1
|
Erebor JO, Agboluaje EO, Perkins AM, Krishnakumar M, Ngwuluka N. Targeted Hybrid Nanocarriers as Co-Delivery Systems for Enhanced Cancer Therapy. Adv Pharm Bull 2024; 14:558-573. [PMID: 39494247 PMCID: PMC11530881 DOI: 10.34172/apb.2024.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 11/05/2024] Open
Abstract
Hybrid nanocarriers have realized a growing interest in drug delivery research because of the potential of being able to treat, manage or cure diseases that previously had limited therapy or cure. Cancer is currently considered the second leading cause of death globally. This makes cancer therapy a major focus in terms of the need for efficacious and safe drug formulations that can be used to reduce the rate of morbidity and mortality globally. The major challenge encountered over the years with cancer chemotherapy is the non-selectivity of anticancer drugs, leading to severe adverse effects in patients. Multidrug resistance has also resulted in treatment failure in cancer chemotherapy over the years. Hybrid nanocarriers can be targeted to the site and offer co-delivery of two or more chemotherapeutics, thus leading to synergistic or additive results. This makes hybrid nanocarriers an extremely attractive type of drug delivery system for cancer therapy. Hybrid nanocarrier systems are also attracting attention as possible non-viral gene vectors that could have a higher level of transfection, and be efficacious, with the added advantage of being safer than viral vectors in clinical settings. An extensive review of various aspects of hybrid nanocarriers was discussed in this paper. It is envisaged that in the future, metastatic cancers, multi-drug resistant cancers, and low prognosis cancers like pancreatic cancers, will have a lasting solution via hybrid nanocarrier formulations with targeted co-delivery of therapeutics.
Collapse
Affiliation(s)
| | - Elizabeth Oladoyin Agboluaje
- Department of Pharmaceutical and Biomedical Sciences University of Georgia, 250 W. Green Street Athens, Georgia 30602- 5036 USA
| | - Ava M. Perkins
- Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo 3000 Arlington Ave, Toledo, OH 43614-2595 USA
| | - Megha Krishnakumar
- Catalent Pharma Solutions, 7330 Carroll Road, San Diego, California 92121-2363 USA
| | - Ndidi Ngwuluka
- Department of Pharmaceutics, Faculty of Pharmacy, University of Jos, Pharmaceutical Sciences Gate, Bauchi Rd, 930001, Jos, Plateau State, Nigeria
| |
Collapse
|
2
|
Yang W, Wang L, Fan L, Li W, Zhao Y, Shang L, Jiang M. Photothermal Responsive Microcarriers Encapsulated With Cangrelor and 5-Fu for Colorectal Cancer Treatment. SMALL METHODS 2024; 8:e2301002. [PMID: 38127997 DOI: 10.1002/smtd.202301002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Localized chemotherapy is emerging as a potential strategy for cancer treatment due to its low systemic toxicity. However, the immune evasion of tumor cells and the lack of an intelligent design of the delivery system limit its clinical application. Herein, photothermal responsive microcarriers are designed by microfluidic electrospray for colorectal tumor treatment. The microcarriers loaded with Cangrelor, 5-FU and MXene (G-M@F/C+NIR) show sustained delivery of antiplatelet drug Cangrelor, thus inhibiting the activity of platelets, interactions of platelet-tumor cell, as well as the tumor cells invasion and epithelial-mesenchymal transition (EMT). In addition, the sustained delivery of chemotherapeutics 5-FU and the photothermal effect provided by MXene enable the microcarriers to inhibit tumor cells proliferation and migration. In vivo studies validate that the G-M@F/C+NIR microcarriers significantly inhibites tumor growth, decreased the expression of Ki-67 in tumor cells and vascular endothelial growth factor (VEGF) in the tumor microenvironment, while increased the expression of E-cadherin. It is believe that by means of the proposed photothermal responsive microcarriers, the synergistic strategy of platelet inhibition, chemotherapy, and photothermal therapy can find practical applications in cancer treatment.
Collapse
Affiliation(s)
- Wei Yang
- Clinical Laboratory Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Li Wang
- Clinical Laboratory Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Lu Fan
- Clinical Laboratory Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wenzhao Li
- Clinical Laboratory Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yuanjin Zhao
- Clinical Laboratory Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Luoran Shang
- Zhongshan-Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics the International Co-laboratory of Medical Epigenetics and Metabolism Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Minghua Jiang
- Clinical Laboratory Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
3
|
Guerassimoff L, Ferrere M, Van Herck S, Dehissi S, Nicolas V, De Geest BG, Nicolas J. Thermosensitive polymer prodrug nanoparticles prepared by an all-aqueous nanoprecipitation process and application to combination therapy. J Control Release 2024; 369:376-393. [PMID: 38554772 DOI: 10.1016/j.jconrel.2024.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Despite their great versatility and ease of functionalization, most polymer-based nanocarriers intended for use in drug delivery often face serious limitations that can prevent their clinical translation, such as uncontrolled drug release and off-target toxicity, which mainly originate from the burst release phenomenon. In addition, residual solvents from the formulation process can induce toxicity, alter the physico-chemical and biological properties and can strongly impair further pharmaceutical development. To address these issues, we report polymer prodrug nanoparticles, which are prepared without organic solvents via an all-aqueous formulation process, and provide sustained drug release. This was achieved by the "drug-initiated" synthesis of well-defined copolymer prodrugs exhibiting a lower critical solution temperature (LCST) and based on the anticancer drug gemcitabine (Gem). After screening for different structural parameters, prodrugs based on amphiphilic diblock copolymers were formulated into stable nanoparticles by all-aqueous nanoprecipitation, with rather narrow particle size distribution and average diameters in the 50-80 nm range. They exhibited sustained Gem release in human serum and acetate buffer, rapid cellular uptake and significant cytotoxicity on A549 and Mia PaCa-2 cancer cells. We also demonstrated the versatility of this approach by formulating Gem-based polymer prodrug nanoparticles loaded with doxorubicin (Dox) for combination therapy. The dual-drug nanoparticles exhibited sustained release of Gem in human serum and acidic release of Dox under accelerated pathophysiological conditions. Importantly, they also induced a synergistic effect on triple-negative breast cancer line MDA-MB-231, which is a relevant cell line to this combination.
Collapse
Affiliation(s)
- Léa Guerassimoff
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay 91400, France
| | - Marianne Ferrere
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay 91400, France
| | - Simon Van Herck
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Samy Dehissi
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay 91400, France
| | - Valérie Nicolas
- Institut Paris-Saclay d'Innovation Thérapeutique (IPSIT), UMS IPSIT Université Paris-Saclay US 31 INSERM, UMS 3679 CNRS, Microscopy Facility, Orsay 91400, France
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay 91400, France.
| |
Collapse
|
4
|
Mohammadi M, Ahmed Qadir S, Mahmood Faraj A, Hamid Shareef O, Mahmoodi H, Mahmoudi F, Moradi S. Navigating the future: Microfluidics charting new routes in drug delivery. Int J Pharm 2024:124142. [PMID: 38648941 DOI: 10.1016/j.ijpharm.2024.124142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Microfluidics has emerged as a transformative force in the field of drug delivery, offering innovative avenues to produce a diverse range of nano drug delivery systems. Thanks to its precise manipulation of small fluid volumes and its exceptional command over the physicochemical characteristics of nanoparticles, this technology is notably able to enhance the pharmacokinetics of drugs. It has initiated a revolutionary phase in the domain of drug delivery, presenting a multitude of compelling advantages when it comes to developing nanocarriers tailored for the delivery of poorly soluble medications. These advantages represent a substantial departure from conventional drug delivery methodologies, marking a paradigm shift in pharmaceutical research and development. Furthermore, microfluidic platformsmay be strategically devised to facilitate targeted drug delivery with the objective of enhancing the localized bioavailability of pharmaceutical substances. In this paper, we have comprehensively investigated a range of significant microfluidic techniques used in the production of nanoscale drug delivery systems. This comprehensive review can serve as a valuable reference and offer insightful guidance for the development and optimization of numerous microfluidics-fabricated nanocarriers.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Syamand Ahmed Qadir
- Department of Medical Laboratory Techniques, Halabja Technical Institute, Research Center, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Aryan Mahmood Faraj
- Department of Medical Laboratory Sciences, Halabja Technical College of Applied Sciences, Sulaimani Polytechnic University, Halabja, Iraq
| | - Osama Hamid Shareef
- Department of Medical Laboratory Techniques, Halabja Technical Institute, Research Center, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Hassan Mahmoodi
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mahmoudi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Kovtareva S, Kusepova L, Tazhkenova G, Mashan T, Bazarbaeva K, Kopishev E. Surface Modification of Mesoporous Silica Nanoparticles for Application in Targeted Delivery Systems of Antitumour Drugs. Polymers (Basel) 2024; 16:1105. [PMID: 38675024 PMCID: PMC11054758 DOI: 10.3390/polym16081105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The problem of tumour therapy has attracted the attention of many researchers for many decades. One of the promising strategies for the development of new dosage forms to improve oncology treatment efficacy and minimise side effects is the development of nanoparticle-based targeted transport systems for anticancer drugs. Among inorganic nanoparticles, mesoporous silica deserves special attention due to its outstanding surface properties and drug-loading capability. This review analyses the various factors affecting the cytotoxicity, cellular uptake, and biocompatibility of mesoporous silica nanoparticles (MSNs), constituting a key aspect in the development of safe and effective drug delivery systems. Special attention is paid to technological approaches to chemically modifying MSNs to alter their surface properties. The stimuli that regulate drug release from nanoparticles are also discussed, contributing to the effective control of the delivery process in the body. The findings emphasise the importance of modifying MSNs with different surface functional groups, bio-recognisable molecules, and polymers for their potential use in anticancer drug delivery systems.
