1
|
Kong Y, Qian X, Mei X, Ma J, Wu K, Deng A, Li J. Electrochemiluminescence immunoassay system based on PCN-224-Mn and gold-platinum bimetallic nanoflowers for sensitive detection of ochratoxin A. Talanta 2025; 281:126937. [PMID: 39326117 DOI: 10.1016/j.talanta.2024.126937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/31/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
In this work, a novel Electrochemiluminescence Immunosensor was constructed using PCN-224-Mn and gold-platinum nanoflowers (AuPt NFs) for the ultrasensitive detection of ochratoxin A (OTA). PCN-224 modified with Mn (II) was synthesized as a probe material. The interaction efficiency of PCN-224 with S2O82- was also greatly improved. AuPt NFs were used as the substrate material for the electrodes. It has favorable biocompatibility, large specific surface area and can bind more antigen. Also greatly increased the electroactive surface area and conductivity of the electrode. OTA was detected using a competitive immunoassay strategy, in which OTA in the sample competes with the encapsulated antigen for a finite number of antibodies. ECLIA for the detection of OTA was designed to be highly sensitive, with a linear range from 0.0002 ng mL-1 to 1000 ng mL-1 and a LOD as low as 0.067 pg mL-1. In addition, it was evident from the electrochemical analyses that PCN-224-Mn had a stronger and more stable ECL signal compared to the plain PCN-224. The successful preparation of specific, sensitive and reproducible ECL immunosensors confirms the great promise for the detection of OTA or other small molecule mycotoxins.
Collapse
Affiliation(s)
- Yue Kong
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Xinyue Qian
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Xiao Mei
- Center of Self-Propelled Nanotechnologies, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, 215123, PR China
| | - Jun Ma
- Suzhou Shanding Honey Product Co., Ltd, Suzhou, 215101, PR China
| | - Kang Wu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, PR China.
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China; Center of Self-Propelled Nanotechnologies, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, 215123, PR China.
| |
Collapse
|
2
|
Wei J, Liu M, Lin SJ, Cai Z. Donor-Acceptor MOF Enabling Efficient Electrochemiluminescence Based on TSCT-TADF. J Phys Chem Lett 2024; 15:11104-11111. [PMID: 39475377 DOI: 10.1021/acs.jpclett.4c01967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Electrochemiluminescence (ECL) is an extensively studied luminescence technique recognized for its efficacy in investigating surface energy states. Effective utilization of ECL to explore and probe the charge transfer mechanisms facilitated by novel luminescent materials is crucial. In this study, we demonstrate thermally activated delayed fluorescence (TADF) based on spatial charge transfer through the precisely controlled synthesis of luminescent materials, which is achieved by incorporating phenyl-carbazole derivatives as donor guests within acceptor-hosted metal-organic frameworks (D-A MOFs). These hybrid structures exhibit superior ECL intensities compared with their monomeric counterparts. Mechanistic investigation by DFT calculation reveals that the physically separated yet spatially closed D-A configuration induces efficient intermolecular through-spatial charge transfer (TSCT), leading to efficient ECL through tuning of the dihedral angle of the guest molecules to enhance π-π interactions. This study introduces a strategy for precise modulation of spatial charge transfer at the molecular level in the programmable synthesis of ECL luminophores.
Collapse
Affiliation(s)
- Jinliu Wei
- College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, China 363000
| | - Mengru Liu
- College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, China 363000
| | - Shu-Juan Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 China
| | - Zhixiong Cai
- College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, China 363000
| |
Collapse
|
3
|
Yang F, Xie HH, Du F, Hou X, Tang SF. Insight into the efficient loading and enhanced activity of enzymes immobilized on functionalized UiO-66. Int J Biol Macromol 2024; 279:135557. [PMID: 39265898 DOI: 10.1016/j.ijbiomac.2024.135557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Enzyme immobilization is an effective strategy for achieving efficient and sustainable enzyme catalysis. As a kind of promising enzyme-loading materials, the systematic research on zirconium based metal organic frameworks (Zr-MOFs) about immobilization performance at molecular level is still in its initial stage. In this work, UiO-66 was functionalized with various groups (-H, -NH2, -COOH, -OH, -2OH) for the immobilization of cytochrome c (Cyt c) and antioxidant enzyme catalase (CAT). Then the effects of surface-functionalized UiO-66 derivatives on the loading efficiency, enzyme stability and catalysis kinetics were systematically investigated. In addition, the affinity constants of Cyt c and CAT towards UiO-66-series MOFs carriers were also compared. The results have shown that hydroxyl group functionalized UiO-66 represents the highest enzyme loading capacity, enhanced activity and improved stability for Cyt c and CAT possibly due to high surface area and suitable microenvironments as well as enhanced affinity towards the enzymes provided by the introduction of a single hydroxyl group. Our research would foresee immense potential of MOFs in engineering biocatalysts.
Collapse
Affiliation(s)
- Fan Yang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Hui-Hui Xie
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fan Du
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaomin Hou
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Si-Fu Tang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
4
|
Nam NN, Trinh TND, Do HDK, Phan TB, Trinh KTL, Lee NY. Advances and Opportunities of luminescence Nanomaterial for bioanalysis and diagnostics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 327:125347. [PMID: 39486236 DOI: 10.1016/j.saa.2024.125347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/15/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Luminescence nanomaterials (LNMs) have recently received great attention in biological analysis and sensing owing to their key advances in easy design and functionalization with high photostability, luminescence stability, low autofluorescence, and multiphoton capacity. The number of publications surrounding LNMs for biological applications has grown rapidly. LNMs based on Stokes and anti-Stokes shifts are powerful tools for biological analysis. Especially, unique properties of anti-Stokes luminescence such as upconversion nanoparticles (UCNPs) with an implementation strategy to use longer-wavelength excitation sources such as near-infrared (NIR) light can depth penetrate to biological tissue for bioanalysis and bioimaging. We observed that the LNMs-based metal-organic frameworks (MOFs) have been developed and paid attention to the field of bioimaging and luminescence-based sensors, because of their structural flexibility, and multifunctionality for the encapsulation of luminophores. This article provides an overview of innovative LNMs such as quantum dots (QDs), UCNPs, and LMOFs. A brief summary of recent progress in design strategies and applications of LNMs including pH and temperature sensing in biologically responsive platforms, pathogen detection, molecular diagnosis, bioimaging, photodynamic, and radiation therapy published within the past three years is highlighted. It was found that the integrated nanosystem of lab-on-a-chip (LOC) with nanomaterials was rapidly widespread and erupting in interest after the COVID-19 pandemic. The simple operation and close processes of the integration nanosystem together with the optimized size and low energy and materials consumption of biochips and devices allow their trend study and application to develop portable and intelligent diagnostics tools. The last part of this work is the introduction of the utilization use of LNMs in LOC applications in terms of microfluidics and biodevices.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 72820, Vietnam
| | - Thang Bach Phan
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 72820, VietNam; Vietnam National University, Ho Chi Minh City 72820, VietNam
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
5
|
Yang Y, Wang JM, Liang WB, Li Y, Yuan R, Xiao DR. Pyrene-Based Metal-Organic Frameworks with Coordination-Enhanced Electrochemiluminescence for Fabricating a Biosensing Platform. Anal Chem 2024; 96:16362-16369. [PMID: 39358909 DOI: 10.1021/acs.analchem.4c03782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Enhancing the electrochemiluminescence (ECL) properties of polycyclic aromatic hydrocarbons (PAHs) is a significant topic in the ECL field. Herein, we elaborately chose PAH derivative luminophore 1,3,6,8-tetrakis(p-benzoic acid)pyrene (H4TBAPy) as the organic ligand to synthesize a new Ru-complex-free ECL-active metal-organic framework Dy-TBAPy. Interestingly, Dy-TBAPy exhibited a more brilliant ECL emission and higher ECL efficiency than H4TBAPy aggregates. On the one hand, TBAPy luminophores were assembled into rigid MOF skeleton via coordination bonds, which not only enlarged the distance between pyrene cores to eliminate the aggregation-caused quenching (ACQ) effect but also obstructed the intramolecular motions of TBAPy to diminish the nonradiative relaxation, thus realizing a remarkable coordination-enhanced ECL. On the other hand, the ultrahigh porosity of Dy-TBAPy was beneficial to the diffusion of electrons, ions, and coreactant (S2O82-) in the skeleton, which efficiently boosted the excitation of interior TBAPy luminophores and led to a high utilization ratio of TBAPy, further improving ECL properties. More intriguingly, the ECL intensity of the Dy-TBAPy/S2O82- system was about 4.1, 87.0-fold higher than those of classic Ru(bpy)32+/TPrA and Ru(bpy)32+/S2O82- systems. Considering the aforementioned fabulous ECL performance, Dy-TBAPy was used as an ECL probe to construct a supersensitive ECL biosensor for microRNA-21 detection, which showed an ultralow detection limit of 7.55 aM. Overall, our study manifests that coordinatively assembling PAHs into MOFs is a simple and practicable way to improve ECL properties, which solves the ACQ issue of PAHs and proposes new ideas for developing highly efficient Ru-complex-free ECL materials, therefore providing promising opportunities to fabricate high-sensitivity ECL biosensors.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; Chongqing Engineering Laboratory of Nanomaterials and Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jun-Mao Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; Chongqing Engineering Laboratory of Nanomaterials and Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; Chongqing Engineering Laboratory of Nanomaterials and Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yan Li
- Analytical and Testing Center, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; Chongqing Engineering Laboratory of Nanomaterials and Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Dong-Rong Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; Chongqing Engineering Laboratory of Nanomaterials and Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
6
|
Mohtasham H, Bahari D, Keihan AH, Salimi A, Mehrebani RT, Rahimi-Nasrabadi M. Magnetic N-doped carbon derived from mixed ligands MOF as effective electrochemiluminescence coreactor for performance enhancement of SARS-CoV-2 immunosensor. Talanta 2024; 277:126252. [PMID: 38805948 DOI: 10.1016/j.talanta.2024.126252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024]
Abstract
COVID-19 as an infectious disease with rapid transmission speed is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), so, early and accurate diagnostics of COVID-19 is quite challenging. In this work, the selective and sensitive self-enhanced ECL method to detect of SARS-CoV-2 protein was designed with magnetic N-doped carbon derived from dual-ligand metal-organic frameworks (MOF) (CoO@N-C) with the primary and tertiary amino groups as a novel coreactant that covalently combined with Ru(bpy)2(phen-NH2)2+ as electrochemiluminescence (ECL) emitter. Mixed-ligand strategy and selected nitrogen-containing ligands, 4,4',4''-((1,3,5-triazine-2,4,6-triyl) tris-(azanediyl)) tribenzoic acid (H3TATAB) with 2-aminoterephthalic acid (BDC-NH2) were used for synthesis of the proposed MOF. Also, magnetic CoO@N-C with high synergistically charge transfer kinetics and good stability can be used as an effective platform/coreactor on the ITO electrode which load more Ru-complex as signal producing compound and SARS-CoV-2 N protein antibody to increase the sensitivity of the immunosensor. Furthermore, (CoO@N-C) as coreactor improved the ECL signal of the Ru (II)-complex more than 2.1 folds compared to tripropylamine. In view of these competences, the novel "on-off" ECL biosensor performed with great stability and repeatability for detection of SARS-CoV-2 protein, which exhibited a broad linearity from 8 fg. mL-1 to 4 ng. mL-1 (6 order of magnitude) and an ultra-low limit of detection 1.6 fg. mL-1. Finally, this proposed method was successfully applied to detect of SARS-CoV-2 N protein in serum sample with satisfactory results, indicating the proposed immunosensor has the potential for quick analysis of SARS-CoV-2.
