1
|
Alhalaweh A, Sayed ME, Kovac L, Bergström CAS. Impact of surfactants on solution behavior and membrane transport of amorphous solid dispersions. J Pharm Sci 2025; 114:458-467. [PMID: 39491671 DOI: 10.1016/j.xphs.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
The purpose of the study was to develop an amorphous solid dispersion (ASD) of a poorly soluble compound (AK100) and investigate the impact of different surfactants on its dissolution, supersaturation and membrane transport. The solubility of the AK100 was determined in crystalline and amorphous form in the absence and presence of three surfactants at different concentrations: sodium dodecyl sulphate (SDS), polysorbate 80 (PS80) and D-α-tocopherol polyethylene glycol succinate (TPGS). The relation between solubility and surfactant solubilization was evaluated using a computational model. The ASD powder was prepared by solvent evaporation for non-sink dissolution experiments with and without the pre-dissolved surfactants. A transport study with Caco-2 cells was conducted to evaluate the impact of surfactants-based formulation on membrane transport. Both the corresponding crystalline and amorphous solubility of AK100 increased linearly as a function of the surfactant concentrations. The supersaturation was maintained for at least three hours in absence of surfactant and in presence of TPGS, whereas supersaturation declined with SDS and PS80. As expected, the membrane flux of the AK100 was higher for the ASD than for the crystalline powder, and further increased with increased concentration of TPGS. The supersaturation ratio based on the activity-based calculation from Caco-2 cells study was always higher than that of the concentration-based one for the amorphous and crystalline forms of AK100. This study shows how additional solubilizing excipients during formulation development can improve the resulting dissolution and phase behavior of supersaturated drug solution.
Collapse
Affiliation(s)
- Amjad Alhalaweh
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates; Recipharm OT Chemistry AB, SE-754 50 Uppsala, Sweden
| | - Mira El Sayed
- Department of Pharmacy, Uppsala University, Biomedical Centre, SE-751 23 Uppsala, Sweden; Recipharm OT Chemistry AB, SE-754 50 Uppsala, Sweden
| | - Lucia Kovac
- Recipharm OT Chemistry AB, SE-754 50 Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, Biomedical Centre, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
2
|
Sirvi A, Janjal A, Debaje S, Sangamwar AT. Influence of polymer and surfactant-based precipitation inhibitors on supersaturation-driven absorption of Ibrutinib from high-dose lipid-based formulations. Int J Pharm 2024; 669:125079. [PMID: 39674385 DOI: 10.1016/j.ijpharm.2024.125079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
There is a growing pharmaceutical interest in supersaturated lipid-based formulations (Super-LbF) as an innovative strategy to enhance drug loading capacities while simultaneously reducing pill burden. This approach involves increasing the drug concentration above its equilibrium solubility in a lipid solution, achieved through temperature-induced supersaturation or the dissolution of lipophilic ionic salts. However, the physical instability and potential drug precipitation upon the dispersion of LbF remain critical. The focus of this work was to assess the impact of polymer and surfactant as precipitation inhibitors (PIs) in Super-LbF and investigate whether PIs can effectively address the aforementioned challenges. Ibrutinib (Ibr) was selected as a model drug due to its limited solubility and dissolution characteristics. The optimized formulations were characterized with a focus on dispersibility, lipolysis-permeation, and physical stability during storage. The inclusion of PIs in Super-LbF significantly enhanced physical stability by increasing viscosity and reducing the degree of supersaturation through elevated equilibrium solubility. During the dispersion and digestion study, varying levels of transient supersaturation were observed for both Super-LbF and PI-loaded Super-LbF. A noteworthy 2.5 to 3-fold increase in the solubilization ratio was observed for PI-loaded Super-LbF in comparison to Super-LbF without PI. This increase indicates a significant rise in transient drug supersaturation through kinetic and thermodynamic precipitation inhibition mechanisms. Moreover, lipolysis-permeation studies revealed increased flux values with enhanced solubilization, except in the case of Pluronic® F68, which exhibited a reduced free drug concentration near the Permeapad® barrier. Further, the in vivo absorption study confirmed that prolonged supersaturation, facilitated by PIs, contributed to enhancement in drug exposure in rats. PI-loaded Super-LbFs demonstrated a significant improvement (5.1 to 8.9-fold) in the absorption profile compared to Super-LbF without PI (p < 0.001). The study results indicate that incorporating PIs into Super-LbF enhances physical stability and maintains transient drug supersaturation under digestive conditions. Overall, this formulation approach shows promise for expanding the application of LbF to enable the successful oral delivery of high-dose regimen drugs.
Collapse
Affiliation(s)
- Arvind Sirvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Akash Janjal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Shubham Debaje
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India.
| |
Collapse
|
3
|
Alvebratt C, Karlén F, Åhlén M, Edueng K, Dubbelboer I, Bergström CAS. Benefits of combining supersaturating and solubilizing formulations - Is two better than one? Int J Pharm 2024; 663:124437. [PMID: 39002818 DOI: 10.1016/j.ijpharm.2024.124437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
A variety of enabling formulations has been developed to address poor oral drug absorption caused by insufficient dissolution in the gastrointestinal tract. As the in vivo performance of these formulations is a result of a complex interplay between dissolution, digestion and permeation, development of suitable in vitro assays that captures these phenomena are called for. The enabling-absorption (ENA) device, consisting of a donor and receiver chamber separated by a semipermeable membrane, has successfully been used to study the performance of lipid-based formulations. In this work, the ENA device was prepared with two different setups (a Caco-2 cell monolayer and an artificial lipid membrane) to study the performance of a lipid-based formulation (LBF), an amorphous solid dispersion (ASD) and the potential benefit of combining the two formulation strategies. An in vivo pharmacokinetic study in rats was performed to evaluate the in vitro-in vivo correlation. In the ENA, high drug concentrations in the donor chamber did not translate to a high mass transfer, which was particularly evident for the ASD as compared to the LBF. The solubility of the polymer used in the ASD was strongly affected by pH-shifts in vitro, and the ph_dependence resulted in poor in vivo performance of the formulation. The dissolution was however increased in vitro when the ASD was combined with a blank lipid-based formulation. This beneficial effect was also observed in vivo, where the drug exposure of the ASD increased significantly when the ASD was co-administered with the blank LBF. To conclude, the in vitro model managed to capture solubility limitations and strategies to overcome these for one of the formulations studied. The correlation between the in vivo exposure of the drug exposure and AUC in the ENA was good for the non pH-sensitive formulations. The deconvoluted pharmacokinetic data indicated that the receiver chamber was a better predictor for the in vivo performance of the drug, however both chambers provided valuable insights to the observed outcome in vivo. This shows that the advanced in vitro setting used herein successfully could explain absorption differences of highly complex formulations.
Collapse
Affiliation(s)
- Caroline Alvebratt
- Department of Pharmacy, Uppsala Biomedical Centre, P.O. Box 580, Uppsala University, Uppsala SE-751 23, Sweden.
| | - Filip Karlén
- Department of Pharmacy, Uppsala Biomedical Centre, P.O. Box 580, Uppsala University, Uppsala SE-751 23, Sweden.
| | - Michelle Åhlén
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, Uppsala SE-75121, Sweden.
| | - Khadijah Edueng
- Department of Pharmacy, Uppsala Biomedical Centre, P.O. Box 580, Uppsala University, Uppsala SE-751 23, Sweden
| | - Ilse Dubbelboer
- The Swedish Drug Delivery Center, Department of Pharmaceutical Biosciences, Uppsala Biomedical Centre, P.O. Box 591, Uppsala University, Uppsala SE-751 24, Sweden.
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala Biomedical Centre, P.O. Box 580, Uppsala University, Uppsala SE-751 23, Sweden; The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala Biomedical Centre, P.O. Box 580, Uppsala University, Uppsala SE-751 23, Sweden.
| |
Collapse
|
4
|
Ejskjær L, Holm R, Kuentz M, Box KJ, Griffin BT, O'Dwyer PJ. Predictions of biorelevant solubility change during dispersion and digestion of lipid-based formulations. Eur J Pharm Sci 2024; 200:106833. [PMID: 38878908 DOI: 10.1016/j.ejps.2024.106833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
Computational approaches are increasingly explored in development of drug products, including the development of lipid-based formulations (LBFs), to assess their feasibility for achieving adequate oral absorption at an early stage. This study investigated the use of computational pharmaceutics approaches to predict solubility changes of poorly soluble drugs during dispersion and digestion in biorelevant media. Concentrations of 30 poorly water-soluble drugs were determined pre- and post-digestion with in-line UV probes using the MicroDISS Profiler™. Generally, cationic drugs displayed higher drug concentrations post-digestion, whereas for non-ionized drugs there was no discernible trend between drug concentration in dispersed and digested phase. In the case of anionic drugs there tended to be a decrease or no change in the drug concentration post-digestion. Partial least squares modelling was used to identify the molecular descriptors and drug properties which predict changes in solubility ratio in long-chain LBF pre-digestion (R2 of calibration = 0.80, Q2 of validation = 0.64) and post-digestion (R2 of calibration = 0.76, Q2 of validation = 0.72). Furthermore, multiple linear regression equations were developed to facilitate prediction of the solubility ratio pre- and post-digestion. Applying three molecular descriptors (melting point, LogD, and number of aromatic rings) these equations showed good predictivity (pre-digestion R2 = 0.70, and post-digestion R2 = 0.68). The model developed will support a computationally guided LBF strategy for emerging poorly water-soluble drugs by predicting biorelevant solubility changes during dispersion and digestion. This facilitates a more data-informed developability decision making and subsequently facilitates a more efficient use of formulation screening resources.
