1
|
Ashkar R, Khattib A, Musa S, Goldberg D, Khatib S. PON1 has palmitoyl-protein thioesterase (PPT) activity, and can affect the presence of SR-B1 on the endothelial cell membrane. Biofactors 2024; 50:608-618. [PMID: 38135490 DOI: 10.1002/biof.2029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
The high-density lipoprotein (HDL)-associated enzyme paraoxonase 1 (PON1) is expressed almost exclusively in the liver and is then transported by HDL to the peripheral tissues. The lipophilic nature of PON1 enables its easy exchange between the lipoprotein and cell membranes in a process that is dependent on the HDL receptor scavenger receptor class B, type 1 (SR-B1). In endothelial cells, PON1 binding to the cell membrane leads to its internalization by endocytosis and subsequent lysosomal degradation. PON1 is a "promiscuous" enzyme with unusually broad substrate specificity in vitro, but its actual function and substrate are still unknown. The enzyme requires a lipid environment and becomes completely inactive upon delipidation. However, when PON1 binds HDL, its active site faces the lipoprotein's core and is inaccessible to external substrates. Hence, the HDL-bound PON1 is inactive toward substrates outside the particle's lipid core and is rapidly degraded and becomes inactive upon internalization. Consequently, the enzyme is only active in the cell membrane during its transit from HDL to the cytoplasm. To assign a function to PON1, we investigated whether it is a palmitoyl-protein thioesterase (PPT) that can hydrolyze the palmitoyl moieties of membrane proteins involved in HDL and cholesterol transport, such as SR-B1, ABCA1, or their neighboring caveola proteins to facilitate the release of HDL or trigger its endocytosis. This study shows that PON1 can hydrolyze palmitoyl-cysteine thioester bonds in vitro, has direct or indirect PPT activity in vivo, and can significantly decrease the presence of SR-B1 in the endothelial membrane.
Collapse
Affiliation(s)
- Rasha Ashkar
- Laboratory of Natural Compounds and Analytical Chemistry, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel
- Tel-Hai College, Upper Galilee, Israel
| | - Ali Khattib
- Laboratory of Natural Compounds and Analytical Chemistry, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel
- The Rappaport Family Institute for Research in the Medical Sciences and Rambam Medical Center, Haifa, Israel
| | - Sanaa Musa
- Laboratory of Natural Compounds and Analytical Chemistry, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel
- Tel-Hai College, Upper Galilee, Israel
| | - Doron Goldberg
- Laboratory of Natural Compounds and Analytical Chemistry, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel
- Tel-Hai College, Upper Galilee, Israel
| | - Soliman Khatib
- Laboratory of Natural Compounds and Analytical Chemistry, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel
- Tel-Hai College, Upper Galilee, Israel
| |
Collapse
|
2
|
Elder SH, Ross MK, Nicaise AJ, Miller IN, Breland AN, Hood ARS. Development of in situ forming implants for controlled delivery of punicalagin. Int J Pharm 2024; 652:123842. [PMID: 38266943 PMCID: PMC10922986 DOI: 10.1016/j.ijpharm.2024.123842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Due to efficient drainage of the joint, the development of intra-articular depots for long-lasting drug release is a difficult challenge. Moreover, a disease-modifying osteoarthritis drug (DMOAD) that can effectively manage osteoarthritis has yet to be identified. The current study was undertaken to explore the potential of injectable, in situ forming implants to create depots that support the sustained release of punicalagin, a promising DMOAD. In vitro experiments demonstrated punicalagin's ability to suppress production of interleukin-1β and prostaglandin E2, confirming its chondroprotective properties. Regarding the entrapment of punicalagin, it was demonstrated by LC-MS/MS to be stable within PLGA in situ forming implants for several weeks and capable of inhibiting collagenase upon release. In vitro punicalagin release kinetics were tunable through variation of solvent, PLGA lactide:glycolide ratio, and polymer concentration, and an optimized formulation supported release for approximately 90 days. The injection force of this formulation steadily increased with plunger advancement and higher rates of advancement were associated with greater forces. Although the optimal formulation was highly cytotoxic to primary chondrocytes if cells were exposed immediately or shortly after implant formation, upwards of 70 % survival was achieved when the implants were first allowed to undergo a 24-72 h period of phase inversion prior to cell exposure. This study demonstrates a PLGA-based in situ forming implant for the controlled release of punicalagin. With modification to address cytotoxicity, such an implant may be suitable as an intra-articular therapy for OA.
