1
|
Diederichs EV, Mondal D, Willett TL. The effects of physiologically relevant environmental conditions on the mechanical properties of 3D-printed biopolymer nanocomposites. J Mech Behav Biomed Mater 2024; 159:106694. [PMID: 39191061 DOI: 10.1016/j.jmbbm.2024.106694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/03/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
The demand for synthetic bone graft biomaterials has grown in recent years to alleviate the dependence on natural bone grafts and metal prostheses which are associated with significant practical and clinical issues. Biopolymer nanocomposites are a class of materials that display strong potential for these synthetic materials, especially when processed using additive manufacturing technologies. Novel nanocomposite biomaterials capable of masked stereolithography printing have been developed from functionalized plant-based monomers and hydroxyapatite (HA) with mechanical properties exceeding those of commercial bone cements. However, these biomaterials have not been evaluated under relevant physiological conditions. The effects of temperature (room temperature vs. 37 °C) and water absorption on the physical, surface, and mechanical properties of HA-containing biopolymer nanocomposites were investigated. Exposure to relevant conditions led to substantial impacts on material performance, such as significantly reduced mechanical strength and stiffness. For instance, a composite containing 10 vol% HA and functionalized monomers had 26 and 21% reductions in compressive yield strength and elastic modulus, respectively. After 14 days incubation in phosphate buffered saline, the same composition displayed a 62% decrease in compressive yield strength to 28 MPa. This manuscript demonstrates the relevance and importance of evaluating biomaterials under appropriate physiological conditions throughout their development and provides direction for future material development of HA-containing biopolymer nanocomposites.
Collapse
Affiliation(s)
- Elizabeth V Diederichs
- Waterloo Composite Biomaterial Systems Laboratory, Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Canada
| | - Dibakar Mondal
- Waterloo Composite Biomaterial Systems Laboratory, Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Canada
| | - Thomas L Willett
- Waterloo Composite Biomaterial Systems Laboratory, Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Canada.
| |
Collapse
|
2
|
Ofodum NM, Qi Q, Chandradat R, Warfle T, Lu X. Advancing Dynamic Polymer Mechanochemistry through Synergetic Conformational Gearing. J Am Chem Soc 2024; 146:17700-17711. [PMID: 38888499 DOI: 10.1021/jacs.4c02066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Harnessing mechanical force to modulate material properties and enhance biomechanical functions is essential for advancing smart materials and bioengineering. Polymer mechanochemistry provides an emerging toolkit for exploring unconventional chemical transformations and modulating molecular structures through mechanical force. One of the key challenges is developing innovative force-sensing mechanisms for precise and in situ force detection. This study introduces mDPAC, a dynamic and sensitive mechanophore, demonstrating its mechanochromic properties through synergetic conformational gearing. Its unique mechanoresponsive mechanism is based on the simultaneous conformational synergy between its phenazine and phenyl moieties, facilitated by a worm-gear-like structure. We confirm mDPAC's complex mechanochemical response and elucidate its mechanotransduction mechanism through our experimental data and comprehensive simulations. The compatibility of mDPAC with hydrogels is particularly notable, highlighting its potential for applications in aqueous biological environments as a dynamic force sensor. Moreover, mDPAC's multicolored mechanochromic responses facilitate direct force sensing and visual detection, paving the way for precise and real-time mechanical force sensing in bulk materials.
Collapse
Affiliation(s)
- Nnamdi M Ofodum
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave, Potsdam, New York 13699, United States
| | - Qingkai Qi
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave, Potsdam, New York 13699, United States
| | - Richard Chandradat
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave, Potsdam, New York 13699, United States
| | - Theodore Warfle
- Department of Chemical and Biomolecular Engineering, Clarkson University, 8 Clarkson Ave, Potsdam, New York 13699, United States
| | - Xiaocun Lu
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave, Potsdam, New York 13699, United States
| |
Collapse
|
3
|
Xiong X, Wang H, Xue L, Cui J. Self-Growing Organic Materials. Angew Chem Int Ed Engl 2023; 62:e202306565. [PMID: 37432074 DOI: 10.1002/anie.202306565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/12/2023]
Abstract
The growth of living systems is ubiquitous. Living organisms can continually update their sizes, shapes, and properties to meet various environmental challenges. Such a capability is also demonstrated by emerging self-growing materials that can incorporate externally provided compounds to grow as living organisms. In this Minireview, we summarize these materials in terms of six aspects. First, we discuss their essential characteristics, then describe the strategies for enabling crosslinked organic materials to self-grow from nutrient solutions containing polymerizable compounds. The developed examples are grouped into five categories based on their molecular mechanisms. We then explain the mechanism of mass transport within polymer networks during growth, which is critical for controlling the shape and morphology of the grown products. Afterwards, simulation models built to explain the interesting phenomena observed in self-growing materials are discussed. The development of self-growing materials is accompanied by various applications, including tuning bulk properties, creating textured surfaces, growth-induced self-healing, 4D printing, self-growing implants, actuation, self-growing structural coloration, and others. These examples are then summed up. Finally, we discuss the opportunities brought by self-growing materials and their facing challenges.
Collapse
Affiliation(s)
- Xinhong Xiong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Hong Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jiaxi Cui
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| |
Collapse
|
4
|
Sukhareva KV, Sukharev NR, Levina II, Offor PO, Popov AA. Solvent Swelling-Induced Halogenation of Butyl Rubber Using Polychlorinated N-Alkanes: Structure and Properties. Polymers (Basel) 2023; 15:4137. [PMID: 37896381 PMCID: PMC10610726 DOI: 10.3390/polym15204137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Traditional butyl rubber halogenation technology involves the halogenation of IIR using molecular chlorine or bromine in a solution. However, this method is technologically complex. This study investigated a novel method for the halogenation of butyl rubber to enhance its stability and resistance to thermal oxidation and aggressive media. The butyl rubber was modified through mechanochemical modification, induced by solvent swelling in a polychlorinated n-alkane solution. During the modification, samples were obtained with chlorine content ranging from 3 to 15%. After extraction, the halogen content was quantitatively determined with the oxygen flask combustion method and X-ray photoelectron spectroscopy. It was shown that for samples with total chlorine content of up to 6%, there was almost no leaching of chlorine from the samples. The chemical structure of the extracted rubbers was ascertained using FT-IR and 1H NMR spectroscopy, and it was demonstrated that all samples showed absorption peaks and signals typical for chlorobutyl rubbers. It was observed that modification with polychlorinated n-alkanes improved the thermal and oxidative stability (the oxygen absorption rate decreased by 40%) and chemical resistance, estimated by the degree of swelling, which decreased with the increase in the chlorine content. This technology allows the production of a chlorinated rubber solution that can be directly used by rubber goods manufacturers and suppliers.
