1
|
Smith RA, Omar AM, Mulani FA, Zhang Q. OzNOxESI: A Novel Mass Spectrometry Ion Chemistry for Elucidating Lipid Double-Bond Regioisomerism in Complex Mixtures. Anal Chem 2025. [PMID: 39817428 DOI: 10.1021/acs.analchem.4c05940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Double bond (C═C) position isomerism in unsaturated lipids can indicate abnormal lipid metabolism and pathological conditions. Novel chemical derivatization and mass spectrometry-based techniques are under continuing development to provide more accurate elucidation of lipid structure in finer structural detail. Here, we introduce a new ion chemistry for annotating lipid C═C positions, which is highly efficient for liquid chromatography-mass spectrometry-based lipidomics. This ion chemistry relies on the online derivatization of lipid C═C with ozone and nitrogen oxides upon fragmentation by tandem mass spectrometry, yielding characteristic product ions capable of unambiguously annotating C═C regioisomers. The new workflow was thoroughly evaluated with various glycerophospholipids and fatty acids and applied to human plasma lipid extract, successfully identified and quantified 270 glycerophospholipid and 36 fatty acid C═C isomers with an in-house developed software, OzNOx Companion, for automated data analysis.
Collapse
Affiliation(s)
- Ryan A Smith
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, North Carolina 28081, United States
| | - Ashraf M Omar
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, North Carolina 28081, United States
| | - Fayaj A Mulani
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, North Carolina 28081, United States
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, North Carolina 28081, United States
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
2
|
Schwarz AN, Züllig T, Schicher M, Wagner FS, Rechberger GN. Securing food authenticity by translating triacylglycerol profiles of edible oils into a versatile identification method for pumpkin seed oil adulteration. Food Chem 2025; 463:141467. [PMID: 39426242 DOI: 10.1016/j.foodchem.2024.141467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Edible plant oils provide a crucial source of lipids for human nutrition. Owing to the complex processing of some high-quality variants, including Styrian pumpkin seed oil, edible plant oils have become susceptible to food fraud by adulteration with cheaper vegetable oils, compromising both authenticity and quality. To address this issue, a workflow was developed utilizing QTOF-MS/MS to search for triacylglycerol markers indicative of adulteration and subsequently adapted them for routine analysis using triple quadrupole MS/MS. By developing a transparent classification system utilizing a multi-feature triacylglycerol panel, reliable detection of adulteration down to 3 % (w/w) is possible. Calculating ratios of selected markers and establishing intervals derived from pure oils further enables easy scalability to adjust marker ratios and ensure robustness against permanent or seasonal changes. Our work aims to make advances towards a rapid and accurate detection of oil adulteration in food industry, crucial for maintaining customer trust and safety.
Collapse
Affiliation(s)
- Andreas N Schwarz
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria; Institut Dr. Wagner Lebensmittel Analytik GmbH, Roemerstrasse 19, 8403 Lebring, Austria.
| | - Thomas Züllig
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria.
| | - Maximilian Schicher
- Institut Dr. Wagner Lebensmittel Analytik GmbH, Roemerstrasse 19, 8403 Lebring, Austria.
| | - Franz S Wagner
- Institut Dr. Wagner Lebensmittel Analytik GmbH, Roemerstrasse 19, 8403 Lebring, Austria.
| | - Gerald N Rechberger
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria; Field of Excellence BioHealth-University of Graz, Universitaetsplatz 3, 8010 Graz, Austria.
| |
Collapse
|
3
|
Lange M, Wölk M, Doubravsky CE, Hendricks JM, Kato S, Otoki Y, Styler B, Nakagawa K, Fedorova M, Olzmann JA. FSP1-mediated lipid droplet quality control prevents neutral lipid peroxidation and ferroptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631537. [PMID: 39829838 PMCID: PMC11741373 DOI: 10.1101/2025.01.06.631537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Lipid droplets (LDs) are organelles that store and supply lipids based on cellular needs. While mechanisms preventing oxidative damage to membrane phospholipids are established, the vulnerability of LD neutral lipids to peroxidation and protective mechanisms are unknown. Here, we identify LD-localized Ferroptosis Suppressor Protein 1 (FSP1) as a critical regulator that prevents neutral lipid peroxidation by recycling coenzyme Q10 (CoQ10) to its lipophilic antioxidant form. Lipidomics reveal that FSP1 loss leads to the accumulation of oxidized triacylglycerols and cholesteryl esters, and biochemical reconstitution of FSP1 with CoQ10 and NADH suppresses triacylglycerol peroxidation in vitro . Notably, polyunsaturated fatty acid (PUFA)-rich triacylglycerols enhance cancer cell sensitivity to FSP1 loss and inducing PUFA-rich LDs triggers triacylglycerol peroxidation and LD-initiated ferroptosis when FSP1 activity is impaired. These findings uncover the first LD lipid quality control pathway, wherein LD-localized FSP1 maintains neutral lipid integrity to prevent the buildup of oxidized lipids and induction of ferroptosis.
Collapse
|
4
|
Youhanna S, Kemas AM, Wright SC, Zhong Y, Klumpp B, Klein K, Motso A, Michel M, Ziegler N, Shang M, Sabatier P, Kannt A, Sheng H, Oliva‐Vilarnau N, Büttner FA, Seashore‐Ludlow B, Schreiner J, Windbergs M, Cornillet M, Björkström NK, Hülsmeier AJ, Hornemann T, Olsen JV, Wang Y, Gramignoli R, Sundström M, Lauschke VM. Chemogenomic Screening in a Patient-Derived 3D Fatty Liver Disease Model Reveals the CHRM1-TRPM8 Axis as a Novel Module for Targeted Intervention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407572. [PMID: 39605182 PMCID: PMC11744578 DOI: 10.1002/advs.202407572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Indexed: 11/29/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a leading cause of chronic liver disease with few therapeutic options. To narrow the translational gap in the development of pharmacological MASH treatments, a 3D liver model from primary human hepatocytes and non-parenchymal cells derived from patients with histologically confirmed MASH was established. The model closely mirrors disease-relevant endpoints, such as steatosis, inflammation and fibrosis, and multi-omics analyses show excellent alignment with biopsy data from 306 MASH patients and 77 controls. By combining high-content imaging with scalable biochemical assays and chemogenomic screening, multiple novel targets with anti-steatotic, anti-inflammatory, and anti-fibrotic effects are identified. Among these, activation of the muscarinic M1 receptor (CHRM1) and inhibition of the TRPM8 cation channel result in strong anti-fibrotic effects, which are confirmed using orthogonal genetic assays. Strikingly, using biosensors based on bioluminescence resonance energy transfer, a functional interaction along a novel MASH signaling axis in which CHRM1 inhibits TRPM8 via Gq/11 and phospholipase C-mediated depletion of phosphatidylinositol 4,5-bisphosphate can be demonstrated. Combined, this study presents the first patient-derived 3D MASH model, identifies a novel signaling module with anti-fibrotic effects, and highlights the potential of organotypic culture systems for phenotype-based chemogenomic drug target identification at scale.
Collapse
|
5
|
Hernandes VV, Warth B. Modular, Scalable, and Customizable LC-HRMS for Exposomics. Methods Mol Biol 2025; 2855:41-66. [PMID: 39354300 DOI: 10.1007/978-1-0716-4116-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
In this chapter, we describe a multi-purpose, reversed-phase liquid chromatography-high-resolution mass spectrometry (LC-HRMS) workflow for acquiring high-quality, non-targeted exposomics data utilizing data-dependent acquisition (DDA) combined with the use of toxicant inclusion lists for semi-targeted analysis. In addition, we describe expected retention times for >160 highly diverse xenobiotics in human plasma and serum samples. The method described is intended to serve as a generic LC-HRMS exposomics workflow for research and educational purposes. Moreover, it may be employed as a primer, allowing for further adaptations according to specialized research needs, e.g., by including reference and/or internal standards, by expanding to data-independent acquisition (DIA), or by modifying the list of compounds prioritized in fragmentation experiments (MS2).
Collapse
Affiliation(s)
- Vinicius Verri Hernandes
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Exposome Austria, Research Infrastructure and National EIRENE Node, Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria.
- Exposome Austria, Research Infrastructure and National EIRENE Node, Vienna, Austria.
| |
Collapse
|
6
|
Odenkirk MT, Jostes HC, Francis K, Baker ES. Lipidomics Reveals Cell Specific Changes During Pluripotent Differentiation to Neural and Mesodermal Lineages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630916. [PMID: 39803501 PMCID: PMC11722439 DOI: 10.1101/2024.12.31.630916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Due to their self-renewal and differentiation capabilities, pluripotent stem cells hold immense potential for advancing our understanding of human disease and developing cell-based or pharmacological interventions. Realizing this potential, however, requires a thorough understanding of the basal cellular mechanisms which occur during differentiation. Lipids are critical molecules that define the morphological, biochemical, and functional role of cells. This, combined with emerging evidence linking lipids to neurodegeneration, cardiovascular health, and other diseases, makes lipids a critical class of analytes to assess normal and abnormal cellular processes. While previous work has examined the lipid composition of stem cells, uncertainties remain about which changes are conserved and which are unique across distinct cell types. In this study, we investigated lipid alterations of induced pluripotent stem cells (iPSCs) at critical stages of differentiation toward neural or mesodermal fates. Lipdiomic analyses of distinct differentiation stages were completed using a platform coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) separations. Results illustrated a shared triacylglyceride and free fatty acid accumulation in early iPSCs that were utilized at different stages of differentiation. Unique fluctuations through differentiation were also observed for certain phospholipid classes, sphingomyelins and ceramides. These insights into lipid fluctuations across iPSC differentiation enhance our fundamental understanding of lipid metabolism within pluripotent stem cells and during differentiation, while also paving the way for a more precise and effective application of pluripotent stem cells in human disease interventions.
Collapse
Affiliation(s)
| | - Haley C. Jostes
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kevin Francis
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, SD
| | - Erin S. Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
7
|
Hülsmeier AJ, Gunasegaram L, Wipfli F, Lone MA, Hornemann T. Long Chain Base Profiling with Multiple Reaction Monitoring Mass Spectrometry. Methods Mol Biol 2025; 2855:209-223. [PMID: 39354311 DOI: 10.1007/978-1-0716-4116-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Sphingolipids (SLs) are essential lipids with important functions in membrane formation and cell signaling. The presence of a long chain base (LCB) structure is common to all SLs. De novo SL synthesis is initiated by the enzyme serine-palmitoyltransferase (SPT), which forms an LCB by the conjugation from serine and fatty acyl-CoAs. SPT can metabolize a variety of acyl-CoA substrates, which form diverse LCB structures within and across species. The LCB then undergoes further metabolic modifications resulting in an extraordinarily diverse spectrum of sphingolipids formed. SL analysis, using liquid chromatography-mass spectrometry (LC-MS)-based methods, poses challenges due to the diverse range of frequently isobaric species. This complexity complicates the identification of underlying LCB structures using standard lipidomics approaches. Here, we describe a simplified method to analyze the LCB profile in cells, tissue, and blood. The procedure involves chemical hydrolysis to remove the conjugated headgroups and N-acyl chains, allowing to specifically resolve the underlying LCB structures by LC-MS. This method can also be combined with an isotope labeling approach to determine in vivo SPT activity and total SL de novo synthesis over time.
Collapse
Affiliation(s)
- Andreas J Hülsmeier
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Lavanya Gunasegaram
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Florine Wipfli
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Museer A Lone
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Csengo E, Lorincz H, Csosz E, Guba A, Karai B, Toth J, Csiha S, Paragh G, Harangi M, Nagy GG. Newly Initiated Statin Treatment Is Associated with Decreased Plasma Coenzyme Q10 Level After Acute ST-Elevation Myocardial Infarction. Int J Mol Sci 2024; 26:106. [PMID: 39795963 PMCID: PMC11720258 DOI: 10.3390/ijms26010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Coenzyme Q10 (CoQ10) plays a crucial role in facilitating electron transport during oxidative phosphorylation, thus contributing to cellular energy production. Statin treatment causes a decrease in CoQ10 levels in muscle tissue as well as in serum, which may contribute to the musculoskeletal side effects. Therefore, we aimed to assess the effect of newly initiated statin treatment on serum CoQ10 levels after acute ST-elevation myocardial infarction (STEMI) and the correlation of CoQ10 levels with key biomarkers of subclinical or clinically overt myopathy. In this study, we enrolled 67 non-diabetic, statin-naïve early-onset STEMI patients with preserved renal function. Plasma CoQ10 level was determined by ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC/MS-MS), while the myopathy marker serum fatty acid-binding protein 3 (FABP3) level was measured with enzyme-linked immunosorbent assay (ELISA) at hospital admission and after 3 months of statin treatment. The treatment significantly decreased the plasma CoQ10 (by 43%) and FABP3 levels (by 79%) as well as total cholesterol, low-density lipoprotein cholesterol (LDL-C), apolipoprotein B100 (ApoB100), and oxidized LDL (oxLDL) levels. The change in CoQ10 level showed significant positive correlations with the changes in total cholesterol, LDL-C, ApoB100, and oxLDL levels, while it did not correlate with the change in FABP3 level. Our results prove the CoQ10-reducing effect of statin treatment and demonstrate its lipid-lowering efficacy but contradict the role of CoQ10 reduction in statin-induced myopathy.