Collapse
Affiliation(s)
- Lotte Ejskjær
- University College Cork, College Road, Cork, Ireland
| | - René Holm
- University of Southern Denmark, Campusvej 55, Odense, Denmark
| | - Martin Kuentz
- University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstr. 30, Muttenz, 4132, Switzerland
| | - Karl J Box
- Pion Inc (UK), Forest Row, East Sussex, UK
| | | | | |
Collapse
|
5
|
Sirvi A, Janjal A, Guleria K, Chand M, Sangamwar AT. Thermally-Induced Supersaturation Approach for Optimizing Drug Loading and Biopharmaceutical Properties of Supersaturated Lipid-Based Formulations: Case Studies with Ibrutinib and Enzalutamide. AAPS PharmSciTech 2024; 25:192. [PMID: 39164485 DOI: 10.1208/s12249-024-02912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
Lipid-based formulations (LbFs) have demonstrated success in pharmaceutical applications; however, challenges persist in dissolving entire doses of the drug into defined liquid volumes. In this study, the temperature-induced supersaturation method was employed in LbF to address drug loading and pill burden issues. Supersaturated LbFs (super-LbF) were prepared using the temperature-induced supersaturation method, where the drug load is above its equilibrium solubility. Further, the influence of the drug's physicochemical and thermal characteristics on drug loading and their relevance with an apparent degree of supersaturation (aDS) was studied using two model drugs, ibrutinib and enzalutamide. All the prepared LbFs were evaluated in terms of physical stability, dispersion, and solubilization capacity, as well as pharmacokinetic assessments. Drug re-crystallization was observed in the lipid solution on long-term storage at higher aDS values of 2-2.5. Furthermore, high-throughput lipolysis studies demonstrated a significant decrease in drug concentration across all LbFs (regardless of drug loading) due to a decline in the formulation solvation capacity and subsequent generation of in-situ supersaturation. Further, the in vivo results demonstrated comparable pharmacokinetic parameters between conventional LbF and super-LbF. The short duration of the thermodynamic metastable state limits the potential absorption benefits. However, super-LbFs of Ibr and Enz showed superior profiles, with 1.7-fold and 5.2-fold increased drug exposure compared to their respective crystalline suspensions. In summary, this study emphasizes the potential of temperature-induced supersaturation in LbF for enhancing drug loading and highlights the intricate interplay between drug properties, formulation characteristics, and in vivo performance.
Collapse
Affiliation(s)
- Arvind Sirvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, 160062, India
| | - Akash Janjal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, 160062, India
| | - Kajal Guleria
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, 160062, India
| | - Mahesh Chand
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, 160062, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, 160062, India.
| |
Collapse
|
6
|
Patel RP, Cristofoletti R, Wu F, Shoyaib AA, Polli JE. In Vitro Lipolysis Model to Predict Food Effect of Poorly Water-Soluble Drugs Itraconazole, Rivaroxaban, and Ritonavir. J Pharm Sci 2024; 113:2361-2373. [PMID: 38614321 DOI: 10.1016/j.xphs.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
It is desirable to predict positive food effect of oral formulations due to food mediated dissolution enhancement of lipophilic drugs. The objective was to assess the ability of in vitro lipolysis to anticipate a positive food effect. Tested formulations included rivaroxaban and itraconazole, where some formulations, but not all, exhibit a positive food effect in vivo in humans. Amorphous solid dispersion formulations of ritonavir, which exhibit a negative food effect in vivo in humans, were also studied. Fe-lipolysis and Fa-lipolysis media representing fed and fasted intestinal conditions were used. Results show frequent agreement between in vitro lipolysis predictions and in vivo human outcomes. For rivaroxaban, food effect of unformulated active pharmaceutical ingredient (API) and products were correctly predicted where 2.5 mg and 10 mg strengths did not show any food effect; however, 20 mg did show a positive food effect. For itraconazole, all four products were correctly predicted, with Sporanox, Sempera, and generic capsules having a food effect, but Tolsura not having a positive food effect. For ritonavir, lipolysis predicted a positive food effect for API and Norvir tablet and powder, but Norvir products have negative food effect in vivo in humans. Overall, the lipolysis model showed favorable predictability and merits additional evaluation.
Collapse
Affiliation(s)
- Roshni P Patel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Rodrigo Cristofoletti
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Fang Wu
- Office of Generic Drugs, Food and Drug Administration, White Oak, MD, USA
| | | | - James E Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA.
| |
Collapse
|
7
|
Parrow A, Kabedev A, Larsson P, Johansson P, Abrahamsson B, Bergström CAS. Drug solubilization in dog intestinal fluids with and without administration of lipid-based formulations. J Control Release 2024; 371:555-569. [PMID: 38844179 DOI: 10.1016/j.jconrel.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
The use of animal experiments can be minimized with computational models capable of reflecting the simulated environments. One such environment is intestinal fluid and the colloids formed in it. In this study we used molecular dynamics simulations to investigate solubilization patterns for three model drugs (carvedilol, felodipine and probucol) in dog intestinal fluid, a lipid-based formulation, and a mixture of both. We observed morphological transformations that lipids undergo due to the digestion process in the intestinal environment. Further, we evaluated the effect of bile salt concentration and observed the importance of interindividual variability. We applied two methods of estimating solubility enhancement based on the simulated data, of which one was in good qualitative agreement with the experimentally observed solubility enhancement. In addition to the computational simulations, we also measured solubility in i) aspirated dog intestinal fluid samples and ii) simulated canine intestinal fluid in the fasted state, and found there was no statistical difference between the two. Hence, a simplified dissolution medium suitable for in vitro studies provided physiologically relevant data for the systems explored. The computational protocol used in this study, coupled with in vitro studies using simulated intestinal fluids, can serve as a useful prescreening tool in the process of drug delivery strategies development.
Collapse
Affiliation(s)
- Albin Parrow
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Center, P.O. Box 580, SE-751 23 Uppsala, Sweden
| | - Aleksei Kabedev
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Center, P.O. Box 580, SE-751 23 Uppsala, Sweden
| | - Per Larsson
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Center, P.O. Box 580, SE-751 23 Uppsala, Sweden; The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Biomedical Center, P.O. Box 580, SE-751 23 Uppsala, Sweden
| | | | | | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Center, P.O. Box 580, SE-751 23 Uppsala, Sweden; The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Biomedical Center, P.O. Box 580, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
8
|
Tanaka Y, Arai H, Hidaka A, Noda S, Imai K, Tsujisawa F, Yagi H, Sakuma S. In Vitro Digestion-In Situ Absorption Setup Employing a Physiologically Relevant Value of the Membrane Surface Area/Volume Ratio for Evaluating Performance of Lipid-Based Formulations: A Comparative Study with an In Vitro Digestion-Permeation Model. Mol Pharm 2024; 21:3459-3470. [PMID: 38809159 DOI: 10.1021/acs.molpharmaceut.4c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The aim of this study is to establish and test an in vitro digestion-in situ absorption model that can mimic in vivo drug flux by employing a physiologically relevant value of the membrane surface area (S)/volume (V) ratio for accurate prediction of oral drug absorption from lipid-based formulations (LBFs). Three different types of LBFs (Type IIIA-MC, Type IIIA-LC, and Type IV) loaded with cinnarizine (CNZ), a lipophilic weak base with borderline permeability, and a control suspension were prepared. Subsequently, a simultaneous in vitro digestion-permeation experiment was conducted using a side-by-side diffusion cell with a dialysis membrane having a low S/V value. During digestion, CNZ partially precipitated for Type IV, while it remained solubilized in the aqueous phase for Type IIIA-MC and Type IIIA-LC in the donor compartment. However, in vitro drug fluxes for Type IIIA-MC and Type IIIA-LC were lower than those for Type IV due to the reduced free fraction of CNZ in the donor compartment. In pharmacokinetic studies, a similar improvement in in vivo oral exposure relative to suspension was observed, regardless of the LBFs used. Consequently, a poor correlation was found between in vitro permeation and areas under the plasma concentration-time curve (AUCoral) (R2 = 0.087). A luminal concentration measurement study revealed that this discrepancy was attributed to the extremely high absorption rate of CNZ in the gastrointestinal tract compared to that across a dialysis membrane evaluated by the in vitro digestion-permeation model, i.e., the absorption of CNZ in vivo was completed regardless of the extent of the free fraction, owing to the rapid removal of CNZ from the intestine. Subsequently, we aimed to predict the oral absorption of CNZ from the same formulations using a model that demonstrated high drug flux by employing the physiologically relevant S/V value and rat jejunum segment as an absorption sink (for replicating in vivo intestinal permeability). Predigested formulations were injected into the rat intestinal loop, and AUCloop values were calculated from the plasma concentration-time profiles. A better correlation was found between AUCloop and AUCoral (R2 = 0.72), although AUCloop underestimated AUCoral for Type IV due to the precipitation of CNZ during the predigestion process. However, this result indicated the importance of mimicking the in vivo drug absorption rate in the predictive model. The method presented herein is valuable for the development of LBFs.
Collapse
Affiliation(s)
- Yusuke Tanaka
- Laboratory of Drug Delivery System, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Hinata Arai
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan
| | - Aya Hidaka
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan
| | - Saki Noda
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan
| | - Ko Imai
- Laboratory of Drug Delivery System, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Fumiya Tsujisawa
- Laboratory of Drug Delivery System, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Haruya Yagi
- Laboratory of Drug Delivery System, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Shinji Sakuma
- Laboratory of Drug Delivery System, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
9
|
Kovačević M, Gašperlin M, Pobirk AZ. Lipid-based systems with precipitation inhibitors as formulation approach to improve the drug bioavailability and/or lower its dose: a review. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:201-227. [PMID: 38815207 DOI: 10.2478/acph-2024-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Lipid-based systems, such as self-microemulsifying systems (SMEDDS) are attracting strong attention as a formulation approach to improve the bioavailability of poorly water-soluble drugs. By applying the "spring and parachute" strategy in designing supersaturable SMEDDS, it is possible to maintain the drug in the supersaturated state long enough to allow absorption of the complete dose, thus improving the drug's bio-availability. As such an approach allows the incorporation of larger amounts of the drug in equal or even lower volumes of SMEDDS, it also enables the production of smaller final dosage forms as well as decreased gastrointestinal irritation, being of particular importance when formulating dosage forms for children or the elderly. In this review, the technological approaches used to prolong the drug supersaturation are discussed regarding the type and concentration of polymers used in liquid and solid SMEDDS formulation. The addition of hypromellose derivatives, vinyl polymers, polyethylene glycol, polyoxyethylene, or polymetacrylate copolymers proved to be effective in inhibiting drug precipitation. Regarding the available literature, hypromellose has been the most commonly used polymeric precipitation inhibitor, added in a concentration of 5 % (m/m). However, the inhibiting ability is mainly governed not only by the physicochemical properties of the polymer but also by the API, therefore the choice of optimal precipitation inhibitor is recommended to be evaluated on an individual basis.