Collapse
Affiliation(s)
- Hamed Mohtasham
- Student Research Committee, Baqiytallah University of Medical Sciences, Tehran, Iran
| | - Delnia Bahari
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Amir Homayoun Keihan
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran; Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| | - Reza Tarbiat Mehrebani
- Organic and Nano Group (ONG), Department of Chemistry, University of Maragheh, 55181-83111 Maragheh, Iran
| | - Mehdi Rahimi-Nasrabadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Bu S, Song L, Ding Y, Yang Y, Liang Y, Chai Y, Zhang P, Fu Y, Yuan R. Dual-Ligand Ruthenium Coordination Polymer-Derived Self-Enhanced Electrochemiluminescent Emitters for Sensitive Detection of Procalcitonin. Anal Chem 2024; 96:10809-10816. [PMID: 38886176 DOI: 10.1021/acs.analchem.4c02100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Ru-based electrochemiluminescence (ECL) coordination polymers are widely employed for bioanalysis and medical diagnosis. However, commonly used Ru-based coordination polymers face the limitation of low efficiency due to the long distance between the ECL reagent and the coreactant dispersed in detecting solution. Herein, we report a dual-ligand self-enhanced ECL coordination polymer, composed of tris(4,4'-dicarboxylic acid-2,2'-bipyridyl) ruthenium(II) dichloride (Ru(dcbpy)32+) as ECL reactant ligand and ethylenediamine (EDA) as corresponding coreactant ligand into Zn2+ metal node, termed Zn-Ru-EDA. Zn-Ru-EDA shows excellent ECL performance which is attributed to the effective intramolecular electron transport between the two ligands. Furthermore, the dual-ligand polymer allows an anodic low excitation potential (+1.09 V) luminescence. The shift in the energy level of the highest occupied molecular orbital (HOMO) upward after the synthesis of the Zn-Ru-EDA has resulted in a reduced excitation potential. The low excitation potential reduced biomolecular damage and the destruction of the modified electrodes. The ECL biosensor has been constructed using Zn-Ru-EDA with high ECL efficiency for the ultrasensitive detection of a bacterial infection and sepsis biomarker, procalcitonin (PCT), in the range from 1.00 × 10-6 to 1.00 × 10 ng·mL-1 with outstanding selectivity, and the detection limit was as low as 0.47 fg·mL-1. Collectively, the dual-ligand-based self-enhanced polymer may provide an ideal strategy for high ECL efficiency improvement as well as designing new self-enhanced multiple-ligand-based coordination in sensitive biomolecular detection for early disease diagnostics.
Collapse
Affiliation(s)
- Shuchun Bu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Li Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Yilan Ding
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Yuqin Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Yufei Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Pu Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Yingzi Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
8
|
Peng L, Qian X, Jin Y, Miao X, Deng A, Li J. Ultrasensitive detection of zearalenone based on electrochemiluminescent immunoassay with Zr-MOF nanoplates and Au@MoS 2 nanoflowers. Anal Chim Acta 2024; 1299:342451. [PMID: 38499431 DOI: 10.1016/j.aca.2024.342451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
In this work, an effective competitive-type electrochemiluminescence (ECL) immunosensor was constructed for zearalenone determination by using Zr-MOF nanoplates as the ECL luminophore and Au@MoS2 nanoflowers as the substrate material. Zr-MOF have an ultra-thin sheet-like structure that accelerates the transfer of electrons, ions and co-reactant intermediates, which exhibited strong and stable anodic luminescence. The three-dimensional Au@MoS2 nanoflowers would form a thin film modification layer on the glassy carbon electrode (GCE). And its good electrical conductivity and higher specific surface area utilization further improving the sensitivity of the ECL immunosensor. Under the optimized conditions, the proposed immunosensor exhibited satisfactory stability, sensitivity and accuracy, and its ECL signal was proportional to the logarithm of ZEN concentration (0.0001-100 ng/mL) and the limit of detection (LOD) was 0.034 pg/mL. In addition, the results of recovery experiment acquired for wheat flour and pig urine samples further proved the feasibility of the immunosensor for the detection of real samples, indicating its potential for ultrasensitive detection of ZEN.
Collapse
Affiliation(s)
- Lu Peng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Xinyue Qian
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Ya Jin
- Department of Biomedical and Pharmaceutical Sicences, Suzhou Chien-shiung Institute of Technology, Taicang, 215411, PR China
| | - Xiangyang Miao
- Department of Biomedical and Pharmaceutical Sicences, Suzhou Chien-shiung Institute of Technology, Taicang, 215411, PR China.
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
9
|
Wang H, Liu P, Peng J, Yu H, Wang L. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) modified metal-organic frameworks boosting carbon dots electrochemiluminescence emission for sensitive miRNA detection. Biosens Bioelectron 2024; 249:116015. [PMID: 38211464 DOI: 10.1016/j.bios.2024.116015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
Highly efficient luminescent materials play an important role in electrochemiluminescence (ECL) biosensing systems. Herein, the poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) modified carbon dots (CDs)/zeolitic imidazolate framework-8 (ZIF-8) compositing metal-organic frameworks (MOFs) materials with excellent luminescence performance were prepared as the ECL emitters for biosensing application. In this novel ternary composites, CDs were used as emitters, ZIF-8 was used as a carrier, and the luminescent performance was finally improved by introducing PEDOT:PSS to improve the conductivity of the nanomaterials. As a result, CDs/PEDOT:PSS/ZIF-8 exhibited an approximately 8 times ECL intensity compared to CDs alone. By further modifying with AuNPs, the enhancement factor reached ≈10 in reference to the individual CDs. After combining with a DNAzyme-based two-cycle target amplification principle, an ECL biosensor was constructed to achieve high-sensitivity detection of miRNA-21 with a detection limit of 50 aM. The biosensor also demonstrated desirable selectivity, excellent stability, and quantitative ability for human serum target detection. Overall, these findings not only provide a promising pathway for high luminous efficiency ECL emitters synthesis, but also provide a platform for ultrasensitive miRNA sensing.
Collapse
Affiliation(s)
- Honghong Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Pengfei Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Jiaxin Peng
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Haoming Yu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Li Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
10
|
Tan L, Cai W, Wang F, Li J, Wu D, Kong Y. Postsynthetic Modification Strategy for Constructing Electrochemiluminescence-Active Chiral Covalent Organic Frameworks Performing Efficient Enantioselective Sensing. Anal Chem 2024; 96:3942-3950. [PMID: 38394220 DOI: 10.1021/acs.analchem.3c05887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Electrochemiluminescence (ECL), integrating the characteristics of electrochemistry and fluorescence, has the advantages of high sensitivity and low background. However, only a few studies have been reported for enantioselective sensing based on the ECL-active platform because of the huge challenges in constructing tunable chiral ECL luminophores. Here, we developed a facile strategy to design and prepare ECL-active chiral covalent organic frameworks (COFs) Ph-triPy+-(R)-Ru(II) for enantioselective sensing. In such an artificial structure, the ionic skeleton of COFs was beneficial to the electron transfer on the working electrode surface and the chiral Ru-ligand was used as the chiral ECL-active luminophore. It was found that Ph-triPy+-(R)-Ru(II) coupled with sodium persulfate (Na2S2O8) as the coreactant exhibited obvious ECL signals. More importantly, a clear difference toward l- and d-enantiomers was observed in the response of the ECL intensity, resulting in a uniform recognition law. That is, for amino alcohols, d-enantiomers (1 mM) measured by Ph-triPy+-(R)-Ru(II) showed a higher ECL intensity compared with l-enantiomers. Differently, amino acids (1 mM) gave an inverse recognition phenomenon. The ECL intensity ratios between l- and d-enantiomers (1 mM) are in the range of 1.25-1.94 for serine, aspartic acid, glutamic acid, valine, leucine, leucinol, and valinol. What is more interesting is that the ECL intensity was closely related to the concentration of l-amino alcohols and d-amino acids, whereas their inverse configurations remained unchanged. In a word, the present concept demonstrates a feasible direction toward chiral ECL-active COFs and their potential for efficient enantioselective sensing.