Collapse
Affiliation(s)
- Erika Csengo
- Centre of Cardiovascular Diseases and Internal Medicine, Borsod-Abauj-Zemplen County Central Hospital and University Teaching Hospital, Szentpéteri kapu 72-76, 3526 Miskolc, Hungary
| | - Hajnalka Lorincz
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Eva Csosz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Andrea Guba
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Bettina Karai
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Judit Toth
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Sara Csiha
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Gyorgy Paragh
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Mariann Harangi
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, Kassai út 26, 4032 Debrecen, Hungary
| | - Gergely Gyorgy Nagy
- Centre of Cardiovascular Diseases and Internal Medicine, Borsod-Abauj-Zemplen County Central Hospital and University Teaching Hospital, Szentpéteri kapu 72-76, 3526 Miskolc, Hungary
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| |
Collapse
|
9
|
Heininen J, Movahedi P, Kotiaho T, Kostiainen R, Pahikkala T, Teppo J. Targeted and Untargeted Amine Metabolite Quantitation in Single Cells with Isobaric Multiplexing. Chemistry 2024; 30:e202403278. [PMID: 39422672 DOI: 10.1002/chem.202403278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
We developed a single cell amine analysis approach utilizing isobarically multiplexed samples of 6 individual cells along with analyte abundant carrier. This methodology was applied for absolute quantitation of amino acids and untargeted relative quantitation of amines in a total of 108 individual cells using nanoflow LC with high-resolution mass spectrometry. Together with individually determined cell sizes, this provides accessible quantification of intracellular amino acid concentrations within individual cells. The targeted method was partially validated for 10 amino acids with limits of detection in low attomoles, linear calibration range covering analyte amounts typically from 30 amol to 120 fmol, and correlation coefficients (R) above 0.99. This was applied with cell sizes recorded during dispensing to determine millimolar intracellular amino acid concentrations. The untargeted approach yielded 249 features that were detected in at least 25 % of the single cells, providing modest cell type separation on principal component analysis. Using Greedy forward selection with regularized least squares, a sub-selection of 100 features explaining most of the difference was determined. These features were annotated using MS2 from analyte standards and accurate mass with library search. The approach provides accessible, sensitive, and high-throughput method with the potential to be expanded also to other forms of ultrasensitive analysis.
Collapse
Affiliation(s)
- Juho Heininen
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Parisa Movahedi
- Department of Computing, Turku University, 20014, Turku, Finland
| | - Tapio Kotiaho
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, FI-00014, Helsinki, Finland
| | - Risto Kostiainen
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Tapio Pahikkala
- Department of Computing, Turku University, 20014, Turku, Finland
| | - Jaakko Teppo
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| |
Collapse
|
10
|
Bandyopadhyay D, Tran ET, Patel RA, Luetzen MA, Cho K, Shriver LP, Patti GJ, Varvares MA, Ford DA, McCommis KS, Ray RB. Momordicine-I suppresses head and neck cancer growth by modulating key metabolic pathways. Cell Commun Signal 2024; 22:597. [PMID: 39696286 DOI: 10.1186/s12964-024-01951-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
One of the hallmarks of cancer is metabolic reprogramming which controls cellular homeostasis and therapy resistance. Here, we investigated the effect of momordicine-I (M-I), a key bioactive compound from Momordica charantia (bitter melon), on metabolic pathways in human head and neck cancer (HNC) cells and a mouse HNC tumorigenicity model. We found that M-I treatment on HNC cells significantly reduced the expression of key glycolytic molecules, SLC2A1 (GLUT-1), HK1, PFKP, PDK3, PKM, and LDHA at the mRNA and protein levels. We further observed reduced lactate accumulation, suggesting glycolysis was perturbed in M-I treated HNC cells. Metabolomic analyses confirmed a marked reduction in glycolytic and TCA cycle metabolites in M-I-treated cells. M-I treatment significantly downregulated mRNA and protein expression of essential enzymes involved in de novo lipogenesis, including ACLY, ACC1, FASN, SREBP1, and SCD1. Using shotgun lipidomics, we found a significant increase in lysophosphatidylcholine and phosphatidylcholine loss in M-I treated cells. Subsequently, we observed dysregulation of mitochondrial membrane potential and significant reduction of mitochondrial oxygen consumption after M-I treatment. We further observed M-I treatment induced autophagy, activated AMPK and inhibited mTOR and Akt signaling pathways and leading to apoptosis. However, blocking autophagy did not rescue the M-I-mediated alterations in lipogenesis, suggesting an independent mechanism of action. M-I treated mouse HNC MOC2 cell tumors displayed reduced Hk1, Pdk3, Fasn, and Acly expression. In conclusion, our study revealed that M-I inhibits glycolysis, lipid metabolism, induces autophagy in HNC cells and reduces tumor volume in mice. Therefore, M-I-mediated metabolic reprogramming of HNC has the potential for important therapeutic implications.
Collapse
Affiliation(s)
- Debojyoty Bandyopadhyay
- Department of Pathology, Saint Louis University, 1100 South Grand Boulevard, St. Louis, MO, 63104, USA
| | - Ellen T Tran
- Department of Pathology, Saint Louis University, 1100 South Grand Boulevard, St. Louis, MO, 63104, USA
| | - Ruchi A Patel
- Department of Pathology, Saint Louis University, 1100 South Grand Boulevard, St. Louis, MO, 63104, USA
| | - Matthew A Luetzen
- Biochemistry & Molecular Biology, Saint Louis University, St. Louis, MO, USA
| | - Kevin Cho
- Department of Chemistry and Medicine, Washington University, St. Louis, MO, USA
- Center of Mass Spectrometry and Metabolic Tracing, Washington University, St. Louis, MO, USA
| | - Leah P Shriver
- Department of Chemistry and Medicine, Washington University, St. Louis, MO, USA
- Center of Mass Spectrometry and Metabolic Tracing, Washington University, St. Louis, MO, USA
| | - Gary J Patti
- Department of Chemistry and Medicine, Washington University, St. Louis, MO, USA
- Center of Mass Spectrometry and Metabolic Tracing, Washington University, St. Louis, MO, USA
| | - Mark A Varvares
- Department of Otolaryngology, Head and Neck Surgery, Harvard Medical School, Massachusetts Eye and Ear, Boston, MA, USA
| | - David A Ford
- Biochemistry & Molecular Biology, Saint Louis University, St. Louis, MO, USA
| | - Kyle S McCommis
- Biochemistry & Molecular Biology, Saint Louis University, St. Louis, MO, USA
| | - Ratna B Ray
- Department of Pathology, Saint Louis University, 1100 South Grand Boulevard, St. Louis, MO, 63104, USA.
| |
Collapse
|
11
|
Cheng H, Miller D, Southwell N, Porcari P, Fischer JL, Taylor I, Michael Salbaum J, Kappen C, Hu F, Yang C, Keshari KR, Gross SS, D'Aurelio M, Chen Q. Untargeted Pixel-by-Pixel Imaging of Metabolite Ratio Pairs as a Novel Tool for Biomedical Discovery in Mass Spectrometry Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575105. [PMID: 38370710 PMCID: PMC10871215 DOI: 10.1101/2024.01.10.575105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.
Collapse
|
12
|
Anh NK, Thu NQ, Tien NTN, Long NP, Nguyen HT. Advancements in Mass Spectrometry-Based Targeted Metabolomics and Lipidomics: Implications for Clinical Research. Molecules 2024; 29:5934. [PMID: 39770023 PMCID: PMC11677340 DOI: 10.3390/molecules29245934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Targeted metabolomics and lipidomics are increasingly utilized in clinical research, providing quantitative and comprehensive assessments of metabolic profiles that underlie physiological and pathological mechanisms. These approaches enable the identification of critical metabolites and metabolic alterations essential for accurate diagnosis and precision treatment. Mass spectrometry, in combination with various separation techniques, offers a highly sensitive and specific platform for implementing targeted metabolomics and lipidomics in clinical settings. Nevertheless, challenges persist in areas such as sample collection, quantification, quality control, and data interpretation. This review summarizes recent advances in targeted metabolomics and lipidomics, emphasizing their applications in clinical research. Advancements, including microsampling, dynamic multiple reaction monitoring, and integration of ion mobility mass spectrometry, are highlighted. Additionally, the review discusses the critical importance of data standardization and harmonization for successful clinical implementation.
Collapse
Affiliation(s)
- Nguyen Ky Anh
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Nguyen Quang Thu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea (N.P.L.)
| | - Nguyen Tran Nam Tien
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea (N.P.L.)
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea (N.P.L.)
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| |
Collapse
|
13
|
Solosky AM, Claudio IM, Chappel JR, Kirkwood-Donelson KI, Janech MG, Bland AM, Gulland FMD, Neely BA, Baker ES. Proteomic and Lipidomic Plasma Evaluations Reveal Biomarkers for Domoic Acid Toxicosis in California Sea Lions. J Proteome Res 2024; 23:5577-5585. [PMID: 39582169 DOI: 10.1021/acs.jproteome.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Domoic acid is a neurotoxin secreted by the marine diatom genus Pseudo-nitzschia during toxic algal bloom events. California sea lions (Zalophus californianus) are exposed to domoic acid through the ingestion of fish that feed on toxic diatoms, resulting in domoic acid toxicosis (DAT), which can vary from mild to fatal. Sea lions with mild disease can be treated if toxicosis is detected early after exposure. Therefore, rapid diagnosis of DAT is essential but also challenging. In this work, we performed multiomics analyses, specifically proteomic and lipidomic, on blood samples from 31 California sea lions. Fourteen sea lions were diagnosed with DAT based on clinical signs and post-mortem histological examination of brain tissue, and 17 had no evidence of DAT. Proteomic analyses revealed 31 statistically significant proteins in the DAT individuals compared to the non-DAT individuals (adjusted p < 0.05). Of these proteins, 19 were decreased in the DAT group of which three were apolipoproteins that are known to transport lipids in the blood, prompting lipidomic analyses. In the lipidomic analyses, 331 lipid species were detected with high confidence and multidimensional separations, and 29 were found to be statistically significant (adjusted p < 0.05 and log2(FC) < -1 or >1) in the DAT versus non-DAT comparison. Of these, 28 were lower in the DAT individuals, while only 1 was higher. Furthermore, 15 of the 28 lower concentration lipids were triglycerides, illustrating their putative connection with the perturbed apolipoproteins and potential use in rapid DAT diagnoses.
Collapse
Affiliation(s)
- Amie M Solosky
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Iliana M Claudio
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jessie R Chappel
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Kaylie I Kirkwood-Donelson
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, United States
| | - Michael G Janech
- Department of Biology, College of Charleston, Charleston, South Carolina 29412, United States
| | - Alison M Bland
- Department of Biology, College of Charleston, Charleston, South Carolina 29412, United States
| | - Frances M D Gulland
- Wildlife Health Center, University of California, Davis, California 95616, United States
| | - Benjamin A Neely
- Chemical Sciences Division, National Institute of Standards and Technology, Charleston, South Carolina 29412, United States
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
14
|
Jager J, Rasker S, Arrizabalaga-Larrañaga A, Boerrigter-Eenling R, Rapallini M, Blokland M. Rapid identification of antibiotic residues in bovine kidney using coated blade spray-mass spectrometry. Anal Bioanal Chem 2024; 416:7031-7041. [PMID: 39438354 PMCID: PMC11579169 DOI: 10.1007/s00216-024-05605-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The use of certain antibiotics in food-producing animals is allowed in Europe following Regulation (EU) 2017/625. However, use could result in antibiotic residues in foodstuffs of animal origin. Maximum residue limits (MRLs) are in place to protect consumers. For monitoring purposes, animal matrices are tested to verify their compliance with these MRLs. Initially, matrices of (slaughtered) food animals are screened, often using a microbiological assay. Faster screening tests for antibiotics would be an advantage for control laboratories. Therefore, the present study describes, for the first time, the use of coated blade spray (CBS) followed by direct mass spectrometry (MS) analysis for the screening of tetracyclines, sulfonamides, quinolones, and macrolides residues from the renal area of intact bovine kidneys. An optimized workflow using two different desorption/ionization solutions per blade allowed screening of target compounds within 1 min per sample. The proof-of-principle of the CBS-MS method is validated according to (EU) 2021/808, presenting CCβ screening values of 0.1 × MRL for 43 analytes, 0.5 × MRL for 4 analytes, and 2.5 µg kg-1 for the prohibited substance dapsone, respectively. The developed method was successfully applied to seven official control samples of bovine kidneys. One of these samples was found to be positive using the CBS-MS method, which was confirmed as a true positive by LC-MSMS analysis. The developed method demonstrates that CBS devices can directly extract and analyze kidney samples for food safety testing.
Collapse
Affiliation(s)
- Josha Jager
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6700 AE, Wageningen, The Netherlands.
| | - Sjors Rasker
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6700 AE, Wageningen, The Netherlands
| | - Ane Arrizabalaga-Larrañaga
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6700 AE, Wageningen, The Netherlands
| | - Rita Boerrigter-Eenling
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6700 AE, Wageningen, The Netherlands
| | - Michel Rapallini
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6700 AE, Wageningen, The Netherlands
| | - Marco Blokland
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6700 AE, Wageningen, The Netherlands
| |
Collapse
|
15
|
Li Z, Leeming MG, Hastie M, Frank D, Ha M, Warner RD. Targeted-metabolomic and untargeted-proteomic approaches reveal the effects of muscle fibre type and postmortem ageing on taste-active compounds in beef. Food Chem 2024; 460:140506. [PMID: 39053267 DOI: 10.1016/j.foodchem.2024.140506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/29/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
The taste of beef is caused by taste-active compounds detected in the mouth during mastication. We hypothesised that the concentration of taste-active compounds in beef is influenced by muscle-fibre-type and postmortem ageing. To test this, and unravel the underlying mechanisms, we investigated the taste-active compounds, and proteomic profiles, in beef masseter [oxidative muscle, all type I fibres) and cutaneous trunci (glycolytic muscle, mostly type II fibres) before and after 14-days postmortem ageing. Our results showed that nucleotides were initially higher and degraded slower in cutaneous trunci (P < 0.05 for both), which could be explained by the profile of nucleotide metabolism enzymes. In contrast, free amino acids were initially higher and increased more in masseter compared to cutaneous trunci (P < 0.05 for all), which might be explained by the profile and activity of proteases in these two muscles. Our results indicate the taste of beef is affected by the muscle-fibre-type and postmortem ageing.