Collapse
Affiliation(s)
- Mila Kovačević
- 1University of Ljubljana, Faculty of Pharmacy 1000 Ljubljana Slovenia
| | - Mirjana Gašperlin
- 1University of Ljubljana, Faculty of Pharmacy 1000 Ljubljana Slovenia
| | | |
Collapse
|
10
|
Schulzen A, Andreadis II, Bergström CAS, Quodbach J. Development and characterization of solid lipid-based formulations (sLBFs) of ritonavir utilizing a lipolysis and permeation assay. Eur J Pharm Sci 2024; 196:106732. [PMID: 38408708 DOI: 10.1016/j.ejps.2024.106732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
As a high number of active pharmaceutical ingredients (APIs) under development belong to BCS classes II and IV, the need for improving bioavailability is critical. A powerful approach is the use of lipid-based formulations (LBFs) that usually consist of a combination of liquid lipids, cosolvents, and surfactants. In this study, ritonavir loaded solid LBFs (sLBFs) were prepared using solid lipid excipients to investigate whether sLBFs are also capable of improving solubility and permeability. Additionally, the influence of polymeric precipitation inhibitors (PVP-VA and HPMC-AS) on lipolysis triggered supersaturation and precipitation was investigated. One step intestinal digestion and bicompartmental permeation studies using an artificial lecithin-in-dodecane (LiDo) membrane were performed for each formulation. All formulations presented significantly higher solubility (5 to >20-fold higher) during lipolysis and permeation studies compared to pure ritonavir. In the combined lipolysis-permeation studies, the formulated ritonavir concentration increased 15-fold in the donor compartment and the flux increased up to 71 % as compared to non-formulated ritonavir. The formulation with the highest surfactant concentration showed significantly higher ritonavir solubility compared to the formulation with the highest amount of lipids. However, the precipitation rates were comparable. The addition of precipitation inhibitors did not influence the lipolytic process and showed no significant benefit over the initial formulations with regards to precipitation. While all tested sLBFs increased the permeation rate, no statistically significant difference was noted between the formulations regardless of composition. To conclude, the different release profiles of the formulations were not correlated to the resulting flux through a permeation membrane, further supporting the importance of making use of combined lipolysis-permeation assays when exploring LBFs.
Collapse
Affiliation(s)
- Arne Schulzen
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstraße 1, DE-40225, Düsseldorf, Germany
| | - Ioannis I Andreadis
- Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23, Uppsala, Sweden; Laboratory of Pharmaceutical Technology, Department of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23, Uppsala, Sweden; The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23, Uppsala, Sweden
| | - Julian Quodbach
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstraße 1, DE-40225, Düsseldorf, Germany; Department of Pharmacy, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
11
|
Higashino H, Masada T, Minami K, Kataoka M, Yamashita S. Assessment of in Vivo Performance of Lipid-Based Formulations: Correlation between in Vitro Drug Release Profiles and in Vivo Absorption Rate Profiles. Biol Pharm Bull 2024; 47:1616-1623. [PMID: 39370265 DOI: 10.1248/bpb.b24-00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The purpose of this study was to assess the in vivo absorption enhancement effects of lipid-based formulations (LBFs) through in vitro release studies. The type IIIA-MC (medium-chain) and type IIIA-LC (long-chain) formulations containing a Biopharmaceutics Classification System (BCS) Class II drug (dipyridamole or ketoconazole) were used as model LBFs. The type IIIA-MC formulation, but not the type IIIA-LC formulation, showed a higher initial absorption rate than the control suspension for both model drugs in rats. An in vitro side-by-side chamber system coupled with a lipid digestion model was used to measure free drugs, available for intestinal absorption, that are released from a model LBF. The profiles of free drug concentration on the donor side were determined by calculating the ratio of permeation rate (LBF/suspension) at every sampling interval. The in vitro free drug concentration was immediately supersaturated when the digestion of type IIIA-MC formulation was initiated for both drugs, which would cause the initially high absorption rate in rats. In contrast, the free concentration of the type IIIA-LC formulation became lower than the equilibrium solubility over time for both drugs. Overall, the profiles of in vitro free concentrations were consistent with those of in vivo absorption rates for both drugs and all LBFs. These findings would help predict the in vivo performance and establish an in vitro-in vivo correlation (IVIVC) of LBFs.
Collapse
Affiliation(s)
- Haruki Higashino
- Faculty of Pharmaceutical Sciences, Setsunan University
- Pharmaron (Exton) Lab Services LLC (Absorption Systems LLC)
| | - Takato Masada
- Faculty of Pharmaceutical Sciences, Setsunan University
| | - Keiko Minami
- Faculty of Pharmaceutical Sciences, Setsunan University
| | | | | |
Collapse
|
12
|
Johannesson J, Wu M, Johansson M, Bergström CAS. Quality attributes for printable emulsion gels and 3D-printed tablets: Towards production of personalized dosage forms. Int J Pharm 2023; 646:123413. [PMID: 37726040 DOI: 10.1016/j.ijpharm.2023.123413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
3D-printing technology offers a flexible manufacturing platform with the potential to address the need of personalized dosage forms. However, quality aspects of such small-scale, on-demand production of pharmaceutical products intended for personalization is still limited. The aim of this study was therefore to study critical quality control attributes of lipid tablets produced by semi-solid extrusion (SSE) 3D printing from emulsion gels incorporating a poorly water-soluble drug. Quality attributes for both the printable emulsion gel and the printed dosage forms were assessed. The emulsion gel was shown to be printable with accurate dosing for at least one month of storage at 4 °C. Tablets were 3D printed in different sizes and a correlation, R2 value of 0.99, was found between the weight and the drug content. The 3D-printed tablets complied with the mass and drug content uniformity requirements described in the European Pharmacopoeia.. Solid-state characterization of the tablets during short-term storage revealed no signs of crystallinity of the drug. Lastly, the lipid digestion and drug release were unchanged after short-term storage of the tablets. This study demonstrates the potential of SSE 3D printing for personalized dosing of a lipid-based formulation strategy and discusses central quality attributes for the printable formulation and the 3D-printed dosage form.
Collapse
Affiliation(s)
- Jenny Johannesson
- Department of Pharmacy, Uppsala University, SE 751 23 Uppsala, Sweden
| | - Mingjun Wu
- Department of Pharmacy, Uppsala University, SE 751 23 Uppsala, Sweden
| | - Mathias Johansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences (SLU), SE 750 07 Uppsala, Sweden
| | | |
Collapse
|
13
|
Sirvi A, Debaje S, Guleria K, Sangamwar AT. Critical aspects involved in lipid dispersion and digestion: Emphasis on in vitro models and factors influencing lipolysis of oral lipid based formulations. Adv Colloid Interface Sci 2023; 321:103028. [PMID: 39491077 DOI: 10.1016/j.cis.2023.103028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 11/05/2024]
Abstract
Understanding the mechanisms underlying the dispersion and digestion process is vital in the development of oral lipid-based formulations (LBFs). In vitro lipolysis models mimic the digestion process in the stomach and intestine to explore the fundamental mechanism of supersaturation, solubilization, and precipitation of drugs within the LBFs. The lipid digestion is controlled by the in vitro experimental conditions, and constitution of the lipid formulations. Hence, there is a continuous upgradation in the digestion models to best extrapolate the in vivo conditions. This review covers the recent developments in digestion models with media compositions and lipid formulation components. Key findings from recent studies that thoroughly examined the relation between the digestion, solubilization, and permeation of oral LBFs in the presence of bile-lipid aggregates are presented. These developments are foremost to build the in vitro-in vivo correlation of the drugs for regulatory considerations.
Collapse
Affiliation(s)
- Arvind Sirvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Shubham Debaje
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Kajal Guleria
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India.
| |
Collapse
|
14
|
Holm R, Kuentz M, Ilie-Spiridon AR, Griffin BT. Lipid based formulations as supersaturating oral delivery systems: From current to future industrial applications. Eur J Pharm Sci 2023; 189:106556. [PMID: 37543063 DOI: 10.1016/j.ejps.2023.106556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/30/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
Lipid-based formulations, in particular supersaturated lipid-based formulations, are important delivery approaches when formulating challenging compounds, as especially low water-soluble compounds profit from delivery in a pre-dissolved state. In this article, the classification of lipid-based formulation is described, followed by a detailed discussion of different supersaturated lipid-based formulations and the recent advances reported in the literature. The supersaturated lipid-based formulations discussed include both the in situ forming supersaturated systems as well as the thermally induced supersaturated lipid-based formulations. The in situ forming drug supersaturation by lipid-based formulations has been widely employed and numerous clinically available products are on the market. There are some scientific gaps in the field, but in general there is a good understanding of the mechanisms driving the success of these systems. For thermally induced supersaturation, the technology is not yet fully understood and developed, hence more research is required in this field to explore the formulations beyond preclinical studies and initial clinical trials.