Collapse
Affiliation(s)
| | | | | | | | | | - Eldar Kopishev
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (S.K.); (L.K.); (G.T.); (T.M.); (K.B.)
| |
Collapse
|
6
|
Zhang H, Yuan W. Self-healable oxide sodium alginate/carboxymethyl chitosan nanocomposite hydrogel loading Cu 2+-doped MOF for enhanced synergistic and precise cancer therapy. Int J Biol Macromol 2024; 262:129996. [PMID: 38342271 DOI: 10.1016/j.ijbiomac.2024.129996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
The limitations of traditional therapeutic methods such as chemotherapy serious restricted the application in tumor treatment, including poor targeting, toxic side effects and poor precision. It is important to develop non-chemotherapeutic systems to achieve precise and efficient tumor treatment. Therefore, a functional metal-organic framework material (MOF) with porphyrin core and doped with Cu2+ and surface-modified with polydopamine (PDA), namely PCN-224(Cu)@PDA (PCP) was designed and prepared. After loaded into the injectable and self-healable hydrogels by dynamic Schiff base bonding of oxidized sodium alginate (OSA) and carboxymethyl chitosan (CMC), the multifunctional nanocomposite hydrogels were obtained, in which Cu2+ in MOF converts to Cu+ by reacting with glutathione (GSH) which reduces the tumor antioxidant activity to improve the CDT effect. The Cu2+/Cu+ induces Fenton-like reaction in tumor cells to produce a toxic hydroxyl radical (OH). PDA achieves photothermal conversion under NIR light for photothermal therapy (PTT), and porphyrin core as a ligand generates reactive oxygen species (ROS), presenting highly efficient photodynamic therapy (PDT). Injectable self-healing hydrogel as a loading platform can be in situ injected to tumor site to release PCP and endocytosed by tumor cells to achieve precise and synergistic CDT-PDT-PTT therapy.
Collapse
Affiliation(s)
- Hanyan Zhang
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Weizhong Yuan
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China.
| |
Collapse
|
7
|
Zhao H, Li Y, Chen J, Zhang J, Yang Q, Cui J, Shi A, Wu J. Environmental stimulus-responsive mesoporous silica nanoparticles as anticancer drug delivery platforms. Colloids Surf B Biointerfaces 2024; 234:113758. [PMID: 38241892 DOI: 10.1016/j.colsurfb.2024.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Currently, cancer poses a significant health challenge in the medical community. Traditional chemotherapeutic agents are often accompanied by toxic side effects and limited therapeutic efficacy, restricting their application and advancement in cancer treatment. Therefore, there is an urgent need for developing intelligent drug release systems. Mesoporous silica nanoparticles (MSNs) have many advantages, such as a large specific surface area, substantial pore volume and size, adjustable mesoporous material pore size, excellent biocompatibility, and thermodynamic stability, making them ideal carriers for drug delivery and release. Additionally, they have been widely used to develop novel anticancer drug carriers. Recently, MSNs have been employed to design responsive systems that react to the tumor microenvironment and external stimuli for controlled release of anticancer drugs. This includes factors within the intratumor environment, such as pH, temperature, enzymes, and glutathione as well as external tumor stimuli, such as light, magnetic field, and ultrasound, among others. In this review, we discuss the research progress on environmental stimulus-responsive MSNs in anticancer drug delivery systems, including internal and external environment single stimulus-responsive release and combined stimulus-responsive release. We also summarize the current challenges associated with environmental stimulus-responsive MSNs and elucidate future directions, providing a reference for the functionalization modification and practical application of these MSNs.
Collapse
Affiliation(s)
- Huanhuan Zhao
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Yan Li
- Department of Geriatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650034, China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Jiaxin Chen
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Jinjia Zhang
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Qiuqiong Yang
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Ji Cui
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Anhua Shi
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| | - Junzi Wu
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; Department of Geriatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650034, China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| |
Collapse
|
8
|
Shen Y, Gwak H, Han B. Advanced manufacturing of nanoparticle formulations of drugs and biologics using microfluidics. Analyst 2024; 149:614-637. [PMID: 38083968 PMCID: PMC10842755 DOI: 10.1039/d3an01739g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Numerous innovative nanoparticle formulations of drugs and biologics, named nano-formulations, have been developed in the last two decades. However, methods for their scaled-up production are still lagging, as the amount needed for large animal tests and clinical trials is typically orders of magnitude larger. This manufacturing challenge poses a critical barrier to successfully translating various nano-formulations. This review focuses on how microfluidics technology has become a powerful tool to overcome this challenge by synthesizing various nano-formulations with improved particle properties and product purity in large quantities. This microfluidic-based manufacturing is enabled by microfluidic mixing, which is capable of the precise and continuous control of the synthesis of nano-formulations. We further discuss the specific applications of hydrodynamic flow focusing, a staggered herringbone micromixer, a T-junction mixer, a micro-droplet generator, and a glass capillary on various types of nano-formulations of polymeric, lipid, inorganic, and nanocrystals. Various separation and purification microfluidic methods to enhance the product purity are reviewed, including acoustofluidics, hydrodynamics, and dielectrophoresis. We further discuss the challenges of microfluidics being used by broader research and industrial communities. We also provide future outlooks of its enormous potential as a decentralized approach for manufacturing nano-formulations.
Collapse
Affiliation(s)
- Yingnan Shen
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Hogyeong Gwak
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| |
Collapse
|
9
|
Filippov SK, Khusnutdinov R, Murmiliuk A, Inam W, Zakharova LY, Zhang H, Khutoryanskiy VV. Dynamic light scattering and transmission electron microscopy in drug delivery: a roadmap for correct characterization of nanoparticles and interpretation of results. MATERIALS HORIZONS 2023; 10:5354-5370. [PMID: 37814922 DOI: 10.1039/d3mh00717k] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
In this focus article, we provide a scrutinizing analysis of transmission electron microscopy (TEM) and dynamic light scattering (DLS) as the two common methods to study the sizes of nanoparticles with focus on the application in pharmaceutics and drug delivery. Control over the size and shape of nanoparticles is one of the key factors for many biomedical systems. Particle size will substantially affect their permeation through biological membranes. For example, an enhanced permeation and retention effect requires a very narrow range of sizes of nanoparticles (50-200 nm) and even a minor deviation from these values will substantially affect the delivery of drug nanocarriers to the tumour. However, amazingly a great number of research papers in pharmaceutics and drug delivery report a striking difference in nanoparticle size measured by the two most popular experimental techniques (TEM and DLS). In some cases, this difference was reported to be 200-300%, raising the question of which size measurement result is more trustworthy. In this focus article, we primarily focus on the physical aspects that are responsible for the routinely observed mismatch between TEM and DLS results. Some of these factors such as concentration and angle dependencies are commonly underestimated and misinterpreted. We convincingly show that correctly used experimental procedures and a thorough analysis of results generated using both methods can eliminate the DLS and TEM data mismatch completely or will make the results much closer to each other. Also, we provide a clear roadmap for drug delivery and pharmaceutical researchers to conduct reliable DLS measurements.
Collapse
Affiliation(s)
- Sergey K Filippov
- School of Pharmacy, University of Reading, Whiteknights, RG6 6DX Reading, UK.
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Ramil Khusnutdinov
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan, 420126 Kazan, Russian Federation
| | - Anastasiia Murmiliuk
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Prague 2, Czech Republic
| | - Wali Inam
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Lucia Ya Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russian Federation
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | | |
Collapse
|
10
|
Rathnayake K, Patel U, Hunt EC, Singh N. Fabrication of a Dual-Targeted Liposome-Coated Mesoporous Silica Core-Shell Nanoassembly for Targeted Cancer Therapy. ACS OMEGA 2023; 8:34481-34498. [PMID: 37779923 PMCID: PMC10536893 DOI: 10.1021/acsomega.3c02901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
Nanoparticles have been suggested as drug-delivery systems for chemotherapeutic drugs to allow for controlled drug release profiles and selectivity to target cancer cells. In addition, nanoparticles can be used for the in situ generation and amplification of reactive oxygen species (ROS), which have been shown to be a promising strategy for cancer treatment. Thus, a targeted nanoscale drug-delivery platform could be used to synergistically improve cancer treatment by the action of chemotherapeutic drugs and ROS generation. Herein, we propose a promising chemotherapy strategy where the drug-loaded nanoparticles generate high doses of ROS together with the loaded ROS-generating chemotherapeutic drugs, which can damage the mitochondria and activate cell death, potentiating the therapeutic outcome in cancer therapy. In the present study, we have developed a dual-targeted drug-delivery nanoassembly consisting of a mesoporous silica core loaded with the chemotherapeutic, ROS-generating drug, paclitaxel (Px), and coated with a liposome layer for controlled drug release. Two different lung cancer-targeting ligands, folic acid and peptide GE11, were used to target the overexpressed nonsmall lung cancer receptors to create the final nanoassembly (MSN@Px) L-GF. Upon endocytosis by the cancer cells, the liposome layer was degraded by the intracellular lipases, and the drug was rapidly released at a rate of 65% within the first 20 h. In vitro studies confirmed that this nanoassembly was 8-fold more effective in cancer therapy compared to the free drug Px.
Collapse
Affiliation(s)
- Kavini Rathnayake
- Department of Chemistry, The
University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Unnati Patel
- Department of Chemistry, The
University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Emily C. Hunt
- Department of Chemistry, The
University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Nirupama Singh
- Department of Chemistry, The
University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| |
Collapse
|
11
|
Shi G, Li Z, Zhang Z, Yin Q, Li N, Wang S, Qi G, Hao L. Functionalized europium-doped hollow mesoporous silica nanospheres as a cell imaging and drug delivery agents. Biochem Biophys Res Commun 2023; 674:1-9. [PMID: 37392717 DOI: 10.1016/j.bbrc.2023.06.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
In an effort to enhance the antitumor efficacy of breast cancer treatment, the chemotherapeutic agent Paclitaxel (PTX) was encapsulated within hyaluronic acid (HA) modified hollow mesoporous silica (HMSNs). In vitro drug release assays showed that the resulting formulation, Eu-HMSNs-HA-PTX, exhibited enzyme-responsive drug release. In addition, cell cytotoxicity and hemolysis assays demonstrated the favorable biocompatibility of both Eu-HMSNs and Eu-HMSNs-HA. Notably, compared to Eu-HMSNs alone, Eu-HMSNs-HA showed enhanced accumulation within CD44-expressing cancer cells (MDA-MB-231). As anticipated, apoptosis experiments indicated that Eu-HMSNs-HA-PTX displayed significantly greater cytotoxicity toward MDA-MB-231 cells than non-targeted Eu-HMSNs-PTX and free PTX. In conclusion, Eu-HMSNs-HA-PTX demonstrated excellent anticancer effects and holds promise as a potent candidate for the efficient therapy of breast cancer.