Collapse
Affiliation(s)
- Zhenzhao Li
- Faculty of Science, The University of Melbourne, Australia
| | | | | | | | - Minh Ha
- Faculty of Science, The University of Melbourne, Australia
| | - Robyn D Warner
- Faculty of Science, The University of Melbourne, Australia.
| |
Collapse
|
16
|
Fowle-Grider R, Rowles JL, Shen I, Wang Y, Schwaiger-Haber M, Dunham AJ, Jayachandran K, Inkman M, Zahner M, Naser FJ, Jackstadt MM, Spalding JL, Chiang S, McCommis KS, Dolle RE, Kramer ET, Zimmerman SM, Souroullas GP, Finck BN, Shriver LP, Kaufman CK, Schwarz JK, Zhang J, Patti GJ. Dietary fructose enhances tumour growth indirectly via interorgan lipid transfer. Nature 2024; 636:737-744. [PMID: 39633044 DOI: 10.1038/s41586-024-08258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/21/2024] [Indexed: 12/07/2024]
Abstract
Fructose consumption has increased considerably over the past five decades, largely due to the widespread use of high-fructose corn syrup as a sweetener1. It has been proposed that fructose promotes the growth of some tumours directly by serving as a fuel2,3. Here we show that fructose supplementation enhances tumour growth in animal models of melanoma, breast cancer and cervical cancer without causing weight gain or insulin resistance. The cancer cells themselves were unable to use fructose readily as a nutrient because they did not express ketohexokinase-C (KHK-C). Primary hepatocytes did express KHK-C, resulting in fructolysis and the excretion of a variety of lipid species, including lysophosphatidylcholines (LPCs). In co-culture experiments, hepatocyte-derived LPCs were consumed by cancer cells and used to generate phosphatidylcholines, the major phospholipid of cell membranes. In vivo, supplementation with high-fructose corn syrup increased several LPC species by more than sevenfold in the serum. Administration of LPCs to mice was sufficient to increase tumour growth. Pharmacological inhibition of ketohexokinase had no direct effect on cancer cells, but it decreased circulating LPC levels and prevented fructose-mediated tumour growth in vivo. These findings reveal that fructose supplementation increases circulating nutrients such as LPCs, which can enhance tumour growth through a cell non-autonomous mechanism.
Collapse
Affiliation(s)
- Ronald Fowle-Grider
- Department of Chemistry, Washington University, St Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Joe L Rowles
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Isabel Shen
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Yahui Wang
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Michaela Schwaiger-Haber
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Alden J Dunham
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Kay Jayachandran
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Matthew Inkman
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Michael Zahner
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
- Division of Medical Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Fuad J Naser
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Madelyn M Jackstadt
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Jonathan L Spalding
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Sarah Chiang
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Kyle S McCommis
- Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Roland E Dolle
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Eva T Kramer
- Division of Medical Oncology, Washington University School of Medicine, St Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Sarah M Zimmerman
- Division of Medical Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - George P Souroullas
- Division of Medical Oncology, Washington University School of Medicine, St Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
| | - Brian N Finck
- Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Leah P Shriver
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Charles K Kaufman
- Division of Medical Oncology, Washington University School of Medicine, St Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Julie K Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jin Zhang
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
- Institute for Informatics, Data Science & Biostatistics (I2DB), Washington University School of Medicine, St Louis, MO, USA
| | - Gary J Patti
- Department of Chemistry, Washington University, St Louis, MO, USA.
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA.
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
17
|
Korimerla N, Meghdadi B, Haq I, Wilder-Romans K, Xu J, Becker N, Zhu Z, Kalev P, Qi N, Evans C, Kachman M, Zhao Z, Lin A, Scott AJ, O'Brien A, Kothari A, Sajjakulnukit P, Zhang L, Palavalasa S, Peterson ER, Hyer ML, Marjon K, Sleger T, Morgan MA, Lyssiotis CA, Stone EM, Ferris SP, Lawrence TS, Nagrath D, Zhou W, Wahl DR. Reciprocal links between methionine metabolism, DNA repair and therapy resistance in glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624542. [PMID: 39651281 PMCID: PMC11623687 DOI: 10.1101/2024.11.20.624542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Glioblastoma (GBM) is uniformly lethal due to profound treatment resistance. Altered cellular metabolism is a key mediator of GBM treatment resistance. Uptake of the essential sulfur-containing amino acid methionine is drastically elevated in GBMs compared to normal cells, however, it is not known how this methionine is utilized or whether it relates to GBM treatment resistance. Here, we find that radiation acutely increases the levels of methionine-related metabolites in a variety of treatment-resistant GBM models. Stable isotope tracing studies further revealed that radiation acutely activates methionine to S-adenosyl methionine (SAM) conversion through an active signaling event mediated by the kinases of the DNA damage response. In vivo tumor SAM synthesis increases after radiation, while normal brain SAM production remains unchanged, indicating a tumor- specific metabolic alteration to radiation. Pharmacological and dietary strategies to block methionine to SAM conversion slowed DNA damage response and increased cell death following radiation in vitro. Mechanistically, these effects are due to depletion of DNA repair proteins and are reversed by SAM supplementation. These effects are selective to GBMs lacking the methionine salvage enzyme methylthioadenosine phosphorylase. Pharmacological inhibition of SAM synthesis hindered tumor growth in flank and orthotopic in vivo GBM models when combined with radiation. By contrast, methionine depletion does not reduce tumor SAM levels and fails to radiosensitize intracranial models, indicating depleting SAM, as opposed to simply lowering methionine, is critical for hindering tumor growth in intracranial models of GBM. These results highlight a new signaling link between DNA damage and SAM synthesis and define the metabolic fates of methionine in GBM in vivo . Inhibiting radiation-induced SAM synthesis slows DNA repair and augments radiation efficacy in GBM. Using MAT2A inhibitors to deplete SAM may selectively overcome treatment resistance in GBMs with defective methionine salvage while sparing normal brain.
Collapse
|
18
|
Wang L, Wang S, Anema JA, Moghaddam VA, Lu Y, Lin S, Daw EW, Kuipers AL, Miljkovic I, Brent M, Patti GJ, Thygarajan B, Zmuda JM, Province MA, An P. Novel loci for triglyceride/HDL-C ratio longitudinal change among subjects without T2D. J Lipid Res 2024; 66:100702. [PMID: 39557295 PMCID: PMC11699370 DOI: 10.1016/j.jlr.2024.100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/23/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024] Open
Abstract
Triglyceride (TG)/HDL-C ratio (THR) is a surrogate predictor of hyperinsulinemia. To identify novel genetic loci for THR change over time (ΔTHR), we conducted genome-wide association study (GWAS) and genome-wide linkage scan (GWLS) among nondiabetic Europeans from the Long Life Family Study (n = 1,384). Subjects with diabetes or on dyslipidemia medications were excluded. ΔTHR was derived using growth curve modeling and adjusted for age, sex, field centers, and principal components. GWAS used a linear mixed model accounting for familial relatedness. GWLS employed haplotype-based identity-by-descent estimation with 0.5 cM average spacing. Heritability of ΔTHR was moderate (46%). Our GWAS identified a significant locus at the LPL (P = 1.58e-9) for ΔTHR; this locus has been reported before influencing baseline THR levels. Our GWLS found significant linkage with a logarithm of the odds exceeding 3 on 3q28 (logarithm of the odds = 4.1). Using a subset of 25 linkage-enriched families, we assessed sequence elements under 3q28 and identified two novel variants (EIF4A2 [eukaryotic translation initiation factor 4A2]/ADIPOQ-rs114108468, p = 5e-6, minor allele frequency = 1.8%; TPRG1-rs16864075, p = 3e-6, minor allele frequency = 8%; accounted for ∼28% and ∼29% of the linkage, respectively). While the former variant was associated with EIF4A2 (p = 7e-5)/ADIPOQ (P = 3.49e-2) transcriptional levels, the latter variant was not associated with TPRG1 (P = 0.23) transcriptional levels. Replication in the Framingham Heart Study Offspring Cohort observed modest effect of these loci on ΔTHR. Our approach discovered two novel gene variants EIF4A2/ADIPOQ-rs114108468 and TPRG1-rs16864075 on 3q28 for ΔTHR among subjects without diabetes. Our findings provided novel insights into the molecular regulation of insulin resistance.
Collapse
Affiliation(s)
- Lihua Wang
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Siyu Wang
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason A Anema
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Vaha A Moghaddam
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yanli Lu
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Shiow Lin
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - E Warwick Daw
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Allison L Kuipers
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Iva Miljkovic
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Brent
- Division of Computation & Data Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Gary J Patti
- Department of Chemistry, Washington University School of Medicine, St. Louis, MO, USA
| | - Bharat Thygarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Joseph M Zmuda
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael A Province
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ping An
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
19
|
Tiwari A, Myeong J, Hashemiaghdam A, Stunault MI, Zhang H, Niu X, Laramie MA, Sponagel J, Shriver LP, Patti GJ, Klyachko VA, Ashrafi G. Mitochondrial pyruvate transport regulates presynaptic metabolism and neurotransmission. SCIENCE ADVANCES 2024; 10:eadp7423. [PMID: 39546604 PMCID: PMC11567002 DOI: 10.1126/sciadv.adp7423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Glucose has long been considered the primary fuel source for the brain. However, glucose levels fluctuate in the brain during sleep or circuit activity, posing major metabolic stress. Here, we demonstrate that the mammalian brain uses pyruvate as a fuel source, and pyruvate can support neuronal viability in the absence of glucose. Nerve terminals are sites of metabolic vulnerability, and we show that mitochondrial pyruvate uptake is a critical step in oxidative ATP production in hippocampal terminals. We find that the mitochondrial pyruvate carrier is post-translationally modified by lysine acetylation, which, in turn, modulates mitochondrial pyruvate uptake. Our data reveal that the mitochondrial pyruvate carrier regulates distinct steps in neurotransmission, namely, the spatiotemporal pattern of synaptic vesicle release and the efficiency of vesicle retrieval-functions that have profound implications for synaptic plasticity. In summary, we identify pyruvate as a potent neuronal fuel and mitochondrial pyruvate uptake as a critical node for the metabolic control of neurotransmission in hippocampal terminals.
Collapse
Affiliation(s)
- Anupama Tiwari
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jongyun Myeong
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Arsalan Hashemiaghdam
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marion I. Stunault
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hao Zhang
- Department of Chemistry, Department of Medicine, Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiangfeng Niu
- Department of Chemistry, Department of Medicine, Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, St. Louis, MO, USA
| | - Marissa A. Laramie
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jasmin Sponagel
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Leah P. Shriver
- Department of Chemistry, Department of Medicine, Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, St. Louis, MO, USA
| | - Gary J. Patti
- Department of Chemistry, Department of Medicine, Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, St. Louis, MO, USA
| | - Vitaly A. Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ghazaleh Ashrafi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
20
|
Zhang L, Zheng J, Johnson M, Mandal R, Cruz M, Martínez-Huélamo M, Andres-Lacueva C, Wishart DS. A Comprehensive LC-MS Metabolomics Assay for Quantitative Analysis of Serum and Plasma. Metabolites 2024; 14:622. [PMID: 39590858 PMCID: PMC11596266 DOI: 10.3390/metabo14110622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Targeted metabolomics is often criticized for the limited metabolite coverage that it offers. Indeed, most targeted assays developed or used by researchers measure fewer than 200 metabolites. In an effort to both expand the coverage and improve the accuracy of metabolite quantification in targeted metabolomics, we decided to develop a comprehensive liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay that could quantitatively measure more than 700 metabolites in serum or plasma. Methods: The developed assay makes use of chemical derivatization followed by reverse phase LC-MS/MS and/or direct flow injection MS (DFI-MS) in both positive and negative ionization modes to separate metabolites. Multiple reaction monitoring (MRM), in combination with isotopic standards and multi-point calibration curves, is used to detect and absolutely quantify the targeted metabolites. The assay has been adapted to a 96-well plate format to enable automated, high-throughput sample analysis. Results: The assay (called MEGA) is able to detect and quantify 721 metabolites in serum/plasma, covering 20 metabolite classes and many commonly used clinical biomarkers. The limits of detection were determined to range from 1.4 nM to 10 mM, recovery rates were from 80% to 120%, and quantitative precision was within 20%. LC-MS/MS metabolite concentrations of the NIST® SRM®1950 plasma standard were found to be within 15% of NMR quantified levels. The MEGA assay was further validated in a large dietary intervention study. Conclusions: The MEGA assay should make comprehensive quantitative metabolomics much more affordable, accessible, automatable, and applicable to large-scale clinical studies.
Collapse
Affiliation(s)
- Lun Zhang
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; (L.Z.); (J.Z.); (M.J.); (R.M.)
| | - Jiamin Zheng
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; (L.Z.); (J.Z.); (M.J.); (R.M.)
| | - Mathew Johnson
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; (L.Z.); (J.Z.); (M.J.); (R.M.)
| | - Rupasri Mandal
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; (L.Z.); (J.Z.); (M.J.); (R.M.)
| | - Meryl Cruz
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.C.); (M.M.-H.); (C.A.-L.)
| | - Miriam Martínez-Huélamo
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.C.); (M.M.-H.); (C.A.-L.)
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.C.); (M.M.-H.); (C.A.-L.)
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - David S. Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; (L.Z.); (J.Z.); (M.J.); (R.M.)
- Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
21
|
Varona M, Dobson DP, Napolitano JG, Thomas R, Ochoa JL, Russell DJ, Crittenden CM. High Resolution Ion Mobility Enables the Structural Characterization of Atropisomers of GDC-6036, a KRAS G12C Covalent Inhibitor. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2586-2595. [PMID: 39051157 DOI: 10.1021/jasms.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
GDC-6036 is a covalent KRAS G12C inhibitor that demonstrates high potency and selectivity. Structurally, GDC-6036 consists of several motifs that make the analytical characterization of this molecule challenging, including a highly basic pyrrolidine motif bonded to a quinazoline ring via an ether bond and an atropisomeric carbon-carbon bond between functionalized pyridine and quinazoline groups. Structurally, the desired atropisomer was synthesized via an atroposelective Negishi coupling with very high yield. However, having a direct way to analyze and confirm the presence of the atropisomeric species remained challenging in routine analytical workflows. In this study, both variable temperature nuclear magnetic resonance (VT-NMR) and two different approaches of in-line ion mobility coupled to liquid chromatography mass spectrometry (LC-MS) workflows were evaluated for the characterization of GDC-6036 and its undesired atropisomer (Compound B) to support synthetic route development. Briefly, both VT-NMR and traveling wave ion mobility spectrometry (TWIMS) enabled by structures for lossless ion manipulation (SLIM) technology coupled to high resolution MS (HRMS) are able to elucidate the structures of the atropisomers in a complex mixture. Drift tube IMS (DTIMS) was also evaluated, but lacked the resolving power to demonstrate separation between the two species in a mixture, but did show slight differences in their arrival times when multiplexed and injected separately. The determined resolving power (Rp) by multiplexing the ions via DTIMS was 67.3 and 60.5 for GDC-6036 and Compound B, respectively, while the two peak resolving power (Rpp) was determined to be 0.41, indicating inadequate resolution between the two species. Alternatively, the SLIM-IM studies showed Rp of 103.8 and 99.4, with a Rpp of 2.64, indicating good separation between the atropisomers. Furthermore, the CCS/z for GDC-6036 and Compound B was determined to be 231.2 Å2/z and 235.0 Å2/z, respectively. Quantitative experiments demonstrate linearity (R2 >0.99) for both GDC-6036 and Compound B while maintaining separation via SLIM-IM. Spike recoveries of one atropisomer relative to the other yielded strong recoveries (98.7% to 102.5%) while maintaining reproducibility (<7% RSD). The study herein describes the analytical process for evaluating new technologies and strategies for implementation in routine biopharmaceutical characterization workflows.