Collapse
Affiliation(s)
- René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Denmark.
| | - Martin Kuentz
- University of Applied Sciences and Arts Northwestern Switzerland, Institute of Pharmaceutical Technology, Hofackerstr. 30, CH-4132 Muttenz, Switzerland
| | | | | |
Collapse
|
15
|
Andreadis II, Schulzen A, Quodbach J, Bergström CAS. Exploring the use of modified in vitro digestion assays for the evaluation of ritonavir loaded solid lipid-based formulations. Eur J Pharm Sci 2023; 189:106524. [PMID: 37433412 DOI: 10.1016/j.ejps.2023.106524] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/25/2023] [Accepted: 07/09/2023] [Indexed: 07/13/2023]
Abstract
Solid lipid-based formulations (sLBFs) have the potential to increase the oral bioavailability of drugs with poor solubility in water, while counteracting some of the disadvantages of liquid LBFs. The most common experimental set-up to study the performance of LBFs in vitro is the lipolysis assay, during which the LBFs are digested by lipases in an environment mimicking the human small intestine. However, this assay has failed in many cases to correctly predict the performance of LBFs in vivo, highlighting the need for new and improved in vitro assays to evaluate LBFs at the preclinical stage. In this study, the suitability of three different in vitro digestion assays for the evaluation of sLBFs was assessed; the classic one-step intestinal digestion assay, a two-step gastrointestinal digestion assay and a bicompartmental assay permitting the simultaneous monitoring of digestion and permeation of the active pharmaceutical ingredient (API) across an artificial membrane (Lecithin in Dodecane - LiDo). Three sLBFs (M1-M3) with varied composition and ritonavir as model drug were prepared and examined. When comparing the ability of these formulations to keep the drug solubilized in the aqueous phase, all three assays show that M1 performs better, while M3 presents poor performance. However, the classic in vitro intestinal digestion assay fails to provide a clear ranking of the three formulations, something that is more evident when using the two modified and more physiologically relevant assays. Also, the two modified assays provide additional information about the performance of the formulations including the performance in the gastric environment and intestinal flux of the drug. These modified in vitro digestion assays are valuable tools for the development and evaluation of sLBFs to make better informed decisions of which formulations to pursue for in vivo studies.
Collapse
Affiliation(s)
- Ioannis I Andreadis
- Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23, Uppsala, Sweden; Laboratory of Pharmaceutical Technology, Department of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Arne Schulzen
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstraße 1, DE-40225, Düsseldorf, Germany
| | - Julian Quodbach
- Department of Pharmaceutics, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23, Uppsala, Sweden; The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23, Uppsala, Sweden.
| |
Collapse
|
16
|
Chu Y, Wong A, Chen H, Ji L, Qin C, Feng W, Stocks MJ, Gershkovich P. Development of lipophilic ester prodrugs of dolutegravir for intestinal lymphatic transport. Eur J Pharm Biopharm 2023; 191:90-102. [PMID: 37634824 DOI: 10.1016/j.ejpb.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
The establishment of latent cellular and anatomical viral reservoirs is a major obstacle to achieving a cure for people infected by HIV. Mesenteric lymph nodes (MLNs) are one of the most important anatomical reservoirs of HIV. Suboptimal levels of antiretroviral (ARVs) drugs in these difficult-to-penetrate viral reservoirs is one of the limitations of current antiretroviral therapy (ART) regimens. This study aimed to design and assess highly lipophilic ester prodrugs of dolutegravir (DTG) formulated with long-chain triglyceride (LCT) for delivery of DTG to the viral reservoir in mesenteric lymph and MLNs. A number of alkyl ester prodrugs of DTG were designed based on the predicted affinity to chylomicrons (CM), and the six most promising prodrugs were selected and synthesised. The synthesised prodrugs were further assessed for their intestinal lymphatic transport potential and biotransformation in biorelevant media in vitro and ex vivo. DTG and the most promising prodrug (prodrug 5) were then assessed in pharmacokinetic and biodistribution studies in rats. Although oral administration of 5 mg/kg of unmodified DTG (an allometrically scaled dose from humans) with or without lipids achieved concentrations above protein binding-adjusted IC90 (PA-IC90) (64 ng/mL) in most tissues, the drug was not selectively targeted to MLNs. The combination of lipophilic ester prodrug and LCT-based formulation approach improved the targeting selectivity of DTG to MLNs 4.8-fold compared to unmodified DTG. However, systemic exposure to DTG was limited, most likely due to poor intestinal absorption of the prodrug following oral administration. In vitro lipolysis showed a good correlation between micellar solubilisation of the prodrug and systemic exposure to DTG in rats in vivo. Thus, it is prudent to include in vitro lipolysis in the early assessment of orally administered drugs and prodrugs in lipidic formulations, even when intestinal lymphatic transport is involved in the absorption pathway. Further studies are needed to clarify the underlying mechanisms of low systemic bioavailability of DTG following oral administration of the prodrug and potential ways to overcome this limitation.
Collapse
Affiliation(s)
- Yenju Chu
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; Department of Pharmacy Practice, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Abigail Wong
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Haojie Chen
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Liuhang Ji
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Chaolong Qin
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Wanshan Feng
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Michael J Stocks
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Pavel Gershkovich
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
17
|
Salim M, Fraser-Miller SJ, Bērziņš K, Sutton JJ, Gordon KC, Boyd BJ. In Situ Monitoring of Drug Precipitation from Digesting Lipid Formulations Using Low-Frequency Raman Scattering Spectroscopy. Pharmaceutics 2023; 15:1968. [PMID: 37514154 PMCID: PMC10383805 DOI: 10.3390/pharmaceutics15071968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Low-frequency Raman spectroscopy (LFRS) is a valuable tool to detect the solid state of amorphous and crystalline drugs in solid dosage forms and the transformation of drugs between different polymorphic forms. It has also been applied to track the solubilisation of solid drugs as suspensions in milk and infant formula during in vitro digestion. This study reports the use of LFRS as an approach to probe drug precipitation from a lipid-based drug delivery system (medium-chain self-nanoemulsifying drug delivery system, MC-SNEDDS) during in vitro digestion. Upon lipolysis of the digestible components in MC-SNEDDS containing fenofibrate as a model drug, sharp phonon peaks appeared at the low-frequency Raman spectral region (<200 cm-1), indicating the precipitation of fenofibrate in a crystalline form from the formulation. Two multivariate data analysis approaches (principal component analysis and partial least squares discriminant analysis) and one univariate analysis approach (band ratios) were explored to track these spectral changes over time. The low-frequency Raman data produces results in good agreement with in situ small angle X-ray scattering (SAXS) measurements with all data analysis approaches used, whereas the mid-frequency Raman requires the use of PLS-DA to gain similar results. This suggests that LFRS can be used as a complementary, and potentially more accessible, technique to SAXS to determine the kinetics of drug precipitation from lipid-based formulations.
Collapse
Affiliation(s)
- Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Sara J Fraser-Miller
- Te Whai Ao-Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Kārlis Bērziņš
- Te Whai Ao-Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Joshua J Sutton
- Te Whai Ao-Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Keith C Gordon
- Te Whai Ao-Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
18
|
Yamanouchi K, Ishimaru T, Kakuno T, Takemoto Y, Kawatsu S, Kondo K, Maruyama M, Higaki K. Improvement and characterization of oral absorption behavior of clofazimine by SNEDDS: Quantitative evaluation of extensive lymphatic transport. Eur J Pharm Biopharm 2023; 187:141-155. [PMID: 37076052 DOI: 10.1016/j.ejpb.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Clofazimine, an anti-leprosy drug, has been anticipated for a candidate to treat tuberculosis, cryptosporidiosis, and coronavirus infection, but its low oral bioavailability is considered a reason for its limited activity. In the current study, we have tried to improve the oral bioavailability of clofazimine by several SNEDDS formulations and characterized the absorption behavior from various aspects. Among four SNEDDS formulations prepared, SNEDDS A, prepared with castor oil as an oil component, provided the highest bioavailability (around 61%) and SNEDDS D, prepared with Capryol 90, gave the second highest bioavailability. SNEDDS A formed the finest nanoparticles, which were maintained under gastric and intestinal luminal conditions. The comparison in oral bioavailability between the SNEDDS formulation and its corresponding preformed nanoemulsion suggested that SNEDDS A would efficiently form nanoemulsion in the gastrointestinal tract after oral administration. AUC of mesenteric lymph node concentration was the highest for SNEDDS A, which would be one of the reasons for SNEDDS A to reveal the highest oral bioavailability. A cycloheximide-treated oral absorption study and single-pass perfusion study by utilizing a vascular-luminal perfused small intestine-liver preparation clearly indicated that over 90% of clofazimine absorbed to systemic circulation should be derived from lymphatic transport for both SNEDDS A and D. Furthermore, the fraction of dose absorbed was around 65% for SNEDDS D, but SNEDDS A achieved around 94%, indicating the excellent performance of SNEDDS A.
