1
|
Li L, Luo M, Zhou L, Wang Y, Jiao Y, Wang C, Gong C, Cen X, Yao S. Glucocorticoid pre-administration improves LNP-mRNA mediated protein replacement and genome editing therapies. Int J Pharm 2025; 672:125282. [PMID: 39880143 DOI: 10.1016/j.ijpharm.2025.125282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Lipid nanoparticles (LNPs) are among the most promising non-viral mRNA delivery systems for gene therapeutic applications. However, the in vivo delivery of LNP-mRNA remains challenging due to multiple intrinsic barriers that hinder LNPs from reaching their target cells. In this study, we sought to enhance LNP delivery by manipulating intrinsic regulatory mechanisms involved in their metabolism. We demonstrated that activation of the glucocorticoid pathway significantly increased the systemic delivery of LNP-mRNA in both mice and monkeys, achieving up to a fourfold improvement. This enhancement was primarily attributed to the glucocorticoid-mediated inhibition of macrophage phagocytosis in circulation and the liver, which resulted in higher LNP accumulation in hepatocytes. Consequently, glucocorticoid activation improved the therapeutic efficacy of LNP-based protein replacement and CRISPR/Cas9 genome editing therapies. Together, these findings establish a practical strategy to enhance the systemic delivery of RNA-based protein replacement and genome editing therapeutics, highlighting the potential of manipulating endogenous mechanisms to optimize exogenous gene delivery.
Collapse
Affiliation(s)
- Li Li
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China
| | - Mei Luo
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China
| | - Lifang Zhou
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China
| | - Yanhong Wang
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China
| | - Yaoge Jiao
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China
| | - Chunting Wang
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China
| | - Changyang Gong
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China
| | - Xiaobo Cen
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Shaohua Yao
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Choi AS, Moon TJ, Bhalotia A, Rajan A, Ogunnaike L, Hutchinson DW, Hwang I, Gokhale A, Kim JN, Ma T, Karathanasis E. Lipid Nanoparticles and PEG: Time Frame of Immune Checkpoint Blockade Can Be Controlled by Adjusting the Rate of Cellular Uptake of Nanoparticles. Mol Pharm 2025. [PMID: 40035231 DOI: 10.1021/acs.molpharmaceut.4c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The engineerability of lipid nanoparticles (LNPs) and their ability to deliver nucleic acids make LNPs attractive tools for cancer immunotherapy. LNP-based gene delivery can be employed for various approaches in cancer immunotherapy, including encoding tumor-associated antigens and silencing of negative immune checkpoint proteins. For example, LNPs carrying small interfering RNAs can offer several advantages, including sustained and durable inhibition of an immune checkpoint protein. Due to their tunable design, modifying the lipid composition of LNPs can regulate the rate of their uptake by immune cells and the rate of gene silencing. Controlling the kinetics of LNP uptake provides additional flexibility and strategies to generate appropriate immunomodulation in the tumor microenvironment. Here, we evaluated the effects of polyethylene glycol (PEG) content ranging from 0.5 to 6 mol % on the cellular uptake of LNPs by immune cells and gene silencing of PD-L1 after intratumoral administration. We evaluated the cellular uptake and PD-L1 blockade in vitro in cell studies and in vivo using the YUMM1.7 melanoma tumor model. Cell studies showed that the rate of cell uptake was inversely correlated to an increasing mol % of PEG in a linear relationship. In the in vivo studies, 0.5% PEG LNP initiated an immediate effect in the tumor with a significant decrease in the PD-L1 expression of immune cells observed within 24 h. In comparison, the gene silencing effect of 6% PEG LNP was delayed, with a significant decrease of PD-L1 expression in immune cell subsets being observed 72 h after administration. Notably, performance of the 6% PEG LNP at 72 h was comparable to that of the 0.5% PEG LNP at 24 h. Overall, this study suggests that PEG modifications and intratumoral administration of LNPs can be a promising strategy for an effective antitumor immune response.
Collapse
Affiliation(s)
- Andrew S Choi
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Taylor J Moon
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Anubhuti Bhalotia
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Aarthi Rajan
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Laolu Ogunnaike
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Diarmuid W Hutchinson
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Inga Hwang
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Aaditya Gokhale
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Justin N Kim
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Timothy Ma
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Efstathios Karathanasis
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
3
|
Zhang K, Wang T, Huang X, Wu P, Shen L, Yang Y, Wan W, Sun S, Zhang Z. Ultrasound-mediated nanomaterials for the treatment of inflammatory diseases. ULTRASONICS SONOCHEMISTRY 2025; 114:107270. [PMID: 39961217 DOI: 10.1016/j.ultsonch.2025.107270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/01/2025] [Accepted: 02/11/2025] [Indexed: 03/03/2025]
Abstract
Sterile and infection-associated inflammatory diseases are becoming increasingly prevalent worldwide. Conventional drug therapies often entail significant drawbacks, such as the risk of drug overdose, the development of drug resistance in pathogens, and systemic adverse reactions, all of which can undermine the effectiveness of treatments for these conditions. Nanomaterials (NMs) have emerged as a promising tool in the treatment of inflammatory diseases due to their precise targeting capabilities, tunable characteristics, and responsiveness to external stimuli. Ultrasound (US), a non-invasive and effective treatment method, has been explored in combination with NMs to achieve enhanced therapeutic outcomes. This review provides a comprehensive overview of the recent advances in the use of US-mediated NMs for treating inflammatory diseases. A comprehensive introduction to the application and classification of US was first presented, emphasizing the advantages of US-mediated NMs and the mechanisms through which US and NMs interact to enhance anti-inflammatory therapy. Subsequently, specific applications of US-mediated NMs in sterile and infection-associated inflammation were summarized. Finally, the challenges and prospects of US-mediated NMs in clinical translation were discussed, along with an outline of future research directions. This review aims to provide insights to guide the development and improvement of US-mediated NMs for more effective therapeutic interventions in inflammatory diseases.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China; Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, PR China
| | - Tingting Wang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Xingyong Huang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Peng Wu
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Lufan Shen
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Yuanyuan Yang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Wenyu Wan
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, PR China; Key Laboratory of Immunodermatology, National Health Commission of the People's Republic of China, The First Hospital of China Medical University, PR China; National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, PR China.
| | - Siyu Sun
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China; Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, PR China.
| | - Zhan Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, PR China; Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
4
|
Cui J, Zhao G, Xie W, Yang Y, Fu X, Meng H, Liu H, Tan M, Chen D, Rong C, Wang Y, Wang Y, Zhang LW. Exacerbated hepatotoxicity in in vivo and in vitro non-alcoholic fatty liver models by biomineralized copper sulfide nanoparticles. BIOMATERIALS ADVANCES 2025; 168:214117. [PMID: 39580989 DOI: 10.1016/j.bioadv.2024.214117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/19/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024]
Abstract
Copper sulfide nanoparticles (NPs) synthesized through biomineralization have significant commercial potential as photothermal agents, while the safety evaluation of these NPs, especially for patients with non-alcoholic fatty liver (NAFL), remains insufficient. To explore the differential hepatotoxicity of copper sulfide NPs in NAFL conditions, we synthesized large-sized (LNPs, 15.1 nm) and small-sized (SNPs, 3.5 nm) BSA@Cu2-xS NPs. A NAFL rat model fed with high fat diet (HFD) was successfully established for a 14-day subacute toxicity study by daily repeated administration of BSA@Cu2-xS NPs. Our findings from serum biochemistry and histopathological examinations revealed that copper sulfide at both sizes NPs induced more pronounced liver damage in NAFL rats than rats fed with normal diet. Transcriptome sequencing analysis showed that LNPs activated inflammation and DNA damage repair pathways in the livers of NAFL rats, while SNPs displayed minimal inflammation. A three-dimensional spheroid model of NAFL developed in our in-house cell spheroid culture honeycomb chips demonstrated that LNPs, but not SNPs, triggered a distinct release of inflammatory factors and increased reactive oxygen species through Kupffer cells. These results highlight that NAFL condition exacerbated the hepatotoxicity of BSA@Cu2-xS NPs, with SNPs emerging as safer photothermal agents compared to LNPs, suggesting superior potential for clinical applications.
Collapse
Affiliation(s)
- Jinbin Cui
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Gang Zhao
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Wei Xie
- The College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
| | - Yang Yang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xing Fu
- Suzhou Vivoid Biotechnology Co., Ltd, Suzhou 215124, China
| | - Hezhang Meng
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - He Liu
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Mengfei Tan
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Dandan Chen
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chao Rong
- Department of Pathology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Yangyun Wang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yong Wang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Leshuai W Zhang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
5
|
Yang Y, Dong C, Ma X, Wang Y, Li Z, Xu Y, Chen T, Gao C, Ye X, Wu A, Zhang X. Advances in cuproptosis harnessing copper-based nanomaterials for cancer therapy. J Mater Chem B 2025; 13:2978-2999. [PMID: 39901728 DOI: 10.1039/d4tb02746a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Cuproptosis, a newly identified programmed cell death form, is characterized by excessive copper accumulation in cells, resulting in mitochondria damage and toxic protein stress, ultimately causing cell death. Given the considerable therapeutic promise of copper toxicity in cancer treatment, copper-based nanomaterials that induce copper death have attracted interest as a promising approach for tumor therapy. This review comprehensively introduces the mechanisms of cuproptosis and the associated regulatory genes, including both positive and negative regulatory regulators, and systematically summarizes the application of various nanoparticles in inducing cuproptosis, ranging from inorganic copper compounds to delivery systems. These nanoparticles offer significant advantages, such as improving copper absorption, extending the duration of effectiveness, enhancing the precision of copper release, increasing biocompatibility, and serving as enhancers in combination therapy. In conclusion, the authors present a detailed overview and insights into the current research directions of nanoplatforms that facilitate copper-induced cancer treatment, establishing a foundation for the future development of effective nanomedicines that induce cuproptosis and offering new possibilities and treatment strategies for tumor therapy.
Collapse
Affiliation(s)
- Yanqiang Yang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Chen Dong
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Xuehua Ma
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Yanan Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Zhouhua Li
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Yuan Xu
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Changyong Gao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Xiaoqun Ye
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Xinyi Zhang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, China
| |
Collapse
|
6
|
Cheng J, Dai L, Wu Q, Deng T, Cheng B. Macrophage Membrane-Encapsulated Carbon Dots for Precise Targeting Diagnosis and Treatment of Bacterial Infections. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8262-8273. [PMID: 39871507 DOI: 10.1021/acsami.4c17436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
How to accurately diagnose and treat bacterial infections in vivo remains a huge challenge. Therefore, we have developed a targeted delivery nanosystem by coextruding the pretreated macrophage membrane of S. aureus with carbon dots (M@CD). The M@CD nanosystem demonstrates potent antibacterial effects both in vivo and in vitro through the generation of reactive oxygen species (ROS). Furthermore, M@CD exhibits enhanced targeting ability and stable fluorescence properties, addressing issues such as poor targeting efficiency and high immunogenicity in vivo. This innovative approach enables infection site specific aggregation and elimination of bacterial infections, thereby providing a promising strategy for the integrated diagnosis, treatment, and monitoring of bacterial infections.
Collapse
Affiliation(s)
- Juan Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuhan 430071, China
| | - Lin Dai
- Department of Stomatology, Wuhan No.1 Hospital, 215 Zhongshan Avenue, Wuhan 430022, China
| | - Qian Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Tian Deng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuhan 430071, China
| |
Collapse
|
7
|
Rauert C, Charlton N, Bagley A, Dunlop SA, Symeonides C, Thomas KV. Assessing the Efficacy of Pyrolysis-Gas Chromatography-Mass Spectrometry for Nanoplastic and Microplastic Analysis in Human Blood. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1984-1994. [PMID: 39851066 PMCID: PMC11800385 DOI: 10.1021/acs.est.4c12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
Humans are constantly exposed to micro- and nanosized plastics (MNPs); however, there is still limited understanding of their fate within the body, partially due to limitations with current analytical techniques. The current study assessed the appropriateness of pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) analysis for the quantification of a range of polymers in human blood. An extraction protocol that reduced matrix interferences (false positives) of polyethylene (PE) and polyvinyl chloride (PVC) was developed and validated. Extraction recoveries ranged 7-109%, although surface-modified polystyrene (carboxylated) increased nanoparticle recoveries from 17 to 52%. Realistic detection limits were calculated for each polymer, accounting for matrix suppression and extraction recovery. These were up to 20 times higher than nominal detection limits calculated with Milli-Q water. Finally, the method was tested with a pilot study of the Australian population. PE interferences were reduced but still present, and no other polymers were above detection limits. It was concluded that Py-GC-MS is currently not a suitable analysis method for PE and PVC in biological matrices due to the presence of interferences and nonspecific pyrolysis products. Furthermore, while it is plausible to detect some polymers in blood, the estimated exposure concentrations needed are approaching the detection limits of the technique.