Collapse
Affiliation(s)
- Marcelino Varona
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel P Dobson
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - José G Napolitano
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rekha Thomas
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jessica L Ochoa
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - David J Russell
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Christopher M Crittenden
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
22
|
Byeon SK, Kim J, Wegwerth PJ, Zenka R, George JP, Pinto E Vairo F, Oglesbee D, Schultz MJ, Matern D, Pandey A. Development of a Multiplexed Sphingolipids Method for Diagnosis of Inborn Errors of Ceramide Metabolism. Clin Chem 2024; 70:1366-1374. [PMID: 39206579 DOI: 10.1093/clinchem/hvae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Sphingolipids play a crucial role in cellular functions and are essential components of cell membranes, signaling molecules, and lipid metabolism. In particular, ceramide is a key intermediate in sphingolipid metabolism and defects in ceramide metabolism can lead to various inborn errors of metabolism, making ceramides important targets for clinical screening and diagnosis. Detecting altered concentration patterns of sphingolipids is desirable for distinguishing related inborn errors of metabolism for diagnosis and treatment monitoring. METHODS We developed a liquid chromatography-tandem mass spectrometry method with a pathway-oriented approach to focus on sphingolipids involved in ceramide metabolism. A total of 47 sphingolipids bearing different head groups and side chains were targeted. Precision/reproducibility, linearity, and spike recovery extraction efficiency tests were performed on plasma and serum samples from confirmed cases of sphingolipidosis. RESULTS Linearity of the method showed the coefficient of determination (r2) for all standards to be >0.99 with a slope of 1.00 ± 0.01. Intra- and interday reproducibility of standards spiked into plasma and serum revealed a coefficient of variation <20%. Spike and recovery assessment showed recovery values of 80%-120% for all standards. Altered levels of sphingolipids from patients with hereditary sensory and autonomic neuropathy caused by pathogenic variants in SPTLC2 and hypomyelinating leukodystrophy related to variants in DEGS1 were detected, in agreement with trends reported in earlier studies confirming the utility of this pathway-centric method. CONCLUSIONS This method can serve as a useful tool to simultaneously monitor sphingolipids, enabling screening and diagnosis of inborn errors of ceramide metabolism.
Collapse
Affiliation(s)
- Seul Kee Byeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Jinyong Kim
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Peter Jared Wegwerth
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Roman Zenka
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - John P George
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Filippo Pinto E Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MNUnited States
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Matthew J Schultz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Dietrich Matern
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Center for Individualized Medicine, Mayo Clinic, Rochester, MNUnited States
| |
Collapse
|
23
|
Choi B, Han C, LaRochelle JR, Pitsawong W, Houde D. Improved Rapid Equilibrium Dialysis-Mass Spectrometry (RED-MS) Method for Measuring Small Molecule-Protein Complex Binding Affinities in Solution. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39495757 DOI: 10.1021/jasms.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Rapid equilibrium dialysis (RED) is predominantly used for the characterization of drug absorption, distribution, metabolism, and excretion (ADME) properties in plasma and biological fluids. We describe herein improvements in the use of RED in conjunction with mass spectrometry (RED-MS) to enable robust binding affinity measurements of small molecules for recombinant proteins and complexes from a single dialysis data set. The affinities calculated from RED-MS correlated well with measurements by both surface plasmon resonance (SPR) and affinity selection mass spectrometry (AS-MS). The method was particularly useful for quantifying the binding of small molecules to large protein complexes that were not amendable by common biophysical characterization techniques. Compound pooling and integration with automated liquid handling increased assay throughput and enabled the analysis of hundreds of measurements per week. RED-MS offers a viable option for measuring compound binding in solution and may facilitate small molecule affinity optimization toward difficult-to-drug protein complexes.
Collapse
Affiliation(s)
- Bryan Choi
- Relay Therapeutics, Inc., Cambridge, Massachusetts 02139, United States
| | - Calvin Han
- Relay Therapeutics, Inc., Cambridge, Massachusetts 02139, United States
| | | | | | - Damian Houde
- Relay Therapeutics, Inc., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Kaluba FC, Rogers TJ, Jeong YJ, Waldhart A, Sokol KH, Lee CJ, Daniels SR, Longo J, Johnson A, Sheldon RD, Jones RG, Lien EC. An alternative route for β-hydroxybutyrate metabolism supports fatty acid synthesis in cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621317. [PMID: 39554134 PMCID: PMC11565918 DOI: 10.1101/2024.10.31.621317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Cancer cells are exposed to diverse metabolites in the tumor microenvironment that are used to support the synthesis of nucleotides, amino acids, and lipids needed for rapid cell proliferation1-3. Recent work has shown that ketone bodies such as β-hydroxybutyrate (β-OHB), which are elevated in circulation under fasting conditions or low glycemic diets, can serve as an alternative fuel that is metabolized in the mitochondria to provide acetyl-CoA for the tricarboxylic acid (TCA) cycle in some tumors4-7. Here, we discover a non-canonical route for β-OHB metabolism, in which β-OHB can bypass the TCA cycle to generate cytosolic acetyl-CoA for de novo fatty acid synthesis in cancer cells. We show that β-OHB-derived acetoacetate in the mitochondria can be shunted into the cytosol, where acetoacetyl-CoA synthetase (AACS) and thiolase convert it into acetyl-CoA for fatty acid synthesis. This alternative metabolic routing of β-OHB allows it to avoid oxidation in the mitochondria and net contribute to anabolic biosynthetic processes. In cancer cells, β-OHB is used for fatty acid synthesis to support cell proliferation under lipid-limited conditions in vitro and contributes to tumor growth under lipid-limited conditions induced by a calorie-restricted diet in vivo. Together, these data demonstrate that β-OHB is preferentially used for fatty acid synthesis in cancer cells to support tumor growth.
Collapse
Affiliation(s)
- Faith C. Kaluba
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Thomas J. Rogers
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Yu-Jin Jeong
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Althea Waldhart
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Kelly H. Sokol
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Cameron J. Lee
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Samuel R. Daniels
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
- Van Andel Institute Graduate School, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Joseph Longo
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Amy Johnson
- Mass Spectrometry Core, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Ryan D. Sheldon
- Mass Spectrometry Core, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Russell G. Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Evan C. Lien
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| |
Collapse
|
25
|
Mannochio-Russo H, Charron-Lamoureux V, van Faassen M, Lamichhane S, Nunes WDG, Deleray V, Patan A, Vittali K, Rajkumar P, El Abiead Y, Zhao HN, Gomes PWP, Mohanty I, Lee C, Sund A, Sharma M, Liu Y, Pattynama D, Walker GT, Norton GJ, Khatib L, Andalibi MS, Wang CX, Ellis RJ, Moore DJ, Iudicello JE, Franklin D, Letendre S, Chin L, Walker C, Renwick S, Zemlin J, Meehan MJ, Song X, Kasper D, Burcham Z, Kim JJ, Kadakia S, Raffatellu M, Bode L, Zengler K, Wang M, Siegel D, Knight R, Dorrestein PC. The microbiome diversifies N-acyl lipid pools - including short-chain fatty acid-derived compounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621412. [PMID: 39554097 PMCID: PMC11565975 DOI: 10.1101/2024.10.31.621412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
N-acyl lipids are important mediators of several biological processes including immune function and stress response. To enhance the detection of N-acyl lipids with untargeted mass spectrometry-based metabolomics, we created a reference spectral library retrieving N-acyl lipid patterns from 2,700 public datasets, identifying 851 N-acyl lipids that were detected 356,542 times. 777 are not documented in lipid structural databases, with 18% of these derived from short-chain fatty acids and found in the digestive tract and other organs. Their levels varied with diet, microbial colonization, and in people living with diabetes. We used the library to link microbial N-acyl lipids, including histamine and polyamine conjugates, to HIV status and cognitive impairment. This resource will enhance the annotation of these compounds in future studies to further the understanding of their roles in health and disease and highlight the value of large-scale untargeted metabolomics data for metabolite discovery.
Collapse
Affiliation(s)
- Helena Mannochio-Russo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Vincent Charron-Lamoureux
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Martijn van Faassen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Santosh Lamichhane
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Turku Bioscience Center, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Wilhan D Gonçalves Nunes
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Victoria Deleray
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Abubaker Patan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kyle Vittali
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Prajit Rajkumar
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Haoqi Nina Zhao
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Paulo Wender Portal Gomes
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ipsita Mohanty
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Carlynda Lee
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Aidan Sund
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Meera Sharma
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yuanhao Liu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - David Pattynama
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Gregory T Walker
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Grant J Norton
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Lora Khatib
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Mohammadsobhan S Andalibi
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92093, USA
| | - Crystal X Wang
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92093, USA
| | - Ronald J Ellis
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093, USA
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92093, USA
| | - David J Moore
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92093, USA
| | - Jennifer E Iudicello
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92093, USA
| | - Donald Franklin
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92093, USA
| | - Scott Letendre
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Loryn Chin
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Corinn Walker
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Simone Renwick
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE) and the Human Milk Institute (HMI), University of California San Diego, La Jolla, CA, 92093, USA
| | - Jasmine Zemlin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael J Meehan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Xinyang Song
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dennis Kasper
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Zachary Burcham
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jane J Kim
- Department of Pediatrics, Division of Pediatric Endocrinology, University of California San Diego, California, USA
- Rady Children's Hospital San Diego, San Diego, California, USA
| | - Sejal Kadakia
- Division of Pediatric Endocrinology, Children's Hospital of Orange County, Orange, CA, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines, La Jolla, California 92093, USA
| | - Lars Bode
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE) and the Human Milk Institute (HMI), University of California San Diego, La Jolla, CA, 92093, USA
| | - Karsten Zengler
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Mingxun Wang
- Department of Computer Science and Engineering, University of California Riverside, Riverside, CA, USA
| | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
26
|
Li J, Stupak J, Haqqani AS, Harris G, Zhou H, Williamson S, Chen R, Xu HH, Chen W. Development of LC-FAIMS-MS and its application to lipidomics study of Acinetobacter baumannii infection. J Lipid Res 2024; 65:100668. [PMID: 39395788 PMCID: PMC11577210 DOI: 10.1016/j.jlr.2024.100668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
The recent advances in mass spectrometry (MS) technologies have enabled comprehensive lipid profiling in biological samples. However, the robustness and efficiency of MS-based lipidomics is compromised by the complexity of biological samples. High-field asymmetric waveform ion mobility spectrometry (FAIMS) is a technology that can continuously transmit one type of ion, independent of the mass-to-charge ratio. Here we present the development and application of LC-FAIMS-MS/MS-based platform for untargeted lipidomics. We used 3 optimally balanced compensation voltages, i.e., 29 V, 34 V and 39 V, to analyze all subclasses of glycerophospholipids. The reproducibility of the method was evaluated using reference standards. The reproducibility of retention times ranged from 0.9% to 1.5% RSD; whereas RSD values of 5%-10% were observed for peak areas. More importantly, the coupling of a FAIMS device can significantly improve the robustness and efficiency. We exploited this NPLC-FAIMS-HRMS to analyze the serum lipid profiles in mice infected intranasally with Acinetobacter baumannii. The temporal profiles of serum lipids after A. baumannii inoculation were obtained for 4 h, 8 h, and 24 h. We found that nearly all ether PC and ether PE lipids were significantly decreased 8 h after inoculation. The resultant volcano plot illustrated the distribution of 28 increased and 28 decreased lipid species in mouse sera 24 h after inoculation. We also found that a single ether PE composition can comprise multiple isomeric structures, and the relative abundance of each isomer could be quantified using the newly developed NPLC-FAIMS-PRM method. We have demonstrated that the proposed LC-FAIMS-MS is a valuable platform for lipidomics.
Collapse
Affiliation(s)
- Jianjun Li
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada.
| | - Jacek Stupak
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Greg Harris
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Hongyan Zhou
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Sam Williamson
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Rui Chen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - H Howard Xu
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA, USA
| | - Wangxue Chen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| |
Collapse
|
27
|
Ryu KW, Fung TS, Baker DC, Saoi M, Park J, Febres-Aldana CA, Aly RG, Cui R, Sharma A, Fu Y, Jones OL, Cai X, Pasolli HA, Cross JR, Rudin CM, Thompson CB. Cellular ATP demand creates metabolically distinct subpopulations of mitochondria. Nature 2024; 635:746-754. [PMID: 39506109 DOI: 10.1038/s41586-024-08146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
Mitochondria serve a crucial role in cell growth and proliferation by supporting both ATP synthesis and the production of macromolecular precursors. Whereas oxidative phosphorylation (OXPHOS) depends mainly on the oxidation of intermediates from the tricarboxylic acid cycle, the mitochondrial production of proline and ornithine relies on reductive synthesis1. How these competing metabolic pathways take place in the same organelle is not clear. Here we show that when cellular dependence on OXPHOS increases, pyrroline-5-carboxylate synthase (P5CS)-the rate-limiting enzyme in the reductive synthesis of proline and ornithine-becomes sequestered in a subset of mitochondria that lack cristae and ATP synthase. This sequestration is driven by both the intrinsic ability of P5CS to form filaments and the mitochondrial fusion and fission cycle. Disruption of mitochondrial dynamics, by impeding mitofusin-mediated fusion or dynamin-like-protein-1-mediated fission, impairs the separation of P5CS-containing mitochondria from mitochondria that are enriched in cristae and ATP synthase. Failure to segregate these metabolic pathways through mitochondrial fusion and fission results in cells either sacrificing the capacity for OXPHOS while sustaining the reductive synthesis of proline, or foregoing proline synthesis while preserving adaptive OXPHOS. These findings provide evidence of the key role of mitochondrial fission and fusion in maintaining both oxidative and reductive biosyntheses in response to changing nutrient availability and bioenergetic demand.
