate, change in self-perceived stress measured by the State Trait Anxiety Inventory (STAI), and experience of the intraoperative pause. Endpoints were calculated with a mixed effect analysis of covariance (ANCOVA) model. Results Seventeen surgeons performed 32 experiments. There was no statistically significant difference in salivary cortisol between simulations with and without a pause including a sugar-containing drink; percent reduction, 8% (0.92 (95%CI:0.72;1.18)), p-value = 0.469. The surgeons’ self-estimation of intervention was positive, but there was no statistically significant difference in heart rate or STAI. Conclusions The surgeons’ experience of a pause including a drink was positive but there were no differences in physiological outcomes of the intervention. Lessons learned from this study could contribute to optimizing design of future studies. Trial registration Clinicaltrials.gov NCT04626648, Registered November 6, 2020, retrospectively registered.
Collapse
|
16
|
Metabolic Alterations Associated with γ-Hydroxybutyric Acid and the Potential of Metabolites as Biomarkers of Its Exposure. Metabolites 2021; 11:metabo11020101. [PMID: 33578991 PMCID: PMC7916753 DOI: 10.3390/metabo11020101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022] Open
Abstract
γ-Hydroxybutyric acid (GHB) is an endogenous short chain fatty acid that acts as a neurotransmitter and neuromodulator in the mammalian brain. It has often been illegally abused or misused due to its strong anesthetic effect, particularly in drug-facilitated crimes worldwide. However, proving its ingestion is not straightforward because of the difficulty in distinguishing between endogenous and exogenous GHB, as well as its rapid metabolism. Metabolomics and metabolism studies have recently been used to identify potential biomarkers of GHB exposure. This mini-review provides an overview of GHB-associated metabolic alterations and explores the potential of metabolites for application as biomarkers of GHB exposure. For this, we discuss the biosynthesis and metabolism of GHB, analytical issues of GHB in biological samples, alterations in metabolic pathways, and changes in the levels of GHB conjugates in biological samples from animal and human studies. Metabolic alterations in organic acids, amino acids, and polyamines in urine enable discrimination between GHB-ingested animals or humans and controls. The potential of GHB conjugates has been investigated in a variety of clinical settings. Despite the recent growth in the application of metabolomics and metabolism studies associated with GHB exposure, it remains challenging to distinguish between endogenous and exogenous GHB. This review highlights the significance of further metabolomics and metabolism studies for the discovery of practical peripheral biomarkers of GHB exposure.
Collapse
|
17
|
Acute Cycling Exercise Induces Changes in Red Blood Cell Deformability and Membrane Lipid Remodeling. Int J Mol Sci 2021; 22:ijms22020896. [PMID: 33477427 PMCID: PMC7831009 DOI: 10.3390/ijms22020896] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/31/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Here we describe the effects of a controlled, 30 min, high-intensity cycling test on blood rheology and the metabolic profiles of red blood cells (RBCs) and plasma from well-trained males. RBCs demonstrated decreased deformability and trended toward increased generation of microparticles after the test. Meanwhile, metabolomics and lipidomics highlighted oxidative stress and activation of membrane lipid remodeling mechanisms in order to cope with altered properties of circulation resulting from physical exertion during the cycling test. Of note, intermediates from coenzyme A (CoA) synthesis for conjugation to fatty acyl chains, in parallel with reversible conversion of carnitine and acylcarnitines, emerged as metabolites that significantly correlate with RBC deformability and the generation of microparticles during exercise. Taken together, we propose that RBC membrane remodeling and repair plays an active role in the physiologic response to exercise by altering RBC properties.
Collapse
|
18
|
Elejalde E, Villarán MC, Alonso RM. Grape polyphenols supplementation for exercise-induced oxidative stress. J Int Soc Sports Nutr 2021; 18:3. [PMID: 33413451 PMCID: PMC7789302 DOI: 10.1186/s12970-020-00395-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023] Open
Abstract
Exercise induces free radicals’ overproduction and therefore, an enhancement of oxidative stress, defined as an imbalance between the production of reactive species and the intrinsic antioxidant defense. Redox activity of reactive species plays an important and a positive role on exercise adaptation, but these species at very high concentrations have detrimental effects. As a result, the use of antioxidant supplements for reducing oxidative stress can be an effective health strategy to maintain an optimal antioxidant status. In this sense, grapes are an important source of natural antioxidants due to their high content in polyphenols. They have shown antioxidant potential benefits for the reduction of intense exercise effect in athletes of different sport disciplines. Consequently, it is plausible to hypothesize that a strategic supplementation with grape based products may be a good approach to mitigate the exercise induced oxidative stress. The goal of this review is to present the state of the art of supplementation effects with grape beverages and grape extracts on the oxidative stress markers in athletes. The data of polyphenolic dosages, participant characteristics and exercise protocols are reported.
Collapse
Affiliation(s)
- Edurne Elejalde
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava c/ Leonardo Da Vinci, 11, 01510 Miñano (Álava), Spain.
| | - Mari Carmen Villarán
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava c/ Leonardo Da Vinci, 11, 01510 Miñano (Álava), Spain
| | - Rosa María Alonso
- Analytical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| |
Collapse
|
19
|
Penney N, Barton W, Posma JM, Darzi A, Frost G, Cotter PD, Holmes E, Shanahan F, O'Sullivan O, Garcia-Perez I. Investigating the Role of Diet and Exercise in Gut Microbe-Host Cometabolism. mSystems 2020; 5:e00677-20. [PMID: 33262239 PMCID: PMC7716389 DOI: 10.1128/msystems.00677-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022] Open
Abstract
We investigated the individual and combined effects of diet and physical exercise on metabolism and the gut microbiome to establish how these lifestyle factors influence host-microbiome cometabolism. Urinary and fecal samples were collected from athletes and less active controls. Individuals were further classified according to an objective dietary assessment score of adherence to healthy dietary habits according to WHO guidelines, calculated from their proton nuclear magnetic resonance (1H-NMR) urinary profiles. Subsequent models were generated comparing extremes of dietary habits, exercise, and the combined effect of both. Differences in metabolic phenotypes and gut microbiome profiles between the two groups were assessed. Each of the models pertaining to diet healthiness, physical exercise, or a combination of both displayed a metabolic and functional microbial signature, with a significant proportion of the metabolites identified as discriminating between the various pairwise comparisons resulting from gut microbe-host cometabolism. Microbial diversity was associated with a combination of high adherence to healthy dietary habits and exercise and was correlated with a distinct array of microbially derived metabolites, including markers of proteolytic activity. Improved control of dietary confounders, through the use of an objective dietary assessment score, has uncovered further insights into the complex, multifactorial relationship between diet, exercise, the gut microbiome, and metabolism. Furthermore, the observation of higher proteolytic activity associated with higher microbial diversity indicates that increased microbial diversity may confer deleterious as well as beneficial effects on the host.IMPORTANCE Improved control of dietary confounders, through the use of an objective dietary assessment score, has uncovered further insights into the complex, multifactorial relationship between diet, exercise, the gut microbiome, and metabolism. Each of the models pertaining to diet healthiness, physical exercise, or a combination of both, displayed a distinct metabolic and functional microbial signature. A significant proportion of the metabolites identified as discriminating between the various pairwise comparisons result from gut microbe-host cometabolism, and the identified interactions have expanded current knowledge in this area. Furthermore, although increased microbial diversity has previously been linked with health, our observation of higher microbial diversity being associated with increased proteolytic activity indicates that it may confer deleterious as well as beneficial effects on the host.
Collapse
Affiliation(s)
- N Penney
- Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - W Barton
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Co. Cork, Ireland
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - J M Posma
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
- Health Data Research UK, London, United Kingdom
| | - A Darzi
- Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - G Frost
- Section for Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - P D Cotter
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Co. Cork, Ireland
| | - E Holmes
- Section for Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - F Shanahan
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - O O'Sullivan
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Co. Cork, Ireland
| | - I Garcia-Perez
- Section for Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
20
|
Wang Y, Hodge RA, Stevens VL, Hartman TJ, McCullough ML. Identification and Reproducibility of Plasma Metabolomic Biomarkers of Habitual Food Intake in a US Diet Validation Study. Metabolites 2020; 10:metabo10100382. [PMID: 32993181 PMCID: PMC7600452 DOI: 10.3390/metabo10100382] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Previous metabolomic studies have identified putative blood biomarkers of dietary intake. These biomarkers need to be replicated in other populations and tested for reproducibility over time for the potential use in future epidemiological studies. We conducted a metabolomics analysis among 671 racially/ethnically diverse men and women included in a diet validation study to examine the correlation between >100 food groups/items (101 by a food frequency questionnaire (FFQ), 105 by 24-h diet recalls (24HRs)) with 1141 metabolites measured in fasting plasma sample replicates, six months apart. Diet–metabolite associations were examined by Pearson’s partial correlation analysis. Biomarker reproducibility was assessed using intraclass correlation coefficients (ICCs). A total of 677 diet–metabolite associations were identified after Bonferroni adjustment for multiple comparisons and restricting absolute correlation coefficients to greater than 0.2 (601 associations using the FFQ and 395 using 24HRs). The median ICCs of the 238 putative biomarkers was 0.56 (interquartile range 0.46–0.68). In this study, with repeated FFQs, 24HRs and plasma metabolic profiles, we identified several potentially novel food biomarkers and replicated others found in our previous study. Our findings contribute to the growing literature on food-based biomarkers and provide important information on biomarker reproducibility which could facilitate their utilization in future nutritional epidemiological studies.