Collapse
Affiliation(s)
- Ksenia Valeriyevna Sukhareva
- Higher School of Engineering, Plekhanov Russian University of Economics, 36 Stremyanny Ln, 117997 Moscow, Russia;
- Institute of Biochemical Physics Named after N.M. Emanuel, Russian Academy of Sciences, 4 Kosygin St., 119991 Moscow, Russia; (N.R.S.); (I.I.L.)
| | - Nikita Romanovich Sukharev
- Institute of Biochemical Physics Named after N.M. Emanuel, Russian Academy of Sciences, 4 Kosygin St., 119991 Moscow, Russia; (N.R.S.); (I.I.L.)
| | - Irina Ivanovna Levina
- Institute of Biochemical Physics Named after N.M. Emanuel, Russian Academy of Sciences, 4 Kosygin St., 119991 Moscow, Russia; (N.R.S.); (I.I.L.)
| | - Peter Ogbuna Offor
- Metallurgical and Materials Engineering Department, University of Nigeria, Nsukka 410001, Nigeria
| | - Anatoly Anatolyevich Popov
- Higher School of Engineering, Plekhanov Russian University of Economics, 36 Stremyanny Ln, 117997 Moscow, Russia;
- Institute of Biochemical Physics Named after N.M. Emanuel, Russian Academy of Sciences, 4 Kosygin St., 119991 Moscow, Russia; (N.R.S.); (I.I.L.)
| |
Collapse
|
5
|
Metze F, Sant S, Meng Z, Klok HA, Kaur K. Swelling-Activated, Soft Mechanochemistry in Polymer Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3546-3557. [PMID: 36848262 PMCID: PMC10018775 DOI: 10.1021/acs.langmuir.2c02801] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/26/2023] [Indexed: 06/12/2023]
Abstract
Swelling in polymer materials is a ubiquitous phenomenon. At a molecular level, swelling is dictated by solvent-polymer interactions, and has been thoroughly studied both theoretically and experimentally. Favorable solvent-polymer interactions result in the solvation of polymer chains. For polymers in confined geometries, such as those that are tethered to surfaces, or for polymer networks, solvation can lead to swelling-induced tensions. These tensions act on polymer chains and can lead to stretching, bending, or deformation of the material both at the micro- and macroscopic scale. This Invited Feature Article sheds light on such swelling-induced mechanochemical phenomena in polymer materials across dimensions, and discusses approaches to visualize and characterize these effects.
Collapse
|
6
|
Watabe T, Otsuka H. Swelling-induced Mechanochromism in Multinetwork Polymers. Angew Chem Int Ed Engl 2023; 62:e202216469. [PMID: 36524463 DOI: 10.1002/anie.202216469] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
We report a novel and versatile approach to achieving swelling-induced mechanochemistry using a multinetwork (MN) strategy that enables polymer networks to repeatedly swell with monomers and solvents. The isotropic expansion of the first network (FN) provides sufficient force to drive the mechanochemical scission of a radical-based mechanophore, difluorenylsuccinonitrile (DFSN). Although prompt recombination generally occurs in such highly mobile environments, the resulting pink radicals are kinetically stabilized in the gels, probably due to limited diffusion in the extended polymer chains. Moreover, the DFSN embedded in the isotropically strained chain exhibits increased thermal reactivity, which can be reasonably explained by an entropic contribution of the FN to the dissociation. The utility of the MN polymers is demonstrated not only in terms of swelling-force-induced network modification, but also in the context of tunable reactivity of the dissociative unit through proper design of the hierarchical network architecture.
Collapse
Affiliation(s)
- Takuma Watabe
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
7
|
Lin D, Li Y, Zhang H, Zhang S, Gao Y, Zhai T, Hu S, Sheng C, Guo H, Xu C, Wei Y, Li S, Han Y, Feng Q, Wang S, Xie L, Huang W. In Situ Super-Hindrance-Triggered Multilayer Cracks for Random Lasing in π-Functional Nanopolymer Films. RESEARCH 2023; 6:0027. [PMID: 37040485 PMCID: PMC10076025 DOI: 10.34133/research.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/29/2022] [Indexed: 01/25/2023]
Abstract
In situ self-assembly of semiconducting emitters into multilayer cracks is a significant solution-processing method to fabricate organic high-
Q
lasers. However, it is still difficult to realize from conventional conjugated polymers. Herein, we create the molecular super-hindrance-etching technology, based on the π-functional nanopolymer PG-Cz, to modulate multilayer cracks applied in organic single-component random lasers. Massive interface cracks are formed by promoting interchain disentanglement with the super-steric hindrance effect of π-interrupted main chains, and multilayer morphologies with photonic-crystal-like ordering are also generated simultaneously during the drop-casting method. Meanwhile, the enhancement of quantum yields on micrometer-thick films (
Φ
= 40% to 50%) ensures high-efficient and ultrastable deep-blue emission. Furthermore, a deep-blue random lasing is achieved with narrow linewidths ~0.08 nm and high-quality factors
Q
≈ 5,500 to 6,200. These findings will offer promising pathways of organic π-nanopolymers for the simplification of solution processes applied in lasing devices and wearable photonics.
Collapse
Affiliation(s)
- Dongqing Lin
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yang Li
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - He Zhang
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shuai Zhang
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Yuezheng Gao
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Tianrui Zhai
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Shu Hu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chuanxiang Sheng
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Heng Guo
- State Key Laboratory of Bioelectronics, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chunxiang Xu
- State Key Laboratory of Bioelectronics, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ying Wei
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shifeng Li
- College of Engineering and Applied Science, Nanjing University, Nanjing, 210023, China
| | - Yelong Han
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Quanyou Feng
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shasha Wang
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Linghai Xie
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Wei Huang
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
8
|
Wang W, Tasset A, Pyatnitskiy I, Mohamed HG, Taniguchi R, Zhou R, Rana M, Lin P, Capocyan SLC, Bellamkonda A, Chase Sanders W, Wang H. Ultrasound triggered organic mechanoluminescence materials. Adv Drug Deliv Rev 2022; 186:114343. [PMID: 35580814 PMCID: PMC10202817 DOI: 10.1016/j.addr.2022.114343] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022]
Abstract
Ultrasound induced organic mechanoluminescence materials have become one of the focal topics in wireless light sources since they exhibit high spatiotemporal resolution, biocompatibility and excellent tissue penetration depth. These properties promote great potential in ultrahigh sensitive bioimaging with no background noise and noninvasive nanodevices. Recent advances in chemistry, nanotechnology and biomedical research are revolutionizing ultrasound induced organic mechanoluminescence. Herein, we try to summarize some recent researches in ultrasound induced mechanoluminescence that use various materials design strategies based on the molecular conformational changes and cycloreversion reaction. Practical applications, like noninvasive bioimaging and noninvasive optogenetics, are also presented and prospected.
