1
|
Leow JWH, Chan ECY. CYP2J2-mediated metabolism of arachidonic acid in heart: A review of its kinetics, inhibition and role in heart rhythm control. Pharmacol Ther 2024; 258:108637. [PMID: 38521247 DOI: 10.1016/j.pharmthera.2024.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Cytochrome P450 2 J2 (CYP2J2) is primarily expressed extrahepatically and is the predominant epoxygenase in human cardiac tissues. This highlights its key role in the metabolism of endogenous substrates. Significant scientific interest lies in cardiac CYP2J2 metabolism of arachidonic acid (AA), an omega-6 polyunsaturated fatty acid, to regioisomeric bioactive epoxyeicosatrienoic acid (EET) metabolites that show cardioprotective effects including regulation of cardiac electrophysiology. From an in vitro perspective, the accurate characterization of the kinetics of CYP2J2 metabolism of AA including its inhibition and inactivation by drugs could be useful in facilitating in vitro-in vivo extrapolations to predict drug-AA interactions in drug discovery and development. In this review, background information on the structure, regulation and expression of CYP2J2 in human heart is presented alongside AA and EETs as its endogenous substrate and metabolites. The in vitro and in vivo implications of the kinetics of this endogenous metabolic pathway as well as its perturbation via inhibition and inactivation by drugs are elaborated. Additionally, the role of CYP2J2-mediated metabolism of AA to EETs in cardiac electrophysiology will be expounded.
Collapse
Affiliation(s)
- Jacqueline Wen Hui Leow
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
2
|
Glaser ST, Jayanetti K, Oubraim S, Hillowe A, Frank E, Jong J, Wang L, Wang H, Ojima I, Haj-Dahmane S, Kaczocha M. Fatty acid binding proteins are novel modulators of synaptic epoxyeicosatrienoic acid signaling in the brain. Sci Rep 2023; 13:15234. [PMID: 37709856 PMCID: PMC10502087 DOI: 10.1038/s41598-023-42504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
Fatty acid binding proteins (FABPs) govern intracellular lipid transport to cytosolic organelles and nuclear receptors. More recently, FABP5 has emerged as a key regulator of synaptic endocannabinoid signaling, suggesting that FABPs may broadly regulate the signaling of neuroactive lipids in the brain. Herein, we demonstrate that brain-expressed FABPs (FABP3, FABP5, and FABP7) interact with epoxyeicosatrienoic acids (EETs) and the peroxisome proliferator-activated receptor gamma agonist 15-deoxy-Δ12,14-Prostaglandin J2 (15d-PGJ2). Among these lipids, EETs displayed highest affinities for FABP3 and FABP5, and 11,12-EET was identified as the preferred FABP ligand. Similarly, 15d-PGJ2 interacted with FABP3 and FABP5 while binding to FABP7 was markedly lower. Molecular modeling revealed unique binding interactions of the ligands within the FABP binding pockets and highlighted major contributions of van der Waals clashes and acyl chain solvent exposure in dictating FABP affinity and specificity. Functional studies demonstrated that endogenous EETs gate the strength of CA1 hippocampal glutamate synapses and that this function was impaired following FABP inhibition. As such, the present study reveals that FABPs control EET-mediated synaptic gating, thereby expanding the functional roles of this protein family in regulating neuronal lipid signaling.
Collapse
Affiliation(s)
- Sherrye T Glaser
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Biological Sciences, Kingsborough Community College, Brooklyn, NY, USA
| | - Kalani Jayanetti
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Saida Oubraim
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Andrew Hillowe
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Elena Frank
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jason Jong
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Liqun Wang
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Hehe Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Martin Kaczocha
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA.
- Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
3
|
Yabut KCB, Isoherranen N. Impact of Intracellular Lipid Binding Proteins on Endogenous and Xenobiotic Ligand Metabolism and Disposition. Drug Metab Dispos 2023; 51:700-717. [PMID: 37012074 PMCID: PMC10197203 DOI: 10.1124/dmd.122.001010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/16/2023] [Accepted: 02/10/2023] [Indexed: 04/05/2023] Open
Abstract
The family of intracellular lipid binding proteins (iLBPs) is comprised of 16 members of structurally related binding proteins that have ubiquitous tissue expression in humans. iLBPs collectively bind diverse essential endogenous lipids and xenobiotics. iLBPs solubilize and traffic lipophilic ligands through the aqueous milieu of the cell. Their expression is correlated with increased rates of ligand uptake into tissues and altered ligand metabolism. The importance of iLBPs in maintaining lipid homeostasis is well established. Fatty acid binding proteins (FABPs) make up the majority of iLBPs and are expressed in major organs relevant to xenobiotic absorption, distribution, and metabolism. FABPs bind a variety of xenobiotics including nonsteroidal anti-inflammatory drugs, psychoactive cannabinoids, benzodiazepines, antinociceptives, and peroxisome proliferators. FABP function is also associated with metabolic disease, making FABPs currently a target for drug development. Yet the potential contribution of FABP binding to distribution of xenobiotics into tissues and the mechanistic impact iLBPs may have on xenobiotic metabolism are largely undefined. This review examines the tissue-specific expression and functions of iLBPs, the ligand binding characteristics of iLBPs, their known endogenous and xenobiotic ligands, methods for measuring ligand binding, and mechanisms of ligand delivery from iLBPs to membranes and enzymes. Current knowledge of the importance of iLBPs in affecting disposition of xenobiotics is collectively described. SIGNIFICANCE STATEMENT: The data reviewed here show that FABPs bind many drugs and suggest that binding of drugs to FABPs in various tissues will affect drug distribution into tissues. The extensive work and findings with endogenous ligands suggest that FABPs may also alter the metabolism and transport of drugs. This review illustrates the potential significance of this understudied area.
Collapse
Affiliation(s)
- King Clyde B Yabut
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| |
Collapse
|
4
|
Activators of SIRT1 in the kidney and protective effects of SIRT1 during acute kidney injury (AKI) (effect of SIRT1 activators on acute kidney injury). Clin Exp Nephrol 2021; 25:807-821. [PMID: 33779856 DOI: 10.1007/s10157-021-02057-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022]
Abstract
Acute kidney injury (AKI) is a complex disorder and a clinical condition characterized by acute reduction in renal function. If AKI is not treated, it can lead to chronic kidney disease, which is associated with a high risk of death. SIRT1 (silent information regulator 1) is an NAD-dependent deacetylase. This enzyme is responsible for the processes of DNA repair or recombination, chromosomal stability, and gene transcription. This enzyme also plays a protective role in many diseases, including AKI. In this study, we review the mechanisms that mediate the protective effects of SIRT1 on AKI, including SIRT1 activators.
Collapse
|
5
|
Kan E, Tomita H, Katsuyama Y, Maruyama JI, Koyama Y, Ohnishi Y. Discovery of the 2,4'-Dihydroxy-3'-methoxypropiophenone Biosynthesis Genes in Aspergillus oryzae. Chembiochem 2020; 22:203-211. [PMID: 32885554 DOI: 10.1002/cbic.202000505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/02/2020] [Indexed: 11/11/2022]
Abstract
The filamentous fungus Aspergillus oryzae has 27 putative iterative type I polyketide synthase (PKS) gene clusters, but the secondary metabolites produced by them are mostly unknown. Here, we focused on eight clusters that were reported to be expressed at relatively high levels in a transcriptome analysis. By comparing metabolites between an octuple-deletion mutant of these eight PKS gene clusters and its parent strain, we found that A. oryzae produced 2,4'-dihydroxy-3'-methoxypropiophenone (1) and its precursor, 4'-hydroxy-3'-methoxypropiophenone (3) in a specific liquid medium. Furthermore, an iterative type I PKS (PpsB) encoded by AO090102000166 and an acetyl-CoA ligase (PpsA) encoded downstream from ppsB were shown to be essential for their biosynthesis. PpsC, encoded upstream from ppsB, was shown to have 3-binding activity (Kd =26.0±6.2 μM) and is suggested to be involved in the conversion of 3 to 1. This study deepens our understanding of cryptic secondary metabolism in A. oryzae.
Collapse
Affiliation(s)
- Eiichiro Kan
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Noda Institute for Scientific Research, 338, Noda, Noda City, Chiba, 278-0037, Japan
| | - Hiroya Tomita
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Jun-Ichi Maruyama
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuji Koyama
- Noda Institute for Scientific Research, 338, Noda, Noda City, Chiba, 278-0037, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
6
|
Davidi D, Schechter M, Elhadi SA, Matatov A, Nathanson L, Sharon R. α-Synuclein Translocates to the Nucleus to Activate Retinoic-Acid-Dependent Gene Transcription. iScience 2020; 23:100910. [PMID: 32120069 PMCID: PMC7052517 DOI: 10.1016/j.isci.2020.100910] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/06/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
α-Synuclein (α-Syn) protein is implicated in the pathogenesis of Parkinson disease (PD). It is primarily cytosolic and interacts with cell membranes. α-Syn also occurs in the nucleus. Here we investigated the mechanisms involved in nuclear translocation of α-Syn. We analyzed alterations in gene expression following induced α-Syn expression in SH-SY5Y cells. Analysis of upstream regulators pointed at alterations in transcription activity of retinoic acid receptors (RARs) and additional nuclear receptors. We show that α-Syn binds RA and translocates to the nucleus to selectively enhance gene transcription. Nuclear translocation of α-Syn is regulated by calreticulin and is leptomycin-B independent. Importantly, nuclear translocation of α-Syn following RA treatment enhances its toxicity in cultured neurons and the expression levels of PD-associated genes, including ATPase cation transporting 13A2 (ATP13A2) and PTEN-induced kinase1 (PINK1). The results link a physiological role for α-Syn in the regulation of RA-mediated gene transcription and its toxicity in the synucleinopathies.
