1
|
Persano L, Camposeo A, Matino F, Wang R, Natarajan T, Li Q, Pan M, Su Y, Kar-Narayan S, Auricchio F, Scalet G, Bowen C, Wang X, Pisignano D. Advanced Materials for Energy Harvesting and Soft Robotics: Emerging Frontiers to Enhance Piezoelectric Performance and Functionality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405363. [PMID: 39291876 DOI: 10.1002/adma.202405363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/24/2024] [Indexed: 09/19/2024]
Abstract
Piezoelectric energy harvesting captures mechanical energy from a number of sources, such as vibrations, the movement of objects and bodies, impact events, and fluid flow to generate electric power. Such power can be employed to support wireless communication, electronic components, ocean monitoring, tissue engineering, and biomedical devices. A variety of self-powered piezoelectric sensors, transducers, and actuators have been produced for these applications, however approaches to enhance the piezoelectric properties of materials to increase device performance remain a challenging frontier of materials research. In this regard, the intrinsic polarization and properties of materials can be designed or deliberately engineered to enhance the piezo-generated power. This review provides insights into the mechanisms of piezoelectricity in advanced materials, including perovskites, active polymers, and natural biomaterials, with a focus on the chemical and physical strategies employed to enhance the piezo-response and facilitate their integration into complex electronic systems. Applications in energy harvesting and soft robotics are overviewed by highlighting the primary performance figures of merits, the actuation mechanisms, and relevant applications. Key breakthroughs and valuable strategies to further improve both materials and device performance are discussed, together with a critical assessment of the requirements of next-generation piezoelectric systems, and future scientific and technological solutions.
Collapse
Affiliation(s)
- Luana Persano
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| | - Andrea Camposeo
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| | - Francesca Matino
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| | - Ruoxing Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, 53707, USA
| | - Thiyagarajan Natarajan
- Department of Materials Science, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Qinlan Li
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Pan
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Yewang Su
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sohini Kar-Narayan
- Department of Materials Science, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, Pavia, I-27100, Italy
| | - Giulia Scalet
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, Pavia, I-27100, Italy
| | - Chris Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, 53707, USA
| | - Dario Pisignano
- Dipartimento di Fisica "E. Fermi", Università di Pisa, Largo B. Pontecorvo 3, Pisa, I-56127, Italy
| |
Collapse
|
2
|
Valli D, Zhang H, Betušiak M, Romolini G, Meulemans A, Escudero D, Seth S, Zhao Q, Zhu Z, Bonn M, Belas E, Grill R, Wang H, Hofkens J, Debroye E. Enhancing the X-ray Sensitivity of Cs 2AgBiBr 6 Double Perovskite Single Crystals through Cation Engineering. ACS APPLIED OPTICAL MATERIALS 2024; 2:2075-2084. [PMID: 39479178 PMCID: PMC11519909 DOI: 10.1021/acsaom.4c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 11/02/2024]
Abstract
Owing to their outstanding optoelectronic properties, halide perovskite (HP) materials have been employed in a wide range of applications, including solar cells, light-emitting devices, and X-ray detectors. Among them, lead-free double HPs are characterized by enhanced stability and reduced toxicity compared with lead-based alternatives. Cs2AgBiBr6, in particular, has emerged as a promising candidate for direct X-ray detection. The detection sensitivity, on the other hand, cannot yet compete with that of lead-containing perovskites. Developing schemes to improve X-ray detection efficiency is critical for reducing radiation exposure in medical imaging applications. Here, we investigate the potential of controlled doping and cation substitution with either lanthanides or small organic cations to improve the X-ray detection performance of Cs2AgBiBr6. Our findings reveal that by growing the perovskite in a slightly Bi-poor and Eu-rich environment, the X-ray sensitivity significantly increases 7-fold (from 17 to 120 μC Gyair -1 cm-2) and simultaneously improves the phototo-dark current ratio (from 2.5 to 29). Additionally, Cs-site substitution with imidazolium remarkably enhances the sensitivity over 10-fold (180 μC Gyair -1 cm-2), and ammonium enhances the phototo-dark current ratio to 37. Terahertz photoconductivity measurements reveal a positive correlation between enhanced X-ray sensitivity and improved charge transport properties (e.g., increased scattering time and, thus, carrier mobility) by doping. This study outlines straightforward strategies for boosting X-ray detection and fundamental photoconductivity in lead-free double HP, with potential implications for broader optoelectronic applications.
Collapse
Affiliation(s)
- Donato Valli
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
| | - Heng Zhang
- Max
Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Marián Betušiak
- Institute
of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague 2 CZ-121 16, Czech Republic
| | - Giacomo Romolini
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
| | - Arne Meulemans
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
| | - Daniel Escudero
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
| | - Sudipta Seth
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
| | - Qing Zhao
- School
of Physics, Peking University, Yiheyuan Road No. 5, Haidian District, Beijing 100871 China
| | - Zonglong Zhu
- Department
of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Eduard Belas
- Institute
of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague 2 CZ-121 16, Czech Republic
| | - Roman Grill
- Institute
of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague 2 CZ-121 16, Czech Republic
| | - Hai Wang
- Max
Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
- Max
Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Elke Debroye
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
| |
Collapse
|
3
|
Walsh KM, Smith RT, Gamelin DR. Anion Exchange and Lateral Heterostructure Formation in Ferromagnetic PEA 2Cr(Cl,Br) 4 Two-Dimensional Perovskites. J Am Chem Soc 2024; 146:29159-29168. [PMID: 39383483 DOI: 10.1021/jacs.4c11490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Postsynthetic vapor-phase anion exchange in the ferromagnetic two-dimensional (2D) hybrid metal-halide perovskite, PEA2CrCl4 (PEA+ = phenethylammonium), is reported. Anion exchange using vaporous trimethylsilyl bromide (TMS-Br) is shown to drive complete conversion of solution-processed PEA2CrCl4 polycrystalline thin films to PEA2CrBr4. Low-temperature magnetic circular dichroism spectroscopy indicates ferromagnetic ordering in these PEA2CrCl4 and PEA2CrBr4 films. Via partial anion exchange of exfoliated flakes of PEA2CrCl4 single crystals, we demonstrate that it is possible to generate abrupt lateral PEA2CrCl4/PEA2CrBr4 magneto-heterointerfaces. Kinetic studies reveal that lateral heterostructure formation is dictated by rapid edge-site halide exchange followed by slower intralayer bromide diffusion, and there is negligible interlayer (3D) bromide or TMS-Br diffusion. The importance of the bulky PEA+ interlayer cation in suppressing 3D diffusion is highlighted by parallel anion-exchange experiments on MA2CrCl4 (MA+ = methylammonium), which instead show 3D exchange. Comparison of anion-exchange reactions in PEA2CrCl4, PEA2MnCl4, and PEA2PbCl4 shows that 2D bromide diffusion is slowest in PEA2CrCl4, attributed to the antiferrodistortive ordering found in this composition. In addition to demonstrating both postsynthetic composition control and heterostructure formation in ferromagnetic Cr-based 2D perovskites for the first time, these results also advance our fundamental understanding of ion-exchange processes in this relatively unexplored family of 2D perovskites, broadening opportunities for investigation and control of novel spin effects in low-dimensional metal-halide perovskites.
Collapse
Affiliation(s)
- Kelly M Walsh
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Rachel T Smith
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
4
|
Minussi FB, Araújo EB. On the prospects of high-entropy organic A-site halide perovskites. Phys Chem Chem Phys 2024; 26:26479-26488. [PMID: 39392699 DOI: 10.1039/d4cp02832e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
High entropy is a hot topic in materials research due to several interesting and surprising phenomena, of which one crucial aspect is entropic stabilization. As well-known materials for optoelectronic and electrochemical applications, halide perovskites (HPs) suffer from instability issues and would benefit greatly from increased configurational entropy. Despite that, only a few literature reports have connected HPs with the concept of high-entropy materials. Furthermore, mixing A-site cations, especially organic ones, to achieve maximized configurational entropies has not been explored in detail either in experimental or computational works. Aiming to obtain high-entropy organic A-site HPs, we synthesized and characterized a system of penta-organic A-site cations HP of general formula GAxFAxEAxACxMA1-4xPbI3. Results on the structure and phase transitions show that single-phase solid solutions can be obtained for x values up to almost 0.08, resulting in one of the highest configurational entropies ever reported in A-site-only mixed HPs. The high-entropy HPs also showed band gaps of about 1.5 eV, decreased ionic transport, and remarkable stability compared to the unsubstituted composition. The results consolidate the potential of maximizing the configurational entropy as a design parameter in HPs.
Collapse
Affiliation(s)
- F B Minussi
- Department of Physics and Chemistry, São Paulo State University, Ilha Solteira-SP, 15385-000, Brazil.
| | - E B Araújo
- Department of Physics and Chemistry, São Paulo State University, Ilha Solteira-SP, 15385-000, Brazil.
| |
Collapse
|
5
|
Wang Y, Cheng Z, Li J, Lv K, Li Z, Zhao H. Innovative Approaches to Large-Area Perovskite Solar Cell Fabrication Using Slit Coating. Molecules 2024; 29:4976. [PMID: 39459344 PMCID: PMC11509925 DOI: 10.3390/molecules29204976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024] Open
Abstract
Perovskite solar cells (PSCs) are gaining prominence in the photovoltaic industry due to their exceptional photoelectric performance and low manufacturing costs, achieving a significant power conversion efficiency of 26.4%, which closely rivals that of silicon solar cells. Despite substantial advancements, the effective area of high-efficiency PSCs is typically limited to about 0.1 cm2 in laboratory settings, with efficiency decreasing as the area increases. The limitation poses a major obstacle to commercialization, as large-area, high-quality perovskite films are crucial for commercial applications. This paper reviews current techniques for producing large-area perovskites, focusing on slot-die coating, a method that has attracted attention for its revolutionary potential in PSC manufacturing. Slot-die coating allows for precise control over film thickness and is compatible with roll-to-roll systems, making it suitable for large-scale applications. The paper systematically outlines the characteristics of slot-die coating, along with its advantages and disadvantages in commercial applications, suggests corresponding optimization strategies, and discusses future development directions to enhance the scalability and efficiency of PSCs, paving the way for broader commercial deployment.