Collapse
Affiliation(s)
- Ying Wang
- Department of Population Science, American Cancer Society, Atlanta, GA 30303, USA; (R.A.H.); (V.L.S.); (M.L.M.)
- Correspondence: ; Tel.: +1-404-329-4341
| | - Rebecca A. Hodge
- Department of Population Science, American Cancer Society, Atlanta, GA 30303, USA; (R.A.H.); (V.L.S.); (M.L.M.)
| | - Victoria L. Stevens
- Department of Population Science, American Cancer Society, Atlanta, GA 30303, USA; (R.A.H.); (V.L.S.); (M.L.M.)
| | - Terryl J. Hartman
- Department of Epidemiology, Rollins School of Public Health, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA;
| | - Marjorie L. McCullough
- Department of Population Science, American Cancer Society, Atlanta, GA 30303, USA; (R.A.H.); (V.L.S.); (M.L.M.)
| |
Collapse
|
21
|
Grapov D, Fiehn O, Campbell C, Chandler CJ, Burnett DJ, Souza EC, Casazza GA, Keim NL, Hunter GR, Fernandez JR, Garvey WT, Hoppel CL, Harper M, Newman JW, Adams SH. Impact of a weight loss and fitness intervention on exercise-associated plasma oxylipin patterns in obese, insulin-resistant, sedentary women. Physiol Rep 2020; 8:e14547. [PMID: 32869956 PMCID: PMC7460071 DOI: 10.14814/phy2.14547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Very little is known about how metabolic health status, insulin resistance or metabolic challenges modulate the endocannabinoid (eCB) or polyunsaturated fatty acid (PUFA)-derived oxylipin (OxL) lipid classes. To address these questions, plasma eCB and OxL concentrations were determined at rest, 10 and 20 min during an acute exercise bout (30 min total, ~45% of preintervention V̇O2peak , ~63 W), and following 20 min recovery in overnight-fasted sedentary, obese, insulin-resistant women under controlled diet conditions. We hypothesized that increased fitness and insulin sensitivity following a ~14-week training and weight loss intervention would lead to significant changes in lipid signatures using an identical acute exercise protocol to preintervention. In the first 10 min of exercise, concentrations of a suite of OxL diols and hydroxyeicosatetraenoic acid (HETE) metabolites dropped significantly. There was no increase in 12,13-DiHOME, previously reported to increase with exercise and proposed to activate muscle fatty acid uptake and tissue metabolism. Following weight loss intervention, exercise-associated reductions were more pronounced for several linoleate and alpha-linolenate metabolites including DiHOMEs, DiHODEs, KODEs, and EpODEs, and fasting concentrations of 9,10-DiHODE, 12,13-DiHODE, and 9,10-DiHOME were reduced. These findings suggest that improved metabolic health modifies soluble epoxide hydrolase, cytochrome P450 epoxygenase (CYP), and lipoxygenase (LOX) systems. Acute exercise led to reductions for most eCB metabolites, with no evidence for concentration increases even at recovery. It is proposed that during submaximal aerobic exercise, nonoxidative fates of long-chain saturated, monounsaturated, and PUFAs are attenuated in tissues that are important contributors to the blood OxL and eCB pools.
Collapse
Affiliation(s)
| | - Oliver Fiehn
- West Coast Metabolomics CenterUniversity of CaliforniaDavisCAUSA
| | - Caitlin Campbell
- United States Department of Agriculture‐Agricultural Research Service Western Human Nutrition Research CenterDavisCAUSA
| | - Carol J. Chandler
- United States Department of Agriculture‐Agricultural Research Service Western Human Nutrition Research CenterDavisCAUSA
| | - Dustin J. Burnett
- United States Department of Agriculture‐Agricultural Research Service Western Human Nutrition Research CenterDavisCAUSA
| | - Elaine C. Souza
- United States Department of Agriculture‐Agricultural Research Service Western Human Nutrition Research CenterDavisCAUSA
| | | | - Nancy L. Keim
- United States Department of Agriculture‐Agricultural Research Service Western Human Nutrition Research CenterDavisCAUSA
- Department of NutritionUniversity of CaliforniaDavisCAUSA
| | - Gary R. Hunter
- Department of Nutrition SciencesUniversity of AlabamaBirminghamALUSA
- Human Studies DepartmentUniversity of AlabamaBirminghamALUSA
| | - Jose R. Fernandez
- Department of Nutrition SciencesUniversity of AlabamaBirminghamALUSA
| | - W. Timothy Garvey
- Department of Nutrition SciencesUniversity of AlabamaBirminghamALUSA
| | - Charles L. Hoppel
- Pharmacology DepartmentCase Western Reserve UniversityClevelandOHUSA
| | - Mary‐Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, and Ottawa Institute of Systems BiologyUniversity of OttawaOttawaONCanada
| | - John W. Newman
- United States Department of Agriculture‐Agricultural Research Service Western Human Nutrition Research CenterDavisCAUSA
- Department of NutritionUniversity of CaliforniaDavisCAUSA
| | - Sean H. Adams
- Arkansas Children’s Nutrition CenterLittle RockARUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| |
Collapse
|
22
|
Nieman DC, Pence BD. Exercise immunology: Future directions. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:432-445. [PMID: 32928447 PMCID: PMC7498623 DOI: 10.1016/j.jshs.2019.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 05/07/2023]
Abstract
Several decades of research in the area of exercise immunology have shown that the immune system is highly responsive to acute and chronic exercise training. Moderate exercise bouts enhance immunosurveillance and when repeated over time mediate multiple health benefits. Most of the studies prior to 2010 relied on a few targeted outcomes related to immune function. During the past decade, technologic advances have created opportunities for a multi-omics and systems biology approach to exercise immunology. This article provides an overview of metabolomics, lipidomics, and proteomics as they pertain to exercise immunology, with a focus on immunometabolism. This review also summarizes how the composition and diversity of the gut microbiota can be influenced by exercise, with applications to human health and immunity. Exercise-induced improvements in immune function may play a critical role in countering immunosenescence and the development of chronic diseases, and emerging omics technologies will more clearly define the underlying mechanisms. This review summarizes what is currently known regarding a multi-omics approach to exercise immunology and provides future directions for investigators.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
| | - Brandt D Pence
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
23
|
Nieman DC, Gillitt ND, Chen GY, Zhang Q, Sha W, Kay CD, Chandra P, Kay KL, Lila MA. Blueberry and/or Banana Consumption Mitigate Arachidonic, Cytochrome P450 Oxylipin Generation During Recovery From 75-Km Cycling: A Randomized Trial. Front Nutr 2020; 7:121. [PMID: 32850939 PMCID: PMC7426440 DOI: 10.3389/fnut.2020.00121] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Oxylipins are bioactive lipid oxidation products, have vital regulatory roles in numerous physiological processes including inflammation, and can be impacted by diet. This study determined if 2-weeks of blueberry and/or acute banana ingestion influenced generation of n-6 and n-3 PUFA-derived oxylipins during recovery from exercise-induced physiological stress. Cyclists (n = 59, 39 ± 2 years of age) were randomized to freeze-dried blueberry or placebo groups, and ingested 26 grams/d (1 cup/d blueberries equivalent) for 2 weeks. Cyclists reported to the lab in an overnight fasted state and engaged in a 75-km cycling time trial (185.5 ± 5.2 min). Cyclists from each group (blueberry, placebo) were further randomized to ingestion of a water-only control or water with a carbohydrate source (Cavendish bananas, 0.2 g/kg carbohydrate every 15 min) during exercise. Blood samples were collected pre- and post-2-weeks blueberry supplementation, and 0, 1.5, 3, 5, 24, and 48 h-post-exercise. Plasma oxylipins and blueberry and banana metabolites were measured with UPLC–tandem MS/MS. Significant time by treatment effects (eight time points, four groups) were found for 24 blueberry- and seven banana-derived phenolic metabolites in plasma (FDR adjusted p < 0.05). Significant post-exercise increases were observed for 64 of 67 identified plasma oxylipins. When oxylipins were grouped relative to fatty acid substrate [arachidonic acid (ARA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), α-linolenic acid (ALA), linoleic acid (LA)], and enzyme systems [cytochrome P450 (CYP), lipoxygenase (LOX)], banana and blueberry ingestion were independently associated with significant post-exercise reductions in pro-inflammatory ARA-CYP hydroxy- and dihydroxy-eicosatetraenoic acids (HETEs, DiHETrEs) (treatment effects, FDR adjusted p < 0.05). These trial differences were especially apparent within the first 3 h of recovery. In summary, heavy exertion evoked a transient but robust increase in plasma levels of oxylipins in cyclists, with a strong attenuation effect linked to both chronic blueberry and acute banana intake on pro-inflammatory ARA-CYP oxylipins.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, United States
| | | | - Guan-Yuan Chen
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, United States
| | - Qibin Zhang
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, United States
| | - Wei Sha
- Bioinformatics Services Division, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC, United States
| | - Colin D Kay
- Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Preeti Chandra
- Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Kristine L Kay