Collapse
Affiliation(s)
- Steven H Elder
- Department of Agricultural & Biological Engineering, Mississippi State University, Starkville MS, United States.
| | - Matthew K Ross
- Department of Comparative Biomedical Sciences, Mississippi State University, Starkville MS, United States
| | - Ashleigh J Nicaise
- College of Veterinary Medicine, Mississippi State University, Starkville MS, United States
| | - Isaac N Miller
- Department of Agricultural & Biological Engineering, Mississippi State University, Starkville MS, United States
| | - Austen N Breland
- Department of Agricultural & Biological Engineering, Mississippi State University, Starkville MS, United States
| | - Ariory R S Hood
- Department of Agricultural & Biological Engineering, Mississippi State University, Starkville MS, United States
| |
Collapse
|
3
|
Phillips ME, Adekanye O, Borazjani A, Crow JA, Ross MK. CES1 Releases Oxylipins from Oxidized Triacylglycerol (oxTAG) and Regulates Macrophage oxTAG/TAG Accumulation and PGE 2/IL-1β Production. ACS Chem Biol 2023; 18:1564-1581. [PMID: 37348046 PMCID: PMC11131412 DOI: 10.1021/acschembio.3c00194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Triacylglycerols (TAGs) are storage forms of fat, primarily found in cytoplasmic lipid droplets in cells. TAGs are broken down to their component free fatty acids by lipolytic enzymes when fuel reserves are required. However, polyunsaturated fatty acid (PUFA)-containing TAGs are susceptible to nonenzymatic oxidation reactions, leading to the formation of oxylipins that are esterified to the glycerol backbone (termed oxTAGs). Human carboxylesterase 1 (CES1) is a member of the serine hydrolase superfamily and defined by its ability to catalyze the hydrolysis of carboxyl ester bonds in both toxicants and lipids. CES1 is a bona fide TAG hydrolase, but it is unclear which specific fatty acids are preferentially released during lipolysis. To better understand the biochemical function of CES1 in immune cells, such as macrophages, its substrate selectivity when it encounters oxidized PUFAs in TAG lipid droplets requires study. We sought to identify those esterified oxidized fatty acids liberated from oxTAGs by CES1 because their release can activate signaling pathways that enforce the development of lipid-driven inflammation. Gaining this knowledge will help fill data gaps that exist between CES1 and the lipid-sensing nuclear receptors, PPARγ and LXRα, which are important drivers of lipid metabolism and inflammation in macrophages. Oxidized forms of triarachidonoylglycerol (oxTAG20:4) or trilinoleoylglycerol (oxTAG18:2), which contain physiologically relevant levels of oxidized PUFAs (<5 mol %), were incubated with recombinant CES1 to release oxylipins and nonoxidized arachidonic acid (AA) or linoleic acid (LA). CES1 hydrolyzed each oxTAG, yielding regioisomers of hydroxyeicosatetraenoic acids (5-, 11-, 12-, and 15-HETE) and hydroxyoctadecadienoic acids (9- and 13-HODE). Furthermore, human THP-1 macrophages with deficient CES1 levels exhibited a differential response to extracellular stimuli (oxTAGs, lipopolysaccharide, and 15-HETE) as compared to those with normal CES1 levels, including enhanced oxTAG/TAG lipid accumulation and altered cytokine and prostaglandin E2 profiles. This study suggests that CES1 can metabolize oxTAG lipids to release oxylipins and PUFAs, and it further specifies the substrate selectivity of CES1 in the metabolism of bioactive lipid mediators. We suggest that the accumulation of oxTAGs/TAGs within lipid droplets that arise due to CES1 deficiency enforces an inflammatory phenotype in macrophages.