Collapse
Affiliation(s)
- Keita Yamanouchi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd. 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Tomoki Ishimaru
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Department of Drug Metabolism and Pharmacokinetics, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan
| | - Takuya Kakuno
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Pharmaceutical Research Laboratories, Pharmaceutical Department, Nipro Co. 3023 Noji-cho, Kusatsu, Shiga 525-0055, Japan
| | - Yuki Takemoto
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Sho Kawatsu
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Formulation Design, Pharmaceutical Research and Technology Laboratories, Pharmaceutical Technology, Astellas Pharma Inc. 180 Ozumi, Yaizu, Shizuoka 425-0072, Japan
| | - Keiji Kondo
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Preformulation Research Laboratory, CMC Headquarters, Otsuka Pharmaceutical Co., Ltd. 224-18 Hiraishi Ebisuno, Kawauchi-cho, Tokushima 771-0182, Japan
| | - Masato Maruyama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kazutaka Higaki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
19
|
Xia D, Hu C, Hou Y. Regorafenib loaded self-assembled lipid-based nanocarrier for colorectal cancer treatment via lymphatic absorption. Eur J Pharm Biopharm 2023; 185:165-176. [PMID: 36870399 DOI: 10.1016/j.ejpb.2023.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/11/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Oral chemotherapy can improve the life quality of patients; however, the therapeutic effects are limited by low bioavailability and rapid in vivo elimination of anticancer drugs. Here, we developed a regorafenib (REG)-loaded self-assembled lipid-based nanocarrier (SALN) to improve oral absorption and anti-colorectal cancer efficacy of REG through lymphatic absorption. SALN was prepared with lipid-based excipients to utilize lipid transport in the enterocytes and enhance lymphatic absorption of the drug in the gastrointestinal tract. The particle size of SALN was 106 ± 10 nm. SALNs were internalized by the intestinal epithelium via the clathrin-mediated endocytosis, and then transported across the epithelium via the chylomicron secretion pathway, resulting in a 3.76-fold increase in drug epithelial permeability (Papp) compared to the solid dispersion (SD). After oral administration to rats, SALNs were transported by the endoplasmic reticulum, Golgi apparatus, and secretory vesicles of enterocytes and were found in the lamina propria of intestinal villi, abdominal mesenteric lymph, and plasma. The oral bioavailability of SALN was 65.9-fold and 1.70-fold greater than that of the coarse powder suspension and SD, respectively, and was highly dependent on the lymphatic route of absorption. Notably, SALN prolonged the elimination half-life of the drug (9.34 ± 2.51 h) compared to the solid dispersion (3.51 ± 0.46 h), increased the biodistribution of REG in the tumor and gastrointestinal (GI) tract, decreased biodistribution in the liver, and showed better therapeutic efficacy than the solid dispersion in colorectal tumor-bearing mice. These results demonstrated that SALN is promising for the treatment of colorectal cancer via lymphatic transport and has potential for clinical translation.
Collapse
Affiliation(s)
- Dengning Xia
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Cunde Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Yulin Hou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
20
|
Trivedi JU, Ghalsasi P, Ganguly S, Jenepha Mary S, James C. Raman spectroscopic study of cinnamyl-1 diphenylmethyl-4 piperazine (Cinnarizine) at high pressure. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Artificial Neural Networks to Predict the Apparent Degree of Supersaturation in Supersaturated Lipid-Based Formulations: A Pilot Study. Pharmaceutics 2021; 13:pharmaceutics13091398. [PMID: 34575483 PMCID: PMC8466847 DOI: 10.3390/pharmaceutics13091398] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
In response to the increasing application of machine learning (ML) across many facets of pharmaceutical development, this pilot study investigated if ML, using artificial neural networks (ANNs), could predict the apparent degree of supersaturation (aDS) from two supersaturated LBFs (sLBFs). Accuracy was compared to partial least squares (PLS) regression models. Equilibrium solubility in Capmul MCM and Maisine CC was obtained for 21 poorly water-soluble drugs at ambient temperature and 60 °C to calculate the aDS ratio. These aDS ratios and drug descriptors were used to train the ML models. When compared, the ANNs outperformed PLS for both sLBFCapmulMC (r2 0.90 vs. 0.56) and sLBFMaisineLC (r2 0.83 vs. 0.62), displaying smaller root mean square errors (RMSEs) and residuals upon training and testing. Across all the models, the descriptors involving reactivity and electron density were most important for prediction. This pilot study showed that ML can be employed to predict the propensity for supersaturation in LBFs, but even larger datasets need to be evaluated to draw final conclusions.
Collapse
|
22
|
Supersaturation and Solubilization upon In Vitro Digestion of Fenofibrate Type I Lipid Formulations: Effect of Droplet Size, Surfactant Concentration and Lipid Type. Pharmaceutics 2021; 13:pharmaceutics13081287. [PMID: 34452248 PMCID: PMC8399075 DOI: 10.3390/pharmaceutics13081287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023] Open
Abstract
Lipid-based formulations (LBF) enhance oral drug absorption by promoting drug solubilization and supersaturation. The aim of the study was to determine the effect of the lipid carrier type, drop size and surfactant concentration on the rate of fenofibrate release in a bicarbonate-based in vitro digestion model. The effect of the lipid carrier was studied by preparing type I LBF with drop size ≈ 2 µm, based on medium-chain triglycerides (MCT), sunflower oil (SFO), coconut oil (CNO) and cocoa butter (CB). The drop size and surfactant concentration effects were assessed by studying MCT and SFO-based formulations with a drop size between 400 nm and 14 µm and surfactant concentrations of 1 or 10%. A filtration through a 200 nm filter followed by HPLC analysis was used to determine the aqueous fenofibrate, whereas lipid digestion was followed by gas chromatography. Shorter-chain triglycerides were key in promoting a faster drug release. The fenofibrate release from long-chain triglyceride formulations (SFO, CNO and CB) was governed by solubilization and was enhanced at a smaller droplet size and higher surfactant concentration. In contrast, supersaturation was observed after the digestion of MCT emulsions. In this case, a smaller drop size and higher surfactant had negative effects: lower peak fenofibrate concentrations and a faster onset of precipitation were observed. The study provides new mechanistic insights on drug solubilization and supersaturation after LBF digestion, and may support the development of new in silico prediction models.
Collapse
|
23
|
Huang Y, Yu Q, Chen Z, Wu W, Zhu Q, Lu Y. In vitro and in vivo correlation for lipid-based formulations: Current status and future perspectives. Acta Pharm Sin B 2021; 11:2469-2487. [PMID: 34522595 PMCID: PMC8424225 DOI: 10.1016/j.apsb.2021.03.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/03/2021] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
Lipid-based formulations (LBFs) have demonstrated a great potential in enhancing the oral absorption of poorly water-soluble drugs. However, construction of in vitro and in vivo correlations (IVIVCs) for LBFs is quite challenging, owing to a complex in vivo processing of these formulations. In this paper, we start with a brief introduction on the gastrointestinal digestion of lipid/LBFs and its relation to enhanced oral drug absorption; based on the concept of IVIVCs, the current status of in vitro models to establish IVIVCs for LBFs is reviewed, while future perspectives in this field are discussed. In vitro tests, which facilitate the understanding and prediction of the in vivo performance of solid dosage forms, frequently fail to mimic the in vivo processing of LBFs, leading to inconsistent results. In vitro digestion models, which more closely simulate gastrointestinal physiology, are a more promising option. Despite some successes in IVIVC modeling, the accuracy and consistency of these models are yet to be validated, particularly for human data. A reliable IVIVC model can not only reduce the risk, time, and cost of formulation development but can also contribute to the formulation design and optimization, thus promoting the clinical translation of LBFs.
Collapse
Key Words
- ANN, artificial neural network
- AUC, area under the curve
- Absorption
- BCS, biopharmaceutics classification system
- BE, bioequivalence
- CETP, cholesterol ester transfer protein
- Cmax, peak plasma concentration
- DDS, drug delivery system
- FDA, US Food and Drug Administration
- GI, gastrointestinal
- HLB, hydrophilic–lipophilic balance
- IVIVC, in vitro and in vivo correlation
- IVIVR, in vitro and in vivo relationship
- In silico prediction
- In vitro and in vivo correlations
- LBF, lipid-based formulation
- LCT, long-chain triglyceride
- Lipid-based formulation
- Lipolysis
- MCT, medium-chain triglyceride
- Model
- Oral delivery
- PBPK, physiologically based pharmacokinetic
- PK, pharmacokinetic
- Perspectives
- SCT, short-chain triglyceride
- SEDDS, self-emulsifying drug delivery system
- SGF, simulated gastric fluid
- SIF, simulated intestinal fluid
- SLS, sodium lauryl sulfate
- SMEDDS, self-microemulsifying drug delivery system
- SNEDDS, self-nanoemulsifying drug delivery system
- TIM, TNO gastrointestinal model
- TNO, Netherlands Organization for Applied Scientific Research
- Tmax, time to reach the peak plasma concentration
Collapse
|
24
|
Verma R, Kaushik A, Almeer R, Rahman MH, Abdel-Daim MM, Kaushik D. Improved Pharmacodynamic Potential of Rosuvastatin by Self-Nanoemulsifying Drug Delivery System: An in vitro and in vivo Evaluation. Int J Nanomedicine 2021; 16:905-924. [PMID: 33603359 PMCID: PMC7881784 DOI: 10.2147/ijn.s287665] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/31/2020] [Indexed: 01/16/2023] Open
Abstract
PURPOSE The purpose of this proposed research was to investigate a nano-formulation developed using self-nanoemulsifying drug delivery system (SNEDDS) to improve the pharmacodynamic potential of rosuvastatin by assisting its transportation through lymphatic circulation. METHODS The utilized lipids, surfactants, and co-surfactants for SNEDDS were selected on the basis of solubility studies. The SNEDDS formulation was optimized by implementing a D-optimal mixture design, wherein the effect of concentration of Capmul MCM EP (X1), Tween 20 (X2) and Transcutol P (X3) as independent variables was studied on droplet size (Y1), % cumulative drug release (Y2) and self-emulsification time (Y3) as dependent variables. The optimized formulation was evaluated via in vitro parameters and in vivo pharmacodynamic potential in Wistar rats. RESULTS The D-optimal mixture design and subsequent ANOVA application resulted in the assortment of the optimized SNEDDS formulation that exhibited a droplet size of nano range (14.91nm), in vitro drug release of >90% within 30 minutes, and self-emulsification time of 16 seconds. The in vivo pharmacodynamic study carried out using Wistar rats confirmed the better antihyperlipidemic potential of developed formulation in normalizing the lipidic level of serum in contrast to pure drug and marketed tablets. CONCLUSION This research reports the application of D-optimal mixture design for successful and systematic development of rosuvastatin-loaded SNEDDS with distinctly enhanced in vitro and in vivo performance in comparison to marketed formulation. Eventually, improved anti-hyperlipidemic efficacy was envisaged which might be attributed to increased drug solubility and absorption. Overall, this study shows the utility of SNEDDS for improving the dissolution rate and bioavailability of poor aqueous-soluble drugs. The present SNEDDS formulation could be a promising approach and alternative to conventional dosage form.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Division of Sciences, Arts, & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805-8531, USA
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| |
Collapse
|
25
|
Effects of Lipid Digestion and Drug Permeation/Re-Dissolution on Absorption of Orally Administered Ritonavir as Different Lipid-Based Formulations. Eur J Pharm Sci 2021; 157:105604. [PMID: 33098990 DOI: 10.1016/j.ejps.2020.105604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/25/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022]
Abstract
The aim of this study is to clarify absorption mechanisms after oral administration of ritonavir (RTV) from different types of lipid-based formulations (LBFs) with particular emphasis on the effect of lipid digestion and drug permeation/re-dissolution on the oral absorption. Four LBFs were prepared; three contained either long-chain (LC) or medium-chain (MC) lipids [lipid formulation classification system (LFCS) Type II-LC, Type IIIA-MC, and Type IIIB-MC] and the fourth contained only surfactant and co-solvent (Type IV). The solubility of RTV in those LBFs was determined and drug subsequently loaded at 85% w/w of the saturated solubility in the formulations. Then, each LBF containing drug was added into a model rat intestinal fluid at approximately 2.5% w/v for evaluation using an in vitro digestion model. In vitro digestion study showed the ability of Type II-LC and Type IIIA-MC to support continued solubilization of RTV, and moderate supersaturation was observed in Type IIIA-MC. In contrast, RTV partly precipitated in the Type IIIB-MC during digestion, and the Type IV formulation lost its solubilization capacity rapidly upon dispersion, leading to drastic precipitation. Oral administration of RTV as Type IIIA-MC to rats showed significantly higher area under the plasma concentration-time curve compared to control suspension, whereas it was not improved with Type II-LC administration despite complete solubilization of RTV during digestion. From the results of in vitro permeation across dialysis membrane (a molecular weight cutoff of > 1000 Da), this may be attributed to the lowered free concentration in the gastrointestinal tract owing to incorporation of RTV into the undigested LC lipid. Oral absorption drastically increased with Type IIIB-MC and Type IV despite the observed moderate and drastic precipitation, respectively. Powder X-ray diffraction analysis revealed that the precipitate was amorphous. Therefore, improved re-solubilization may partly contribute to improved absorption. The present study revealed detailed absorption mechanisms from LBFs with different compositions. Our findings may be useful for selecting appropriate excipients to design optimal LBFs for poorly water-soluble drugs.