- Department of Nutrition, University of North Carolina at Chapel Hill, Nutrition Research Institute, Kannapolis, NC, United States
| | - Mary Ann Lila
- Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, United States
| |
Collapse
|
24
|
Vázquez-Manjarrez N, Ulaszewska M, Garcia-Aloy M, Mattivi F, Praticò G, Dragsted LO, Manach C. Biomarkers of intake for tropical fruits. GENES AND NUTRITION 2020; 15:11. [PMID: 32560627 PMCID: PMC7304196 DOI: 10.1186/s12263-020-00670-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
Consumption of fruit and vegetable is a key component of a healthy and sustainable diet. However, their accurate dietary assessment remains a challenge. Due to errors in self-reporting methods, the available dietary information is usually biased. Biomarkers of intake constitute objective tools to better reflect the usual or recent consumption of different foods, including fruits and vegetables. Partners of The Food Biomarker Alliance (FoodBall) Project have undertaken the task of reviewing the available literature on putative biomarkers of tropical fruit intake. The identified candidate biomarkers were subject to validation evaluation using eight biological and chemical criteria. This publication presents the current knowledge on intake biomarkers for 17 tropical fruits including banana, mango, and avocado as the most widely consumed ones. Candidate biomarkers were found only for banana, avocado, and watermelon. An array of banana-derived metabolites has been reported in human biofluids, among which 5-hydroxyindole-acetic acid, dopamine sulfate, methoxyeugenol glucuronide, salsolinol sulfate, 6-hydroxy-1-methyl-1,2,3,4-tetrahydro-β-carboline-sulfate, and other catecholamine metabolites. Their validation is still at an early stage, with insufficient data on dose-response relationship. Perseitol and mannoheptulose have recently been reported as candidate biomarkers for avocado intake, while the amino acid citrulline has been associated with watermelon intake. Additionally, the examination of food composition data revealed some highly specific phytochemicals, which metabolites after absorption may be further studied as putative BFI for one or several tropical fruits. To make the field move forward, untargeted metabolomics, as a data-driven explorative approach, will have to be applied in both intervention and observational studies to discover putative BFIs, while their full validation and the establishment of dose-response calibration curves will require quantification methods at a later stage.
Collapse
Affiliation(s)
- N Vázquez-Manjarrez
- Human Nutrition Unit, Université Clermont Auvergne, INRAE, F-63000, Clermont-Ferrand, France.,Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.,Dirección de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - M Ulaszewska
- Research and Innovation Centre Food Quality and Nutrition, Fondazione Edmund Mach, Via Mach 1, 38010, San Michele all'Adige, Italy
| | - M Garcia-Aloy
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA, Faculty of Pharmacy and Food Sciences, Campus Torribera, University of Barcelona, Barcelona, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - F Mattivi
- Research and Innovation Centre Food Quality and Nutrition, Fondazione Edmund Mach, Via Mach 1, 38010, San Michele all'Adige, Italy.,Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, San Michele all'Adige, Italy
| | - G Praticò
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - L O Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - C Manach
- Human Nutrition Unit, Université Clermont Auvergne, INRAE, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
25
|
Acute effect of juçara juice (Euterpe edulis Martius) on oxidative stress biomarkers and fatigue in a high-intensity interval training session: A single-blind cross-over randomized study. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
26
|
Zare MM, Ghram A, Akbarnejad A, Soori R, Charkhi Sahl Abad A, Azizi Ghuchan F, Nunes-Silva A. Effect of purslane seed supplementation on inflammatory cytokines, oxidative stress and muscle damage in response to high-intensity intermittent exercise in national athlete runners. SPORT SCIENCES FOR HEALTH 2020. [DOI: 10.1007/s11332-019-00572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Schranner D, Kastenmüller G, Schönfelder M, Römisch-Margl W, Wackerhage H. Metabolite Concentration Changes in Humans After a Bout of Exercise: a Systematic Review of Exercise Metabolomics Studies. SPORTS MEDICINE-OPEN 2020; 6:11. [PMID: 32040782 PMCID: PMC7010904 DOI: 10.1186/s40798-020-0238-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/20/2020] [Indexed: 12/27/2022]
Abstract
Background Exercise changes the concentrations of many metabolites, which are small molecules (< 1.5 kDa) metabolized by the reactions of human metabolism. In recent years, especially mass spectrometry-based metabolomics methods have allowed researchers to measure up to hundreds of metabolites in a single sample in a non-biased fashion. To summarize human exercise metabolomics studies to date, we conducted a systematic review that reports the results of experiments that found metabolite concentrations changes after a bout of human endurance or resistance exercise. Methods We carried out a systematic review following PRISMA guidelines and searched for human metabolomics studies that report metabolite concentrations before and within 24 h after endurance or resistance exercise in blood, urine, or sweat. We then displayed metabolites that significantly changed their concentration in at least two experiments. Results Twenty-seven studies and 57 experiments matched our search criteria and were analyzed. Within these studies, 196 metabolites changed their concentration significantly within 24 h after exercise in at least two experiments. Human biofluids contain mainly unphosphorylated metabolites as the phosphorylation of metabolites such as ATP, glycolytic intermediates, or nucleotides traps these metabolites within cells. Lactate, pyruvate, TCA cycle intermediates, fatty acids, acylcarnitines, and ketone bodies all typically increase after exercise, whereas bile acids decrease. In contrast, the concentrations of proteinogenic and non-proteinogenic amino acids change in different directions. Conclusion Across different exercise modes and in different subjects, exercise often consistently changes the average concentrations of metabolites that belong to energy metabolism and other branches of metabolism. This dataset is a useful resource for those that wish to study human exercise metabolism.
Collapse
Affiliation(s)
- Daniela Schranner
- Exercise Biology Group, Department of Sport and Health Sciences, Technische Universität München, Munich, Germany
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Schönfelder
- Exercise Biology Group, Department of Sport and Health Sciences, Technische Universität München, Munich, Germany
| | - Werner Römisch-Margl
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Henning Wackerhage
- Exercise Biology Group, Department of Sport and Health Sciences, Technische Universität München, Munich, Germany.
| |
Collapse
|
28
|
Grapov D, Fiehn O, Campbell C, Chandler CJ, Burnett DJ, Souza EC, Casazza GA, Keim NL, Newman JW, Hunter GR, Fernandez JR, Garvey WT, Hoppel CL, Harper ME, Adams SH. Exercise plasma metabolomics and xenometabolomics in obese, sedentary, insulin-resistant women: impact of a fitness and weight loss intervention. Am J Physiol Endocrinol Metab 2019; 317:E999-E1014. [PMID: 31526287 PMCID: PMC6962502 DOI: 10.1152/ajpendo.00091.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Insulin resistance has wide-ranging effects on metabolism, but there are knowledge gaps regarding the tissue origins of systemic metabolite patterns and how patterns are altered by fitness and metabolic health. To address these questions, plasma metabolite patterns were determined every 5 min during exercise (30 min, ∼45% of V̇o2peak, ∼63 W) and recovery in overnight-fasted sedentary, obese, insulin-resistant women under controlled conditions of diet and physical activity. We hypothesized that improved fitness and insulin sensitivity following a ∼14-wk training and weight loss intervention would lead to fixed workload plasma metabolomics signatures reflective of metabolic health and muscle metabolism. Pattern analysis over the first 15 min of exercise, regardless of pre- versus postintervention status, highlighted anticipated increases in fatty acid tissue uptake and oxidation (e.g., reduced long-chain fatty acids), diminution of nonoxidative fates of glucose [e.g., lowered sorbitol-pathway metabolites and glycerol-3-galactoside (possible glycerolipid synthesis metabolite)], and enhanced tissue amino acid use (e.g., drops in amino acids; modest increase in urea). A novel observation was that exercise significantly increased several xenometabolites ("non-self" molecules, from microbes or foods), including benzoic acid-salicylic acid-salicylaldehyde, hexadecanol-octadecanol-dodecanol, and chlorogenic acid. In addition, many nonannotated metabolites changed with exercise. Although exercise itself strongly impacted the global metabolome, there were surprisingly few intervention-associated differences despite marked improvements in insulin sensitivity, fitness, and adiposity. These results and previously reported plasma acylcarnitine profiles support the principle that most metabolic changes during submaximal aerobic exercise are closely tethered to absolute ATP turnover rate (workload), regardless of fitness or metabolic health status.