Collapse
Affiliation(s)
| | | | | | | | - Zhenzhen Li
- College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China
| | - Hang Zhao
- College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
6
|
Baumler K, Schaak RE. Tutorial on Describing, Classifying, and Visualizing Common Crystal Structures in Nanoscale Materials Systems. ACS NANOSCIENCE AU 2024; 4:290-316. [PMID: 39430373 PMCID: PMC11487663 DOI: 10.1021/acsnanoscienceau.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 10/22/2024]
Abstract
Crystal structures underpin many aspects of nanoscience and technology, from the arrangements of atoms in nanoscale materials to the ways in which nanoscale materials form and grow to the structures formed when nanoscale materials interact with each other and assemble. The impacts of crystal structures and their relationships to one another in nanoscale materials systems are vast. This Tutorial provides nanoscience researchers with highlights of many crystal structures that are commonly observed in nanoscale materials systems, as well as an overview of the tools and concepts that help to derive, describe, visualize, and rationalize key structural features. The scope of materials focuses on the elements and their compounds that are most frequently encountered as nanoscale materials, including both close-packed and nonclose-packed structures. Examples include three-dimensionally and two-dimensionally bonded compounds related to the rocksalt, nickel arsenide, fluorite, zincblende, wurtzite, cesium chloride, and perovskite structures, as well as layered perovskites, intergrowth compounds, MXenes, transition metal dichalcogenides, and other layered materials. Ordered versus disordered structures, high entropy materials, and instructive examples of more complex structures, including copper sulfides, are also discussed to demonstrate how structural visualization tools can be applied. The overall emphasis of this Tutorial is on the ways in which complex structures are derived from simpler building blocks, as well as the similarities and interrelationships among certain classes of structures that, at first glance, may be interpreted as being very different. Identifying and appreciating these structural relationships is useful to nanoscience researchers, as it allows them to deconstruct complex structures into simpler components, which is important for designing, understanding, and using nanoscale materials.
Collapse
Affiliation(s)
- Katelyn
J. Baumler
- Department
of Chemistry, Department of Chemical Engineering,
and Materials Research
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Raymond E. Schaak
- Department
of Chemistry, Department of Chemical Engineering,
and Materials Research
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
7
|
Gupta S, Bhattacharyya S. Footprints of scanning probe microscopy on halide perovskites. Chem Commun (Camb) 2024; 60:11685-11701. [PMID: 39295277 DOI: 10.1039/d4cc03658a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Scanning probe microscopy (SPM) and advanced atomic force microscopy (AFM++) have become pivotal for nanoscale elucidation of the structural, optoelectronic and photovoltaic properties of halide perovskite single crystals and polycrystalline films, both under ex situ and in situ conditions. These techniques reveal detailed information about film topography, compositional mapping, charge distribution, near-field electrical behaviors, cation-lattice interactions, ion dynamics, piezoelectric characteristics, mechanical durability, thermal conductivity, and magnetic properties of doped perovskite lattices. This article outlines the advancements in SPM techniques that deepen our understanding of the optoelectronic and photovoltaic performances of halide perovskites.
Collapse
Affiliation(s)
- Shresth Gupta
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Sayan Bhattacharyya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| |
Collapse
|
8
|
Stergiou A, Leccioli L, Ricci D, Zaffalon ML, Brovelli S, Bombelli FB, Terraneo G, Metrangolo P, Cavallo G. Perovskite-Like Liquid-Crystalline Materials Based on Polyfluorinated Imidazolium Cations. Angew Chem Int Ed Engl 2024; 63:e202408570. [PMID: 38923136 DOI: 10.1002/anie.202408570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Hybrid Organic-Inorganic Halide Perovskites (HOIHPs) represent an emerging class of semiconducting materials, widely employed in a variety of optoelectronic applications. Despite their skyrocket growth in the last decade, a detailed understanding on their structure-property relationships is still missing. In this communication, we report two unprecedented perovskite-like materials based on polyfluorinated imidazolium cations. The two materials show thermotropic liquid crystalline behavior resulting in the emergence of stable mesophases. The manifold intermolecular F ⋅ ⋅ ⋅ F interactions are shown to be meaningful for the stabilization of both the solid- and liquid-crystalline orders of these perovskite-like materials. Moreover, the structure of the incorporated imidazolium cation was found to tune the properties of the liquid crystalline phase. Collectively, these results may pave the way for the design of a new class of halide perovskite-based soft materials.
Collapse
Affiliation(s)
- Anastasios Stergiou
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131, Milano, Italy
| | - Leonardo Leccioli
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131, Milano, Italy
| | - Davide Ricci
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131, Milano, Italy
| | - Matteo L Zaffalon
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Via R. Cozzi 55, 20125, Milano, Italy
| | - Sergio Brovelli
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Via R. Cozzi 55, 20125, Milano, Italy
| | - Francesca Baldelli Bombelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131, Milano, Italy
| | - Giancarlo Terraneo
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131, Milano, Italy
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131, Milano, Italy
| | - Gabriella Cavallo
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131, Milano, Italy
| |
Collapse
|
9
|
Han K, Jin J, Wang Y, Zhou X, Sun Y, Chen L, Xia Z. Hybrid Eu(II)-bromide scintillators with efficient 5d-4f bandgap transition for X-ray imaging. LIGHT, SCIENCE & APPLICATIONS 2024; 13:222. [PMID: 39209821 PMCID: PMC11362449 DOI: 10.1038/s41377-024-01589-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Luminescent metal halides are attracting growing attention as scintillators for X-ray imaging in safety inspection, medical diagnosis, etc. Here we present brand-new hybrid Eu(II)-bromide scintillators, 1D type [Et4N]EuBr3·MeOH and 0D type [Me4N]6Eu5Br16·MeOH, with spin-allowed 5d-4f bandgap transition emission toward simplified carrier transport during scintillation process. The 1D/0D structures with edge/face -sharing [EuBr6]4- octahedra further contribute to lowing bandgaps and enhancing quantum confinement effect, enabling efficient scintillation performance (light yield ~73100 ± 800 Ph MeV-1, detect limit ~18.6 nGy s-1, X-ray afterglow ~ 1% @ 9.6 μs). We demonstrate the X-ray imaging with 27.3 lp mm-1 resolution by embedding Eu(II)-based scintillators into AAO film. Our results create the new family of low-dimensional rare-earth-based halides for scintillation and related optoelectronic applications.
Collapse
Affiliation(s)
- Kai Han
- The State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Centre of Special Optical Fiber Materials and Devices, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jiance Jin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yuzhen Wang
- The State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Centre of Special Optical Fiber Materials and Devices, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
| | - Xinquan Zhou
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yongsheng Sun
- The State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Centre of Special Optical Fiber Materials and Devices, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
| | - Lihan Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zhiguo Xia
- The State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Centre of Special Optical Fiber Materials and Devices, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China.
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
10
|
Wierzbowska M, Wojtkowiak K, Mikłas A, Jezierska A. Consequences of the Pb-S Bond Formation for Lead Halide Perovskites. Chemistry 2024:e202402205. [PMID: 39158120 DOI: 10.1002/chem.202402205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/20/2024]
Abstract
Lead halide perovskites are structurally not stable due to their ionic bonds. Using sulfur agents in the crystal growth improves the stability and performance of the photovoltaic and light-emitting devices. In this theoretical work, we use a small toy S-radical in place of A cation in the bulk of lead iodide perovskite, and highlight the significance of the Pb-S covalent-double-bond formation for: the charge redistribution on the neighboring bonds that also turn to be covalent, phase transformation to a stable non-perovskite structure, and superior optoelectronic properties. The chemical analysis was performed with the Quantum Theory of Atoms In Molecules (QTAIM) and Non-Covalent Interactions (NCI) index. Excitonic properties were obtained from the solution of ab initio Bethe-Salpeter equation. Presence of the spin-orbit coupling triggers an interplay between the Frenkel and charge-transfer multiexcitons, switching between the photovoltaic and laser applications. Multiexcitons obey the exciton-fission preconditions.
Collapse
Affiliation(s)
- Małgorzata Wierzbowska
- Institute of High Pressure Physics, Polish Academy of Sciences, ul. Sokołowska 29/37, 01-142, Warsaw, Poland
| | - Kamil Wojtkowiak
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Alicja Mikłas
- Institute of High Pressure Physics, Polish Academy of Sciences, ul. Sokołowska 29/37, 01-142, Warsaw, Poland
| | - Aneta Jezierska
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
11
|
Ma JJ, Zheng JJ, Chen Y, Ren Q, Zhang J, Wang BT. Intrinsic ultralow lattice thermal conductivity in lead-free halide perovskites Cs 3Bi 2X 9 (X = Br, I). Phys Chem Chem Phys 2024; 26:21801-21809. [PMID: 39101765 DOI: 10.1039/d4cp02005g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Lead-free halide perovskites have recently garnered significant attention due to their rich structural diversity and exceptionally ultralow lattice thermal conductivity (κL). Here, we employ first-principles calculations in conjunction with self-consistent phonon theory and Boltzmann transport equations to investigate the crystal structure, electronic structure, mechanical properties, and κLs of two typical vacancy-ordered halide perovskites, denoted with the general formula Cs3Bi2X9 (X = Br, I). Ultralow κLs of 0.401 and 0.262 W mK-1 at 300 K are predicted for Cs3Bi2Br9 and Cs3Bi2I9, respectively. Our findings reveal that the ultralow κLs are mainly associated with the Cs rattling-like motion, vibrations of halide polyhedral frameworks, and strong scattering in the acoustic and low-frequency optical phonon branches. The structural analysis indicates that these phonon dynamic properties are closely relevant to the bonding hierarchy. The presence of the extended Bi-X antibonding states at the valence band maximum contributes to the soft elastic lattice and low phonon group velocities. Compared to Cs3Bi2Br9, the face-sharing feature and weaker bond strength in Cs3Bi2I9 lead to a softer elasticity modulus and stronger anharmonicity. Additionally, we demonstrate the presence of wave-like κC in Cs3Bi2X9 by evaluating the coherent contribution. Our work provides the physical microscopic mechanisms of the wave-like κC in two typical lead-free halide perovskites, which are beneficial to designing intrinsic materials with the feature of ultralow κL.
Collapse
Affiliation(s)
- Jiang-Jiang Ma
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China.
| | - Jing-Jing Zheng
- Department of Physics, Taiyuan Normal University, Jinzhong, 030619, China
| | - Yuxi Chen
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China.
| | - Qingyong Ren
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
- Spallation Neutron Source Science Center, Dongguan 523803, China
- Guangdong Provincial Key Laboratory of Extreme Conditions, Dongguan, 523803, China
| | - Junfeng Zhang
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China.
- College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
| | - Bao-Tian Wang
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
- Spallation Neutron Source Science Center, Dongguan 523803, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
12
|
Tang W, Xing G, Xu X, Chen B. Emerging Hybrid Metal Halide Glasses for Sensing and Displays. SENSORS (BASEL, SWITZERLAND) 2024; 24:5258. [PMID: 39204954 PMCID: PMC11360173 DOI: 10.3390/s24165258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Glassy hybrid metal halides have emerged as promising materials in recent years due to their high structural adjustability and low melting points, offering unique merits that overcome the limitations of their crystalline and polycrystalline counterparts as well as other conventional amorphous semiconductors. This review article comprehensively explores the structural characteristics, electronic properties, and chemical coordination of hybrid metal halides, emphasizing their role in the glass transition from the crystalline phase to the amorphous phase. We examine the intrinsic disorder within the amorphous phase that facilitates light transmission and discuss recent advances in device architecture and interface engineering by optimizing the charge transport of glassy hybrid metal halides for high-quality applications. With full theoretical understanding and rational structural design, potential applications in displays, information storage, X-ray imaging, and sensing are highlighted, underscoring the transformative impact of glassy hybrid metal halides in the fields of materials science and information science.