Collapse
Affiliation(s)
- Cassandra Rauert
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
- Minderoo
Centre − Plastics and Human Health, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Nathan Charlton
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
- Minderoo
Centre − Plastics and Human Health, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Angus Bagley
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
- Minderoo
Centre − Plastics and Human Health, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Sarah A. Dunlop
- Minderoo
Foundation, Perth, Western Australia 6009, Australia
- School
of Biological Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Christos Symeonides
- Minderoo
Foundation, Perth, Western Australia 6009, Australia
- Centre
for Community Child Health, Royal Children’s
Hospital, Parkville, Victoria 3056, Australia
| | - Kevin V. Thomas
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
- Minderoo
Centre − Plastics and Human Health, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
8
|
Kraus S, Arbib S, Rukenstein P, Shoval I, Khandadash R, Shalev O. Macrophage Responses to Multicore Encapsulated Iron Oxide Nanoparticles for Cancer Therapy. ACS OMEGA 2025; 10:3535-3550. [PMID: 39926549 PMCID: PMC11800149 DOI: 10.1021/acsomega.4c07883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/25/2024] [Accepted: 01/13/2025] [Indexed: 02/11/2025]
Abstract
Macrophages are the primary cells responsible for nanoparticle processing and mediating host immunological biological outcomes. Their cellular response to nanoparticles is a vital constituent in the safety assessment of new designs for clinical application. An approach for the treatment of solid tumors was developed, based on magnetic hyperthermia, consisting of iron oxide multicore encapsulated nanoparticles named Sarah nanoparticles (SaNPs), and alternating magnetic field irradiation. SaNPs are intravenously injected, accumulate in the liver, spleen and in tumor tissue, where they are passively targeted to malignant cells via the Enhanced Permeability and Retention (EPR) effect and undergo selective heating. SaNP-induced responses after cellular uptake were investigated in murine RAW264.7 macrophages using a wide imaging approach. When activated, macrophages form different phenotypic populations with unique immune functions, however the mechanism/s by which these activated macrophages respond to nanoparticles is unclear. Unraveling these responses is important for the understanding of nanoparticle uptake, potential degradation, and clearance to address both toxicity and regulatory concerns, which was the aim of this study. The results demonstrated that SaNPs undergo internalization, localize within the lysosomal compartment while keeping their integrity, without intracellular toxic degradation, and are cleared with time. The production of tumor necrosis factor alpha (TNF-α) and reactive oxygen species (ROS), superoxide dismutase (SOD) activation, and cytokine secretion in macrophage conditioned medium (CM) were also evaluated. SaNPs effects were both time- and dose- dependent. High SaNP concentrations resulted in reduced RAW264.7 cell viability which correlated with SOD activation and was associated with ROS generation. Lower SaNP concentrations stimulated the time-dependent production of TNF-α. The expression of additional cytokines was also induced, potentially affecting cancer cell growth by CM from SaNP-activated macrophages supporting a potential antitumor effect. These results will help understand the fate of nanoparticles in vivo.
Collapse
Affiliation(s)
| | - Shir Arbib
- New
Phase Ltd., Petah Tikva 4951788, Israel
| | | | - Irit Shoval
- Scientific
Equipment Center, the Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | | | | |
Collapse
|
9
|
Tian Y, Lv H, Ju Y, Hao J, Cui J. Zwitterionic Poly(ethylene glycol) Nanoparticles Minimize Protein Adsorption and Immunogenicity for Improved Biological Fate. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6125-6133. [PMID: 39824773 DOI: 10.1021/acsami.4c20890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
We report the assembly of poly(ethylene glycol) nanoparticles (PEG NPs) and optimize their surface chemistry to minimize the formation of protein coronas and immunogenicity for improved biodistribution. PEG NPs cross-linked with disulfide bonds are synthesized utilizing zeolitic imidazolate framework-8 NPs as the templates, which are subsequently modified with PEG molecules with different end groups (carboxyl, methoxy, or amino) to vary the surface chemistry. Among the modifications, the amino and residual carboxyl groups form a pair of zwitterionic structures on the surface of PEG NPs, which minimize the adsorption of proteins (e.g., immunoglobulin, complement proteins) and maximize the blood circulation time. The influence of preexisting PEG antibodies in mice on the pharmacokinetics of zwitterionic PEG NPs is negligible, which demonstrates the resistance of anti-PEG antibodies and inhibition of the accelerated blood clearance phenomenon. This research highlights the importance of the surface chemistry of PEGylated NPs in the design of delivery systems and reveals their translational potential for cancer therapy.
Collapse
Affiliation(s)
- Yuan Tian
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Huiyuan Lv
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yi Ju
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
10
|
Tang C, Wang H, Guo L, Cui Y, Zou C, Hu J, Zhang H, Yang G, Zhou W. Multifunctional Nanomedicine for Targeted Atherosclerosis Therapy: Activating Plaque Clearance Cascade and Suppressing Inflammation. ACS NANO 2025; 19:3339-3361. [PMID: 39812806 DOI: 10.1021/acsnano.4c12131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Atherosclerosis (AS) is a prevalent inflammatory vascular disease characterized by plaque formation, primarily composed of foam cells laden with lipids. Despite lipid-lowering therapies, effective plaque clearance remains challenging due to the overexpression of the CD47 molecule on apoptotic foam cells, inhibiting macrophage-mediated cellular efferocytosis and plaque resolution. Moreover, AS lesions are often associated with severe inflammation and oxidative stress, exacerbating disease progression. Herein, we introduce a multifunctional nanomedicine (CEZP) targeting AS pathogenesis via a "cell efferocytosis-lipid degradation-cholesterol efflux" paradigm, with additional anti-inflammatory properties. CEZP comprises poly(lactic-co-glycolic acid) nanoparticles encapsulated within a metal-organic framework shell coordinated with zinc ions (Zn2+) and epigallocatechin gallate (EGCG), enabling CpG encapsulation. Upon intravenous administration, CEZP accumulates at AS plaque sites, facilitating macrophage uptake and orchestrating AS treatment through synergistic mechanisms. CpG enhances cellular efferocytosis, Zn2+ promotes intracellular lipid degradation, and EGCG upregulates adenosine 5'-triphosphate-binding cassette transporters for cholesterol efflux while also exhibiting antioxidant and anti-inflammatory effects. In vivo validation confirms CEZP's ability to stabilize plaques, reduce lipid burden, and modulate the macrophage phenotype. Moreover, CEZP is excreted from the body without safety concerns, offering a low-toxicity nonsurgical strategy for AS plaque eradication.
Collapse
Affiliation(s)
- Cui Tang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Hui Wang
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Lina Guo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
| | - Chan Zou
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jianming Hu
- First Department of Pathology, Affiliated Hospital, Shihezi University, Xinjiang Uygur Autonomous Region, Shihezi City 832002, China
| | - Hanyong Zhang
- Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Guoping Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- National-Local Joint Engineering Laboratory of Drug Clinical Evaluation Technology, Changsha, Hunan 410000, China
- Hunan Engineering Research Center for Optimization of Drug Formulation and Early Clinical Evaluation, Changsha, Hunan 410013, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Academician Workstation, Changsha Medical University, Changsha 410219, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Affiliated Hospital, Shihezi University, Shihezi City, Xinjiang 832002, China
| |
Collapse
|
11
|
Wu S, Wang Y, Yang Y, Yang C, Jiensi A, Geng C, Ju H, Chen Y. In Situ and In Vivo Evaluation of Multiplex Protein-Specific Glycosylation of Tumors with a Dual-SERS Encoding Strategy. Anal Chem 2025; 97:936-944. [PMID: 39705316 DOI: 10.1021/acs.analchem.4c05695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
A dual-SERS encoding strategy was designed for in situ and in vivo evaluation of multiplex protein-specific glycosylation of tumors. The dual-SERS encoding strategy consisted of two pairs of dual gold nanoprobes with different diameters of 10 and 30 nm, which were encoded with four different and distinguishable Raman signal molecules. The 10 and 30 nm gold nanoprobes (Au10 and Au30 probes, respectively) were further modified with lectins and aptamers to recognize the target glycans and proteins, respectively. After sequential binding to the target glycans and proteins, the adjacent Au10 and Au30 probes could emit strong surface-enhanced Raman scattering (SERS) signals to indicate the multiplex protein-specific glycosylation information on cells and in vivo, which can reveal in situ the distribution differences of different tumor markers in the central and marginal regions of tumors. This strategy has been successfully applied for in situ imaging and evaluation of the MUC1 and EpCAM-specific Sia and Gal/GalNAc information on cell surfaces and tumor xenografted mice, providing a convenient and powerful tool to study protein-specific glycosylation-related physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Shan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuru Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuhui Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chaoyi Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ayidana Jiensi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chengyao Geng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
França Dias M, Ken Kawassaki R, Amaral de Melo L, Araki K, Raphael Guimarães R, Ligorio Fialho S. Optimizing Retinal Imaging: Evaluation of ultrasmall TiO 2 nanoparticle- fluorescein conjugates for improved Fundus Fluorescein Angiography. Methods 2025; 233:30-41. [PMID: 39566751 DOI: 10.1016/j.ymeth.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024] Open
Abstract
Fundus Fluorescein Angiography (FFA) has been extensively used for the identification, management, and diagnosis of various retinal and choroidal diseases, such as age-related macular degeneration, diabetic retinopathy, retinopathy of prematurity, among others. This exam enables clinicians to evaluate retinal morphology and the pathophysiology of retinal vasculature. However, adverse events, including from mild to severe reactions to sodium fluorescein, have been reported. Titanium dioxide nanoparticles (NPTiO2) have shown significant potential in numerous biological applications. Coating or conjugating these nanoparticles with small molecules can enhance their stability, photochemical properties, and biocompatibility, as well as increase the hydrophilicity of the nanoparticles, making them more suitable for biomedical applications. This work demonstrates the potential use of ultrasmall titanium dioxide nanoparticles conjugated with sodium fluorescein to improve the quality of angiography exams. The strategy of conjugating fluorescein with NPTiO2 successfully enhanced the fluorescence photostability of the contrast agent and increased its retention time in the retina. Preliminary in vivo and in vitro safety tests suggest that these nanoparticles are safe for the intended application demonstrating low tendency to hemolysis, and no significant changes in the retina thickness or in the electroretinography a-wave and b-wave amplitudes. Overall, the conjugation of fluorescein to NPTiO2 has produced a nanomaterial with favorable properties for use as an innovative contrast agent in FFA examinations. By providing a clear description of our methodology of analysis, we also aim to offer better perspectives and reproducible conditions for future research.
Collapse
Affiliation(s)
- Marina França Dias
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, R. Conde Pereira Carneiro 80, Gameleira, 30510-010 Belo Horizonte, MG, Brazil
| | - Rodrigo Ken Kawassaki
- Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, Butantã, 05508-000 São Paulo, SP, Brazil
| | - Lutiana Amaral de Melo
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, R. Conde Pereira Carneiro 80, Gameleira, 30510-010 Belo Horizonte, MG, Brazil
| | - Koiti Araki
- Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, Butantã, 05508-000 São Paulo, SP, Brazil
| | - Robson Raphael Guimarães
- Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, Butantã, 05508-000 São Paulo, SP, Brazil
| | - Sílvia Ligorio Fialho
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, R. Conde Pereira Carneiro 80, Gameleira, 30510-010 Belo Horizonte, MG, Brazil.
| |
Collapse
|
13
|
Zhang X, Yang X, Wang Y, Xu Z, Yi S, Guo T, Liao Y, Tang X, Zhang J, Wang R. A supramolecular nanoprodrug for prevention of gallstone formation. CHINESE CHEM LETT 2025; 36:109854. [DOI: 10.1016/j.cclet.2024.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Liu Y, Li J, Xiahou J, Liu Z. Recent Advances in NIR or X-ray Excited Persistent Luminescent Materials for Deep Bioimaging. J Fluoresc 2025; 35:179-195. [PMID: 38008861 DOI: 10.1007/s10895-023-03513-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
Due to their persistent luminescence, persistent luminescent (PersL) materials have attracted great interest. In the biomedical field, the use of persistent luminescent nanoparticles (PLNPs) eliminates the need for continuous in situ excitation, thereby avoiding interference from tissue autofluorescence and significantly improving the signal-to-noise ratio (SNR). Although persistent luminescence materials can emit light continuously, the luminescence intensity of small-sized nanoparticles in vivo decays quickly. Early persistent luminescent nanoparticles were mostly excited by ultraviolet (UV) or visible light and were administered for imaging purposes through ex vivo charging followed by injection into the body. Limited by the low in vivo penetration depth, UV light cannot secondary charge PLNPs that have decayed in vivo, and visible light does not penetrate deep enough to reach deep tissues, which greatly limits the imaging time of persistent luminescent materials. In order to address this issue, the development of PLNPs that can be activated by light sources with superior tissue penetration capabilities is essential. Near-infrared (NIR) light and X-rays are widely recognized as ideal excitation sources, making persistent luminescent materials stimulated by these two sources a prominent area of research in recent years. This review describes NIR and X-ray excitable persistent luminescence materials and their recent advances in bioimaging.
Collapse
Affiliation(s)
- Yuanqi Liu
- School of Material Science and Engineering, University of Jinan, Jinan, China
| | - Jinkai Li
- School of Material Science and Engineering, University of Jinan, Jinan, China.