Collapse
Affiliation(s)
| | - Oliver Fiehn
- West Coast Metabolomics Center, Genome Center, University of California, Davis, California
| | - Caitlin Campbell
- United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
| | - Carol J Chandler
- United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
| | - Dustin J Burnett
- United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
| | - Elaine C Souza
- United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
| | - Gretchen A Casazza
- Sports Medicine Program, School of Medicine, University of California, Davis, California
| | - Nancy L Keim
- United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
- Department of Nutrition, University of California, Davis, California
| | - John W Newman
- United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
- Department of Nutrition, University of California, Davis, California
| | - Gary R Hunter
- Department of Nutrition Sciences, University of Alabama, Birmingham, Alabama
- Human Studies Department, University of Alabama, Birmingham, Alabama
| | - Jose R Fernandez
- Department of Nutrition Sciences, University of Alabama, Birmingham, Alabama
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama, Birmingham, Alabama
| | - Charles L Hoppel
- Pharmacology Department, Case Western Reserve University, Cleveland, Ohio
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sean H Adams
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
29
|
Sakaguchi CA, Nieman DC, Signini EF, Abreu RM, Catai AM. Metabolomics-Based Studies Assessing Exercise-Induced Alterations of the Human Metabolome: A Systematic Review. Metabolites 2019; 9:metabo9080164. [PMID: 31405020 PMCID: PMC6724094 DOI: 10.3390/metabo9080164] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022] Open
Abstract
This systematic review provides a qualitative appraisal of 24 high-quality metabolomics-based studies published over the past decade exploring exercise-induced alterations of the human metabolome. Of these papers, 63% focused on acute metabolite changes following intense and prolonged exercise. The best studies utilized liquid chromatography mass spectrometry (LC-MS/MS) analytical platforms with large chemical standard libraries and strong, multivariate bioinformatics support. These studies reported large-fold changes in diverse lipid-related metabolites, with more than 100 increasing two-fold or greater within a few hours post-exercise. Metabolite shifts, even after strenuous exercise, typically return to near pre-exercise levels after one day of recovery. Few studies investigated metabolite changes following acute exercise bouts of shorter durations (< 60 min) and workload volumes. Plasma metabolite shifts in these types of studies are modest in comparison. More cross-sectional and exercise training studies are needed to improve scientific understanding of the human system’s response to varying, chronic exercise workloads. The findings derived from this review provide direction for future investigations focused on the body’s metabolome response to exercise.
Collapse
Affiliation(s)
- Camila A Sakaguchi
- Physical Therapy Department, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil.
| | - David C Nieman
- North Carolina Research Campus, Appalachian State University, Kannapolis, NC 28081, USA
| | - Etore F Signini
- Physical Therapy Department, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| | - Raphael M Abreu
- Physical Therapy Department, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| | - Aparecida M Catai
- Physical Therapy Department, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| |
Collapse
|
30
|
Picó C, Serra F, Rodríguez AM, Keijer J, Palou A. Biomarkers of Nutrition and Health: New Tools for New Approaches. Nutrients 2019; 11:E1092. [PMID: 31100942 PMCID: PMC6567133 DOI: 10.3390/nu11051092] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
A main challenge in nutritional studies is the valid and reliable assessment of food intake, as well as its effects on the body. Generally, food intake measurement is based on self-reported dietary intake questionnaires, which have inherent limitations. They can be overcome by the use of biomarkers, capable of objectively assessing food consumption without the bias of self-reported dietary assessment. Another major goal is to determine the biological effects of foods and their impact on health. Systems analysis of dynamic responses may help to identify biomarkers indicative of intake and effects on the body at the same time, possibly in relation to individuals' health/disease states. Such biomarkers could be used to quantify intake and validate intake questionnaires, analyse physiological or pathological responses to certain food components or diets, identify persons with specific dietary deficiency, provide information on inter-individual variations or help to formulate personalized dietary recommendations to achieve optimal health for particular phenotypes, currently referred as "precision nutrition." In this regard, holistic approaches using global analysis methods (omics approaches), capable of gathering high amounts of data, appear to be very useful to identify new biomarkers and to enhance our understanding of the role of food in health and disease.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Ana María Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands.
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| |
Collapse
|
31
|
Nieman DC, Wentz LM. The compelling link between physical activity and the body's defense system. JOURNAL OF SPORT AND HEALTH SCIENCE 2019; 8:201-217. [PMID: 31193280 PMCID: PMC6523821 DOI: 10.1016/j.jshs.2018.09.009] [Citation(s) in RCA: 623] [Impact Index Per Article: 124.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/26/2018] [Accepted: 09/25/2018] [Indexed: 05/05/2023]
Abstract
This review summarizes research discoveries within 4 areas of exercise immunology that have received the most attention from investigators: (1) acute and chronic effects of exercise on the immune system, (2) clinical benefits of the exercise-immune relationship, (3) nutritional influences on the immune response to exercise, and (4) the effect of exercise on immunosenescence. These scientific discoveries can be organized into distinctive time periods: 1900-1979, which focused on exercise-induced changes in basic immune cell counts and function; 1980-1989, during which seminal papers were published with evidence that heavy exertion was associated with transient immune dysfunction, elevated inflammatory biomarkers, and increased risk of upper respiratory tract infections; 1990-2009, when additional focus areas were added to the field of exercise immunology including the interactive effect of nutrition, effects on the aging immune system, and inflammatory cytokines; and 2010 to the present, when technological advances in mass spectrometry allowed system biology approaches (i.e., metabolomics, proteomics, lipidomics, and microbiome characterization) to be applied to exercise immunology studies. The future of exercise immunology will take advantage of these technologies to provide new insights on the interactions between exercise, nutrition, and immune function, with application down to the personalized level. Additionally, these methodologies will improve mechanistic understanding of how exercise-induced immune perturbations reduce the risk of common chronic diseases.
Collapse
Affiliation(s)
- David C. Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Corresponding author.