Collapse
Affiliation(s)
- Wenliang Wang
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Aaron Tasset
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Ilya Pyatnitskiy
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Heba G Mohamed
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Rayna Taniguchi
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Richard Zhou
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Manini Rana
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Peter Lin
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Sam Lander C Capocyan
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Arjun Bellamkonda
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - W Chase Sanders
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Huiliang Wang
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
9
|
Raisch M, Reiter G, Sommer M. Determining Entanglement Molar Mass of Glassy Polyphenylenes Using Mechanochromic Molecular Springs. ACS Macro Lett 2022; 11:760-765. [PMID: 35612497 DOI: 10.1021/acsmacrolett.2c00238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular force transduction in tough and glassy poly(meta,meta,para-phenylene) (PmmpP) was investigated as a function of Mn using covalently incorporated mechanochromic donor-acceptor torsional springs based on an ortho-substituted diphenyldiketopyrrolopyrrole (oDPP). Blending oDPP-PmmpP probe chains with long PmmpP matrix chains allowed us to investigate molar-mass-dependent mechanochromic properties for a series of specimens having mechanically identical properties. In the strain-hardening regime, the mechanochromic response (Δλmax,em) was found to be a linear function of the acting stress and fully reversible, making oDPP-PmmpP a real-time and quantitative stress sensor. For entangled and nonentangled probe chains, distinctly different values of Δλmax,em were observed, yielding a critical molar mass of Mc ≈ 11 kg mol-1 for PmmpP. Once physical cross-linking of oDPP in the network of PmmpP was ensured, Δλmax,em was found to be independent of Mn. The resulting value of Mc is in very good agreement with results from rheology.
Collapse
Affiliation(s)
- Maximilian Raisch
- Institute for Chemistry, Polymer Chemistry, Chemnitz University of Technology, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Günter Reiter
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Michael Sommer
- Institute for Chemistry, Polymer Chemistry, Chemnitz University of Technology, Straße der Nationen 62, 09111 Chemnitz, Germany
| |
Collapse
|
10
|
Yamakado T, Saito S. Ratiometric Flapping Force Probe That Works in Polymer Gels. J Am Chem Soc 2022; 144:2804-2815. [PMID: 35108003 DOI: 10.1021/jacs.1c12955] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polymer gels have recently attracted attention for their application in flexible devices, where mechanically robust gels are required. While there are many strategies to produce tough gels by suppressing nanoscale stress concentration on specific polymer chains, it is still challenging to directly verify the toughening mechanism at the molecular level. To solve this problem, the use of the flapping molecular force probe (FLAP) is promising because it can evaluate the nanoscale forces transmitted in the polymer chain network by ratiometric analysis of a stress-dependent dual fluorescence. A flexible conformational change of FLAP enables real-time and reversible responses to the nanoscale forces at the low force threshold, which is suitable for quantifying the percentage of the stressed polymer chains before structural damage. However, the previously reported FLAP only showed a negligible response in solvated environments because undesirable spontaneous planarization occurs in the excited state, even without mechanical force. Here, we have developed a new ratiometric force probe that functions in common organogels. Replacement of the anthraceneimide units in the flapping wings with pyreneimide units largely suppresses the excited-state planarization, leading to the force probe function under wet conditions. The FLAP-doped polyurethane organogel reversibly shows a dual-fluorescence response under sub-MPa compression. Moreover, the structurally modified FLAP is also advantageous in the wide dynamic range of its fluorescence response in solvent-free elastomers, enabling clearer ratiometric fluorescence imaging of the molecular-level stress concentration during crack growth in a stretched polyurethane film.
Collapse
Affiliation(s)
- Takuya Yamakado
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shohei Saito
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
11
|
Kim G, Wu Q, Chu JL, Smith EJ, Oelze ML, Moore JS, Li KC. Ultrasound controlled mechanophore activation in hydrogels for cancer therapy. Proc Natl Acad Sci U S A 2022; 119:e2109791119. [PMID: 35046028 PMCID: PMC8795563 DOI: 10.1073/pnas.2109791119] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/09/2021] [Indexed: 02/05/2023] Open
Abstract
Mechanophores are molecular motifs that respond to mechanical perturbance with targeted chemical reactions toward desirable changes in material properties. A large variety of mechanophores have been investigated, with applications focusing on functional materials, such as strain/stress sensors, nanolithography, and self-healing polymers, among others. The responses of engineered mechanophores, such as light emittance, change in fluorescence, and generation of free radicals (FRs), have potential for bioimaging and therapy. However, the biomedical applications of mechanophores are not well explored. Herein, we report an in vitro demonstration of an FR-generating mechanophore embedded in biocompatible hydrogels for noninvasive cancer therapy. Controlled by high-intensity focused ultrasound (HIFU), a clinically proven therapeutic technique, mechanophores were activated with spatiotemporal precision to generate FRs that converted to reactive oxygen species (ROS) to effectively kill tumor cells. The mechanophore hydrogels exhibited no cytotoxicity under physiological conditions. Upon activation with HIFU sonication, the therapeutic efficacies in killing in vitro murine melanoma and breast cancer tumor cells were comparable with lethal doses of H2O2 This process demonstrated the potential for mechanophore-integrated HIFU combination as a noninvasive cancer treatment platform, named "mechanochemical dynamic therapy" (MDT). MDT has two distinct advantages over other noninvasive cancer treatments, such as photodynamic therapy (PDT) and sonodynamic therapy (SDT). 1) MDT is ultrasound based, with larger penetration depth than PDT. 2) MDT does not rely on sonosensitizers or the acoustic cavitation effect, both of which are necessary for SDT. Taking advantage of the strengths of mechanophores and HIFU, MDT can provide noninvasive treatments for diverse cancer types.
Collapse
Affiliation(s)
- Gun Kim
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carle Illinois College of Medicine, University of Illinois at Urbana Urbana-Champaign, Urbana, IL 61820
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Qiong Wu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - James L Chu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carle Illinois College of Medicine, University of Illinois at Urbana Urbana-Champaign, Urbana, IL 61820
| | - Emily J Smith
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carle Illinois College of Medicine, University of Illinois at Urbana Urbana-Champaign, Urbana, IL 61820
| | - Michael L Oelze
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carle Illinois College of Medicine, University of Illinois at Urbana Urbana-Champaign, Urbana, IL 61820
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Carle Illinois College of Medicine, University of Illinois at Urbana Urbana-Champaign, Urbana, IL 61820
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - King C Li
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Carle Illinois College of Medicine, University of Illinois at Urbana Urbana-Champaign, Urbana, IL 61820
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
12
|
Matsuhashi C, Oyama H, Uekusa H, Sato-Tomita A, Ichiyanagi K, Maki SA, Hirano T. Crystalline-state chemiluminescence reactions of two-fluorophore-linked adamantylideneadamantane 1,2-dioxetane isomers accompanied by solid-to-solid phase transitions. CrystEngComm 2022. [DOI: 10.1039/d2ce00266c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural isomers (cis-syn, cis-anti and trans isomers) of an adamantylideneadamantane 1,2-dioxetane having two fluorophore side chains were prepared and investigated their chemiluminescence (CL) properties in the crystalline state. Real-time monitoring...