- Infovision Optoelectronics (Kunshan)Co, Ltd, Kunshan, 215300, China.
| | - Junqing Xiahou
- School of Material Science and Engineering, University of Jinan, Jinan, China.
| | - Zongming Liu
- School of Material Science and Engineering, University of Jinan, Jinan, China.
| |
Collapse
|
15
|
Yin C, Wang G, Zhang Q, Li Z, Dong T, Li Q, Wu N, Hu Y, Ran H, Li P, Cao Y, Nie F. Ultrasound nanodroplets loaded with Siglec-G siRNA and Fe 3O 4 activate macrophages and enhance phagocytosis for immunotherapy of triple-negative breast cancer. J Nanobiotechnology 2024; 22:773. [PMID: 39696453 DOI: 10.1186/s12951-024-03051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The progression of triple-negative breast cancer is shaped by both tumor cells and the surrounding tumor microenvironment (TME). Within the TME, tumor-associated macrophages (TAMs) represent a significant cell population and have emerged as a primary target for cancer therapy. As antigen-presenting cells within the innate immune system, macrophages are pivotal in tumor immunotherapy through their phagocytic functions. Due to the highly dynamic and heterogeneous nature of TAMs, re-polarizing them to the anti-tumor M1 phenotype can amplify anti-tumor effects and help mitigate the immunosuppressive TME. RESULTS In this study, we designed and constructed an ultrasound-responsive targeted nanodrug delivery system to deliver Siglec-G siRNA and Fe3O4, with perfluorohexane (PFH) at the core and mannose modified on the surface (referred to as MPFS@NDs). Siglec-G siRNA blocks the CD24/Siglec-G mediated "don't eat me" phagocytosis inhibition pathway, activating macrophages, enhancing their phagocytic function, and improving antigen presentation, subsequently triggering anti-tumor immune responses. Fe3O4 repolarizes M2-TAMs to the anti-tumor M1 phenotype. Together, these components synergistically alleviate the immunosuppressive TME, and promote T cell activation, proliferation, and recruitment to tumor tissues, effectively inhibiting the growth of primary tumors and lung metastasis. CONCLUSION This work suggests that activating macrophages and enhancing phagocytosis to remodel the TME could be an effective strategy for macrophage-based triple-negative breast cancer immunotherapy.
Collapse
Affiliation(s)
- Ci Yin
- Ultrasound Medical Center, Gansu Province Clinical Research Center for Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730030, P.R. China
- Institute of Ultrasound Imaging, Ultrasound Department of Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Guojuan Wang
- Ultrasound Medical Center, Gansu Province Clinical Research Center for Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730030, P.R. China
| | - Qin Zhang
- Department of Radiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, P.R. China
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, P.R. China
| | - Zhendong Li
- Ultrasound Medical Center, Gansu Province Clinical Research Center for Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730030, P.R. China
| | - Tiantian Dong
- Ultrasound Medical Center, Gansu Province Clinical Research Center for Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730030, P.R. China
| | - Qi Li
- Ultrasound Medical Center, Gansu Province Clinical Research Center for Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730030, P.R. China
| | - Nianhong Wu
- Institute of Ultrasound Imaging, Ultrasound Department of Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Yaqin Hu
- Institute of Ultrasound Imaging, Ultrasound Department of Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Haitao Ran
- Institute of Ultrasound Imaging, Ultrasound Department of Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Pan Li
- Institute of Ultrasound Imaging, Ultrasound Department of Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Yang Cao
- Institute of Ultrasound Imaging, Ultrasound Department of Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China.
| | - Fang Nie
- Ultrasound Medical Center, Gansu Province Clinical Research Center for Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730030, P.R. China.
| |
Collapse
|
16
|
Zhang P, Li Y, Li X, Wang Y, Lin H, Zhang N, Li W, Jing L, Jiao M, Luo X, Hou Y. Shedding light on vascular imaging: the revolutionary role of nanotechnology. J Nanobiotechnology 2024; 22:757. [PMID: 39695727 DOI: 10.1186/s12951-024-03042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Vascular dysfunction, characterized by changes in anatomy, hemodynamics, and molecular expressions of vasculatures, is closely linked to the onset and development of diseases, emphasizing the importance of its detection. In clinical practice, medical imaging has been utilized as a significant tool in the assessment of vascular dysfunction, however, traditional imaging techniques still lack sufficient resolution for visualizing the complex microvascular systems. Over the past decade, with the rapid advancement of nanotechnology and the emergence of corresponding detection facilities, engineered nanomaterials offer new alternatives to traditional contrast agents. Compared with conventional small molecule counterparts, nanomaterials possess numerous advantages for vascular imaging, holding the potential to significantly advance related technologies. In this review, the latest developments in nanotechnology-assisted vascular imaging research across different imaging modalities, including contrast-enhanced magnetic resonance (MR) angiography, susceptibility-weighted imaging (SWI), and fluorescence imaging in the second near-infrared window (NIR-II) are summarized. Additionally, the advancements of preclinical and clinical studies related to these nanotechnology-enhanced vascular imaging approaches are outlined, with subsequent discussion on the current challenges and future prospects in both basic research and clinical translation.
Collapse
Affiliation(s)
- Peisen Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yao Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiaoqi Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yudong Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Hua Lin
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ni Zhang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Wenyue Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lihong Jing
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China
| | - Mingxia Jiao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
17
|
Öztürk K, Kaplan M, Çalış S. Effects of nanoparticle size, shape, and zeta potential on drug delivery. Int J Pharm 2024; 666:124799. [PMID: 39369767 DOI: 10.1016/j.ijpharm.2024.124799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Nanotechnology has brought about a significant revolution in drug delivery, and research in this domain is increasingly focusing on understanding the role of nanoparticle (NP) characteristics in drug delivery efficiency. First and foremost, we center our attention on the size of nanoparticles. Studies have indicated that NP size significantly influences factors such as circulation time, targeting capabilities, and cellular uptake. Secondly, we examine the significance of nanoparticle shape. Various studies suggest that NPs of different shapes affect cellular uptake mechanisms and offer potential advantages in directing drug delivery. For instance, cylindrical or needle-like NPs may facilitate better cellular uptake compared to spherical NPs. Lastly, we address the importance of nanoparticle charge. Zeta potential can impact the targeting and cellular uptake of NPs. Positively charged NPs may be better absorbed by negatively charged cells, whereas negatively charged NPs might perform more effectively in positively charged cells. This review provides essential insights into understanding the role of nanoparticles in drug delivery. The properties of nanoparticles, including size, shape, and charge, should be taken into consideration in the rational design of drug delivery systems, as optimizing these characteristics can contribute to more efficient targeting of drugs to the desired tissues. Thus, research into nanoparticle properties will continue to play a crucial role in the future of drug delivery.
Collapse
Affiliation(s)
- Kıvılcım Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Türkiye
| | - Meryem Kaplan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Türkiye; Department of Pharmaceutical Technology, Faculty of Pharmacy, Süleyman Demirel University, 32260 Isparta, Türkiye
| | - Sema Çalış
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Türkiye.
| |
Collapse
|
18
|
Haripriyaa M, Suthindhiran K. Investigation of pharmacokinetics and immunogenicity of magnetosomes. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:69-83. [PMID: 38214676 DOI: 10.1080/21691401.2023.2289367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
Magnetosomes are iron oxide or iron sulphide nano-sized particles surrounded by a lipid bilayer synthesised by a group of bacteria known as magnetotactic bacteria (MTB). Magnetosomes have become a promising candidate for biomedical applications and could be potentially used as a drug-carrier. However, pharmacokinetics and immunogenicity of the magnetosomes have not been understood yet which preclude its clinical applications. Herein, we investigated the pharmacokinetics of magnetosomes including Absorption, Distribution, Metabolism, and Elimination (ADME) along with its immunogenicity in vitro and in vivo. The magnetosomes were conjugated with fluorescein isothiocyanate (Mag-FITC) and their conjugation was confirmed through fluorescence microscopy and its absorption in HeLa cell lines was evaluated using flow cytometry analysis. The results revealed a maximum cell uptake of 97% at 200 µg/mL concentration. Further, the biodistribution of Mag-FITC was investigated in vivo by a bioimaging system using BALB/c mice as a subject at different time intervals. The Mag-FITC neither induced death nor physical distress and the same was eliminated post 36 h of injection with meagre intensities left behind. The metabolism and elimination analysis were assessed to detect the iron overload which revealed that magnetosomes were entirely metabolised within 48-h interval. Furthermore, the histopathology and serum analysis reveal no histological damage with the absence of any abnormal biochemical parameters. The results support our study that magnetosomes were completely removed from the blood circulation within 48-h time interval. Moreover, the immunogenicity analysis has shown that magnetosomes do not induce any inflammation as indicated by reduced peaks of immune markers such as IL 1β, IL 2, IL 6, IL8, IFN γ, and TNF α estimated through Indirect ELISA. The normal behaviour of animals with the absence of acute or chronic toxicities in any organs declares that magnetosomes are safe to be injected. This shows that magnetosomes are benign for biological systems enrouting towards beneficial biomedical applications. Therefore, this study will advance the understanding and application of magnetosomes for clinical purposes.
Collapse
Affiliation(s)
- M Haripriyaa
- Marine Biotechnology and Bioproducts lab, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - K Suthindhiran
- Marine Biotechnology and Bioproducts lab, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
19
|
Haghighi E, Abolmaali SS, Dehshahri A, Mousavi Shaegh SA, Azarpira N, Tamaddon AM. Navigating the intricate in-vivo journey of lipid nanoparticles tailored for the targeted delivery of RNA therapeutics: a quality-by-design approach. J Nanobiotechnology 2024; 22:710. [PMID: 39543630 PMCID: PMC11566655 DOI: 10.1186/s12951-024-02972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
RNA therapeutics, such as mRNA, siRNA, and CRISPR-Cas9, present exciting avenues for treating diverse diseases. However, their potential is commonly hindered by vulnerability to degradation and poor cellular uptake, requiring effective delivery systems. Lipid nanoparticles (LNPs) have emerged as a leading choice for in vivo RNA delivery, offering protection against degradation, enhanced cellular uptake, and facilitation of endosomal escape. However, LNPs encounter numerous challenges for targeted RNA delivery in vivo, demanding advanced particle engineering, surface functionalization with targeting ligands, and a profound comprehension of the biological milieu in which they function. This review explores the structural and physicochemical characteristics of LNPs, in-vivo fate, and customization for RNA therapeutics. We highlight the quality-by-design (QbD) approach for targeted delivery beyond the liver, focusing on biodistribution, immunogenicity, and toxicity. In addition, we explored the current challenges and strategies associated with LNPs for in-vivo RNA delivery, such as ensuring repeated-dose efficacy, safety, and tissue-specific gene delivery. Furthermore, we provide insights into the current clinical applications in various classes of diseases and finally prospects of LNPs in RNA therapeutics.
Collapse
Affiliation(s)
- Elahe Haghighi
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Mousavi Shaegh
- Laboratory of Microfluidics and Medical Microsystems, Research Institute for Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Azarpira
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutics, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
20
|
Pashirova T, Shaihutdinova Z, Tatarinov D, Titova A, Malanyeva A, Vasileva O, Gabdurakhmanov K, Dudnikov S, Schopfer LM, Lockridge O, Masson P. Pharmacokinetics and fate of free and encapsulated IRD800CW-labelled human BChE intravenously administered in mice. Int J Biol Macromol 2024; 282:137305. [PMID: 39515732 DOI: 10.1016/j.ijbiomac.2024.137305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Human butyrylcholinesterase (BChE) is an efficient bioscavenger of toxicants. Highly purified BChE was labelled with the near infrared fluorescent IRDye800CW. The goal was to determine the pharmacokinetics and fate of enzyme in mice. BChE-IRDye800CW was encapsulated in polyethylene glycol-polypropylene sulfide-based spherical polymersome nanoreactors with the following characteristics: 140 nm diameter, ξ = -6 mV, PDI ≤ 0.2, 1 year stability. Encapsulation did not alter the functional properties of BChE. Free and encapsulated enzyme were injected intravenously to CD-1 mice (single dose of enzyme 1.5 mg/kg and PEG-PPS polymersomes 25 mg/kg) and were analyzed for 8 days using an in vivo imaging system. Results showed that the pharmacokinetic distribution α-phase of encapsulated BChE (t1/2 = 17.6 h) was longer than for free enzyme (t1/2 = 6.6 h). The mean half-time for elimination β-phase was 2-time longer for encapsulated enzyme than for free enzyme (150 vs 72 h). Transient changes in infrared fluorescence in organs showed that BChE is eliminated from liver. However, free and encapsulated enzymes were cleared via different pathways. This first study of pharmacokinetics and fate of BChE encapsulated in polymersomes initiates research of new formulations of bioscavengers aimed at increasing the residence time of enzymes in the blood stream.
Collapse
Affiliation(s)
- Tatiana Pashirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation; Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russian Federation.
| | - Zukhra Shaihutdinova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation; Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russian Federation
| | - Dmitry Tatarinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russian Federation
| | - Angelina Titova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | - Albina Malanyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | - Olga Vasileva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | - Kamil Gabdurakhmanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | - Sergei Dudnikov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | | | - Oksana Lockridge
- University of Nebraska Medical Center, Eppley Institute, Omaha, NE, USA
| | - Patrick Masson
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation.
| |
Collapse
|
21
|
Li Q, Yang X, Xia X, Xia XX, Yan D. Affibody-Functionalized Elastin-like Peptide-Drug Conjugate Nanomicelle for Targeted Ovarian Cancer Therapy. Biomacromolecules 2024; 25:6474-6484. [PMID: 39235966 DOI: 10.1021/acs.biomac.4c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Recombinant elastin-like polypeptides (ELPs) have emerged as an attractive nanoplatform for drug delivery due to their tunable genetically encoded sequence, biocompatibility, and stimuli-responsive self-assembly behaviors. Here, we designed and biosynthesized an HER2 (human epidermal growth factor receptor 2)-targeted affibody-ELP fusion protein (Z-ELP), which was subsequently conjugated with monomethyl auristatin E (MMAE) to build a protein-drug conjugate (Z-ELP-M). Due to its thermal response, Z-ELP-M can immediately self-assemble into a nanomicelle at physiological temperature. Benefiting from its active targeting and nanomorphology, Z-ELP-M exhibits enhanced cellular internalization and deep tumor penetration in vitro. Moreover, Z-ELP-M shows excellent tumor targeting and superior antitumor efficacy in HER2-positive ovarian cancer, demonstrating a relative tumor growth inhibition of 104.6%. These findings suggest that an affibody-functionalized elastin-like peptide-drug conjugate nanomicelle is an efficient strategy to improve antitumor efficacy and biosafety in cancer therapy.