Collapse
Affiliation(s)
- Lilan Tan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Fangqin Wang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
11
|
Zhang X, Wang P, Liang Z, Zhong W, Ma Q. A novel Cu-MOFs nanosheet/BiVO 4 nanorod-based ECL sensor for colorectal cancer diagnosis. Talanta 2024; 266:124952. [PMID: 37473470 DOI: 10.1016/j.talanta.2023.124952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Although luminescence metal organic framework (MOFs) has displayed the significant advantages, the limitations in the electrochemical performance (e.g. rapid charge recombination rates and inadequate charge transport) limited the sensing application of MOFs. Herein, a novel Cu-MOFs/BiVO4 nanorod-based electrogenerated chemiluminescence (ECL) sensor has been developed. Firstly, Cu-MOFs with strong luminescence were synthesized via the three-layer approach as ECL emitter. Furthermore, BiVO4 nanorods was modified on the electrode as the actuator to improve the electrochemical activity of Cu-MOFs in the ECL process. As an n-type semiconductor, BiVO4 formed a complementary structure with p-type semiconductor Cu-MOF. Therefore, electrons in the conduction band of BiVO4 transferred to that of Cu-MOF. As a result, more electrons reacted with coreactant on the surface of Cu-MOF, which effectively enhanced the ECL performance of 2D Cu-MOFs nanosheets. As a result, the quantitation of KRAS gene was realized in the linear range of 0.1 pM-1 nM with a detection limit of 0.02 fM. Moreover, the detection of KRAS gene in actual colorectal cancer samples was also carried out with good recovery, which offered a broad application possibility for ECL research and clinical analysis.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zihui Liang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Weiyao Zhong
- Department of Laboratory Medicine Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
12
|
Meng F, Wang Y, Lv X, Feng F, Yang G. Electrochemiluminescent bioassay based on Ru@Zr-BTC-MOFs nanoparticles for determination of let-7a miRNA using the hybridization chain reaction. Mikrochim Acta 2023; 191:23. [PMID: 38091146 DOI: 10.1007/s00604-023-06107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023]
Abstract
Carboxyl-rich tris(4,4'-dicarboxylic acid-2,2'-bipyridyl) ruthenium(II) ([Ru(dcbpy)3]2+) and 1,3,5-phenyl tricarboxylic acid (H3BTC) were used as the organic ligand to synthesize the metal-organic frameworks by a simple one-pot hydrothermal method with ZrCl4 as metal ion source. Subsequently, the excellent electrochemiluminescence (ECL) luminophore (denoted as Ru@Zr-BTC-MOFs) was obtained. The Ru@Zr-BTC-MOFs displayed outstanding ECL properties, and a sensitive ECL bioassay based on Ru@Zr-BTC-MOFs was designed for the detection of let-7a microRNA (miRNA) using hybrid chain reaction (HCR). Under the optimal experimental conditions, the proposed bioassay exhibited a good linear relationship in the range from 50.0 fM to 5.00 × 102 pM with a detection limit of 3.71 fM. Besides, the proposed sensor exhibited satisfactory performance in real samples. The recovery was 91 ~ 108%, and the relative standard deviation was less than 5.6%. It might have potential clinical applications for detecting miRNA in biomedical research and clinical diagnosis. The schematic diagram of the preparation of Ru@Zr-BTC-MOFs (a) and ECL sensor for detecting let -7a (b).
Collapse
Affiliation(s)
- Fei Meng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yisi Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xinxin Lv
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Fang Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Gongjun Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
13
|
Zhao Y, Mao Z, Jia J, Dai C, Li L, Zhou Y. Novel Electrochemiluminescent Biosensor to Ultrasensitively Detect U94 Gene in Human Herpesvirus 6 Using Metal-Organic Framework-Based Nanoemitters Comprising Iridium(III) Complexes via One-Pot Coordination Reaction Strategy. Anal Chem 2023; 95:17117-17124. [PMID: 37943782 DOI: 10.1021/acs.analchem.3c04268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The detection of the U94 gene in human herpesvirus 6 is crucial for early diagnosis of HHV-6 infections, which could induce acute febrile illness in infants. In this work, the first ultrasensitive electrochemiluminescence (ECL) biosensor for detecting U94 gene in Human Herpesvirus 6 was successfully designed by utilizing efficient novel metal-organic framework (MOF)-based ECL nanoemitters comprising iridium(III) complexes (Ir-ZIF-8-NH2) synthesized via one-pot coordination reaction strategy as an ECL indicator and a target-catalyzed hairpin assembly (CHA) signal amplification strategy. The as-prepared ECL indicator Ir-ZIF-8-NH2 exhibited an approximately 2.7-fold ECL intensity compared with its small molecular analogue of emissive iridium(III) complex named IrppymIM formed by in situ coordination reaction between iridium(III) solvent complex and imidazole ligands. In addition, a target-catalyzed hairpin assembly (CHA) strategy was employed to further improve the sensitivity of the proposed ECL biosensor, which demonstrated a wide linear range from 1 fM to 1 μM and the limit of detection as low as 0.113 fM (S/N = 3). Significantly, this biosensor was successfully applied to detect U94 gene in plasmids and real virus samples. The recoveries were in the range of 97.0-109.0% for plasmids and 95.7-107.5% for real virus samples with a relative standard deviation (RSD) of 1.87-2.53%. These satisfactory experimental results from the proposed ECL biosensor in this work would inevitably promote the development of new time/cost-effective and sensitive methods to detect HHV-6 with a major global health threat and substantial burden on healthcare in the future.
Collapse
Affiliation(s)
- Yibo Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Ziwang Mao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Junli Jia
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chenji Dai
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Liangzhi Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Yuyang Zhou
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| |
Collapse
|
14
|
Shelash Al-Hawary SI, Malviya J, Althomali RH, Almalki SG, Kim K, Romero-Parra RM, Fahad Ahmad A, Sanaan Jabbar H, Vaseem Akram S, Hussien Radie A. Emerging Insights into the Use of Advanced Nanomaterials for the Electrochemiluminescence Biosensor of Pesticide Residues in Plant-Derived Foodstuff. Crit Rev Anal Chem 2023:1-18. [PMID: 37728973 DOI: 10.1080/10408347.2023.2258971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Pesticides have an important role in rising the overall productivity and yield of agricultural foods by eliminating and controlling insects, pests, fungi, and various plant-related illnesses. However, the overuse of pesticides has caused pesticide pollution of water bodies and food products, along with disruption of environmental and ecological systems. In this regard, developing low-cost, simple, and rapid-detecting approaches for the accurate, rapid, efficient, and on-site screening of pesticide residues is an ongoing challenge. Electrochemiluminescence (ECL) possesses the benefits of great sensitivity, the capability to resolve several analytes using different emission wavelengths or redox potentials, and excellent control over the light radiation in time and space, making it a powerful strategy for sensing various pesticides. Cost-effective and simple ECL systems allow sensitive, selective, and accurate quantification of pesticides in agricultural fields. Particularly, the development and progress of nanomaterials, aptamer/antibody recognition, electric/photo-sensing, and their integration with electrochemiluminescence sensing technology has presented the hopeful potential in reporting the residual amounts of pesticides. Current trends in the application of nanoparticles are debated, with an emphasis on sensor substrates using aptamer, antibodies, enzymes, and molecularly imprinted polymers (MIPs). Different strategies are enclosed in labeled and label-free sensing along with luminescence determination approaches (signal-off, signal-on, and signal-switch modes). Finally, the recent challenges and upcoming prospects in this ground are also put forward.