Collapse
Affiliation(s)
- Dana Davidi
- Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, 9112001 Jerusalem, Israel
| | - Meir Schechter
- Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, 9112001 Jerusalem, Israel
| | - Suaad Abd Elhadi
- Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, 9112001 Jerusalem, Israel
| | - Adar Matatov
- Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, 9112001 Jerusalem, Israel
| | - Lubov Nathanson
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ronit Sharon
- Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, 9112001 Jerusalem, Israel.
| |
Collapse
|
7
|
Zhu Y, Ding A, Yang D, Cui T, Yang H, Zhang H, Wang C. CYP2J2-produced epoxyeicosatrienoic acids attenuate ischemia/reperfusion-induced acute kidney injury by activating the SIRT1-FoxO3a pathway. Life Sci 2020; 246:117327. [PMID: 31954161 DOI: 10.1016/j.lfs.2020.117327] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
Cytochrome P450 (CYP) epoxygenases can metabolize arachidonic acids to epoxyeicosatrienoic acids (EETs), which play a protective role in the renal system, but their involvement in ischemia/reperfusion (I/R)-induced acute kidney injury remains unknown. Here, using a rat model, we demonstrated that forced CYP2J2 expression attenuated I/R-induced renal dysfunction and protected histological integrity. We showed that CYP2J2 significantly decreased I/R-induced upregulation of blood urea nitrogen and serum creatinine and enhanced autophagy during I/R treatment. In addition, we determined the protective effect of CYP2J2 against I/R-caused apoptosis. We demonstrated that CYP2J2 overexpression attenuated the downregulation of SIRT1 and FoxO3a by I/R-induced injury. Moreover, exogenous 11,12-EET addition obviously promoted I/R-induced autophagic flux and suppressed I/R-induced apoptosis through SIRT1-FoxO3a signaling activation. Our data indicate that CYP2J2-produced EETs improve I/R-caused kidney injury by activating the SIRT1-FoxO3a signaling pathway, which protects from renal I/R injury.
Collapse
Affiliation(s)
- Ye Zhu
- Department of Nephrology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China.
| | - Ao Ding
- Department of Nephrology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | | | - Tongxia Cui
- Department of Nephrology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Hui Yang
- Department of Rheumatology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Hua Zhang
- Department of Rheumatology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Cheng Wang
- Department of Nephrology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China.
| |
Collapse
|
8
|
Osthues T, Sisignano M. Oxidized Lipids in Persistent Pain States. Front Pharmacol 2019; 10:1147. [PMID: 31680947 PMCID: PMC6803483 DOI: 10.3389/fphar.2019.01147] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy, nerve injuries, or diseases like multiple sclerosis can cause pathophysiological processes of persistent and neuropathic pain. Thereby, the activation threshold of ion channels is reduced in peripheral sensory neurons to normally noxious stimuli like heat, cold, acid, or mechanical due to sensitization processes. This leads to enhanced neuronal activity, which can result in mechanical allodynia, cold allodynia, thermal hyperalgesia, spontaneous pain, and may initiate persistent and neuropathic pain. The treatment options for persistent and neuropathic pain patients are limited; for about 50% of them, current medication is not efficient due to severe side effects or low response to the treatment. Therefore, it is of special interest to find additional treatment strategies. One approach is the control of neuronal sensitization processes. Herein, signaling lipids are crucial mediators and play an important role during the onset and maintenance of pain. As preclinical studies demonstrate, lipids may act as endogenous ligands or may sensitize transient receptor potential (TRP)-channels. Likewise, they can cause enhanced activity of sensory neurons by mechanisms involving G-protein coupled receptors and activation of intracellular protein kinases. In this regard, oxidized metabolites of the essential fatty acid linoleic acid, 9- and 13-hydroxyoctadecadienoic acid (HODE), their dihydroxy-metabolites (DiHOMEs), as well as epoxides of linoleic acid (EpOMEs) and of arachidonic acid (EETs), as well as lysophospholipids, sphingolipids, and specialized pro-resolving mediators (SPMs) have been reported to play distinct roles in pain transmission or inhibition. Here, we discuss the underlying molecular mechanisms of the oxidized linoleic acid metabolites and eicosanoids. Furthermore, we critically evaluate their role as potential targets for the development of novel analgesics and for the treatment of persistent or neuropathic pain.
Collapse
Affiliation(s)
- Tabea Osthues
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Frankfurt, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, Frankfurt, Germany
| |
Collapse
|
9
|
Blum M, Dogan I, Karber M, Rothe M, Schunck WH. Chiral lipidomics of monoepoxy and monohydroxy metabolites derived from long-chain polyunsaturated fatty acids. J Lipid Res 2019; 60:135-148. [PMID: 30409844 PMCID: PMC6314268 DOI: 10.1194/jlr.m089755] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/01/2018] [Indexed: 01/10/2023] Open
Abstract
A chiral lipidomics approach was established for comprehensive profiling of regio- and stereoisomeric monoepoxy and monohydroxy metabolites of long-chain PUFAs as generated enzymatically by cytochromes P450 (CYPs), lipoxygenases (LOXs), and cyclooxygenases (COXs) and, in part, also unspecific oxidations. The method relies on reversed-phase chiral-LC coupled with ESI/MS/MS. Applications revealed partially opposing enantioselectivities of soluble and microsomal epoxide hydrolases (mEHs). Ablation of the soluble epoxide hydrolase (sEH) gene resulted in specific alterations in the enantiomeric composition of endogenous monoepoxy metabolites. For example, the (R,S)/(S,R)-ratio of circulating 14,15-EET changed from 2.1:1 in WT to 9.7:1 in the sEH-KO mice. Studies with liver microsomes suggested that CYP/mEH interactions play a primary role in determining the enantiomeric composition of monoepoxy metabolites during their generation and release from the ER. Analysis of human plasma showed significant enantiomeric excess with several monoepoxy metabolites. Monohydroxy metabolites were generally present as racemates; however, Ca2+-ionophore stimulation of whole blood samples resulted in enantioselective increases of LOX-derived metabolites (12S-HETE and 17S-hydroxydocosahexaenoic acid) and COX-derived metabolites (11R-HETE). Our chiral approach may provide novel opportunities for investigating the role of bioactive lipid mediators that generally exert their physiological functions in a highly regio- and stereospecific manner.
Collapse
Affiliation(s)
- Maximilian Blum
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | |
Collapse
|
10
|
Aliwarga T, Evangelista EA, Sotoodehnia N, Lemaitre RN, Totah RA. Regulation of CYP2J2 and EET Levels in Cardiac Disease and Diabetes. Int J Mol Sci 2018; 19:E1916. [PMID: 29966295 PMCID: PMC6073148 DOI: 10.3390/ijms19071916] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022] Open
Abstract
Cytochrome P450 2J2 (CYP2J2) is a known arachidonic acid (AA) epoxygenase that mediates the formation of four bioactive regioisomers of cis-epoxyeicosatrienoic acids (EETs). Although its expression in the liver is low, CYP2J2 is mainly observed in extrahepatic tissues, including the small intestine, pancreas, lung, and heart. Changes in CYP2J2 levels or activity by xenobiotics, disease states, or polymorphisms are proposed to lead to various organ dysfunctions. Several studies have investigated the regulation of CYP2J2 and EET formation in various cell lines and have demonstrated that such regulation is tissue-dependent. In addition, studies linking CYP2J2 polymorphisms to the risk of developing cardiovascular disease (CVD) yielded contradictory results. This review will focus on the mechanisms of regulation of CYP2J2 by inducers, inhibitors, and oxidative stress modeling certain disease states in various cell lines and tissues. The implication of CYP2J2 expression, polymorphisms, activity and, as a result, EET levels in the pathophysiology of diabetes and CVD will also be discussed.
Collapse
Affiliation(s)
- Theresa Aliwarga
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98101, USA.
| | - Eric A Evangelista
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98101, USA.
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA 98195, USA.
- Department of Medicine, University of Washington, Seattle, WA 98195, USA.
- Division of Cardiology, University of Washington, Seattle, WA 98195, USA.
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA 98195, USA.
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98101, USA.
| |
Collapse
|
11
|
Ayata C, Lauritzen M. Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature. Physiol Rev 2015; 95:953-93. [PMID: 26133935 DOI: 10.1152/physrev.00027.2014] [Citation(s) in RCA: 379] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads slowly at a rate of only millimeters per minute by way of grey matter contiguity, irrespective of functional or vascular divisions, and lasts up to a minute in otherwise normal tissue. As such, SD is a radically different breed of electrophysiological activity compared with everyday neural activity, such as action potentials and synaptic transmission. Seventy years after its discovery by Leão, the mechanisms of SD and its profound metabolic and hemodynamic effects are still debated. What we did learn of consequence, however, is that SD plays a central role in the pathophysiology of a number of diseases including migraine, ischemic stroke, intracranial hemorrhage, and traumatic brain injury. An intriguing overlap among them is that they are all neurovascular disorders. Therefore, the interplay between neurons and vascular elements is critical for our understanding of the impact of this homeostatic breakdown in patients. The challenges of translating experimental data into human pathophysiology notwithstanding, this review provides a detailed account of bidirectional interactions between brain parenchyma and the cerebral vasculature during SD and puts this in the context of neurovascular diseases.
Collapse
Affiliation(s)
- Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| | - Martin Lauritzen
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| |
Collapse
|
12
|
Liu JJ, Green P, John Mann J, Rapoport SI, Sublette ME. Pathways of polyunsaturated fatty acid utilization: implications for brain function in neuropsychiatric health and disease. Brain Res 2015; 1597:220-46. [PMID: 25498862 PMCID: PMC4339314 DOI: 10.1016/j.brainres.2014.11.059] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/11/2014] [Accepted: 11/27/2014] [Indexed: 12/28/2022]
Abstract
Essential polyunsaturated fatty acids (PUFAs) have profound effects on brain development and function. Abnormalities of PUFA status have been implicated in neuropsychiatric diseases such as major depression, bipolar disorder, schizophrenia, Alzheimer's disease, and attention deficit hyperactivity disorder. Pathophysiologic mechanisms could involve not only suboptimal PUFA intake, but also metabolic and genetic abnormalities, defective hepatic metabolism, and problems with diffusion and transport. This article provides an overview of physiologic factors regulating PUFA utilization, highlighting their relevance to neuropsychiatric disease.