Collapse
Affiliation(s)
- Guangyue Shi
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Zhongtao Li
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Zhichen Zhang
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Qiangqiang Yin
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Na Li
- Department of Imaging Medicine and Nuclear Medicine, School of Clinical Medicine, Jiamusi University, Jiamusi, Heilongjiang, 154002, China
| | - Shengchao Wang
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Guiqiang Qi
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Liguo Hao
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China.
| |
Collapse
|
12
|
Voycheva C, Slavkova M, Popova T, Tzankova D, Stefanova D, Tzankova V, Ivanova I, Tzankov S, Spassova I, Kovacheva D, Tzankov B. Thermosensitive Hydrogel-Functionalized Mesoporous Silica Nanoparticles for Parenteral Application of Chemotherapeutics. Gels 2023; 9:769. [PMID: 37754450 PMCID: PMC10530711 DOI: 10.3390/gels9090769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
Hydrogels can offer many opportunities for drug delivery strategies. They can be used on their own, or their benefits can be further exploited in combination with other nanocarriers. Intelligent hydrogels that react to changes in the surrounding environment can be utilized as gatekeepers and provide sustained on-demand drug release. In this study, a hybrid nanosystem for temperature- and pH-sensitive delivery was prepared from MCM-41 nanoparticles grafted with a newly synthesized thermosensitive hydrogel (MCM-41/AA-g-PnVCL). The initial particles were chemically modified by the attachment of carboxyl groups. Later, they were grafted with agar (AA) and vinylcaprolactam (VCL) by free radical polymerization. Doxorubicin was applied as a model hydrophilic chemotherapeutic drug. The successful formulation was confirmed by FT-IR and TGA. Transmission electron microscopy and dynamic light scattering analysis showed small particles with negative zeta potential. Their release behaviour was investigated in vitro in media with different pH and at different temperatures. Under tumour simulating conditions (40 °C and pH 4.0), doxorubicin was almost completely released within 72 h. The biocompatibility of the proposed nanoparticles was demonstrated by in vitro haemolysis assay. These results suggest the possible parenteral application of the newly prepared hydrogel-functionalized mesoporous silica nanoparticles for temperature-sensitive and pH-triggered drug delivery at the tumour site.
Collapse
Affiliation(s)
- Christina Voycheva
- Department Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University—Sofia, 1000 Sofia, Bulgaria; (C.V.); (T.P.); (B.T.)
| | - Marta Slavkova
- Department Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University—Sofia, 1000 Sofia, Bulgaria; (C.V.); (T.P.); (B.T.)
| | - Teodora Popova
- Department Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University—Sofia, 1000 Sofia, Bulgaria; (C.V.); (T.P.); (B.T.)
| | - Diana Tzankova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University—Sofia, 1000 Sofia, Bulgaria;
| | - Denitsa Stefanova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University—Sofia, 1000 Sofia, Bulgaria; (D.S.); (V.T.)
| | - Virginia Tzankova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University—Sofia, 1000 Sofia, Bulgaria; (D.S.); (V.T.)
| | - Ivelina Ivanova
- Faculty of Pharmacy, Medical University—Pleven, 5800 Pleven, Bulgaria; (I.I.); (S.T.)
| | - Stanislav Tzankov
- Faculty of Pharmacy, Medical University—Pleven, 5800 Pleven, Bulgaria; (I.I.); (S.T.)
| | - Ivanka Spassova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (D.K.)
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (D.K.)
| | - Borislav Tzankov
- Department Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University—Sofia, 1000 Sofia, Bulgaria; (C.V.); (T.P.); (B.T.)
| |
Collapse
|
13
|
Zhang H, Yang J, Sun R, Han S, Yang Z, Teng L. Microfluidics for nano-drug delivery systems: From fundamentals to industrialization. Acta Pharm Sin B 2023; 13:3277-3299. [PMID: 37655333 PMCID: PMC10466004 DOI: 10.1016/j.apsb.2023.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 12/15/2022] [Indexed: 01/27/2023] Open
Abstract
In recent years, owing to the miniaturization of the fluidic environment, microfluidic technology offers unique opportunities for the implementation of nano drug delivery systems (NDDSs) production processes. Compared with traditional methods, microfluidics improves the controllability and uniformity of NDDSs. The fast mixing and laminar flow properties achieved in the microchannels can tune the physicochemical properties of NDDSs, including particle size, distribution and morphology, resulting in narrow particle size distribution and high drug-loading capacity. The success of lipid nanoparticles encapsulated mRNA vaccines against coronavirus disease 2019 by microfluidics also confirmed its feasibility for scaling up the preparation of NDDSs via parallelization or numbering-up. In this review, we provide a comprehensive summary of microfluidics-based NDDSs, including the fundamentals of microfluidics, microfluidic synthesis of NDDSs, and their industrialization. The challenges of microfluidics-based NDDSs in the current status and the prospects for future development are also discussed. We believe that this review will provide good guidance for microfluidics-based NDDSs.
Collapse
Affiliation(s)
- Huan Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jie Yang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Rongze Sun
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Songren Han
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
14
|
Lisina S, Inam W, Huhtala M, Howaili F, Zhang H, Rosenholm JM. Nano Differential Scanning Fluorimetry as a Rapid Stability Assessment Tool in the Nanoformulation of Proteins. Pharmaceutics 2023; 15:pharmaceutics15051473. [PMID: 37242715 DOI: 10.3390/pharmaceutics15051473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/20/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The development and production of innovative protein-based therapeutics is a complex and challenging avenue. External conditions such as buffers, solvents, pH, salts, polymers, surfactants, and nanoparticles may affect the stability and integrity of proteins during formulation. In this study, poly (ethylene imine) (PEI) functionalized mesoporous silica nanoparticles (MSNs) were used as a carrier for the model protein bovine serum albumin (BSA). To protect the protein inside MSNs after loading, polymeric encapsulation with poly (sodium 4-styrenesulfonate) (NaPSS) was used to seal the pores. Nano differential scanning fluorimetry (NanoDSF) was used to assess protein thermal stability during the formulation process. The MSN-PEI carrier matrix or conditions used did not destabilize the protein during loading, but the coating polymer NaPSS was incompatible with the NanoDSF technique due to autofluorescence. Thus, another pH-responsive polymer, spermine-modified acetylated dextran (SpAcDEX), was applied as a second coating after NaPSS. It possessed low autofluorescence and was successfully evaluated with the NanoDSF method. Circular dichroism (CD) spectroscopy was used to determine protein integrity in the case of interfering polymers such as NaPSS. Despite this limitation, NanoDSF was found to be a feasible and rapid tool to monitor protein stability during all steps needed to create a viable nanocarrier system for protein delivery.
Collapse
Affiliation(s)
- Sofia Lisina
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Wali Inam
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Mikko Huhtala
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, 20500 Turku, Finland
| | - Fadak Howaili
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| |
Collapse
|
15
|
Jiang Q, Chen M, Yang X, Zhuge D, Yin Q, Tian D, Li L, Zhang X, Xu W, Liu S, Li F, Weng C, Lin Y, Wang H, Rao D, Chen Y, Cai Q, Yan L, Wang L, Wang F, Lu X, Wen B, Zhao Y, Zhang F, Xia W, Zhu H, Chen Y. Doxorubicin Detoxification in Healthy Organs Improves Tolerability to High Drug Doses for Enhanced Antitumor Therapy. ACS NANO 2023; 17:7705-7720. [PMID: 37022161 DOI: 10.1021/acsnano.3c00195] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
With its well-documented toxicity, the use of doxorubicin (Dox) for cancer treatment requires trade-offs between safety and effectiveness. This limited use of Dox also hinders its functionality as an immunogenic cell death inducer, thus impeding its usefulness for immunotherapeutic applications. Here, we develop a biomimetic pseudonucleus nanoparticle (BPN-KP) by enclosing GC-rich DNA within erythrocyte membrane modified with a peptide to selectively target healthy tissue. By localizing treatment to organs susceptible to Dox-mediated toxicity, BPN-KP acts as a decoy that prevents the drug from intercalating into the nuclei of healthy cells. This results in significantly increased tolerance to Dox, thereby enabling the delivery of high drug doses into tumor tissue without detectable toxicity. By lessening the leukodepletive effects normally associated with chemotherapy, dramatic immune activation within the tumor microenvironment was also observed after treatment. In three different murine tumor models, high-dose Dox with BPN-KP pretreatment resulted in significantly prolonged survival, particularly when combined with immune checkpoint blockade therapy. Overall, this study demonstrates how targeted detoxification using biomimetic nanotechnology can help to unlock the full potential of traditional chemotherapeutics.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
| | - Mengchun Chen
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315302, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou 325035, China
| | - Xuewei Yang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315302, China
| | - Deli Zhuge
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315302, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou 325035, China
| | - Qingqing Yin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Dongyan Tian
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Li Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xufei Zhang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315302, China
- Wenzhou Medical University, Wenzhou 325035, China
| | - Wenbin Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shuangshuang Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Fan Li
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Cuiye Weng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yijing Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Haonan Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou 325035, China
| | - Dapang Rao
- Wenzhou Medical University, Wenzhou 325035, China
| | - Yiming Chen
- Wenzhou Medical University, Wenzhou 325035, China
| | - Qiangjun Cai
- Wenzhou Medical University, Wenzhou 325035, China
| | - Linzhi Yan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Ledan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Fang Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaosheng Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Bin Wen
- Wenzhou Medical University, Wenzhou 325035, China
| | - Yingzheng Zhao
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315302, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou 325035, China
| | - Feng Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, The Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Weiliang Xia
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Haiyan Zhu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Yijie Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315302, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
16
|
A multiple controlled-release hydrophilicity minocycline hydrochloride delivery system for the efficient treatment of periodontitis. Int J Pharm 2023; 636:122802. [PMID: 36894039 DOI: 10.1016/j.ijpharm.2023.122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/04/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
The complexity of periodontitis, including the complex formation mechanisms and the complex periodontium physiological environment, as well as the complex association with multiple complications, often results in poor therapy effects. Herein, we aimed to design a nanosystem with a controlled release of minocycline hydrochloride (MH) and good retention to effectively treat periodontitis by inhibiting inflammation and repairing the alveolar bone. Firstly, insoluble ion-pairing (IIP) complexes were constructed to improve the encapsulation efficiency of hydrophilic MH in PLGA nanoparticles. Then, a nanogenerator was constructed and combined with a double emulsion method to encapsulate the complexes into PLGA nanoparticles (MH-NPs). The average particle size of MH-NPs was about 100 nm as observed by AFM and TEM, and the drug loading and encapsulation efficiency were 9.59% and 95.58%, respectively. Finally, a multifunctional system (MH-NPs-in-gels) was prepared by dispersing MH-NPs into thermosensitive gels, which could continue to release drug for 21 days in vitro. And the release mechanism showed that this controlled release behavior for MH was influenced by the insoluble ion-pairing complex, PLGA nanoparticles, and gels. In addition, the periodontitis rat model was established to investigate the pharmacodynamic effects. After 4 weeks of treatment, changes in the alveolar bone were assessed by Micro-CT (BV/TV: 70.88%; BMD: 0.97 g/cm3; TB.Th: 0.14 mm; Tb.N: 6.39 mm-1; Tb.Sp: 0.07 mm). The mechanism of MH-NPs-in-gels in vivo was clarified by the analysis of pharmacodynamic results, which showed that insoluble ion-pairing complexes with the aid of PLGA nanoparticles and gels achieved significant anti-inflammatory effects and bone repair capabilities. In conclusion, the multiple controlled-release hydrophilicity MH delivery system would have good prospects for the effective treatment of periodontitis.