Collapse
|
26
|
Suys EJA, Brundel DHS, Chalmers DK, Pouton CW, Porter CJH. Interaction with biliary and pancreatic fluids drives supersaturation and drug absorption from lipid-based formulations of low (saquinavir) and high (fenofibrate) permeability poorly soluble drugs. J Control Release 2021; 331:45-61. [PMID: 33450318 DOI: 10.1016/j.jconrel.2021.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022]
Abstract
Drug absorption from lipid-based formulations (LBFs) in the gastrointestinal (GI) tract is the result of a series of processes, including formulation dispersion, interaction with biliary and pancreatic secretions, drug solubilisation and supersaturation, and finally intestinal permeability. Optimal formulation design is dependent on a good understanding of the limitations to, and drivers of, absorption, but for LBFs the complexity of these processes makes data interpretation complex. The current study has re-examined a previous in vitro digestion-in situ perfusion model to increase physiological relevance and has used this model to examine drug absorption from LBFs. The composition of rat bile and jejunal fluid was also characterised to identify in vivo-relevant conditions. Digestion was initiated using rat bile/pancreatic fluid and the formulation and digestive enzymes mixed immediately prior to entry into the jejunum (allowing dilution/digestion to occur at the absorptive site). These conditions were employed to study drug absorption from LBFs of high (fenofibrate, FFB) and low (saquinavir, SQV) permeability compounds. The impact of polymeric precipitation inhibitors (PPIs) was also evaluated. For FFB, supersaturation, initiated by formulation interaction with biliary/pancreatic fluids, appeared to drive absorption and the addition of the PPIs poly(glycidyl methacrylate) (PPGAE) and hydroxypropylmethyl cellulose (HPMC), reduced drug precipitation, increased FFB supersaturation and increased absorption from a Type IV LBF of FFB. For a Type IIIB LBF however, PPIs were ineffective at increasing absorption. The impact of PPIs on the absorption of a less permeable drug, SQV, was similarly evaluated and again drug absorption appeared to be related to the extent of supersaturation, although in this case PPI were unable to promote absorption. For both FFB and SQV, drug absorption patterns obtained with the in vitro digestion-in situ perfusion mode, correlated well with in vitro supersaturation data and in vivo drug exposure data from oral bioavailability studies. The data are consistent with a mode of drug absorption where rapid dilution of LBFs with biliary and pancreatic secretions at the absorptive site in the upper small intestine drives transient supersaturation, that supersaturation is a significant driver of drug absorption for both low and high permeability drugs, and that PPIs delay drug precipitation, enhance supersaturation and promote drug absorption in a drug and formulation specific manner.
Collapse
Affiliation(s)
- Estelle J A Suys
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia
| | - Daniel H S Brundel
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia
| | - David K Chalmers
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia
| | - Colin W Pouton
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia.
| |
Collapse
|
27
|
Verma R, Kaushik D. Design and optimization of candesartan loaded self-nanoemulsifying drug delivery system for improving its dissolution rate and pharmacodynamic potential. Drug Deliv 2020; 27:756-771. [PMID: 32397771 PMCID: PMC7269045 DOI: 10.1080/10717544.2020.1760961] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
During the last decades, much attention has been focused on SNEDDS approach to resolve concerns of BCS II class drugs with accentuation on upgrading the solubility and bioavailability. The present hypothesis confirms the theory that SNEDDS can reduce the impact of food on Candesartan solubilization, thereby offering the potential for improved oral delivery without co-administration with meals. The present studies describe quality-by-design-based development and characterization of Candesartan loaded SNEDDS for improving its pharmacodynamic potential. D-optimal mixture design was used for systematic optimization of SNEDDS, which showed globule size of 13.91 nm, more rapid drug release rate of >90% in 30 min and 16 s for self-emulsification. The optimized formulations were extensively evaluated, where an in vitro drug release study indicated up to 1.99- and 1.10-fold enhancement in dissolution rate from SNEDDS over pure drug and marketed tablet. In vivo pharmacodynamic investigation also showed superior antihypertensive potential of SNEDDS in normalizing serum lipid levels as compared to pure drug and marketed tablet that was executed on male Wistar rats. Overall, this paper reports successful systematic development of candesartan-loaded SNEDDS with distinctly improved biopharmaceutical performance. This research work interpreted a major role of SNEDDS for enhancing the rate of dissolution and bioavailability of poorly water soluble drugs.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand
University, Rohtak, Haryana, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand
University, Rohtak, Haryana, India
| |
Collapse
|
28
|
Kabedev A, Hossain S, Hubert M, Larsson P, Bergström CAS. Molecular Dynamics Simulations Reveal Membrane Interactions for Poorly Water-Soluble Drugs: Impact of Bile Solubilization and Drug Aggregation. J Pharm Sci 2020; 110:176-185. [PMID: 33152373 DOI: 10.1016/j.xphs.2020.10.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 01/19/2023]
Abstract
Molecular transport mechanisms of poorly soluble hydrophobic drug compounds to lipid membranes were investigated using molecular dynamics (MD) simulations. The model compound danazol was used to investigate the mechanism(s) by which bile micelles delivered it to the membrane. The interactions between lipid membrane and pure drug aggregates-in the form of amorphous aggregates and nanocrystals-were also studied. Our simulations indicate that bile micelles formed in the intestinal fluid may facilitate danazol incorporation into cellular membranes through two different mechanisms. The micelle may be acting as: i) a shuttle that presents the danazol directly to the membrane or ii) an elevator that moves the solubilized danazol with it as the colloidal structure itself becomes incorporated and solubilized within the membrane. The elevator hypothesis was supported by complementary lipid monolayer adsorption experiments. In these experiments, colloidal structures formed with simulated intestinal fluid were observed to rapidly incorporate into the monolayer. Simulations of membrane interaction with drug aggregates showed that both the amorphous aggregates and crystalline nanostructures incorporated into the membrane. However, the amorphous aggregates solubilized more quickly than the nanocrystals into the membrane, thereby improving the danazol absorption.
Collapse
Affiliation(s)
- Aleksei Kabedev
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Shakhawath Hossain
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Madlen Hubert
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Per Larsson
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden; The Swedish Drug Delivery Center (SweDeliver), Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden; The Swedish Drug Delivery Center (SweDeliver), Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden.
| |
Collapse
|
29
|
Bennett-Lenane H, Koehl NJ, O'Dwyer PJ, Box KJ, O'Shea JP, Griffin BT. Applying Computational Predictions of Biorelevant Solubility Ratio Upon Self-Emulsifying Lipid-Based Formulations Dispersion to Predict Dose Number. J Pharm Sci 2020; 110:164-175. [PMID: 33144233 DOI: 10.1016/j.xphs.2020.10.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 11/26/2022]
Abstract
Computational approaches are increasingly utilised in development of bio-enabling formulations, including self-emulsifying drug delivery systems (SEDDS), facilitating early indicators of success. This study investigated if in silico predictions of drug solubility gain i.e. solubility ratios (SR), after dispersion of a SEDDS in biorelevant media could be predicted from drug properties. Apparent solubility upon dispersion of two SEDDS in FaSSIF was measured for 30 structurally diverse poorly water soluble drugs. Increased drug solubility upon SEDDS dispersion was observed in all cases, with higher SRs observed for cationic and neutral versus anionic drugs at pH 6.5. Molecular descriptors and solid-state properties were used as inputs during partial least squares (PLS) modelling resulting in predictive models for SRMC (r2 = 0.81) and SRLC (r2 = 0.77). Multiple linear regression (MLR) facilitated generation of simplified SR equations with high predictivity (SRMC r2 = 0.74; SRLC r2 = 0.69), requiring only three drug properties; partition coefficient at pH 6.5 (logD6.5), melting point (Tm) and aromatic bonds as fraction of total bonds (F-AromB). Through using the equations to inform developability classification system (DCS) classes for drugs that have already been licensed as lipid-based formulations, merits for development with SEDDS was predicted for 2/3 drugs.