Collapse
Affiliation(s)
| | - Jitendra Malviya
- Department of Life Sciences & Biological Sciences, IES University, Bhopal, India
| | - Raed H Althomali
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Kibum Kim
- Department of Human-Computer Interaction, Hanyang University, Seoul, South Korea
| | | | - Ahmad Fahad Ahmad
- Department of Radiology, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Shaik Vaseem Akram
- Division of Research & Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, India
| | | |
Collapse
|
15
|
Yang Y, Jiang H, Li J, Zhang J, Gao SZ, Lu ML, Zhang XY, Liang W, Zou X, Yuan R, Xiao DR. Highly stable Ru-complex-based metal-covalent organic frameworks as novel type of electrochemiluminescence emitters for ultrasensitive biosensing. MATERIALS HORIZONS 2023. [PMID: 37194328 DOI: 10.1039/d3mh00260h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Developing novel types of high-performance electrochemiluminescence (ECL) emitters is of great significance for constructing ultrasensitive ECL sensors. Herein, a highly stable metal-covalent organic framework (MCOF), termed Ru-MCOF, has been devised and synthesized by employing a classic ECL luminophore, tris(4,4'-dicarboxylicacid-2,2'-bipyridyl)ruthenium(II) (Ru(dcbpy)32+), as building unit and applied as a novel ECL probe to construct an ultrasensitive ECL sensor for the first time. Impressively, the topologically ordered and porous architectures of the Ru-MCOF not only allow Ru(bpy)32+ units to precisely locate and homogeneously distribute in the skeleton via strong covalent bonds but also facilitate the transport of co-reactants and electrons/ions in channels to promote the electrochemical activation of both external and internal Ru(bpy)32+ units. All these features endow the Ru-MCOF with excellent ECL emission, high ECL efficiency, and outstanding chemical stability. As expected, the constructed ECL biosensor based on the Ru-MCOF as a high-efficiency ECL probe accomplishes the ultrasensitive detection of microRNA-155. Overall, the synthesized Ru-MCOF not only enriches the MCOF family but also displays excellent ECL performance and thus expands the application of MCOFs in bioassays. Considering the structural diversity and tailorability of MCOFs, this work opens a new horizon to design and synthesize high-performance ECL emitters, therefore paving a new way to develop highly stable and ultrasensitive ECL sensors and motivating further research on MCOFs.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Haicheng Jiang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Jialu Li
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Jialing Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Shu-Zhen Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Mei-Ling Lu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Xin-Yue Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Wenbin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Dong-Rong Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
16
|
Zhang JL, Gao S, Yang Y, Liang WB, Lu ML, Zhang XY, Xiao HX, Li Y, Yuan R, Xiao DR. Ruthenium(II) complex-grafted conductive metal-organic frameworks with conductivity- and confinement-enhanced electrochemiluminescence for ultrasensitive biosensing application. Biosens Bioelectron 2023; 227:115157. [PMID: 36841115 DOI: 10.1016/j.bios.2023.115157] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Improving the electrochemiluminescence (ECL) performance of luminophores is an ongoing research hotspot in the ECL realm. Herein, a high-performance metal-organic framework (MOF)-based ECL material (Ru@Ni3(HITP)2, HITP = 2,3,6,7,10,11-hexaiminotriphenylene) with conductivity- and confinement-enhanced ECL was successfully constructed by using conductive MOF Ni3(HITP)2 as the carrier to graft Ru(bpydc)34- (H2bpydc = 2,2'-bipyridine-4,4'-dicarboxylic acid) into the channels of Ni3(HITP)2. Compared to Ru@Cu3(HITP)2 and Ru@Co3(HITP)2 with relatively low conductivity, the ECL intensity of Ru@Ni3(HITP)2 was prominently increased about 6.76 times and 18.8 times, respectively, which demonstrated that the increase in conductivity induced the ECL enhancement of the MOF-based ECL materials. What's more, the hydrophobic and porous Ni3(HITP)2 can not only effectively enrich the lipophilic tripropylamine (TPrA) coreactants in its channels to enhance the electrochemical oxidation efficiency of TPrA, but also provide a conductive reaction micro-environment to boost the ECL reaction between Ru(bpydc)33- intermediates and TPrA• in confined spaces, thus realizing a remarkable confinement-enhanced ECL. Considering the excellent ECL performance of Ru@Ni3(HITP)2, an ultrasensitive ECL biosensor was prepared based on the Ru@Ni3(HITP)2 ECL indicator combining an exonuclease I-aided target cycling amplification strategy for thrombin determination. The constructed ECL biosensor showcased a wide linear range from 1 fM to 1 nM with a low detection limit of 0.62 fM. Overall, the conductivity- and confinement-enhanced ECL based on Ru@Ni3(HITP)2 provided effective and feasible strategies to enhance ECL performance, which paved a promising avenue for exploring high-efficient MOF-based ECL materials and thus broadened the application scope of conductive MOFs.
Collapse
Affiliation(s)
- Jia-Ling Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Shuzhen Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Mei-Ling Lu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xin-Yue Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Han-Xiao Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yan Li
- Analytical & Testing Center, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Dong-Rong Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
17
|
Shang ZT, Li TM, Han JH, Yu F, Li B. Zirconium Metal-Organic Framework bearing V-shape letrozole dicarboxylic acid for versatile fluorescence detection. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
18
|
Shao T, Song X, Li P, Sun S, Wang D, Wei W. Ru(II)-modified metal organic framework as excellent electrochemiluminescence emitter for ultrasensitive nicotine detection. Talanta 2023; 259:124539. [PMID: 37084603 DOI: 10.1016/j.talanta.2023.124539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/30/2023] [Accepted: 04/08/2023] [Indexed: 04/23/2023]
Abstract
The sensitive and selective nicotine detection in cigarette is necessary due to the cigarette addiction problem and the neurotoxicity of nicotine on human body. In this study, a novel electrochemiluminescence (ECL) emitter with excellent performance was prepared for nicotine analysis, by combining Zr-based metal organic framework (Zr-MOF) and branched polyethylenimine (BPEI)-coated Ru(dcbpy)32+ through electrostatic interaction. Ru(dcbpy)32+ integrated by Zr-MOF could be catalyzed by the reaction intermediates SO4•-, produced from the co-reactant S2O82-, resulting in a significant increase in ECL response. Interestingly, SO4•- with strong oxidizing ability could preferentially oxidize nicotine, leading to ECL quenching. The constructed ECL sensor based on the Ru-BPEI@Zr-MOF/S2O82- system displayed ultrasensitive determination of nicotine with a lower detection limit of 1.9 × 10-12 M (S/N = 3), which is three orders lower than previously reported ECL results and 4-5 orders lower than that of other types of method. This method puts forward a new approach for building efficient ECL system with greatly improved ECL sensitivity for nicotine detection.
Collapse
Affiliation(s)
- Tong Shao
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, PR China
| | - Xiaolei Song
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, PR China
| | - Peng Li
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Shihao Sun
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Dingzhong Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Wei Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, PR China.
| |
Collapse
|
19
|
Wang J, Xu X, Zheng L, Guo Q, Nie G. A signal "on-off-on"-type electrochemiluminescence aptamer sensor for detection of sulfadimethoxine based on Ru@Zn-oxalate MOF composites. Mikrochim Acta 2023; 190:131. [PMID: 36912979 DOI: 10.1007/s00604-023-05701-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/10/2023] [Indexed: 03/14/2023]
Abstract
An "on-off-on"-type electrochemiluminescence (ECL) aptamer sensor based on Ru@Zn-oxalate metal-organic framework (MOF) composites is constructed for sensitive detection of sulfadimethoxine (SDM). The prepared Ru@Zn-oxalate MOF composites with the three-dimensional structure provide good ECL performance for the "signal-on." The MOF structure with a large surface area enables the material to fix more Ru(bpy)32+. Moreover, the Zn-oxalate MOF with three-dimensional chromophore connectivity provides a medium which can accelerate excited-state energy transfer migration among Ru(bpy)32+ units, and greatly reduces the influence of solvent on chromophore, achieving a high-energy Ru emission efficiency. The aptamer chain modified with ferrocene at the end can hybridize with the capture chain DNA1 fixed on the surface of the modified electrode through base complementary pairing, which can significantly quench the ECL signal of Ru@Zn-oxalate MOF. SDM specifically binds to its aptamer to separate ferrocene from the electrode surface, resulting in a "signal-on" ECL signal. The use of the aptamer chain further improves the selectivity of the sensor. Thus, high-sensitivity detection of SDM specificity is realized through the specific affinity between SDM and its aptamer. This proposed ECL aptamer sensor has good analytical performance for SDM with low detection limit (27.3 fM) and wide detection range (100 fM-500 nM). The sensor also shows excellent stability, selectivity, and reproducibility, which proved its analytical performance. The relative standard deviation (RSD) of SDM detected by the sensor is between 2.39 and 5.32%, and the recovery is in the range 97.23 to 107.5%. The sensor shows satisfactory results in the analysis of actual seawater samples, which is expected to play a role in the exploration of marine environmental pollution.
Collapse
Affiliation(s)
- Jingjing Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xuejiao Xu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Lu Zheng
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Qingfu Guo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Guangming Nie
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
20
|
Fu H, Xu Z, Liu T, Lei J. In situ coordination interactions between metal-organic framework nanoemitters and coreactants for enhanced electrochemiluminescence in biosensing. Biosens Bioelectron 2023; 222:114920. [PMID: 36470062 DOI: 10.1016/j.bios.2022.114920] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Coreactant electrochemiluminescence (ECL) is one of the most popular pathways in commercial analysis, which can provide simplicity and convenience for getting intense ECL emission. However, the low efficiency of intermolecular electron transfer could weaken ECL intensity. In this work, we developed an enhanced ECL strategy through in situ coordination interactions between metal-organic framework emitters and coreactants. First, a metal-organic framework (MOF) emitter was synthesized with 1,1,2,2-tetrakis(4-(pyridin-4-yl)phenyl)ethane (TPPE) as aggregation-induced emission linkers and Zn as nodes. Interestingly, compared to TPPE ligand, the resulted MOF nanoemitters demonstrated 49.5 folds enhancement of ECL emission in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) as the coreactant. More significantly, different from the constant ECL intensity using TPrA coreactant, DABCO exhibited time-dependent ECL intensity due to the intrareticular electron transfer through coordination interaction between DABCO and Zn2+, which was confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared spectral experiments. The enhanced ECL was then applied to construct a sensitive ECL method to detect dopamine in serum samples. The coordination interaction between emitters and coreactants not only provides a universal way to enhance ECL, but also expands the applications of coreactant ECL system in convenience route.