Collapse
|
17
|
Fabozzi A, Della Sala F, di Gennaro M, Barretta M, Longobardo G, Solimando N, Pagliuca M, Borzacchiello A. Design of functional nanoparticles by microfluidic platforms as advanced drug delivery systems for cancer therapy. LAB ON A CHIP 2023; 23:1389-1409. [PMID: 36647782 DOI: 10.1039/d2lc00933a] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanoparticle systems are functional carriers that can be used in the cancer therapy field for the delivery of a variety of hydrophobic and/or hydrophilic drugs. Recently, the advent of microfluidic platforms represents an advanced approach to the development of new nanoparticle-based drug delivery systems. Particularly, microfluidics can simplify the design of new nanoparticle-based systems with tunable physicochemical properties such as size, size distribution and morphology, ensuring high batch-to-batch reproducibility and consequently, an enhanced therapeutic effect in vitro and in vivo. In this perspective, we present accurate state-of-the-art microfluidic platforms focusing on the fabrication of polymer-based, lipid-based, lipid/polymer-based, inorganic-based and metal-based nanoparticles for biomedical applications.
Collapse
Affiliation(s)
- Antonio Fabozzi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
- ALTERGON ITALIA S.r.l., Zona Industriale ASI - 83040 Morra De Sanctis (AV), Italy
| | - Francesca Della Sala
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
| | - Mario di Gennaro
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| | - Marco Barretta
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
| | - Gennaro Longobardo
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
- Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, P. le Tecchio 80, 80125 Napoli, Italy
| | - Nicola Solimando
- ALTERGON ITALIA S.r.l., Zona Industriale ASI - 83040 Morra De Sanctis (AV), Italy
| | - Maurizio Pagliuca
- ALTERGON ITALIA S.r.l., Zona Industriale ASI - 83040 Morra De Sanctis (AV), Italy
| | - Assunta Borzacchiello
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
| |
Collapse
|
18
|
Mohammadi E, Jamal Tabatabaei Rezaei S, Nedaei K, Ramazani A, Ramazani A. PEGylated Redox/pH Dual‐Responsive Dendritic Prodrugs Based on Boltorn® H40 for Tumor Triggered Paclitaxel Delivery. ChemistrySelect 2023. [DOI: 10.1002/slct.202204246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Elham Mohammadi
- Laboratory of Novel Drug Delivery Systems Department of Chemistry Faculty of Science University of Zanjan P.O. Box 45195-313 4537138791 Zanjan Iran
| | - Seyed Jamal Tabatabaei Rezaei
- Laboratory of Novel Drug Delivery Systems Department of Chemistry Faculty of Science University of Zanjan P.O. Box 45195-313 4537138791 Zanjan Iran
| | - Keivan Nedaei
- Department of Medical Biotechnology School of Medicine Zanjan University of Medical Sciences 4537138791 Zanjan Iran
| | - Ali Ramazani
- Department of Pharmaceutical Biomaterials School of Pharmacy Zanjan University of Medical Sciences 4537138791 Zanjan Iran
| | - Ali Ramazani
- Department of Chemistry Faculty of Science University of Zanjan P.O. Box 45195-313 4537138791 Zanjan Iran
| |
Collapse
|
19
|
AbouAitah K, Soliman AAF, Swiderska-Sroda A, Nassrallah A, Smalc-Koziorowska J, Gierlotka S, Lojkowski W. Co-Delivery System of Curcumin and Colchicine Using Functionalized Mesoporous Silica Nanoparticles Promotes Anticancer and Apoptosis Effects. Pharmaceutics 2022; 14:pharmaceutics14122770. [PMID: 36559264 PMCID: PMC9785757 DOI: 10.3390/pharmaceutics14122770] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose: Many natural agents have a high anticancer potential, and their combination may be advantageous for improved anticancer effects. Such agents, however, often are not water soluble and do not efficiently target cancer cells, and the kinetics of their action is poorly controlled. One way to overcome these barriers is to combine natural agents with nanoparticles. Our aim in the current study was to fabricate an anticancer nanoformulation for co-delivery of two natural agents, curcumin (CR) and colchicine (CL), with a core-shell structure. Using cancer cell lines, we compared the anticancer efficacy between the combination and a nanoformulation with CL alone. Methods: For the single-drug nanoformulation, we used phosphonate groups to functionalize mesoporous silica nanoparticles (MSNs) and loaded the MSNs with CL. Additional loading of this nanoformulation with CR achieved the co-delivery format. To create the structure with a core shell, we selected a chitosan−cellulose mixture conjugated with targeting ligands of folic acid for the coating. For evaluating anticancer and apoptosis effects, we assessed changes in important genes and proteins in apoptosis (p53, caspase-3, Bax, Bcl-2) in several cell lines (MCF-7, breast adenocarcinoma; HCT-116, colon carcinoma; HOS, human osteosarcoma; and A-549, non−small cell lung cancer). Results: Nanoformulations were successfully synthesized and contained 10.9 wt.% for the CL single-delivery version and 18.1 wt.% for the CL+CR co-delivery nanoformulation. Anticancer effects depended on treatment, cell line, and concentration. Co-delivery nanoformulations exerted anticancer effects that were significantly superior to those of single delivery or free CL or CR. Anticancer effects by cell line were in the order of HCT-116 > A549 > HOS > MCF-7. The lowest IC50 value was obtained for the nanoformulation consisting of CL and CR coated with a polymeric shell conjugated with FA (equivalent to 4.1 ± 0.05 µg/mL). With dual delivery compared with the free agents, we detected strongly increased p53, caspase-3, and Bax expression, but inhibition of Bcl-2, suggesting promotion of apoptosis. Conclusions: Our findings, although preliminary, indicate that the proposed dual delivery nanoformulation consisting of nanocore: MSNs loaded with CL and CR and coated with a shell of chitosan−cellulose conjugated folic acid exerted strong anticancer and apoptotic effects with potent antitumor activity against HCT-116 colon cells. The effect bested CL alone. Evaluating and confirming the efficacy of co-delivery nanoformulations will require in vivo studies.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth Street, Dokki, Giza 12622, Egypt
- Correspondence: (K.A.); (W.L.); Tel.: +20-233371635 (K.A.); +48-22-888-0429 or +48-22-632-4302 (W.L.); Fax: +20-233371010 (K.A.); +48-22-632-4218 (W.L.)
| | - Ahmed A. F. Soliman
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St, Dokki, Giza 12622, Egypt
| | - Anna Swiderska-Sroda
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Amr Nassrallah
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Julita Smalc-Koziorowska
- Laboratory of Semiconductor Characterization, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Stanislaw Gierlotka
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Witold Lojkowski
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
- Correspondence: (K.A.); (W.L.); Tel.: +20-233371635 (K.A.); +48-22-888-0429 or +48-22-632-4302 (W.L.); Fax: +20-233371010 (K.A.); +48-22-632-4218 (W.L.)
| |
Collapse
|
20
|
Zhou W, Ma X, Wang J, Xu X, Koivisto O, Feng J, Viitala T, Zhang H. Co-delivery CPT and PTX prodrug with a photo/thermo-responsive nanoplatform for triple-negative breast cancer therapy. SMART MEDICINE 2022; 1:e20220036. [PMID: 39188747 PMCID: PMC11235718 DOI: 10.1002/smmd.20220036] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 08/28/2024]
Abstract
Triple-negative breast cancer (TNBC) is still the most aggressive cancer in women. Combination chemotherapy holds great potential for cancer therapy; however, the off-target and side effects of free chemotherapy administration remain a major challenge. In this study, we developed a photo/thermo-responsive nanoplatform that can be used for TNBC treatment via photothermic therapy in combination with multidrug therapy. By conjugating the chemotherapy drug PTX prodrug on the surface of mesoporous silica-coated gold nanorod nanoparticles and then loading another chemotherapy drug, CPT, the Au@MSN-PTX@CPT nanoparticles exhibited great photothermal response, redox response drug release and cancer cell inhibition abilities. Otherwise, we further coated the Au@MSN-PTX@CPT nanoparticle with a temperature-sensitive polymer poly(N-isopropylacrylamide-co-methacrylic acid) (p(NIPAM-co-MAAc)), and the polymer-coated Au@MSN-PTX@TPT@polymer nanoparticles showed perfect near-infrared (NIR) light controlled drug release. Finally, the Au@MSN-PTX@CPT@polymer nanoparticles were injected into the 4T1 breast cancer mouse model. The Au@MSN-PTX@CPT@polymer nanoparticles preferably accumulated at the tumor site and had reduced chemotherapy injuries and great antitumor activity when combined with 650 nm laser treatment. In summary, our developed Au@MSN-PTX@CPT@polymer nanoparticles served as a good method for controlled chemodrug delivery and provided a good choice for TNBC combination therapy.