Collapse
Affiliation(s)
- Keun Woo Ryu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tak Shun Fung
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daphne C Baker
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michelle Saoi
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jinsung Park
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Rania G Aly
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ruobing Cui
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anurag Sharma
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Yi Fu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olivia L Jones
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xin Cai
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Justin R Cross
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
28
|
Kokkinias K, Sabag-Daigle A, Kim Y, Leleiwi I, Shaffer M, Kevorkian R, Daly RA, Wysocki VH, Borton MA, Ahmer BMM, Wrighton KC. Time-resolved multi-omics reveals diverse metabolic strategies of Salmonella during diet-induced inflammation. mSphere 2024; 9:e0053424. [PMID: 39254340 PMCID: PMC11520297 DOI: 10.1128/msphere.00534-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 09/11/2024] Open
Abstract
With a rise in antibiotic resistance and chronic infection, the metabolic response of Salmonella enterica serovar Typhimurium to various dietary conditions over time remains an understudied avenue for novel, targeted therapeutics. Elucidating how enteric pathogens respond to dietary variation not only helps us decipher the metabolic strategies leveraged for expansion but also assists in proposing targets for therapeutic interventions. In this study, we use a multi-omics approach to identify the metabolic response of Salmonella enterica serovar Typhimurium in mice on both a fibrous diet and high-fat diet over time. When comparing Salmonella gene expression between diets, we found a preferential use of respiratory electron acceptors consistent with increased inflammation in high-fat diet mice. Looking at the high-fat diet over the course of infection, we noticed heterogeneity in samples based on Salmonella ribosomal activity, which is separated into three infection phases: early, peak, and late. We identified key respiratory, carbon, and pathogenesis gene expressions descriptive of each phase. Surprisingly, we identified genes associated with host cell entry expressed throughout infection, suggesting subpopulations of Salmonella or stress-induced dysregulation. Collectively, these results highlight not only the sensitivity of Salmonella to its environment but also identify phase-specific genes that may be used as therapeutic targets to reduce infection.IMPORTANCEIdentifying novel therapeutic strategies for Salmonella infection that occur in relevant diets and over time is needed with the rise of antibiotic resistance and global shifts toward Western diets that are high in fat and low in fiber. Mice on a high-fat diet are more inflamed compared to those on a fibrous diet, creating an environment that results in more favorable energy generation for Salmonella. We observed differential gene expression across infection phases in mice over time on a high-fat diet. Together, these findings reveal the metabolic tuning of Salmonella to dietary and temporal perturbations. Research like this, which explores the dimensions of pathogen metabolic plasticity, can pave the way for rationally designed strategies to control disease.
Collapse
Affiliation(s)
- Katherine Kokkinias
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Anice Sabag-Daigle
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Yongseok Kim
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Ikaia Leleiwi
- Department of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Michael Shaffer
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Richard Kevorkian
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Rebecca A. Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Mikayla A. Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Brian M. M. Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Kelly C. Wrighton
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Department of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
29
|
Sun J, Zhang Y, Adams JA, Higgins CB, Kelly SC, Zhang H, Cho KY, Johnson UG, Swarts BM, Wada SI, Patti GJ, Shriver LP, Finck BN, Herzog ED, DeBosch BJ. Hepatocyte Period 1 dictates oxidative substrate selection independent of the core circadian clock. Cell Rep 2024; 43:114865. [PMID: 39412985 PMCID: PMC11601098 DOI: 10.1016/j.celrep.2024.114865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/09/2024] [Accepted: 09/26/2024] [Indexed: 10/18/2024] Open
Abstract
Organisms integrate circadian and metabolic signals to optimize substrate selection to survive starvation, yet precisely how this occurs is unclear. Here, we show that hepatocyte Period 1 (Per1) is selectively induced during fasting, and mice lacking hepatocyte Per1 fail to initiate autophagic flux, ketogenesis, and lipid accumulation. Transcriptomic analyses show failed induction of the fasting hepatokine Fgf21 in Per1-deficient mice, and single-nucleus multiome sequencing defines a putative responding hepatocyte subpopulation that fails to induce the chromatin accessibility near the Fgf21 locus. In vivo isotopic tracing and indirect calorimetry demonstrate that hepatocyte Per1-deficient mice fail to transit from oxidation of glucose to fat, which is completely reversible by exogenous FGF21 or by inhibiting pyruvate dehydrogenase. Strikingly, disturbing other core circadian genes does not perturb Per1 induction during fasting. We thus describe Per1 as an important mechanism by which hepatocytes integrate internal circadian rhythm and external nutrition signals to facilitate proper fuel utilization.
Collapse
Affiliation(s)
- Jiameng Sun
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yiming Zhang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua A Adams
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cassandra B Higgins
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shannon C Kelly
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hao Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kevin Y Cho
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ulysses G Johnson
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA; Biochemistry, Cellular, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA; Biochemistry, Cellular, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, USA
| | - Shun-Ichi Wada
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Gary J Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Leah P Shriver
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian N Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erik D Herzog
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Brian J DeBosch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
30
|
Guba A, Kováts P, Mezei ZA, Papp M, Csősz É, Kalló G. Analysis of Azathioprine Metabolites in Autoimmune Hepatitis Patient Blood-Method Development and Validation. Int J Mol Sci 2024; 25:11233. [PMID: 39457015 PMCID: PMC11508274 DOI: 10.3390/ijms252011233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease treated by steroids and immunomodulator thiopurine drugs such as azathioprine (AZA). AZA is metabolized in the human body into bioactive forms such as 6-thioguanine (6-TG) and 6-methyl-mercaptopurine (6-MMP). Monitoring the levels of bioactive AZA metabolites is very important for proper treatment of patients. In this study, our aim was to develop and validate a fast and sensitive ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) method for the analysis of 6-TG and 6-MMP from blood samples of patients with AIH to monitor the level of these bioactive metabolites. The detection and quantification of the analytes was carried out by Selected Reaction Monitoring (SRM)-based targeted mass spectrometry. The method was validated according to the EMA guidelines. Blood samples from patients with AIH treated with AZA were analysed with the developed method. The method was successfully validated with appropriate accuracy and precision for the target biomolecules and their concentration in the samples from patients with AIH was determined. The developed and validated UHPLC-MS method enables the fast and precise analysis of AZA metabolites.
Collapse
Affiliation(s)
- Andrea Guba
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.G.); (É.C.)
- Metabolomics Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Patrícia Kováts
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (P.K.); (M.P.)
- Kálmán Laki Doctoral School, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Institute of Gastroenterology, European Reference Network on Hepatological Diseases, ERN RARE-LIVER, Clinical Center, 4032 Debrecen, Hungary
| | - Zoltán A. Mezei
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary;
| | - Mária Papp
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (P.K.); (M.P.)
- Kálmán Laki Doctoral School, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Institute of Gastroenterology, European Reference Network on Hepatological Diseases, ERN RARE-LIVER, Clinical Center, 4032 Debrecen, Hungary
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.G.); (É.C.)
- Metabolomics Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.G.); (É.C.)
- Metabolomics Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| |
Collapse
|
31
|
McMinn MH, Hu X, Poisson K, Berger P, Pimentel P, Zhang X, Ashara P, Greenfield EL, Eig J, Tian Z. Emerging investigator series: in-depth chemical profiling of tire and artificial turf crumb rubber: aging, transformation products, and transport pathways. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1703-1715. [PMID: 39176437 DOI: 10.1039/d4em00326h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Crumb rubber generated from end-of-life tires (ELTs) poses a threat to environmental and human health based on its widespread use. Of particular concern is the use of ELT crumb rubber as infill for artificial turf fields, as people are unknowingly exposed to complex mixtures of chemicals when playing on these fields. Additionally, there is concern regarding transport of rubber-related chemicals from artificial turf into the environment. However, existing knowledge does not fully elucidate the chemical profile, transformation products, and transport pathways of artificial turf crumb rubber across different ages. To address these knowledge gaps, we utilized a multi-faceted approach that consisted of targeted quantitation, chemical profiling, and suspect screening via ultra-high performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). We collected and processed 3 tire and 11 artificial turf crumb rubber samples via solvent extraction, leaching, and a bioaccessibility-based extraction. Nineteen rubber-derived chemicals were quantified using parallel reaction monitoring and isotope dilution techniques. In solvent extracts, the most abundant analytes were 1,3-diphenylguanidine (0.18-1200 μg g-1), N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD, 0.16-720 μg g-1), 2-mercaptobenzothiazole (0.47-140 μg g-1), and benzothiazole (0.84-150 μg g-1). Chemical profiling assessed changes in sample diversity, abundance, polarity, and molecular mass. Suspect screening identified 81 compounds with different confidence levels (16 at level 1, 53 with level 2, 7 at level 3, and 5 at level 4). The formation rate of transformation products and clustering analysis results identified time-based trends in artificial turf field samples. We found that the first two years of aging may be critical for the potential environmental impact of artificial turf fields. Our analysis provides insight into the chemical complexity of artificial turf crumb rubber samples ranging from 0-14 years in age.
Collapse
Affiliation(s)
- Madison H McMinn
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
- Barnett Institute for Chemical and Biological Analysis, College of Science, Northeastern University, Boston, MA, USA
| | - Ximin Hu
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Katherine Poisson
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
- Barnett Institute for Chemical and Biological Analysis, College of Science, Northeastern University, Boston, MA, USA
| | - Phillip Berger
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
- Barnett Institute for Chemical and Biological Analysis, College of Science, Northeastern University, Boston, MA, USA
| | - Paola Pimentel
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
| | - Xinwen Zhang
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
| | - Pranali Ashara
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
| | - Ella L Greenfield
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
| | - Jessica Eig
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
| | - Zhenyu Tian
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
- Barnett Institute for Chemical and Biological Analysis, College of Science, Northeastern University, Boston, MA, USA
| |
Collapse
|
32
|
Gurrieri E, Carradori G, Roccuzzo M, Pancher M, Peroni D, Belli R, Trevisan C, Notarangelo M, Huang WQ, Carreira ASA, Quattrone A, Jenster G, Hagen TLMT, D'Agostino VG. CD81-guided heterologous EVs present heterogeneous interactions with breast cancer cells. J Biomed Sci 2024; 31:92. [PMID: 39402557 PMCID: PMC11475557 DOI: 10.1186/s12929-024-01084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are cell-secreted particles conceived as natural vehicles for intercellular communication. The capacity to entrap heterogeneous molecular cargoes and target specific cell populations through EV functionalization promises advancements in biomedical applications. However, the efficiency of the obtained EVs, the contribution of cell-exposed receptors to EV interactions, and the predictability of functional cargo release with potential sharing of high molecular weight recombinant mRNAs are crucial for advancing heterologous EVs in targeted therapy applications. METHODS In this work, we selected the popular EV marker CD81 as a transmembrane guide for fusion proteins with a C-terminal GFP reporter encompassing or not Trastuzumab light chains targeting the HER2 receptor. We performed high-content imaging analyses to track EV-cell interactions, including isogenic breast cancer cells with manipulated HER2 expression. We validated the functional cargo delivery of recombinant EVs carrying doxorubicin upon EV-donor cell treatment. Then, we performed an in vivo study using JIMT-1 cells commonly used as HER2-refractory, trastuzumab-resistant model to detect a more than 2000 nt length recombinant mRNA in engrafted tumors. RESULTS Fusion proteins participated in vesicular trafficking dynamics and accumulated on secreted EVs according to their expression levels in HEK293T cells. Despite the presence of GFP, secreted EV populations retained a HER2 receptor-binding capacity and were used to track EV-cell interactions. In time-frames where the global EV distribution did not change between HER2-positive (SK-BR-3) or -negative (MDA-MB-231) breast cancer cell lines, the HER2 exposure in isogenic cells remarkably affected the tropism of heterologous EVs, demonstrating the specificity of antiHER2 EVs representing about 20% of secreted bulk vesicles. The specific interaction strongly correlated with improved cell-killing activity of doxorubicin-EVs in MDA-MB-231 ectopically expressing HER2 and reduced toxicity in SK-BR-3 with a knocked-out HER2 receptor, overcoming the effects of the free drug. Interestingly, the fusion protein-corresponding transcripts present as full-length mRNAs in recombinant EVs could reach orthotopic breast tumors in JIMT-1-xenografted mice, improving our sensitivity in detecting penetrant cargoes in tissue biopsies. CONCLUSIONS This study highlights the quantitative aspects underlying the creation of a platform for secreted heterologous EVs and shows the limits of single receptor-ligand interactions behind EV-cell engagement mechanisms, which now become the pivotal step to predict functional tropism and design new generations of EV-based nanovehicles.