Collapse
Affiliation(s)
- Wei Tang
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Guansheng Xing
- School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xiuwen Xu
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Bing Chen
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
13
|
Pols M, Brocks G, Calero S, Tao S. Temperature-Dependent Chirality in Halide Perovskites. J Phys Chem Lett 2024; 15:8057-8064. [PMID: 39083667 PMCID: PMC11318036 DOI: 10.1021/acs.jpclett.4c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
With the use of chiral organic cations in two-dimensional metal halide perovskites, chirality can be induced in the metal halide layers, which results in semiconductors with intriguing chiral optical and spin-selective transport properties. The chiral properties strongly depend upon the temperature, despite the basic crystal symmetry not changing fundamentally. We identify a set of descriptors that characterize the chirality of metal halide perovskites, such as MBA2PbI4, and study their temperature dependence using molecular dynamics simulations with on-the-fly machine-learning force fields obtained from density functional theory calculations. We find that, whereas the arrangement of organic cations remains chiral upon increasing the temperature, the inorganic framework loses this property more rapidly. We ascribe this to the breaking of hydrogen bonds that link the organic with the inorganic substructures, which leads to a loss of chirality transfer.
Collapse
Affiliation(s)
- Mike Pols
- Materials
Simulation & Modelling, Department of Applied Physics and Science
Education, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands
| | - Geert Brocks
- Materials
Simulation & Modelling, Department of Applied Physics and Science
Education, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands
- Computational
Chemical Physics, Faculty of Science and Technology and MESA+ Institute
for Nanotechnology, University of Twente, 7500 AE Enschede, Netherlands
| | - Sofía Calero
- Materials
Simulation & Modelling, Department of Applied Physics and Science
Education, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands
| | - Shuxia Tao
- Materials
Simulation & Modelling, Department of Applied Physics and Science
Education, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands
| |
Collapse
|
14
|
Minussi FB, Silva RM, Moraes JCS, Araújo EB. Organic cations in halide perovskite solid solutions: exploring beyond size effects. Phys Chem Chem Phys 2024; 26:20770-20784. [PMID: 39072678 DOI: 10.1039/d4cp02419b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Halide perovskites are a class of materials of consolidated optoelectronic and electrochemical applications, reaching efficiencies compared to established materials in respective fields. In this scenario, the design and understanding of composition-structure-property relations is imperative. In solid solutions containing mixed cations, some direct relations between the sizes of the substituents and the properties of perovskites are generally observed. However, in several cases, these relations are not observed, implying that other characteristics of these cations play a major role. Despite its importance, this understanding has not been comprehensively deepened. To address this issue, we synthesized and characterized the structure, electrical behavior, and stability of methylammonium lead iodide-based perovskites with equal amounts of the substituents guanidinium, ethylammonium, and acetamidinium. These three large organic cations have essentially equal sizes but other remarkably different characteristics, such as the number of N-H bonds, intrinsic dipole moment, and order of C-N bonds. Herein, we show that these cations have dramatically different effects over important fundamental and applied properties of resulting perovskites, including the orthorhombic-to-tetragonal and tetragonal-to-cubic phase transitions, microstructural development, ionic conductivity, I-V hysteresis, electronic carrier mobility, and stability against light-induced degradation. These effects are correlated with the characteristics of the large substituent cations and help pave the way for a better rational chemical design of halide perovskites.
Collapse
Affiliation(s)
- F B Minussi
- Department of Physics and Chemistry, São Paulo State University, Ilha Solteira, 15385-007, SP, Brazil.
| | - R M Silva
- Department of Electrical Engineering, São Paulo State University, Ilha Solteira, 15385-007, SP, Brazil
| | - J C S Moraes
- Department of Physics and Chemistry, São Paulo State University, Ilha Solteira, 15385-007, SP, Brazil.
| | - E B Araújo
- Department of Physics and Chemistry, São Paulo State University, Ilha Solteira, 15385-007, SP, Brazil.
| |
Collapse
|
15
|
Muzzillo CP, Ciobanu CV, Moore DT. High-entropy alloy screening for halide perovskites. MATERIALS HORIZONS 2024; 11:3662-3694. [PMID: 38767287 DOI: 10.1039/d4mh00464g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
As the concept of high-entropy alloying (HEA) extends beyond metals, new materials screening methods are needed. Halide perovskites (HP) are a prime case study because greater stability is needed for photovoltaics applications, and there are 322 experimentally observed HP end-members, which leads to more than 1057 potential alloys. We screen HEAHP by first calculating the configurational entropy of 106 equimolar alloys with experimentally observed end-members. To estimate enthalpy at low computational cost, we turn to the delta-lattice parameter approach, a well-known method for predicting III-V alloy miscibility. To generalize the approach for non-cubic crystals, we introduce the parameter of unit cell volume coefficient of variation (UCV), which does a good job of predicting the experimental HP miscibility data. We use plots of entropy stabilization versus UCV to screen promising alloys and identify 102 HEAHP of interest.
Collapse
Affiliation(s)
| | | | - David T Moore
- National Renewable Energy Laboratory, Golden, CO, USA.
| |
Collapse
|
16
|
Inico E, Saetta C, Di Liberto G. Impact of quantum size effects to the band gap of catalytic materials: a computational perspective. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:361501. [PMID: 38830369 DOI: 10.1088/1361-648x/ad53b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
The evolution of nanotechnology has facilitated the development of catalytic materials with controllable composition and size, reaching the sub-nanometer limit. Nowadays, a viable strategy for tailoring and optimizing the catalytic activity involves controlling the size of the catalyst. This strategy is underpinned by the fact that the properties and reactivity of objects with dimensions on the order of nanometers can differ from those of the corresponding bulk material, due to the emergence of quantum size effects. Quantum size effects have a deep influence on the band gap of semiconducting catalytic materials. Computational studies are valuable for predicting and estimating the impact of quantum size effects. This perspective emphasizes the crucial role of modeling quantum size effects when simulating nanostructured catalytic materials. It provides a comprehensive overview of the fundamental principles governing the physics of quantum confinement in various experimentally observable nanostructures. Furthermore, this work may serve as a tutorial for modeling the electronic gap of simple nanostructures, highlighting that when working at the nanoscale, the finite dimensions of the material lead to an increase of the band gap because of the emergence of quantum confinement. This aspect is sometimes overlooked in computational chemistry studies focused on surfaces and nanostructures.
Collapse
Affiliation(s)
- Elisabetta Inico
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Clara Saetta
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Giovanni Di Liberto
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| |
Collapse
|
17
|
Lim AR. Exploring the potential applications of lead-free organic-inorganic perovskite type [NH 3(CH 2) nNH 3]MCl 4 (n = 2, 3, 4, 5, and 6; M = Mn, Co, Cu, Zn, and Cd) crystals. Sci Rep 2024; 14:11808. [PMID: 38783064 PMCID: PMC11116409 DOI: 10.1038/s41598-024-62705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
The organic-inorganic hybrid perovskite compounds have been extensively studied since the dawn of a new era in the field of photovoltaic applications. Up to now, perovskites have proven to be the most promising in terms of power conversion efficiency; however, their main disadvantages for use in solar cells are toxicity and chemical instability. Therefore, it is essential to develop a hybrid perovskite that can be replaced with lead-free materials. This review focuses on the possibility of applying lead-free organic-inorganic perovskite types [NH3(CH2)nNH3]MCl4 (n = 2, 3, 4, 5, and 6; M = Mn, Co, Cu, Zn, and Cd) crystals. We are seeking organic-inorganic hybrid perovskite materials with very high temperature stability or without phase transition temperature, and thermal stability. Thus, by considering the characteristics according to the methylene lengths and the various transition metals, we aim to identify improved materials meeting the criteria mentioned above. Consequently, the physicochemical properties of organic-inorganic hybrid perovskite [NH3(CH2)nNH3]MCl4 regarding the effects of various transition metal ions of the anion and the methylene lengths of the cation are expected to promote the development and application of lead-free hybrid perovskite solar cells.
Collapse
Affiliation(s)
- Ae Ran Lim
- Graduate School of Carbon Convergence Engineering, Jeonju University, Jeonju, 55069, South Korea.
- Department of Science Education, Jeonju University, Jeonju, 55069, South Korea.
| |
Collapse
|
18
|
Hazra V, Mandal A, Bhattacharyya S. Optoelectronic insights of lead-free layered halide perovskites. Chem Sci 2024; 15:7374-7393. [PMID: 38784758 PMCID: PMC11110173 DOI: 10.1039/d4sc01429d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Two-dimensional organic-inorganic halide perovskites have emerged as promising candidates for a multitude of optoelectronic technologies, owing to their versatile structure and electronic properties. The optical and electronic properties are harmoniously integrated with both the inorganic metal halide octahedral slab, and the organic spacer layer. The inorganic octahedral layers can also assemble into periodically stacked nanoplatelets, which are interconnected by the organic ammonium cation, resulting in the formation of a superlattice or superstructure. In this perspective, we explore the structural, electronic, and optical properties of lead-free hybrid halides, and the layered halide perovskite single crystals and nanostructures, expanding our understanding of the diverse applications enabled by these versatile structures. The optical properties of the layered halide perovskite single crystals and superlattices are a function of the organic spacer layer thickness, the metal center with either divalent or a combination of monovalent and trivalent cations, and the halide composition. The distinct absorption and emission features are guided by the structural deformation, electron-phonon coupling, and the polaronic effect. Among the diverse optoelectronic possibilities, we have focused on the photodetection capability of layered halide perovskite single crystals, and elucidated the descriptors such as excitonic band gap, effective mass, carrier mobility, Rashba splitting, and the spin texture that decides the direct component of the optical transitions.
Collapse
Affiliation(s)
- Vishwadeepa Hazra
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Arnab Mandal
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| |
Collapse
|
19
|
He J, Li H, Liu C, Wang X, Zhang Q, Liu J, Wang M, Liu Y. Hot-Injection Synthesis of Cesium Lead Halide Perovskite Nanowires with Tunable Optical Properties. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2173. [PMID: 38793240 PMCID: PMC11123179 DOI: 10.3390/ma17102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024]
Abstract
Metal halide perovskite semiconductors have emerged as promising materials for various optoelectronic applications due to their unique crystal structure and outstanding properties. Among different forms, perovskite nanowires (NWs) offer distinct advantages, including a high aspect ratio, superior crystallinity, excellent light absorption, and carrier transport properties, as well as unique anisotropic luminescence properties. Understanding the formation mechanism and structure-property relationship of perovskite NWs is crucial for exploring their potential in optoelectronic devices. In this study, we successfully synthesized all-inorganic halide perovskite NWs with high aspect ratios and an orthorhombic crystal phase using the hot-injection method with controlled reaction conditions and surface ligands. These NWs exhibit excellent optical and electrical properties. Moreover, precise control over the halogen composition through a simple anion exchange process enables the tuning of the bandgap, leading to fluorescence emission, covering a wide range of colors across the visible spectrum. Consequently, these perovskite NWs hold great potential for efficient energy conversion and catalytic applications in photoelectrocatalysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yong Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering (ISMSE), Wuhan University of Technology (WUT), Wuhan 430070, China; (J.H.); (H.L.); (C.L.); (X.W.); (Q.Z.); (J.L.); (M.W.)
| |
Collapse
|
20
|
Moon J, Mehta Y, Gundogdu K, So F, Gu Q. Metal-Halide Perovskite Lasers: Cavity Formation and Emission Characteristics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211284. [PMID: 36841548 DOI: 10.1002/adma.202211284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Hybrid metal-halide perovskites (MHPs) have shown remarkable optoelectronic properties as well as facile and cost-effective processability. With the success of MHP solar cells and light-emitting diodes, MHPs have also exhibited great potential as gain media for on-chip lasers. However, to date, stable operation of optically pumped MHP lasers and electrically driven MHP lasers-an essential requirement for MHP laser's insertion into chip-scale photonic integrated circuits-is not yet demonstrated. The main obstacles include the instability of MHPs in the atmosphere, rudimentary MHP laser cavity patterning methods, and insufficient understanding of emission mechanisms in MHP materials and cavities. This review aims to provide a detailed overview of different strategies to improve the intrinsic properties of MHPs in the atmosphere and to establish an optimal MHP cavity patterning method. In addition, this review discusses different emission mechanisms in MHP materials and cavities and how to distinguish them.