Collapse
Affiliation(s)
- Maggie E Phillips
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi 39762, United States
| | - Oluwabori Adekanye
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi 39762, United States
| | - Abdolsamad Borazjani
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi 39762, United States
| | - J Allen Crow
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi 39762, United States
| | - Matthew K Ross
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
4
|
Szafran BN, Nichols J, Nicaise A, Borazjani A, Carr RL, Wilson JR, Ross MK, Kaplan BLF. Cnr1 -/- has minimal impact on chlorpyrifos-mediated effects in the mouse endocannabinoid system, but it does alter lipopolysaccharide-induced cytokine levels in splenocytes. Chem Biol Interact 2023; 375:110425. [PMID: 36858108 PMCID: PMC10150269 DOI: 10.1016/j.cbi.2023.110425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023]
Abstract
Chlorpyrifos (CPF) is an organophosphate pesticide that can inhibit endocannabinoid (eCB) metabolizing enzymes in animal models at levels that do not significantly alter acetylcholinesterase (AChE) in the central nervous system (CNS). Previous studies indicated that repeated low-level CPF exposure in developing rats increased the levels of eCBs in the brain. Because eCBs play a role in immune homeostasis through their engagement with cannabinoid receptors, we investigated the role of cannabinoid receptor 1 (CB1, encoded by the Cnr1 gene) on the CPF-mediated effects in the spleen and lung of neonatal and adult female mice. We treated neonatal and adult female Cnr1-/- mice with 2.5 mg/kg oral CPF or vehicle for 7 days. Tissues were harvested 4 h after the last CPF dose to evaluate eCB metabolic enzyme activity, levels of eCBs, and tissue immunophenotype. There were a small number of genotype-dependent alterations noted in the endpoints following CPF treatment that were specific to age and tissue type, and differences in eCB metabolism caused by CPF treatment did not correlate to changes in eCB levels. To explore the role of CB1 in CPF-mediated effects on immune endpoints, in vitro experiments were performed with WT murine splenocytes exposed to chlorpyrifos oxon (CPO; oxon metabolite of CPF) and challenged with lipopolysaccharide (LPS). While CPO did not alter LPS-induced pro-inflammatory cytokine levels, inactivation of CB1 by the antagonist SR141716A augmented LPS-induced IFN-γ levels. Additional experiments with WT and Cnr1-/- murine splenocytes confirmed a role for CB1 in altering the production of LPS-induced pro-inflammatory cytokine levels. We conclude that CPF-mediated effects on the eCB system are not strongly dependent on CB1, although abrogation of CB1 does alter LPS-induced cytokine levels in splenocytes.
Collapse
Affiliation(s)
- Brittany N Szafran
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, MS, USA
| | - James Nichols
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, MS, USA
| | - Ashleigh Nicaise
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, MS, USA
| | - Abdolsamad Borazjani
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, MS, USA
| | - Russell L Carr
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, MS, USA
| | - Juliet R Wilson
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, MS, USA
| | - Matthew K Ross
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, MS, USA
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, MS, USA.
| |
Collapse
|
5
|
Szafran B, Borazjani A, Scheaffer HL, Crow JA, McBride AM, Adekanye O, Wonnacott CB, Lehner R, Kaplan BLF, Ross MK. Carboxylesterase 1d Inactivation Augments Lung Inflammation in Mice. ACS Pharmacol Transl Sci 2022; 5:919-931. [PMID: 36268116 PMCID: PMC9578131 DOI: 10.1021/acsptsci.2c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 11/28/2022]
Abstract
Carboxylesterases are members of the serine hydrolase superfamily and metabolize drugs, pesticides, and lipids. Previous research showed that inhibition of carboxylesterase 1 (CES1) in human macrophages altered the immunomodulatory effects of lipid mediators called prostaglandin glyceryl esters, which are produced by cyclooxygenase-catalyzed oxygenation of the endocannabinoid 2-arachidonoylglycerol (2-AG). Ces1d - the mouse ortholog of human CES1 - is the most abundant Ces isoform in murine lung tissues and alveolar macrophages and a major target of organophosphate poisons. Monoacylglycerol lipase (Magl) is also expressed in murine lung and is the main enzyme responsible for 2-AG catabolism. Several metabolic benefits are observed in Ces1d-/- mice fed a high-fat diet; thus, we wondered whether pharmacological and genetic inactivation of Ces1d in vivo might also ameliorate the acute inflammatory response to lipopolysaccharide (LPS). C57BL/6 mice were treated with WWL229 (Ces1d inhibitor) or JZL184 (Magl inhibitor), followed 30 min later by either LPS or saline. Wild-type (WT) and Ces1d-/- mice were also administered LPS to determine the effect of Ces1d knockout. Mice were sacrificed at 6 and 24 h, and cytokines were assessed in serum, lung, liver, and adipose tissues. Lipid mediators were quantified in lung tissues, while activity-based protein profiling and enzyme assays determined the extent of lung serine hydrolase inactivation by the inhibitors. WWL229 was shown to augment LPS-induced lung inflammation in a female-specific manner, as measured by enhanced neutrophil infiltration and Il1b mRNA. The marked Ces inhibition in female lung by 4 h after drug treatment might explain this sex difference, although the degree of Ces inhibition in female and male lungs was similar at 6 h. In addition, induction of lung Il6 mRNA and prostaglandin E2 by LPS was more pronounced in Ces1d-/- mice than in WT mice. Thus, WWL229 inhibited lung Ces1d activity and augmented the female lung innate immune response, an effect observed in part in Ces1d-/- mice and Ces1d/CES1-deficient murine and human macrophages. In contrast, JZL184 attenuated LPS-induced Il1b and Il6 mRNA levels in female lung, suggesting that Ces1d and Magl have opposing effects. Mapping the immunomodulatory molecules/pathways that are regulated by Ces1d in the context of lung inflammation will require further research.