Collapse
Affiliation(s)
- Joanne J Liu
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; New York Medical College, Valhalla, NY, USA
| | - Pnina Green
- Laboratory of Metabolic Research, Felsenstein Medical Research Center, Tel Aviv University, Petach Tikva, Israel
| | - J John Mann
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - M Elizabeth Sublette
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA.
| |
Collapse
|
13
|
Spector AA, Kim HY. Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:356-65. [PMID: 25093613 DOI: 10.1016/j.bbalip.2014.07.020] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 12/19/2022]
Abstract
Polyunsaturated fatty acids (PUFA) are oxidized by cytochrome P450 epoxygenases to PUFA epoxides which function as potent lipid mediators. The major metabolic pathways of PUFA epoxides are incorporation into phospholipids and hydrolysis to the corresponding PUFA diols by soluble epoxide hydrolase. Inhibitors of soluble epoxide hydrolase stabilize PUFA epoxides and potentiate their functional effects. The epoxyeicosatrienoic acids (EETs) synthesized from arachidonic acid produce vasodilation, stimulate angiogenesis, have anti-inflammatory actions, and protect the heart against ischemia-reperfusion injury. EETs produce these functional effects by activating receptor-mediated signaling pathways and ion channels. The epoxyeicosatetraenoic acids synthesized from eicosapentaenoic acid and epoxydocosapentaenoic acids synthesized from docosahexaenoic acid are potent inhibitors of cardiac arrhythmias. Epoxydocosapentaenoic acids also inhibit angiogenesis, decrease inflammatory and neuropathic pain, and reduce tumor metastasis. These findings indicate that a number of the beneficial functions of PUFA may be due to their conversion to PUFA epoxides. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- Arthur A Spector
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Shimamoto C, Ohnishi T, Maekawa M, Watanabe A, Ohba H, Arai R, Iwayama Y, Hisano Y, Toyota T, Toyoshima M, Suzuki K, Shirayama Y, Nakamura K, Mori N, Owada Y, Kobayashi T, Yoshikawa T. Functional characterization of FABP3, 5 and 7 gene variants identified in schizophrenia and autism spectrum disorder and mouse behavioral studies. Hum Mol Genet 2014; 23:6495-511. [PMID: 25027319 PMCID: PMC4240203 DOI: 10.1093/hmg/ddu369] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Disturbances of lipid metabolism have been implicated in psychiatric illnesses. We previously reported an association between the gene for fatty acid binding protein 7 (FABP7) and schizophrenia. Furthermore, we identified and reported several rare non-synonymous polymorphisms of the brain-expressed genes FABP3, FABP5 and FABP7 from schizophrenia and autism spectrum disorder (ASD), diseases known to part share genetic architecture. Here, we conducted further studies to better understand the contribution these genes make to the pathogenesis of schizophrenia and ASD. In postmortem brains, we detected altered mRNA expression levels of FABP5 in schizophrenia, and of FABP7 in ASD and altered FABP5 in peripheral lymphocytes. Using a patient cohort, comprehensive mutation screening identified six missense and two frameshift variants from the three FABP genes. The two frameshift proteins, FABP3 E132fs and FABP7 N80fs, formed cellular aggregates and were unstable when expressed in cultured cells. The four missense mutants with predicted possible damaging outcomes showed no changes in intracellular localization. Examining ligand binding properties, FABP7 S86G and FABP7 V126L lost their preference for docosahexaenoic acid to linoleic acid. Finally, mice deficient in Fabp3, Fabp5 and Fabp7 were evaluated in a systematic behavioral test battery. The Fabp3 knockout (KO) mice showed decreased social memory and novelty seeking, and Fabp7 KO mice displayed hyperactive and anxiety-related phenotypes, while Fabp5 KO mice showed no apparent phenotypes. In conclusion, disturbances in brain-expressed FABPs could represent an underlying disease mechanism in a proportion of schizophrenia and ASD sufferers.
Collapse
Affiliation(s)
- Chie Shimamoto
- Department of Biological Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan, Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Tetsuo Ohnishi
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Motoko Maekawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Akiko Watanabe
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Hisako Ohba
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Ryoichi Arai
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano 386-8567, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Yasuko Hisano
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Manabu Toyoshima
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Katsuaki Suzuki
- Department of Psychiatry, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Yukihiko Shirayama
- Department of Psychiatry, Teikyo University Chiba Medical Center, Chiba 299-0111, Japan
| | - Kazuhiko Nakamura
- Department of Neuropsychiatry, Hirosaki University Graduate School of Medicine, Aomori 036-8562, Japan and
| | - Norio Mori
- Department of Psychiatry, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan
| | - Tetsuyuki Kobayashi
- Department of Biological Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan,
| |
Collapse
|
15
|
Ragona L, Pagano K, Tomaselli S, Favretto F, Ceccon A, Zanzoni S, D'Onofrio M, Assfalg M, Molinari H. The role of dynamics in modulating ligand exchange in intracellular lipid binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1268-78. [PMID: 24768771 DOI: 10.1016/j.bbapap.2014.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 11/29/2022]
Abstract
Lipids are essential for many biological processes and crucial in the pathogenesis of several diseases. Intracellular lipid-binding proteins (iLBPs) provide mobile hydrophobic binding sites that allow hydrophobic or amphipathic lipid molecules to penetrate into and across aqueous layers. Thus iLBPs mediate the lipid transport within the cell and participate to a spectrum of tissue-specific pathways involved in lipid homeostasis. Structural studies have shown that iLBPs' binding sites are inaccessible from the bulk, implying that substrate binding should involve a conformational change able to produce a ligand entry portal. Many studies have been reported in the last two decades on iLBPs indicating that their dynamics play a pivotal role in regulating ligand binding and targeted release. The ensemble of reported data has not been reviewed until today. This review is thus intended to summarize and possibly generalize the results up to now described, providing a picture which could help to identify the missing notions necessary to improve our understanding of the role of dynamics in iLBPs' molecular recognition. Such notions would clarify the chemistry of lipid binding to iLBPs and set the basis for the development of new drugs.
Collapse
Affiliation(s)
- Laura Ragona
- Laboratorio NMR, Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Via Bassini 15, 20133 Milano, Italy
| | - Katiuscia Pagano
- Laboratorio NMR, Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Via Bassini 15, 20133 Milano, Italy
| | - Simona Tomaselli
- Laboratorio NMR, Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Via Bassini 15, 20133 Milano, Italy
| | - Filippo Favretto
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Alberto Ceccon
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Serena Zanzoni
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Mariapina D'Onofrio
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Michael Assfalg
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Henriette Molinari
- Laboratorio NMR, Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Via Bassini 15, 20133 Milano, Italy.
| |
Collapse
|
16
|
Chen CY, Lee BC, Hsu HC, Lin HJ, Chao CL, Lin YH, Ho YL, Chen MF. A proteomic study of the effects of ramipril on post-infarction left ventricular remodelling in the rabbit. Eur J Heart Fail 2014; 10:740-8. [DOI: 10.1016/j.ejheart.2008.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 03/20/2008] [Accepted: 06/04/2008] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ching-Yi Chen
- Department of Animal Science and Technology; National Taiwan University; 50 Lane 155, Sec. 3, Keelung Rd. Taipei Taiwan
| | - Bai-Chin Lee
- Department of Internal Medicine; National Taiwan University Hospital; 7 Chung-Shan S Rd Taipei Taiwan
| | - Hsiu-Ching Hsu
- Department of Internal Medicine; National Taiwan University Hospital; 7 Chung-Shan S Rd Taipei Taiwan
| | - Hung-Ju Lin
- Department of Internal Medicine; National Taiwan University Hospital; 7 Chung-Shan S Rd Taipei Taiwan
| | - Chia-Lun Chao
- Department of Internal Medicine; National Taiwan University Hospital; 7 Chung-Shan S Rd Taipei Taiwan
| | - Yen-Hung Lin
- Department of Internal Medicine; National Taiwan University Hospital; 7 Chung-Shan S Rd Taipei Taiwan
| | - Yi-Lwun Ho
- Department of Internal Medicine; National Taiwan University Hospital; 7 Chung-Shan S Rd Taipei Taiwan
| | - Ming-Fong Chen
- Department of Internal Medicine; National Taiwan University Hospital; 7 Chung-Shan S Rd Taipei Taiwan
| |
Collapse
|
17
|
Aspromonte N, Monitillo F, Puzzovivo A, Valle R, Caldarola P, Iacoviello M. Modulation of cardiac cytochrome P450 in patients with heart failure. Expert Opin Drug Metab Toxicol 2014; 10:327-39. [DOI: 10.1517/17425255.2014.872240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Alsaad AMS, Zordoky BNM, Tse MMY, El-Kadi AOS. Role of cytochrome P450-mediated arachidonic acid metabolites in the pathogenesis of cardiac hypertrophy. Drug Metab Rev 2013; 45:173-95. [PMID: 23600686 DOI: 10.3109/03602532.2012.754460] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A plethora of studies have demonstrated the expression of cytochrome P450 (CYP) and soluble epoxide hydrolase (sEH) enzymes in the heart and other cardiovascular tissues. In addition, the expression of these enzymes is altered during several cardiovascular diseases (CVDs), including cardiac hypertrophy (CH). The alteration in CYP and sEH expression results in derailed CYP-mediated arachidonic acid (AA) metabolism. In animal models of CH, it has been reported that there is an increase in 20-hydroxyeicosatetraenoic acid (20-HETE) and a decrease in epoxyeicosatrienoic acids (EETs). Further, inhibiting 20-HETE production by CYP ω-hydroxylase inhibitors and increasing EET stability by sEH inhibitors have been proven to protect against CH as well as other CVDs. Therefore, CYP-mediated AA metabolites 20-HETE and EETs are potential key players in the pathogenesis of CH. Some studies have investigated the molecular mechanisms by which these metabolites mediate their effects on cardiomyocytes and vasculature leading to pathological CH. Activation of several intracellular signaling cascades, such as nuclear factor of activated T cells, nuclear factor kappa B, mitogen-activated protein kinases, Rho-kinases, Gp130/signal transducer and activator of transcription, extracellular matrix degradation, apoptotic cascades, inflammatory cytokines, and oxidative stress, has been linked to the pathogenesis of CH. In this review, we discuss how 20-HETE and EETs can affect these signaling pathways to result in, or protect from, CH, respectively. However, further understanding of these metabolites and their effects on intracellular cascades will be required to assess their potential translation to therapeutic approaches for the prevention and/or treatment of CH and heart failure.
Collapse
Affiliation(s)
- Abdulaziz M S Alsaad
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Center for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | | | | | | |
Collapse
|
19
|
Shahabi P, Siest G, Visvikis-siest S. Influence of inflammation on cardiovascular protective effects of cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids. Drug Metab Rev 2013; 46:33-56. [DOI: 10.3109/03602532.2013.837916] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Kakoti A, Goswami P. Heart type fatty acid binding protein: structure, function and biosensing applications for early detection of myocardial infarction. Biosens Bioelectron 2013; 43:400-11. [PMID: 23357005 DOI: 10.1016/j.bios.2012.12.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/20/2012] [Accepted: 12/27/2012] [Indexed: 12/16/2022]
Abstract
Heart type fatty acid binding protein (HFABP) as an early marker of cardiac injury holds a promising future with studies indicating surpassing performance as compared to myoglobin. As a plasma marker, this cytoplasmic protein owing to its small size (∼15kDa) and water solubility, appears readily in the blood-stream following cardiomyocyte damage, reaching peak levels within 6h of symptom onset. Low plasma levels of HFABP as compared to tissue levels indicate that minute amounts of the protein when released during myocardial infarction leads to a greater proportional rise. These parameters of kinetic release make it an ideal candidate for rapid assessment of acute myocardial infarction (AMI). The need for development of rapid immunoassays and immunotests so as to use HFABP as an early marker for AMI exclusion is tremendous. In the present review, we outline the various immunoassays and immunosensors developed so far for the detection of HFABP in buffer, plasma or whole blood. The principles behind the detection techniques along with their performance parameters compared to standard ELISA techniques are elucidated.