Collapse
Affiliation(s)
- Jiyoung Moon
- Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Yash Mehta
- Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Kenan Gundogdu
- Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
- Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Franky So
- Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Qing Gu
- Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
- Physics, North Carolina State University, Raleigh, NC, 27695, USA
- Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
21
|
Cao R, Sun K, Liu C, Mao Y, Guo W, Ouyang P, Meng Y, Tian R, Xie L, Lü X, Ge Z. Structurally Flexible 2D Spacer for Suppressing the Electron-Phonon Coupling Induced Non-Radiative Decay in Perovskite Solar Cells. NANO-MICRO LETTERS 2024; 16:178. [PMID: 38656466 PMCID: PMC11043286 DOI: 10.1007/s40820-024-01401-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells (PSCs). Via A-site cation engineering, a weaker electron-phonon coupling in perovskite has been achieved by introducing the structurally soft cyclohexane methylamine (CMA+) cation, which could serve as a damper to alleviate the mechanical stress caused by lattice oscillations, compared to the rigid phenethyl methylamine (PEA+) analog. It demonstrates a significantly lower non-radiative recombination rate, even though the two types of bulky cations have similar chemical passivation effects on perovskite, which might be explained by the suppressed carrier capture process and improved lattice geometry relaxation. The resulting PSCs achieve an exceptional power conversion efficiency (PCE) of 25.5% with a record-high open-circuit voltage (VOC) of 1.20 V for narrow bandgap perovskite (FAPbI3). The established correlations between electron-phonon coupling and non-radiative decay provide design and screening criteria for more effective passivators for highly efficient PSCs approaching the Shockley-Queisser limit.
Collapse
Affiliation(s)
- Ruikun Cao
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Kexuan Sun
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Chang Liu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
| | - Yuhong Mao
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, People's Republic of China
| | - Wei Guo
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Ping Ouyang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Yuanyuan Meng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Ruijia Tian
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Lisha Xie
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, People's Republic of China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
22
|
Trifiletti V, Massetti M, Calloni A, Luong S, Pianetti A, Milita S, Schroeder BC, Bussetti G, Binetti S, Fabiano S, Fenwick O. Bismuth-Based Perovskite Derivates with Thermal Voltage Exceeding 40 mV/K. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:5408-5417. [PMID: 38595774 PMCID: PMC11000217 DOI: 10.1021/acs.jpcc.3c06324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
Heat is an inexhaustible source of energy, and it can be exploited by thermoelectronics to produce electrical power or electrical responses. The search for a low-cost thermoelectric material that could achieve high efficiencies and can also be straightforwardly scalable has turned significant attention to the halide perovskite family. Here, we report the thermal voltage response of bismuth-based perovskite derivates and suggest a path to increase the electrical conductivity by applying chalcogenide doping. The films were produced by drop-casting or spin coating, and sulfur was introduced in the precursor solution using bismuth triethylxanthate. The physical-chemical analysis confirms the substitution. The sulfur introduction caused resistivity reduction by 2 orders of magnitude, and the thermal voltage exceeded 40 mV K-1 near 300 K in doped and undoped bismuth-based perovskite derivates. X-ray diffraction, Raman spectroscopy, and grazing-incidence wide-angle X-ray scattering were employed to confirm the structure. X-ray photoelectron spectroscopy, elemental analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were employed to study the composition and morphology of the produced thin films. UV-visible absorbance, photoluminescence, inverse photoemission, and ultraviolet photoelectron spectroscopies have been used to investigate the energy band gap.
Collapse
Affiliation(s)
- Vanira Trifiletti
- Department
of Materials Science and L-NESS, University
of Milano-Bicocca, Via
Cozzi 55, I-20125 Milan, Italy
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Matteo Massetti
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-601
74, Sweden
| | - Alberto Calloni
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano, Italy
| | - Sally Luong
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Andrea Pianetti
- Department
of Materials Science and L-NESS, University
of Milano-Bicocca, Via
Cozzi 55, I-20125 Milan, Italy
| | - Silvia Milita
- Institute
for Microelectronics and Microsystems (CNRIMM), Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Bob C. Schroeder
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Gianlorenzo Bussetti
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano, Italy
| | - Simona Binetti
- Department
of Materials Science and L-NESS, University
of Milano-Bicocca, Via
Cozzi 55, I-20125 Milan, Italy
| | - Simone Fabiano
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-601
74, Sweden
| | - Oliver Fenwick
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
23
|
Li H, He J, Wang X, Liu Q, Luo X, Wang M, Liu J, Liu C, Liu Y. Synthesis of Size-Adjustable CsPbBr 3 Perovskite Quantum Dots for Potential Photoelectric Catalysis Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1607. [PMID: 38612121 PMCID: PMC11012633 DOI: 10.3390/ma17071607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
As a direct band gap semiconductor, perovskite has the advantages of high carrier mobility, long charge diffusion distance, high defect tolerance and low-cost solution preparation technology. Compared with traditional metal halide perovskites, which regulate energy band and luminescence by changing halogen, perovskite quantum dots (QDs) have a surface effect and quantum confinement effect. Based on the LaMer nucleation growth theory, we have synthesized CsPbBr3 QDs with high dimensional homogeneity by creating an environment rich in Br- ions based on the general thermal injection method. Moreover, the size of the quantum dots can be adjusted by simply changing the reaction temperature and the concentration of Br- ions in the system, and the blue emission of strongly confined pure CsPbBr3 perovskite is realized. Finally, optical and electrochemical tests suggested that the synthesized quantum dots have the potential to be used in the field of photocatalysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yong Liu
- International School of Materials Science and Engineering (ISMSE), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (H.L.); (J.H.); (X.W.); (Q.L.); (X.L.); (M.W.); (J.L.); (C.L.)
| |
Collapse
|
24
|
Simenas M, Gagor A, Banys J, Maczka M. Phase Transitions and Dynamics in Mixed Three- and Low-Dimensional Lead Halide Perovskites. Chem Rev 2024; 124:2281-2326. [PMID: 38421808 PMCID: PMC10941198 DOI: 10.1021/acs.chemrev.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/15/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Lead halide perovskites are extensively investigated as efficient solution-processable materials for photovoltaic applications. The greatest stability and performance of these compounds are achieved by mixing different ions at all three sites of the APbX3 structure. Despite the extensive use of mixed lead halide perovskites in photovoltaic devices, a detailed and systematic understanding of the mixing-induced effects on the structural and dynamic aspects of these materials is still lacking. The goal of this review is to summarize the current state of knowledge on mixing effects on the structural phase transitions, crystal symmetry, cation and lattice dynamics, and phase diagrams of three- and low-dimensional lead halide perovskites. This review analyzes different mixing recipes and ingredients providing a comprehensive picture of mixing effects and their relation to the attractive properties of these materials.
Collapse
Affiliation(s)
- Mantas Simenas
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Anna Gagor
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, PL-50-422 Wroclaw, Poland
| | - Juras Banys
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Miroslaw Maczka
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, PL-50-422 Wroclaw, Poland
| |
Collapse
|
25
|
Choi MJ, Lee JW, Jang HW. Strain Engineering in Perovskites: Mutual Insight on Oxides and Halides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308827. [PMID: 37996977 DOI: 10.1002/adma.202308827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Perovskite materials have garnered significant attention over the past decades due to their applications, not only in electronic materials, such as dielectrics, piezoelectrics, ferroelectrics, and superconductors but also in optoelectronic devices like solar cells and light emitting diodes. This interest arises from their versatile combinations and physiochemical tunability. While strain engineering is a recognized powerful tool for tailoring material properties, its collaborative impact on both oxides and halides remains understudied. Herein, strain engineering in perovskites for energy conversion devices, providing mutual insight into both oxides and halides is discussed. The various experimental methods are presented for applying strain by using thermal mismatch, lattice mismatch, defects, doping, light illumination, and flexible substrates. In addition, the main factors that are influenced by strain, categorized as structure (e.g., symmetry breaking, octahedral distortion), bandgap, chemical reactivity, and defect formation energy are described. After that, recent progress in strain engineering for perovskite oxides and halides for energy conversion devices is introduced. Promising methods for enhancing the performance of energy conversion devices using perovskites through strain engineering are suggested.
Collapse
Affiliation(s)
- Min-Ju Choi
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung-Woo Lee
- Department of Materials Science and Engineering, Hongik University, Sejong, 30016, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
| |
Collapse
|
26
|
Dávid A, Morát J, Chen M, Gao F, Fahlman M, Liu X. Mapping Uncharted Lead-Free Halide Perovskites and Related Low-Dimensional Structures. MATERIALS (BASEL, SWITZERLAND) 2024; 17:491. [PMID: 38276430 PMCID: PMC10819976 DOI: 10.3390/ma17020491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Research on perovskites has grown exponentially in the past decade due to the potential of methyl ammonium lead iodide in photovoltaics. Although these devices have achieved remarkable and competitive power conversion efficiency, concerns have been raised regarding the toxicity of lead and its impact on scaling up the technology. Eliminating lead while conserving the performance of photovoltaic devices is a great challenge. To achieve this goal, the research has been expanded to thousands of compounds with similar or loosely related crystal structures and compositions. Some materials are "re-discovered", and some are yet unexplored, but predictions suggest that their potential applications may go beyond photovoltaics, for example, spintronics, photodetection, photocatalysis, and many other areas. This short review aims to present the classification, some current mapping strategies, and advances of lead-free halide double perovskites, their derivatives, lead-free perovskitoid, and low-dimensional related crystals.
Collapse
Affiliation(s)
- Anna Dávid
- Laboratory of Organic Electronics (LOE), Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden;
| | - Julia Morát
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden; (J.M.); (M.C.); (F.G.)
| | - Mengyun Chen
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden; (J.M.); (M.C.); (F.G.)