Collapse
Affiliation(s)
- Elena Gurrieri
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Giulia Carradori
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Michela Roccuzzo
- Advanced Imaging Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Michael Pancher
- High Throughput Screening and High Content Analysis Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Daniele Peroni
- Mass Spectrometry and Proteomics Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Romina Belli
- Mass Spectrometry and Proteomics Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Caterina Trevisan
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Michela Notarangelo
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Wen-Qiu Huang
- Precision Medicine in Oncology (PrMiO), Department of Pathology, and Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC Cancer Institute, 3015 GD, Rotterdam, The Netherlands
| | - Agata S A Carreira
- Laboratory of Genomic Screening, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Guido Jenster
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, and Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC Cancer Institute, 3015 GD, Rotterdam, The Netherlands
| | - Vito Giuseppe D'Agostino
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| |
Collapse
|
33
|
Anderson BG, Popov P, Cicali AR, Nwamba A, Evans CR, Kennedy RT. In-Depth Chemical Analysis of the Brain Extracellular Space Using In Vivo Microdialysis with Liquid Chromatography-Tandem Mass Spectrometry. Anal Chem 2024; 96:16387-16396. [PMID: 39360623 DOI: 10.1021/acs.analchem.4c03806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Metabolomic analysis of samples acquired in vivo from the brain extracellular space by microdialysis sampling can provide insights into chemical underpinnings of a given brain state and how it changes over time. Small sample volumes and low physiological concentrations have limited the identification of compounds from this compartment, so at present, we have scant knowledge of its composition. As a result, most in vivo measurements have limited depth of analysis. Here, we describe an approach to (1) identify hundreds of compounds in brain dialysate and (2) routinely detect many of these compounds in 5 μL microdialysis samples to enable deep monitoring of brain chemistry in time-resolved studies. Dialysate samples collected over 12 h were concentrated 10-fold and then analyzed using liquid chromatography with iterative tandem mass spectrometry (LC-MS/MS). Using this approach on dialysate from the rat striatum with both reversed-phase and hydrophilic interaction liquid chromatography yielded 479 unique compound identifications. 60% of the identified compounds could be detected in 5 μL of dialysate without further concentration using a single 20 min LC-MS analysis, showing that once identified, most compounds can be detected using small sample volumes and shorter analysis times compatible with routine in vivo monitoring. To detect more neurochemicals, LC-MS analysis of dialysate derivatized with light and isotopically labeled benzoyl chloride was employed. 872 nondegenerate benzoylated features were detected with this approach, including most small-molecule neurotransmitters and several metabolites involved in dopamine metabolism. This strategy allows deeper annotation of the brain extracellular space than previously possible and provides a launching point for defining the chemistry underlying brain states.
Collapse
Affiliation(s)
- Brady G Anderson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Pavlo Popov
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amanda R Cicali
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Adanna Nwamba
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles R Evans
- Biomedical Research Core Facilities Metabolomics Core, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
34
|
Atser MG, Wenyonu CD, Rowe EM, Leung CLK, Cen HH, Queathem ED, Liu LT, Moravcova R, Rogalski J, Perrin D, Crawford P, Foster LJ, Alcazar A, Johnson JD. Pyruvate dehydrogenase kinase 1 controls triacylglycerol hydrolysis in cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618123. [PMID: 39464135 PMCID: PMC11507772 DOI: 10.1101/2024.10.14.618123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Pyruvate dehydrogenase kinase (PDK) 1 is one of four isozymes that inhibit the oxidative decarboxylation of pyruvate to acetyl-CoA via pyruvate dehydrogenase. PDK activity is elevated in fasting or starvation conditions to conserve carbohydrate reserves. PDK has also been shown to increase mitochondrial fatty acid utilization. In cardiomyocytes, metabolic flexibility is crucial for the fulfillment of high energy requirements. The PDK1 isoform is abundant in cardiomyocytes, but its specific contribution to cardiomyocyte metabolism is unclear. Here we show that PDK1 regulates cardiomyocyte fuel preference by mediating triacylglycerol turnover in differentiated H9c2 myoblasts using lentiviral shRNA to knockdown Pdk1. Somewhat surprisingly, PDK1 loss did not affect overall PDH activity, basal glycolysis, or glucose oxidation revealed by oxygen consumption rate experiments and 13C6 glucose labelling. On the other hand, we observed decreased triacylglycerol turnover in H9c2 cells with PDK1 knockdown, which was accompanied by decreased mitochondrial fatty acid utilization following nutrient deprivation. 13C16 palmitate tracing of uniformly labelled acyl chains revealed minimal acyl chain shuffling within triacylglycerol, indicating that the triacylglycerol hydrolysis, and not re-esterification, was dysfunctional in PDK1 suppressed cells. Importantly, PDK1 loss did not significantly impact the cellular lipidome or triacylglycerol accumulation following palmitic acid treatment, suggesting that effects of PDK1 on lipid metabolism were specific to the nutrient-deprived state. We validated that PDK1 loss decreased triacylglycerol turnover in Pdk1 knockout mice. Together, these findings implicate a novel role for PDK1 in lipid metabolism in cardiomyocytes, independent of its canonical roles in glucose metabolism.
Collapse
Affiliation(s)
- Michael G. Atser
- Department of Cellular and Developmental Biology, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chelsea D. Wenyonu
- Department of Cellular and Developmental Biology, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Elyn M. Rowe
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Connie L. K. Leung
- Department of Cellular and Developmental Biology, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Haoning Howard Cen
- Department of Cellular and Developmental Biology, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Eric D. Queathem
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Leo T. Liu
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Renata Moravcova
- Life Sciences Institute Proteomics and Metabolomics Core Facility, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Jason Rogalski
- Life Sciences Institute Proteomics and Metabolomics Core Facility, University of British Columbia, Vancouver, BC, Canada
| | - David Perrin
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Peter Crawford
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Leonard J. Foster
- Life Sciences Institute Proteomics and Metabolomics Core Facility, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Armando Alcazar
- Life Sciences Institute Proteomics and Metabolomics Core Facility, University of British Columbia, Vancouver, BC, Canada
| | - James D. Johnson
- Department of Cellular and Developmental Biology, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
Sokol KH, Lee CJ, Rogers TJ, Waldhart A, Ellis AE, Madireddy S, Daniels SR, House RRJ, Ye X, Olesnavich M, Johnson A, Furness BR, Sheldon RD, Lien EC. Lipid availability influences ferroptosis sensitivity in cancer cells by regulating polyunsaturated fatty acid trafficking. Cell Chem Biol 2024:S2451-9456(24)00404-5. [PMID: 39442523 DOI: 10.1016/j.chembiol.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Ferroptosis is a form of cell death caused by lipid peroxidation that is emerging as a target for cancer therapy, highlighting the need to identify factors that govern ferroptosis susceptibility. Lipid peroxidation occurs primarily on phospholipids containing polyunsaturated fatty acids (PUFAs). Here, we show that even though extracellular lipid limitation reduces cellular PUFA levels, lipid-starved cancer cells are paradoxically more sensitive to ferroptosis. Using mass spectrometry-based lipidomics with stable isotope fatty acid labeling, we show that lipid limitation induces a fatty acid trafficking pathway in which PUFAs are liberated from triglycerides to synthesize highly unsaturated PUFAs such as arachidonic and adrenic acid. These PUFAs then accumulate in phospholipids, including ether phospholipids, to promote ferroptosis sensitivity. Therefore, PUFA levels within cancer cells do not necessarily correlate with ferroptosis susceptibility. Rather, how cancer cells respond to extracellular lipid levels by trafficking PUFAs into proper phospholipid pools contributes to their sensitivity to ferroptosis.
Collapse
Affiliation(s)
- Kelly H Sokol
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Cameron J Lee
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Thomas J Rogers
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Althea Waldhart
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Abigail E Ellis
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Sahithi Madireddy
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Samuel R Daniels
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA; Van Andel Institute Graduate School, Grand Rapids, MI 49503, USA
| | - Rachel Rae J House
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Xinyu Ye
- Van Andel Institute Graduate School, Grand Rapids, MI 49503, USA
| | - Mary Olesnavich
- Van Andel Institute Graduate School, Grand Rapids, MI 49503, USA
| | - Amy Johnson
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Benjamin R Furness
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ryan D Sheldon
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Evan C Lien
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
36
|
Hecht F, Zocchi M, Tuttle ET, Ward NP, Smith B, Kang YP, Cazarin J, Soares ZG, Ozgurses ME, Zhao H, Sheehan C, Alimohammadi F, Munger LD, Trivedi D, Asantewaa G, Blick-Nitko SK, Zoeller JJ, Chen Y, Vasiliou V, Turner BM, Muir A, Coloff JL, Munger J, DeNicola GM, Harris IS. Catabolism of extracellular glutathione supplies amino acids to support tumor growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617667. [PMID: 39416022 PMCID: PMC11482906 DOI: 10.1101/2024.10.10.617667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Restricting amino acids from tumors is an emerging therapeutic strategy with significant promise. While typically considered an intracellular antioxidant with tumor-promoting capabilities, glutathione (GSH) is a tripeptide of cysteine, glutamate, and glycine that can be catabolized, yielding amino acids. The extent to which GSH-derived amino acids are essential to cancers is unclear. Here, we find that GSH catabolism promotes tumor growth. We show that depletion of intracellular GSH does not perturb tumor growth, and extracellular GSH is highly abundant in the tumor microenvironment, highlighting the potential importance of GSH outside of tumors. We find supplementation with GSH can rescue cancer cell survival and growth in cystine-deficient conditions, and this rescue is dependent on the catabolic activity of γ-glutamyltransferases (GGTs). Finally, pharmacologic targeting of GGTs' activity prevents the breakdown of circulating GSH, lowers tumor cysteine levels, and slows tumor growth. Our findings indicate a non-canonical role for GSH in supporting tumors by acting as a reservoir of amino acids. Depriving tumors of extracellular GSH or inhibiting its breakdown is potentially a therapeutically tractable approach for patients with cancer. Further, these findings change our view of GSH and how amino acids, including cysteine, are supplied to cells.
Collapse
Affiliation(s)
- Fabio Hecht
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
- These authors contributed equally
| | - Marco Zocchi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
- These authors contributed equally
| | - Emily T. Tuttle
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Nathan P. Ward
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA, 33612
| | - Bradley Smith
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Yun Pyo Kang
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA, 33612
| | - Juliana Cazarin
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Zamira G. Soares
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Mete Emir Ozgurses
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, USA, 60612
| | - Huiping Zhao
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, USA, 60612
| | - Colin Sheehan
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Fatemeh Alimohammadi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Lila D. Munger
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Dhvani Trivedi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Gloria Asantewaa
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Sara K. Blick-Nitko
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Jason J. Zoeller
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA, 02115
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA, 06510
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA, 06510
| | - Bradley M. Turner
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Alexander Muir
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Jonathan L. Coloff
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, USA, 60612
| | - Joshua Munger
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA, 33612
| | - Isaac S. Harris
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| |
Collapse
|
37
|
Kelly MI, Ashwood C. GlyCombo Enables Rapid, Complete Glycan Composition Identification across Diverse Glycomic Sample Types. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2324-2330. [PMID: 39271475 DOI: 10.1021/jasms.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Glycans are sugar-based polymers found to modify biomolecules, including lipids and proteins, as well as occur unconjugated as free polysaccharides. Due to their ubiquitous cellular presentation, glycans mediate crucial biological processes and are frequently sought after as biomarkers for a wide range of diseases. Identification of glycans present in samples acquired with mass spectrometry (MS) is a cornerstone of glycomics research; thus, the ability to rapidly identify glycans in each acquisition is integral to glycomics analysis pipelines. Here we introduce GlyCombo (https://github.com/Protea-Glycosciences/GlyCombo), an open-source, freely available software tool designed to rapidly assign monosaccharide combinations to glycan precursor masses including those subjected to MS2 in LC-MS/MS experiments. GlyCombo was evaluated across six diverse data sets, demonstrating MS vendor, derivatization, and glycan-type neutrality. Compositional assignments using GlyCombo are shown to be faster than the current predominant approach, GlycoMod, a closed-source web application. Two unique features of GlyCombo, multiple adduct search and off-by-one error anticipation, reduced unassigned MS2 scans in a benchmark data set by 40%. Finally, the comprehensiveness of glycan feature identification is exhibited in Skyline, a software that requires predefined transitions that are derived from GlyCombo output files.
Collapse
Affiliation(s)
- Maia I Kelly
- Protea Glycosciences Pty Ltd, Wollongong, New South Wales 2500, Australia
- College of Computing, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | | |
Collapse
|
38
|
de Laat V, Topal H, Spotbeen X, Talebi A, Dehairs J, Idkowiak J, Vanderhoydonc F, Ostyn T, Zhao P, Jacquemyn M, Wölk M, Sablina A, Augustyns K, Vanden Berghe T, Roskams T, Daelemans D, Fedorova M, Topal B, Swinnen JV. Intrinsic temperature increase drives lipid metabolism towards ferroptosis evasion and chemotherapy resistance in pancreatic cancer. Nat Commun 2024; 15:8540. [PMID: 39358362 PMCID: PMC11447004 DOI: 10.1038/s41467-024-52978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
A spontaneously occurring temperature increase in solid tumors has been reported sporadically, but is largely overlooked in terms of cancer biology. Here we show that temperature is increased in tumors of patients with pancreatic ductal adenocarcinoma (PDAC) and explore how this could affect therapy response. By mimicking this observation in PDAC cell lines, we demonstrate that through adaptive changes in lipid metabolism, the temperature increase found in human PDAC confers protection to lipid peroxidation and contributes to gemcitabine resistance. Consistent with the recently uncovered role of p38 MAPK in ferroptotic cell death, we find that the reduction in lipid peroxidation potential following adaptation to tumoral temperature allows for p38 MAPK inhibition, conferring chemoresistance. As an increase in tumoral temperature is observed in several other tumor types, our findings warrant taking tumoral temperature into account in subsequent studies related to ferroptosis and therapy resistance. More broadly, our findings indicate that tumoral temperature affects cancer biology.