Collapse
Affiliation(s)
- Ankana Kakoti
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | | |
Collapse
|
21
|
Jiang H, Anderson GD, McGiff JC. The red blood cell participates in regulation of the circulation by producing and releasing epoxyeicosatrienoic acids. Prostaglandins Other Lipid Mediat 2011; 98:91-3. [PMID: 22178722 DOI: 10.1016/j.prostaglandins.2011.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/18/2011] [Accepted: 11/30/2011] [Indexed: 12/27/2022]
Abstract
Red blood cells (RBCs) have an important function in regulation of the circulation by producing and releasing epoxyeicosatrienoic acids (EETs) in response to a low O₂ environment such as encountered in the cardiac microcirculation during exercise. RBCs, in their role as sensors of low pO₂, release ATP and critical lipid mediators, the EETs. Both cis- and trans-EETs are synthesized and stored in RBCs and are hydrolyzed by soluble epoxide hydrolases (sEH). The trans-EETs differ from cis-EETs in their higher vascular potencies and more rapid metabolism by sEH. Thus, inhibition of sEH results in greater trans-EET levels and increased positive vascular effects of trans-EETs vs cis-EETs. The trans-EETs are responsible for a significant decline in the elevated blood pressure in the spontaneously hypertensive rat on treatment with a sEH inhibitor to raise EET levels. We predict that trans-EETs and cis-EETs will occupy important therapeutic roles in a broad spectrum of diseases and abnormal physiological conditions such as that resulting from high salt intake and hypertension.
Collapse
Affiliation(s)
- Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| | | | | |
Collapse
|
22
|
Smathers RL, Petersen DR. The human fatty acid-binding protein family: evolutionary divergences and functions. Hum Genomics 2011; 5:170-91. [PMID: 21504868 PMCID: PMC3500171 DOI: 10.1186/1479-7364-5-3-170] [Citation(s) in RCA: 323] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fatty acid-binding proteins (FABPs) are members of the intracellular lipid-binding protein (iLBP) family and are involved in reversibly binding intracellular hydrophobic ligands and trafficking them throughout cellular compartments, including the peroxisomes, mitochondria, endoplasmic reticulum and nucleus. FABPs are small, structurally conserved cytosolic proteins consisting of a water-filled, interior-binding pocket surrounded by ten anti-parallel beta sheets, forming a beta barrel. At the superior surface, two alpha-helices cap the pocket and are thought to regulate binding. FABPs have broad specificity, including the ability to bind long-chain (C16-C20) fatty acids, eicosanoids, bile salts and peroxisome proliferators. FABPs demonstrate strong evolutionary conservation and are present in a spectrum of species including Drosophila melanogaster, Caenorhabditis elegans, mouse and human. The human genome consists of nine putatively functional protein-coding FABP genes. The most recently identified family member, FABP12, has been less studied.
Collapse
Affiliation(s)
- Rebecca L Smathers
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA
| | | |
Collapse
|
23
|
Zhao TT, Wasti B, Xu DY, Shen L, Du JQ, Zhao SP. Soluble epoxide hydrolase and ischemic cardiomyopathy. Int J Cardiol 2011; 155:181-7. [PMID: 21704394 DOI: 10.1016/j.ijcard.2011.05.067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/08/2011] [Accepted: 05/13/2011] [Indexed: 02/01/2023]
Abstract
BACKGROUND The development of cardiovascular disease has been linked to lowered levels of epoxyeicosatrienoic acids (EETs) in the cardiovascular system. Ischemic cardiomyopathy is caused by atherosclerotic lesions in multi-coronary arteries especially diffusive lesions, which can lead to severe myocardial dysfunction, heart enlargement, heart failure, or arrhythmia, and so on. The EETs are metabolized by the soluble epoxide hydrolase (sEH) encoded by the EPHX2 gene that has several known polymorphisms. CONTENT The EPHX2 gene polymorphism is associated with sEH catalytic activity and various cardiovascular diseases. sEH is distributed in a variety of organs and tissues and regulated by multiple factors. Research in the area has led to the presence of multiple powerful soluble epoxide hydrolase inhibitors (sEHIs), whose molecular structure and function has been optimized gradually. sEHIs increase EETs' concentration by inhibiting hydration of EETs into their corresponding vicinal diols. EETs are important signaling molecules and known as endothelium-derived hyperpolarizing factors (EDHF). sEHIs have been developed for their ability to prevent atherosclerosis, dilate the coronary artery, promote angiogenesis, ameliorate postischemic recovery of heart contractile function, decrease ischemia/reperfusion injury, modulate postischemic arrhythmia, and prevent heart failure. SUMMARY sEH is one of the etiological factors of cardiovascular diseases, and plays an important role in the progression of myocardium ischemia. This indicates that sEHIs provide a new method for the prevention and treatment of ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Ting-Ting Zhao
- Department of Cardiovascular Internal Medicine, Second Xiangya Hospital, Central South University Changsha, 410011, PR China
| | | | | | | | | | | |
Collapse
|
24
|
Chen Y, Falck JR, Manthati VL, Jat JL, Campbell WB. 20-Iodo-14,15-epoxyeicosa-8(Z)-enoyl-3-azidophenylsulfonamide: photoaffinity labeling of a 14,15-epoxyeicosatrienoic acid receptor. Biochemistry 2011; 50:3840-8. [PMID: 21469660 DOI: 10.1021/bi102070w] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Endothelium-derived epoxyeicosatrienoic acids (EETs) relax vascular smooth muscle by activating potassium channels and causing membrane hyperpolarization. Recent evidence suggests that EETs act via a membrane binding site or receptor. To further characterize this binding site or receptor, we synthesized 20-iodo-14,15-epoxyeicosa-8(Z)-enoyl-3-azidophenylsulfonamide (20-I-14,15-EE8ZE-APSA), an EET analogue with a photoactive azido group. 20-I-14,15-EE8ZE-APSA and 14,15-EET displaced 20-(125)I-14,15-epoxyeicosa-5(Z)-enoic acid binding to U937 cell membranes with K(i) values of 3.60 and 2.73 nM, respectively. The EET analogue relaxed preconstricted bovine coronary arteries with an ED(50) comparable to that of 14,15-EET. Using electrophoresis, 20-(125)I-14,15-EE8ZE-APSA labeled a single 47 kDa band in U937 cell membranes, smooth muscle and endothelial cells, and bovine coronary arteries. In U937 cell membranes, the 47 kDa radiolabeling was inhibited in a concentration-dependent manner by 8,9-EET, 11,12-EET, and 14,15-EET (IC(50) values of 444, 11.7, and 8.28 nM, respectively). The structurally unrelated EET ligands miconazole, MS-PPOH, and ketoconazole also inhibited the 47 kDa labeling. In contrast, radiolabeling was not inhibited by 8,9-dihydroxyeicosatrienoic acid, 5-oxoeicosatetraenoic acid, a biologically inactive thiirane analogue of 14,15-EET, the opioid antagonist naloxone, the thromboxane mimetic U46619, or the cannabinoid antagonist AM251. Radiolabeling was not detected in membranes from HEK293T cells expressing 79 orphan receptors. These studies indicate that vascular smooth muscle, endothelial cells, and U937 cell membranes contain a high-affinity EET binding protein that may represent an EET receptor. This EET photoaffinity labeling method with a high signal-to-noise ratio may lead to new insights into the expression and regulation of the EET receptor.
Collapse
Affiliation(s)
- Yuenmu Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
25
|
Selvaraj V, Asano A, Page JL, Nelson JL, Kothapalli KSD, Foster JA, Brenna JT, Weiss RS, Travis AJ. Mice lacking FABP9/PERF15 develop sperm head abnormalities but are fertile. Dev Biol 2010; 348:177-89. [PMID: 20920498 DOI: 10.1016/j.ydbio.2010.09.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 12/22/2022]
Abstract
The male germ cell-specific fatty acid-binding protein 9 (FABP9/PERF15) is the major component of the murine sperm perforatorium and perinuclear theca. Based on its cytoskeletal association and sequence homology to myelin P2 (FABP8), it has been suggested that FABP9 tethers sperm membranes to the underlying cytoskeleton. Furthermore, its upregulation in apoptotic testicular germ cells and its increased phosphorylation status during capacitation suggested multiple important functions for FABP9. Therefore, we investigated specific functions for FABP9 by means of targeted gene disruption in mice. FABP9(-/-) mice were viable and fertile. Phenotypic analysis showed that FABP9(-/-) mice had significant increases in sperm head abnormalities (~8% greater than their WT cohorts); in particular, we observed the reduction or absence of the characteristic structural element known as the "ventral spur" in ~10% of FABP9(-/-) sperm. However, deficiency of FABP9 affected neither membrane tethering to the perinuclear theca nor the fatty acid composition of sperm. Moreover, epididymal sperm numbers were not affected in FABP9(-/-) mice. Therefore, we conclude that FABP9 plays only a minor role in providing the murine sperm head its characteristic shape and is not absolutely required for spermatogenesis or sperm function.