Collapse
Affiliation(s)
- Haomin Fu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhiyuan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tianrui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
21
|
Liu SQ, Chen JS, Liu XP, Mao CJ, Jin BK. An electrochemiluminescence aptasensor based on highly luminescent silver-based MOF and biotin-streptavidin system for mercury ion detection. Analyst 2023; 148:772-779. [PMID: 36661384 DOI: 10.1039/d2an02036j] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this study, for the first time, a silver-based metal-organic framework (Ag-MOF) was synthesized and used as the electrochemiluminescence (ECL) emitter for building an ECL sensor. After modification with chitosan (CS) and gold nanoparticles (Au NPs), the ECL stability of Ag-MOF was improved. To detect mercury ions, a biosensor was constructed using the mercury ion aptamer and steric effect of streptavidin. First, the capture strand (cDNA) with terminal-modified sulfhydryl group was attached to the electrode surface by the Au-S bond. Then, the mercury-ion aptamer (Apt-Hg) modified with biotin was anchored to the electrode by complementary pairing with cDNA. Streptavidin (SA) could be fixed on the electrode by linking with biotin, thereby reducing the ECL signal. However, in the presence of mercury ions, the aptamer was removed and streptavidin could not be immobilized on the electrode. Hence, the ECL signal of the sensor increased with the concentration of mercury ions, which was linear in the range from 1 μM to 300 fM. The detection limit could reach 66 fM (S/N = 3). The sensor provided a new method for the detection of mercury ions.
Collapse
Affiliation(s)
- Si-Qi Liu
- Department of Chemistry, Anhui University, Hefei, China.
| | | | - Xing-Pei Liu
- Department of Chemistry, Anhui University, Hefei, China.
| | - Chang-Jie Mao
- Department of Chemistry, Anhui University, Hefei, China.
| | - Bao-Kang Jin
- Department of Chemistry, Anhui University, Hefei, China.
| |
Collapse
|
22
|
Wang C, Liu S, Ju H. Electrochemiluminescence nanoemitters for immunoassay of protein biomarkers. Bioelectrochemistry 2023; 149:108281. [PMID: 36283193 DOI: 10.1016/j.bioelechem.2022.108281] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 12/05/2022]
Abstract
The family of electrochemiluminescent luminophores has witnessed quick development since the electrochemiluminescence (ECL) phenomenon of silicon nanoparticles was first reported in 2002. Moreover, these developed ECL nanoemitters have extensively been applied in sensitive detection of protein biomarker by combining with immunological recognition. This review firstly summarized the origin and development of various ECL nanoemitters including inorganic and organic nanomaterials, with an emphasis on metal-organic frameworks (MOFs)-based ECL nanoemitters. Several effective strategies to amplify the ECL response of nanoemitters and improve the sensitivity of immunosensing were discussed. The application of ECL nanoemitters in immunoassay of protein biomarkers for diagnosis of cancers and other diseases, especially lung cancer and heart diseases, was comprehensively presented. The recent development of ECL imaging with the nanoemitters as ECL tags for detection of multiplex protein biomarkers on single cell membrane also attracted attention. Finally, the future opportunities and challenges in the ECL biosensing field were highlighted.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
23
|
Sheikhhosseini E, Yahyazadehfar M. Synthesis and characterization of an Fe-MOF@Fe 3O 4 nanocatalyst and its application as an organic nanocatalyst for one-pot synthesis of dihydropyrano[2,3-c]chromenes. Front Chem 2023; 10:984502. [PMID: 36688030 PMCID: PMC9845633 DOI: 10.3389/fchem.2022.984502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
In this study, the recyclable heterogeneous cluster bud Fe-MOF@Fe3O4 'nanoflower' composite (CB Fe-MOF@Fe3O4 NFC) was successfully synthesized using Fe(NO3)3·9H2O, 8-hydroxyquinoline sulfate monohydrate, and Fe3O4 nanoparticles by microwave irradiation. The as-prepared CB Fe-MOF@Fe3O4 NFC was characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), vibrational sampling magnetometry (VSM), and Fourier transform infrared spectroscopy (FTIR). The CB Fe-MOF@Fe3O4 NFC samples proved to have excellent catalytic activity. The activity of the CB Fe-MOF@Fe3O4 NFC nanocatalyst was explored in the synthesis of dihydropyrano[3, 2-c]chromene derivatives via a three-component reaction of 4-hydroxycoumarin, malononitrile, and a wide range of aromatic aldehyde compounds. Optimized reaction conditions had several advantages, including the use of water as a green solvent, environmental compatibility, simple work-up, reusability of the catalyst, low catalyst loading, faster reaction time, and higher yields.
Collapse
|
24
|
3D porous CS-AuNPs-PEDOT-PB nanocomposite cryogel for highly sensitive label-free electrochemical immunosensor for carcinoembryonic antigen determination. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
Pu J, Tong P, Meng Y, Li J. Development of a molecularly imprinted electrochemiluminescence sensor based on bifunctional bilayer structured ZIF-8-based magnetic particles for dopamine sensing. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Mohan B, Kumar S, Kumar V, Jiao T, Sharma HK, Chen Q. Electrochemiluminescence metal-organic frameworks biosensing materials for detecting cancer biomarkers. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Liu PD, Liu AG, Wang PM, Chen Y, Bao Li. Smart crystalline frameworks constructed with bisquinoxaline-based component for multi-stimulus luminescent sensing materials. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2022. [DOI: 10.1016/j.cjsc.2022.100001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Lu ML, Huang W, Gao S, Zhang JL, Liang WB, Li Y, Yuan R, Xiao DR. Pyrene-Based Hydrogen-Bonded Organic Frameworks as New Emitters with Porosity- and Aggregation-Induced Enhanced Electrochemiluminescence for Ultrasensitive MicroRNA Assay. Anal Chem 2022; 94:15832-15838. [DOI: 10.1021/acs.analchem.2c03635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mei-Ling Lu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Wei Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Shuzhen Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Jia-Ling Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yan Li
- Analytical and Testing Center, Southwest University, Chongqing 400715, People’s Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Dong-Rong Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
29
|
Huang W, Gao S, Liang WB, Li Y, Yuan R, Xiao DR. In situ growth of metal-organic layer on ultrathin Ti3C2T MXene nanosheet boosting fast electron/ion transport for electrochemiluminescence enhancement. Biosens Bioelectron 2022; 220:114886. [DOI: 10.1016/j.bios.2022.114886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/30/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
|
30
|
Xia S, Pan J, Dai D, Dai Z, Yang M, Yi C. Design of portable electrochemiluminescence sensing systems for point-of-care-testing applications. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Electrochemiluminescence resonance energy transfer system between ruthenium-based nanosheets and CdS quantum dots for detection of chlorogenic acid. Mikrochim Acta 2022; 189:323. [PMID: 35933502 DOI: 10.1007/s00604-022-05428-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/22/2022] [Indexed: 10/15/2022]
Abstract
A new strategy is proposed for ultrasensitive detection of chlorogenic acid (CGA) by fabricating an electrochemiluminescence resonance energy transfer (ECL-RET) sensing platform. The novel system designed by introducing ruthenium-based 2D metal-organic framework nanosheets (Ru@Zn-MOF) as ECL acceptor and L-cysteine capped CdS quantum dots (L-CdS QDs) as ECL donor, exhibited good ECL response. The possible mechanism of the modified electrode surface reaction was discussed. Modifying of the electrode surface by application of L-CdS QDs directly on ultrathin MOF nanosheets greatly shortened the electron-transfer distance and reduce energy loss, therefore significantly improving the ECL efficiency. The prepared sensor demonstrated good stability and highly selective detection of the target molecule. Under optimal conditions, the constructed sensor for the detection of CGA exhibited a wide linear range from 1.0 × 10-10 to 1.0 × 10-4 mol·L-1 and a low detection limit of 3.2 × 10-11 mol·L-1 with a correction coefficient of 0.995. The recovery for spiked samples was calculated to be 94.4-109% and the RSD was 1.07-1.72% in real samples. The obtained sensor is considered to be a promising platform for CGA detection. Electrochemiluminescence resonance energy transfer (ECL-RET) sensing platform is used for the detection for chlorogenic acid.
Collapse
|
32
|
Li C, Yang J, Xu R, Wang H, Zhang Y, Wei Q. Progress and Prospects of Electrochemiluminescence Biosensors Based on Porous Nanomaterials. BIOSENSORS 2022; 12:508. [PMID: 35884311 PMCID: PMC9313272 DOI: 10.3390/bios12070508] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Porous nanomaterials have attracted much attention in the field of electrochemiluminescence (ECL) analysis research because of their large specific surface area, high porosity, possession of multiple functional groups, and ease of modification. Porous nanomaterials can not only serve as good carriers for loading ECL luminophores to prepare nanomaterials with excellent luminescence properties, but they also have a good electrical conductivity to facilitate charge transfer and substance exchange between electrode surfaces and solutions. In particular, some porous nanomaterials with special functional groups or centered on metals even possess excellent catalytic properties that can enhance the ECL response of the system. ECL composites prepared based on porous nanomaterials have a wide range of applications in the field of ECL biosensors due to their extraordinary ECL response. In this paper, we reviewed recent research advances in various porous nanomaterials commonly used to fabricate ECL biosensors, such as ordered mesoporous silica (OMS), metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and metal-polydopamine frameworks (MPFs). Their applications in the detection of heavy metal ions, small molecules, proteins and nucleic acids are also summarized. The challenges and prospects of constructing ECL biosensors based on porous nanomaterials are further discussed. We hope that this review will provide the reader with a comprehensive understanding of the development of porous nanomaterial-based ECL systems in analytical biosensors and materials science.