Collapse
Affiliation(s)
- Qingrong Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiaoyuan Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xuelin Xia
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
22
|
Saladino GM, Chao PH, Brodin B, Li SD, Hertz HM. Liposome biodistribution mapping with in vivo X-ray fluorescence imaging. NANOSCALE 2024; 16:17404-17411. [PMID: 39212620 DOI: 10.1039/d4nr02793k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Lipid-based nanoparticles are organic nanostructures constituted of phospholipids and cholesterol, displaying high in vivo biocompatibility. They have been demonstrated as effective nanocarriers for drug delivery and targeting. Mapping liposome distribution is crucial as it enables a precise understanding of delivery kinetics, tissue targeting efficiency, and potential off-target effects. Recently, ruthenium-encapsulated liposomes have shown potential for targeted drug delivery, photodynamic therapy, and optical fluorescence imaging. In the present work, we design Ru(bpy)3-encapsulated liposomes (Ru-Lipo) empowering optical and X-ray fluorescence (XRF) properties for dual mode imaging and demonstrate the passivation role of liposomes over the free Ru(bpy)3 compound. We employ whole-body XRF imaging to map the in vivo biodistribution of Ru-Lipo in mice, enabling tumor detection and longitudinal studies with elemental specificity and resolution down to the sub-millimeter scale. Quantitative XRF computed tomography on extracted organs permits targeting efficiency evaluations. These findings highlight the promising role of XRF imaging in pharmacokinetic studies and theranostic applications for the rapid optimization of drug delivery and assessment of targeting efficiency.
Collapse
Affiliation(s)
- Giovanni Marco Saladino
- Department of Applied Physics, Bio-Opto-Nano Physics, KTH Royal Institute of Technology, SE 10691, Stockholm, Sweden.
- Faculty of Pharmaceutical Sciences, University of British Columbia, V6T 1Z3, Vancouver, British Columbia, Canada
| | - Po-Han Chao
- Faculty of Pharmaceutical Sciences, University of British Columbia, V6T 1Z3, Vancouver, British Columbia, Canada
| | - Bertha Brodin
- Department of Applied Physics, Bio-Opto-Nano Physics, KTH Royal Institute of Technology, SE 10691, Stockholm, Sweden.
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, V6T 1Z3, Vancouver, British Columbia, Canada
| | - Hans Martin Hertz
- Department of Applied Physics, Bio-Opto-Nano Physics, KTH Royal Institute of Technology, SE 10691, Stockholm, Sweden.
| |
Collapse
|
23
|
Vinales I, Silva-Espinoza JC, Medina BA, Urbay JEM, Beltran MA, Salinas DE, Ramirez-Ramos MA, Maldonado RA, Poon W, Penichet ML, Almeida IC, Michael K. Selective Transfection of a Transferrin Receptor-Expressing Cell Line with DNA-Lipid Nanoparticles. ACS OMEGA 2024; 9:39533-39545. [PMID: 39346819 PMCID: PMC11425831 DOI: 10.1021/acsomega.4c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 10/01/2024]
Abstract
Despite considerable progress in using lipid nanoparticle (LNP) vehicles for gene delivery, achieving selective transfection of specific cell types remains a significant challenge, hindering the advancement of new gene or gene-editing therapies. Although LNPs have been equipped with ligands aimed at targeting specific cellular receptors, achieving complete selectivity continues to be elusive. The exact reasons for this limited selectivity are not fully understood, as cell targeting involves a complex interplay of various cellular factors. Assessing how much ligand/receptor binding contributes to selectivity is challenging due to these additional influencing factors. Nonetheless, such data are important for developing new nanocarriers and setting realistic expectations for selectivity. Here, we have quantified the selective, targeted transfection using two uniquely engineered cell lines that eliminate unpredictable and interfering cellular influences. We have compared the targeted transfection of Chinese ovary hamster (CHO) cells engineered to express the human transferrin receptor 1 (hTfR1), CHO-TRVb-hTfR1, with CHO cells that completely lack any transferrin receptor, CHO-TRVb-neo cells (negative control). Thus, the two cell lines differ only in the presence/absence of hTfR1. The transfection was performed with pDNA-encapsulating LNPs equipped with the DT7 peptide ligand that specifically binds to hTfR1 and enables targeted transfection. The LNP's pDNA encoded for the monomeric GreenLantern (mGL) reporter protein, whose fluorescence was used to quantify transfection. We report a novel LNP composition designed to achieve an optimal particle size and ζ-potential, efficient pDNA encapsulation, hTfR1-targeting capability, and sufficient polyethylene glycol sheltering to minimize random cell targeting. The transfection efficiency was quantified in both cell lines separately through flow cytometry based on the expression of the fluorescent gene product. Our results demonstrated an LNP dose-dependent mGL expression, with a 5-fold preference for the CHO-TRVb-hTfR1 when compared to CHO-TRVb-neo. In another experiment, when both cell lines were mixed at a 1:1 ratio, the DT7-decorated LNP achieved a 3-fold higher transfection of the CHO-TRVb-hTfR1 over the CHO-TRVb-neo cells. Based on the low-level transfection of the CHO-TRVb-neo cells in both experiments, our results suggest that 17-25% of the transfection occurred in a nonspecific manner. The observed transfection selectivity for the CHO-TRVb-hTfR1 cells was based entirely on the hTfR1/DT7 interaction. This work showed that the platform of two engineered cell lines which differ only in the hTfR1 can greatly facilitate the development of LNPs with hTfR1-targeting ligands.
Collapse
Affiliation(s)
- Irodiel Vinales
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, El Paso, Texas 79968, United States
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
| | - Juan Carlos Silva-Espinoza
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
- Department
of Biological Sciences, University of Texas
at El Paso, El Paso, Texas 79968, United States
| | - Bryan A. Medina
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, El Paso, Texas 79968, United States
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
| | - Juan E. M. Urbay
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, El Paso, Texas 79968, United States
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
| | - Miguel A. Beltran
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
- Department
of Biological Sciences, University of Texas
at El Paso, El Paso, Texas 79968, United States
| | - Dante E. Salinas
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
- Department
of Biological Sciences, University of Texas
at El Paso, El Paso, Texas 79968, United States
| | - Marco A. Ramirez-Ramos
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, El Paso, Texas 79968, United States
| | - Rosa A. Maldonado
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
- Department
of Biological Sciences, University of Texas
at El Paso, El Paso, Texas 79968, United States
| | - Wilson Poon
- Department
of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Manuel L. Penichet
- Division
of Surgical Oncology, Department of Surgery, David Geffen School of
Medicine, University of California, Los
Angeles (UCLA), Los Angeles, California 90095, United States
- Department
of Microbiology, Immunology and Molecular Genetics, David Geffen School
of Medicine, University of California, Los
Angeles (UCLA), Los Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- The Molecular
Biology Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Jonsson Comprehensive
Cancer Center, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Igor C. Almeida
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
- Department
of Biological Sciences, University of Texas
at El Paso, El Paso, Texas 79968, United States
| | - Katja Michael
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, El Paso, Texas 79968, United States
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
24
|
Lebreton V, Legeay S, Rapenne C, Saulnier P, Lagarce F. Elimination study of intact lipid nanocapsules after intravenous rat administration. Nanomedicine (Lond) 2024; 19:1123-1131. [PMID: 38690778 PMCID: PMC11418280 DOI: 10.2217/nnm-2024-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Aim: The present study investigated renal elimination after intravenous administration of four different formulations of lipid nanocapsules (LNCs) containing dyes adapted to Förster resonance energy transfer (FRET-LNCs).Materials & methods: FRET-LNCs of 85 or 50 nm with or without a pegylated surface were injected and collected in the blood or urine of rats at different time points. Quantitative analysis was performed to measure intact FRET-LNCs.Results & conclusion: No intact LNCs were found in urine (0 particles/ml) for all formulations. The 50-nm pegylated LNCs were eliminated faster from the blood, whereas 85-nm pegylated LNCS were eliminated slower than nonpegylated LNCs. Elimination of FRET-LNCs was mainly due to liver tissue interaction and not renal elimination.
Collapse
Affiliation(s)
- Vincent Lebreton
- MINT, INSERM U1066, CNRS 6021, University of Angers, SFR-ICAT 4208, Angers, 49933, France
- CHU Angers, Pharmacy department, 49933, Angers, France
| | - Samuel Legeay
- MINT, INSERM U1066, CNRS 6021, University of Angers, SFR-ICAT 4208, Angers, 49933, France
| | - Clara Rapenne
- MINT, INSERM U1066, CNRS 6021, University of Angers, SFR-ICAT 4208, Angers, 49933, France
| | - Patrick Saulnier
- MINT, INSERM U1066, CNRS 6021, University of Angers, SFR-ICAT 4208, Angers, 49933, France
- CHU Angers, Pharmacy department, 49933, Angers, France
| | - Frédéric Lagarce
- MINT, INSERM U1066, CNRS 6021, University of Angers, SFR-ICAT 4208, Angers, 49933, France
- CHU Angers, Pharmacy department, 49933, Angers, France
| |
Collapse
|
25
|
Yu X, Wang J, Wang T, Song S, Su H, Huang H, Luo P. Ellagic acid-enhanced biocompatibility and bioactivity in multilayer core-shell gold nanoparticles for ameliorating myocardial infarction injury. J Nanobiotechnology 2024; 22:554. [PMID: 39261890 PMCID: PMC11389385 DOI: 10.1186/s12951-024-02796-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI) is the main contributor to most cardiovascular diseases (CVDs), and the available post-treatment clinical therapeutic options are limited. The development of nanoscale drug delivery systems carrying natural small molecules provides biotherapies that could potentially offer new treatments for reactive oxygen species (ROS)-induced damage in MI. Considering the stability and reduced toxicity of gold-phenolic core-shell nanoparticles, this study aims to develop ellagic acid-functionalized gold nanoparticles (EA-AuNPs) to overcome these limitations. RESULTS We have successfully synthesized EA-AuNPs with enhanced biocompatibility and bioactivity. These core-shell gold nanoparticles exhibit excellent ROS-scavenging activity and high dispersion. The results from a label-free imaging method on optically transparent zebrafish larvae models and micro-CT imaging in mice indicated that EA-AuNPs enable a favorable excretion-based metabolism without overburdening other organs. EA-AuNPs were subsequently applied in cellular oxidative stress models and MI mouse models. We found that they effectively inhibit the expression of apoptosis-related proteins and the elevation of cardiac enzyme activities, thereby ameliorating oxidative stress injuries in MI mice. Further investigations of oxylipin profiles indicated that EA-AuNPs might alleviate myocardial injury by inhibiting ROS-induced oxylipin level alterations, restoring the perturbed anti-inflammatory oxylipins. CONCLUSIONS These findings collectively emphasized the protective role of EA-AuNPs in myocardial injury, which contributes to the development of innovative gold-phenolic nanoparticles and further advances their potential medical applications.
Collapse
Affiliation(s)
- Xina Yu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Jie Wang
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Tiantian Wang
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Shanshan Song
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Hongna Su
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong-HongKong-Macao, Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Pei Luo
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China.
- Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
26
|
Zhong Z, Cui XL, Tan KJ, Wu XY, Zhu XJ, Zhang JY, Zhang WJ, Wang HY, Zhang PL. Apoptotic vesicles (apoVs) derived from fibroblast-converted hepatocyte-like cells effectively ameliorate liver fibrosis. J Nanobiotechnology 2024; 22:541. [PMID: 39238002 PMCID: PMC11375929 DOI: 10.1186/s12951-024-02824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024] Open
Abstract
Liver fibrosis is a serious global health issue for which effective treatment remains elusive. Chemical-induced hepatocyte-like cells (ciHeps) have emerged as an appealing source for cell transplantation therapy, although they present several challenges such as the risk of lung thromboembolism or hemorrhage. Apoptotic vesicles (apoVs), small membrane vesicles generated during the apoptosis process, have gained attention for their role in regulating various physiological and pathological processes. In this study, we generated ciHep-derived apoVs (ciHep-apoVs) and investigated their therapeutic potential in alleviating liver fibrosis. Our findings revealed that ciHep-apoVs induced the transformation of macrophages into an anti-inflammatory phenotype, effectively suppressed the activity of activated hepatic stellate cells (aHSCs), and enhanced the survival of hepatocytes. When intravenously administered to mice with liver fibrosis, ciHep-apoVs were primarily engulfed by macrophages and myofibroblasts, leading to a reduction in liver inflammation and fibrosis. Proteomic and miRNA analyses showed that ciHep-apoVs were enriched in various functional molecules that modulate crucial cellular processes, including metabolism, signaling transduction, and ECM-receptor interactions. ciHep-apoVs effectively suppressed aHSCs activity through the synergistic inhibition of glycolysis, the PI3K/AKT/mTOR pathway, and epithelial-to-mesenchymal transition (EMT) cascades. These findings highlight the potential of ciHep-apoVs as multifunctional nanotherapeutics for liver fibrosis and provide insights into the treatment of other liver diseases and fibrosis in other organs.