Collapse
|
13
|
He S, Stratigaki M, Centeno SP, Dreuw A, Göstl R. Tailoring the Properties of Optical Force Probes for Polymer Mechanochemistry. Chemistry 2021; 27:15889-15897. [PMID: 34582082 PMCID: PMC9292383 DOI: 10.1002/chem.202102938] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Indexed: 02/05/2023]
Abstract
The correlation of mechanical properties of polymer materials with those of their molecular constituents is the foundation for their holistic comprehension and eventually for improved material designs and syntheses. Over the last decade, optical force probes (OFPs) were developed, shedding light on various unique mechanical behaviors of materials. The properties of polymers are diverse, ranging from soft hydrogels to ultra-tough composites, from purely elastic rubbers to viscous colloidal solutions, and from transparent glasses to super black dyed coatings. Only very recently, researchers started to develop tailored OFP solutions that account for such material requirements in energy (both light and force), in time, and in their spatially detectable resolution. We here highlight notable recent examples and identify future challenges in this emergent field.
Collapse
Affiliation(s)
- Siyang He
- DWI - Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Maria Stratigaki
- DWI - Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Silvia P. Centeno
- DWI - Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific ComputingHeidelberg UniversityIm Neuenheimer Feld 20569120HeidelbergGermany
| | - Robert Göstl
- DWI - Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| |
Collapse
|
14
|
Geiselhart CM, Mutlu H, Barner‐Kowollik C. Vorbeugen oder Heilen – die beispiellose Notwendigkeit von selbstberichtenden Materialien. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christina M. Geiselhart
- Soft Matter Synthesis Laboratory Institut für Biologische Grenzflächen 3 Hermann-von-Helmholtz-Platz 1 76344 Eggenstein Leopoldshafen Deutschland
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie (ITCP) Karlsruher Institut für Technologie (KIT) Engesserstraße 18 76131 Karlsruhe Deutschland
| | - Hatice Mutlu
- Soft Matter Synthesis Laboratory Institut für Biologische Grenzflächen 3 Hermann-von-Helmholtz-Platz 1 76344 Eggenstein Leopoldshafen Deutschland
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie (ITCP) Karlsruher Institut für Technologie (KIT) Engesserstraße 18 76131 Karlsruhe Deutschland
| | - Christopher Barner‐Kowollik
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie (ITCP) Karlsruher Institut für Technologie (KIT) Engesserstraße 18 76131 Karlsruhe Deutschland
- Centre for Materials Science Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australien
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australien
| |
Collapse
|
15
|
Geiselhart CM, Mutlu H, Barner‐Kowollik C. Prevent or Cure-The Unprecedented Need for Self-Reporting Materials. Angew Chem Int Ed Engl 2021; 60:17290-17313. [PMID: 33217121 PMCID: PMC8359351 DOI: 10.1002/anie.202012592] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/08/2020] [Indexed: 01/08/2023]
Abstract
Self-reporting smart materials are highly relevant in modern soft matter materials science, as they allow for the autonomous detection of changes in synthetic polymers, materials, and composites. Despite critical advantages of such materials, for example, prolonged lifetime or prevention of disastrous material failures, they have gained much less attention than self-healing materials. However, as diagnosis is critical for any therapy, it is of the utmost importance to report the existence of system changes and their exact location to prevent them from spreading. Thus, we herein critically review the chemistry of self-reporting soft matter materials systems and highlight how current challenges and limitations may be overcome by successfully transferring self-reporting research concepts from the laboratory to the real world. Especially in the space of diagnostic self-reporting systems, the recent SARS-CoV-2 (COVID-19) pandemic indicates an urgent need for such concepts that may be able to detect the presence of viruses or bacteria on and within materials in a self-reporting fashion.
Collapse
Affiliation(s)
- Christina M. Geiselhart
- Soft Matter Synthesis LaboratoryInstitute for Biological Interfaces 3Hermann-von-Helmholtz-Platz 176344Eggenstein LeopoldshafenGermany
- Macromolecular ArchitecturesInstitute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Hatice Mutlu
- Soft Matter Synthesis LaboratoryInstitute for Biological Interfaces 3Hermann-von-Helmholtz-Platz 176344Eggenstein LeopoldshafenGermany
- Macromolecular ArchitecturesInstitute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Christopher Barner‐Kowollik
- Macromolecular ArchitecturesInstitute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
- Centre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| |
Collapse
|
16
|
Kato S, Aoki D, Oikawa K, Tsuchiya K, Numata K, Otsuka H. Visualization of the Necking Initiation and Propagation Processes during Uniaxial Tensile Deformation of Crystalline Polymer Films via the Generation of Fluorescent Radicals. ACS Macro Lett 2021; 10:623-627. [PMID: 35570755 DOI: 10.1021/acsmacrolett.1c00185] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To visualize and simultaneously quantify the necking behavior of crystalline polymer films during uniaxial stretching, tetraarylsuccinonitrile (TASN) moieties were introduced into polymers at the center of the main chain. TASN can produce a relatively stable radical that emits yellow fluorescence in response to mechanical stress. During the uniaxial elongation test of the TASN-centered crystalline polymers, the yellow fluorescence derived from the dissociated TASN radicals was used for microscale observations that showed the orientation of the polymer chains in the stretching direction. Furthermore, by comparing the radical generation in linear and star-shaped TASN-centered crystalline polymers during their tensile deformation, we found that the TASN dissociation ratio is higher in the star-shaped polymer, which has more chains connected to the lamellar crystal. Thus, the microforces generated in the amorphous region during uniaxial stretching were probed via the use of TASN, which allowed a direct visualization of the necking initiation and propagation processes as well as a quantification via electron paramagnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Sota Kato
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kazusato Oikawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kousuke Tsuchiya
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
17
|
Danielsen SPO, Beech HK, Wang S, El-Zaatari BM, Wang X, Sapir L, Ouchi T, Wang Z, Johnson PN, Hu Y, Lundberg DJ, Stoychev G, Craig SL, Johnson JA, Kalow JA, Olsen BD, Rubinstein M. Molecular Characterization of Polymer Networks. Chem Rev 2021; 121:5042-5092. [PMID: 33792299 DOI: 10.1021/acs.chemrev.0c01304] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymer networks are complex systems consisting of molecular components. Whereas the properties of the individual components are typically well understood by most chemists, translating that chemical insight into polymer networks themselves is limited by the statistical and poorly defined nature of network structures. As a result, it is challenging, if not currently impossible, to extrapolate from the molecular behavior of components to the full range of performance and properties of the entire polymer network. Polymer networks therefore present an unrealized, important, and interdisciplinary opportunity to exert molecular-level, chemical control on material macroscopic properties. A barrier to sophisticated molecular approaches to polymer networks is that the techniques for characterizing the molecular structure of networks are often unfamiliar to many scientists. Here, we present a critical overview of the current characterization techniques available to understand the relation between the molecular properties and the resulting performance and behavior of polymer networks, in the absence of added fillers. We highlight the methods available to characterize the chemistry and molecular-level properties of individual polymer strands and junctions, the gelation process by which strands form networks, the structure of the resulting network, and the dynamics and mechanics of the final material. The purpose is not to serve as a detailed manual for conducting these measurements but rather to unify the underlying principles, point out remaining challenges, and provide a concise overview by which chemists can plan characterization strategies that suit their research objectives. Because polymer networks cannot often be sufficiently characterized with a single method, strategic combinations of multiple techniques are typically required for their molecular characterization.