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden; (J.M.); (M.C.); (F.G.)
| | - Mats Fahlman
- Laboratory of Organic Electronics (LOE), Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden;
| | - Xianjie Liu
- Laboratory of Organic Electronics (LOE), Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden;
| |
Collapse
|
27
|
Zhang K, Zhang L, Saravana Karthikeyan SKS, Kong CY, Zhang F, Guo X, Dang NN, Ramaraj SG, Liu X. Structural, electronic, optical, elastic, thermodynamic and thermal transport properties of Cs 2AgInCl 6 and Cs 2AgSbCl 6 double perovskite semiconductors using a first-principles study. Phys Chem Chem Phys 2023; 25:31848-31868. [PMID: 37968998 DOI: 10.1039/d3cp03795a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
In this study, we employ the framework of first-principles density functional theory (DFT) computations to investigate the physical, electrical, bandgap and thermal conductivity of Cs2AgInCl6-CAIC (type I) and Cs2AgSbCl6-CASC (type II) using the GGA-PBE method. CAIC possesses a direct band gap energy of 1.812 eV, while CASC demonstrates an indirect band gap energy of 0.926 eV. The CAIC and CASC exhibit intriguingly reduced thermal conductivity, which can be attributed to the notable reduction in their respective Debye temperatures, measuring 182 K and 135 K, respectively. The Raman active modes computed under ambient conditions have been compared with real-world data, showing excellent agreement. The thermal conductivity values of CAIC and CASC compounds exhibit quantum mechanical characteristics, with values of 0.075 and 0.25 W m-1 K-1, respectively, at 300 K. It is foreseen that these outcomes will generate investigations concerning phosphors and diodes that rely on single emitters, with the aim of advancing lighting and display technologies in the forthcoming generations.
Collapse
Affiliation(s)
- Keqing Zhang
- School of Chemical Engineering, Henan Technical Institute, Zhengzhou, Henan, 450042, P. R. China
| | - Lijun Zhang
- School of Chemical Engineering, Henan Technical Institute, Zhengzhou, Henan, 450042, P. R. China
| | - S K S Saravana Karthikeyan
- Department of Environment and Energy System, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| | - Chang Yi Kong
- Department of Environment and Energy System, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| | - Fuchun Zhang
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China
| | - Xiang Guo
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China.
| | - Nam Nguyen Dang
- Future Materials & Devices Lab., Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam
- The Faculty of Environmental and Chemical Engineering, Duy Tan University, Danang, Vietnam
| | - Sankar Ganesh Ramaraj
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan.
- Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMTS), Thandalam, Chennai - 602105, Tamilnadu, India
| | - Xinghui Liu
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China.
- Division of Research and Development, Lovely Professional University, Phagwara, 144411, India
| |
Collapse
|
28
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
29
|
Sharaf Aldeen EM, Jalil AA, Mim RS, Hatta AH, Hazril NIH, Chowdhury A, Hassan NS, Rajendran S. Environmental remediation of hazardous pollutants using MXene-perovskite-based photocatalysts: A review. ENVIRONMENTAL RESEARCH 2023; 234:116576. [PMID: 37423362 DOI: 10.1016/j.envres.2023.116576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/19/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Photocatalysis utilizing semiconductors offer a cost-effective and promising solution for the removal of pollutants. MXene and perovskites, which possess desirable properties such as a suitable bandgap, stability, and affordability, have emerged as a highly promising material for photocatalytic activity. However, the efficiency of MXene and perovskites is limited by their fast recombination rates and inadequate light harvesting abilities. Nonetheless, several additional modifications have been shown to enhance their performance, thereby warranting further exploration. This study delves into the fundamental principles of reactive species for MXene-perovskites. Various methods of modification of MXene-perovskite-based photocatalysts, including Schottky junction, Z-scheme and S-scheme are analyzed with regard to their operation, differences, identification techniques and reusability. The assemblance of heterojunctions is demonstrated to enhance photocatalytic activity while also suppressing charge carrier recombination. Furthermore, the separation of photocatalysts through magnetic-based methods is also investigated. Consequently, MXene-perovskite-based photocatalysts are seen as an exciting emerging technology that necessitates further research and development.
Collapse
Affiliation(s)
- E M Sharaf Aldeen
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - A A Jalil
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia.
| | - R S Mim
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - A H Hatta
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - N I H Hazril
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - A Chowdhury
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - N S Hassan
- Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia
| | - S Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda, General Velasquez, 1775, Arica, Chile
| |
Collapse
|
30
|
Moaddeli M, Kanani M, Grünebohm A. Electronic and structural properties of mixed-cation hybrid perovskites studied using an efficient spin-orbit included DFT-1/2 approach. Phys Chem Chem Phys 2023; 25:25511-25525. [PMID: 37712408 DOI: 10.1039/d3cp02472e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Fundamental understanding and optimization of the emerging mixed organic-inorganic hybrid perovskites for solar cells require multiscale modeling starting from ab initio quantum mechanics methods. Particularly, it is important to correctly predict the structural and electronic properties such as phase stability, lattice parameters, band gaps, and band structures. Although density functional theory is the method of choice to address these properties and generate the input for subsequent multiscale, high-throughput, and data-driven approaches, standard exchange correlation functionals fail to reproduce the bandgap, particularly if spin-orbit coupling (SOC) is correctly taken into account. While many SOC-included hybrid functionals suffer from low transferability between different molecular ions and are computationally costly, we propose an efficient multistep simulation protocol based on the DFT-1/2 method. We apply this approach to APbI3 with A: FA, MA, Cs, and systems with mixed cations and show how the choice of the A-cation modifies the Pb-I scaffold and the hydrogen bonding and discuss their interplay with structural stability. Furthermore, band gaps, band structures, Rashba band splitting, Born effective charges as well as partial density of states (PDOS) are compared for different cases w/wo the SOC effect and the DFT-1/2 approach.
Collapse
Affiliation(s)
- Mohammad Moaddeli
- Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran.
- Solar Energy Technology Development Center, Shiraz University, Shiraz, Iran
| | - Mansour Kanani
- Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran.
- Solar Energy Technology Development Center, Shiraz University, Shiraz, Iran
| | - Anna Grünebohm
- Interdisciplinary Centre for Advanced Materials Simulation (ICAMS) and Center for Interface-Dominated High Performance Materials (ZGH), Ruhr-University Bochum, Universitätsstr 150, 44801 Bochum, Germany
| |
Collapse
|
31
|
Milotti V, Cacovich S, Ceratti DR, Ory D, Barichello J, Matteocci F, Di Carlo A, Sheverdyaeva PM, Schulz P, Moras P. Degradation and Self-Healing of FAPbBr 3 Perovskite under Soft-X-Ray Irradiation. SMALL METHODS 2023; 7:e2300222. [PMID: 37287372 DOI: 10.1002/smtd.202300222] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/08/2023] [Indexed: 06/09/2023]
Abstract
The extensive use of perovskites as light absorbers calls for a deeper understanding of the interaction of these materials with light. Here, the evolution of the chemical and optoelectronic properties of formamidinium lead tri-bromide (FAPbBr3 ) films is tracked under the soft X-ray beam of a high-brilliance synchrotron source by photoemission spectroscopy and micro-photoluminescence. Two contrasting processes are at play during the irradiation. The degradation of the material manifests with the formation of Pb0 metallic clusters, loss of gaseous Br2 , decrease and shift of the photoluminescence emission. The recovery of the photoluminescence signal for prolonged beam exposure times is ascribed to self-healing of FAPbBr3 , thanks to the re-oxidation of Pb0 and migration of FA+ and Br- ions. This scenario is validated on FAPbBr3 films treated by Ar+ ion sputtering. The degradation/self-healing effect, which is previously reported for irradiation up to the ultraviolet regime, has the potential of extending the lifetime of X-ray detectors based on perovskites.
Collapse
Affiliation(s)
- Valeria Milotti
- Istituto di Struttura della Materia - CNR (ISM-CNR), Trieste, I-34149, Italy
| | - Stefania Cacovich
- Institut Photovoltaïque d'Île de France (IPVF), CNRS, Ecole Polytechnique, IP Paris, Palaiseau, 91120, France
| | - Davide Raffaele Ceratti
- Institut Photovoltaïque d'Île de France (IPVF), CNRS, Ecole Polytechnique, IP Paris, Palaiseau, 91120, France
- Sorbonne Université, CNRS, Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, Paris, 75005, France
| | - Daniel Ory
- Institut Photovoltaïque d'Île-de-France (IPVF), 18 Boulevard Thomas Gobert, Palaiseau, 91120, France
- Électricité de France (EDF), R&D, 18 Boulevard Thomas Gobert, Palaiseau, 91120, France
| | - Jessica Barichello
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome "Tor Vergata,", Rome, 00133, Italy
| | - Fabio Matteocci
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome "Tor Vergata,", Rome, 00133, Italy
| | - Aldo Di Carlo
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome "Tor Vergata,", Rome, 00133, Italy
- Istituto di Struttura della Materia - CNR (ISM-CNR), Rome, 00133, Italy
| | | | - Philip Schulz
- Institut Photovoltaïque d'Île de France (IPVF), CNRS, Ecole Polytechnique, IP Paris, Palaiseau, 91120, France
| | - Paolo Moras
- Istituto di Struttura della Materia - CNR (ISM-CNR), Trieste, I-34149, Italy
| |
Collapse
|
32
|
Vats G, Hodges B, Ferguson AJ, Wheeler LM, Blackburn JL. Optical Memory, Switching, and Neuromorphic Functionality in Metal Halide Perovskite Materials and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205459. [PMID: 36120918 DOI: 10.1002/adma.202205459] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Metal halide perovskite based materials have emerged over the past few decades as remarkable solution-processable optoelectronic materials with many intriguing properties and potential applications. These emerging materials have recently been considered for their promise in low-energy memory and information processing applications. In particular, their large optical cross-sections, high photoconductance contrast, large carrier-diffusion lengths, and mixed electronic/ionic transport mechanisms are attractive for enabling memory elements and neuromorphic devices that are written and/or read in the optical domain. Here, recent progress toward memory and neuromorphic functionality in metal halide perovskite materials and devices where photons are used as a critical degree of freedom for switching, memory, and neuromorphic functionality is reviewed.