Collapse
Affiliation(s)
- Zhi Zhong
- National Center for Liver Cancer, Naval Medical University, 366 Qianju Road, Shanghai, 201805, China
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiu-Liang Cui
- National Center for Liver Cancer, Naval Medical University, 366 Qianju Road, Shanghai, 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Naval Medical University, Shanghai, 200438, China
| | - Kun-Jiang Tan
- National Center for Liver Cancer, Naval Medical University, 366 Qianju Road, Shanghai, 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Naval Medical University, Shanghai, 200438, China
| | - Xiang-Yu Wu
- National Center for Liver Cancer, Naval Medical University, 366 Qianju Road, Shanghai, 201805, China
| | - Xiang-Jie Zhu
- National Center for Liver Cancer, Naval Medical University, 366 Qianju Road, Shanghai, 201805, China
- Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Jiu-Yu Zhang
- National Center for Liver Cancer, Naval Medical University, 366 Qianju Road, Shanghai, 201805, China
- Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Wei-Jia Zhang
- National Center for Liver Cancer, Naval Medical University, 366 Qianju Road, Shanghai, 201805, China
| | - Hong-Yang Wang
- National Center for Liver Cancer, Naval Medical University, 366 Qianju Road, Shanghai, 201805, China.
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Naval Medical University, Shanghai, 200438, China.
| | - Pei-Lin Zhang
- National Center for Liver Cancer, Naval Medical University, 366 Qianju Road, Shanghai, 201805, China.
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Naval Medical University, Shanghai, 200438, China.
| |
Collapse
|
27
|
Qi Y, Xu M, Lu H, Wang X, Peng Y, Wang Z, Liang F, Jiang X, Du B. Hepatic Biotransformation of Renal Clearable Gold Nanoparticles for Noninvasive Detection of Liver Glutathione Level via Urinalysis. Angew Chem Int Ed Engl 2024; 63:e202409477. [PMID: 38877855 DOI: 10.1002/anie.202409477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Indexed: 07/31/2024]
Abstract
Renal clearable nanoparticles have been drawing much attention as they can avoid prolonged accumulation in the body by efficiently clearing through the kidneys. While much effort has been made to understand their interactions within the kidneys, it remains unclear whether their transport could be influenced by other organs, such as the liver, which plays a crucial role in metabolizing and eliminating both endogenous and exogenous substances through various biotransformation processes. Here, by utilizing renal clearable IRDye800CW conjugated gold nanocluster (800CW4-GS18-Au25) as a model, we found that although 800CW4-GS18-Au25 strongly resisted serum-protein binding and exhibited minimal accumulation in the liver, its surface was still gradually modified by hepatic glutathione-mediated biotransformation when passing through the liver, resulting in the dissociation of IRDye800CW from Au25 and biotransformation-generated fingerprint message of 800CW4-GS18-Au25 in urine, which allowed us to facilely quantify its urinary biotransformation index (UBI) via urine chromatography analysis. Moreover, we observed the linear correlation between UBI and hepatic glutathione concentration, offering us a noninvasive method for quantitative detection of liver glutathione level through a simple urine test. Our discoveries would broaden the fundamental understanding of in vivo transport of nanoparticles and advance the development of urinary probes for noninvasive biodetection.
Collapse
Affiliation(s)
- Yuming Qi
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, P.R. China
| | - Mingze Xu
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, P.R. China
| | - Huixu Lu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
| | - Xiaoxian Wang
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, P.R. China
| | - Yexi Peng
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, P.R. China
| | - Ziyuan Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
| | - Fengying Liang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
| | - Xingya Jiang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, PR China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| | - Bujie Du
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, P.R. China
| |
Collapse
|
28
|
Jiménez-Chávez ÁDJ, Moreno-Fierros L, Cayetano-Cruz M, Romero-Romero LP, Bustos-Jaimes I. Use of parvovirus B19-like particles in self-illuminated photodynamic therapy for solid tumors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112979. [PMID: 39003970 DOI: 10.1016/j.jphotobiol.2024.112979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Bioluminescence resonance energy transfer photodynamic therapy, which uses light generated by bioluminescent proteins to activate photosensitizers and produce reactive oxygen species without the need for external irradiation, has shown promising results in cancer models. However, the characterization of delivery systems that can incorporate the components of this therapy for preferential delivery to the tumor remains necessary. In this work, we have characterized parvovirus B19-like particles (B19V-VLPs) as a platform for a photosensitizer and a bioluminescent protein. By chemical and biorthogonal conjugation, we conjugated rose Bengal photosensitizer and firefly luciferase to B19V-VLPs and a protein for added specificity. The results showed that B19V-VLPs can withstand decoration with all three components without affecting its structure or stability. The conjugated luciferase showed activity and was able to activate rose Bengal to produce singlet oxygen without the need for external light. The photodynamic reaction generated by the functionalized VLPs-B19 can decrease the viability of tumor cells in vitro and affect tumor growth and metastasis in the 4 T1 model. Treatment with functionalized VLPs-B19 also increased the percentage of CD4 and CD8 cell populations in the spleen and in inguinal lymph nodes compared to vehicle-treated mice. Our results support B19V-VLPs as a delivery platform for bioluminescent photodynamic therapy components to solid tumors.
Collapse
Affiliation(s)
- Ángel de Jesús Jiménez-Chávez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico
| | - Leticia Moreno-Fierros
- Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla de Baz, Estado de México 54090, Mexico
| | - Maribel Cayetano-Cruz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico
| | | | - Ismael Bustos-Jaimes
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico.
| |
Collapse
|
29
|
Grundler J, Whang CH, Shin K, Savan NA, Zhong M, Saltzman WM. Modifying the Backbone Chemistry of PEG-Based Bottlebrush Block Copolymers for the Formation of Long-Circulating Nanoparticles. Adv Healthc Mater 2024; 13:e2304040. [PMID: 38734871 PMCID: PMC11368614 DOI: 10.1002/adhm.202304040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Nanoparticle physicochemical properties have received great attention in optimizing the performance of nanoparticles for biomedical applications. For example, surface functionalization with small molecules or linear hydrophilic polymers is commonly used to tune the interaction of nanoparticles with proteins and cells. However, it is challenging to control the location of functional groups within the shell for conventional nanoparticles. Nanoparticle surfaces composed of shape-persistent bottlebrush polymers allow hierarchical control over the nanoparticle shell but the effect of the bottlebrush backbone on biological interactions is still unknown. The synthesis is reported of novel heterobifunctional poly(ethylene glycol) (PEG)-norbornene macromonomers modified with various small molecules to form bottlebrush polymers with different backbone chemistries. It is demonstrated that micellar nanoparticles composed of poly(lactic acid) (PLA)-PEG bottlebrush block copolymer (BBCP) with neutral and cationic backbone modifications exhibit significantly reduced cellular uptake compared to conventional unmodified BBCPs. Furthermore, the nanoparticles display long blood circulation half-lives of ≈22 hours and enhanced tumor accumulation in mice. Overall, this work sheds light on the importance of the bottlebrush polymer backbone and provides a strategy to improve the performance of nanoparticles in biomedical applications.
Collapse
Affiliation(s)
- Julian Grundler
- Department of Chemistry and Department of Biomedical Engineering, Yale University, New Haven, CT 06511 (USA)
| | - Chang-Hee Whang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511 (USA)
| | - Kwangsoo Shin
- Department of Polymer Science & Engineering and Environmental Engineering, Inha University, Incheon, 22212 (Korea), Inha University, Incheon, 22212 (Korea)
| | - N. Anna Savan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511 (USA), Medical Scientist Training Program, Yale School of Medicine, New Haven, CT 06510 (USA)
| | - Mingjiang Zhong
- Department of Chemical Engineering and Department of Chemistry, Yale University, New Haven, CT 06511 (USA)
| | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511 (USA), Department of Cellular & Molecular Physiology and Department of Dermatology, Yale School of Medicine, New Haven, CT 06510 (USA)
| |
Collapse
|
30
|
Saber N, Senti ME, Schiffelers RM. Lipid Nanoparticles for Nucleic Acid Delivery Beyond the Liver. Hum Gene Ther 2024; 35:617-627. [PMID: 39139067 DOI: 10.1089/hum.2024.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Lipid nanoparticles (LNPs) are the most clinically advanced drug delivery system for nucleic acid therapeutics, exemplified by the success of the COVID-19 mRNA vaccines. However, their clinical use is currently limited to hepatic diseases and vaccines due to their tendency to accumulate in the liver upon intravenous administration. To fully leverage their potential, it is essential to understand and address their liver tropism, while also developing strategies to enhance delivery to tissues beyond the liver. Ensuring that these therapeutics reach their target cells while avoiding off-target cells is essential for both their efficacy and safety. There are three potential targeting strategies-passive, active, and endogenous-which can be used individually or in combination to target nonhepatic tissues. In this review, we delve into the recent advancements in LNP engineering for delivering nucleic acid beyond the liver.
Collapse
Affiliation(s)
- Nadine Saber
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
31
|
Wen Y, Liu R, Xie Y, Li M. Targeted SERS Imaging and Intraoperative Real-Time Elimination of Microscopic Tumors for Improved Breast-Conserving Surgery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405253. [PMID: 38820719 DOI: 10.1002/adma.202405253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/20/2024] [Indexed: 06/02/2024]
Abstract
Breast-conserving surgery is the favorable option for breast cancer patients owing to its advantages of less aggressiveness and better cosmetic outcomes over mastectomy. However, it often suffers from postsurgical lethal recurrence due to the incomplete removal of microscopic tumors. Here, a surface-enhanced Raman scattering (SERS) surgical strategy is reported for precise delineation of tumor margins and intraoperative real-time elimination of microscopic tumor foci, which is capable of complete surgical removal of breast tumors and significantly improve the outcomes of breast-conserving surgery without local tumor recurrence. The technique is chiefly based on the human epidermal growth factor receptor 2 (HER2)-targeting SERS probes with integrated multifunctionalities of ultrahigh sensitive detection, significant HER2 expression suppression, cell proliferation inhibition, and superior photothermal ablation. In a HER2+ breast tumor mouse model, the remarkable capability of the SERS surgical strategy for complete removal of HER2+ breast tumors through SERS-guided surgical resection and intraoperative real-time photothermal elimination is demonstrated. The results show complete eradiation of HER2+ breast tumors without local recurrence, consequently delivering a 100% tumor-free survival. Expectedly, this SERS surgical strategy holds great promise for clinical treatment of HER2+ breast cancer with improved patients' survival.
Collapse
Affiliation(s)
- Yu Wen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
- Furong Laboratory, Central South University, Changsha, Hunan, 410008, China
| | - Ruoxuan Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Yangcenzi Xie
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
32
|
Wu Q, Dong QQ, Wang SH, Lu Y, Shi Y, Xu XL, Chen W. Tumor Cell-Derived Exosomal Hybrid Nanosystems Loaded with Rhubarbic Acid and Tanshinone IIA for Sepsis Treatment. J Inflamm Res 2024; 17:5093-5112. [PMID: 39099664 PMCID: PMC11296366 DOI: 10.2147/jir.s457978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024] Open
Abstract
Background Sepsis continues to exert a significant impact on morbidity and mortality in clinical settings, with immunosuppression, multi-organ failure, and disruptions in gut microbiota being key features. Although rheinic acid and tanshinone IIA show promise in mitigating macrophage apoptosis in sepsis treatment, their precise targeting of macrophages remains limited. Additionally, the evaluation of intestinal flora changes following treatment, which plays a significant role in subsequent cytokine storms, has been overlooked. Leveraging the innate inflammation chemotaxis of tumor cell-derived exosomes allows for their rapid recognition and uptake by activated macrophages, facilitating phenotypic changes and harnessing anti-inflammatory effects. Methods We extracted exosomes from H1299 cells using a precipitation method. Then we developed a tumor cell-derived exosomal hybrid nanosystem loaded with rhubarbic acid and tanshinone IIA (R+T/Lipo/EXO) for sepsis treatment. In vitro studies, we verify the anti-inflammatory effect and the mechanism of inhibiting cell apoptosis of nano drug delivery system. The anti-inflammatory effects, safety, and modulation of intestinal microbiota by the nanoformulations were further validated in the in vivo study. Results Nanoformulation demonstrated enhanced macrophage internalization, reduced TNF-α expression, inhibited apoptosis, modulated intestinal flora, and alleviated immunosuppression. Conclusion R+T/Lipo/EXO presents a promising approach using exosomal hybrid nanosystems for treating sepsis.