Collapse
Affiliation(s)
- Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Halit Topal
- Abdominal Surgical Oncology, University Hospitals Leuven, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Xander Spotbeen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Jakub Idkowiak
- Laboratory of Lipid Metabolism and Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Frank Vanderhoydonc
- Laboratory of Lipid Metabolism and Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Tessa Ostyn
- Department of Pathology, University Hospitals Leuven, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Peihua Zhao
- Laboratory for Mechanisms of Cell Transformation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Maarten Jacquemyn
- Molecular Genetics and Therapeutics in Virology and Oncology, Rega Institute for Medical Research, KU Leuven Department of Microbiology and Immunology, Leuven, Belgium
| | - Michele Wölk
- Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Anna Sablina
- Laboratory for Mechanisms of Cell Transformation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Koen Augustyns
- Department of Pharmaceutical Sciences, Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Tom Vanden Berghe
- Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tania Roskams
- Department of Pathology, University Hospitals Leuven, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Dirk Daelemans
- Molecular Genetics and Therapeutics in Virology and Oncology, Rega Institute for Medical Research, KU Leuven Department of Microbiology and Immunology, Leuven, Belgium
| | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Baki Topal
- Abdominal Surgical Oncology, University Hospitals Leuven, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
39
|
Ayten M, Díaz-Lezama N, Ghanawi H, Haffelder FC, Kajtna J, Straub T, Borso M, Imhof A, Hauck SM, Koch SF. Metabolic plasticity in a Pde6b STOP/STOP retinitis pigmentosa mouse model following rescue. Mol Metab 2024; 88:101994. [PMID: 39032643 PMCID: PMC11362769 DOI: 10.1016/j.molmet.2024.101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/18/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024] Open
Abstract
OBJECTIVE Retinitis pigmentosa (RP) is a hereditary retinal disease characterized by progressive photoreceptor degeneration, leading to vision loss. The best hope for a cure for RP lies in gene therapy. However, given that RP patients are most often diagnosed in the midst of ongoing photoreceptor degeneration, it is unknown how the retinal proteome changes as RP disease progresses, and which changes can be prevented, halted, or reversed by gene therapy. METHODS Here, we used a Pde6b-deficient RP gene therapy mouse model and performed untargeted proteomic analysis to identify changes in protein expression during degeneration and after treatment. RESULTS We demonstrated that Pde6b gene restoration led to a novel form of homeostatic plasticity in rod phototransduction which functionally compensates for the decreased number of rods. By profiling protein levels of metabolic genes and measuring metabolites, we observed an upregulation of proteins associated with oxidative phosphorylation in mutant and treated photoreceptors. CONCLUSION In conclusion, the metabolic demands of the retina differ in our Pde6b-deficient RP mouse model and are not rescued by gene therapy treatment. These findings provide novel insights into features of both RP disease progression and long-term rescue with gene therapy.
Collapse
Affiliation(s)
- Monika Ayten
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nundehui Díaz-Lezama
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hanaa Ghanawi
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Felia C Haffelder
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jacqueline Kajtna
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tobias Straub
- Bioinformatics Unit, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Borso
- Molecular Biology, Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Axel Imhof
- Molecular Biology, Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Susanne F Koch
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
40
|
Kjeldsen SAS, Werge MP, Grandt J, Richter MM, Thing M, Hetland LE, Rashu EB, Jensen ASH, Winther-Sørensen M, Kellemann JS, Holst JJ, Junker AE, Serizawa RR, Vyberg M, Gluud LL, Wewer Albrechtsen NJ. Hepatic steatosis and not type 2 diabetes, body mass index, or hepatic fibrosis associates with hyperglucagonemia in individuals with steatotic liver disease. Am J Physiol Gastrointest Liver Physiol 2024; 327:G558-G570. [PMID: 39104323 DOI: 10.1152/ajpgi.00147.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/07/2024]
Abstract
Increased plasma concentrations of glucagon (hyperglucagonemia) are reported in patients with type 2 diabetes (T2D) and are considered a diabetogenic risk factor. Emerging evidence suggests that hepatic steatosis in obesity is causing a condition of resistance toward glucagon's effects on amino acid metabolism, resulting in an amino acid-induced hyperglucagonemia. We investigated the presence of hyperglucagonemia in individuals with biopsy-verified metabolic dysfunction-associated steatotic liver disease (MASLD), and whether body mass index (BMI), T2D, hepatic steatosis, and/or fibrosis contribute to this relationship. To dissect potential mechanisms, we also determined hepatic gene expression related to amino acid transport and catabolism. Individuals with MASLD had hyperglucagonemia {controls (n = 74) vs. MASLD (n = 106); median [Q1, Q3]; 4 [3, 7] vs. 8 [6, 13] pM), P < 0.0001} and were glucagon resistant (assessed by the glucagon-alanine index) {1.3 [0.9, 2.1] vs. 3.3 [2.1, 5.3] pM·mM, P < 0.0001}. These changes were associated with hepatic steatosis (P < 0.001, R2 > 0.25) independently of BMI, sex, age, and T2D. Plasma levels of glucagon were similar in individuals with MASLD when stratified on T2D status {MASLD-T2D (n = 52) vs. MASLD + T2D (n = 54); 8 [6, 11] vs. 8 [6, 13] pM, P = 0.34} and hepatic fibrosis {MASLD + F0 (n = 25) vs. MASLD + F1-F3 (n = 67); 8.4 [7.0, 13.3] vs. 7.9 [5.2, 11.6] pM, P = 0.43}. Obesity (BMI = 30 kg/m2) did not alter glucagon levels (P = 0.65) within groups (control/MASLD). The mRNA expression of proteins involved in amino acid transport and catabolism was downregulated in MASLD. Thus, relative hyperglucagonemia is present in individuals with biopsy-verified MASLD, and hepatic steatosis partially drives hyperglucagonemia and glucagon resistance, irrespective of T2D, BMI, and hepatic fibrosis.NEW & NOTEWORTHY Individuals with metabolic dysfunction-associated steatotic liver disease (MASLD) present with increased plasma levels of glucagon (hyperglucagonemia), irrespective of body mass index (BMI) and type 2 diabetes. Therefore, MASLD and the resultant hyperglucagonemia may act as a diabetogenic risk factor. Notably, hepatic steatosis was a significant contributor to the hyperglucagonemia in MASLD, potentially unveiling a pathway for the hyperglucagonemia in some patients with type 2 diabetes.
Collapse
Affiliation(s)
- Sasha A S Kjeldsen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg, Copenhagen, Denmark
| | - Mikkel P Werge
- Gastro Unit, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark
| | - Josephine Grandt
- Gastro Unit, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark
| | - Michael M Richter
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mira Thing
- Gastro Unit, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark
| | - Liv E Hetland
- Gastro Unit, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark
| | - Elias B Rashu
- Gastro Unit, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark
| | - Anne-Sofie H Jensen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg, Copenhagen, Denmark
- Gastro Unit, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark
| | - Marie Winther-Sørensen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg, Copenhagen, Denmark
| | - Jesper Sloth Kellemann
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders E Junker
- Gastro Unit, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark
| | - Reza R Serizawa
- Department of Pathology, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark
| | - Mogens Vyberg
- Department of Pathology, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | - Lise Lotte Gluud
- Gastro Unit, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Bassareo V, Maccioni R, Talani G, Zuffa S, El Abiead Y, Lorrai I, Kawamura T, Pantis S, Puliga R, Vargiu R, Lecca D, Enrico P, Peana A, Dazzi L, Dorrestein PC, Sanna PP, Sanna E, Acquas E. Receptor and metabolic insights on the ability of caffeine to prevent alcohol-induced stimulation of mesolimbic dopamine transmission. Transl Psychiatry 2024; 14:391. [PMID: 39341817 PMCID: PMC11438888 DOI: 10.1038/s41398-024-03112-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
The consumption of alcohol and caffeine affects the lives of billions of individuals worldwide. Although recent evidence indicates that caffeine impairs the reinforcing properties of alcohol, a characterization of its effects on alcohol-stimulated mesolimbic dopamine (DA) function was lacking. Acting as the pro-drug of salsolinol, alcohol excites DA neurons in the posterior ventral tegmental area (pVTA) and increases DA release in the nucleus accumbens shell (AcbSh). Here we show that caffeine, via antagonistic activity on A2A adenosine receptors (A2AR), prevents alcohol-dependent activation of mesolimbic DA function as assessed, in-vivo, by brain microdialysis of AcbSh DA and, in-vitro, by electrophysiological recordings of pVTA DA neuronal firing. Accordingly, while the A1R antagonist DPCPX fails to prevent the effects of alcohol on DA function, both caffeine and the A2AR antagonist SCH 58261 prevent alcohol-dependent pVTA generation of salsolinol and increase in AcbSh DA in-vivo, as well as alcohol-dependent excitation of pVTA DA neurons in-vitro. However, caffeine also prevents direct salsolinol- and morphine-stimulated DA function, suggesting that it can exert these inhibitory effects also independently from affecting alcohol-induced salsolinol formation or bioavailability. Finally, untargeted metabolomics of the pVTA showcases that caffeine antagonizes alcohol-mediated effects on molecules (e.g. phosphatidylcholines, fatty amides, carnitines) involved in lipid signaling and energy metabolism, which could represent an additional salsolinol-independent mechanism of caffeine in impairing alcohol-mediated stimulation of mesolimbic DA transmission. In conclusion, the outcomes of this study strengthen the potential of caffeine, as well as of A2AR antagonists, for future development of preventive/therapeutic strategies for alcohol use disorder.
Collapse
Affiliation(s)
- Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Riccardo Maccioni
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Giuseppe Talani
- Institute of Neuroscience - National Research Council (C.N.R.) of Italy, Cagliari, Italy
| | - Simone Zuffa
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Irene Lorrai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tomoya Kawamura
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Sofia Pantis
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Roberta Puliga
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Romina Vargiu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Daniele Lecca
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Paolo Enrico
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Alessandra Peana
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Laura Dazzi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Enrico Sanna
- Institute of Neuroscience - National Research Council (C.N.R.) of Italy, Cagliari, Italy
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| |
Collapse
|
42
|
Xie Y, Chai P, Till NA, Hemberger H, Lebedenko CG, Porat J, Watkins CP, Caldwell RM, George BM, Perr J, Bertozzi CR, Garcia BA, Flynn RA. The modified RNA base acp 3U is an attachment site for N-glycans in glycoRNA. Cell 2024; 187:5228-5237.e12. [PMID: 39173631 PMCID: PMC11571744 DOI: 10.1016/j.cell.2024.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/17/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024]
Abstract
GlycoRNA consists of RNAs modified with secretory N-glycans that are presented on the cell surface. Although previous work supported a covalent linkage between RNA and glycans, the direct chemical nature of the RNA-glycan connection was not described. Here, we develop a sensitive and scalable protocol to detect and characterize native glycoRNAs. Leveraging RNA-optimized periodate oxidation and aldehyde ligation (rPAL) and sequential window acquisition of all theoretical mass spectra (SWATH-MS), we identified the modified RNA base 3-(3-amino-3-carboxypropyl)uridine (acp3U) as a site of attachment of N-glycans in glycoRNA. rPAL offers sensitivity and robustness as an approach for characterizing direct glycan-RNA linkages occurring in cells, and its flexibility will enable further exploration of glycoRNA biology.
Collapse
Affiliation(s)
- Yixuan Xie
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Peiyuan Chai
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Nicholas A Till
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Helena Hemberger
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Charlotta G Lebedenko
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jennifer Porat
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Christopher P Watkins
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Reese M Caldwell
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Benson M George
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jonathan Perr
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Carolyn R Bertozzi
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford, CA, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Ryan A Flynn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
43
|
Solosky AM, Claudio IM, Chappel JR, Kirkwood-Donelson KI, Janech MG, Bland AM, Gulland FMD, Neely BA, Baker ES. Proteomic and Lipidomic Plasma Evaluations Reveal Biomarkers for Domoic Acid Toxicosis in California Sea Lions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592757. [PMID: 38766156 PMCID: PMC11100735 DOI: 10.1101/2024.05.06.592757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Domoic acid is a neurotoxin secreted by the marine diatom genus, Pseudo-nitzschia , during toxic algal bloom events. California sea lions ( Zalophus californianus ) are exposed to domoic acid through ingestion of fish that feed on toxic diatoms, resulting in a domoic acid toxicosis (DAT), which can vary from mild to fatal. Sea lions with mild disease can be treated if toxicosis is detected early after exposure, therefore, rapid diagnosis of DAT is essential but also challenging. In this work, we performed multi-omics analyses, specifically proteomic and lipidomic, on blood samples from 31 California sea lions. Fourteen sea lions were diagnosed with DAT based on clinical signs and postmortem histological examination of brain tissue, and 17 had no evidence of DAT. Proteomic analyses revealed three apolipoproteins with statistically significant lower abundance in the DAT individuals compared to the non-DAT individuals. These proteins are known to transport lipids in the blood. Lipidomic analyses highlighted 29 lipid levels that were statistically different in the DAT versus non-DAT comparison, 28 of which were downregulated while only one was upregulated. Furthermore, of the 28 downregulated lipids, 15 were triglycerides, illustrating their connection with the perturbed apolipoproteins and showing their potential for use in rapid DAT diagnoses. SYNOPSIS Multi-omics evaluations reveal blood apolipoproteins and triglycerides are altered in domoic acid toxicosis in California sea lions. GRAPHIC ABSTRACT
Collapse
|
44
|
Deyaert S, Poppe J, Dai Vu L, Baudot A, Bubeck S, Bayne T, Krishnan K, Giusto M, Moltz S, Van den Abbeele P. Functional Muffins Exert Bifidogenic Effects along with Highly Product-Specific Effects on the Human Gut Microbiota Ex Vivo. Metabolites 2024; 14:497. [PMID: 39330504 PMCID: PMC11433953 DOI: 10.3390/metabo14090497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
GoodBiome™ Foods are functional foods containing a probiotic (Bacillus subtilis HU58™) and prebiotics (mainly inulin). Their effects on the human gut microbiota were assessed using ex vivo SIFR® technology, which has been validated to provide clinically predictive insights. GoodBiome™ Foods (BBM/LCM/OSM) were subjected to oral, gastric, and small intestinal digestion/absorption, after which their impact on the gut microbiome of four adults was assessed (n = 3). All GoodBiome™ Foods boosted health-related SCFA acetate (+13.1/14.1/13.8 mM for BBM/LCM/OSM), propionate (particularly OSM; +7.4/7.5/8.9 mM for BBM/LCM/OSM) and butyrate (particularly BBM; +2.6/2.1/1.4 mM for BBM/LCM/OSM). This is related to the increase in Bifidobacterium species (B. catenulatum, B. adolescentis, B. pseudocatenulatum), Coprococcus catus and Bacteroidetes members (Bacteroides caccae, Phocaeicola dorei, P. massiliensis), likely mediated via inulin. Further, the potent propionogenic potential of OSM related to increased Bacteroidetes members known to ferment oats (s key ingredient of OSM), while the butyrogenic potential of BBM related to a specific increase in Anaerobutyricum hallii, a butyrate producer specialized in the fermentation of erythritol (key ingredient of BBM). In addition, OSM/BBM suppressed the pathogen Clostridioides difficile, potentially due to inclusion of HU58™ in GoodBiome™ Foods. Finally, all products enhanced a spectrum of metabolites well beyond SCFA, including vitamins (B3/B6), essential amino acids, and health-related metabolites such as indole-3-propionic acid. Overall, the addition of specific ingredients to complex foods was shown to specifically modulate the gut microbiome, potentially contributing to health benefits. Noticeably, our findings contradict a recent in vitro study, underscoring the critical role of employing a physiologically relevant digestion/absorption procedure for a more accurate evaluation of the microbiome-modulating potential of complex foods.