| | - Laurel M. Wentz
- Department of Nutrition and Health Care Management, Appalachian State University, Boone, NC 28608, USA
| |
Collapse
|
32
|
Nieman DC, Gillitt ND, Chen GY, Zhang Q, Sakaguchi CA, Stephan EH. Carbohydrate intake attenuates post-exercise plasma levels of cytochrome P450-generated oxylipins. PLoS One 2019; 14:e0213676. [PMID: 30883596 PMCID: PMC6422332 DOI: 10.1371/journal.pone.0213676] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/26/2019] [Indexed: 01/08/2023] Open
Abstract
Introduction Oxylipins are bioactive oxidation products derived from n-6 and n-3 polyunsaturated fatty acids (PUFAs) in the linoleic acid and α-linolenic desaturation pathways. Purpose This study determined if carbohydrate intake during prolonged and intensive cycling countered post-exercise increases in n-6 and n-3 PUFA-derived oxylipins. Methods The research design utilized a randomized, crossover, counterbalanced approach with cyclists (N = 20, overnight fasted state, 7:00 am start) who engaged in four 75-km time trials while ingesting two types of bananas (Cavendish, Mini-yellow), a 6% sugar beverage, and water only. Carbohydrate intake was set at 0.2 g/kg every 15 minutes, and blood samples were collected pre-exercise and 0 h-, 0.75 h-,1.5 h-, 3 h-, 4.5 h-, 21 h-, 45 h-post-exercise. Oxylipins were measured with a targeted liquid chromatography-multiple reaction monitoring mass spectrometric method. Results Significant time effects and substantial fold-increases (immediately post-exercise/pre-exercise) were measured for plasma levels of arachidonic acid (ARA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and 43 of 45 oxylipins. Significant interaction effects (4 trials x 8 time points) were found for plasma ARA (P<0.001) and DHA (P<0.001), but not EPA (P = 0.255), with higher post-exercise values found in the water trial compared to the carbohydrate trials. Significant interaction effects were also measured for 12 of 45 oxylipins. The data supported a strong exercise-induced increase in plasma levels of these oxylipins during the water trial, with carbohydrate ingestion (both bananas types and the sugar beverage) attenuating oxylipin increases, especially those (9 of 12) generated from the cytochrome P-450 (CYP) enzyme system. These trials differences were especially apparent within the first three hours of recovery from the 75-km cycling bout. Conclusions Prolonged and intensive exercise evoked a transient but robust increase in plasma levels of oxylipins, with a significant attenuation effect linked to acute carbohydrate ingestion for 28% of these, especially those generated through the CYP enzyme system. Trial registration ClinicalTrials.gov, U.S. National Institutes of Health, NCT02994628
Collapse
Affiliation(s)
- David C. Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
- * E-mail:
| | - Nicholas D. Gillitt
- Dole Nutrition Research Laboratory, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
| | - Guan-Yuan Chen
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
| | - Qibin Zhang
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
| | - Camila A. Sakaguchi
- Physical Therapy Department, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Ella H. Stephan
- Department of Nutrition, UNC Gillings School of Global Public Health, University of North Carolina-Chapel Hill, NC, United States of America
| |
Collapse
|
33
|
Nieman DC, Lila MA, Gillitt ND. Immunometabolism: A Multi-Omics Approach to Interpreting the Influence of Exercise and Diet on the Immune System. Annu Rev Food Sci Technol 2019; 10:341-363. [PMID: 30633566 DOI: 10.1146/annurev-food-032818-121316] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunometabolism is an evolving field of scientific endeavor that merges immunology and metabolism and has provided valuable context when evaluating the influence of dietary interventions on exercise-induced immune dysfunction. Metabolomics, lipidomics, and proteomics provide a system-wide view of the metabolic response to exercise by simultaneously measuring and identifying a large number of small-molecule metabolites, lipids, and proteins. Many of these are involved with immune function and regulation and are sensitive to dietary influences, especially acute carbohydrate ingestion from either sugar beverages or fruits such as bananas. Emerging evidence using large multi-omics data sets supports the combined intake of fruit sugars and phytochemicals by athletes during heavy exertion as an effective strategy to improve metabolic recovery, augment viral defense, and counter postexercise inflammation and immune dysfunction at the cell level. Multi-omics methodologies have given investigators new outcome targets to assess the efficacy of various dietary interventions for physiologically stressed athletes.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Department of Health and Exercise Science, Appalachian State University, North Carolina Research Campus, Kannapolis, North Carolina 28081, USA;
| | - Mary Ann Lila
- Plants for Human Health Institute, Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina 28081, USA
| | - Nicholas D Gillitt
- Dole Nutrition Research Laboratory, Kannapolis, North Carolina 28081, USA
| |
Collapse
|
34
|
Zhang J, Bhattacharyya S, Hickner RC, Light AR, Lambert CJ, Gale BK, Fiehn O, Adams SH. Skeletal muscle interstitial fluid metabolomics at rest and associated with an exercise bout: application in rats and humans. Am J Physiol Endocrinol Metab 2019; 316:E43-E53. [PMID: 30398905 PMCID: PMC6417688 DOI: 10.1152/ajpendo.00156.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blood or biopsies are often used to characterize metabolites that are modulated by exercising muscle. However, blood has inputs derived from multiple tissues, biopsies cannot discriminate between secreted and intracellular metabolites, and their invasive nature is challenging for frequent collections in sensitive populations (e.g., children and pregnant women). Thus, minimally invasive approaches to interstitial fluid (IF) metabolomics would be valuable. A catheter was designed to collect IF from the gastrocnemius muscle of acutely anesthetized adult male rats at rest or immediately following 20 min of exercise (~60% of maximal O2 uptake). Nontargeted, gas chromatography-time-of-flight mass spectrometry analysis was used to detect 299 metabolites, including nonannotated metabolites, sugars, fatty acids, amino acids, and purine metabolites and derivatives. Just 43% of all detected metabolites were common to IF and blood plasma, and only 20% of exercise-modified metabolites were shared in both pools, highlighting that the blood does not fully reflect the metabolic outcomes in muscle. Notable exercise patterns included increased IF amino acids (except leucine and isoleucine), increased α-ketoglutarate and citrate (which may reflect tricarboxylic acid cataplerosis or shifts in nonmitochondrial pathways), and higher concentration of the signaling lipid oleamide. A preliminary study of human muscle IF was conducted using a 20-kDa microdialysis catheter placed in the vastus lateralis of five healthy adults at rest and during exercise (65% of estimated maximal heart rate). Approximately 70% of commonly detected metabolites discriminating rest vs. exercise in rats were also changed in exercising humans. Interstitium metabolomics may aid in the identification of molecules that signal muscle work (e.g., exertion and fatigue) and muscle health.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Anesthesiology, University of Utah School of Medicine , Salt Lake City, Utah
| | - Sudeepa Bhattacharyya
- Arkansas Children's Nutrition Center , Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Robert C Hickner
- Department of Nutrition, Food, and Exercise Sciences, Florida State University , Tallahassee, Florida
- College of Health Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Alan R Light
- Department of Anesthesiology, University of Utah School of Medicine , Salt Lake City, Utah
| | | | - Bruce K Gale
- Department of Mechanical Engineering, University of Utah , Salt Lake City, Utah
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California , Davis, California
| | - Sean H Adams
- Arkansas Children's Nutrition Center , Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| |
Collapse
|
35
|
Wu Q, Li T, Chen X, Wen L, Yun Z, Jiang Y. Sodium dichloroisocyanurate delays ripening and senescence of banana fruit during storage. Chem Cent J 2018; 12:131. [PMID: 30519833 PMCID: PMC6768313 DOI: 10.1186/s13065-018-0503-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/27/2018] [Indexed: 01/07/2023] Open
Abstract
Banana as a typical climacteric fruit soften rapidly, resulting in a very short shelf life after harvest. Sodium dichloroisocyanurate (NaDCC) is reported to be an effectively antibacterial compound. Here, we investigated the effects of NaDCC on ripening and senescence of harvested banana fruit at physiological and molecular levels. Application of 200 mg L−1 NaDCC solution effectively inhibited the ripening and senescence of banana fruit after harvest. NaDCC treatment reduced greatly ethylene production rate and expressions of genes encoding 1-aminocyclopropane-1-carboxylate synthetase, 1-aminocyclopropane-1-carboxylate oxidase, ethylene-responsive transcription factor and EIN3-binding F-box protein. Meanwhile, NaDCC treatment down-regulated markedly the expressions of xyloglucan endotransglucosylase/hydrolase and pectinesterase genes. Furthermore, NaDCC treatment affected significantly the accumulation of ripening-related primary metabolites such as sugars and organic acids. Additionally, NaDCC treatment decreased the production of hydroxyl radical and increased 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity, reducing power and hydroxyl radical scavenging activity. In conclusion, NaDCC delayed effectively the ripening and senescence of harvested banana fruit via the reduced ethylene effect and enhanced antioxidant activity.
Collapse
Affiliation(s)
- Qixian Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Taotao Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Xi Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Lingrong Wen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Ze Yun
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China.
| |
Collapse
|
36
|
Ulaszewska M, Vázquez-Manjarrez N, Garcia-Aloy M, Llorach R, Mattivi F, Dragsted LO, Praticò G, Manach C. Food intake biomarkers for apple, pear, and stone fruit. GENES AND NUTRITION 2018; 13:29. [PMID: 30519365 PMCID: PMC6267079 DOI: 10.1186/s12263-018-0620-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022]
Abstract
Fruit is a key component of a healthy diet. However, it is still not clear whether some classes of fruit may be more beneficial than others and whether all individuals whatever their age, gender, health status, genotype, or gut microbiota composition respond in the same way to fruit consumption. Such questions require further observational and intervention studies in which the intake of a specific fruit can be precisely assessed at the population and individual levels. Within the Food Biomarker Alliance Project (FoodBAll Project) under the Joint Programming Initiative “A Healthy Diet for a Healthy Life”, an ambitious action was undertaken aiming at reviewing existent literature in a systematic way to identify validated and promising biomarkers of intake for all major food groups, including fruits. This paper belongs to a series of reviews following the same BFIRev protocol and is focusing on biomarkers of pome and stone fruit intake. Selected candidate biomarkers extracted from the literature search went through a validation process specifically developed for food intake biomarkers.