Collapse
Affiliation(s)
- Scott P O Danielsen
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Haley K Beech
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Bassil M El-Zaatari
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaodi Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | | | - Zi Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Patricia N Johnson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yixin Hu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Georgi Stoychev
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Physics, Duke University, Durham, North Carolina 27708, United States.,World Primer Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
18
|
Dubach FFC, Ellenbroek WG, Storm C. How accurately do mechanophores report on bond scission in soft polymer materials? JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Friso F. C. Dubach
- Department of Applied Physics Eindhoven University of Technology Eindhoven The Netherlands
| | - Wouter G. Ellenbroek
- Department of Applied Physics Eindhoven University of Technology Eindhoven The Netherlands
| | - Cornelis Storm
- Department of Applied Physics Eindhoven University of Technology Eindhoven The Netherlands
- Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
| |
Collapse
|
19
|
Li X, Li J, Wei W, Yang F, Wu M, Wu Q, Xie T, Chen Y. Enhanced Mechanochemiluminescence from End-Functionalized Polyurethanes with Multiple Hydrogen Bonds. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02622] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiaopei Li
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Junyu Li
- Molecular Materials and Nanosystems and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Wanyuan Wei
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Fan Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Mengjiao Wu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Qin Wu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Titi Xie
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Yulan Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| |
Collapse
|
20
|
Parameswar AV, Dikshit KV, Movafaghi S, Bruns CJ, Goodwin AP. Mechanochemistry Activated Covalent Conjugation Reactions in Soft Hydrogels Induced by Interfacial Failure. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1486-1492. [PMID: 33370089 PMCID: PMC7984414 DOI: 10.1021/acsami.0c18432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This work reports the development of a mechanochemistry activated covalent conjugation (MACC) reaction that shows areas of interfacial failure in soft hydrogels. Hydrogels are prone to delamination from rigid substrates due to the competition between swelling and adhesion, which can lead to bonding failure in a mechanism similar to crack propagation in harder materials. In this work, reductive amination was shown to occur when a ketone-bearing fluorescein derivative was bonded to an amine-functionalized hydrogel, as both of these moieties were found to be necessary for covalent conjugation into the gel network. For thin, circular polyacrylamide hydrogels, wrinkle patterns and regions of subsequent delamination at the edge of the gel were found to be selectively tagged by the dye. This reaction was then used to explore the effect of gel properties on patterns of interfacial failure. As cross-linker loading increased, the propagation of the delamination front and the area fraction of delamination were both found to increase, as shown by fluorescence images of gels. Increasing the thickness of the gel increased the fraction of delaminated area but did not change its propagation toward the center of the gel. This MACC reaction shows how mechanochemical reactions can be used for fluorescence tagging without incorporating mechanophores into the polymer gel matrix.
Collapse
Affiliation(s)
- Ashray V. Parameswar
- Materials Science and Engineering Program, University of Colorado, 596 UCB Boulder, Colorado 80303, United States
| | - Karan V. Dikshit
- Materials Science and Engineering Program, University of Colorado, 596 UCB Boulder, Colorado 80303, United States
| | - Sanli Movafaghi
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB Boulder, Colorado 80303, United States
| | - Carson J. Bruns
- Materials Science and Engineering Program, University of Colorado, 596 UCB Boulder, Colorado 80303, United States
- Department of Mechanical Engineering, University of Colorado, 596 UCB Boulder, Colorado 80303, United States
| | - Andrew P. Goodwin
- Materials Science and Engineering Program, University of Colorado, 596 UCB Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB Boulder, Colorado 80303, United States
| |
Collapse
|
21
|
Kato S, Furukawa S, Aoki D, Goseki R, Oikawa K, Tsuchiya K, Shimada N, Maruyama A, Numata K, Otsuka H. Crystallization-induced mechanofluorescence for visualization of polymer crystallization. Nat Commun 2021; 12:126. [PMID: 33402691 PMCID: PMC7785725 DOI: 10.1038/s41467-020-20366-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/24/2020] [Indexed: 11/09/2022] Open
Abstract
The growth of lamellar crystals has been studied in particular for spherulites in polymeric materials. Even though such spherulitic structures and their growth are of crucial importance for the mechanical and optical properties of the resulting polymeric materials, several issues regarding the residual stress remain unresolved in the wider context of crystal growth. To gain further insight into micro-mechanical forces during the crystallization process of lamellar crystals in polymeric materials, herein, we introduce tetraarylsuccinonitrile (TASN), which generates relatively stable radicals with yellow fluorescence upon homolytic cleavage at the central C-C bond in response to mechanical stress, into crystalline polymers. The obtained crystalline polymers with TASN at the center of the polymer chain allow not only to visualize the stress arising from micro-mechanical forces during polymer crystallization via fluorescence microscopy but also to evaluate the micro-mechanical forces upon growing polymer lamellar crystals by electron paramagnetic resonance, which is able to detect the radicals generated during polymer crystallization.
Collapse
Affiliation(s)
- Sota Kato
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Shigeki Furukawa
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Raita Goseki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Kazusato Oikawa
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kousuke Tsuchiya
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Naohiko Shimada
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Atsushi Maruyama
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| |
Collapse
|
22
|
Chen Y, Mellot G, van Luijk D, Creton C, Sijbesma RP. Mechanochemical tools for polymer materials. Chem Soc Rev 2021; 50:4100-4140. [DOI: 10.1039/d0cs00940g] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review aims to provide a field guide for the implementation of mechanochemistry in synthetic polymers by summarizing the molecules, materials, and methods that have been developed in this field.
Collapse
Affiliation(s)
- Yinjun Chen
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Gaëlle Mellot
- Laboratoire Sciences et Ingénierie de la Matière Molle
- ESPCI Paris
- PSL University
- Sorbonne Université
- CNRS
| | - Diederik van Luijk
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Costantino Creton
- Laboratoire Sciences et Ingénierie de la Matière Molle
- ESPCI Paris
- PSL University
- Sorbonne Université
- CNRS
| | - Rint P. Sijbesma
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| |
Collapse
|
23
|
Qiang Z, Wang M. 100th Anniversary of Macromolecular Science Viewpoint: Enabling Advances in Fluorescence Microscopy Techniques. ACS Macro Lett 2020; 9:1342-1356. [PMID: 35638626 DOI: 10.1021/acsmacrolett.0c00506] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past few decades there has been a revolution in the field of optical microscopy with emerging capabilities such as super-resolution and single-molecule fluorescence techniques. Combined with the classical advantages of fluorescence imaging, such as chemical labeling specificity, and noninvasive sample preparation and imaging, these methods have enabled significant advances in our polymer community. This Viewpoint discusses several of these capabilities and how they can uniquely offer information where other characterization techniques are limited. Several examples are highlighted that demonstrate the ability of fluorescence microscopy to understand key questions in polymer science such as single-molecule diffusion and orientation, 3D nanostructural morphology, and interfacial and multicomponent dynamics. Finally, we briefly discuss opportunities for further advances in techniques that may allow them to make an even greater contribution in polymer science.