Collapse
Affiliation(s)
- Qian Wu
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Qing-Qing Dong
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Si-Hui Wang
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yi Lu
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yi Shi
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, People’s Republic of China
| | - Wei Chen
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
33
|
Jiang K, Tian K, Yu Y, Wu E, Yang M, Pan F, Qian J, Zhan C. Kupffer cells determine intrahepatic traffic of PEGylated liposomal doxorubicin. Nat Commun 2024; 15:6136. [PMID: 39033145 PMCID: PMC11271521 DOI: 10.1038/s41467-024-50568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Intrahepatic accumulation dominates organ distribution for most nanomedicines. However, obscure intrahepatic fate largely hampers regulation on their in vivo performance. Herein, PEGylated liposomal doxorubicin is exploited to clarify the intrahepatic fate of both liposomes and the payload in male mice. Kupffer cells initiate and dominate intrahepatic capture of liposomal doxorubicin, following to deliver released doxorubicin to hepatocytes with zonated distribution along the lobule porto-central axis. Increasing Kupffer cells capture promotes doxorubicin accumulation in hepatocytes, revealing the Kupffer cells capture-payload release-hepatocytes accumulation scheme. In contrast, free doxorubicin is overlooked by Kupffer cells, instead quickly distributing into hepatocytes by directly crossing fenestrated liver sinusoid endothelium. Compared to free doxorubicin, liposomal doxorubicin exhibits sustained metabolism/excretion due to the extra capture-release process. This work unveils the pivotal role of Kupffer cells in intrahepatic traffic of PEGylated liposomal therapeutics, and quantitively describes the intrahepatic transport/distribution/elimination process, providing crucial information for guiding further development of nanomedicines.
Collapse
Affiliation(s)
- Kuan Jiang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200030, P.R. China.
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, P.R. China.
| | - Kaisong Tian
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, P.R. China
| | - Yifei Yu
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, P.R. China
| | - Ercan Wu
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, P.R. China
| | - Min Yang
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, P.R. China
| | - Feng Pan
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, P.R. China
| | - Jun Qian
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, P.R. China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, P.R. China.
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, P.R. China.
| |
Collapse
|
34
|
Agrohia DK, Goswami R, Jantarat T, Çiçek YA, Thongsukh K, Jeon T, Bell JM, Rotello VM, Vachet RW. Suborgan Level Quantitation of Proteins in Tissues Delivered by Polymeric Nanocarriers. ACS NANO 2024; 18:16808-16818. [PMID: 38870478 PMCID: PMC11497159 DOI: 10.1021/acsnano.4c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Amidst the rapid growth of protein therapeutics as a drug class, there is an increased focus on designing systems to effectively deliver proteins to target organs. Quantitative monitoring of protein distributions in tissues is essential for optimal development of delivery systems; however, existing strategies can have limited accuracy, making it difficult to assess suborgan dosing. Here, we describe a quantitative imaging approach that utilizes metal-coded mass tags and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to quantify the suborgan distributions of proteins in tissues that have been delivered by polymeric nanocarriers. Using this approach, we measure nanomole per gram levels of proteins as delivered by guanidinium-functionalized poly(oxanorborneneimide) (PONI) polymers to various tissues, including the alveolar region of the lung. Due to the multiplexing capability of the LA-ICP-MS imaging, we are also able to simultaneously quantify protein and polymer distributions, obtaining valuable information about the relative excretion pathways of the protein cargo and carrier. This imaging approach will facilitate quantitative correlations between nanocarrier properties and protein cargo biodistributions.
Collapse
Affiliation(s)
- Dheeraj K. Agrohia
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Teerapong Jantarat
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Yağız Anil Çiçek
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Korndanai Thongsukh
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Taewon Jeon
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jonathan M. Bell
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
35
|
Ling B, Gungoren B, Yao Y, Dutka P, Vassallo R, Nayak R, Smith CAB, Lee J, Swift MB, Shapiro MG. Truly Tiny Acoustic Biomolecules for Ultrasound Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307106. [PMID: 38409678 PMCID: PMC11602542 DOI: 10.1002/adma.202307106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/01/2024] [Indexed: 02/28/2024]
Abstract
Nanotechnology offers significant advantages for medical imaging and therapy, including enhanced contrast and precision targeting. However, integrating these benefits into ultrasonography is challenging due to the size and stability constraints of conventional bubble-based agents. Here bicones, truly tiny acoustic contrast agents based on gas vesicles (GVs), a unique class of air-filled protein nanostructures naturally produced in buoyant microbes, are described. It is shown that these sub-80 nm particles can be effectively detected both in vitro and in vivo, infiltrate tumors via leaky vasculature, deliver potent mechanical effects through ultrasound-induced inertial cavitation, and are easily engineered for molecular targeting, prolonged circulation time, and payload conjugation.
Collapse
Affiliation(s)
- Bill Ling
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bilge Gungoren
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yuxing Yao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Przemysław Dutka
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Reid Vassallo
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Rohit Nayak
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Cameron A. B. Smith
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Justin Lee
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Margaret B. Swift
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
36
|
Hélaine C, Amedlous A, Toutain J, Brunaud C, Lebedev O, Marie C, Alliot C, Bernaudin M, Haddad F, Mintova S, Valable S. In vivo biodistribution and tumor uptake of [ 64Cu]-FAU nanozeolite via positron emission tomography Imaging. NANOSCALE 2024; 16:11959-11968. [PMID: 38874227 DOI: 10.1039/d3nr05947b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Nanoparticles have emerged as promising theranostic tools for biomedical applications, notably in the treatment of cancers. However, to fully exploit their potential, a thorough understanding of their biodistribution is imperative. In this context, we prepared radioactive [64Cu]-exchanged faujasite nanosized zeolite ([64Cu]-FAU) to conduct positron emission tomography (PET) imaging tracking in preclinical glioblastoma models. In vivo results revealed a rapid and gradual accumulation over time of intravenously injected [64Cu]-FAU zeolite nanocrystals within the brain tumor, while no uptake in the healthy brain was observed. Although a specific tumor targeting was observed in the brain, the kinetics of uptake into tumor tissue was found to be dependent on the glioblastoma model. Indeed, our results showed a rapid uptake in U87-MG model while in U251-MG glioblastoma model tumor uptake was gradual over the time. Interestingly, a [64Cu] activity, decreasing over time, was also observed in organs of elimination such as kidney and liver without showing a difference in activity between both glioblastoma models. Ex vivo analyses confirmed the presence of zeolite nanocrystals in brain tumor with detection of both Si and Al elements originated from them. This radiolabelling strategy, performed for the first time using nanozeolites, enables precise tracking through PET imaging and confirms their accumulation within the glioblastoma. These findings further bolster the potential use of zeolite nanocrystals as valuable theranostic tools.
Collapse
Affiliation(s)
- Charly Hélaine
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, F-14000 Caen, France.
| | - Abdallah Amedlous
- Université de Caen Normandie, ENSICAEN, CNRS, Normandie Université, Laboratoire Catalyse et Spectrochimie (LCS), F-14050 Caen, France.
| | - Jérôme Toutain
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, F-14000 Caen, France.
| | - Carole Brunaud
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, F-14000 Caen, France.
| | - Oleg Lebedev
- Université de Caen Normandie, ENSICAEN, CNRS, Normandie Université, Laboratoire de Cristallographie et Science des Matériaux (CRISMAT), F-14050 Caen, France
| | - Charlotte Marie
- UAR3408/US50, Université de Caen Normandie, CNRS, INSERM, CEA, GIP CYCERON, F-14000 Caen, France
| | - Cyrille Alliot
- CRCI2NA, Inserm, CNRS, Nantes Université, F-44007 Nantes Cedex 1, France
- GIP ARRONAX, F-44800 Saint-Herblain, France
| | - Myriam Bernaudin
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, F-14000 Caen, France.
| | - Ferid Haddad
- GIP ARRONAX, F-44800 Saint-Herblain, France
- IMT Atlantique, Nantes Université, CNRS, Subatech, F-44000 Nantes, France
| | - Svetlana Mintova
- Université de Caen Normandie, ENSICAEN, CNRS, Normandie Université, Laboratoire Catalyse et Spectrochimie (LCS), F-14050 Caen, France.
| | - Samuel Valable
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, F-14000 Caen, France.
| |
Collapse
|
37
|
Yang L, Ran H, Yin Y, Liu J, Lu B, Ran X, Luo S, Wang W, Yang Z, Li R. Mitochondrial Targeted Cerium Oxide Nanoclusters for Radiation Protection and Promoting Hematopoiesis. Int J Nanomedicine 2024; 19:6463-6483. [PMID: 38946882 PMCID: PMC11214556 DOI: 10.2147/ijn.s459607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose Mitochondrial oxidative stress is an important factor in cell apoptosis. Cerium oxide nanomaterials show great potential for scavenging free radicals and simulating superoxide dismutase (SOD) and catalase (CAT) activities. To solve the problem of poor targeting of cerium oxide nanomaterials, we designed albumin-cerium oxide nanoclusters (TPP-PCNLs) that target the modification of mitochondria with triphenyl phosphate (TPP). TPP-PCNLs are expected to simulate the activity of superoxide dismutase, continuously remove reactive oxygen species, and play a lasting role in radiation protection. Methods First, cerium dioxide nanoclusters (CNLs), polyethylene glycol cerium dioxide nanoclusters (PCNLs), and TPP-PCNLs were characterized in terms of their morphology and size, ultraviolet spectrum, dispersion stability and cellular uptake, and colocalization Subsequently, the anti-radiation effects of TPP-PCNLs were investigated using in vitro and in vivo experiments including cell viability, apoptosis, comet assays, histopathology, and dose reduction factor (DRF). Results TPP-PCNLs exhibited good stability and biocompatibility. In vitro experiments indicated that TPP-PCNLs could not only target mitochondria excellently but also regulate reactive oxygen species (ROS)levels in whole cells. More importantly, TPP-PCNLs improved the integrity and functionality of mitochondria in irradiated L-02 cells, thereby indirectly eliminating the continuous damage to nuclear DNA caused by mitochondrial oxidative stress. TPP-PCNLs are mainly targeted to the liver, spleen, and other extramedullary hematopoietic organs with a radiation dose reduction factor of 1.30. In vivo experiments showed that TPP-PCNLs effectively improved the survival rate, weight change, hematopoietic function of irradiated animals. Western blot experiments have confirmed that TPP-PCNLs play a role in radiation protection by regulating the mitochondrial apoptotic pathway. Conclusion TPP-PCNLs play a radiologically protective role by targeting extramedullary hematopoietic organ-liver cells and mitochondria to continuously clear ROS.
Collapse
Affiliation(s)
- Luxun Yang
- Institute of Combined Injury, National Key Laboratory of Trauma and Chemical Poisoning, Army Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Haiying Ran
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Yaru Yin
- Institute of Combined Injury, National Key Laboratory of Trauma and Chemical Poisoning, Army Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jing Liu
- Institute of Combined Injury, National Key Laboratory of Trauma and Chemical Poisoning, Army Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Binghui Lu
- Institute of Combined Injury, National Key Laboratory of Trauma and Chemical Poisoning, Army Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Xi Ran
- Department of Medical Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Shenglin Luo
- Institute of Combined Injury, National Key Laboratory of Trauma and Chemical Poisoning, Army Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Weidong Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, 610041, People's Republic of China
| | - Zhangyou Yang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Rong Li
- Institute of Combined Injury, National Key Laboratory of Trauma and Chemical Poisoning, Army Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| |
Collapse
|
38
|
Petcov TE, Straticiuc M, Iancu D, Mirea DA, Trușcă R, Mereuță PE, Savu DI, Mogoșanu GD, Mogoantă L, Popescu RC, Kopatz V, Jinga SI. Unveiling Nanoparticles: Recent Approaches in Studying the Internalization Pattern of Iron Oxide Nanoparticles in Mono- and Multicellular Biological Structures. J Funct Biomater 2024; 15:169. [PMID: 38921542 PMCID: PMC11204647 DOI: 10.3390/jfb15060169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/15/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Nanoparticle (NP)-based solutions for oncotherapy promise an improved efficiency of the anticancer response, as well as higher comfort for the patient. The current advancements in cancer treatment based on nanotechnology exploit the ability of these systems to pass biological barriers to target the tumor cell, as well as tumor cell organelles. In particular, iron oxide NPs are being clinically employed in oncological management due to this ability. When designing an efficient anti-cancer therapy based on NPs, it is important to know and to modulate the phenomena which take place during the interaction of the NPs with the tumor cells, as well as the normal tissues. In this regard, our review is focused on highlighting different approaches to studying the internalization patterns of iron oxide NPs in simple and complex 2D and 3D in vitro cell models, as well as in living tissues, in order to investigate the functionality of an NP-based treatment.
Collapse
Affiliation(s)
- Teodora Eliana Petcov
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University for Science and Technology Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (T.E.P.); (S.I.J.)
| | - Mihai Straticiuc
- Department of Applied Nuclear Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.I.); (D.A.M.); (P.E.M.)
| | - Decebal Iancu
- Department of Applied Nuclear Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.I.); (D.A.M.); (P.E.M.)
| | - Dragoș Alexandru Mirea
- Department of Applied Nuclear Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.I.); (D.A.M.); (P.E.M.)
| | - Roxana Trușcă
- National Research Center for Micro and Nanomaterials, National University for Science and Technology Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
| | - Paul Emil Mereuță
- Department of Applied Nuclear Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.I.); (D.A.M.); (P.E.M.)
| | - Diana Iulia Savu
- Department of Life and Environmental Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania
| | - George Dan Mogoșanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareș Street, 200349 Craiova, Romania;
| | - Laurențiu Mogoantă
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareș Street, 200349 Craiova, Romania;
| | - Roxana Cristina Popescu
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University for Science and Technology Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (T.E.P.); (S.I.J.)