Collapse
Affiliation(s)
- Brittany
N. Szafran
- Department
of Comparative Biomedical Sciences, Center for Environmental Health
Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi39762, United States
| | - Abdolsamad Borazjani
- Department
of Comparative Biomedical Sciences, Center for Environmental Health
Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi39762, United States
| | - Hannah L. Scheaffer
- Department
of Biochemistry, Molecular Biology, Entomology, and Plant Pathology,
College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, Mississippi39762, United States
| | - J. Allen Crow
- Department
of Comparative Biomedical Sciences, Center for Environmental Health
Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi39762, United States
| | - Ann Marie McBride
- Department
of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi39762, United States
| | - Oluwabori Adekanye
- Department
of Comparative Biomedical Sciences, Center for Environmental Health
Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi39762, United States
| | - Caitlin B. Wonnacott
- Department
of Comparative Biomedical Sciences, Center for Environmental Health
Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi39762, United States
| | - Richard Lehner
- Departments
of Cell Biology and Pediatrics, Group on Molecular & Cell Biology
of Lipids, University of Alberta, Edmonton, ABT6G 2R3, Canada
| | - Barbara L. F. Kaplan
- Department
of Comparative Biomedical Sciences, Center for Environmental Health
Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi39762, United States
| | - Matthew K. Ross
- Department
of Comparative Biomedical Sciences, Center for Environmental Health
Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi39762, United States
| |
Collapse
|
6
|
Simard M, Archambault AS, Lavoie JPC, Dumais É, Di Marzo V, Flamand N. Biosynthesis and metabolism of endocannabinoids and their congeners from the monoacylglycerol andN-acyl-ethanolamine families. Biochem Pharmacol 2022; 205:115261. [PMID: 36152677 DOI: 10.1016/j.bcp.2022.115261] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/02/2022]
Abstract
The endocannabinoids 2-arachidonoyl-glycerol (2-AG) and N-arachidonoyl-ethanolamine (AEA) are eicosanoids implicated in numerous physiological processes like appetite, adipogenesis, inflammatory pain and inflammation. They mediate most of their physiological effect by activating the cannabinoid (CB) receptors 1 and 2. Other than directly binding to the CB receptors, 2-AG and AEA are also metabolized by most eicosanoid biosynthetic enzymes, yielding many metabolites that are part of the oxyendocannabinoidome. Some of these metabolites have been found in vivo, have the ability to modulate specific receptors and thus potentially influence physiological processes. In this review, we discuss the biosynthesis and metabolism of 2-AG and AEA, as well as their congeners from the monoacyl-glycerol and N-acyl-ethanolamine families, with a special focus on the metabolism by oxygenases involved in arachidonic acid metabolism. We highlight the knowledge gaps in our understanding of the regulation and roles the oxyendocannabinoidome mediators.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Anne-Sophie Archambault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada; Present address: Department of Pathology and Laboratory Medicine, University of British Columbia / BC Children's Hospital Research Institute, Vancouver, British Colombia, Canada
| | - Jean-Philippe C Lavoie
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Élizabeth Dumais
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Vincenzo Di Marzo
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche (CNR), 80078 Pozzuoli, Italy; Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, École de Nutrition, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC G1V 0A6, Canada; Joint International Unit between the Consiglio Nazionale delle Ricerche (Italy) and Université Laval (Canada) on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu)
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada.