Collapse
Affiliation(s)
- Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Muzhou Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
24
|
|
25
|
Deneke N, Rencheck ML, Davis CS. An engineer's introduction to mechanophores. SOFT MATTER 2020; 16:6230-6252. [PMID: 32567642 DOI: 10.1039/d0sm00465k] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mechanophores (MPs) are a class of stimuli-responsive materials that are of increasing interest to engineers due to their potential applications as stress sensors. These mechanically responsive molecules change color or become fluorescent upon application of a mechanical stimulus as they undergo a chemical reaction when a load is applied. By incorporating MPs such as spirolactam, spiropyran, or dianthracene into a material system, the real-time stress distribution of the matrix can be directly observed through a visual response, ideal for damage and failure sensing applications. A wide array of applications that require continuous structural health monitoring could benefit from MPs including flexible electronics, protective coatings, and polymer matrix composites. However, there are significant technical challenges preventing MP implementation in industry. Effective strategies to quantitatively calibrate the photo response of the MP with applied stress magnitudes must be developed. Additionally, environmental conditions, including temperature, humidity, and ultraviolet light exposure can potentially impact the performance of MPs. By addressing these limitations, engineers can work to move MPs from the synthetic chemistry bench to the field. This review aims to highlight recent progress in MP research, discuss barriers to implementation, and provide an outlook on the future of MPs, specifically focused on polymeric material systems. Although the focus is on engineering MPs for bulk materials, a brief overview of mechanochemistry will be discussed followed by methods for activation and quantification of MP photo response (concentrating specifically on fluorescently active species). Finally, current challenges and future directions in MP research will be addressed.
Collapse
Affiliation(s)
- Naomi Deneke
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, USA.
| | - Mitchell L Rencheck
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, USA.
| | - Chelsea S Davis
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, USA.
| |
Collapse
|
26
|
Delafresnaye L, Hooker JP, Schmitt CW, Barner L, Barner-Kowollik C. Chemiluminescent Read-Out of Degradable Fluorescent Polymer Particles. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Laura Delafresnaye
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000 Brisbane, Queensland, Australia
| | - Jordan P. Hooker
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000 Brisbane, Queensland, Australia
| | - Christian W. Schmitt
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000 Brisbane, Queensland, Australia
| | - Leonie Barner
- Centre for Materials Science, School of Chemistry and Physics, Institute for Future Environments, Queensland University of Technology (QUT), 2 George St, 4000 Brisbane, Queensland, Australia
| | - Christopher Barner-Kowollik
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000 Brisbane, Queensland, Australia
| |
Collapse
|
27
|
Chen W, Yuan Y, Chen Y. Visualized Bond Scission in Mechanochemiluminescent Polymethyl Acrylate/Cellulose Nanocrystals Composites. ACS Macro Lett 2020; 9:438-442. [PMID: 35648498 DOI: 10.1021/acsmacrolett.0c00185] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of nanocomposites based on cellulose nanocrystals (CNCs) and polymethyl acrylate (PMA) with covalently incorporated 1,2-dioxetane as a luminescent mechanophore were prepared. Through surface-initiated single-electron transfer radical polymerization, the CNCs nanofiller offers good compatibility with polymer matrix. As a consequence, all the composite materials exhibit reinforced mechanical properties with increased stiffness and strength. Most importantly, 1,2-dioxetane is demonstrated as a sensitive platform to characterize the dissipation pathway of fracture energy, as well as the polymer chain scission in the Mullins effect within these polymer nanocomposites. The combined use of mechanical macroscopic testing and molecular bond scission data herein provides detailed information on how force distributes and failure occurs in complex soft materials.
Collapse
Affiliation(s)
- Wu Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin, 300354, People’s Republic of China
| | - Yuan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin, 300354, People’s Republic of China
| | - Yulan Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin, 300354, People’s Republic of China
| |
Collapse
|
28
|
Matsuhashi C, Ueno T, Uekusa H, Sato-Tomita A, Ichiyanagi K, Maki S, Hirano T. Isomeric difference in the crystalline-state chemiluminescence property of an adamantylideneadamantane 1,2-dioxetane with a phthalimide chromophore. Chem Commun (Camb) 2020; 56:3369-3372. [PMID: 32129336 DOI: 10.1039/c9cc10012a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Syn- and anti-isomers of an adamantylideneadamantane 1,2-dioxetane having a phthalimide side chain were prepared and investigated their crystalline-state chemiluminescence (CL) properties. The isomers showed contrastive CL properties depending on their crystal-structural characteristics, indicating that CL provides an attractive target for real-time monitoring of a chemical reaction in the crystal.
Collapse
Affiliation(s)
- Chihiro Matsuhashi
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Yang F, Yuan Y, Sijbesma RP, Chen Y. Sensitized Mechanoluminescence Design toward Mechanically Induced Intense Red Emission from Transparent Polymer Films. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02221] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fan Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Yuan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Rint P. Sijbesma
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Yulan Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| |
Collapse
|
30
|
Stratigaki M, Göstl R. Methods for Exerting and Sensing Force in Polymer Materials Using Mechanophores. Chempluschem 2020; 85:1095-1103. [PMID: 31958366 DOI: 10.1002/cplu.201900737] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/17/2020] [Indexed: 11/08/2022]
Abstract
In recent years, polymer mechanochemistry has evolved as a methodology to provide insights into the action-reaction relationships of polymers and polymer-based materials and composites in terms of macroscopic force application (stress) and subsequent deformation (strain) through a mechanophore-assisted coupling of mechanical and chemical phenomena. The perplexity of the process, however, from the viewpoint of mechanophore activation via a molecular-scaled disruption of the structure that yields a macroscopically detectable optical signal, renders this otherwise rapidly evolving field challenging. Motivated by this, we highlight here recent advancements of polymer mechanochemistry with particular focus on the establishment of methodologies for the efficient activation and quantification of mechanophores and anticipate to aptly pinpoint unresolved matters and limitations of the respective approaches, thus highlighting possible developments.
Collapse
Affiliation(s)
- Maria Stratigaki
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Robert Göstl
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| |
Collapse
|
31
|
Izak-Nau E, Campagna D, Baumann C, Göstl R. Polymer mechanochemistry-enabled pericyclic reactions. Polym Chem 2020. [DOI: 10.1039/c9py01937e] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polymer mechanochemical pericyclic reactions are reviewed with regard to their structural features and substitution prerequisites to the polymer framework.
Collapse
Affiliation(s)
- Emilia Izak-Nau
- DWI – Leibniz Institute for Interactive Materials
- 52056 Aachen
- Germany
| | - Davide Campagna
- DWI – Leibniz Institute for Interactive Materials
- 52056 Aachen
- Germany
- Institute for Technical and Macromolecular Chemistry
- RWTH Aachen University
| | - Christoph Baumann
- DWI – Leibniz Institute for Interactive Materials
- 52056 Aachen
- Germany
- Institute for Technical and Macromolecular Chemistry
- RWTH Aachen University
| | - Robert Göstl
- DWI – Leibniz Institute for Interactive Materials
- 52056 Aachen
- Germany
| |
Collapse
|
32
|
Taki M, Yamashita T, Yatabe K, Vogel V. Mechano-chromic protein-polymer hybrid hydrogel to visualize mechanical strain. SOFT MATTER 2019; 15:9388-9393. [PMID: 31609367 DOI: 10.1039/c9sm00380k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In a proof-of-concept study, a mechano-chromic hydrogel was synthesized here, via chemoenzymatic click conjugation of fluorophore-labeled fibronectin into a synthetic hydrogel co-polymers (i.e., poly-N-isopropylacrylamide/polyethylene glycol). The optical FRET response could be tuned by macroscopic stretch.