Collapse
Affiliation(s)
- Wenhui Zhou
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
- Southern Medical University Affiliated Fengxian HospitalShanghaiChina
| | - Xiaodong Ma
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Jie Wang
- Southern Medical University Affiliated Fengxian HospitalShanghaiChina
| | - Xiaoyu Xu
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Oliver Koivisto
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Jing Feng
- Southern Medical University Affiliated Fengxian HospitalShanghaiChina
- Longgang District People's Hospital of ShenzhenShenzhenChina
| | - Tapani Viitala
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| |
Collapse
|
21
|
Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS NANO 2022; 16:17497-17551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite their clinical success in drug delivery applications, the potential of theranostic nanomedicines is hampered by mechanistic uncertainty and a lack of science-informed regulatory guidance. Both the therapeutic efficacy and the toxicity of nanoformulations are tightly controlled by the complex interplay of the nanoparticle's physicochemical properties and the individual patient/tumor biology; however, it can be difficult to correlate such information with observed outcomes. Additionally, as nanomedicine research attempts to gradually move away from large-scale animal testing, the need for computer-assisted solutions for evaluation will increase. Such models will depend on a clear understanding of structure-activity relationships. This review provides a comprehensive overview of the field of cancer nanomedicine and provides a knowledge framework and foundational interaction maps that can facilitate future research, assessments, and regulation. By forming three complementary maps profiling nanobio interactions and pathways at different levels of biological complexity, a clear picture of a nanoparticle's journey through the body and the therapeutic and adverse consequences of each potential interaction are presented.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
22
|
Wang QY, Yali-Xiang, Hu QH, Huang SH, Lin J, Zhou QH. Surface charge switchable nano-micelle for pH/redox-triggered and endosomal escape mediated co-delivery of doxorubicin and paclitaxel in treatment of lung adenocarcinoma. Colloids Surf B Biointerfaces 2022; 216:112588. [PMID: 35623260 DOI: 10.1016/j.colsurfb.2022.112588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/13/2022]
Abstract
Recently, the stimulus-sensitive drug co-delivery system has gained increasing attentions in the clinic and exhibits improved efficiency rather than the mono-chemotherapy in anti-tumor therapy. Herein, the smart charge switchable nano-micelles (NMs) were fabricated for the endosomal escape mediated co-delivery of doxorubicin (DOX) and paclitaxel (PTX) in treatment of lung adenocarcinoma. The disulfide bonds were facilitated as the linker of the polymer backbone to achieve the redox-sensitive degradation by high intracellular GSH, and acid-liable DMMA was grafted onto DOX molecules for pH-triggered drug release under acidic tumoral microenvironment. Folic acid (FA) was utilized as targeting molecule for facilitating entry of the as prepared NMs into cancer cells. Remarkably, the as fabricated NMs exhibited surface charge-switch from negative to positive during transmitting from physiological pH to the tumor extracellular pH, which can improve the cellular internalization towards cancer cell. Subsequently, the "proton-sponge" effect mediated endosome escape of the NMs was facilitated in the acidic endo/lysosome environment. By the cell assay, the NMs possessed good biocompatibility, excellent cellular uptake, and improved inhibition rate against cancer cell. Moreover, the co-delivery of DOX/PTX exhibited synergistic and enhanced solid tumor inhibition efficiency comparing to mono-chemotherapy in A-549 tumor bearing mice model. Based on above experimental results, the as prepared drug co-delivery system showed promising biosafety and potentials for efficient lung adenocarcinoma treatment in clinic.
Collapse
Affiliation(s)
- Qiu-Yue Wang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - Yali-Xiang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - Qiu-Hui Hu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - Shuang-Hui Huang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - Juan Lin
- School of Biomedical Sciences and Technology, Chengdu Medical College, Xindu Road No.783, Chengdu, Sichuan 610500, China.
| | - Qing-Han Zhou
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
23
|
Guanidine–Curcumin Complex-Loaded Amine-Functionalised Hollow Mesoporous Silica Nanoparticles for Breast Cancer Therapy. Cancers (Basel) 2022; 14:cancers14143490. [PMID: 35884549 PMCID: PMC9323383 DOI: 10.3390/cancers14143490] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
The current study focuses on developing a tumour-targeted functionalised nanocarrier that wraps hollow mesoporous silica nanoparticles. The guanidine carbonate and curcumin are immobilised on the surface of 3-aminopropyl-triethoxy silane (APTES)-decorated hollow mesoporous silica nanoparticles (HMSNP), as confirmed through XPS and NMR analysis. XPS analysis demonstrates that the shape of the hysteresis loops is modified and that pore volume and pore diameter are consequently decreased compared to control. Guanidine (85%) and guanidine–curcumin complex (90%) were successfully encapsulated in HMSNAP and showed a 90% effective and sustained release at pH 7.4 for up to 72 h. Acridine orange/ethidium bromide dual staining determined that GuC-HMNSAP induced more late apoptosis and necrosis at 48 and 72 h compared with Gu-HMNSAP-treated cells. Molecular investigation of guanidine-mediated apoptosis was analysed using western blotting. It was found that cleaved caspases, c-PARP, and GSK-3β (Ser9) had increased activity in MCF-7 cells. GuC-HMSNAP increased the activity of phosphorylation of oncogenic proteins such as Akt (Ser473), c-Raf (Ser249), PDK1 (Ser241), PTEN (Ser380), and GSK-3β (Ser9), thus inducing cell death in MCF-7 cells. Altogether, our findings confirm that GuC-HMNSAP induces cell death by precisely associating with tumour-suppressing proteins, which may lead to new therapeutic approaches for breast cancer therapy.
Collapse
|
24
|
Mohamed F, Oo MK, Chatterjee B, Alallam B. Biocompatible Supramolecular Mesoporous Silica Nanoparticles as the Next-Generation Drug Delivery System. Front Pharmacol 2022; 13:886981. [PMID: 35837281 PMCID: PMC9273823 DOI: 10.3389/fphar.2022.886981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Supramolecular mesoporous silica nanoparticles (MSNs) offer distinct properties as opposed to micron-sized silica particles in terms of their crystal structure, morphology–porosity, toxicity, biological effects, and others. MSN biocompatibility has touched the pharmaceutical realm to exploit its robust synthesis pathway for delivery of various therapeutic molecules including macromolecules and small-molecule drugs. This article provides a brief review of MSN history followed by special emphasis on the influencing factors affecting morphology–porosity characteristics. Its applications as the next-generation drug delivery system (NGDDS) particularly in a controlled release dosage form via an oral drug delivery system are also presented and shall be highlighted as oral delivery is the most convenient route of drug administration with the economical cost of development through to scale-up for clinical trials and market launch.
Collapse
Affiliation(s)
- Farahidah Mohamed
- Pharmaceutical Technology Department, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
- *Correspondence: Farahidah Mohamed,
| | - May K. Oo
- Pharmaceutical Technology Department, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Bappaditya Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Batoul Alallam
- Cluster of Integrative Medicine, Advanced Medical and Dental Institute, University of Science Malaysia, Penang, Malaysia
| |
Collapse
|
25
|
Ren G, Duan D, Wang G, Wang R, Li Y, Zuo H, Zhang Q, Zhang G, Zhao Y, Wang R, Zhang S. Construction of reduction-sensitive heterodimer prodrugs of doxorubicin and dihydroartemisinin self-assembled nanoparticles with antitumor activity. Colloids Surf B Biointerfaces 2022; 217:112614. [PMID: 35700564 DOI: 10.1016/j.colsurfb.2022.112614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 11/20/2022]
Abstract
Doxorubicin (DOX) is used as a first-line chemotherapeutic drug, whereas dihydroartemisinin (DHA) also shows a certain degree of antitumor activity. Disulfide bonds (-SS-) in prodrug molecules can be degraded in highly reducing environments. Thus, heterodimer prodrugs of DOX and DHA linked by a disulfide bond was designed and subsequently prepared as reduction-responsive self-assembled nanoparticles (DOX-SS-DHA NPs). In an in vitro release study, DOX-SS-DHA NPs exhibited reduction-responsive activity. Upon cellular evaluation, DOX-SS-DHA NPs were found to have better selectivity toward tumor cells and less cytotoxicity to normal cells. Compared to free DiR, DOX-SS-DHA NPs showed improved accumulation at the tumor site and even had a longer clearance half-life. More importantly, DOX-SS-DHA NPs possessed a much higher tumor inhibition efficacy than DOX-sol and MIX-sol in 4T1 tumor-bearing mice. Our results suggested the superior antitumor efficacy of DOX-SS-DHA NPs with less cytotoxicity.
Collapse
Affiliation(s)
- Guolian Ren
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Danyu Duan
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Geng Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rongrong Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yujie Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hengtong Zuo
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qichao Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guoshun Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongdan Zhao
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruili Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Shuqiu Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
26
|
Yang K, Wang X, Huang R, Wang H, Lan P, Zhao Y. Prebiotics and Postbiotics Synergistic Delivery Microcapsules from Microfluidics for Treating Colitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104089. [PMID: 35403829 PMCID: PMC9165482 DOI: 10.1002/advs.202104089] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/07/2022] [Indexed: 05/08/2023]
Abstract
Manipulation of gut microbiota by bacterial metabolites has shown protective effects against colitis; while the efficacy is strictly limited by the poor oral delivery efficiency and single drug usage. Here, a novel prebiotics and postbiotics synergistic delivery microcapsule composed of indole-3-propionic acid (IPA) postbiotic and three prebiotics including alginate sodium, resistant starch (RS), and chitosan via microfluidic electrospray for preventing and treating colitis are proposed. It is found that oral administration of IPA microcapsules (IPA@MC) to mice can exert significant protective effects to colitis, suggesting the therapeutic synergy between prebiotics and postbiotics. Furthermore, the mechanism of the IPA@MC is revealed in modulating the gut microbiota, that is by significantly increasing the overall richness and abundance of short-chain fatty acids (SCFA) producing bacteria such as Faecalibacterium and Roseburia. These results indicate that the prebiotics and postbiotics synergistic delivery microcapsules are ideal candidates for treating colitis.
Collapse
Affiliation(s)
- Keli Yang
- Department of Colorectal SurgeryGuangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Biomedical Material Conversion and Evaluation Engineering Technology Research Center of Guangdong ProvinceInstitute of Biomedical Innovation and Laboratory of Regenerative Medicine and BiomaterialsThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
| | - Xiaocheng Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001China
| | - Rongkang Huang
- Department of Colorectal SurgeryGuangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Biomedical Material Conversion and Evaluation Engineering Technology Research Center of Guangdong ProvinceInstitute of Biomedical Innovation and Laboratory of Regenerative Medicine and BiomaterialsThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
| | - Hui Wang
- Department of Colorectal SurgeryGuangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Biomedical Material Conversion and Evaluation Engineering Technology Research Center of Guangdong ProvinceInstitute of Biomedical Innovation and Laboratory of Regenerative Medicine and BiomaterialsThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
| | - Ping Lan
- Department of Colorectal SurgeryGuangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Biomedical Material Conversion and Evaluation Engineering Technology Research Center of Guangdong ProvinceInstitute of Biomedical Innovation and Laboratory of Regenerative Medicine and BiomaterialsThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001China
| |
Collapse
|
27
|
Ran M, Gounani Z, Yan J, Rosenholm JM, Zhang H. Ca
2+
enhanced photosensitizer/DNase I nanocomposite mediated bacterial eradication through biofilm disruption and photothermal therapy. NANO SELECT 2022. [DOI: 10.1002/nano.202200026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Meixin Ran
- Pharmaceutical Sciences Laboratory Åbo Akademi University Turku 20520 Finland
- Turku Bioscience Centre University of Turku and Åbo Akademi University Turku 20520 Finland
| | - Zahra Gounani
- Physics Faculty of Science and Engineering Åbo Akademi Turku 20500 Finland
| | - Jiaqi Yan
- Pharmaceutical Sciences Laboratory Åbo Akademi University Turku 20520 Finland
- Turku Bioscience Centre University of Turku and Åbo Akademi University Turku 20520 Finland
| | | | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory Åbo Akademi University Turku 20520 Finland
- Turku Bioscience Centre University of Turku and Åbo Akademi University Turku 20520 Finland
| |
Collapse
|
28
|
Recent Development of Drug Delivery Systems through Microfluidics: From Synthesis to Evaluation. Pharmaceutics 2022; 14:pharmaceutics14020434. [PMID: 35214166 PMCID: PMC8880124 DOI: 10.3390/pharmaceutics14020434] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 01/04/2023] Open
Abstract
Conventional drug administration usually faces the problems of degradation and rapid excretion when crossing many biological barriers, leading to only a small amount of drugs arriving at pathological sites. Therapeutic drugs delivered by drug delivery systems to the target sites in a controlled manner greatly enhance drug efficacy, bioavailability, and pharmacokinetics with minimal side effects. Due to the distinct advantages of microfluidic techniques, microfluidic setups provide a powerful tool for controlled synthesis of drug delivery systems, precisely controlled drug release, and real-time observation of drug delivery to the desired location at the desired rate. In this review, we present an overview of recent advances in the preparation of nano drug delivery systems and carrier-free drug delivery microfluidic systems, as well as the construction of in vitro models on-a-chip for drug efficiency evaluation of drug delivery systems. We firstly introduce the synthesis of nano drug delivery systems, including liposomes, polymers, and inorganic compounds, followed by detailed descriptions of the carrier-free drug delivery system, including micro-reservoir and microneedle drug delivery systems. Finally, we discuss in vitro models developed on microfluidic devices for the evaluation of drug delivery systems, such as the blood–brain barrier model, vascular model, small intestine model, and so on. The opportunities and challenges of the applications of microfluidic platforms in drug delivery systems, as well as their clinical applications, are also discussed.