| |
Collapse
|
7
|
Zhang D, Lu M, Chen C, Xu Y, Peng T. Fatty Acyl Sulfonyl Fluoride as an Activity-Based Probe for Profiling Fatty Acid-Associated Proteins in Living Cells. Chembiochem 2021; 23:e202100628. [PMID: 34918441 DOI: 10.1002/cbic.202100628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/16/2021] [Indexed: 11/09/2022]
Abstract
Fatty acids play fundamental structural, metabolic, functional, and signaling roles in all biological systems. Altered fatty acid levels and metabolism have been associated with many pathological conditions. Chemical probes have greatly facilitated biological studies on fatty acids. Herein, we report the development and characterization of an alkynyl-functionalized long-chain fatty acid-based sulfonyl fluoride probe for covalent labelling, enrichment, and identification of fatty acid-associated proteins in living cells. Our quantitative chemical proteomics show that this sulfonyl fluoride probe targets diverse classes of fatty acid-associated proteins including many metabolic serine hydrolases that are known to be involved in fatty acid metabolism and modification. We further validate that the probe covalently modifies the catalytically or functionally essential serine or tyrosine residues of its target proteins and enables evaluation of their inhibitors. The sulfonyl fluoride-based chemical probe thus represents a new tool for profiling the expression and activity of fatty acid-associated proteins in living cells.
Collapse
Affiliation(s)
- Dong Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Minghao Lu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Chengjie Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yaxin Xu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| |
Collapse
|
8
|
Archambault AS, Tinto F, Dumais É, Rakotoarivelo V, Kostrzewa M, Plante PL, Martin C, Simard M, Silvestri C, Pouliot R, Laviolette M, Boulet LP, Vitale RM, Ligresti A, Di Marzo V, Flamand N. Biosynthesis of the Novel Endogenous 15-Lipoxygenase Metabolites N-13-Hydroxy-octodecadienoyl-ethanolamine and 13-Hydroxy-octodecadienoyl-glycerol by Human Neutrophils and Eosinophils. Cells 2021; 10:2322. [PMID: 34571971 PMCID: PMC8470279 DOI: 10.3390/cells10092322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022] Open
Abstract
The endocannabinoids 2-arachidonoyl-glycerol and N-arachidonoyl-ethanolamine are lipids regulating many physiological processes, notably inflammation. Endocannabinoid hydrolysis inhibitors are now being investigated as potential anti-inflammatory agents. In addition to 2-arachidonoyl-glycerol and N-arachidonoyl-ethanolamine, the endocannabinoidome also includes other monoacylglycerols and N-acyl-ethanolamines such as 1-linoleoyl-glycerol (1-LG) and N-linoleoyl-ethanolamine (LEA). By increasing monoacylglycerols and/or N-acyl-ethanolamine levels, endocannabinoid hydrolysis inhibitors will likely increase the levels of their metabolites. Herein, we investigated whether 1-LG and LEA were substrates for the 15-lipoxygenase pathway, given that both possess a 1Z,4Z-pentadiene motif, near their omega end. We thus assessed how human eosinophils and neutrophils biosynthesized the 15-lipoxygenase metabolites of 1-LG and LEA. Linoleic acid (LA), a well-documented substrate of 15-lipoxygenases, was used as positive control. N-13-hydroxy-octodecadienoyl-ethanolamine (13-HODE-EA) and 13-hydroxy-octodecadienoyl-glycerol (13-HODE-G), the 15-lipoxygenase metabolites of LEA and 1-LG, were synthesized using Novozym 435 and soybean lipoxygenase. Eosinophils, which express the 15-lipoxygenase-1, metabolized LA, 1-LG, and LEA into their 13-hydroxy derivatives. This was almost complete after five minutes. Substrate preference of eosinophils was LA > LEA > 1-LG in presence of 13-HODE-G hydrolysis inhibition with methyl-arachidonoyl-fluorophosphonate. Human neutrophils also metabolized LA, 1-LG, and LEA into their 13-hydroxy derivatives. This was maximal after 15-30 s. Substrate preference was LA ≫ 1-LG > LEA. Importantly, 13-HODE-G was found in humans and mouse tissue samples. In conclusion, our data show that human eosinophils and neutrophils metabolize 1-LG and LEA into the novel endogenous 15-lipoxygenase metabolites 13-HODE-G and 13-HODE-EA. The full biological importance of 13-HODE-G and 13-HODE-EA remains to be explored.