Collapse
Affiliation(s)
- Vimal Selvaraj
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Omole MA, Noah N, Zhou L, Almaletti A, Sadik OA, Asemota HN, William ES, Gilchrist J. Spectroelectrochemical characterization of pain biomarkers. Anal Biochem 2009; 395:54-60. [DOI: 10.1016/j.ab.2009.07.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/24/2009] [Accepted: 07/27/2009] [Indexed: 12/29/2022]
|
27
|
Chen Y, Falck JR, Tuniki VR, Campbell WB. 20-125Iodo-14,15-epoxyeicosa-5(Z)-enoic acid: a high-affinity radioligand used to characterize the epoxyeicosatrienoic acid antagonist binding site. J Pharmacol Exp Ther 2009; 331:1137-45. [PMID: 19762546 DOI: 10.1124/jpet.109.157818] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are endothelium-derived metabolites of arachidonic acid. They relax vascular smooth muscle by membrane hyperpolarization. These actions are inhibited by the EET antagonist, 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EE5ZE). We synthesized 20-(125)iodo-14,15-EE5ZE (20-(125)I-14,15-EE5ZE), a radiolabeled EET antagonist, and characterized its binding to cell membranes. 14,15-EET (10(-9)-10(-5)M) caused a concentration-related relaxation of the preconstricted bovine coronary artery and phosphorylation of p38 in U937 cells that were inhibited by 20-(125)I-14,15-EE5ZE. Specific 20-(125)I-14,15-EE5ZE binding to U937 cell membranes reached equilibrium within 5 min and remained unchanged for 30 min. The binding was saturable and reversible, and it exhibited K(D) and B(max) values of 1.11 +/- 0.13 nM and 1.13 +/- 0.04 pmol/mg protein, respectively. Guanosine 5'-O-(3-thio)triphosphate (10 muM) did not change the binding, indicating antagonist binding of the ligand. Various EETs and EET analogs (10(-10)-10(-5)M) competed for 20-(125)I-14,15-EE5ZE binding with an order of potency of 11,12-EET = 14,15-EET > 8,9-EET = 14,15-EE5ZE > 15-hydroxyeicosatetraenoic acid = 14,15-dihydroxyeicosatrienoic acid. 8,9-Dihydroxyeicosatrienoic acid and 11-hydroxyeicosatetraenoic acid did not compete for binding. The soluble and microsomal epoxide hydrolase inhibitors (1-cyclohexyl-3-dodecyl-urea, elaidamide, and 12-hydroxyl-elaidamide) and cytochrome P450 inhibitors (sulfaphenazole and proadifen) did not compete for the binding. However, two cytochrome P450 inhibitors, N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH) and miconazole competed for binding with K(i) of 1558 and 315 nM, respectively. Miconazole and MS-PPOH, but not proadifen, inhibited 14,15-EET-induced relaxations. These findings define an EET antagonist's binding site and support the presence of an EET receptor. The inhibition of binding by some cytochrome P450 inhibitors suggests an alternative mechanism of action for these drugs and could lead to new drug candidates that target the EET binding sites.
Collapse
Affiliation(s)
- Yuenmu Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
28
|
Storch J, Corsico B. The emerging functions and mechanisms of mammalian fatty acid-binding proteins. Annu Rev Nutr 2008; 28:73-95. [PMID: 18435590 DOI: 10.1146/annurev.nutr.27.061406.093710] [Citation(s) in RCA: 323] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fatty acid-binding proteins (FABPs) are abundant intracellular proteins that bind long-chain fatty acids with high affinity. Nine separate mammalian FABPs have been identified, and their tertiary structures are highly conserved. The FABPs have unique tissue-specific distributions that have long suggested functional differences among them. In the last decade, considerable progress has been made in understanding the specific functions of the FABPs and, in some cases, their mechanisms of action at the molecular level. The FABPs appear to be involved in the extranuclear compartments of the cell by trafficking their ligands within the cytosol via interactions with organelle membranes and specific proteins. Several members of the FABP family have been shown to function directly in the regulation of cognate nuclear transcription factor activity via ligand-dependent translocation to the nucleus. This review will focus on these emerging functions and mechanisms of the FABPs, highlighting the unique functional properties of each as well as the similarities among them.
Collapse
Affiliation(s)
- Judith Storch
- Department of Nutritional Sciences and the Rutgers Center for Lipid Research, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901, USA.
| | | |
Collapse
|
29
|
Liu JW, Almaguel FG, Bu L, De Leon DD, De Leon M. Expression of E-FABP in PC12 cells increases neurite extension during differentiation: involvement of n-3 and n-6 fatty acids. J Neurochem 2008; 106:2015-29. [PMID: 18513372 DOI: 10.1111/j.1471-4159.2008.05507.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidermal fatty acid-binding protein (E-FABP), a member of the family of FABPs, exhibits a robust expression in neurons during axonal growth in development and in nerve regeneration following nerve injury. This study examines the impact of E-FABP expression in normal neurite extension in differentiating pheochromocytoma cell (PC12) cultures supplemented with selected long chain free fatty acids (LCFFA). We found that E-FABP binds to a broad range of saturated and unsaturated LCFFAs, including those with potential interest for neuronal differentiation and axonal growth such as C22:6n-3 docosahexaenoic acid (DHA), C20:5n-3 eicosapentaenoic acid (EPA), and C20:4n-6 arachidonic acid (ARA). PC12 cells exposed to nerve growth factor (NGFDPC12) exhibit high E-FABP expression that is blocked by mitogen-activated protein kinase kinase (MEK) inhibitor U0126. Nerve growth factor-differentiated pheochromocytoma cells (NGFDPC12) antisense clones (NGFDPC12-AS) which exhibit low E-FABP expression have fewer/shorter neurites than cells transfected with vector only or NGFDPC12 sense cells (NGFDPC12-S). Replenishing NGFDPC12-AS cells with biotinylated recombinant E-FABP (biotin-E-FABP) protein restores normal neurite outgrowth. Cellular localization of biotin-E-FABP in NGFDPC12 was detected mostly in the cytoplasm and in the nuclear region. Treatment of NGFDPC12 with DHA, EPA, or ARA further enhances neurite length but it does not trigger further induction of TrkA or MEK phosphorylation or E-FABP mRNA observed in differentiating PC12 cells without LCFFA supplementation. Significantly, DHA and EPA neurite stimulating effects are higher in NGFDPC12-S than in NGFDPC12-AS cells. These findings are consistent with the scenario that neurite extension of differentiating PC12 cells, including further stimulation by DHA and EPA, requires sufficient cellular levels of E-FABP.
Collapse
Affiliation(s)
- Jo-Wen Liu
- Center for Health Disparities and Molecular Medicine, Department of Basic Science, Loma Linda University, California 92350, USA
| | | | | | | | | |
Collapse
|
30
|
Atkinson J, Epand RF, Epand RM. Tocopherols and tocotrienols in membranes: a critical review. Free Radic Biol Med 2008; 44:739-64. [PMID: 18160049 DOI: 10.1016/j.freeradbiomed.2007.11.010] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 11/09/2007] [Accepted: 11/12/2007] [Indexed: 12/14/2022]
Abstract
The familiar role of tocols (tocopherols and tocotrienols) as lipid-soluble chain-terminating inhibitors of lipid peroxidation is currently in the midst of a reinterpretation. New biological activities have been described for tocols that apparently are not dependent on their well-established antioxidant behaviour. These activities could well be real, but there remain large gaps in our understanding of the behaviour of tocols in membranes, especially when it comes to the alpha-, beta-, gamma-, delta-chroman methylation patterns and the seemingly special nature of tocotrienols. It is inappropriate to make conclusions and develop models based on in vivo (or cell culture) results with reference to in vitro measurements of antioxidant activity. When present in biological membranes, tocols will experience a large variation in the local composition of phospholipids and the presence of neutral lipids such as cholesterol, both of which would be expected to change the efficiency of antioxidant action. It is likely that tocols are not homogeneously dispersed in a membrane, but it is still not known whether any specific combination of lipid head group and acyl chains are conferred special protection from peroxidation, nor do we currently appreciate the structural role that tocols play in membranes. Tocols may enhance curvature stress or counteract similar stresses generated by other lipids such as lysolipids. This review will outline what is known about the location and behaviour of tocols in phospholipid bilayers. We will draw mainly from the biophysical literature, but will attempt to extend the discussion to biologically relevant phenomena when appropriate. We hope that it will assist researchers when designing new experiments and when critically assessing the results, in turn providing a more thorough understanding of the biochemistry of tocols.
Collapse
Affiliation(s)
- Jeffrey Atkinson
- Department of Chemistry and Centre for Biotechnology, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada.
| | | | | |
Collapse
|
31
|
Nieves D, Moreno JJ. Epoxyeicosatrienoic acids induce growth inhibition and calpain/caspase-12 dependent apoptosis in PDGF cultured 3T6 fibroblast. Apoptosis 2007; 12:1979-88. [PMID: 17828455 DOI: 10.1007/s10495-007-0123-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous studies have demonstrated that arachidonic acid (AA) metabolites released by the cyclooxygenase pathway is involved in serum-induced 3T6 fibroblast cycle progression and proliferation. However, these results also suggest that other AA cascade pathways might be involved. Recently, we also described the role of hydroxyeicosatetraenoic acids, which are produced by cytochrome P450 monooxygenases (CYP), in 3T6 fibroblast growth. AA can be also metabolized by the epoxygenase activity of CYP-producing epoxyeicosatrienoic acids (EETs). Finally, the cytosolic epoxide hydrolases catalyze the hydration of the EETs, transforming them into dihydroxyeicosatetraenoic acids (DHETEs). In this work, we have studied the role of the EETs/DHETEs on 3T6 fibroblasts growth. Our results show that PDGF stimulates 3T6 fibroblast proliferation and [3H]thymidine incorporation, while the addition of 5,6-EET, 8,9-EET, 11,12-EET or 14,15-EET (0.1-1 microM) inhibit these processes. Furthermore, 5,6-DHETE and 11,12-DHETE (0.1-1 microM) also inhibit cell proliferation and DNA synthesis. Interestingly, this growth inhibition was correlated with an induction of apoptosis. Thus, we observed that in the presence of PDGF, EETs or DHETEs (0.1-1 microM) induce phosphatidylserine externalization (as measured by annexin V-binding) and DNA fragmentation (as quantified using a TUNEL assay). Our results show that calpain, as well as caspase-12 and caspase-3, are involved in these events. Therefore, EETs and DHETEs have anti-proliferative and pro-apoptotic effects on PDGF-stimulated 3T6 fibroblasts.