Collapse
Affiliation(s)
- Gaurav Vats
- National Renewable Energy Laboratory, Golden, CO, 80401, USA
- Department of Physics and Astronomy, Katholieke Universiteit Leuven, Celestijnenlaan 200D, Leuven, B-3001, Belgium
| | - Brett Hodges
- National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | | | - Lance M Wheeler
- National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | | |
Collapse
|
33
|
Stefanski M, Gonçalves JM, Strek W. Broad Luminescence Generated by IR Laser Excitation from CsPbBr 3:Yb 3+ Perovskite Ceramics. Molecules 2023; 28:5324. [PMID: 37513198 PMCID: PMC10386396 DOI: 10.3390/molecules28145324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
This paper demonstrates the generation of broadband emission in the visible and infrared ranges induced by a concentrated beam of infrared radiation from CsPbBr3 ceramics doped with Yb3+ ions. The sample was obtained by the conventional solid-state reaction method, and XRD measurements confirmed the phase purity of the material crystallizing in the orthorhombic system. Spectroscopic measurements required further sample preparation in the form of ceramics using a high-pressure press. The research showed that as the excitation power increases, the emission intensity does not increase linearly from the beginning of the experiment. Irradiation of the material results in the accumulation of the delivered energy. Absorption of a sufficient number of photons triggers avalanche emission. It was found that the most intense luminescence is produced in a vacuum. Changes in conductivity were also observed, where the excitation was able to lower the resistivity of the material and it was highly dependent on the excitation power. The mechanism responsible for the generation of the observed phenomenon involving intervalence charge transfer (IVCT) transitions has been postulated.
Collapse
Affiliation(s)
- Mariusz Stefanski
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - João Marcos Gonçalves
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Wieslaw Strek
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| |
Collapse
|
34
|
Rosa-Pardo I, Zhu D, Cortés-Villena A, Prato M, De Trizio L, Manna L, Galian RE, Pérez-Prieto J. The Dark Side of Lead-Free Metal Halide Nanocrystals: Substituent-Modulated Photocatalytic Activity in Benzyl Bromide Reduction. ACS ENERGY LETTERS 2023; 8:2789-2798. [PMID: 37324538 PMCID: PMC10262690 DOI: 10.1021/acsenergylett.3c00771] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
We illustrate here the high photocatalytic activity of sustainable lead-free metal halide nanocrystals (NCs), namely, Cs3Sb2Br9 NCs, in the reduction of p-substituted benzyl bromides in the absence of a cocatalyst. The electronic properties of the benzyl bromide substituents and the substrate affinity to the NC surface determine the selectivity in C-C homocoupling under visible light irradiation. This photocatalyst can be reused for at least three cycles and preserves its good performance with a turnover number of ca. 105,000.
Collapse
Affiliation(s)
- Ignacio Rosa-Pardo
- Institute
of Molecular Science, University of Valencia, c/Cat. José Beltrán
2, Paterna, 46980 Valencia, Spain
| | - Dongxu Zhu
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Alejandro Cortés-Villena
- Institute
of Molecular Science, University of Valencia, c/Cat. José Beltrán
2, Paterna, 46980 Valencia, Spain
| | - Mirko Prato
- Materials
Characterization Facility, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Luca De Trizio
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Liberato Manna
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Raquel E. Galian
- Institute
of Molecular Science, University of Valencia, c/Cat. José Beltrán
2, Paterna, 46980 Valencia, Spain
| | - Julia Pérez-Prieto
- Institute
of Molecular Science, University of Valencia, c/Cat. José Beltrán
2, Paterna, 46980 Valencia, Spain
| |
Collapse
|
35
|
Bare ZJL, Morelock RJ, Musgrave CB. Dataset of theoretical multinary perovskite oxides. Sci Data 2023; 10:244. [PMID: 37117319 PMCID: PMC10147628 DOI: 10.1038/s41597-023-02127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/31/2023] [Indexed: 04/30/2023] Open
Abstract
Perovskite oxides (ternary chemical formula ABO3) are a diverse class of materials with applications including heterogeneous catalysis, solid-oxide fuel cells, thermochemical conversion, and oxygen transport membranes. However, their multicomponent (chemical formula [Formula: see text]) chemical space is underexplored due to the immense number of possible compositions. To expand the number of computed [Formula: see text] compounds we report a dataset of 66,516 theoretical multinary oxides, 59,708 of which are perovskites. First, 69,407 [Formula: see text] compositions were generated in the a-b+a- Glazer tilting mode using the computationally-inexpensive Structure Prediction and Diagnostic Software (SPuDS) program. Next, we optimized these structures with density functional theory (DFT) using parameters compatible with the Materials Project (MP) database. Our dataset contains these optimized structures and their formation (ΔHf) and decomposition enthalpies (ΔHd) computed relative to MP tabulated elemental references and competing phases, respectively. This dataset can be mined, used to train machine learning models, and rapidly and systematically expanded by optimizing more SPuDS-generated [Formula: see text] perovskite structures using MP-compatible DFT calculations.
Collapse
Affiliation(s)
- Zachary J L Bare
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Ryan J Morelock
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Charles B Musgrave
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA.
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, 80309, USA.
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
36
|
Boucherdoud A, Mesbah S, Lantri T, Houari M, Bestani B, Benderdouche N. Pressure effect on the physical, mechanical, and thermal properties of ternary halide perovskite AgCaCl 3: a first-principles study. J Mol Model 2023; 29:164. [PMID: 37118316 DOI: 10.1007/s00894-023-05573-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/23/2023] [Indexed: 04/30/2023]
Abstract
CONTEXT AND RESULTS As an inorganic halide perovskite material, AgCaCl3, characterized by its high stability and environmental friendliness, is considered a potential candidate for major applications in optoelectronics and lens manufacturing. This work aimed to determine the electronic properties such as density of state (DOS) and band structure (BS) of AgCaCl3. The results showed that the material has an indirect band gap almost invariably at 1.5 eV in the pressure range studied. The dielectric function [Formula: see text], absorption coefficient [Formula: see text], optical conductivity [Formula: see text], reflectivity [Formula: see text], and the refractive index [Formula: see text] showed clearly that the perovskite AgCaCl3 preserved its optical characteristics within the chosen pressure range investigated. The calculated elastic constants C11, C12, and C14 as dynamic stability criteria for the elastic moduli such as bulk modulus (B), shear modulus (G), Young's modulus (Y), Poisson's ratio ([Formula: see text]), and anisotropy factor (A) showed that the material is a ductile plastic. Debye temperature ([Formula: see text]), isobaric and isochoric heat capacities (CP, CV), coefficient of the thermal expansion (α), Gibbs free energy (G), and entropy (S) were also studied. The results obtained provide a theoretical basis for experimental work and offer the possibility of future industrial applications of AgCaCl3. COMPUTATIONAL AND THEORETICAL TECHNIQUES Density functional theory (DFT) calculations as implemented in the Wien2K code were used to study the mechanical and thermal properties of AgCaCl3 perovskite over a pressure range. Lattice parameters, electronic, and optical properties are optimized with the approximation of the generalized gradient of the Perdew-Burke-Ernzerhof function (PBE-GGA) function. The mechanical and thermodynamic properties were calculated using ElaStic and Gibbs2 codes, and the properties of AgCaCl3 over the pressure range investigated were predicted.
Collapse
Affiliation(s)
- Ahmed Boucherdoud
- Faculty of Science and Technology, University of Relizane , 48000, Bourmadia, Algeria.
- Laboratory of Structure, Elaboration, and Application of Molecular Materials (SEA2M), Faculty of Science and Technology, University Abdelhamid Ibn Badis of Mostaganem, Mostaganem, Algeria.
| | - Smain Mesbah
- Faculty of Science and Technology, University of Relizane , 48000, Bourmadia, Algeria
- Laboratory Physico-Chemistry of Advanced Materials, University of Djillali Liabes, BP 89, 22000, Sidi- Bel- Abbes, Algeria
| | - Tayeb Lantri
- Faculty of Science and Technology, University of Relizane , 48000, Bourmadia, Algeria
- Laboratory of Technology and of Solids Properties, Faculty of Science and Technology, Abdel Hamid Ibn Badis University, 27000, Mostaganem, Algeria
| | - Mohammed Houari
- Faculty of Science and Technology, University of Relizane , 48000, Bourmadia, Algeria
- Laboratory of Technology and of Solids Properties, Faculty of Science and Technology, Abdel Hamid Ibn Badis University, 27000, Mostaganem, Algeria
| | - Benaouda Bestani
- Laboratory of Structure, Elaboration, and Application of Molecular Materials (SEA2M), Faculty of Science and Technology, University Abdelhamid Ibn Badis of Mostaganem, Mostaganem, Algeria
| | - Nouredine Benderdouche
- Laboratory of Structure, Elaboration, and Application of Molecular Materials (SEA2M), Faculty of Science and Technology, University Abdelhamid Ibn Badis of Mostaganem, Mostaganem, Algeria
| |
Collapse
|
37
|
Hu S, Smith JA, Snaith HJ, Wakamiya A. Prospects for Tin-Containing Halide Perovskite Photovoltaics. PRECISION CHEMISTRY 2023; 1:69-82. [PMID: 37124243 PMCID: PMC10131267 DOI: 10.1021/prechem.3c00018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/14/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023]
Abstract
Tin-containing metal halide perovskites have enormous potential as photovoltaics, both in narrow band gap mixed tin-lead materials for all-perovskite tandems and for lead-free perovskites. The introduction of Sn(II), however, has significant effects on the solution chemistry, crystallization, defect states, and other material properties in halide perovskites. In this perspective, we summarize the main hurdles for tin-containing perovskites and highlight successful attempts made by the community to overcome them. We discuss important research directions for the development of these materials and propose some approaches to achieve a unified understanding of Sn incorporation. We particularly focus on the discussion of charge carrier dynamics and nonradiative losses at the interfaces between perovskite and charge extraction layers in p-i-n cells. We hope these insights will aid the community to accelerate the development of high-performance, stable single-junction tin-containing perovskite solar cells and all-perovskite tandems.
Collapse
Affiliation(s)
- Shuaifeng Hu
- Institute
for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Joel A. Smith
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, U.K.
| | - Henry J. Snaith
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, U.K.
| | - Atsushi Wakamiya
- Institute
for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
38
|
Varadwaj PR, Varadwaj A, Marques HM, Yamashita K. The Tetrel Bond and Tetrel Halide Perovskite Semiconductors. Int J Mol Sci 2023; 24:6659. [PMID: 37047632 PMCID: PMC10094773 DOI: 10.3390/ijms24076659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
The ion pairs [Cs+•TtX3-] (Tt = Pb, Sn, Ge; X = I, Br, Cl) are the building blocks of all-inorganic cesium tetrel halide perovskites in 3D, CsTtX3, that are widely regarded as blockbuster materials for optoelectronic applications such as in solar cells. The 3D structures consist of an anionic inorganic tetrel halide framework stabilized by the cesium cations (Cs+). We use computational methods to show that the geometrical connectivity between the inorganic monoanions, [TtX3-]∞, that leads to the formation of the TtX64- octahedra and the 3D inorganic perovskite architecture is the result of the joint effect of polarization and coulombic forces driven by alkali and tetrel bonds. Depending on the nature and temperature phase of these perovskite systems, the Tt···X tetrel bonds are either indistinguishable or somehow distinguishable from Tt-X coordinate bonds. The calculation of the potential on the electrostatic surface of the Tt atom in molecular [Cs+•TtX3-] provides physical insight into why the negative anions [TtX3-] attract each other when in close proximity, leading to the formation of the CsTtX3 tetrel halide perovskites in the solid state. The inter-molecular (and inter-ionic) geometries, binding energies, and charge density-based topological properties of sixteen [Cs+•TtX3-] ion pairs, as well as some selected oligomers [Cs+•PbI3-]n (n = 2, 3, 4), are discussed.