Collapse
Affiliation(s)
- Anne-Sophie Archambault
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G5, Canada; (A.-S.A.); (F.T.); (É.D.); (V.R.); (C.M.); (M.S.); (C.S.); (M.L.); (L.-P.B.); (V.D.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Francesco Tinto
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G5, Canada; (A.-S.A.); (F.T.); (É.D.); (V.R.); (C.M.); (M.S.); (C.S.); (M.L.); (L.-P.B.); (V.D.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Élizabeth Dumais
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G5, Canada; (A.-S.A.); (F.T.); (É.D.); (V.R.); (C.M.); (M.S.); (C.S.); (M.L.); (L.-P.B.); (V.D.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Volatiana Rakotoarivelo
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G5, Canada; (A.-S.A.); (F.T.); (É.D.); (V.R.); (C.M.); (M.S.); (C.S.); (M.L.); (L.-P.B.); (V.D.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Magdalena Kostrzewa
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche (CNR), 80078 Pozzuoli, Italy; (M.K.); (R.M.V.); (A.L.)
| | - Pier-Luc Plante
- Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, École de Nutrition, Faculté des Sciences de L’agriculture et de L’alimentation, Université Laval, Québec City, QC G1V 0A6, Canada;
| | - Cyril Martin
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G5, Canada; (A.-S.A.); (F.T.); (É.D.); (V.R.); (C.M.); (M.S.); (C.S.); (M.L.); (L.-P.B.); (V.D.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Mélissa Simard
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G5, Canada; (A.-S.A.); (F.T.); (É.D.); (V.R.); (C.M.); (M.S.); (C.S.); (M.L.); (L.-P.B.); (V.D.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
- Faculté de Pharmacie de l’Université Laval and Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC G1V 0A6, Canada;
| | - Cristoforo Silvestri
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G5, Canada; (A.-S.A.); (F.T.); (É.D.); (V.R.); (C.M.); (M.S.); (C.S.); (M.L.); (L.-P.B.); (V.D.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Roxane Pouliot
- Faculté de Pharmacie de l’Université Laval and Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC G1V 0A6, Canada;
| | - Michel Laviolette
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G5, Canada; (A.-S.A.); (F.T.); (É.D.); (V.R.); (C.M.); (M.S.); (C.S.); (M.L.); (L.-P.B.); (V.D.)
| | - Louis-Philippe Boulet
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G5, Canada; (A.-S.A.); (F.T.); (É.D.); (V.R.); (C.M.); (M.S.); (C.S.); (M.L.); (L.-P.B.); (V.D.)
| | - Rosa Maria Vitale
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche (CNR), 80078 Pozzuoli, Italy; (M.K.); (R.M.V.); (A.L.)
| | - Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche (CNR), 80078 Pozzuoli, Italy; (M.K.); (R.M.V.); (A.L.)
| | - Vincenzo Di Marzo
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G5, Canada; (A.-S.A.); (F.T.); (É.D.); (V.R.); (C.M.); (M.S.); (C.S.); (M.L.); (L.-P.B.); (V.D.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche (CNR), 80078 Pozzuoli, Italy; (M.K.); (R.M.V.); (A.L.)
- Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, École de Nutrition, Faculté des Sciences de L’agriculture et de L’alimentation, Université Laval, Québec City, QC G1V 0A6, Canada;
- Joint International Unit between the Consiglio Nazionale delle Ricerche (CNR), 80078 Pozzuoli, Italy
- Canada on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Nicolas Flamand
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G5, Canada; (A.-S.A.); (F.T.); (É.D.); (V.R.); (C.M.); (M.S.); (C.S.); (M.L.); (L.-P.B.); (V.D.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
9
|
Ettelaie C, Featherby S, Rondon AMR, Greenman J, Versteeg HH, Maraveyas A. De-Palmitoylation of Tissue Factor Regulates Its Activity, Phosphorylation and Cellular Functions. Cancers (Basel) 2021; 13:cancers13153837. [PMID: 34359738 PMCID: PMC8345185 DOI: 10.3390/cancers13153837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, the role of de-palmitoylation of tissue factor (TF) in the decryption of its activity was explored. TF-tGFP constructs were prepared by mutagenesis-substitution at Cys245 to prevent or mimic palmitolyation. Additionally, to reduce TF de-palmitoylation, the expression of palmitoyl-protein thioesterases (PPT) was suppressed. Other TF mutants were prepared with altered flexibility, hydrophobicity or length of the transmembrane domain. The outcome of these alterations on fXa-generation, fVIIa binding, Ser253 phosphorylation and TF-microvesicle release were assessed in endothelial cells, and the influence on endothelial and MCF-7 cell proliferation and apoptosis was analysed. Preventing TF palmitoylation (TFSer245-tGFP), increasing the hydrophobicity (TFPhe241-tGFP) or lengthening (TFLongTM-tGFP) of the transmembrane domain enhanced fXa-generation in resting cells compared to cells expressing TFWt-tGFP, but fXa-generation was not further increased following PAR2 activation. Extending the available length of the transmembrane domain enhanced the TF-tGFP release within microvesicles and Ser253 phosphorylation and increased cell proliferation. Moreover, prevention of PKCα-mediated Ser253 phosphorylation with Gö6976 did not preclude fXa-generation. Conversely, reducing the hydrophobicity (TFSer242-tGFP), shortening (TFShortTM-tGFP) or reducing the flexibility (TFVal225-tGFP) of the transmembrane domain suppressed fXa-generation, fVIIa-HRP binding and Ser253 phosphorylation following PAR2 activation. PPT knock-down or mimicking palmitoylation (TFPhe245-tGFP) reduced fXa-generation without affecting fVIIa binding. This study has for the first time shown that TF procoagulant activity is regulated through de-palmitoylation, which alters the orientation of its transmembrane domain and is independent of TF phosphorylation. However, Ser253 phosphorylation is facilitated by changes in the orientation of the transmembrane domain and can induce TF-cellular signalling that influences cellular proliferation/apoptosis.
Collapse
Affiliation(s)
- Camille Ettelaie
- Biomedical Section, University of Hull, Cottingham Road, Hull HU6 7RX, UK; (S.F.); (J.G.)
- Correspondence: ; Tel.: +44-(0)1482-465528; Fax: +44-(0)1482-465458
| | - Sophie Featherby
- Biomedical Section, University of Hull, Cottingham Road, Hull HU6 7RX, UK; (S.F.); (J.G.)
| | - Araci M. R. Rondon
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.M.R.R.); (H.H.V.)
| | - John Greenman
- Biomedical Section, University of Hull, Cottingham Road, Hull HU6 7RX, UK; (S.F.); (J.G.)
| | - Henri H. Versteeg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.M.R.R.); (H.H.V.)
| | - Anthony Maraveyas
- Division of Cancer-Hull York Medical School, University of Hull, Cottingham Road, Hull HU6 7RX, UK;
| |
Collapse
|
10
|
Zhou Q, Yan B, Sun W, Chen Q, Xiao Q, Xiao Y, Wang X, Shi D. Pig Liver Esterases Hydrolyze Endocannabinoids and Promote Inflammatory Response. Front Immunol 2021; 12:670427. [PMID: 34079552 PMCID: PMC8165269 DOI: 10.3389/fimmu.2021.670427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Endocannabinoids are endogenous ligands of cannabinoid receptors and activation of these receptors has strong physiological and pathological significance. Structurally, endocannabinoids are esters (e.g., 2-arachidonoylglycerol, 2-AG) or amides (e.g., N-arachidonoylethanolamine, AEA). Hydrolysis of these compounds yields arachidonic acid (AA), a major precursor of proinflammatory mediators such as prostaglandin E2. Carboxylesterases are known to hydrolyze esters and amides with high efficiency. CES1, a human carboxylesterase, has been shown to hydrolyze 2-AG, and shares a high sequence identity with pig carboxylesterases: PLE1 and PLE6 (pig liver esterase). The present study was designed to test the hypothesis that PLE1 and PLE6 hydrolyze endocannabinoids and promote inflammatory response. Consistent with the hypothesis, purified PLE1 and PLE6 efficaciously hydrolyzed 2-AG and AEA. PLE6 was 40-fold and 3-fold as active as PLE1 towards 2-AG and AEA, respectively. In addition, both PLE1 and PLE6 were highly sensitive to bis(4-nitrophenyl) phosphate (BNPP), an aryl phosphodiester known to predominately inhibit carboxylesterases. Based on the study with BNPP, PLEs contributed to the hydrolysis of 2-AG by 53.4 to 88.4% among various organs and cells. Critically, exogenous addition or transfection of PLE6 increased the expression and secretion of proinflammatory cytokines in response to the immunostimulant lipopolysaccharide (LPS). This increase was recapitulated in cocultured alveolar macrophages and PLE6 transfected cells in transwells. Finally, BNPP reduced inflammation trigged by LPS accompanied by reduced formation of AA and proinflammatory mediators. These findings define an innovative connection: PLE-endocannabinoid-inflammation. This mechanistic connection signifies critical roles of carboxylesterases in pathophysiological processes related to the metabolism of endocannabinoids.