Collapse
Affiliation(s)
| | - Niklas J Koehl
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Patrick J O'Dwyer
- School of Pharmacy, University College Cork, Cork, Ireland; Pion Inc. (UK) Ltd, Forest Row, East Sussex, UK
| | - Karl J Box
- Pion Inc. (UK) Ltd, Forest Row, East Sussex, UK
| | | | | |
Collapse
|
30
|
Cavanagh KL, Kuminek G, Rodríguez-Hornedo N. Cocrystal Solubility Advantage and Dose/Solubility Ratio Diagrams: A Mechanistic Approach To Selecting Additives and Controlling Dissolution-Supersaturation-Precipitation Behavior. Mol Pharm 2020; 17:4286-4301. [PMID: 32815731 DOI: 10.1021/acs.molpharmaceut.0c00713] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Two of the main questions regarding cocrystal selection and formulation development are whether the will be stable and how fast can it dissolve the drug dose. Dissolving the drug dose may require cocrystals with a high solubility advantage over drug (SA = SCC/SD), but these may have limited potential to sustain drug supersaturation. Thus, we propose a twofold approach to mitigate the risk of drug precipitation by optimizing thermodynamic (SA) and kinetic factors (nucleation inhibitors). This risk can be evaluated by considering the cocrystal SA and drug dose/solubility ratio (D0D = Cdose/SD), which in tandem represent the maximum theoretical supersaturation that a cocrystal may generate, the driving force for drug precipitation, and the potential for dose-/solubility-limited absorption. cocrystals with SA and D0D values above critical supersaturation are prone to rapid precipitation, often negating their utility as a solubility enhancement tool. This work presents a mechanistic approach to controlling the dissolution-supersaturation-precipitation behavior of cocrystal systems, whereby relationships between SA, D0D, and the drug-solubilizing power of surfactants (SPD = SD,T/SD,aq) are used to fine-tune cocrystal-inherent supersaturation by rational additive selection. Experimental results with danazol-vanillin cocrystal demonstrate how SA, D0D, and SPD are key thermodynamic parameters to understanding the kinetic cocrystal behavior and how the risks of cocrystal development may be mitigated through the mechanistic formulation design.
Collapse
Affiliation(s)
- Katie L Cavanagh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | - Gislaine Kuminek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | - Naír Rodríguez-Hornedo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| |
Collapse
|
31
|
Ilie AR, Griffin BT, Vertzoni M, Kuentz M, Cuyckens F, Wuyts K, Kolakovic R, Holm R. Toward simplified oral lipid-based drug delivery using mono-/di-glycerides as single component excipients. Drug Dev Ind Pharm 2020; 46:2051-2060. [PMID: 33124918 DOI: 10.1080/03639045.2020.1843475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study aimed to systematically explore compositional effects for a series of lipid systems, on the in vitro drug solubilization and in vivo bioavailability of three poorly water-soluble drugs with different physico-chemical properties. SIGNIFICANCE While many lipid-based drug products have successfully reached the market, there is still a level of uncertainty on the design guidelines for such drug products with limited understanding on the influence of composition on in vitro and in vivo performance. METHODS AND RESULTS Lipid-based drug delivery systems were prepared using either single excipient systems based on partially digested triglycerides (i.e. mono- and/or di-glycerides) or increasingly complex systems by incorporating surfactants and/or triglycerides. These lipid systems were evaluated for both in vitro and in vivo behavior. Results indicated that simple single component long chain lipid systems are more beneficial for the absorption of the weak acid celecoxib and the weak base cinnarizine compared to equivalent single component medium chain lipid systems. Similarly, a two-component system produced by incorporating small amount of hydrophilic surfactant yields similar overall pharmacokinetic effects. The lipid drug delivery systems based on medium chain lipid excipients improved the in vivo exposure of the neutral drug JNJ-2A. The higher in vivo bioavailability of long chain lipid systems compared to medium chain lipid systems was in agreement with in vitro dilution and dispersion studies for celecoxib and cinnarizine. CONCLUSIONS The present study demonstrated the benefits of using mono-/di-glycerides as single component excipients in LBDDS to streamline formulation screening and improve oral bioavailability for the three tested poorly water-soluble drugs.
Collapse
Affiliation(s)
- Alexandra-Roxana Ilie
- Drug Product Development, Janssen Research and Development, Beerse, Belgium.,School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - Martin Kuentz
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Filip Cuyckens
- Drug Metabolism & Pharmacokinetics, Janssen Research and Development, Beerse, Belgium
| | - Koen Wuyts
- Drug Metabolism & Pharmacokinetics, Janssen Research and Development, Beerse, Belgium
| | - Ruzica Kolakovic
- Drug Product Development, Janssen Research and Development, Beerse, Belgium
| | - René Holm
- Drug Product Development, Janssen Research and Development, Beerse, Belgium.,Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
32
|
Ye JY, Chen ZY, Huang CL, Huang B, Zheng YR, Zhang YF, Lu BY, He L, Liu CS, Long XY. A Non-Lipolysis Nanoemulsion Improved Oral Bioavailability by Reducing the First-Pass Metabolism of Raloxifene, and Related Absorption Mechanisms Being Studied. Int J Nanomedicine 2020; 15:6503-6518. [PMID: 32922013 PMCID: PMC7457831 DOI: 10.2147/ijn.s259993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022] Open
Abstract
Objective A non-lipolysis nanoemulsion (NNE) was designed to reduce the first-pass metabolism of raloxifene (RAL) by intestinal UDP-glucuronosyltransferases (UGTs) for increasing the oral absorption of RAL, coupled with in vitro and in vivo studies. Methods In vitro stability of NNE was evaluated by lipolysis and the UGT metabolism system. The oral bioavailability of NNE was studied in rats and pigs. Finally, the absorption mechanisms of NNE were investigated by in situ single-pass intestinal perfusion (SPIP) in rats, Madin-Darby canine kidney (MDCK) cells model, and lymphatic blocking model. Results The pre-NNE consisted of isopropyl palmitate, linoleic acid, Cremophor RH40, and ethanol in a weight ratio of 3.33:1.67:3:2. Compared to lipolysis nanoemulsion of RAL (RAL-LNE), the RAL-NNE was more stable in in vitro gastrointestinal buffers, lipolysis, and UGT metabolism system (p < 0.05). The oral bioavailability was significantly improved by the NNE (203.30%) and the LNE (205.89%) relative to the suspension group in rats. However, 541.28% relative bioavailability was achieved in pigs after oral NNE intake compared to the suspension and had two-fold greater bioavailability than the LNE (p < 0.05). The RAL-NNE was mainly absorbed in the jejunum and had high permeability at the intestine of rats. The results of both SPIP and MDCK cell models demonstrated that the RAL-NNE was absorbed via endocytosis mediated by caveolin and clathrin. The other absorption route, the lymphatic transport (cycloheximide as blocking agent), was significantly improved by the NNE compared with the LNE (p < 0.05). Conclusion A NNE was successfully developed to reduce the first-pass metabolism of RAL in the intestine and enhance its lymphatic transport, thereby improving the oral bioavailability. Altogether, NNE is a promising carrier for the oral delivery of drugs with significant first-pass metabolism.
Collapse
Affiliation(s)
- Jing-Yi Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Zhong-Yun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Chuan-Li Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Bei Huang
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Yu-Rong Zheng
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Ying-Feng Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Ban-Yi Lu
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Lin He
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Chang-Shun Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xiao-Ying Long
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.,Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
33
|
Higashino H, Minami K, Kataoka M, Tomimori N, Rogi T, Shibata H, Yamashita S. Control of oral absorption of nutritional supplement using lipid-based formulations (LBFs): Application to the poorly water-soluble ingredient. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Hedge OJ, Bergström CAS. Suitability of Artificial Membranes in Lipolysis-Permeation Assays of Oral Lipid-Based Formulations. Pharm Res 2020; 37:99. [PMID: 32435855 PMCID: PMC7239831 DOI: 10.1007/s11095-020-02833-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE To evaluate the performance of artificial membranes in in vitro lipolysis-permeation assays useful for absorption studies of drugs loaded in lipid-based formulations (LBFs). METHODS Polycarbonate as well as PVDF filters were treated with hexadecane, or lecithin in n-dodecane solution (LiDo) to form artificial membranes. They were thereafter used as absorption membranes separating two compartments mimicking the luminal and serosal side of the intestine in vitro. Membranes were subjected to dispersions of an LBF that had been digested by porcine pancreatin and spiked with the membrane integrity marker Lucifer Yellow (LY). Three fenofibrate-loaded LBFs were used to explore the in vivo relevance of the assay. RESULTS Of the explored artificial membranes, only LiDo applied to PVDF was compatible with lipolysis by porcine pancreatin. Formulation ranking based on mass transfer in the LiDo model exposed was the same as drug release in single-compartment lipolysis. Ranking based on observed apparent permeability coefficients of fenofibrate with different LBFs were the same as those obtained in a cell-based model. CONCLUSIONS The LiDo membrane was able to withstand lipolysis for a sufficient assay period. However, the assay with porcine pancreatin as digestive agent did not predict the in vivo ranking of the assayed formulations better than existing methods. Comparison with a Caco-2 based assay method nonetheless indicates that the in vitro in vivo relationship of this cell-free model could be improved with alternative digestive agents.