Collapse
Affiliation(s)
- Chenchen Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming 650500, China
| | - Jinghui Yang
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming 650500, China
| | - Rui Xu
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming 650500, China
| | - Huan Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yong Zhang
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming 650500, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
33
|
Liu C, Cai L, Wang Y, Wang H, Fang G, Wang S. Controllable Enhanced Ru(bpy) 32+ Electrochemiluminescence Detection Systems Based on Eu@MOF253@AuNPs/GCE for the Sensitive Detection of Carbaryl in Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6264-6271. [PMID: 35544327 DOI: 10.1021/acs.jafc.2c01932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, an electrochemiluminescence detection system for the sensitive detection of carbaryl was constructed based on the dual identification of Eu@MOF253, which has a recognition effect on carbaryl, and the electrochemiluminescence system of Ru(bpy)32+/S2O82-, which can react with carbaryl in a redox reaction. This method not only overcame the weakness of the electrochemiluminescence instability of the Ru(bpy)32+/S2O82- system but also changed the sensitivity of the sensing detection system to the target by adjusting the concentration of Ru(bpy)32+ and then proposed a detection strategy with a controllable detection range. After analyzing the electrochemiluminescence signal change mechanism of this system and optimizing the detection conditions, it was concluded that the strategy has good linear detection of carbaryl in the range of 1-1000 and 0.02-0.3 μg L-1, and the detection limits were 0.058 and 0.014 μg L-1. Finally, the strategy was also successfully applied to the detection of actual samples.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lin Cai
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuwei Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haiyang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
34
|
Xiong X, Xiong C, Gao Y, Xiao Y, Chen MM, Wen W, Zhang X, Wang S. Tetraphenylethylene-Functionalized Metal-Organic Frameworks with Strong Aggregation-Induced Electrochemiluminescence for Ultrasensitive Analysis through a Multiple Convertible Resonance Energy Transfer System. Anal Chem 2022; 94:7861-7867. [PMID: 35603578 DOI: 10.1021/acs.analchem.2c00295] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since aggregation-induced electrochemiluminescence (AIECL) combined the merits of aggregation-induced emission (AIE) and electrochemiluminescence (ECL), it has become a research hotspot recently. Herein, novel kinds of functional metal-organic frameworks (MOFs) with strong AIECL were reported through doping tetraphenylethylene (TPE) into UiO-66. Due to the porosity and highly ordered topological structure that caused the confinement effect of MOFs, the molecular motion of TPE was effectively limited within UiO-66, resulting in strong AIE. Meanwhile, the large specific surface area and porous structure of UiO-66 allowed TPE to react with coreactants more effectively, which was beneficial to ECL. Thus, the TPE-functionalized UiO-66 (TPE-UiO-66) showed excellent AIECL performance surprisingly. Inspired by this, a multiple convertible ECL resonance energy transfer (ECL-RET) system was constructed through a DNA Y structure that regulated the distance between the energy donor (TPE-UiO-66) and different energy acceptors (gold nanoparticles and Adriamycin). Furthermore, an ultrasensitive ECL biosensor for the detection of Mucin 1 (MUC1) was developed through the introduction of the novel ECL-RET system. In the presence of MUC1, the DNA Y structure was constructed, keeping the gold nanoparticles (AuNPs) away from TPE-UiO-66. Then, Adriamycin (Dox) could be embedded in the DNA Y structure and act as an energy acceptor to receive the energy of TPE-UiO-66, which made the biosensor produce a strong ECL response. As expected, the developed ECL biosensor exhibited superior detection performance for MUC1. This work provided a novel way to realize AIECL and board the application of AIECL in analytical chemistry.
Collapse
Affiliation(s)
- Xueyi Xiong
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Chengyi Xiong
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yang Gao
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Yao Xiao
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Miao-Miao Chen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Wei Wen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xiuhua Zhang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Shengfu Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
35
|
Liu C, Wang H, Hu X, Cao Y, Fang G. Construction of an ECL Detection Platform for Sensitive Detection of Carbaryl Based on an Eu3+-Functionalized Metal–Organic Framework Encapsulated with Nanogold. Foods 2022; 11:foods11101487. [PMID: 35627057 PMCID: PMC9141832 DOI: 10.3390/foods11101487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
In this work, an Eu3+-MOF-253@Au electrochemiluminescence sensor was successfully constructed for the first time by encapsulating nanogold in the metal–organic frameworks (MOFs) backbone and pore channels, and assembling Eu3+ on the MOF backbone. Firstly, the introduction of nanogold overcomes the weakness of MOFs, which was difficult to achieve, and enhances its catalytic performance, followed by the modification of Eu3+ to confer the electrochemiluminescence performance and the function of target detection on the sensor. Moreover, carbaryl was placed in an alkaline working solution to enhance the intensity of electrochemiluminescence signal, as well as to promote the hydrolysis of carbaryl into 1-naphthol, which caused the burst of Eu3+-MOF-253@Au electrochemiluminescence sensor, thereby achieving the sensitive detection of carbaryl. On this basis, the electrochemiluminescence detection conditions were optimized, the performance was analyzed, and finally it was successfully used for the detection of carbaryl with good linearity in the range of 0.2–200 μg L−1 and a low detection limit (0.14 μg L−1).
Collapse
|
36
|
Li J, Liu T, Dahlgren RA, Ye H, Wang Q, Ding Y, Gao M, Wang X, Wang H. N, S-co-doped carbon/Co 1-xS nanocomposite with dual-enzyme activities for a smartphone-based colorimetric assay of total cholesterol in human serum. Anal Chim Acta 2022; 1204:339703. [PMID: 35397915 DOI: 10.1016/j.aca.2022.339703] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/11/2022] [Accepted: 03/07/2022] [Indexed: 11/01/2022]
Abstract
We fabricated a novel N,S-co-doped carbon/Co1-xS nanocomposite (NSC/Co1-xS) using a facile sol-gel approach, which featured a multiporous structure, abundant S vacancies and Co-S nanoparticles filling the carbon-layer pores. When the Co1-xS nanoparticles were anchored onto the surface of N,S-co-doped carbon, a synergistic catalysis action occurred. The NSC/Co1-xS nanocomposites possessed both peroxidase-like and oxidase-mimetic dual-enzyme activities, in which the oxidase-mimetic activity dominated. By scavenger capture tests, the nanozyme was demonstrated to catalyze H2O2 to produce h+, •OH and •O2-, among which the strongest and weakest signals were h+ and •OH, respectively. The multi-valence states of Co atoms in the NSC/Co1-xS structure facilitated electronic transfer that enhanced redox reactions, thereby improving the resultant color reaction. Based on the NSC/Co1-xS's enzyme-mimetic catalytic reaction, a visual colorimetric assay and Android "Thing Identify" application (app), installed on a smartphone, offered detection limits of 1.93 and 2.51 mg/dl, respectively, in human serum samples. The selectivity/interference experiments, using fortified macromolecules and metal ions, demonstrated that this sensor had high selectivity and low interference potential for cholesterol analysis. Compared to standard assay kits and previously reported visual detection, the Android smartphone-based assays provided higher accuracy (recoveries up to 93.6-104.1%), feasibility for trace-level detection, and more convenient on-site application for cholesterol assay due to the superior enzymatic activity of NSC/Co1-xS. These compelling performance metrics lead us to posit that the NSC/Co1-xS-based nanozymic sensor offers a promising methodology for several practical applications, such as point-of-care diagnosis and workplace health evaluations.
Collapse
Affiliation(s)
- Jiani Li
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tingting Liu
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
| | - Hanzhang Ye
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Qi Wang
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yongli Ding
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ming Gao
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Wang
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Huili Wang
- College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
37
|
Luo W, Chu H, Wu X, Ma P, Wu Q, Song D. Disposable biosensor based on novel ternary Ru-PEI@PCN-333(Al) self-enhanced electrochemiluminescence system for on-site determination of caspase-3 activity. Talanta 2022; 239:123083. [PMID: 34861485 DOI: 10.1016/j.talanta.2021.123083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022]
Abstract
The number of death due to cancer-related diseases each year is at the alarming level and is constantly growing. Tools that can effectively and conveniently detect cancer cell apoptosis can play a significant role in cancer research, cancer therapy, and other related industries. Herein, we fabricated, for the first time, an ultrasensitive, disposable, self-enhanced off-on electrochemiluminescence (ECL) biosensor based on ternary Ru-PEI@PCN-333(Al) system to determine caspase-3 activity, the biomarker of apoptosis. The biosensor had a low detection limit of 0.017 pg/mL and was able to enhance the ECL emission and stability. A solid-state (SS) ECL strategy was adopted to overcome the relatively weak ECL emission due to the long distance between electrochemiluminophore and electrode surface. The analysis requires only one incubation step, which can significantly reduce the operational complexity and time. The biosensor had higher sensitivity, and the off-on ECL mode was achieved using caspase-3 as a switch. The on-site and rapid detection capability of the biosensor was achieved by the introduction of disposable screen-printed electrodes (SPEs). This study lays a foundation for the development of more advanced, ingenious, portable and reliable ECL devices for biosensing not only caspase-3, but also other bioanalytes.