Collapse
Affiliation(s)
- Marynka Ulaszewska
- 1Research and Innovation Centre Food Quality and Nutrition, Fondazione Edmund Mach, Via Mach 1, San Michele all'Adige, 38010 Trento, Italy
| | - Natalia Vázquez-Manjarrez
- 2Human Nutrition Unit, Université Clermont Auvergne, INRA, F63000 Clermont-Ferrand, France.,3Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Mar Garcia-Aloy
- 4Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA, Faculty of Pharmacy and Food Sciences, Campus Torribera, University of Barcelona, Barcelona, Spain.,5CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - Rafael Llorach
- 4Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA, Faculty of Pharmacy and Food Sciences, Campus Torribera, University of Barcelona, Barcelona, Spain.,5CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - Fulvio Mattivi
- 1Research and Innovation Centre Food Quality and Nutrition, Fondazione Edmund Mach, Via Mach 1, San Michele all'Adige, 38010 Trento, Italy.,6Center Agriculture Food Environment, University of Trento, San Michele all'Adige, Trento, Italy
| | - Lars O Dragsted
- 3Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Giulia Praticò
- 3Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Claudine Manach
- 2Human Nutrition Unit, Université Clermont Auvergne, INRA, F63000 Clermont-Ferrand, France
| |
Collapse
|
37
|
Nieman DC, Gillitt ND, Sha W. Identification of a select metabolite panel for measuring metabolic perturbation in response to heavy exertion. Metabolomics 2018; 14:147. [PMID: 30830401 DOI: 10.1007/s11306-018-1444-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION AND OBJECTIVE Databases from three global metabolomics-based studies (N = 59) (PMID: 25409020, 26561314, 29566095) were evaluated for metabolite shifts following heavy exertion (75-km cycling) to generate a representative, select panel of metabolites identified by variable importance in projection (VIP) scores. METHODS AND RESULTS OPLS-DA was used to separate samples at pre- and post-exercise during the water-only trial in one of the studies (PMID: 26561314), and of 590 metabolites, 26 (all but one from the lipid pathway) had a VIP > 2 and were selected for the panel. A second OPLS-DA based on the 26 metabolites was performed to separate pre- and post-exercise samples, and this model performed as well as the one with 590 metabolites (Q2Y = 0.923, 0.925 respectively); this model also showed a complete separation using OPLS-DA plots between pre- and post-exercise samples for the other two studies. A latent variable t1 (a linear combination of the 26 metabolites), was generated and the metabolite data at each time point were projected to t1 with the relative distance on t1 and area under the curve (AUC) determined from the three databases. Acute carbohydrate compared to water-only ingestion was linked to a 28-47% reduction in AUCs following exercise depending on the carbohydrate source and recovery time period. CONCLUSIONS These data support that a panel of 26 metabolites can be used to represent global metabolite increases induced by prolonged, intensive exercise. This select panel includes metabolites primarily from the lipid super pathway, and exercise-induced increases are sensitive to the moderating effect of acute carbohydrate ingestion.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, 28081, USA.
| | - Nicholas D Gillitt
- Dole Nutrition Research Laboratory, North Carolina Research Campus, Kannapolis, NC, USA
| | - Wei Sha
- Bioinformatics Services Division, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC, 28081, USA.
| |
Collapse
|
38
|
Al-Khelaifi F, Diboun I, Donati F, Botrè F, Alsayrafi M, Georgakopoulos C, Yousri NA, Suhre K, Elrayess MA. Metabolomics profiling of xenobiotics in elite athletes: relevance to supplement consumption. J Int Soc Sports Nutr 2018; 15:48. [PMID: 30261929 PMCID: PMC6161339 DOI: 10.1186/s12970-018-0254-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/19/2018] [Indexed: 01/23/2023] Open
Abstract
Background Supplements are widely used among elite athletes to maintain health and improve performance. Despite multiple studies investigating use of dietary supplements by athletes, a comprehensive profiling of serum supplement metabolites in elite athletes is still lacking. This study aims to analyze the presence of various xenobiotics in serum samples from elite athletes of different sports, focusing on metabolites that potentially originate from nutritional supplements. Methods Profiling of xenobiotics in serum samples from 478 elite athletes from different sports (football, athletics, cycling, rugby, swimming, boxing and rowing) was performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography. Multivariate analysis was performed using orthogonal partial least squares discriminant analysis. Differences in metabolic levels among different sport groups were identified by univariate linear models. Results Out of the 102 detected xenobiotics, 21 were significantly different among sport groups including metabolites that potentially prolong exercise tolerance (caffeic acid), carry a nootropic effect (2-pyrrolidinone), exert a potent anti-oxidant effect (eugenol, ferulic acid 4 sulfate, thioproline, retinol), or originate from drugs for different types of injuries (ectoine, quinate). Using Gaussian graphical modelling, a metabolic network that links various sport group-associated xenobiotics was constructed to further understand their metabolic pathways. Conclusions This pilot data provides evidence that athletes from different sports exhibit a distinct xenobiotic profile that may reflect their drug/supplement use, diet and exposure to various chemicals. Because of limitation in the study design, replication studies are warranted to confirm results in independent data sets, aiming ultimately for better assessment of dietary supplement use by athletes.
Collapse
Affiliation(s)
- Fatima Al-Khelaifi
- Anti Doping Laboratory Qatar, ADLQ, Sports City, P.O Box 27775, Doha, Qatar.,UCL-Medical School, Royal Free Campus, NW3 2PF, London, UK
| | - Ilhame Diboun
- Department of Economics, Mathematics and Statistics, Birkbeck, University of London, WC1E 7HX, London, UK
| | - Francesco Donati
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti 1, 00197, Rome, Italy
| | - Francesco Botrè
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti 1, 00197, Rome, Italy
| | - Mohammed Alsayrafi
- Anti Doping Laboratory Qatar, ADLQ, Sports City, P.O Box 27775, Doha, Qatar
| | | | - Noha A Yousri
- Department of Genetic Medicine, Weill Cornell Medical College in Qatar, Qatar-Foundation, P.O. Box 24144, Doha, Qatar
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Qatar-Foundation, P.O. Box 24144, Doha, Qatar
| | - Mohamed A Elrayess
- Anti Doping Laboratory Qatar, ADLQ, Sports City, P.O Box 27775, Doha, Qatar. .,UCL-Medical School, Royal Free Campus, NW3 2PF, London, UK.
| |
Collapse
|
39
|
Effect of 4-Week Ingestion of Tomato-Based Carotenoids on Exercise-Induced Inflammation, Muscle Damage, and Oxidative Stress in Endurance Runners. Int J Sport Nutr Exerc Metab 2018; 28:266-273. [DOI: 10.1123/ijsnem.2017-0272] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This double-blind, randomized, placebo-controlled crossover trial determined if ingestion of a supplement containing a tomato complex with lycopene, phytoene, and phytofluene (T-LPP) and other compounds for 4 weeks would attenuate inflammation, muscle damage, and oxidative stress postexercise and during recovery from a 2-hr running bout that included 30 min of −10% downhill running. Study participants ingested the T-LPP supplement or placebo with the evening meal for 4 weeks prior to running 2 hr at high intensity. Blood samples and delayed onset muscle soreness ratings were taken pre- and post-4-week supplementation, and immediately following the 2-hr run, and then 1-hr, 24-hr, and 48-hr postrun. After a 2-week washout period, participants crossed over to the opposite treatment and repeated all procedures. Plasma lycopene, phytoene, and phytofluene increased significantly in T-LPP compared with placebo (p < .001 for each). Significant time effects were shown for serum creatine kinase, delayed onset muscle soreness, C-reactive protein, myoglobin, 9- and 13-hydroxyoctadecadienoic acids, ferric reducing ability of plasma, and six plasma cytokines (p < .001 for each). The pattern of increase for serum myoglobin differed between T-LPP and placebo (interaction effect, p = .016, with lower levels in T-LPP), but not for creatine kinase, delayed onset muscle soreness, C-reactive protein, the six cytokines, 9- and 13-hydroxyoctadecadienoic acids, and ferric reducing ability of plasma. No significant time or interaction effects were measured for plasma-oxidized low-density lipoprotein or serum 8-hydroxy-2′-deoxyguanosine. In summary, supplementation with T-LPP over a 4-week period increased plasma carotenoid levels 73% and attenuated postexercise increases in the muscle damage biomarker myoglobin, but not inflammation and oxidative stress.