Collapse
Affiliation(s)
- Masumi Taki
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland.
| | | | | | | |
Collapse
|
33
|
Yildiz D, Baumann C, Mikosch A, Kuehne AJC, Herrmann A, Göstl R. Anti-Stokes Stress Sensing: Mechanochemical Activation of Triplet-Triplet Annihilation Photon Upconversion. Angew Chem Int Ed Engl 2019; 58:12919-12923. [PMID: 31265744 PMCID: PMC6772058 DOI: 10.1002/anie.201907436] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 02/07/2023]
Abstract
The development of methods to detect damage in macromolecular materials is of paramount importance to understand their mechanical failure and the structure-property relationships of polymers. Mechanofluorophores are useful and sensitive molecular motifs for this purpose. However, to date, tailoring of their optical properties remains challenging and correlating emission intensity to force induced material damage and the respective events on the molecular level is complicated by intrinsic limitations of fluorescence and its detection techniques. Now, this is tackled by developing the first stress-sensing motif that relies on photon upconversion. By combining the Diels-Alder adduct of a π-extended anthracene with the porphyrin-based triplet sensitizer PtOEP in polymers, triplet-triplet annihilation photon upconversion of green to blue light is mechanochemically activated in solution as well as in the solid state.
Collapse
Affiliation(s)
- Deniz Yildiz
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Christoph Baumann
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Annabel Mikosch
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Alexander J. C. Kuehne
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Institute of Organic and Macromolecular ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Andreas Herrmann
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Robert Göstl
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| |
Collapse
|
34
|
Yildiz D, Baumann C, Mikosch A, Kuehne AJC, Herrmann A, Göstl R. Anti‐Stokes‐Belastungsanzeige: Mechanochemische Aktivierung der Triplett‐Triplett‐Annihilierung‐Photonen‐Hochkonversion. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Deniz Yildiz
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52056 Aachen Deutschland
- Institut für Technische und Makromolekulare Chemie RWTH Aachen Worringerweg 1 52074 Aachen Deutschland
| | - Christoph Baumann
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52056 Aachen Deutschland
| | - Annabel Mikosch
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52056 Aachen Deutschland
| | - Alexander J. C. Kuehne
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52056 Aachen Deutschland
- Institut für Organische und Makromolekulare Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Andreas Herrmann
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52056 Aachen Deutschland
- Institut für Technische und Makromolekulare Chemie RWTH Aachen Worringerweg 1 52074 Aachen Deutschland
| | - Robert Göstl
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52056 Aachen Deutschland
| |
Collapse
|
35
|
Muramatsu T, Sagara Y, Traeger H, Tamaoki N, Weder C. Mechanoresponsive Behavior of a Polymer-Embedded Red-Light Emitting Rotaxane Mechanophore. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24571-24576. [PMID: 31251579 DOI: 10.1021/acsami.9b06302] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A red light-emitting photoluminescent supramolecular mechanophore based on an interlocked molecular motif is presented. The rotaxane-based mechanophore contains a cyclic compound featuring a π-extended 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dye as a red emitter that was threaded onto a dumbbell-shaped molecule containing an electron-poor 1,4,5,8-naphthalenetetracarboxylic diimide quencher at its center. Through two aliphatic hydroxyl groups attached to the dumbbell and the cycle, the mechanophore was covalently embedded into the backbone of a thermoplastic polyurethane elastomer. The mechanophore is only weakly photoluminescent in solution, indicating that the BODIPY's emission is efficiently quenched. Solution-cast films of the rotaxane-containing polymer, by contrast, show an appreciable photoluminescence, which suggests that during film formation, some of the emitting cycles are trapped in positions away from the quencher. Interestingly, the emission intensity could be significantly reduced by swelling the films with an organic solvent and the emission increased again upon drying, suggesting that such solvent plasticization causes a reversible rearrangement. In both dry and solvent-swollen films, uniaxial deformation caused a significant, reversible increase of the emission intensity, on account of mechanically induced shuttling of the emitters away from and back to the quenchers. It is shown that the properties of the polymer can be tuned by the solvent, and that such plasticizing extends the small palette of approaches that allow modification of the activation stress of a given material system.
Collapse
Affiliation(s)
- Tatsuya Muramatsu
- Research Institute for Electronic Science , Hokkaido University , N20, W10, Kita-Ku, Sapporo , Hokkaido 001-0020 , Japan
| | - Yoshimitsu Sagara
- Research Institute for Electronic Science , Hokkaido University , N20, W10, Kita-Ku, Sapporo , Hokkaido 001-0020 , Japan
- JST-PRESTO , Honcho 4-1-8 , Kawaguchi , Saitama 332-0012 , Japan
| | - Hanna Traeger
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| | - Nobuyuki Tamaoki
- Research Institute for Electronic Science , Hokkaido University , N20, W10, Kita-Ku, Sapporo , Hokkaido 001-0020 , Japan
| | - Christoph Weder
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| |
Collapse
|
36
|
Messmer D, Bertran O, Kissner R, Alemán C, Schlüter AD. Main-chain scission of individual macromolecules induced by solvent swelling. Chem Sci 2019; 10:6125-6139. [PMID: 31360419 PMCID: PMC6585601 DOI: 10.1039/c9sc01639b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/08/2019] [Indexed: 11/21/2022] Open
Abstract
We present a comprehensive investigation of main-chain scission processes affecting peripherally charged and neutral members of a class of dendronized polymers (DPs) studied in our laboratory. In these thick, sterically highly congested macromolecules, scission occurs by exposure to solvents, in some cases at room temperature, in others requiring modest heating. Our investigations rely on gel permeation chromatography and atomic force microscopy and are supported by molecular dynamics simulations as well as by electron paramagnetic resonance spectroscopy. Strikingly, DP main-chain scission depends strongly on two factors: first the solvent, which must be highly polar to induce scission of the DPs, and second the dendritic generation g. In DPs of generations 1 ≤ g ≤ 8, scission occurs readily only for g = 5, no matter whether the polymer is charged or neutral. Much more forcing conditions are required to induce degradation in DPs of g ≠ 5. We propose solvent swelling as the cause for the main-chain scission in these individual polymer molecules, explaining in particular the strong dependence on g: g < 5 DPs resemble classical polymers and are accessible to the strongly interacting, polar solvents, whereas g > 5 DPs are essentially closed off to solvent due to their more closely colloidal character. g = 5 DPs mark the transition between these two regimes, bearing strongly sterically congested side chains which are still solvent accessible to some degree. Our results suggest that, even in the absence of structural elements which favour scission such as cross-links, solvent swelling may be a generally applicable mechanochemical trigger. This may be relevant not only for DPs, but also for other types of sterically strongly congested macromolecules.