Collapse
|
29
|
Yan J, Zou H, Zhou W, Yuan X, Li Z, Ma X, Liu C, Wang Y, Rosenholm JM, Cui W, Qu X, Zhang H. Self-assembly of DNA Nanogels with Endogenous MicroRNA Toehold Self-regulating Switches for Targeted Gene Regulation Therapy. Biomater Sci 2022; 10:4119-4125. [DOI: 10.1039/d2bm00640e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a smart nanohydrogel with endogenous microRNA-21 toehold is developed to encapsulate gemcitabine-loaded mesoporous silica nanoparticles for targeted pancreatic cancer therapy. This toehold mediated strand displacement method can simultaneously achieve...
Collapse
|
30
|
Filippov SK, Khusnutdinov RR, Inham W, Liu C, Nikitin DO, Semina II, Garvey CJ, Nasibullin SF, Khutoryanskiy VV, Zhang H, Moustafine RI. Hybrid Nanoparticles for Haloperidol Encapsulation: Quid Est Optimum? Polymers (Basel) 2021; 13:4189. [PMID: 34883693 PMCID: PMC8659838 DOI: 10.3390/polym13234189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
The choice of drug delivery carrier is of paramount importance for the fate of a drug in a human body. In this study, we have prepared the hybrid nanoparticles composed of FDA-approved Eudragit L100-55 copolymer and polymeric surfactant Brij98 to load haloperidol-an antipsychotic hydrophobic drug used to treat schizophrenia and many other disorders. This platform shows good drug-loading efficiency and stability in comparison to the widely applied platforms of mesoporous silica (MSN) and a metal-organic framework (MOF). ZIF8, a biocompatible MOF, failed to encapsulate haloperidol, whereas MSN only showed limited encapsulation ability. Isothermal titration calorimetry showed that haloperidol has low binding with the surface of ZIF8 and MSN in comparison to Eudragit L100-55/Brij98, thus elucidating the striking difference in haloperidol loading. With further optimization, the haloperidol loading efficiency could reach up to 40% in the hybrid Eudragit L100-55/Brij98 nanoparticles with high stability over several months. Differential scanning calorimetry studies indicate that the encapsulated haloperidol stays in an amorphous state inside the Eudragit L100-55/Brij98 nanoparticles. Using a catalepsy and open field animal tests, we proved the prolongation of haloperidol release in vivo, resulting in later onset of action compared to the free drug.
Collapse
Affiliation(s)
- Sergey K. Filippov
- Pharmaceutical Sciences Laboratory and Turku Bioscience Center, Åbo Akademi University, 20520 Turku, Finland; (W.I.); (C.L.); (H.Z.)
- Turku Bioscience Center, University of Turku, 20520 Turku, Finland
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK;
| | - Ramil R. Khusnutdinov
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan, 420126 Kazan, Russia; (R.R.K.); (S.F.N.)
| | - Wali Inham
- Pharmaceutical Sciences Laboratory and Turku Bioscience Center, Åbo Akademi University, 20520 Turku, Finland; (W.I.); (C.L.); (H.Z.)
- Turku Bioscience Center, University of Turku, 20520 Turku, Finland
| | - Chang Liu
- Pharmaceutical Sciences Laboratory and Turku Bioscience Center, Åbo Akademi University, 20520 Turku, Finland; (W.I.); (C.L.); (H.Z.)
- Turku Bioscience Center, University of Turku, 20520 Turku, Finland
| | - Dmitry O. Nikitin
- Department of Pharmacology, Kazan State Medical University, 49 Butlerov str., 420012 Kazan, Russia; (D.O.N.); (I.I.S.)
| | - Irina I. Semina
- Department of Pharmacology, Kazan State Medical University, 49 Butlerov str., 420012 Kazan, Russia; (D.O.N.); (I.I.S.)
| | - Christopher J. Garvey
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, 85748 Garching, Germany;
| | - Shamil F. Nasibullin
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan, 420126 Kazan, Russia; (R.R.K.); (S.F.N.)
| | | | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience Center, Åbo Akademi University, 20520 Turku, Finland; (W.I.); (C.L.); (H.Z.)
- Turku Bioscience Center, University of Turku, 20520 Turku, Finland
| | - Rouslan I. Moustafine
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan, 420126 Kazan, Russia; (R.R.K.); (S.F.N.)
| |
Collapse
|
31
|
Illath K, Kar S, Gupta P, Shinde A, Wankhar S, Tseng FG, Lim KT, Nagai M, Santra TS. Microfluidic nanomaterials: From synthesis to biomedical applications. Biomaterials 2021; 280:121247. [PMID: 34801251 DOI: 10.1016/j.biomaterials.2021.121247] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Microfluidic platforms gain popularity in biomedical research due to their attractive inherent features, especially in nanomaterials synthesis. This review critically evaluates the current state of the controlled synthesis of nanomaterials using microfluidic devices. We describe nanomaterials' screening in microfluidics, which is very relevant for automating the synthesis process for biomedical applications. We discuss the latest microfluidics trends to achieve noble metal, silica, biopolymer, quantum dots, iron oxide, carbon-based, rare-earth-based, and other nanomaterials with a specific size, composition, surface modification, and morphology required for particular biomedical application. Screening nanomaterials has become an essential tool to synthesize desired nanomaterials using more automated processes with high speed and repeatability, which can't be neglected in today's microfluidic technology. Moreover, we emphasize biomedical applications of nanomaterials, including imaging, targeting, therapy, and sensing. Before clinical use, nanomaterials have to be evaluated under physiological conditions, which is possible in the microfluidic system as it stimulates chemical gradients, fluid flows, and the ability to control microenvironment and partitioning multi-organs. In this review, we emphasize the clinical evaluation of nanomaterials using microfluidics which was not covered by any other reviews. In the future, the growth of new materials or modification in existing materials using microfluidics platforms and applications in a diversity of biomedical fields by utilizing all the features of microfluidic technology is expected.
Collapse
Affiliation(s)
- Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, India
| | - Srabani Kar
- Department of Electrical Engineering, University of Cambridge, UK
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, India
| | - Ashwini Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, India
| | - Syrpailyne Wankhar
- Department of Bioengineering, Christian Medical College Vellore, Vellore, India
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, South Korea
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi, Japan
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| |
Collapse
|
32
|
Wang H, Cai L, Zhang D, Shang L, Zhao Y. Responsive Janus Structural Color Hydrogel Micromotors for Label-Free Multiplex Assays. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9829068. [PMID: 34888526 PMCID: PMC8628110 DOI: 10.34133/2021/9829068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Micromotors with self-propelling ability demonstrate great values in highly sensitive analysis. Developing novel micromotors to achieve label-free multiplex assay is particularly intriguing in terms of detection efficiency. Herein, structural color micromotors (SCMs) were developed and employed for this purpose. The SCMs were derived from phase separation of droplet templates and exhibited a Janus structure with two distinct sections, including one with structural colors and the other providing catalytic self-propelling functions. Besides, the SCMs were functionalized with ion-responsive aptamers, through which the interaction between the ions and aptamers resulted in the shift of the intrinsic color of the SCMs. It was demonstrated that the SCMs could realize multiplex label-free detection of ions based on their optical coding capacity and responsive behaviors. Moreover, the detection sensitivity was greatly improved benefiting from the autonomous motion of the SCMs which enhanced the ion-aptamer interactions. We anticipate that the SCMs can significantly promote the development of multiplex assay and biomedical fields.
Collapse
Affiliation(s)
- Huan Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Dagan Zhang
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuanjin Zhao
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| |
Collapse
|
33
|
Lotfipour F, Shahi S, Farjami A, Salatin S, Mahmoudian M, Dizaj SM. Safety and Toxicity Issues of Therapeutically Used Nanoparticles from the Oral Route. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9322282. [PMID: 34746313 PMCID: PMC8570876 DOI: 10.1155/2021/9322282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022]
Abstract
The emerging science of nanotechnology sparked a research attention in its potential benefits in comparison to the conventional materials used. Oral products prepared via nanoparticles (NPs) have garnered great interest worldwide. They are used commonly to incorporate nutrients and provide antimicrobial activity. Formulation into NPs can offer opportunities for targeted drug delivery, improve drug stability in the harsh environment of the gastrointestinal (GI) tract, increase drug solubility and bioavailability, and provide sustained release in the GI tract. However, some issues like the management of toxicity and safe handling of NPs are still debated and should be well concerned before their application in oral preparations. This article will help the reader to understand safety issues of NPs in oral drug delivery and provides some recommendations to the use of NPs in the drug industry.