- Department of Life and Environmental Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania
| | - Verena Kopatz
- Department of Radiation Oncology, Medical University of Vienna, 18–20 Waehringer Guertel Street, 1090 Vienna, Austria;
| | - Sorin Ion Jinga
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University for Science and Technology Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (T.E.P.); (S.I.J.)
| |
Collapse
|
39
|
Nag S, Mitra O, Maturi B, Kaur SP, Saini A, Nama M, Roy S, Samanta S, Chacko L, Dutta R, Sayana SB, Subramaniyan V, Bhatti JS, Kandimalla R. Autophagy and mitophagy as potential therapeutic targets in diabetic heart condition: Harnessing the power of nanotheranostics. Asian J Pharm Sci 2024; 19:100927. [PMID: 38948399 PMCID: PMC11214300 DOI: 10.1016/j.ajps.2024.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 03/29/2024] [Accepted: 04/13/2024] [Indexed: 07/02/2024] Open
Abstract
Autophagy and mitophagy pose unresolved challenges in understanding the pathology of diabetic heart condition (DHC), which encompasses a complex range of cardiovascular issues linked to diabetes and associated cardiomyopathies. Despite significant progress in reducing mortality rates from cardiovascular diseases (CVDs), heart failure remains a major cause of increased morbidity among diabetic patients. These cellular processes are essential for maintaining cellular balance and removing damaged or dysfunctional components, and their involvement in the development of diabetic heart disease makes them attractive targets for diagnosis and treatment. While a variety of conventional diagnostic and therapeutic strategies are available, DHC continues to present a significant challenge. Point-of-care diagnostics, supported by nanobiosensing techniques, offer a promising alternative for these complex scenarios. Although conventional medications have been widely used in DHC patients, they raise several concerns regarding various physiological aspects. Modern medicine places great emphasis on the application of nanotechnology to target autophagy and mitophagy in DHC, offering a promising approach to deliver drugs beyond the limitations of traditional therapies. This article aims to explore the potential connections between autophagy, mitophagy and DHC, while also discussing the promise of nanotechnology-based theranostic interventions that specifically target these molecular pathways.
Collapse
Affiliation(s)
- Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Oishi Mitra
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Bhanu Maturi
- Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Simran Preet Kaur
- Department of Microbiology, University of Delhi (South Campus), Benito Juarez Road, New Delhi 110021, India
| | - Ankita Saini
- Department of Microbiology, University of Delhi (South Campus), Benito Juarez Road, New Delhi 110021, India
| | - Muskan Nama
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Soumik Roy
- Department of Biotechnology, Indian Institute of Technology, Hyderabad (IIT-H), Sangareddy, Telangana 502284, India
| | - Souvik Samanta
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, 1601 Research Blvd, Rockville, MD, USA
| | - Rohan Dutta
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Suresh Babu Sayana
- Department of Pharmacology, Government Medical College, Suryapet, Telangana, India
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, India
| |
Collapse
|
40
|
Meng X, Zhu G, Yang YG, Sun T. Targeted delivery strategies: The interactions and applications of nanoparticles in liver diseases. Biomed Pharmacother 2024; 175:116702. [PMID: 38729052 DOI: 10.1016/j.biopha.2024.116702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
In recent years, nanoparticles have been broadly utilized in various drugs delivery formulations. Nanodelivery systems have shown promise in solving problems associated with the distribution of hydrophobic drugs and have promoted the accumulation of nanomedicines in the circulation or in organs. However, the injection dose of nanoparticles (NPs) is much greater than that needed by diseased tissues or organs. In other words, most of the NPs are localized off-target and do not reach the desired tissue or organs. With the rapid development of biodegradable and biosafety nanomaterials, the nanovectors represent assurance of safety. However, the off-target effects also induce concerns about the application of NPs, especially in the delivery of gene editing tools. Therefore, a complete understanding of the biological responses to NPs in the body will clearly guide the design of targeted delivery of NPs. The different properties of various nanodelivery systems may induce diverse interactions between carriers and organs. In this review, we describe the relationship between the liver, the most influenced organ of systemic administration of NPs, and targeted delivery nanoplatforms. Various transport vehicles have adopted multiple delivery strategies for the targeted delivery to the cells in the homeostasis liver and in diseased liver. Additionally, nanodelivery systems provide a novel strategy for treating incurable diseases. The appearance of a targeted delivery has profoundly improved the application of NPs to liver diseases.
Collapse
Affiliation(s)
- Xiandi Meng
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Ge Zhu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
41
|
He Y, Wang Y, Wang L, Jiang W, Wilhelm S. Understanding nanoparticle-liver interactions in nanomedicine. Expert Opin Drug Deliv 2024; 21:829-843. [PMID: 38946471 PMCID: PMC11281865 DOI: 10.1080/17425247.2024.2375400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Understanding the interactions between administered nanoparticles and the liver is crucial for developing safe and effective nanomedicines. As the liver can sequester up to 99% of these particles due to its major phagocytic role, understanding these interactions is vital for clinical translation. AREAS COVERED This review highlights recent studies on nanoparticle-liver interactions, including the influence of nanoparticle physicochemical properties on delivery, strategies to enhance delivery efficiency by modulating liver Kupffer cells, and their potential for treating certain hepatic diseases. Additionally, we discuss how aging impacts the liver's phagocytic functions. EXPERT OPINION While liver accumulation can hinder nanomedicine safety and effectiveness, it also presents opportunities for treating certain liver diseases. A thorough understanding of nanoparticle-liver interactions is essential for advancing the clinical application of nanomedicines.
Collapse
Affiliation(s)
- Yuxin He
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), Norman, OK, USA
- Stephenson Cancer Center, Oklahoma City, OK, USA
| |
Collapse
|
42
|
Puente EG, Sivasankaran RP, Vinciguerra D, Yang J, Lower HAC, Hevener AL, Maynard HD. Uniform trehalose nanogels for glucagon stabilization. RSC APPLIED POLYMERS 2024; 2:473-482. [PMID: 38800515 PMCID: PMC11114568 DOI: 10.1039/d3lp00226h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 05/29/2024]
Abstract
Glucagon is a peptide hormone that acts via receptor-mediated signaling predominantly in the liver to raise glucose levels by hepatic glycogen breakdown or conversion of noncarbohydrate, 3 carbon precursors to glucose by gluconeogenesis. Glucagon is administered to reverse severe hypoglycemia, a clinical complication associated with type 1 diabetes. However, due to low stability and solubility at neutral pH, there are limitations in the current formulations of glucagon. Trehalose methacrylate-based nanoparticles were utilized as the stabilizing and solubilizing moiety in the system reported herein. Glucagon was site-selectively modified to contain a cysteine at amino acid number 24 to covalently attach to the methacrylate-based polymer containing pyridyl disulfide side chains. PEG2000 dithiol was employed as the crosslinker to form uniform nanoparticles. Glucagon nanogels were monitored in Dulbecco's phosphate-buffered saline (DPBS) pH 7.4 at various temperatures to determine its long-term stability in solution. Glucagon nanogels were stable up to at least 5 months by size uniformity when stored at -20 °C and 4 °C, up to 5 days at 25 °C, and less than 12 hours at 37 °C. When glucagon stability was studied by either HPLC or thioflavin T assays, the glucagon was intact for at least 5 months at -20 °C and 4 °C within the nanoparticles at -20 °C and 4 °C and up to 2 days at 25 °C. Additionally, the glucagon nanogels were studied for toxicity and efficacy using various assays in vitro. The findings indicate that the nanogels were nontoxic to fibroblast cells and nonhemolytic to red blood cells. The glucagon in the nanogels was as active as glucagon alone. These results demonstrate the utility of trehalose nanogels towards a glucagon formulation with improved stability and solubility in aqueous solutions, particularly useful for storage at cold temperatures.
Collapse
Affiliation(s)
- Ellie G Puente
- Department of Chemistry and Biochemistry, University of California, Los Angeles 607 Charles E. Young Drive East Los Angeles California 90095-1569 USA
- California Nanosystems Institute, University of California, Los Angeles 570 Westwood Plaza Los Angeles California 90095-1569 USA
| | - Rajalakshmi P Sivasankaran
- Department of Chemistry and Biochemistry, University of California, Los Angeles 607 Charles E. Young Drive East Los Angeles California 90095-1569 USA
- California Nanosystems Institute, University of California, Los Angeles 570 Westwood Plaza Los Angeles California 90095-1569 USA
| | - Daniele Vinciguerra
- Department of Chemistry and Biochemistry, University of California, Los Angeles 607 Charles E. Young Drive East Los Angeles California 90095-1569 USA
- California Nanosystems Institute, University of California, Los Angeles 570 Westwood Plaza Los Angeles California 90095-1569 USA
| | - Jane Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles 607 Charles E. Young Drive East Los Angeles California 90095-1569 USA
- California Nanosystems Institute, University of California, Los Angeles 570 Westwood Plaza Los Angeles California 90095-1569 USA
| | - Haillie-Ann C Lower
- Department of Chemistry and Biochemistry, University of California, Los Angeles 607 Charles E. Young Drive East Los Angeles California 90095-1569 USA
- California Nanosystems Institute, University of California, Los Angeles 570 Westwood Plaza Los Angeles California 90095-1569 USA
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles Los Angeles CA USA
- Department of Medicine and VA Greater Los Angeles Healthcare System GRECC Los Angeles CA 90073 USA
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles 607 Charles E. Young Drive East Los Angeles California 90095-1569 USA
- California Nanosystems Institute, University of California, Los Angeles 570 Westwood Plaza Los Angeles California 90095-1569 USA
| |
Collapse
|
43
|
Chen C, Huang B, Zhang R, Sun C, Chen L, Ge J, Zhou D, Li Y, Wu S, Qian Z, Zeng J, Gao M. Surface ligand-regulated renal clearance of MRI/SPECT dual-modality nanoprobes for tumor imaging. J Nanobiotechnology 2024; 22:245. [PMID: 38735921 PMCID: PMC11089712 DOI: 10.1186/s12951-024-02516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND The general sluggish clearance kinetics of functional inorganic nanoparticles tend to raise potential biosafety concerns for in vivo applications. Renal clearance is a possible elimination pathway for functional inorganic nanoparticles delivered through intravenous injection, but largely depending on the surface physical chemical properties of a given particle apart from its size and shape. RESULTS In this study, three small-molecule ligands that bear a diphosphonate (DP) group, but different terminal groups on the other side, i.e., anionic, cationic, and zwitterionic groups, were synthesized and used to modify ultrasmall Fe3O4 nanoparticles for evaluating the surface structure-dependent renal clearance behaviors. Systematic studies suggested that the variation of the surface ligands did not significantly increase the hydrodynamic diameter of ultrasmall Fe3O4 nanoparticles, nor influence their magnetic resonance imaging (MRI) contrast enhancement effects. Among the three particle samples, Fe3O4 nanoparticle coated with zwitterionic ligands, i.e., Fe3O4@DMSA, exhibited optimal renal clearance efficiency and reduced reticuloendothelial uptake. Therefore, this sample was further labeled with 99mTc through the DP moieties to achieve a renal-clearable MRI/single-photon emission computed tomography (SPECT) dual-modality imaging nanoprobe. The resulting nanoprobe showed satisfactory imaging capacities in a 4T1 xenograft tumor mouse model. Furthermore, the biocompatibility of Fe3O4@DMSA was evaluated both in vitro and in vivo through safety assessment experiments. CONCLUSIONS We believe that the current investigations offer a simple and effective strategy for constructing renal-clearable nanoparticles for precise disease diagnosis.
Collapse
Affiliation(s)
- Can Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Baoxing Huang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Ruru Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Chaoping Sun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Lei Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Dandan Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yueping Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Shuwang Wu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Zhiyuan Qian
- Clinical Translation Center of State Key Lab, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
- Clinical Translation Center of State Key Lab, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
44
|
Machová Urdzíková L, Mareková D, Vasylyshyn T, Matouš P, Patsula V, Oleksa V, Shapoval O, Vosmanská M, Liebl D, Benda A, Herynek V, Horák D, Jendelová P. Toxicity of Large and Small Surface-Engineered Upconverting Nanoparticles for In Vitro and In Vivo Bioapplications. Int J Mol Sci 2024; 25:5294. [PMID: 38791332 PMCID: PMC11121289 DOI: 10.3390/ijms25105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, spherical or hexagonal NaYF4:Yb,Er nanoparticles (UCNPs) with sizes of 25 nm (S-UCNPs) and 120 nm (L-UCNPs) were synthesized by high-temperature coprecipitation and subsequently modified with three kinds of polymers. These included poly(ethylene glycol) (PEG) and poly(N,N-dimethylacrylamide-co-2-aminoethylacrylamide) [P(DMA-AEA)] terminated with an alendronate anchoring group, and poly(methyl vinyl ether-co-maleic acid) (PMVEMA). The internalization of nanoparticles by rat mesenchymal stem cells (rMSCs) and C6 cancer cells (rat glial tumor cell line) was visualized by electron microscopy and the cytotoxicity of the UCNPs and their leaches was measured by the real-time proliferation assay. The comet assay was used to determine the oxidative damage of the UCNPs. An in vivo study on mice determined the elimination route and potential accumulation of UCNPs in the body. The results showed that the L- and S-UCNPs were internalized into cells in the lumen of endosomes. The proliferation assay revealed that the L-UCNPs were less toxic than S-UCNPs. The viability of rMSCs incubated with particles decreased in the order S-UCNP@Ale-(PDMA-AEA) > S-UCNP@Ale-PEG > S-UCNPs > S-UCNP@PMVEMA. Similar results were obtained in C6 cells. The oxidative damage measured by the comet assay showed that neat L-UCNPs caused more oxidative damage to rMSCs than all coated UCNPs while no difference was observed in C6 cells. An in vivo study indicated that L-UCNPs were eliminated from the body via the hepatobiliary route; L-UCNP@Ale-PEG particles were almost eliminated from the liver 96 h after intravenous application. Pilot fluorescence imaging confirmed the limited in vivo detection capabilities of the nanoparticles.