Collapse
Affiliation(s)
- Weiwei Luo
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China; School of Chemistry and Life Science, Anshan Normal University, Ping'an Street 43, Anshan, 114005, China
| | - Hongyu Chu
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Sendai Street 126, Changchun, 130033, China
| | - Xinzhao Wu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| | - Qiong Wu
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Sendai Street 126, Changchun, 130033, China.
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| |
Collapse
|
38
|
Zhang YJ, Yang Y, Wang JM, Liang WB, Yuan R, Xiao DR. Electrochemiluminescence enhanced by isolating ACQphores in pyrene-based porous organic polymer: A novel ECL emitter for the construction of biosensing platform. Anal Chim Acta 2022; 1206:339648. [DOI: 10.1016/j.aca.2022.339648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
|
39
|
Mohan B, Kumar S, Xi H, Ma S, Tao Z, Xing T, You H, Zhang Y, Ren P. Fabricated Metal-Organic Frameworks (MOFs) as luminescent and electrochemical biosensors for cancer biomarkers detection. Biosens Bioelectron 2022; 197:113738. [PMID: 34740120 DOI: 10.1016/j.bios.2021.113738] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/03/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023]
Abstract
In the health domain, a major challenge is the detection of diseases using rapid and cost-effective techniques. Most of the existing cancer detection methods show poor sensitivity and selectivity and are time consuming with high cost. To overcome this challenge, we analyzed porous fabricated metal-organic frameworks (MOFs) that have better structures and porosities for enhanced biomarker sensing. Here, we summarize the use of fabricated MOF luminescence and electrochemical sensors in devices for cancer biomarker detection. Various strategies of fabrication and the role of fabricated materials in sensing cancer biomarkers have been studied and described. The structural properties, sensing mechanisms, roles of noncovalent interactions, limits of detection, modeling, advantages, and limitations of MOF sensors have been well-discussed. The study presents an innovative technique to detect the cancer biomarkers by the use of luminescence and electrochemical MOF sensors. In addition, the potential association studies have been opening the way for personalized patient treatments and the development of new cancer-detecting devices.
Collapse
Affiliation(s)
- Brij Mohan
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Sandeep Kumar
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Hui Xi
- School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Shixuan Ma
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Zhiyu Tao
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Tiantian Xing
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Yang Zhang
- School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China.
| | - Peng Ren
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China.
| |
Collapse
|
40
|
Parshamoni S, Viravaux C, Robert M, Mellot-Draznieks C, Chen G, Mialane P, Dolbecq A, Bonin J. Heterogenization of molecular cobalt catalysts in robust metal–organic frameworks for efficient photocatalytic CO 2 reduction. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01147f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient, selective and recyclable heterogeneous catalysts for photocatalytic CO2 reduction to CO under visible light irradiation are readily prepared by immobilization of cobalt molecular catalysts into Zr(iv)-based MOFs.
Collapse
Affiliation(s)
- Srinivasulu Parshamoni
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire (LEM), F-75013 Paris, France
| | - Cédric Viravaux
- Université Paris-Saclay, UVSQ, CNRS UMR 8180, Institut Lavoisier de Versailles, 78000 Versailles, France
| | - Marc Robert
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire (LEM), F-75013 Paris, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Caroline Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Sorbonne Université, PSL Research University, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Gui Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, P. R. China
| | - Pierre Mialane
- Université Paris-Saclay, UVSQ, CNRS UMR 8180, Institut Lavoisier de Versailles, 78000 Versailles, France
| | - Anne Dolbecq
- Université Paris-Saclay, UVSQ, CNRS UMR 8180, Institut Lavoisier de Versailles, 78000 Versailles, France
| | - Julien Bonin
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire (LEM), F-75013 Paris, France
| |
Collapse
|
41
|
Agrahari S, Kumar Gautam R, Kumar Singh A, Tiwari I. Nanoscale materials-based hybrid frameworks modified electrochemical biosensors for early cancer diagnostics: An overview of current trends and challenges. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
42
|
Han T, Cao Y, Chen HY, Zhu JJ. Versatile porous nanomaterials for electrochemiluminescence biosensing: Recent advances and future perspective. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
43
|
Huang Q, Luo F, Lin C, Wang J, Qiu B, Lin Z. Electrochemiluminescence biosensor for thrombin detection based on metal organic framework with electrochemiluminescence indicator embedded in the framework. Biosens Bioelectron 2021; 189:113374. [PMID: 34087726 DOI: 10.1016/j.bios.2021.113374] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/08/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022]
Abstract
Ru(dcbpy)32+-polyethyleneimine-L-lysine (Ru-PEI-L-lys) had been immobilized on metal organic frameworks (ZIF-8) to form an electrochemiluminescent(ECL) indicator (Ru-PEI-L-lys-ZIF-8). In this ECL indicator, PEI-L-lys is used as a co-reactant. Platinum nanoparticles (PtNPs) has been mixed with Ru-PEI-L-lys-ZIF-8 to form a thin film to increase the electron transfer rate and enhanced the ECL response of the system. The prepared material had been characterized carefully and been combined with high selectivity of aptamer to develop a ECL biosensor for thrombin detection. RecJf exonuclease (an ssDNA specific exonuclease) assistant target recycling amplification has been adopted to enhance the sensitivity of the system. The ECL response of the system has a linear relationship with logarithm of thrombin concentration in the range of 1 fM to 10 pM with a detection limit of 0.02 aM. This work not only provides a new strategy for the design and synthesis of high performance and stable ECL indicator, but also opens up a new approach for the development of highly sensitive ECL sensors for biological analysis.
Collapse
Affiliation(s)
- Qingqing Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Cuiying Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
44
|
Wang JM, Yao LY, Huang W, Yang Y, Liang WB, Yuan R, Xiao DR. Overcoming Aggregation-Induced Quenching by Metal-Organic Framework for Electrochemiluminescence (ECL) Enhancement: Zn-PTC as a New ECL Emitter for Ultrasensitive MicroRNAs Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44079-44085. [PMID: 34514796 DOI: 10.1021/acsami.1c13086] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) as traditional electrochemiluminescence (ECL) luminophores have been widely applied in the analysis field. However, their ECL intensity and efficiency are still limited due to the aggregation-induced quenching (ACQ) effect of PAHs. Hence, to overcome this limitation, we put forward a new strategy to increase the ECL intensity and efficiency by eliminating the ACQ effect of PAHs through the coordinative immobilization of PAHs within metal-organic frameworks (MOFs). As anticipated, the proof-of-concept experiment indicated that the coordinative immobilization of perylene-3,4,9,10-tetracarboxylate (PTC) into a Zn-PTC MOF could distinctly increase the ECL intensity and efficiency compared with H4PTC aggregates and H4PTC monomers. The reason for the ECL enhancement of Zn-PTC was that the immobilization of PTC within the MOF effectively amplified the distance between perylene rings of PTC ligands and thus eliminated the ACQ effect. Furthermore, the PTC into Zn-PTC was stacked in an edge-to-edge mode to form J-aggregation, which was also conducive to ECL enhancement. On the basis of the excellent ECL performance, we utilized Zn-PTC as a new ECL emitter combined with exonuclease III-stimulated target cycling and DNAzyme-assisted cycling dual amplification strategies to construct an ECL sensor for microRNA-21 detection, which had a wide signal response (100 aM to 100 pM) with a detection limit of 29.5 aM. Overall, this work represents a new and convenient method to overcome the ACQ effect of PAHs and boost the ECL performance, which opens a new horizon for developing high-performance ECL materials, thus offering more opportunities for building highly sensitive ECL biosensors.
Collapse
Affiliation(s)
- Jun-Mao Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Li-Ying Yao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Wei Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Yang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Dong-Rong Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
45
|
Ma X, Pang C, Li S, Li J, Wang M, Xiong Y, Su L, Luo J, Xu Z, Lin L. Biomimetic Synthesis of Ultrafine Mixed-Valence Metal-Organic Framework Nanowires and Their Application in Electrochemiluminescence Sensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41987-41996. [PMID: 34436854 DOI: 10.1021/acsami.1c10074] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks (MOFs) prepared via typical procedures tend to exhibit issues like poor water stability and poor conductivity, which hinder their application in electrochemical sensing. Herein, we report a strategy for the preparation of mixed-valence ultrafine one-dimensional Ce-MOF nanowires based on a micelle-assisted biomimetic route and subsequent investigation into their growth mechanism. The prepared mixed-valence Ce-MOF nanowires exhibited a typical size of ∼50 nm and were found to present good water stability and high conductivity. On this basis, we examined the introduction of these nanowires into the luminol hydrogen peroxide luminescence system and proposed a novel dual-route self-circulating electrochemiluminescence (ECL) catalytic amplification mechanism. Finally, in combination with molecular imprinting, a MOF-based ECL sensor was developed for the detection of trace amounts of imidacloprid in plant-derived foods. This sensor exhibited a linearity of 2-120 nM and a detection limit of 0.34 nM. Thus, we proposed not only a novel route to MOF downsizing but also a facile and robust methodology for the design of a MOF-based molecular imprinting ECL sensor.