Collapse
Affiliation(s)
- Oliver J Hedge
- Department of Pharmacy, Uppsala University, Husargatan 3, Box 580, SE-75123, Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, Husargatan 3, Box 580, SE-75123, Uppsala, Sweden. .,The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
35
|
Hens B, Kataoka M, Ueda K, Gao P, Tsume Y, Augustijns P, Kawakami K, Yamashita S. Biopredictive in vitro testing methods to assess intestinal drug absorption from supersaturating dosage forms. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
36
|
Could the small molecules such as amino acids improve aqueous solubility and stabilize amorphous systems containing Griseofulvin? Eur J Pharm Sci 2020; 143:105178. [DOI: 10.1016/j.ejps.2019.105178] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 12/21/2022]
|
37
|
Ye J, Wu H, Huang C, Lin W, Zhang C, Huang B, Lu B, Xu H, Li X, Long X. Comparisons of in vitro Fick's first law, lipolysis, and in vivo rat models for oral absorption on BCS II drugs in SNEDDS. Int J Nanomedicine 2019; 14:5623-5636. [PMID: 31440045 PMCID: PMC6664859 DOI: 10.2147/ijn.s203911] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/17/2019] [Indexed: 01/01/2023] Open
Abstract
Purpose The objective of this study was to compare the in vitro Fick’s first law, in vitro lipolysis, and in vivo rat assays for oral absorption of Biopharmaceutical Classification Systems Class II (BCS II) drugs in self-nanoemulsifying drug delivery system (SNEDDS), and studied drugs and oils properties effects on the absorption. Methods The transport abilities of griseofulvin (GRI), phenytoin (PHE), indomethacin (IND), and ketoprofen (KET) in saturated water solutions and SNEDDS were investigated using the in vitro Madin-Darby canine kidney cell model. GRI and cinnarizine (CIN) in medium-chain triglycerides (MCT)-SNEDDS and long-chain triglycerides (LCT)-SNEDDS were administered in the in vivo SD rat and in vitro lipolysis models to compare the oral absorption and the distribution behaviors in GIT and build an in vitro-in vivo correlation (IVIVC). Results In the cell model, the solubility of GRI, PHE, IND, and KET increased 6–8 fold by SNEDDS, but their permeability were only 18%, 4%, 8%, and 33% of those of their saturated water solutions, respectively. However, in vivo absorption of GRI-SNEDDS was twice that of the GRI suspension and those of CIN-SNEDDS were 15–21 fold those of the CIN suspension. In the lipolysis model, the GRI% in aqueous and pellet phases of MCT were similar to that in LCT. In contrast, the CIN% in the aqueous and pellet phases were decreased but that of the lipid phase increased. In addition, an IVIVC was found between the CIN% in the lipid phase and in vivo relative oral bioavailability (Fr). Conclusion The in vitro cell model was still a suitable tool to study drug properties effects on biofilm transport and SNEDDS absorption mechanisms. The in vitro lipolysis model provided superior oral absorption simulation of SNEDDS and helped to build correlation with in vivo rats. The oral drug absorption was affected by drug and oil properties in SNEDDS.
Collapse
Affiliation(s)
- Jingyi Ye
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Huiyi Wu
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Chuanli Huang
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Wanting Lin
- Department of Pharmacy of Chinese Materia Medica, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Caifeng Zhang
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Bei Huang
- Department of Pharmacy of Chinese Materia Medica, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Banyi Lu
- Department of Pharmacy of Chinese Materia Medica, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Hongyu Xu
- Department of Pharmacy of Chinese Materia Medica, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Xiaoling Li
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Xiaoying Long
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.,Department of Oral Delivery, Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
38
|
Sustained release and improved bioavailability in mice after subcutaneous administration of griseofulvin as nano- and microcrystals. Int J Pharm 2019; 566:565-572. [DOI: 10.1016/j.ijpharm.2019.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 11/23/2022]
|
39
|
Barbosa EJ, Löbenberg R, de Araujo GLB, Bou-Chacra NA. Niclosamide repositioning for treating cancer: Challenges and nano-based drug delivery opportunities. Eur J Pharm Biopharm 2019; 141:58-69. [PMID: 31078739 DOI: 10.1016/j.ejpb.2019.05.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/23/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
Drug repositioning may be defined as a process when new biological effects for known drugs are identified, leading to recommendations for new therapeutic applications. Niclosamide, present in the Model List of Essential Medicines, from the World Health Organization, has been used since the 1960s for tapeworm infection. Several preclinical studies have been shown its impressive anticancer effects, which led to clinical trials for colon and prostate cancer. Despite high expectations, proof of efficacy and safety are still required, which are associated with diverse biopharmaceutical challenges, such as the physicochemical properties of the drug and its oral absorption, and their relationship with clinical outcomes. Nanostructured systems are innovative drug delivery strategies, which may provide interesting pharmaceutical advantages for this candidate. The aim of this review is to discuss challenges involving niclosamide repositioning for cancer diseases, and the opportunities of therapeutic benefits from nanosctrutured system formulations containing this compound.
Collapse
Affiliation(s)
- Eduardo José Barbosa
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Nádia Araci Bou-Chacra
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
Alskär LC, Parrow A, Keemink J, Johansson P, Abrahamsson B, Bergström CAS. Effect of lipids on absorption of carvedilol in dogs: Is coadministration of lipids as efficient as a lipid-based formulation? J Control Release 2019; 304:90-100. [PMID: 31047962 DOI: 10.1016/j.jconrel.2019.04.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/05/2019] [Accepted: 04/26/2019] [Indexed: 11/16/2022]
Abstract
Lipid-based formulations (LBFs) is a formulation strategy for enabling oral delivery of poorly water-soluble drugs. However, current use of this strategy is limited to a few percent of the marketed products. Reasons for that are linked to the complexity of LBFs, chemical instability of pre-dissolved drug and a limited understanding of the influence of LBF intestinal digestion on drug absorption. The aim of this study was to explore intestinal drug solubilization from a long-chain LBF, and evaluate whether coadministration of LBF is as efficient as a lipid-based drug formulation containing the pre-dissolved model drug carvedilol. Thus, solubility studies of this weak base were performed in simulated intestinal fluid (SIF) and aspirated dog intestinal fluid (DIF). DIF was collected from duodenal stomas after dosing of water and two levels (1 g and 2 g) of LBF. Similarly, the in vitro SIF solubility studies were conducted prior to, and after addition of, undigested or digested LBF. The DIF fluid was further characterized for lipid digestion products (free fatty acids) and bile salts. Subsequently, carvedilol was orally administered to dogs in a lipid-based drug formulation and coadministered with LBF, and drug plasma exposure was assessed. In addition to these studies, in vitro drug absorption from the different formulation approaches were evaluated in a lipolysis-permeation device, and the obtained data was used to evaluate the in vitro in vivo correlation. The results showed elevated concentrations of free fatty acids and bile salts in the DIF when 2 g of LBF was administered, compared to only water. As expected, the SIF and DIF solubility data revealed that carvedilol solubilization increased by the presence of lipids and lipid digestion products. Moreover, coadministration of LBF and drug demonstrated equal plasma exposure to the lipid-based drug formulation. Furthermore, evaluation of in vitro absorption resulted in the same rank order for the LBFs as in the in vivo dog study. In conclusion, this study demonstrated increased intestinal solubilization from a small amount of LBF, caused by lipid digestion products and bile secretion. The outcomes also support the use of coadministration of LBF as a potential dosing regimen in cases where it is beneficial to have the drug in the solid form, e.g. due to chemical instability in the lipid vehicle. Finally, the in vitro lipolysis-permeation used herein established IVIVC for carvedilol in the presence of LBFs.
Collapse
Affiliation(s)
- Linda C Alskär
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Center, P.O Box 580, SE-751 23 Uppsala, Sweden
| | - Albin Parrow
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Center, P.O Box 580, SE-751 23 Uppsala, Sweden
| | - Janneke Keemink
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Center, P.O Box 580, SE-751 23 Uppsala, Sweden
| | | | | | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Center, P.O Box 580, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
41
|
Kuentz M. Drug supersaturation during formulation digestion, including real-time analytical approaches. Adv Drug Deliv Rev 2019; 142:50-61. [PMID: 30445096 DOI: 10.1016/j.addr.2018.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 01/23/2023]
Abstract
Self-emulsifying and other lipid-based drug delivery systems have drawn considerable interest from pharmaceutical scientists for managing oral delivery of poorly water-soluble compounds. Following administration, self-emulsifying systems exhibit complex aqueous dispersion and digestion in the gastro-intestinal tract. These processes generally result in drug supersaturation, which leads to enhanced absorption or the high drug concentrations may cause precipitation with erratic and variable oral bioavailability. This review briefly outlines drug supersaturation obtained from self-emulsifying and other lipid-based formulations; recent advancements of in vitro lipolysis testing are also discussed. Further, a main focus is mechanisms by which supersaturation is triggered from gastro-intestinal processes, as well as analytical techniques that are promising from a research and development perspective. Comparatively simple approaches are presented together with more sophisticated process analytics to enable direct examination of kinetic changes. The analytical methods together with their sensor probes are discussed in detail to clarify opportunities as well as technical limitations. Some of the more sophisticated methods, including those based on synchrotron radiation, are primarily research oriented despite interesting experimental findings from an industrial viewpoint. The availability of kinetic data further opens the door to mathematical modeling of supersaturation and precipitation versus permeation, which lays the groundwork for better in vitro to in vivo correlations as well as for physiologically-based modeling of lipid-based systems.
Collapse
|