Collapse
Affiliation(s)
- Lucia Machová Urdzíková
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (L.M.U.); (D.M.)
| | - Dana Mareková
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (L.M.U.); (D.M.)
| | - Taras Vasylyshyn
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic; (T.V.); (V.P.); (V.O.); (O.S.); (D.H.)
| | - Petr Matouš
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Salmovská 3, 12000 Prague, Czech Republic; (P.M.); (V.H.)
| | - Vitalii Patsula
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic; (T.V.); (V.P.); (V.O.); (O.S.); (D.H.)
| | - Viktoriia Oleksa
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic; (T.V.); (V.P.); (V.O.); (O.S.); (D.H.)
| | - Oleksandr Shapoval
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic; (T.V.); (V.P.); (V.O.); (O.S.); (D.H.)
| | - Magda Vosmanská
- Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 16000 Prague, Czech Republic;
| | - David Liebl
- Imaging Methods Core Facility, BIOCEV, Faculty of Science, Charles University, Průmyslová 595, 25250 Vestec-Jesenice u Prahy, Czech Republic; (D.L.); (A.B.)
| | - Aleš Benda
- Imaging Methods Core Facility, BIOCEV, Faculty of Science, Charles University, Průmyslová 595, 25250 Vestec-Jesenice u Prahy, Czech Republic; (D.L.); (A.B.)
| | - Vít Herynek
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Salmovská 3, 12000 Prague, Czech Republic; (P.M.); (V.H.)
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic; (T.V.); (V.P.); (V.O.); (O.S.); (D.H.)
| | - Pavla Jendelová
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (L.M.U.); (D.M.)
| |
Collapse
|
45
|
Tian Y, Tian D, Peng X, Qiu H. Critical parameters to standardize the size and concentration determination of nanomaterials by nanoparticle tracking analysis. Int J Pharm 2024; 656:124097. [PMID: 38609058 DOI: 10.1016/j.ijpharm.2024.124097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
The size and concentration are critical for the diagnostic and therapeutic applications of nanomaterials but the accurate measurement remains challenging. Nanoparticle tracking analysis (NTA) is widely used for size and concentration determination. However, highly repeatable standard operating procedures (SOPs) are absent. We adopted the "search-evaluate-test" strategy to standardize the measurement by searching the critical parameters. The particles per frame are linearly proportional to the sample concentration and the measured results are more accurate and repeatable when the concentration is 108-109 particles/ml. The optimal detection threshold is around 5. The optimal camera level is such that it allows clear observation of particles without diffractive rings and overexposure. The optimal speed is ≤ 50 in AU and ∼ 10 μl/min in flow rate. We then evaluated the protocol using polydisperse polystyrene particles and we found that NTA could discriminate particles in bimodal mixtures with high size resolution but the performance on multimodal mixtures is not as good as that of resistive pulse sensing (RPS). We further analyzed the polystyrene particles, SiO2 particles, and biological samples by NTA following the SOPs. The size and concentration measured by NTA differentially varies to those determined by RPS and transmission electron microscopy.
Collapse
Affiliation(s)
- Youxi Tian
- School of Pharmacy, Guangdong Medical University, No.1 City Avenue Songshan Lake Sci. &Tech. Industry Park, Dongguan 523808, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; Carbohydrate-based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China
| | - Dong Tian
- Carbohydrate-based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China
| | - Xinsheng Peng
- School of Pharmacy, Guangdong Medical University, No.1 City Avenue Songshan Lake Sci. &Tech. Industry Park, Dongguan 523808, China.
| | - Hong Qiu
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; Carbohydrate-based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China.
| |
Collapse
|
46
|
Jakic K, Selc M, Razga F, Nemethova V, Mazancova P, Havel F, Sramek M, Zarska M, Proska J, Masanova V, Uhnakova I, Makovicky P, Novotova M, Vykoukal V, Babelova A. Long-Term Accumulation, Biological Effects and Toxicity of BSA-Coated Gold Nanoparticles in the Mouse Liver, Spleen, and Kidneys. Int J Nanomedicine 2024; 19:4103-4120. [PMID: 38736658 PMCID: PMC11088863 DOI: 10.2147/ijn.s443168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/18/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Gold nanoparticles are promising candidates as vehicles for drug delivery systems and could be developed into effective anticancer treatments. However, concerns about their safety need to be identified, addressed, and satisfactorily answered. Although gold nanoparticles are considered biocompatible and nontoxic, most of the toxicology evidence originates from in vitro studies, which may not reflect the responses in complex living organisms. Methods We used an animal model to study the long-term effects of 20 nm spherical AuNPs coated with bovine serum albumin. Mice received a 1 mg/kg single intravenous dose of nanoparticles, and the biodistribution and accumulation, as well as the organ changes caused by the nanoparticles, were characterized in the liver, spleen, and kidneys during 120 days. Results The amount of nanoparticles in the organs remained high at 120 days compared with day 1, showing a 39% reduction in the liver, a 53% increase in the spleen, and a 150% increase in the kidneys. The biological effects of chronic nanoparticle exposure were associated with early inflammatory and fibrotic responses in the organs and were more pronounced in the kidneys, despite a negligible amount of nanoparticles found in renal tissues. Conclusion Our data suggest, that although AuNPs belong to the safest nanomaterial platforms nowadays, due to their slow tissue elimination leading to long-term accumulation in the biological systems, they may induce toxic responses in the vital organs, and so understanding of their long-term biological impact is important to consider their potential therapeutic applications.
Collapse
Affiliation(s)
- Kristina Jakic
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Selc
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | - Filip Havel
- Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Sramek
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Monika Zarska
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Proska
- Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Vlasta Masanova
- Department of Metallomics, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Iveta Uhnakova
- Department of Metallomics, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Peter Makovicky
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marta Novotova
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vit Vykoukal
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Andrea Babelova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
47
|
Caro C, Guzzi C, Moral-Sánchez I, Urbano-Gámez JD, Beltrán AM, García-Martín ML. Smart Design of ZnFe and ZnFe@Fe Nanoparticles for MRI-Tracked Magnetic Hyperthermia Therapy: Challenging Classical Theories of Nanoparticles Growth and Nanomagnetism. Adv Healthc Mater 2024; 13:e2304044. [PMID: 38303644 DOI: 10.1002/adhm.202304044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Iron Oxide Nanoparticles (IONPs) hold the potential to exert significant influence on fighting cancer through their theranostics capabilities as contrast agents (CAs) for magnetic resonance imaging (MRI) and as mediators for magnetic hyperthermia (MH). In addition, these capabilities can be improved by doping IONPs with other elements. In this work, the synthesis and characterization of single-core and alloy ZnFe novel magnetic nanoparticles (MNPs), with improved magnetic properties and more efficient magnetic-to-heat conversion, are reported. Remarkably, the results challenge classical nucleation and growth theories, which cannot fully predict the final size/shape of these nanoparticles and, consequently, their magnetic properties, implying the need for further studies to better understand the nanomagnetism phenomenon. On the other hand, leveraging the enhanced properties of these new NPs, successful tumor therapy by MH is achieved following their intravenous administration and tumor accumulation via the enhanced permeability and retention (EPR) effect. Notably, these results are obtained using a single low dose of MNPs and a single exposure to clinically suitable alternating magnetic fields (AMF). Therefore, as far as the authors are aware, for the first time, the successful application of intravenously administered MNPs for MRI-tracked MH tumor therapy in passively targeted tumor xenografts using clinically suitable conditions is demonstrated.
Collapse
Affiliation(s)
- Carlos Caro
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, 41092, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Universidad de Málaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
| | - Cinzia Guzzi
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, 41092, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Universidad de Málaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
| | - Irene Moral-Sánchez
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, 41092, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Universidad de Málaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
| | - Jesús David Urbano-Gámez
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, 41092, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Universidad de Málaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
| | - Ana M Beltrán
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, Sevilla, 41011, Spain
| | - Maria Luisa García-Martín
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, 41092, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Universidad de Málaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| |
Collapse
|
48
|
Heaton AR, Lechuga LM, Tangsangasaksri M, Ludwig KD, Fain SB, Mecozzi S. A stable, highly concentrated fluorous nanoemulsion formulation for in vivo cancer imaging via 19F-MRI. NMR IN BIOMEDICINE 2024; 37:e5100. [PMID: 38230415 PMCID: PMC10987282 DOI: 10.1002/nbm.5100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024]
Abstract
Magnetic resonance imaging (MRI) is a routine diagnostic modality in oncology that produces excellent imaging resolution and tumor contrast without the use of ionizing radiation. However, improved contrast agents are still needed to further increase detection sensitivity and avoid toxicity/allergic reactions associated with paramagnetic metal contrast agents, which may be seen in a small percentage of the human population. Fluorine-19 (19F)-MRI is at the forefront of the developing MRI methodologies due to near-zero background signal, high natural abundance of 100%, and unambiguous signal specificity. In this study, we have developed a colloidal nanoemulsion (NE) formulation that can encapsulate high volumes of the fluorous MRI tracer, perfluoro-[15-crown-5]-ether (PFCE) (35% v/v). These nanoparticles exhibit long-term (at least 100 days) stability and high PFCE loading capacity in formulation with our semifluorinated triblock copolymer, M2F8H18. With sizes of approximately 200 nm, these NEs enable in vivo delivery and passive targeting to tumors. Our diagnostic formulation, M2F8H18/PFCE NE, yielded in vivo 19F-MR images with a high signal-to-noise ratio up to 100 in a tumor-bearing mouse model at clinically relevant scan times. M2F8H18/PFCE NE circulated stably in the vasculature, accumulated in high concentration of an estimated 4-9 × 1017 19F spins/voxel at the tumor site, and cleared from most organs over the span of 2 weeks. Uptake by the mononuclear phagocyte system to the liver and spleen was also observed, most likely due to particle size. These promising results suggest that M2F8H18/PFCE NE is a favorable 19F-MR diagnostic tracer for further development in oncological studies and potential clinical translation.
Collapse
Affiliation(s)
- Alexa R. Heaton
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave Madison WI 53706, USA
| | - Lawrence M. Lechuga
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave Madison WI 53705, USA
| | | | - Kai D. Ludwig
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave Madison WI 53705, USA
| | - Sean B. Fain
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave Madison WI 53705, USA
- Department of Radiology, University of Iowa, 200 Hawkins Drive Iowa City IA 52242, USA
| | - Sandro Mecozzi
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave Madison WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave Madison WI 53705, USA
| |
Collapse
|
49
|
Murray M. Omega-3 polyunsaturated fatty acid derived lipid mediators: a comprehensive update on their application in anti-cancer drug discovery. Expert Opin Drug Discov 2024; 19:617-629. [PMID: 38595031 DOI: 10.1080/17460441.2024.2340493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION ω-3 Polyunsaturated fatty acids (PUFAs) have a range of health benefits, including anticancer activity, and are converted to lipid mediators that could be adapted into pharmacological strategies. However, the stability of these mediators must be improved, and they may require formulation to achieve optimal tissue concentrations. AREAS COVERED Herein, the author reviews the literature around chemical stabilization and formulation of ω-3 PUFA mediators and their application in anticancer drug discovery. EXPERT OPINION Aryl-urea bioisosteres of ω-3 PUFA epoxides that killed cancer cells targeted the mitochondrion by a novel dual mechanism: as protonophoric uncouplers and as inhibitors of electron transport complex III that activated ER-stress and disrupted mitochondrial integrity. In contrast, aryl-ureas that contain electron-donating substituents prevented cancer cell migration. Thus, aryl-ureas represent a novel class of agents with tunable anticancer properties. Stabilized analogues of other ω-3 PUFA-derived mediators could also be adapted into anticancer strategies. Indeed, a cocktail of agents that simultaneously promote cell killing, inhibit metastasis and angiogenesis, and that attenuate the pro-inflammatory microenvironment is a novel future anticancer strategy. Such regimen may enhance anticancer drug efficacy, minimize the development of anticancer drug resistance and enhance outcomes.
Collapse
Affiliation(s)
- Michael Murray
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, NSW, Australia
- Woolcock Institute of Medical Research, Macquarie University, Macquarie Park, NSW, Australia
| |
Collapse
|
50
|
Liang G, Cao W, Tang D, Zhang H, Yu Y, Ding J, Karges J, Xiao H. Nanomedomics. ACS NANO 2024; 18:10979-11024. [PMID: 38635910 DOI: 10.1021/acsnano.3c11154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Nanomaterials have attractive physicochemical properties. A variety of nanomaterials such as inorganic, lipid, polymers, and protein nanoparticles have been widely developed for nanomedicine via chemical conjugation or physical encapsulation of bioactive molecules. Superior to traditional drugs, nanomedicines offer high biocompatibility, good water solubility, long blood circulation times, and tumor-targeting properties. Capitalizing on this, several nanoformulations have already been clinically approved and many others are currently being studied in clinical trials. Despite their undoubtful success, the molecular mechanism of action of the vast majority of nanomedicines remains poorly understood. To tackle this limitation, herein, this review critically discusses the strategy of applying multiomics analysis to study the mechanism of action of nanomedicines, named nanomedomics, including advantages, applications, and future directions. A comprehensive understanding of the molecular mechanism could provide valuable insight and therefore foster the development and clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Ganghao Liang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wanqing Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|