Collapse
Affiliation(s)
- Daniel Messmer
- Polymer Chemistry , Department of Materials , ETH Zürich , Vladimir-Prelog-Weg 5 , 8093 Zürich , Switzerland . ;
| | - Oscar Bertran
- Department of Physics , EETAC , Universitat Politècnica de Catalunya , c/ Esteve Terrades, 7 , 08860 , Castelldefels , Spain
| | - Reinhard Kissner
- Laboratory of Inorganic Chemistry , Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland
| | - Carlos Alemán
- Departament d'Enginyeria Química (EEBE) , Barcelona Research Center for Multiscale Science and Engineering , Universitat Politècnica de Catalunya , C/ Eduard Maristany, 10-14, Ed. I2 , 08019 , Barcelona , Spain
| | - A Dieter Schlüter
- Polymer Chemistry , Department of Materials , ETH Zürich , Vladimir-Prelog-Weg 5 , 8093 Zürich , Switzerland . ;
| |
Collapse
|
37
|
Control and optical mapping of mechanical transitions in polymer networks and DNA-based soft materials. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2018.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Yuan Y, Chen W, Ma Z, Deng Y, Chen Y, Chen Y, Hu W. Enhanced optomechanical properties of mechanochemiluminescent poly(methyl acrylate) composites with granulated fluorescent conjugated microporous polymer fillers. Chem Sci 2018; 10:2206-2211. [PMID: 30881646 PMCID: PMC6385527 DOI: 10.1039/c8sc04701d] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/17/2018] [Indexed: 11/24/2022] Open
Abstract
With the combination of mechanochemiluminescence from 1,2-dioxetane coupled polymers and conjugated microporous polymer nanosheets, a new kind of filling-type mechanolumninescent polymer composite was developed.
With the combination of mechanochemiluminescence from 1,2-dioxetane coupled polymers and granulated conjugated microporous polymer (CMP) nanosheets, a new kind of filling-type mechanolumninescent polymer composite was developed. Herein, polymeric 1,2-dioxetane performed as an autoluminescent probe of chain scission. Besides benefiting from their excellent optical properties and good interfacial compatibility with poly(methyl acrylate) (PMA) media, two stable and fluorescent CMP nanosheets were prepared and dispersed in crosslinked PMA, which can serve as effective energy acceptors and reinforcing nano-fillers. These polymer nanocomposites present both reinforced mechanical strength and mechanochemiluminescence, and offer exciting opportunities to study the failure process of polymer nanocomposites with unprecedented temporal and spatial resolution.
Collapse
Affiliation(s)
- Yuan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Science , Department of Chemistry , Tianjin University , Tianjin 300354 , P. R. China . ; .,Collaborative Innovation Centre of Chemical Science and Engineering , Tianjin 300072 , P. R. China
| | - Weiben Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science , Department of Chemistry , Tianjin University , Tianjin 300354 , P. R. China . ; .,Collaborative Innovation Centre of Chemical Science and Engineering , Tianjin 300072 , P. R. China
| | - Zhe Ma
- School of Materials Science and Engineering , Tianjin University , Tianjin 300354 , P. R. China
| | - Yakui Deng
- Tianjin Key Laboratory of Molecular Optoelectronic Science , Department of Chemistry , Tianjin University , Tianjin 300354 , P. R. China . ; .,Collaborative Innovation Centre of Chemical Science and Engineering , Tianjin 300072 , P. R. China
| | - Ying Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science , Department of Chemistry , Tianjin University , Tianjin 300354 , P. R. China . ; .,Collaborative Innovation Centre of Chemical Science and Engineering , Tianjin 300072 , P. R. China
| | - Yulan Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science , Department of Chemistry , Tianjin University , Tianjin 300354 , P. R. China . ; .,Collaborative Innovation Centre of Chemical Science and Engineering , Tianjin 300072 , P. R. China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science , Department of Chemistry , Tianjin University , Tianjin 300354 , P. R. China . ; .,Collaborative Innovation Centre of Chemical Science and Engineering , Tianjin 300072 , P. R. China
| |
Collapse
|
39
|
Yuan W, Yuan Y, Yang F, Wu M, Chen Y. Improving Mechanoluminescent Sensitivity of 1,2-Dioxetane-Containing Thermoplastic Polyurethanes by Controlling Energy Transfer across Polymer Chains. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01668] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Wei Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Yuan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Fan Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Mengjiao Wu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Yulan Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| |
Collapse
|
40
|
Wang L, Zhou W, Tang Q, Yang H, Zhou Q, Zhang X. Rhodamine-Functionalized Mechanochromic and Mechanofluorescent Hydrogels with Enhanced Mechanoresponsive Sensitivity. Polymers (Basel) 2018; 10:E994. [PMID: 30960921 PMCID: PMC6403975 DOI: 10.3390/polym10090994] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 01/17/2023] Open
Abstract
Smart materials responsible to external stimuli such as temperature, pH, solvents, light, redox agents, and mechanical or electric/magnetic field, have drawn considerable attention recently. Herein, we described a novel rhodamine (Rh) mechanophore-based mechanoresponsive micellar hydrogel with excellent mechanochromic and mechanofluorescent properties. We found with astonishment that, due to the favorable activation of rhodamine spirolactam in the presence of water, together with the stress concentration effect, the mechanoresponsive sensitivity of this hydrogel was enhanced significantly. As a result, the stress needed to trigger the mechanochromic property of Rh in the hydrogel was much lower than in its native polymer matrix reported before. The hydrogel based on Rh, therefore, exhibited excellent mechanochromic property even at lower stress. Moreover, due to the reversibility of color on/off, the hydrogel based on Rh could be used as a reusable and erasable material for color printing/writing. Of peculiar importance is that the hydrogel could emit highly bright fluorescence under sufficient stress or strain. This suggested that the stress/strain of hydrogel could be detected quantificationally and effectively by the fluorescence data. We also found that the hydrogel could respond to acid/alkali and exhibited outstanding properties of acidichromism and acidifluorochromism. Up to now, hydrogels with such excellent mechanochromic and mechanofluorescent properties have rarely been reported. Our efforts may be essentially beneficial to the design of the mechanochromic and mechanofluorescent hydrogels with enhanced mechanoresponsive sensitivity, fostering their potential applications in a number of fields such as damage or stress/strain detection.
Collapse
Affiliation(s)
- Lijun Wang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Wanfu Zhou
- Oil Production Technology Institute, Daqing Oilfield Company Ltd., Daqing 163453, China.
| | - Quan Tang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Haiyang Yang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Qiang Zhou
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Xingyuan Zhang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
41
|
Affiliation(s)
- Costantino Creton
- Laboratoire
de Sciences et Ingénierie de la Matière Molle, CNRS,
ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
- Laboratoire
Sciences et Ingénierie de la Matière Molle, Université Pierre et Marie Curie, Sorbonne-Universités, 10 rue Vauquelin, 75005 Paris, France
- Global
Station for Soft Matter, Global Institution for Collaborative Research
and Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
42
|
Yuan Y, Chen YL. Visualized bond scission in mechanically activated polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-2002-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|