Collapse
Affiliation(s)
- Farzaneh Lotfipour
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical and Food Control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Salatin
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Martínez-Edo G, Xue EY, Ha SYY, Pontón I, González-Delgado JA, Borrós S, Torres T, Ng DKP, Sánchez-García D. Nanoparticles for Triple Drug Release for Combined Chemo- and Photodynamic Therapy. Chemistry 2021; 27:14610-14618. [PMID: 34460988 DOI: 10.1002/chem.202101842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 12/13/2022]
Abstract
A pH-responsive drug delivery system (DDS) based on mesoporous silica nanoparticles (MSNs) has been prepared for the delivery of three anticancer drugs with different modes of action. The novelty of this system is its ability to combine synergistic chemotherapy and photodynamic therapy. A photoactive conjugate of a phthalocyanine (Pc) and a topoisomerase I inhibitor (topo-I), namely camptothecin (CPT), linked by a poly(ethylene glycol) (PEG) chain has been synthesized and then loaded into the mesopores of MSNs. Doxorubicin (DOX), which is a topoisomerase II inhibitor (topo-II), has also been covalently anchored to the outer surface of the MSNs through a dihydrazide PEG linker. In the acidic environment of tumor cells, selective release of the three drugs takes place. In vitro studies have demonstrated the endocytosis of the system into HeLa and HepG2 cells, and the subsequent release of the three drugs into the cytoplasm and nucleus. Furthermore, the cytotoxic effect of DOX, CPT and Pc has been assessed in vitro before and upon light irradiation.
Collapse
Affiliation(s)
- Gabriel Martínez-Edo
- Grup d'Enginyera de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Evelyn Y Xue
- Department of Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, China
| | - Summer Y Y Ha
- Department of Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, China
| | - Iris Pontón
- Grup d'Enginyera de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - José Antonio González-Delgado
- Department of Organic Chemistry and Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, c/ Francisco Tomás y Valiente 7 Cantoblanco, 28049, Madrid, Spain
| | - Salvador Borrós
- Grup d'Enginyera de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Tomás Torres
- Department of Organic Chemistry and Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, c/ Francisco Tomás y Valiente 7 Cantoblanco, 28049, Madrid, Spain.,IMDEA-Nanociencia, c/ Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, China
| | - David Sánchez-García
- Grup d'Enginyera de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| |
Collapse
|
35
|
Mdlovu NV, Lin KS, Weng MT, Hsieh CC, Lin YS, Carrera Espinoza MJ. In vitro intracellular studies of pH and thermo-triggered doxorubicin conjugated magnetic SBA-15 mesoporous nanocarriers for anticancer activity against hepatocellular carcinoma. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Application of smart nanoparticles as a potential platform for effective colorectal cancer therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Yan J, Wang Y, Ran M, Mustafa RA, Luo H, Wang J, Smått JH, Rosenholm JM, Cui W, Lu Y, Guan Z, Zhang H. Peritumoral Microgel Reservoir for Long-Term Light-Controlled Triple-Synergistic Treatment of Osteosarcoma with Single Ultra-Low Dose. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100479. [PMID: 34173330 DOI: 10.1002/smll.202100479] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/16/2021] [Indexed: 06/13/2023]
Abstract
Local minimally invasive injection of anticancer therapies is a compelling approach to maximize the utilization of drugs and reduce the systemic adverse drug effects. However, the clinical translation is still hampered by many challenges such as short residence time of therapeutic agents and the difficulty in achieving multi-modulation combination therapy. Herein, mesoporous silica-coated gold nanorods (AuNR@SiO2 ) core-shell nanoparticles are fabricated to facilitate drug loading while rendering them photothermally responsive. Subsequently, AuNR@SiO2 is anchored into a monodisperse photocrosslinkable gelatin (GelMA) microgel through one-step microfluidic technology. Chemotherapeutic drug doxorubicin (DOX) is loaded into AuNR@SiO2 and 5,6-dimethylxanthenone-4-acetic acid (DMXAA) is loaded in the microgel layer. The osteosarcoma targeting ligand alendronate is conjugated to AuNR@SiO2 to improve the tumor targeting. The microgel greatly improves the injectability since they can be dispersed in buffer and the injectability and degradability are adjustable by microfluidics during the fabrication. The drug release can, in turn, be modulated by multi-round light-trigger. Importantly, a single super low drug dose (1 mg kg-1 DOX with 5 mg kg-1 DMXAA) with peritumoral injection generates long-term therapeutic effect and significantly inhibited tumor growth in osteosarcoma bearing mice. Therefore, this nanocomposite@microgel system can act as a peritumoral reservoir for long-term effective osteosarcoma treatment.
Collapse
Affiliation(s)
- Jiaqi Yan
- Department of Radiology, Shanghai Institute of Traumatology and Orthopaedics, RuiJin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, 149 ChongqingNan Road, Shanghai, 200020, P. R. China
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Yichuan Wang
- Department of Orthopedics, Peking University Shougang Hospital, No.9 Jinyuanzhuang Rd, Shijingshan District, Beijing, 100144, P. R. China
| | - Meixin Ran
- Department of Radiology, Shanghai Institute of Traumatology and Orthopaedics, RuiJin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, 149 ChongqingNan Road, Shanghai, 200020, P. R. China
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Rawand A Mustafa
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland
| | - Huanhuan Luo
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, P. R. China
| | - Jixiang Wang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Jan-Henrik Smått
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland
| | - Wenguo Cui
- Department of Radiology, Shanghai Institute of Traumatology and Orthopaedics, RuiJin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, 149 ChongqingNan Road, Shanghai, 200020, P. R. China
| | - Yong Lu
- Department of Radiology, Shanghai Institute of Traumatology and Orthopaedics, RuiJin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, 149 ChongqingNan Road, Shanghai, 200020, P. R. China
| | - Zhenpeng Guan
- Department of Orthopedics, Peking University Shougang Hospital, No.9 Jinyuanzhuang Rd, Shijingshan District, Beijing, 100144, P. R. China
| | - Hongbo Zhang
- Department of Radiology, Shanghai Institute of Traumatology and Orthopaedics, RuiJin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, 149 ChongqingNan Road, Shanghai, 200020, P. R. China
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| |
Collapse
|
38
|
Miyazawa T, Itaya M, Burdeos GC, Nakagawa K, Miyazawa T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int J Nanomedicine 2021; 16:3937-3999. [PMID: 34140768 PMCID: PMC8203100 DOI: 10.2147/ijn.s298606] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Surfactants, whose existence has been recognized as early as 2800 BC, have had a long history with the development of human civilization. With the rapid development of nanotechnology in the latter half of the 20th century, breakthroughs in nanomedicine and food nanotechnology using nanoparticles have been remarkable, and new applications have been developed. The technology of surfactant-coated nanoparticles, which provides new functions to nanoparticles for use in the fields of nanomedicine and food nanotechnology, is attracting a lot of attention in the fields of basic research and industry. This review systematically describes these "surfactant-coated nanoparticles" through various sections in order: 1) surfactants, 2) surfactant-coated nanoparticles, application of surfactant-coated nanoparticles to 3) nanomedicine, and 4) food nanotechnology. Furthermore, current progress and problems of the technology using surfactant-coated nanoparticles through recent research reports have been discussed.
Collapse
Affiliation(s)
- Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| | - Mayuko Itaya
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Gregor C Burdeos
- Institute for Animal Nutrition and Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
39
|
Li J, Du N, Tan Y, Hsu HY, Tan C, Jiang Y. Conjugated Polymer Nanoparticles Based on Copper Coordination for Real-Time Monitoring of pH-Responsive Drug Delivery. ACS APPLIED BIO MATERIALS 2021; 4:2583-2590. [PMID: 35014375 DOI: 10.1021/acsabm.0c01564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metal coordination-driven composite systems have excellent stability and pH-responsive ability, making them suitable for specific drug delivery in physiological conditions. In this study, an anionic conjugated polymer PPEIDA with a poly(p-phenylene ethynylene) backbone and iminodiacetic acid (IDA) side chains is used as a drug carrier to construct a class of pH-responsive nanoparticles, PPEIDA-Cu-DOX conjugated polymer nanoparticles (CPNs), by taking advantage of the metal coordination interaction of Cu2+ with PPEIDA and the drug doxorubicin (DOX). PPEIDA-Cu-DOX CPNs have high drug loading and encapsulation efficiency (EE), calculated to be 54.30 ± 1.10 and 95.80 ± 0.84%, respectively. Due to the good spectral overlap, Förster resonance energy transfer (FRET) takes place between PPEIDA and the drug DOX, which enables the observation of the loading and the release of DOX from CPNs in an acidic environment by monitoring fluorescence emission changes. Therefore, PPEIDA-Cu-DOX CPNs can also be used in real-time cell imaging to monitor drug release in addition to delivering DOX targeting tumor cells. Compared with free DOX, PPEIDA-Cu-DOX CPNs show a similar inhibition to tumor cells and lower toxicity to normal cells. Our results demonstrate the feasibility and potential of constructing pH-responsive CPNs via metal-ligand coordination interactions for cancer treatment.
Collapse
Affiliation(s)
- Jiatong Li
- State Key Laboratory of Chemical Oncogenomics, The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China.,Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Nan Du
- State Key Laboratory of Chemical Oncogenomics, The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China.,Shenzhen Research Institute of City, University of Hong Kong, Shenzhen 518057, P. R. China
| | - Chunyan Tan
- State Key Laboratory of Chemical Oncogenomics, The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
40
|
Zhou J, Zhai Y, Xu J, Zhou T, Cen L. Microfluidic preparation of PLGA composite microspheres with mesoporous silica nanoparticles for finely manipulated drug release. Int J Pharm 2020; 593:120173. [PMID: 33321168 DOI: 10.1016/j.ijpharm.2020.120173] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/25/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022]
Abstract
The current study explored the feasibility of a microfluidic preparation of PLGA composite microspheres with mesoporous silica nanoparticles (MSNs) to finely manipulate the drug release behaviors of the microspheres. MSNs were synthesized via a hydrothermal method, and PLGA microspheres loaded with MSNs (PLGA-MSNs) were prepared using a capillary-based three-phase microfluidic device. Drug loading and release behaviors using rhodamine B (RB) as a water-soluble model drug were investigated and compared with those of PLGA microspheres. MSNs with an average particle size of 119 nm, a specific surface area of 902.5 cm2/g, and a pore size of approximately 5 nm were obtained. The mean diameter of PLGA-MSNs was 56 μm (CV = 4.91%). A sustained release duration of encapsulated RB from PLGA-MSNs for 4 months was achieved without any observable burst release. PLGA microspheres with monodispersion could also allow for a similar release duration of encapsulated RB but encountered a burst release in the mid-term of the studied duration. PLGA-MSNs had a denser outer PLGA layer and a more centralized hollow hole than PLGA microspheres without MSNs. Hence, the incorporation of MSNs into PLGA microspheres via microfluidics could be an efficient strategy to finely tune the drug release behavior of PLGA microspheres.