Collapse
Affiliation(s)
- Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
| | - Helder M. Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
| |
Collapse
|
39
|
Seok H, Son S, Jathar SB, Lee J, Kim T. Synapse-Mimetic Hardware-Implemented Resistive Random-Access Memory for Artificial Neural Network. SENSORS (BASEL, SWITZERLAND) 2023; 23:3118. [PMID: 36991829 PMCID: PMC10058286 DOI: 10.3390/s23063118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Memristors mimic synaptic functions in advanced electronics and image sensors, thereby enabling brain-inspired neuromorphic computing to overcome the limitations of the von Neumann architecture. As computing operations based on von Neumann hardware rely on continuous memory transport between processing units and memory, fundamental limitations arise in terms of power consumption and integration density. In biological synapses, chemical stimulation induces information transfer from the pre- to the post-neuron. The memristor operates as resistive random-access memory (RRAM) and is incorporated into the hardware for neuromorphic computing. Hardware composed of synaptic memristor arrays is expected to lead to further breakthroughs owing to their biomimetic in-memory processing capabilities, low power consumption, and amenability to integration; these aspects satisfy the upcoming demands of artificial intelligence for higher computational loads. Among the tremendous efforts toward achieving human-brain-like electronics, layered 2D materials have demonstrated significant potential owing to their outstanding electronic and physical properties, facile integration with other materials, and low-power computing. This review discusses the memristive characteristics of various 2D materials (heterostructures, defect-engineered materials, and alloy materials) used in neuromorphic computing for image segregation or pattern recognition. Neuromorphic computing, the most powerful artificial networks for complicated image processing and recognition, represent a breakthrough in artificial intelligence owing to their enhanced performance and lower power consumption compared with von Neumann architectures. A hardware-implemented CNN with weight control based on synaptic memristor arrays is expected to be a promising candidate for future electronics in society, offering a solution based on non-von Neumann hardware. This emerging paradigm changes the computing algorithm using entirely hardware-connected edge computing and deep neural networks.
Collapse
Affiliation(s)
- Hyunho Seok
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Shihoon Son
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sagar Bhaurao Jathar
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jaewon Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Taesung Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
40
|
Xue Z, Xu Y, Jin C, Liang Y, Cai Z, Sun J. Halide perovskite photoelectric artificial synapses: materials, devices, and applications. NANOSCALE 2023; 15:4653-4668. [PMID: 36805124 DOI: 10.1039/d2nr06403k] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In recent years, there has been a research boom on halide perovskites (HPs) whose outstanding performance in photovoltaic and optoelectronic fields is obvious to all. In particular, HP materials find application in the development of artificial synapses. HP-based synapses have great potential for artificial neuromorphic systems, which is due to their outstanding optoelectronic properties, femtojoule-level energy consumption, and simple fabrication process. In this review, we present the physical properties of HPs and describe two types of synaptic devices including two-terminal (2T) memristors and three-terminal (3T) transistors. The HP layer in 2T memristors can realize the change in the device conductance through physical mechanisms dominated by ion migration. On the other hand, HPs in 3T transistors can be used as efficient light-absorbing layers and rely on some special device structures to provide reliable current changes. In the final section of the article, we discuss some of the existing applications of HP-based synapses and bottlenecks to be solved.
Collapse
Affiliation(s)
- Zhengyang Xue
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South, University, Changsha, Hunan 410083, P. R. China.
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, P. R. China
| | - Yunchao Xu
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South, University, Changsha, Hunan 410083, P. R. China.
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, P. R. China
| | - Chenxing Jin
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South, University, Changsha, Hunan 410083, P. R. China.
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, P. R. China
| | - Yihuan Liang
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South, University, Changsha, Hunan 410083, P. R. China.
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, P. R. China
| | - Zihao Cai
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South, University, Changsha, Hunan 410083, P. R. China.
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, P. R. China
| | - Jia Sun
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South, University, Changsha, Hunan 410083, P. R. China.
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, P. R. China
| |
Collapse
|
41
|
Xiao Y, Jiang B, Zhang Z, Ke S, Jin Y, Wen X, Ye C. A review of memristor: material and structure design, device performance, applications and prospects. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2162323. [PMID: 36872944 PMCID: PMC9980037 DOI: 10.1080/14686996.2022.2162323] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
With the booming growth of artificial intelligence (AI), the traditional von Neumann computing architecture based on complementary metal oxide semiconductor devices are facing memory wall and power wall. Memristor based in-memory computing can potentially overcome the current bottleneck of computer and achieve hardware breakthrough. In this review, the recent progress of memory devices in material and structure design, device performance and applications are summarized. Various resistive switching materials, including electrodes, binary oxides, perovskites, organics, and two-dimensional materials, are presented and their role in the memristor are discussed. Subsequently, the construction of shaped electrodes, the design of functional layer and other factors influencing the device performance are analyzed. We focus on the modulation of the resistances and the effective methods to enhance the performance. Furthermore, synaptic plasticity, optical-electrical properties, the fashionable applications in logic operation and analog calculation are introduced. Finally, some critical issues such as the resistive switching mechanism, multi-sensory fusion, system-level optimization are discussed.
Collapse
Affiliation(s)
- Yongyue Xiao
- Hubei Key Laboratory of Ferro-& Piezoelectric Materials and Devices, Faculty of Physics and Electronic Science, Hubei University, Wuhan, China
| | - Bei Jiang
- Hubei Key Laboratory of Ferro-& Piezoelectric Materials and Devices, Faculty of Physics and Electronic Science, Hubei University, Wuhan, China
| | - Zihao Zhang
- Hubei Key Laboratory of Ferro-& Piezoelectric Materials and Devices, Faculty of Physics and Electronic Science, Hubei University, Wuhan, China
| | - Shanwu Ke
- Hubei Key Laboratory of Ferro-& Piezoelectric Materials and Devices, Faculty of Physics and Electronic Science, Hubei University, Wuhan, China
| | - Yaoyao Jin
- Hubei Key Laboratory of Ferro-& Piezoelectric Materials and Devices, Faculty of Physics and Electronic Science, Hubei University, Wuhan, China
| | - Xin Wen
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Cong Ye
- Hubei Key Laboratory of Ferro-& Piezoelectric Materials and Devices, Faculty of Physics and Electronic Science, Hubei University, Wuhan, China
| |
Collapse
|
42
|
Li Y, Wang C, Xu G, Luo G, Deng Z. Luminescence Enhancement of CsMnBr 3 Nanocrystals through Heterometallic Doping. J Phys Chem Lett 2023; 14:2006-2011. [PMID: 36794832 DOI: 10.1021/acs.jpclett.2c03921] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The absorption and photoluminescence (PL) of CsMnBr3 with Mn(II) in octahedral crystal fields are extremely weak due to a d-d forbidden transition. Herein, we introduce a facile and general synthetic procedure that can prepare undoped and heterometallic doped CsMnBr3 NCs at room temperature. Importantly, both PL and absorption of CsMnBr3 NCs were significantly improved after doping a small amount of Pb2+ (4.9%). The absolute photoluminescence quantum yield (PL QY) of Pb-doped CsMnBr3 NCs is up to 41.5%, 11-fold higher than undoped CsMnBr3 NCs (3.7%). The PL enhancement is attributed to the synergistic effects between [MnBr6]4- units and [PbBr6]4- units. Furthermore, we verified the similar synergistic effects between [MnBr6]4- units and [SbBr6]4- units in Sb-doped CsMnBr3 NCs. Our results highlight the potential of tailoring luminescence properties of manganese halides through heterometallic doping.
Collapse
Affiliation(s)
- Yacong Li
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Micro-structures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Chuying Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Micro-structures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Guangyong Xu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Micro-structures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Guigen Luo
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Micro-structures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Zhengtao Deng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Micro-structures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
43
|
Carrasco‐Busturia D, Sánchez‐Movellán I, Tygesen AS, Bhowmik A, García‐Lastra JM, Aramburu JA, Moreno M. Red Shift in Optical Excitations on Layered Copper Perovskites under Pressure: Role of the Orthorhombic Instability. Chemistry 2023; 29:e202202933. [PMID: 36322429 PMCID: PMC10107362 DOI: 10.1002/chem.202202933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 11/06/2022]
Abstract
The red shift under pressure in optical transitions of layered compounds with CuCl6 4- units is explored through first-principles calculations and the analysis of available experimental data. The results on Cu2+ -doped (C2 H5 NH3 )2 CdCl4 , that is taken as a guide, show the existence of a highly anisotropic response to pressure related to a structural instability, driven by a negative force constant, that leads to an orthorhombic geometry of CuCl6 4- units but with a hole displaying a dominant 3z2 -r2 character (z being the direction perpendicular to the layer plane). As a result of such an instability, a pressure of only 3 GPa reduces by 0.21 Å the longest Cu2+ -Cl- distance, lying in the layer plane, while leaving unmodified the two other metal-ligand distances. Owing to this fact, it is shown that the lowest d-d transition would experience a red shift of 0.34 eV while the first allowed charge transfer transition is also found to be red shifted but only by 0.11 eV that reasonably concurs with the experimental value. The parallel study on Jahn-Teller systems CdCl2 :Cu2+ and NaCl:Cu2+ involving tetragonal elongated CuCl6 4- units shows that the reduction of the long axis by a pressure of 3 GPa is three times smaller than that for the layered (C2 H5 NH3 )2 CdCl4 :Cu2+ compound. Accordingly, the optical transitions of such systems, which involve a positive force constant, are much less sensitive to pressure than in layered compounds. The origin of the red shift under pressure undergone by the lowest d-d and charge transfer transitions of (C2 H5 NH3 )2 CdCl4 :Cu2+ is discussed in detail.