Collapse
|
40
|
|
41
|
Nieman DC, Gillitt ND, Sha W, Esposito D, Ramamoorthy S. Metabolic recovery from heavy exertion following banana compared to sugar beverage or water only ingestion: A randomized, crossover trial. PLoS One 2018; 13:e0194843. [PMID: 29566095 PMCID: PMC5864065 DOI: 10.1371/journal.pone.0194843] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/21/2018] [Indexed: 11/18/2022] Open
Abstract
Objectives and methods Using a randomized, crossover, counterbalanced approach, cyclists (N = 20, overnight fasted state) engaged in the four 75-km time trials (2-week washout) while ingesting two types of bananas with similar carbohydrate (CHO) but different phenolic content (Cavendish, CAV; mini-yellow, MIY, 63% higher polyphenols), a 6% sugar beverage (SUG), and water only (WAT). CHO intake was set at 0.2 g/kg every 15 minutes. Blood samples were collected pre-exercise and 0 h-, 0.75 h-,1.5 h-, 3 h-, 4.5 h-, 21 h-, 45 h-post-exercise. Results Each of the CHO trials (CAV, MIY, SUG) compared to water was associated with higher post-exercise plasma glucose and fructose, and lower leukocyte counts, plasma 9+13 HODES, and IL-6, IL-10, and IL-1ra. OPLS-DA analysis showed that metabolic perturbation (N = 1,605 metabolites) for WAT (86.8±4.0 arbitrary units) was significantly greater and sustained than for CAV (70.4±3.9, P = 0.006), MIY (68.3±4.0, P = 0.002), and SUG (68.1±4.2, P = 0.002). VIP ranking (<3.0, N = 25 metabolites) showed that both CAV and MIY were associated with significant fold changes in metabolites including those from amino acid and xenobiotics pathways. OPLS-DA analysis of immediate post-exercise metabolite shifts showed a significant separation of CAV and MIY from both WAT and SUG (R2Y = 0.848, Q2Y = 0.409). COX-2 mRNA expression was lower in both CAV and MIY, but not SUG, versus WAT at 21-h post-exercise in THP-1 monocytes cultured in plasma samples. Analysis of immediate post-exercise samples showed a decrease in LPS-stimulated THP-1 monocyte extracellular acidification rate (ECAR) in CAV and MIY, but not SUG, compared to WAT. Conclusions CHO ingestion from bananas or a sugar beverage had a comparable influence in attenuating metabolic perturbation and inflammation following 75-km cycling. Ex-vivo analysis with THP-1 monocytes supported a decrease in COX-2 mRNA expression and reduced reliance on glycolysis for ATP production following ingestion of bananas but not sugar water when compared to water alone. Trial registration ClinicalTrials.gov, U.S. National Institutes of Health, identifier: NCT02994628
Collapse
Affiliation(s)
- David C. Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
- * E-mail:
| | - Nicholas D. Gillitt
- Dole Nutrition Research Laboratory, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
| | - Wei Sha
- Bioinformatics Services Division, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
| | - Debora Esposito
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
| | | |
Collapse
|
42
|
Siopi A, Mougios V. Metabolomics in Human Acute-Exercise Trials: Study Design and Preparation. Methods Mol Biol 2018; 1738:279-287. [PMID: 29654597 DOI: 10.1007/978-1-4939-7643-0_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metabolomics can be of great value in the study of exercise metabolism. However, because of the high intraindividual and interindividual biological variability of the human metabolome, special considerations should be taken into account when designing an acute-exercise metabolomic study. To study different exercise parameters, e.g., different exercise modes, intensities, etc., a crossover study design, where each participant acts as their own control, is preferable to a parallel design, one involving different groups of participants. Moreover, the study should include a no exercise, control trial. Before each trial, participants should follow carefully designed preparatory steps to control for possible confounding factors, i.e., maintain repeatable and constant conditions for all individual trials of the study to minimize variation due to factors other than the one(s) being studied. This chapter focuses on the design of human metabolomic studies, where the intervention is an acute metabolic challenge, such as an exercise bout or a test meal, and presents some basic steps for screening potential participants, performing preliminary tests, preparing for the trial day, and performing the trial.
Collapse
Affiliation(s)
- Aikaterina Siopi
- School of Physical Education and Sport Science at Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece. .,Department of Physical Education and Sport Science at Thermi, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Vassilis Mougios
- School of Physical Education and Sport Science at Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
43
|
Nieman DC, Mitmesser SH. Potential Impact of Nutrition on Immune System Recovery from Heavy Exertion: A Metabolomics Perspective. Nutrients 2017; 9:nu9050513. [PMID: 28524103 PMCID: PMC5452243 DOI: 10.3390/nu9050513] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 12/12/2022] Open
Abstract
This review describes effective and ineffective immunonutrition support strategies for the athlete, with a focus on the benefits of carbohydrates and polyphenols as determined from metabolomics-based procedures. Athletes experience regular cycles of physiological stress accompanied by transient inflammation, oxidative stress, and immune perturbations, and there are increasing data indicating that these are sensitive to nutritional influences. The most effective nutritional countermeasures, especially when considered from a metabolomics perspective, include acute and chronic increases in dietary carbohydrate and polyphenols. Carbohydrate supplementation reduces post-exercise stress hormone levels, inflammation, and fatty acid mobilization and oxidation. Ingestion of fruits high in carbohydrates, polyphenols, and metabolites effectively supports performance, with added benefits including enhancement of oxidative and anti-viral capacity through fruit metabolites, and increased plasma levels of gut-derived phenolics. Metabolomics and lipidomics data indicate that intensive and prolonged exercise is associated with extensive lipid mobilization and oxidation, including many components of the linoleic acid conversion pathway and related oxidized derivatives called oxylipins. Many of the oxylipins are elevated with increased adiposity, and although low in resting athletes, rise to high levels during recovery. Future targeted lipidomics-based studies will help discover whether n-3-polyunsaturated fatty acid (n-3-PUFA) supplementation enhances inflammation resolution in athletes post-exercise.
Collapse
Affiliation(s)
- David C Nieman
- Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
| | | |
Collapse
|
44
|
Brignardello J, Holmes E, Garcia-Perez I. Metabolic Phenotyping of Diet and Dietary Intake. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 81:231-270. [PMID: 28317606 DOI: 10.1016/bs.afnr.2016.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nutrition provides the building blocks for growth, repair, and maintenance of the body and is key to maintaining health. Exposure to fast foods, mass production of dietary components, and wider importation of goods have challenged the balance between diet and health in recent decades, and both scientists and clinicians struggle to characterize the relationship between this changing dietary landscape and human metabolism with its consequent impact on health. Metabolic phenotyping of foods, using high-density data-generating technologies to profile the biochemical composition of foods, meals, and human samples (pre- and postfood intake), can be used to map the complex interaction between the diet and human metabolism and also to assess food quality and safety. Here, we outline some of the techniques currently used for metabolic phenotyping and describe key applications in the food sciences, ending with a broad outlook at some of the newer technologies in the field with a view to exploring their potential to address some of the critical challenges in nutritional science.
Collapse
Affiliation(s)
- J Brignardello
- Computational and Systems Medicine, Imperial College London, London, United Kingdom
| | - E Holmes
- Computational and Systems Medicine, Imperial College London, London, United Kingdom
| | - I Garcia-Perez
- Nutrition and Dietetic Research Group, Imperial College London, London, United Kingdom.
| |
Collapse
|
45
|
Nieman DC, Sha W, Pappan KL. IL-6 Linkage to Exercise-Induced Shifts in Lipid-Related Metabolites: A Metabolomics-Based Analysis. J Proteome Res 2017; 16:970-977. [PMID: 27996272 DOI: 10.1021/acs.jproteome.6b00892] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabolomics profiling and bioinformatics technologies were used to determine the relationship between exercise-induced increases in IL-6 and lipid-related metabolites. Twenty-four male runners (age 36.5 ± 1.8 y) ran on treadmills to exhaustion (2.26 ± 0.01 h, 24.9 ± 1.3 km, 69.7 ± 1.9% VO2max). Vastus lateralis muscle biopsy and blood samples were collected before and immediately after running and showed a 33.7 ± 4.2% decrease in muscle glycogen, 39.0 ± 8.8-, 2.4 ± 0.3-, and 1.4 ± 0.1-fold increases in plasma IL-6, IL-8, and MCP-1, respectively, and 95.0 ± 18.9 and 158 ± 20.6% increases in cortisol and epinephrine, respectively (all, P < 0.001). The metabolomics analysis revealed changes in 209 metabolites, especially long- and medium-chain fatty acids, fatty acid oxidation products (dicarboxylate and monohydroxy fatty acids, acylcarnitines), and ketone bodies. OPLS-DA modeling supported a strong separation in pre- and post-exercise samples (R2Y = 0.964, Q2Y = 0.902). OPLSR analysis failed to produce a viable model for the relationship between IL-6 and all lipid-related metabolites (R2Y = 0.76, Q2Y = -0.0748). Multiple structure equation models were evaluated based on IL-6, with the best-fit pathway model showing a linkage of exercise time to IL-6, then carnitine, and 13-methylmyristic acid (a marker for adipose tissue lipolysis) and sebacate. These metabolomics-based data indicate that the increase in plasma IL-6 after long endurance running has a minor relationship to increases in lipid-related metabolites.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Appalachian State University , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Wei Sha