Collapse
Affiliation(s)
- Diana Nieves
- Department of Physiology, Faculty of Pharmacy, University of Barcelona, Avda. Joan XXIII s/n, Barcelona 08028, Spain
| | | |
Collapse
|
32
|
Schug TT, Berry DC, Shaw NS, Travis SN, Noy N. Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell 2007; 129:723-33. [PMID: 17512406 PMCID: PMC1948722 DOI: 10.1016/j.cell.2007.02.050] [Citation(s) in RCA: 521] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 11/21/2006] [Accepted: 02/23/2007] [Indexed: 02/07/2023]
Abstract
Transcriptional activation of the nuclear receptor RAR by retinoic acid (RA) often leads to inhibition of cell growth. However, in some tissues, RA promotes cell survival and hyperplasia, activities that are unlikely to be mediated by RAR. Here, we show that, in addition to functioning through RAR, RA activates the "orphan" nuclear receptor PPARbeta/delta, which, in turn, induces the expression of prosurvival genes. Partitioning of RA between the two receptors is regulated by the intracellular lipid binding proteins CRABP-II and FABP5. These proteins specifically deliver RA from the cytosol to nuclear RAR and PPARbeta/delta, respectively, thereby selectively enhancing the transcriptional activity of their cognate receptors. Consequently, RA functions through RAR and is a proapoptotic agent in cells with high CRABP-II/FABP5 ratio, but it signals through PPARbeta/delta and promotes survival in cells that highly express FABP5. Opposing effects of RA on cell growth thus emanate from alternate activation of two different nuclear receptors.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Active Transport, Cell Nucleus/physiology
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Line, Tumor
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cell Survival/genetics
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/metabolism
- Fatty Acid-Binding Proteins/genetics
- Fatty Acid-Binding Proteins/metabolism
- Female
- Gene Expression Regulation, Neoplastic/physiology
- Humans
- Keratinocytes
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/physiopathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/physiopathology
- Mice
- PPAR-beta/drug effects
- PPAR-beta/metabolism
- Receptors, Retinoic Acid/drug effects
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Transcriptional Activation/drug effects
- Transcriptional Activation/physiology
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- Thaddeus T Schug
- Division of Nutritional Sciences, Cornell University, Ithaca NY 14850
| | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca NY 14850
| | - Natacha S. Shaw
- Division of Nutritional Sciences, Cornell University, Ithaca NY 14850
| | - Skylar N. Travis
- Division of Nutritional Sciences, Cornell University, Ithaca NY 14850
| | - Noa Noy
- Division of Nutritional Sciences, Cornell University, Ithaca NY 14850
- and Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
- *Address correspondence to this author at: 724 Biomedical Research Building, Case, Western Reserve University School of Medicine, 10900 Euclid Ave. Cleveland, OH, 44106-4965. Tel: 216-368-0302, Fax: 216-368-1300, E. mail:
| |
Collapse
|
33
|
Abstract
Epoxyeicosatrienoic acids (EETs), which function primarily as autocrine and paracrine mediators in the cardiovascular and renal systems, are synthesized from arachidonic acid by cytochrome P-450 epoxygenases. They activate smooth muscle large-conductance Ca(2+)-activated K(+) channels, producing hyperpolarization and vasorelaxation. EETs also have anti-inflammatory effects in the vasculature and kidney, stimulate angiogenesis, and have mitogenic effects in the kidney. Many of the functional effects of EETs occur through activation of signal transduction pathways and modulation of gene expression, events probably initiated by binding to a putative cell surface EET receptor. However, EETs are rapidly taken up by cells and are incorporated into and released from phospholipids, suggesting that some functional effects may occur through a direct interaction between the EET and an intracellular effector system. In this regard, EETs and several of their metabolites activate peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARgamma, suggesting that some functional effects may result from PPAR activation. EETs are metabolized primarily by conversion to dihydroxyeicosatrienoic acids (DHETs), a reaction catalyzed by soluble epoxide hydrolase (sEH). Many potentially beneficial actions of EETs are attenuated upon conversion to DHETs, which do not appear to be essential under routine conditions. Therefore, sEH is considered a potential therapeutic target for enhancing the beneficial functions of EETs.
Collapse
Affiliation(s)
- Arthur A Spector
- Dept. of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
34
|
Fleming I. Epoxyeicosatrienoic acids, cell signaling and angiogenesis. Prostaglandins Other Lipid Mediat 2007; 82:60-7. [PMID: 17164133 DOI: 10.1016/j.prostaglandins.2006.05.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 05/05/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are generated from arachidonic acid by cytochrome P450 (CYP) epoxygenases the expression of which is determined by hemodynamic and pharmacological stimuli as well as by hypoxia. The activation of CYP epoxygenases in endothelial cells is an important step in the vasodilatation that has been attributed to the endothelium-derived hyperpolarizing factor. However, in addition to regulating vascular tone EETs modulate several signaling cascades and affect cell proliferation, cell migration and angiogenesis. These include the epidermal growth factor receptor, tyrosine kinases and phosphatases, mitogen-activated protein kinases, protein kinase A, cyclooxygenase-2 and several transcription factors. To-date however, the importance of EETs in vascular homeostasis has been largely underestimated because of the labile nature of the EET-forming enzymes in cell culture. This also means that the contribution of CYP-derived products in the vast majority of the experimental models based on cell culture systems to address topics related to vascular signaling/homeostasis and angiogenesis has been overlooked.
Collapse
Affiliation(s)
- Ingrid Fleming
- Vascular Signalling Group, Institut für Kardiovaskuläre Physiologie, Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| |
Collapse
|
35
|
Donato LJ, Noy N. A fluorescence-based method for analyzing retinoic acid in biological samples. Anal Biochem 2006; 357:249-56. [PMID: 16919229 DOI: 10.1016/j.ab.2006.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 07/04/2006] [Accepted: 07/18/2006] [Indexed: 11/18/2022]
Abstract
Retinoic acid (RA) modulates the rates of transcription of numerous genes and thus plays key roles in multiple biological processes and is used in therapy of a number of diseases. However, RA therapy is often confounded by toxicity, raising the need for methodologies for its ready quantitation in biological samples. We describe a fluorescence-based method for quantitating RA that takes advantage of the high affinity and selectivity of the intracellular lipid-binding protein termed CRABP-I and CRABP-II and that uses them as RA sensors. L28C CRABP mutants were generated, and the inserted cysteine was covalently labeled with an environmentally sensitive fluorescent probe. The label was introduced into a region of the protein that undergoes a conformational shift on ligation. Consequently, RA binding resulted in distinct changes in the fluorescence of the protein-bound probe, allowing direct quantitation of RA. We show that the method can be used to monitor the biosynthesis of RA from its precursor retinal in cultured mammalian cells as well as the detection of exogenous RA in serum. The assay provides ease of use and sensitivity that enable quantitation of RA in biological samples of limited size, and it should prove to be useful in a variety of research and clinical applications.
Collapse
Affiliation(s)
- Leslie J Donato
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
36
|
Jiang H. Erythrocyte-derived epoxyeicosatrienoic acids. Prostaglandins Other Lipid Mediat 2006; 82:4-10. [PMID: 17164127 DOI: 10.1016/j.prostaglandins.2006.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 05/16/2006] [Accepted: 05/18/2006] [Indexed: 11/25/2022]
Abstract
Red blood cells (RBCs) are reservoirs for cis- and trans-epoxyeicosatrienoic acids (EETs) that can be released. The sources of EET release from RBCs include direct synthesis from arachidonic acid, peroxidation of phospholipids and EETs esterified into cellular phospholipids. The release of EETs from RBCs can be through cytosolic phospholipase A2 (PLA2), secretory PLA2 and other responses associated with ATP release from RBCs. The erythrocyte ATP, purinergic receptors, ATP-binding cassette transporters, PLA2 and cytoskeleton rearrangement may all participate in EET release in the microcirculatory deformation of RBCs. EETs are vasodilatory and are candidate endothelium-derived hyperpolarizing factors. Due to the anti-hypertensive, fibrinolytic, and anti-thrombotic properties of EETs, their release from RBCs is replete with implications for the control of circulation and rheological characteristics of the circulating blood.
Collapse
Affiliation(s)
- Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA.
| |
Collapse
|
37
|
Michaelis UR, Fleming I. From endothelium-derived hyperpolarizing factor (EDHF) to angiogenesis: Epoxyeicosatrienoic acids (EETs) and cell signaling. Pharmacol Ther 2005; 111:584-95. [PMID: 16380164 DOI: 10.1016/j.pharmthera.2005.11.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 11/23/2005] [Indexed: 12/01/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are generated from arachidonic acid by cytochrome P450 (CYP) epoxygenases. The expression of CYP epoxygenases in endothelial cells is determined by a number of physical (fluid shear stress and cyclic stretch) and pharmacological stimuli as well as by hypoxia. The activation of CYP epoxygenases in endothelial cells is an important step in the nitric oxide and prostacyclin (PGI2)-independent vasodilatation of several vascular beds and EETs have been identified as endothelium-derived hyperpolarizing factors (EDHFs). However, in addition to regulating vascular tone, EETs modulate several signaling cascades and affect cell proliferation, cell migration, and angiogenesis. Signaling molecules modulated by EETs include tyrosine kinases and phosphatases, mitogen-activated protein kinases, protein kinase A (PKA), cyclooxygenase (COX)-2, and several transcription factors. This review summarizes the role of CYP-derived EETs in cell signaling and focuses particularly on their role as intracellular amplifiers of endothelial cell hyperpolarization as well as in cell proliferation and angiogenesis. The angiogenic properties of CYP epoxygenases and CYP-derived EETs implicate that these enzymes may well be accessible targets for anti-angiogenic as well as angiogenic therapies.
Collapse
Affiliation(s)
- U Ruth Michaelis
- Vascular Signalling Group, Institut für Kardiovaskuläre Physiologie, Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW The global prevalence of obesity is increasing epidemically. Obesity causes an array of health problems, reduces life expectancy, and costs over US dollar 100 billion annually. More than a quarter of the population suffers from an aggregation of co-morbidities, including obesity, atherosclerosis, insulin resistance, dyslipidemias, coagulopathies, hypertension, and a pro-inflammatory state known as the metabolic syndrome. Patients with metabolic syndrome have high risk of atherosclerosis as well as type 2 diabetes and other health problems. Like obesity, atherosclerosis has very limited therapeutic options. RECENT FINDINGS Fatty acid binding proteins integrate metabolic and immune responses and link the inflammatory and lipid-mediated pathways that are critical in the metabolic syndrome. This review will highlight recent studies on fatty acid binding protein-deficient models and several fatty acid binding protein-mediated pathways specifically modified in macrophages, cells that are paramount to the initiation and persistence of cardiovascular lesions. SUMMARY Adipocyte/macrophage fatty acid binding proteins, aP2 and mal1, act at the interface of metabolic and inflammatory pathways. These fatty acid binding proteins are involved in the formation of atherosclerosis predominantly through the direct modification of macrophage cholesterol trafficking and inflammatory responses. In addition to atherosclerosis, these fatty acid binding proteins also exert a dramatic impact on obesity, insulin resistance, type 2 diabetes and fatty liver disease. The creation of pharmacological agents to modify fatty acid binding protein function will provide tissue or cell-type-specific control of these lipid signaling pathways, inflammatory responses, atherosclerosis, and the other components of the metabolic syndrome, therefore offering a new class of multi-indication therapeutic agents.