Collapse
Affiliation(s)
- David Carrasco‐Busturia
- Department of Energy Conversion and StorageTechnical University of DenmarkAnker Engelunds Vej. Building 3012800 Kgs.LyngbyDenmark
| | - Inés Sánchez‐Movellán
- Departamento de Ciencias de la Tierra y Física de la Materia CondensadaUniversidad de CantabriaAvenida de los Castros s/n39005SantanderSpain
| | - Alexander Sougaard Tygesen
- Department of Energy Conversion and StorageTechnical University of DenmarkAnker Engelunds Vej. Building 3012800 Kgs.LyngbyDenmark
| | - Arghya Bhowmik
- Department of Energy Conversion and StorageTechnical University of DenmarkAnker Engelunds Vej. Building 3012800 Kgs.LyngbyDenmark
| | - Juan María García‐Lastra
- Department of Energy Conversion and StorageTechnical University of DenmarkAnker Engelunds Vej. Building 3012800 Kgs.LyngbyDenmark
| | - José Antonio Aramburu
- Departamento de Ciencias de la Tierra y Física de la Materia CondensadaUniversidad de CantabriaAvenida de los Castros s/n39005SantanderSpain
| | - Miguel Moreno
- Departamento de Ciencias de la Tierra y Física de la Materia CondensadaUniversidad de CantabriaAvenida de los Castros s/n39005SantanderSpain
| |
Collapse
|
44
|
de Souza Carvalho TA, Magalhaes LF, do Livramento Santos CI, de Freitas TAZ, Carvalho Vale BR, Vale da Fonseca AF, Schiavon MA. Lead-Free Metal Halide Perovskite Nanocrystals: From Fundamentals to Applications. Chemistry 2023; 29:e202202518. [PMID: 36206198 DOI: 10.1002/chem.202202518] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Indexed: 11/22/2022]
Abstract
Lead (Pb) halide perovskite nanocrystals, with the general formula APbX3 , where A=CH3 NH3+ , CH(NH2 )2+ , or Cs+ and X=Cl- , Br- , or I- , have emerged as a class of materials with promising properties due to their remarkable optical properties and solar cell performance. However, important issues still need to be addressed to enable practical applications of these materials, such as instability, mass production, and Pb toxicity. Recent studies have carried out the replacement of Pb by various less-toxic cations as Sn, Ge, Sb, and Bi. This variety of chemical compositions provide Pb-free perovskite and metal halide nanostructures with a wide spectral range, in addition to being considered less toxic, therefore having greater practical applicability. Highlighting the necessity to address and solve the toxicity problems related to Pb-containing perovskite, this review considers the prospects of the Pb-free perovskite, involving synthesis methods, and properties of them, including advantages, disadvantages, and applications.
Collapse
Affiliation(s)
- Thaís Adriany de Souza Carvalho
- Departamento de Ciências Naturais (DCNat), Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG, 36301-160, Brasil
| | - Leticia Ferreira Magalhaes
- Departamento de Ciências Naturais (DCNat), Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG, 36301-160, Brasil
| | | | - Thiago Alvares Zamaro de Freitas
- Departamento de Ciências Naturais (DCNat), Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG, 36301-160, Brasil
| | - Brener Rodrigo Carvalho Vale
- Departamento de Ciências Naturais (DCNat), Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG, 36301-160, Brasil.,Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, Unicamp, Campinas, São Paulo, 13083-859, Brasil
| | - André Felipe Vale da Fonseca
- Departamento de Ciências Naturais (DCNat), Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG, 36301-160, Brasil
| | - Marco Antônio Schiavon
- Departamento de Ciências Naturais (DCNat), Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG, 36301-160, Brasil
| |
Collapse
|
45
|
Qiu L, Si G, Bao X, Liu J, Guan M, Wu Y, Qi X, Xing G, Dai Z, Bao Q, Li G. Interfacial engineering of halide perovskites and two-dimensional materials. Chem Soc Rev 2023; 52:212-247. [PMID: 36468561 DOI: 10.1039/d2cs00218c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Recently, halide perovskites (HPs) and layered two-dimensional (2D) materials have received significant attention from industry and academia alike. HPs are emerging materials that have exciting photoelectric properties, such as a high absorption coefficient, rapid carrier mobility and high photoluminescence quantum yields, making them excellent candidates for various optoelectronic applications. 2D materials possess confined carrier mobility in 2D planes and are widely employed in nanostructures to achieve interfacial modification. HP/2D material interfaces could potentially reveal unprecedented interfacial properties, including light absorbance with desired spectral overlap, tunable carrier dynamics and modified stability, which may lead to several practical applications. In this review, we attempt to provide a comprehensive perspective on the development of interfacial engineering of HP/2D material interfaces. Specifically, we highlight the recent progress in HP/2D material interfaces considering their architectures, electronic energetics tuning and interfacial properties, discuss the potential applications of these interfaces and analyze the challenges and future research directions of interfacial engineering of HP/2D material interfaces. This review links the fields of HPs and 2D materials through interfacial engineering to provide insights into future innovations and their great potential applications in optoelectronic devices.
Collapse
Affiliation(s)
- Lei Qiu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China.
| | - Guangyuan Si
- Melbourne Center for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Xiaozhi Bao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, China
| | - Jun Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China.
| | - Mengyu Guan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China.
| | - Yiwen Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China.
| | - Xiang Qi
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronic, Xiangtan University, Hunan 411105, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, China
| | - Zhigao Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China. .,Shenzhen Institute, China University of Geosciences, Shenzhen 518057, China
| | - Qiaoliang Bao
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China.,Nanjing kLight Laser Technology Co. Ltd., Nanjing, Jiangsu 210032, China.
| | - Guogang Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China. .,Zhejiang Institute, China University of Geosciences, Hangzhou 311305, China
| |
Collapse
|
46
|
De Souza RA, Kemp D, Wolf MJ, Ramadan AHH. Caution! Static Supercell Calculations of Defect Migration in Higher Symmetry ABX3 Perovskite Halides May Be Unreliable: A Case Study of Methylammonium Lead Iodide. J Phys Chem Lett 2022; 13:11363-11368. [PMID: 36454641 DOI: 10.1021/acs.jpclett.2c02984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Activation energies of defect migration in ABX3 perovskite halides are widely obtained through static supercell calculations with the nudged-elastic-band method. Taking methylammonium lead iodide (CH3NH3PbI3, MAPbI3) as an example, we demonstrate that such calculations are unreliable for the higher symmetry structures adopted by the material at temperatures relevant to device operation (tetragonal and cubic MAPbI3) because, in addition to ion relaxation around the point defects, local structural modifications characteristic of the ground-state (orthorhombic) structure occur. In this way, we offer a simple explanation of why calculated activation energies of defect migration in MAPbI3 suffer from surprisingly large scatter. We propose a robust test to determine whether static supercell calculations of point-defect processes in ABX3 perovskite systems are reliable.
Collapse
Affiliation(s)
- Roger A De Souza
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Dennis Kemp
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Matthew J Wolf
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Amr H H Ramadan
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
47
|
Li W, Cheng B, Xiao P, Chen T, Zhang J, Yu J. Low-Temperature-Processed Monolayer Inverse Opal SnO 2 Scaffold for Efficient Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205097. [PMID: 36310128 DOI: 10.1002/smll.202205097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Organic-inorganic halide perovskite solar cells (PSCs) have attracted tremendous attention in the photovoltaic field due to their excellent optical properties and simple fabrication process. However, the recombination of photogenerated electron-hole pairs at the interface severely affects the power conversion efficiency (PCE) of the PSCs. Herein, a monolayer of inverse opal SnO2 (IO-SnO2 ) is synthesized via a template-assisted method and used as a scaffold for perovskite layer (PSK). The porous IO-SnO2 scaffold increases the contact area and shortens the transport distance between the electron transport layer (ETL) and PSK. Ultraviolet photoelectron spectroscopy and Kelvin probe force microscopy results indicate that the built-in electric field is enhanced with IO-SnO2 scaffold, strengthening the driving force for charge separation. Femtosecond transient absorption spectroscopy measurements reveal that the IO-SnO2 scaffold facilitates interfacial electron transfer from PSK to ETL. Based on the above superiorities, the IO-SnO2 -based PSCs exhibit boosted PCE and device stability compared with the pristine PSCs. This work provides insights into the development of novel scaffold layers for high-performance PSCs.
Collapse
Affiliation(s)
- Wenjia Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Bei Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Peng Xiao
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Tao Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jianjun Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
48
|
Diyali S, Manna M, Mahato S, Kumar V, Roy Choudhury A, Biswas B, Bhandari S. Hybrid Lead Bromide Perovskite Single Crystals Coupled with a Zinc(II) Complex for White Light Emission. J Phys Chem Lett 2022; 13:10759-10766. [PMID: 36374525 DOI: 10.1021/acs.jpclett.2c02876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein we report the fabrication of green emitting hybrid lead bromide perovskite single crystals (HLBPSCs), their anion exchange mediated tunable yellow luminescence and thereby their coupling ability with blue emitting inorganic complex leading to generation of a photostable white light emission, with properties close to bright day sunlight. The partial anion exchange reaction to green emitting HLBPSCs led to formation of yellow emitting anion exchanged HLBPSCs─which are termed as AE-HLBPSCs herein. Then, AE-HLBPSCs were chemically combined with blue emitting Zn-aspirin complex to produce white light with a photoluminescence quantum yield (PLQY) of 47.7%. The solid form of the white light emitting (WLE) composite (followed by coating with poly methyl methacrylate─PMMA) showed color coordinates of (0.34, 0.33), color rendering index of 76 and correlated color temperature of 5282 K. Furthermore, the PMMA coated inorganic complex coupled AE-HLBPSCs showed the preservation of their WLE nature and luminescence stability in their solid form.
Collapse
Affiliation(s)
- Sangharaj Diyali
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal 734013, India
| | - Mihir Manna
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Shreya Mahato
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal 734013, India
| | - Vierandra Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - Angshuman Roy Choudhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - Bhaskar Biswas
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal 734013, India
| | - Satyapriya Bhandari
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal 734013, India
| |
Collapse
|
49
|
Mu Y, He Z, Wang K, Pi X, Zhou S. Recent progress and future prospects on halide perovskite nanocrystals for optoelectronics and beyond. iScience 2022; 25:105371. [PMID: 36345343 PMCID: PMC9636552 DOI: 10.1016/j.isci.2022.105371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As an emerging new class of semiconductor nanomaterials, halide perovskite (ABX3, X = Cl, Br, or I) nanocrystals (NCs) are attracting increasing attention owing to their great potential in optoelectronics and beyond. This field has experienced rapid breakthroughs over the past few years. In this comprehensive review, halide perovskite NCs that are either freestanding or embedded in a matrix (e.g., perovskites, metal-organic frameworks, glass) will be discussed. We will summarize recent progress on the synthesis and post-synthesis methods of halide perovskite NCs. Characterizations of halide perovskite NCs by using a variety of techniques will be present. Tremendous efforts to tailor the optical and electronic properties of halide perovskite NCs in terms of manipulating their size, surface, and component will be highlighted. Physical insights gained on the unique optical and charge-carrier transport properties will be provided. Importantly, the growing potential of halide perovskite NCs for advancing optoelectronic applications and beyond including light-emitting devices (LEDs), solar cells, scintillators and X-ray imaging, lasers, thin-film transistors (TFTs), artificial synapses, and light communication will be extensively discussed, along with prospecting their development in the future.
Collapse
Affiliation(s)
- Yuncheng Mu
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Ziyu He
- Department of Material Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK
| | - Kun Wang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xiaodong Pi
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Advanced Semiconductors and Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, Hangzhou Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, China
| | - Shu Zhou
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
50
|
Wells M, Hempel J, Adhikari S, Wang Q, Allen D, Costello A, Bowen C, Parkin S, Sutton C, Huckaba AJ. Structure and Piezoelectricity Due to B Site Cation Variation in AB n+Cl n+2 Hybrid Histammonium Chlorometallate Materials. Inorg Chem 2022; 61:17746-17758. [DOI: 10.1021/acs.inorgchem.2c02994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Wells
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jacob Hempel
- Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Santosh Adhikari
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Qingping Wang
- Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, U.K
| | - Daniel Allen
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Alison Costello
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Chris Bowen
- Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, U.K
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Christopher Sutton
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Aron J. Huckaba
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|