- Bioinformatics Services Division, University of North Carolina at Charlotte , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Kirk L Pappan
- Metabolon, Inc. , Durham, North Carolina 27713, United States
| |
Collapse
|
46
|
Rangel-Huerta OD, Aguilera CM, Perez-de-la-Cruz A, Vallejo F, Tomas-Barberan F, Gil A, Mesa MD. A serum metabolomics-driven approach predicts orange juice consumption and its impact on oxidative stress and inflammation in subjects from the BIONAOS study. Mol Nutr Food Res 2016; 61. [DOI: 10.1002/mnfr.201600120] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Oscar D. Rangel-Huerta
- Department of Biochemistry and Molecular Biology II; Institute of Nutrition and Food Technology “José Mataix”; Centre for Biomedical Research; University of Granada; Granada Spain
| | - Concepcion M. Aguilera
- Department of Biochemistry and Molecular Biology II; Institute of Nutrition and Food Technology “José Mataix”; Centre for Biomedical Research; University of Granada; Granada Spain
| | - Antonio Perez-de-la-Cruz
- University Hospital Virgen de las Nieves, Granada; Centre for Biomedical Research; University of Granada; Granada Spain
| | - Fernando Vallejo
- Research Group on Quality, Safety, and Bioactivity of Plant Foods; Department of Food Science and Technology; Center for Soil Science and Applied Biology Segura-Superior Council for Scientific Research (CEBAS-CSIC); Campus de Espinardo; Murcia Spain
| | - Francisco Tomas-Barberan
- Research Group on Quality, Safety, and Bioactivity of Plant Foods; Department of Food Science and Technology; Center for Soil Science and Applied Biology Segura-Superior Council for Scientific Research (CEBAS-CSIC); Campus de Espinardo; Murcia Spain
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II; Institute of Nutrition and Food Technology “José Mataix”; Centre for Biomedical Research; University of Granada; Granada Spain
| | - Maria D. Mesa
- Department of Biochemistry and Molecular Biology II; Institute of Nutrition and Food Technology “José Mataix”; Centre for Biomedical Research; University of Granada; Granada Spain
| |
Collapse
|
47
|
Zhu Y, Wang P, Sha W, Sang S. Urinary Biomarkers of Whole Grain Wheat Intake Identified by Non-targeted and Targeted Metabolomics Approaches. Sci Rep 2016; 6:36278. [PMID: 27805021 PMCID: PMC5090248 DOI: 10.1038/srep36278] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/13/2016] [Indexed: 01/08/2023] Open
Abstract
Mounting evidence suggests that whole grain (WG) intake plays an important role in chronic disease prevention. However, numerous human studies have failed to produce clear-cut conclusions on this topic. Here, a combination of non-targeted and targeted metabolomics approaches, together with kinetic studies, was used to investigate biomarkers of WG wheat intake and further explore the diet-disease associations. Via these integrated approaches, forty-one compounds were identified as the most discriminating endogenous metabolites after WG versus refined grain (RG) wheat bread consumption. The corresponding biological assessment of these endogenous changes suggests that, in contrast to RG consumption, WG wheat consumption may facilitate antioxidant defense systems and moderate the risk factors of cancer, cardiovascular diseases, and other chronic diseases. A panel of urinary markers consisting of seven alkylresorcinol metabolites and five benzoxazinoid derivatives as specific biomarkers, as well as five phenolic acid derivatives, was also established to cover multiple time points and longer time periods for correctly and objectively monitoring WG wheat intake. Through these findings, we have established a comprehensive biomarker pool to better assess WG wheat consumption, and to monitor the endogenous changes that are linked to health effects of WG wheat consumption.
Collapse
Affiliation(s)
- Yingdong Zhu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Pei Wang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Wei Sha
- Bioinformatics Services Division, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC, USA
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA
| |
Collapse
|
48
|
Shanely RA, Nieman DC, Perkins-Veazie P, Henson DA, Meaney MP, Knab AM, Cialdell-Kam L. Comparison of Watermelon and Carbohydrate Beverage on Exercise-Induced Alterations in Systemic Inflammation, Immune Dysfunction, and Plasma Antioxidant Capacity. Nutrients 2016; 8:nu8080518. [PMID: 27556488 PMCID: PMC4997430 DOI: 10.3390/nu8080518] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/12/2016] [Accepted: 08/18/2016] [Indexed: 02/08/2023] Open
Abstract
Consuming carbohydrate- and antioxidant-rich fruits during exercise as a means of supporting and enhancing both performance and health is of interest to endurance athletes. Watermelon (WM) contains carbohydrate, lycopene, l-citrulline, and l-arginine. WM may support exercise performance, augment antioxidant capacity, and act as a countermeasure to exercise-induced inflammation and innate immune changes. Trained cyclists (n = 20, 48 ± 2 years) participated in a randomized, placebo controlled, crossover study. Subjects completed two 75 km cycling time trials after either 2 weeks ingestion of 980 mL/day WM puree or no treatment. Subjects drank either WM puree containing 0.2 gm/kg carbohydrate or a 6% carbohydrate beverage every 15 min during the time trials. Blood samples were taken pre-study and pre-, post-, 1 h post-exercise. WM ingestion versus no treatment for 2-weeks increased plasma l-citrulline and l-arginine concentrations (p < 0.0125). Exercise performance did not differ between WM puree or carbohydrate beverage trials (p > 0.05), however, the rating of perceived exertion was greater during the WM trial (p > 0.05). WM puree versus carbohydrate beverage resulted in a similar pattern of increase in blood glucose, and greater increases in post-exercise plasma antioxidant capacity, l-citrulline, l-arginine, and total nitrate (all p < 0.05), but without differences in systemic markers of inflammation or innate immune function. Daily WM puree consumption fully supported the energy demands of exercise, and increased post-exercise blood levels of WM nutritional components (l-citrulline and l-arginine), antioxidant capacity, and total nitrate, but without an influence on post-exercise inflammation and changes in innate immune function.
Collapse
Affiliation(s)
- R Andrew Shanely
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
- Department of Health and Exercise Science, Appalachian State University, Boone, NC 28608, USA.
| | - David C Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
- Department of Health and Exercise Science, Appalachian State University, Boone, NC 28608, USA.
| | - Penelope Perkins-Veazie
- Plants for Human Health Institute, North Carolina State University, Department of Horticulture Science, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA.
| | - Dru A Henson
- Department of Biology, Appalachian State University, Boone, NC 28608, USA.
| | - Mary P Meaney
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
- Department of Health and Exercise Science, Appalachian State University, Boone, NC 28608, USA.
| | - Amy M Knab
- Kinesiology Department, Queens University of Charlotte, Charlotte, NC 28274, USA.
| | - Lynn Cialdell-Kam
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
49
|
Nieman DC, Meaney MP, John CS, Knagge KJ, Chen H. 9- and 13-Hydroxy-octadecadienoic acids (9+13 HODE) are inversely related to granulocyte colony stimulating factor and IL-6 in runners after 2h running. Brain Behav Immun 2016; 56:246-52. [PMID: 27018002 DOI: 10.1016/j.bbi.2016.03.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 11/19/2022] Open
Abstract
This study utilized a pro-inflammatory exercise mode to explore potential linkages between increases in 9- and 13-hydroxy-octadecadienoic acid (9+13 HODE) and biomarkers for inflammation, oxidative stress, and muscle damage. Male (N=10) and female (N=10) runners ran at ∼70% VO2max for 1.5h followed by 30min of downhill running (-10%). Blood samples were taken pre-run and immediately-, 1-h-, and 24-h post-run, and analyzed for 9+13 HODE, F2-isoprostanes, six cytokines, C-reactive protein (CRP), creatine kinase (CK), and myoglobin (MYO). Gender groups performed at comparable relative heart rate and oxygen consumption levels during the 2-h run. All outcome measures increased post-run (time effects, P⩽0.001), with levels near pre-run levels by 24h except for CRP, CK, MYO, and delayed onset of muscle soreness (DOMS). Plasma 9+13 HODE increased 314±38.4% post-run (P<0.001), 77.3±15.8% 1-h post-run (P<0.001), and 40.6±16.4% 24-h post-exercise (P=0.024), and F2-isoprostanes increased 50.8±8.9% post-run (P<0.001) and 19.0±5.3% 1-h post-run (P=0.006). Post-run increases were comparable between genders for all outcomes except for 9+13 HODE (interaction effect, P=0.024, post-run tending higher in females), IL-10 (P=0.006, females lower), and DOMS (P=0.029, females lower). The pre-to-post-run increase in 9+13 HODEs was not related to other outcomes except for plasma granulocyte colony stimulating factor (GCSF) (r=-0.710, P<0.001) and IL-6 (r=-0.457, P=0.043). Within the context of this study, exercise-induced increases in 9+13 HODEs tended higher in females, and were not related to increases in F2-isoprostanes, muscle damage, or soreness. The negative relationships to GCSF and IL-6 suggest a linkage between 9+13 HODES and exercise-induced neutrophil chemotaxis, degranulation, and inflammation.
Collapse
Affiliation(s)
- David C Nieman
- Appalachian State University, North Carolina Research Campus, Kannapolis, NC, United States.
| | - Mary Pat Meaney
- Appalachian State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Casey S John
- Appalachian State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Kevin J Knagge
- Analytical Sciences, David H. Murdock Research Institute, Kannapolis, NC, United States
| | - Huiyuan Chen
- Analytical Sciences, David H. Murdock Research Institute, Kannapolis, NC, United States
| |
Collapse
|