Collapse
Affiliation(s)
- Liza Makowski
- Sarah W. Stedman Nutrition and Metabolism Center, Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27704, USA
| | - Gökhan S. Hotamisligil
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
39
|
Jiang H, Quilley J, Reddy LM, Falck JR, Wong PYK, McGiff JC. Red blood cells: reservoirs of cis- and trans-epoxyeicosatrienoic acids. Prostaglandins Other Lipid Mediat 2005; 75:65-78. [PMID: 15789616 DOI: 10.1016/j.prostaglandins.2004.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are candidate endothelium-derived hyperpolarizing factors that demonstrate a wide range of biological effects. The presence of both cis- and trans-EETs in rat plasma was identified with HPLC-electrospray ionization tandem mass spectrometry in this study. The total EETs in plasma are 38.2 ng/ml with cis-EETs representing 21.4 +/- 0.4 ng/ml and trans-EETs 16.8 +/- 0.4 ng/ml. EETs in RBCs were estimated to be 20.2 ng/10(9) RBCs, which corresponds to 200 ng in RBCs contained in 1 ml blood. RBC incubation with 10 mM tert-butyl hydroperoxide resulted in 4.4-fold increase of total cis-EETs (from 9.2 to 40.2 ng/10(9) RBCs) and 5.5-fold increase of total trans-EETs (from 11.0 to 60.8 ng/10(9) RBCs). EETs were released (2 ng/ml) from RBCs after incubation at 37 degrees C for 10 min even after being washed 3 times, indicating that RBCs are reservoirs of plasma EETs. The identification of cis- and trans-EETs in RBCs and in plasma as well as their release from RBCs suggest a vasoregulatory role of RBCs in view of their potent vasoactivity.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/blood
- 8,11,14-Eicosatrienoic Acid/chemistry
- Animals
- Chromatography, High Pressure Liquid
- Erythrocytes/chemistry
- Lipid Peroxidation
- Male
- Phospholipids/blood
- Phospholipids/isolation & purification
- Rats
- Rats, Sprague-Dawley
- Spectrometry, Mass, Electrospray Ionization
- Stereoisomerism
Collapse
Affiliation(s)
- Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Parker TA, Grover TR, Kinsella JP, Falck JR, Abman SH. Inhibition of 20-HETE abolishes the myogenic response during NOS antagonism in the ovine fetal pulmonary circulation. Am J Physiol Lung Cell Mol Physiol 2005; 289:L261-7. [PMID: 15821014 DOI: 10.1152/ajplung.00315.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanisms that maintain high pulmonary vascular resistance (PVR) and oppose vasodilation in the fetal lung are poorly understood. In fetal lambs, increased pulmonary artery pressure evokes a potent vasoconstriction, suggesting that a myogenic response contributes to high PVR in the fetus. In adult systemic circulations, the arachidonic acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) has been shown to modulate the myogenic response, but its role in the fetal lung is unknown. We hypothesized that acute increases in pulmonary artery pressure release 20-HETE, which causes vasoconstriction, or a myogenic response, in the fetal lung. To address this hypothesis, we studied the hemodynamic effects of N-methylsufonyl-12,12-dibromododec-11-enamide (DDMS), a specific inhibitor of 20-HETE production, on the pulmonary vasoconstriction caused by acute compression of the ductus arteriosus (DA) in chronically prepared fetal sheep. An inflatable vascular occluder around the DA was used to increase pulmonary artery pressure under three study conditions: control, after pretreatment with nitro-l-arginine (l-NA; to inhibit shear-stress vasodilation), and after combined treatment with both l-NA and a specific 20-HETE inhibitor, DDMS. We found that DA compression after l-NA treatment increased PVR by 44 ± 12%. Although intrapulmonary DDMS infusion did not affect basal PVR, DDMS completely abolished the vasoconstrictor response to DA compression in the presence of l-NA (44 ± 12% vs. 2 ± 4% change in PVR, l-NA vs. l-NA + DDMS, P < 0.05). We conclude that 20-HETE mediates the myogenic response in the fetal pulmonary circulation and speculate that pharmacological inhibition of 20-HETE might have a therapeutic role in neonatal conditions characterized by pulmonary hypertension.
Collapse
Affiliation(s)
- Thomas A Parker
- Pediatric Heart Lung Center, University of Colorado School of Medicine, Denver, Colorado 80045, USA.
| | | | | | | | | |
Collapse
|
41
|
Sessler RJ, Noy N. A Ligand-Activated Nuclear Localization Signal in Cellular Retinoic Acid Binding Protein-II. Mol Cell 2005; 18:343-53. [PMID: 15866176 DOI: 10.1016/j.molcel.2005.03.026] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 12/28/2004] [Accepted: 03/31/2005] [Indexed: 12/30/2022]
Abstract
Primary sequences of proteins often contain motifs that serve as "signatures" for subcellular targeting, such as a nuclear localization signal (NLS). However, many nuclear proteins do not harbor a recognizable NLS, and the pathways that mediate their nuclear translocation are unknown. This work focuses on CRABP-II, a cytosolic protein that moves to the nucleus upon binding of retinoic acid. While CRABP-II does not contain an NLS in its primary sequence, such a motif could be recognized in the protein's tertiary structure. We map the retinoic acid-induced structural rearrangements that result in the presence of this NLS in holo- but not apo-CRABP-II. The signal, whose three-dimensional configuration aligns strikingly well with a "classical" NLS, mediates ligand-induced association of CRABP-II with importin alpha and is critical for nuclear localization of the protein. The ligand-controlled NLS "switch" of CRABP-II may represent a general mechanism for posttranslational regulation of the subcellular distribution of a protein.
Collapse
Affiliation(s)
- Richard J Sessler
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
42
|
Zimmer JSD, Dyckes DF, Bernlohr DA, Murphy RC. Fatty acid binding proteins stabilize leukotriene A4: competition with arachidonic acid but not other lipoxygenase products. J Lipid Res 2004; 45:2138-44. [PMID: 15342681 DOI: 10.1194/jlr.m400240-jlr200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leukotriene A(4) (LTA(4)) is a chemically reactive conjugated triene epoxide product derived from 5-lipoxygenase oxygenation of arachidonic acid. At physiological pH, this reactive compound has a half-life of less than 3 s at 37 degrees C and approximately 40 s at 4 degrees C. Regardless of this aqueous instability, LTA(4) is an intermediate in the formation of biologically active leukotrienes, which can be formed through either intracellular or transcellular biosynthesis. Previously, epithelial fatty acid binding protein (E-FABP) present in RBL-1 cells was shown to increase the half-life of LTA(4) to approximately 20 min at 4 degrees C. Five FABPs (adipocyte FABP, intestinal FABP, E-FABP, heart/muscle FABP, and liver FABP) have now been examined and also found to increase the half-life of LTA(4) at 4 degrees C to approximately 20 min with protein present. Stabilization of LTA(4) was examined when arachidonic acid was present to compete with LTA(4) for the binding site on E-FABP. Arachidonate has an apparent higher affinity for E-FABP than LTA(4) and was able to completely block stabilization of the latter. When E-FABP is not saturated with arachidonate, FABP can still stabilize LTA(4). Several lipoxygenase products, including 5-hydroxyeicosatetraenoic acid, 5,6-dihydroxyeicosatetraenoic acid, and leukotriene B(4), were found to have no effect on the stability of LTA(4) induced by E-FABP even when present at concentrations 3-fold higher than LTA(4).
Collapse
|
43
|
Jiang H, McGiff JC, Quilley J, Sacerdoti D, Reddy LM, Falck JR, Zhang F, Lerea KM, Wong PYK. Identification of 5,6-trans-Epoxyeicosatrienoic Acid in the Phospholipids of Red Blood Cells. J Biol Chem 2004; 279:36412-8. [PMID: 15213230 DOI: 10.1074/jbc.m403962200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel eicosanoid, 5,6-trans-epoxy-8Z,11Z,14Z-eicosatrienoic acid (5,6-trans-EET), was identified in rat red blood cells. Characterization of 5,6-trans-EET in the sn-2 position of the phospholipids was accomplished by hydrolysis with phospholipase A(2) followed by gas chromatography/mass spectrometry as well as electrospray ionization-tandem mass spectrometry analyses. The electron ionization spectrum of 5,6-erythro-dihydroxyeicosatrienoic acid (5,6-erythro-DHET), converted from 5,6-trans-EET in the samples, matches that of the authentic standard. Hydrogenation of the extracted 5,6-erythro-DHET with platinum(IV) oxide/hydrogen resulted in an increase of the molecular mass by 6 daltons and the same retention time shift as an authentic standard in gas chromatography, suggesting the existence of three olefins as well as the 5,6-erythro-dihydroxyl structure in the metabolite. Match of retention times by chromatography indicated identity of the stereochemistry of the red blood cell 5,6-erythro-DHET vis à vis the synthetic standard. High pressure liquid chromatography-electrospray ionization-tandem mass spectrometry analysis of the phospholipase A(2)-hydrolyzed lipid extracts from red blood cells revealed match of the mass spectrum and retention time of the compound with the authentic 5,6-trans-EET standard, providing direct evidence of the existence of 5,6-trans-EET in red blood cells. The presence of other trans-EETs was also demonstrated. The ability of both 5,6-trans-EET and its product 5,6-erythro-DHET to relax preconstricted renal interlobar arteries was significantly greater than that of 5,6-cis-EET. In contrast, 5,6-cis-EET and 5,6-trans-EET were equipotent in their capacity to inhibit collagen-induced rat platelet aggregation, whereas 5,6-erythro-DHET was without effect. We propose that the red blood cells serve as a reservoir for epoxides which on release may act in a vasoregulatory capacity.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/chemistry
- 8,11,14-Eicosatrienoic Acid/metabolism
- Animals
- Arteries/pathology
- Blood Platelets/metabolism
- Chromatography, Gas
- Chromatography, High Pressure Liquid
- Collagen/metabolism
- Erythrocytes/metabolism
- Kidney/blood supply
- Lipids/chemistry
- Mass Spectrometry
- Models, Chemical
- Phospholipases A/metabolism
- Phospholipids/metabolism
- Platelet Aggregation
- Rats
- Rats, Sprague-Dawley
- Spectrometry, Mass, Electrospray Ionization
- Time Factors
Collapse
Affiliation(s)
- Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Falck JR, Reddy LM, Reddy YK, Bondlela M, Krishna UM, Ji Y, Sun J, Liao JK. 11,12-epoxyeicosatrienoic acid (11,12-EET): structural determinants for inhibition of TNF-alpha-induced VCAM-1 expression. Bioorg Med Chem Lett 2004; 13:4011-4. [PMID: 14592496 DOI: 10.1016/j.bmcl.2003.08.060] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A series of 11,12-EET analogues were synthesized and compared using a human endothelial cell based TNF-alpha-induced VCAM-1 expression assay. The resulting data were used to map a putative recognition/binding domain for 11,12-EET.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/chemical synthesis
- 8,11,14-Eicosatrienoic Acid/chemistry
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Animals
- Binding Sites
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Humans
- Molecular Structure
- Structure-Activity Relationship
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/pharmacology
- Vascular Cell Adhesion Molecule-1/chemistry
- Vascular Cell Adhesion Molecule-1/drug effects
- Vascular Cell Adhesion Molecule-1/genetics
Collapse
Affiliation(s)
- J R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Lee SJ, Landon CS, Nazian SJ, Dietz JR. CytochromeP-450 metabolites in endothelin-stimulated cardiac hormone secretion. Am J Physiol Regul Integr Comp Physiol 2004; 286:R888-93. [PMID: 14715489 DOI: 10.1152/ajpregu.00482.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the role of cytochrome P-450-arachidonate (CYP450-AA) metabolites in endothelin-1 (ET-1)-stimulated atrial natriuretic peptide (ANP) and pro-ANP-(1-30) secretion from the heart. 17-Octadecynoic acid (17-ODYA, 10-5M) significantly inhibited ANP secretion stimulated by ET-1 (10-8M) in the isolated perfused rat atria and inhibited pro-ANP-(1-30) secretion stimulated by ET-1 (10-8M) or 20-hydroxyeicosatetraenoic acid in cultured neonatal rat ventricular myocytes (NRVM). In NRVM, 17-ODYA significantly ( P < 0.05) increased secretion of cAMP but had no significant effect on the secretion of cGMP from NRVM. Staurosporine, an inhibitor of protein kinase C, completely blocked the inhibitory action of 17-ODYA, whereas a protein kinase A inhibitor, H-89 (5 × 10-5M), did not significantly attenuate the effects of 17-ODYA. The results show that the inhibitory action of 17-ODYA on ET-1-augmented ANP secretion is mediated through cAMP and suggest that CYP450-AA may play an important role in ET-1-induced cardiac hormone secretion.