Collapse
Affiliation(s)
- Xionghui Ma
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Chaohai Pang
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Shuhuai Li
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Mingyue Wang
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yuhao Xiong
- College of Food and Bioengineering, Hezhou University, Hezhou 542899, China
| | - Linjing Su
- College of Food and Bioengineering, Hezhou University, Hezhou 542899, China
| | - Jinhui Luo
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zhi Xu
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Liyun Lin
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| |
Collapse
|
46
|
Mei L, Zhao W, Zhang L, Zhang M, Song Y, Liang J, Sun Y, Chen S, Li H, Hong C. The application of the inexpensive and synthetically simple electrocatalyst CuFe-MoC@NG in immunosensors. Analyst 2021; 146:5421-5428. [PMID: 34355712 DOI: 10.1039/d1an00840d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, we used inexpensive and synthetically simple electrocatalysts as replacements for conventional precious metal materials to reduce hydrogen peroxide (H2O2). We for the first time developed N-doped graphene-coated CuFe@MoC using one-step calcination of binary Prussian blue analogues (PBAs) with Mo6+ cationic grafting precursors. The synergistic interaction of CuFe PBA and MoC increased the catalytically active sites for H2O2 reduction. The catalyst was optimized in terms of the ratio of CuFe PBA to Mo6+, PVP content, and calcination temperature to improve its catalytic activity. When it was used to construct an electrochemical immunosensor for carcinoembryonic antigen (CEA) detection, polydopamine (CuFe-MoC@NG@PDA) was coated on its outer surface to increase the antibody loading and MoS2-Au NPs were used as substrates to improve Ab1 immobilization and accelerate electron transfer at the electrode interface, thereby improving the response signal of the immunosensor. Its concentration was linearly related to the response signal from 10 fg mL-1 to 80 ng mL-1, and the lowest limit of detection was 3 fg mL-1. In addition, the immunosensor has acceptable selectivity and high stability. All data indicate that nanocomposites have electrocatalytic applications.
Collapse
Affiliation(s)
- Lisha Mei
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhu X, Xing H, Xue Y, Li J, Wang E, Dong S. Atom-Anchoring Strategy with Metal-Organic Frameworks for Highly Efficient Solid-State Electrochemiluminescence. Anal Chem 2021; 93:9628-9633. [PMID: 34213301 DOI: 10.1021/acs.analchem.1c01838] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A chemical fixation strategy originating from single-atom-anchoring with metal-organic frameworks as a carrying matrix was proposed for solid-state electrochemiluminescence (ECL). Herein, UiO-67(N) with the exposure of 2,2'-bipyridine (bpy) ligands could coordinate with Ru2+ to form a local structure of [Ru(bpy)3]2+ (Ru-UiO). The influence of the steric effect induced with different Ru sources was discussed. The as-obtained Ru-UiO exhibits high ECL intensity and outstanding stability in the presence of a coreactant at low concentrations. The proposed synthesis strategy may hold great potential for the synthesis of solid-state ECL materials and their further utilization in ECL analysis.
Collapse
Affiliation(s)
- Xinyang Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Huanhuan Xing
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Yuan Xue
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
48
|
Wang Q, Liu Y, Wang X, Wang F, Zhang L, Ge S, Yu J. Ternary Electrochemiluminescence Biosensor Based on DNA Walkers and AuPd Nanomaterials as a Coreaction Accelerator for the Detection of miRNA-141. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25783-25791. [PMID: 34034485 DOI: 10.1021/acsami.1c05368] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, a ternary electrochemiluminescence (ECL) sensing platform coupled with a multiple signal amplification strategy was proposed for ultrasensitive detection of miRNA-141. The initial signal amplification was achieved via three-dimensional reduced graphene oxide (3D-rGO)@Au nanoparticles (NPs) to form an excellent conductive layer. Then, AuPd NPs as a coreaction accelerator was introduced into the N-(4-aminobutyl)-N-(ethylisoluminol) (ABEI)-H2O2 system to facilitate the transformation from H2O2 to excess superoxide anion radicals (O2•-), which further amplified the ECL emission of ABEI, leading to a significant increase of the ECL signal. Meanwhile, in the presence of miRNA-141 and T7 Exonuclease (T7 Exo), the self-assembled DNA swing arm can be driven to walk autonomously. The DNA walker reaction could result in the release of numerous labeled luminophores, which could react to achieve an extremely weak ECL signal. Surprisingly, the established ECL sensor platform for the detection of miRNA-141 demonstrated excellent sensitivity with a low detection limit of 31.9 aM in the concentration range from 100 aM to 1 nM. Consequently, the designed strategy greatly improves the luminous efficiency of the ternary ECL system and provides a special approach for the detection of nucleic acids and biomarkers in clinical and biochemical analysis.
Collapse
Affiliation(s)
- Qian Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yaqi Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Xuefeng Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Fengyi Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, P. R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
49
|
Zhou H, Yu Q, Wang H, Zhu W, Liu J, Wang Z. A general scattering proximity immunoassay with the formation of dimer of gold nanoparticle. Talanta 2021; 233:122515. [PMID: 34215130 DOI: 10.1016/j.talanta.2021.122515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/02/2021] [Accepted: 05/09/2021] [Indexed: 11/29/2022]
Abstract
In this work, we structured a colorimetric ultrasensitive detection of carcinoembryonic antigen (CEA) based on a proximity hybridization-induced gold nanoparticles (Au NPs) dimers structure. Under the dark-field microscope, this method takes advantage of the distinctive and strong distance-relative localized surface plasmon resonance (LSPR) of Au NPs and their oriented assembly. DNA served as a medium showing wonderful flexibility to label antibody and Au NPs, and tune interparticle spacing as well. Two capture probes were formed by the integration of DNA labeled antibody (DNA1-Ab1 or DNA2-Ab2) and asymmetrically assembled DNA (DNA 3 or DNA 4)- Au NPs via partly hybridization between DNA sequences. In the presence of antigen, the reaction between target protein and capture probes could trigger the generation of immunocomplex which led to the proximity hybridization of the DNA1 and DNA2, and then change the distance of interparticle to form Au NP dimers and thus showed a different color under dark-field microscope. A limit of detection of 14.25 pg/mL was obtained for the detection of CEA, which indicated a promising sensing method in clinical diagnosis of protein biomarkers.
Collapse
Affiliation(s)
- Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Qiao Yu
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Haiyan Wang
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Wenjing Zhu
- Department of Pharmacy, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Jing Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, PR China.
| | - Zonghua Wang
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, PR China
| |
Collapse
|
50
|
Yao B, Zhang J, Fan Z, Ding Y, Zhou B, Yang R, Zhao J, Zhang K. Rational Engineering of the DNA Walker Amplification Strategy by Using a Au@Ti 3C 2@PEI-Ru(dcbpy) 32+ Nanocomposite Biosensor for Detection of the SARS-CoV-2 RdRp Gene. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19816-19824. [PMID: 33890471 PMCID: PMC8084271 DOI: 10.1021/acsami.1c04453] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/13/2021] [Indexed: 05/02/2023]
Abstract
The detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for preventing and controlling infectious diseases and disease treatment. In this work, a Au@Ti3C2@PEI-Ru(dcbpy)32+ nanocomposite-based electrochemiluminescence (ECL) biosensor was rationally designed, which realized sensitive detection of the RNA-dependent RNA polymerase (RdRp) gene of SARS-CoV-2. In addition, a DNA walker was also used to excise the hairpin DNAs under the action of Nb.BbvCI endonuclease. Furthermore, model DNA-Ag nanoclusters (model DNA-AgNCs) were used to quench the initial ECL signal. As a result, the ECL biosensor was used to sensitively detect the SARS-CoV-2 RdRp gene with a detection range of 1 fM to 100 pM and a limit of detection of 0.21 fM. It was indicated that the ECL biosensor had a great application potential for clinical medical detection. Furthermore, the DNA walker amplification also played a reliable candidate strategy for other detection methods.
Collapse
Affiliation(s)
- Bo Yao
- Key Laboratory of Flexible Electronics
(KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National
Synergetic Innovation Center for Advanced Materials (SICAM),
Nanjing Tech University
(NanjingTech), 30 South Puzhu Road, Nanjing 211816,
P.R. China
- NHC Key Laboratory of Nuclear
Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine,
Jiangsu Institute of Nuclear
Medicine, Wuxi, Jiangsu 214063, P.R.
China
| | - Jing Zhang
- Key Laboratory of Flexible Electronics
(KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National
Synergetic Innovation Center for Advanced Materials (SICAM),
Nanjing Tech University
(NanjingTech), 30 South Puzhu Road, Nanjing 211816,
P.R. China
| | - Zhenqiang Fan
- NHC Key Laboratory of Nuclear
Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine,
Jiangsu Institute of Nuclear
Medicine, Wuxi, Jiangsu 214063, P.R.
China
| | - Yuedi Ding
- NHC Key Laboratory of Nuclear
Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine,
Jiangsu Institute of Nuclear
Medicine, Wuxi, Jiangsu 214063, P.R.
China
| | - Bin Zhou
- NHC Key Laboratory of Nuclear
Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine,
Jiangsu Institute of Nuclear
Medicine, Wuxi, Jiangsu 214063, P.R.
China
| | - Runlin Yang
- NHC Key Laboratory of Nuclear
Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine,
Jiangsu Institute of Nuclear
Medicine, Wuxi, Jiangsu 214063, P.R.
China
| | - Jianfeng Zhao
- Key Laboratory of Flexible Electronics
(KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National
Synergetic Innovation Center for Advanced Materials (SICAM),
Nanjing Tech University
(NanjingTech), 30 South Puzhu Road, Nanjing 211816,
P.R. China
| | - Kai Zhang
- NHC Key Laboratory of Nuclear
Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine,
Jiangsu Institute of Nuclear
Medicine, Wuxi, Jiangsu 214063, P.R.
China
| |
Collapse
|