Collapse
Affiliation(s)
- Jiayu Zhou
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No. 130 Mei Long Road, Shanghai 200237, PR China
| | - Yishu Zhai
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No. 130 Mei Long Road, Shanghai 200237, PR China
| | - Jumei Xu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No. 130 Mei Long Road, Shanghai 200237, PR China
| | - Tian Zhou
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China.
| | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No. 130 Mei Long Road, Shanghai 200237, PR China.
| |
Collapse
|
41
|
Pontón I, Martí del Rio A, Gómez Gómez M, Sánchez-García D. Preparation and Applications of Organo-Silica Hybrid Mesoporous Silica Nanoparticles for the Co-Delivery of Drugs and Nucleic Acids. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2466. [PMID: 33317099 PMCID: PMC7763534 DOI: 10.3390/nano10122466] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022]
Abstract
Combination therapies rely on the administration of more than one drug, with independent mechanisms of action, aiming to enhance the efficiency of the treatment. For an optimal performance, the implementation of such therapies requires the delivery of the correct combination of drugs to a specific cellular target. In this context, the use of nanoparticles (NP) as platforms for the co-delivery of multiple drugs is considered a highly promising strategy. In particular, mesoporous silica nanoparticles (MSN) have emerged as versatile building blocks to devise complex drug delivery systems (DDS). This review describes the design, synthesis, and application of MSNs to the delivery of multiple drugs including nucleic acids for combination therapies.
Collapse
Affiliation(s)
| | | | | | - David Sánchez-García
- Grup d’Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Via Augusta, 390, 08017 Barcelona, Spain; (I.P.); (A.M.d.R.); (M.G.G.)
| |
Collapse
|
42
|
Newham G, Mathew RK, Wurdak H, Evans SD, Ong ZY. Polyelectrolyte complex templated synthesis of monodisperse, sub-100 nm porous silica nanoparticles for cancer targeted and stimuli-responsive drug delivery. J Colloid Interface Sci 2020; 584:669-683. [PMID: 33223243 DOI: 10.1016/j.jcis.2020.10.133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 11/29/2022]
Abstract
Porous silica nanoparticles (PSiNPs) have long attracted interest in drug delivery research. However, conventional synthesis methods for sub-100 nm, functionalised PSiNPs typically give poor monodispersity, reproducibility, or involve complex synthetic protocols. We report a facile, reproducible, and cost-effective one-pot method for the synthesis of cancer targeting and pH responsive PSiNPs in this size range, without the need for post-synthetic modification. This was achieved by using monodisperse l-arginine (Arg)/ poly(acrylic acid) (PAA) polyelectrolyte complexes (PECs) as soft templates for silane hydrolysis and condensation. Highly uniform PSiNPs with tunable size control between 42 and 178 nm and disordered pore structure (1.1-2.7 nm) were obtained. Both PAA and Arg were retained within the PSiNPs, which enabled a high doxorubicin hydrochloride (Dox) loading capacity (22% w/w) and a 4-fold increase in drug release under weakly acidic pH compared to physiological pH. The surface presentation of Arg conferred significantly higher intracellular accumulation of Arg/PAA-PSiNPs in patient-derived glioblastoma cells compared to non-tumorigenic neural progenitor cells, which effectively translated to lower IC50 values for Dox-loaded Arg/PAA-PSiNPs than non-functionalised PSiNPs. This work brings forward new insights for the development of monodisperse PSiNPs with highly desirable built-in functionalities for biomedical applications.
Collapse
Affiliation(s)
- George Newham
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Ryan K Mathew
- Leeds Institute of Medical Research at St. James's, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; Department of Neurosurgery, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, UK
| | - Heiko Wurdak
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Zhan Yuin Ong
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; Leeds Institute of Medical Research at St. James's, School of Medicine, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
43
|
Yan J, Liu C, Wu Q, Zhou J, Xu X, Zhang L, Wang D, Yang F, Zhang H. Mineralization of pH-Sensitive Doxorubicin Prodrug in ZIF-8 to Enable Targeted Delivery to Solid Tumors. Anal Chem 2020; 92:11453-11461. [PMID: 32664723 PMCID: PMC7458362 DOI: 10.1021/acs.analchem.0c02599] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/15/2020] [Indexed: 01/03/2023]
Abstract
The zeolitic imidazolate framework (ZIF-8), composed of zinc ion and dimethylimidazole, is widely used in drug delivery because of the easy fabrication process and the good biosafety. However, ZIF-8 suffers from low affinity to nonelectric-rich drugs and does not have surface functional groups. Here, to deliver doxorubicin (DOX) with ZIF-8 to specific target sites, DOX was first modified with a pH-sensitive linker containing two carboxyl groups to form the inactive prodrug CAD and subsequently seeded inside ZIF-8 by a 5 min mineralization process. CAD has high affinity to ZIF-8 because of the carboxyl groups and can anchor to the ZIF-8 surface to enable the surface modification with folic acid for tumor targeting. Moreover, the DOX release is precisely controlled by three steps of acidic pH response, with the dissociation of the FA layer, the breakdown of the ZIF-8 structure, and the cleavage of the pH-sensitive linker in prodrug. This novel "prodrug-ZIF-8" strategy has opened a new horizon in drug delivery.
Collapse
Affiliation(s)
- Jiaqi Yan
- The
Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
- Pharmaceutical
Sciences Laboratory and Turku Bioscience Center, Åbo Akademi University, FI-20520 Turku, Finland
| | - Chang Liu
- Pharmaceutical
Sciences Laboratory and Turku Bioscience Center, Åbo Akademi University, FI-20520 Turku, Finland
| | - Qiwei Wu
- Department
of Radiology, Affiliated Hospital of Jiangsu
University, Jiangsu University, 212001 Zhenjiang, P.R. China
| | - Junnian Zhou
- Experimental
Hematology and Biochemistry Lab, Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaoyu Xu
- Pharmaceutical
Sciences Laboratory and Turku Bioscience Center, Åbo Akademi University, FI-20520 Turku, Finland
| | - Lirong Zhang
- Department
of Radiology, Affiliated Hospital of Jiangsu
University, Jiangsu University, 212001 Zhenjiang, P.R. China
| | - Dongqing Wang
- Department
of Radiology, Affiliated Hospital of Jiangsu
University, Jiangsu University, 212001 Zhenjiang, P.R. China
| | - Fan Yang
- The
Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Hongbo Zhang
- Pharmaceutical
Sciences Laboratory and Turku Bioscience Center, Åbo Akademi University, FI-20520 Turku, Finland
| |
Collapse
|
44
|
Carbon nanotube embedded cyclodextrin polymer derived injectable nanocarrier: A multiple faceted platform for stimulation of multi-drug resistance reversal. Carbohydr Polym 2020; 247:116751. [PMID: 32829867 DOI: 10.1016/j.carbpol.2020.116751] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 11/21/2022]
Abstract
A combination of cocktail chemotherapy (CCT), photothermal therapy (PTT) and inhibition of angiogenesis was investigated as an effective approach to combat major challenges of multidrug resistance and non-targeted drug delivery encountered in conventional cancer therapy. An injectable nanocarrier was developed through functionalization of carbon nanotubes (CNTs) with rationally modified carbohydrate (β-Cyclodextrin-CD) derived pH and thermo responsive polymer. Embedding CNT to CD polymer offers a nanocarrier which effectively demonstrated CCT, high NIR triggered photothermal efficiency, anti-angiogenic potential for selective tumor homing as well as enhanced multi-drug resistance (MDR) reversal with minimal toxic effects on normal cells. The simultaneously loading with curcumin and doxorubicin hydrochloride exhibited synergistic effect for triggering antitumor effect in vitro and demonstrated down regulation of growth factors associated with angiogenesis ex-ovo. In-vivo studies ascertained that the nanocarrier synthesized with the rational for MDR reversal can lead to enhanced cancer cell death via multiple approaches.
Collapse
|
45
|
Shen J, Shafiq M, Ma M, Chen H. Synthesis and Surface Engineering of Inorganic Nanomaterials Based on Microfluidic Technology. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1177. [PMID: 32560284 PMCID: PMC7353232 DOI: 10.3390/nano10061177] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
The controlled synthesis and surface engineering of inorganic nanomaterials hold great promise for the design of functional nanoparticles for a variety of applications, such as drug delivery, bioimaging, biosensing, and catalysis. However, owing to the inadequate and unstable mass/heat transfer, conventional bulk synthesis methods often result in the poor uniformity of nanoparticles, in terms of microstructure, morphology, and physicochemical properties. Microfluidic technologies with advantageous features, such as precise fluid control and rapid microscale mixing, have gathered the widespread attention of the research community for the fabrication and engineering of nanomaterials, which effectively overcome the aforementioned shortcomings of conventional bench methods. This review summarizes the latest research progress in the microfluidic fabrication of different types of inorganic nanomaterials, including silica, metal, metal oxides, metal organic frameworks, and quantum dots. In addition, the surface modification strategies of nonporous and porous inorganic nanoparticles based on microfluidic method are also introduced. We also provide the readers with an insight on the red blocks and prospects of microfluidic approaches, for designing the next generation of inorganic nanomaterials.
Collapse
Affiliation(s)
- Jie Shen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (J.S.); (H.C.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Shafiq
- Department of Chemistry, Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad 45650, Pakistan;
| | - Ming Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (J.S.); (H.C.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (J.S.); (H.C.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Barui S, Cauda V. Multimodal Decorations of Mesoporous Silica Nanoparticles for Improved Cancer Therapy. Pharmaceutics 2020; 12:E527. [PMID: 32521802 PMCID: PMC7355899 DOI: 10.3390/pharmaceutics12060527] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
The presence of leaky vasculature and the lack of lymphatic drainage of small structures by the solid tumors formulate nanoparticles as promising delivery vehicles in cancer therapy. In particular, among various nanoparticles, the mesoporous silica nanoparticles (MSN) exhibit numerous outstanding features, including mechanical thermal and chemical stability, huge surface area and ordered porous interior to store different anti-cancer therapeutics with high loading capacity and tunable release mechanisms. Furthermore, one can easily decorate the surface of MSN by attaching ligands for active targeting specifically to the cancer region exploiting overexpressed receptors. The controlled release of drugs to the disease site without any leakage to healthy tissues can be achieved by employing environment responsive gatekeepers for the end-capping of MSN. To achieve precise cancer chemotherapy, the most desired delivery system should possess high loading efficiency, site-specificity and capacity of controlled release. In this review we will focus on multimodal decorations of MSN, which is the most demanding ongoing approach related to MSN application in cancer therapy. Herein, we will report about the recently tried efforts for multimodal modifications of MSN, exploiting both the active targeting and stimuli responsive behavior simultaneously, along with individual targeted delivery and stimuli responsive cancer therapy using MSN.
Collapse
Affiliation(s)
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
| |
Collapse
|