Collapse
Affiliation(s)
- Sook Jeong Lee
- Dept. of Physiology and Biophysics, University of South Florida, College of Medicine, Box 8, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
46
|
Peterson JSK, Bain LJ. Differential gene expression in anthracene-exposed mummichogs (Fundulus heteroclitus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2004; 66:345-55. [PMID: 15168943 DOI: 10.1016/j.aquatox.2003.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2003] [Revised: 09/22/2003] [Accepted: 10/19/2003] [Indexed: 05/06/2023]
Abstract
The polycyclic aromatic hydrocarbon (PAH) anthracene is present in many estuarine systems at concentrations believed to cause sublethal adverse effects, although its exact mode of toxicity remains unclear. Knowledge of the induction or suppression of specific genes as a result of exposure may be useful in explaining these effects. We have generated a fingerprint of anthracene exposure using the mummichog (Fundulus heteroclitus), a non-migratory estuarine fish species. The fish were exposed in 7-day static renewal tests to environmentally relevant concentrations of 0, 27, 50, and 80 microg/l of anthracene. Total RNA was extracted from the livers and differential display reverse transcription polymerase chain reaction (DD RT-PCR) was used to recover 26 differentially expressed cDNA fragments. These cDNAs were isolated, sequenced, and compared to sequences of known genes in order to identify possible physiological consequences of exposure to anthracene. We then constructed macroarrays using these fragments and probed them with RNA from both anthracene-exposed fish and fish from a known PAH-impacted site. Three genes appear to be good indicators of exposure to anthracene in the range of concentrations tested, which included CYP2N2 and two expressed sequence tags (ESTs) termed 15C1 and 18C2. The expression of nine genes was altered in fish collected from a site with multiple PAHs. Band 15C1 and CYP2N2 again showed statistically significant upregulation in the field-caught fish, while a trypsin precursor and fatty acid-binding protein (FABP) all showed similar trends in induction as the laboratory-exposed fish. Further insight into the mechanism of toxicity of contaminants will be gained by the ability to identify and use differentially expressed genes as markers of exposure and effects.
Collapse
Affiliation(s)
- Janis S K Peterson
- Department of Biological Sciences, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
| | | |
Collapse
|
47
|
Kaduce TL, Fang X, Harmon SD, Oltman CL, Dellsperger KC, Teesch LM, Gopal VR, Falck JR, Campbell WB, Weintraub NL, Spector AA. 20-Hydroxyeicosatetraenoic Acid (20-HETE) Metabolism in Coronary Endothelial Cells. J Biol Chem 2004; 279:2648-56. [PMID: 14612451 DOI: 10.1074/jbc.m306849200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the role of endothelial cells in the metabolism of 20-hydroxyeicosatetraenoic acid (20-HETE), a vasoactive mediator synthesized from arachidonic acid by cytochrome P450 omega-oxidases. Porcine coronary artery endothelial cells (PCEC) incorporated 20-[(3)H]HETE primarily into the sn-2 position of phospholipids through a coenzyme A-dependent process. The incorporation was reduced by equimolar amounts of arachidonic, eicosapentaenoic or 8,9-epoxyeicosatrienoic acids, but some uptake persisted even when a 10-fold excess of arachidonic acid was available. The retention of 20-[(3)H]HETE increased substantially when methyl arachidonoyl fluorophosphonate, but not bromoenol lactone, was added, suggesting that a Ca(2+)-dependent cytosolic phospholipase A(2) released the 20-HETE contained in PCEC phospholipids. Addition of calcium ionophore A23187 produced a rapid release of 20-[(3)H]HETE from the PCEC, a finding that also is consistent with a Ca(2+)-dependent mobilization process. PCEC also converted 20-[(3)H]HETE to 20-carboxy-arachidonic acid (20-COOH-AA) and 18-, 16-, and 14-carbon beta-oxidation products. 20-COOH-AA produced vasodilation in porcine coronary arterioles, but 20-HETE was inactive. These results suggest that the incorporation of 20-HETE and its subsequent conversion to 20-COOH-AA in the endothelium may be important in modulating coronary vascular function.
Collapse
Affiliation(s)
- Terry L Kaduce
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yu Z, Davis BB, Morisseau C, Hammock BD, Olson JL, Kroetz DL, Weiss RH. Vascular localization of soluble epoxide hydrolase in the human kidney. Am J Physiol Renal Physiol 2003; 286:F720-6. [PMID: 14665429 DOI: 10.1152/ajprenal.00165.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epoxyeicosatrienoic acids are cytochrome P-450 metabolites of arachidonic acid with multiple biological functions, including the regulation of vascular tone, renal tubular transport, cellular proliferation, and inflammation. Epoxyeicosatrienoic acids are converted by soluble epoxide hydrolase into the corresponding dihydroxyeicosatrienoic acids, and epoxyeicosatrienoic acid hydration is regarded as one mechanism whereby their biological effects are eliminated. Previous animal studies indicate that soluble epoxide hydrolase plays an important role in the regulation of renal eicosanoid levels and systemic blood pressure. To begin to elucidate the mechanism of these effects, we determined the cellular localization of soluble epoxide hydrolase in human kidney by examining biopsies taken from patients with a variety of non-end-stage renal diseases, as well as those without known renal disease. Immunohistochemical staining of acetone-fixed kidney biopsy samples revealed that soluble epoxide hydrolase was preferentially expressed in the renal vasculature with relatively low levels in the surrounding tubules. Expression of soluble epoxide hydrolase was evident in renal arteries of varying diameter and was localized mostly in the smooth muscle layers of the arterial wall. Western blot analysis and functional assays confirmed the expression of soluble epoxide hydrolase in the human kidney. There were no obvious differences in soluble epoxide hydrolase expression between normal and diseased human kidney tissue in the samples examined. Our results indicate that soluble epoxide hydrolase is present in the human kidney, being preferentially expressed in the renal vasculature, and support an essential role for this enzyme in renal hemodynamic regulation and its potential utility as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Zhigang Yu
- Dept. of Biopharmaceutical Sciences, Univ. of California San Francisco, 513 Parnassus, Box 0446, San Francisco, CA 94143-0446, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Cytochrome P450s metabolize arachidonic acid to hydroxyeicosatetraenoic acids and epoxyeicosatrienoic acids. These eicosanoids are formed in a tissue and cell-specific manner and have numerous biological functions. Of major interest are the opposing actions of hydroxyeicosatetraenoic and epoxyeicosatrienoic acids within the vasculature. Regio- and stereoisomeric epoxyeicosatrienoic acids have potent vasodilatory properties while 20-hydroxyeicosatetraenoic acid is a potent vasoconstrictor. Both effects are mediated through actions on large-conductance Ca2+-activated K+ channels. Cytochrome P450-derived eicosanoids are also important in the regulation of ion transport, and have recently been shown to influence a number of fundamental biological processes including cellular proliferation, apoptosis, inflammation, and hemostasis. The formation of these functionally relevant eicosanoids is tightly controlled by the expression and activity of the cytochrome P450 epoxygenases and hydroxylases. In addition, soluble epoxide hydrolase catalyzes the hydrolysis of epoxyeicosatrienoic acids to dihydroxyeicosatrienoic acids, and the activity of this enzyme is a critical determinant of tissue epoxyeicosatrienoic and dihydroxyeicosatrienoic acid levels. The intracellular balance between epoxyeicosatrienoic, dihydroxyeicosatrienoic and hydroxyeicosatetraenoic acids influences the biological response to these eicosanoids and alterations in their levels have recently been associated with certain pathological conditions. The involvement of the cytochrome P450-derived eicosanoids in a wide array of biological functions and the observation that levels are altered in pathological conditions suggest that the enzymes involved in the formation and degradation of these fatty acids may be novel therapeutic targets.
Collapse
Affiliation(s)
- Deanna L Kroetz
- Department of Biopharmaceutical Sciences, School of Pharmacy, University of California, San Francisco, USA
| | | |
Collapse
|
50
|
Abstract
The control of mitochondrial beta-oxidation, including the delivery of acyl moieties from the plasma membrane to the mitochondrion, is reviewed. Control of beta-oxidation flux appears to be largely at the level of entry of acyl groups to mitochondria, but is also dependent on substrate supply. CPTI has much of the control of hepatic beta-oxidation flux, and probably exerts high control in intact muscle because of the high concentration of malonyl-CoA in vivo. beta-Oxidation flux can also be controlled by the redox state of NAD/NADH and ETF/ETFH(2). Control by [acetyl-CoA]/[CoASH] may also be significant, but it is probably via export of acyl groups by carnitine acylcarnitine translocase and CPT II rather than via accumulation of 3-ketoacyl-CoA esters. The sharing of control between CPTI and other enzymes allows for flexible regulation of metabolism and the ability to rapidly adapt beta-oxidation flux to differing requirements in different tissues.
Collapse
Affiliation(s)
- Simon Eaton
- Surgery Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|