Collapse
Affiliation(s)
- Stef Deyaert
- Cryptobiotix, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium; (S.D.)
| | - Jonas Poppe
- Cryptobiotix, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium; (S.D.)
| | - Lam Dai Vu
- Cryptobiotix, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium; (S.D.)
| | - Aurélien Baudot
- Cryptobiotix, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium; (S.D.)
| | - Sarah Bubeck
- Bubeck Scientific Communications, 194 Rainbow Drive #9418, Livingston, TX 77399, USA
| | - Thomas Bayne
- Microbiome Labs, 101 E Town Pl, Saint Augustine, FL 92092, USA
| | - Kiran Krishnan
- Microbiome Labs, 101 E Town Pl, Saint Augustine, FL 92092, USA
| | - Morgan Giusto
- Microbiome Labs, 101 E Town Pl, Saint Augustine, FL 92092, USA
| | - Samuel Moltz
- Novonesis, Biologiens Vej 2, 2800 Lyngby, Denmark
| | | |
Collapse
|
45
|
Smith CC, Stevens J, Novelli M, Maskey D, Sutherland GT. Phosphatidylethanol in post-mortem brain: Correlation with blood alcohol concentration and alcohol use disorder. Alcohol 2024; 119:17-22. [PMID: 38763230 DOI: 10.1016/j.alcohol.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Phosphatidylethanol (PEth) is an alcohol derivative that has been employed as a blood-based biomarker for regular alcohol use. This study investigates the utility of phosphatidylethanol (PEth) as a biomarker for assessing alcohol consumption in post-mortem brain tissue. Using samples from the New South Wales Brain Tissue Resource Centre, we analysed PEth(16:0/18:1) levels in the cerebellum and meninges of individuals with varying histories of alcohol use, including those diagnosed with alcohol use disorder (AUD) and controls. Our findings demonstrate a significant correlation between PEth levels and blood alcohol content (BAC) at the time of death, supporting the biomarker's sensitivity to recent alcohol intake. Furthermore, this study explores the potential of PEth levels in differentiating AUD cases from controls, taking into consideration the complexities of diagnosing AUD post-mortem. The study also examined the relationship between PEth levels and liver pathology, identifying a link with the severity of liver damage. These results underscore the value of PEth as a reliable indicator of alcohol consumption and its potential contributions to post-mortem diagnostics and consequently, research into alcohol-related brain damage.
Collapse
Affiliation(s)
- Caine C Smith
- New South Wales Brain Tissue Research Centre, Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Julia Stevens
- New South Wales Brain Tissue Research Centre, Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Mario Novelli
- New South Wales Brain Tissue Research Centre, Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Dhiraj Maskey
- New South Wales Brain Tissue Research Centre, Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Greg T Sutherland
- New South Wales Brain Tissue Research Centre, Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
46
|
Wang Y, Liu S, Cao W, Lv J, Yu C, Huang T, Sun D, Liao C, Pang Y, Pang Z, Yu M, Wang H, Wu X, Liu Y, Gao W, Li L. The metabolic signature of blood lipids: a causal inference study using twins. J Lipid Res 2024; 65:100625. [PMID: 39303494 PMCID: PMC11437770 DOI: 10.1016/j.jlr.2024.100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
Dyslipidemia is one of the cardiometabolic risk factors that influences mortality globally. Unraveling the causality between blood lipids and metabolites and the complex networks connecting lipids, metabolites, and other cardiometabolic traits can help to more accurately reflect the body's metabolic disorders and even cardiometabolic diseases. We conducted targeted metabolomics of 248 metabolites in 437 twins from the Chinese National Twin Registry. Inference about Causation through Examination of FAmiliaL CONfounding (ICE FALCON) analysis was used for causal inference between metabolites and lipid parameters. Bidirectional mediation analysis was performed to explore the linkages between blood lipids, metabolites, and other seven cardiometabolic traits. We identified 44, 1, and 31 metabolites associated with triglyceride (TG), total cholesterol (TC), and high-density lipoprotein-cholesterol (HDL-C), most of which were gut microbiota-derived metabolites. There were 9, 1, and 14 metabolites that showed novel associations with TG, TC, and HDL-C, respectively. ICE FALCON analysis found that TG and HDL-C may have a predicted causal effect on 23 and six metabolites, respectively, and one metabolite may have a predicted causal effect on TG. Mediation analysis discovered 14 linkages connecting blood lipids, metabolites, and other cardiometabolic traits. Our study highlights the significance of gut microbiota-derived metabolites in lipid metabolism. Most of the identified cross-sectional associations may be due to the lipids having a predicted causal effect on metabolites, but not vice versa, nor are they due to family confounding. These findings shed new light on lipid metabolism and personalized management of cardiometabolic diseases.
Collapse
Affiliation(s)
- Yutong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Shunkai Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Weihua Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China; Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China; Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China; Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Chunxiao Liao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China; Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Yuanjie Pang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Zengchang Pang
- Qingdao Center for Disease Control and Prevention, Qingdao, China
| | - Min Yu
- Zhejiang Center for Disease Control and Prevention, Hangzhou, China
| | - Hua Wang
- Jiangsu Center for Disease Control and Prevention, Nanjing, China
| | - Xianping Wu
- Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Yu Liu
- Heilongjiang Center for Disease Control and Prevention, Harbin, China
| | - Wenjing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China.
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China; Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China.
| |
Collapse
|
47
|
Reynolds MB, Klein B, McFadden MJ, Judge NK, Navarrete HE, Michmerhuizen BC, Awad D, Schultz TL, Harms PW, Zhang L, O'Meara TR, Sexton JZ, Lyssiotis CA, Kahlenberg JM, O'Riordan MX. Type I interferon governs immunometabolic checkpoints that coordinate inflammation during Staphylococcal infection. Cell Rep 2024; 43:114607. [PMID: 39126652 PMCID: PMC11590196 DOI: 10.1016/j.celrep.2024.114607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/09/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Macrophage metabolic plasticity is central to inflammatory programming, yet mechanisms of coordinating metabolic and inflammatory programs during infection are poorly defined. Here, we show that type I interferon (IFN) temporally guides metabolic control of inflammation during methicillin-resistant Staphylococcus aureus (MRSA) infection. We find that staggered Toll-like receptor and type I IFN signaling in macrophages permit a transient energetic state of combined oxidative phosphorylation (OXPHOS) and aerobic glycolysis followed by inducible nitric oxide synthase (iNOS)-mediated OXPHOS disruption. This disruption promotes type I IFN, suppressing other pro-inflammatory cytokines, notably interleukin-1β. Upon infection, iNOS expression peaks at 24 h, followed by lactate-driven Nos2 repression via histone lactylation. Type I IFN pre-conditioning prolongs infection-induced iNOS expression, amplifying type I IFN. Cutaneous MRSA infection in mice constitutively expressing epidermal type I IFN results in elevated iNOS levels, impaired wound healing, vasculopathy, and lung infection. Thus, kinetically regulated type I IFN signaling coordinates immunometabolic checkpoints that control infection-induced inflammation.
Collapse
Affiliation(s)
- Mack B Reynolds
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Benjamin Klein
- Department of Internal Medicine, Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael J McFadden
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Norah K Judge
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hannah E Navarrete
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Britton C Michmerhuizen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Dominik Awad
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tracey L Schultz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Paul W Harms
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Teresa R O'Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jonathan Z Sexton
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mary X O'Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
48
|
Fitz V, Panzenboeck L, Schoeny H, Foels E, Koellensperger G. Isotope dilution with isotopically labeled biomass: An effective alternative for quantitative metabolomics. Anal Chim Acta 2024; 1318:342909. [PMID: 39067910 DOI: 10.1016/j.aca.2024.342909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/04/2024] [Accepted: 06/23/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND State-of-the-art quantitative metabolomics relies on isotope dilution using internal standards (IS) derived from fully 13C labeled biomass. By spiking samples and external standards with known amounts of IS, the spike characterization demands are kept to a minimum. In fact, it is sufficient to experimentally assess the isotopic enrichment of the IS. This study develops the yeast derived IS toolbox further, (1) by characterizing the concentration levels of hydrophilic metabolites in a yeast fermentation batch and (2) by exploring the analytical figures of merit of one-point IS versus multipoint external calibration using IS, the established gold-standard for quantitative metabolomics. RESULTS Independent reverse isotope dilution experiments using different chromatographic methods over a period of several months, delivered a list of 83 13C-labeled metabolites with fully characterized concentration and their uncertainty, covering 5 orders of magnitude, from the nanomolar to the low millimolar range. The 13C-labeled yeast-derived IS showed excellent intermediate stability with 92 % of molecules showing inter-method RSDs ≤30 % (75 % of molecules showed RSDs ≤15 %) over a timeframe of five months. One-point internal standardization with the characterized labeled biomass achieved figures of merit equivalent to multipoint calibrations for the majority of metabolites. SIGNIFICANCE The proposed calibration workflow rationalizes time and standard expenditure and is particularly beneficial for laboratories dealing with wide-target assays and small analysis batches. The present assessment serves as a seminal study for further developments of the concept towards absolute quantification from archive high-resolution MS data of U13C-biomass-spiked samples and the implementation of quick biomass recalibration with each experiment, promising seamless transition between internal standards derived from different fermentation batches.
Collapse
Affiliation(s)
- Veronika Fitz
- University of Vienna, Faculty of Chemistry, Institute of Analytical Chemistry, Waehringer Str. 38, 1090, Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Waehringer Str. 42, 1090, Vienna, Austria
| | - Lisa Panzenboeck
- University of Vienna, Faculty of Chemistry, Institute of Analytical Chemistry, Waehringer Str. 38, 1090, Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Waehringer Str. 42, 1090, Vienna, Austria
| | - Harald Schoeny
- University of Vienna, Faculty of Chemistry, Institute of Analytical Chemistry, Waehringer Str. 38, 1090, Vienna, Austria
| | - Elisabeth Foels
- University of Vienna, Faculty of Chemistry, Institute of Analytical Chemistry, Waehringer Str. 38, 1090, Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Waehringer Str. 42, 1090, Vienna, Austria
| | - Gunda Koellensperger
- University of Vienna, Faculty of Chemistry, Institute of Analytical Chemistry, Waehringer Str. 38, 1090, Vienna, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Althanstr. 14, 1090, Vienna, Austria; Chemistry Meets Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria.
| |
Collapse
|
49
|
Lynn KS, Tang HY, Lo CJ, Yang CH, Tseng YT, Cheng ML. MRMQuant: Automated MRM Data Quantitation for Large-Scale Targeted Metabolomics Analysis. Anal Chem 2024; 96:13625-13635. [PMID: 39127919 PMCID: PMC11339730 DOI: 10.1021/acs.analchem.4c02462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Multiple reaction monitoring (MRM) is a powerful and popular technique used for metabolite quantification in targeted metabolomics. Accurate and consistent quantitation of metabolites from the MRM data is essential for subsequent analyses. Here, we developed an automated tool, MRMQuant, for targeted metabolomic quantitation using high-throughput liquid chromatography-tandem mass spectrometry MRM data to provide users with an easy-to-use tool for accurate MRM data quantitation with minimal human intervention. This tool has many user-friendly functions and features to inspect and correct the quantitation results as required. MRMQuant possesses the following features to ensure accurate quantitation: (1) dynamic signal smoothing, (2) automatic deconvolution of coeluted peaks, (3) absolute quantitation via standard curves and/or internal standards, (4) visualized inspection and correction, (5) corrections applicable to multiple samples, and (6) batch-effect correction.
Collapse
Affiliation(s)
- Ke-Shiuan Lynn
- Department
of Mathematics, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Hsiang-Yu Tang
- Metabolomics
Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Chi-Jen Lo
- Metabolomics
Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Cheng-Hung Yang
- Metabolomics
Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Department
of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yi-Ting Tseng
- Metabolomics
Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Department
of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Mei-Ling Cheng
- Metabolomics
Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Department
of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
50
|
Fletcher JR, Hansen LA, Martinez R, Freeman CD, Thorns N, Villareal AR, Penningroth MR, Vogt GA, Tyler M, Hines KM, Hunter RC. Commensal-derived short-chain fatty acids disrupt lipid membrane homeostasis in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607382. [PMID: 39185181 PMCID: PMC11343118 DOI: 10.1101/2024.08.12.607382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The role of commensal anaerobic bacteria in chronic respiratory infections is unclear, yet they can exist in abundances comparable to canonical pathogens in vivo. Their contributions to the metabolic landscape of the host environment may influence pathogen behavior by competing for nutrients and creating inhospitable conditions via toxic metabolites. Here, we reveal a mechanism by which the anaerobe-derived short chain fatty acids (SCFAs) propionate and butyrate negatively affect Staphylococcus aureus physiology by disrupting branched chain fatty acid (BCFA) metabolism. In turn, BCFA impairment results in impaired growth, diminished expression of the agr quorum sensing system, as well as increased sensitivity to membrane-targeting antimicrobials. Altered BCFA metabolism also reduces S. aureus fitness in competition with Pseudomonas aeruginosa, suggesting that airway microbiome composition and the metabolites they produce and exchange directly impact pathogen succession over time. The pleiotropic effects of these SCFAs on S. aureus fitness and their ubiquity as metabolites in animals also suggests that they may be effective as sensitizers to traditional antimicrobial agents when used in combination.
Collapse
Affiliation(s)
- Joshua R. Fletcher
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27695
| | - Lisa A. Hansen
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203
| | - Richard Martinez
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455
| | | | - Niall Thorns
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203
| | - Alex R. Villareal
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455
| | | | - Grace A. Vogt
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Matthew Tyler
- Department of Otolaryngology, University of Minnesota, Minneapolis, MN, 55455
| | - Kelly M. Hines
- Department of Chemistry, University of Georgia, Athens, GA, 30602
| | - Ryan C. Hunter
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203
| |
Collapse
|