Collapse
Affiliation(s)
- Qiongqiong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bingfang Yan
- James L. Winkle College of Pharmacy University of Cincinnati, Cincinnati, OH, United States
| | - Wanying Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qi Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiling Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Deshi Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Szafran BN, Borazjani A, Seay CN, Carr RL, Lehner R, Kaplan BLF, Ross MK. Effects of Chlorpyrifos on Serine Hydrolase Activities, Lipid Mediators, and Immune Responses in Lungs of Neonatal and Adult Mice. Chem Res Toxicol 2021; 34:1556-1571. [PMID: 33900070 DOI: 10.1021/acs.chemrestox.0c00488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chlorpyrifos (CPF) is an organophosphate (OP) pesticide that causes acute toxicity by inhibiting acetylcholinesterase (AChE) in the nervous system. However, endocannabinoid (eCB) metabolizing enzymes in brain of neonatal rats are more sensitive than AChE to inhibition by CPF, leading to increased levels of eCBs. Because eCBs are immunomodulatory molecules, we investigated the association between eCB metabolism, lipid mediators, and immune function in adult and neonatal mice exposed to CPF. We focused on lung effects because epidemiologic studies have linked pesticide exposures to respiratory diseases. CPF was hypothesized to disrupt lung eCB metabolism and alter lung immune responses to lipopolysaccharide (LPS), and these effects would be more pronounced in neonatal mice due to an immature immune system. We first assessed the biochemical effects of CPF in adult mice (≥8 weeks old) and neonatal mice after administering CPF (2.5 mg/kg, oral) or vehicle for 7 days. Tissues were harvested 4 h after the last CPF treatment and lung microsomes from both age groups demonstrated CPF-dependent inhibition of carboxylesterases (Ces), a family of xenobiotic and lipid metabolizing enzymes, whereas AChE activity was inhibited in adult lungs only. Activity-based protein profiling (ABPP)-mass spectrometry of lung microsomes identified 31 and 32 individual serine hydrolases in neonatal lung and adult lung, respectively. Of these, Ces1c/Ces1d/Ces1b isoforms were partially inactivated by CPF in neonatal lung, whereas Ces1c/Ces1b and Ces1c/BChE were partially inactivated in adult female and male lungs, respectively, suggesting age- and sex-related differences in their sensitivity to CPF. Monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) activities in lung were unaffected by CPF. When LPS (1.25 mg/kg, i.p.) was administered following the 7-day CPF dosing period, little to no differences in lung immune responses (cytokines and immunophenotyping) were noted between the CPF and vehicle groups. However, a CPF-dependent increase in the amounts of dendritic cells and certain lipid mediators in female lung following LPS challenge was observed. Experiments in neonatal and adult Ces1d-/- mice yielded similar results as wild type mice (WT) following CPF treatment, except that CPF augmented LPS-induced Tnfa mRNA in adult Ces1d-/- mouse lungs. This effect was associated with decreased expression of Ces1c mRNA in Ces1d-/- mice versus WT mice in the setting of LPS exposure. We conclude that CPF exposure inactivates several Ces isoforms in mouse lung and, during an inflammatory response, increases certain lipid mediators in a female-dependent manner. However, it did not cause widespread altered lung immune effects in response to an LPS challenge.
Collapse
Affiliation(s)
- Brittany N Szafran
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Abdolsamad Borazjani
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Caitlin N Seay
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Russell L Carr
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Richard Lehner
- Departments of Cell Biology and Pediatrics, Group on Molecular & Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Barbara L F Kaplan
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Matthew K Ross
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
12
|
Scheaffer H, Borazjani A, Szafran BN, Ross MK. Inactivation of CES1 Blocks Prostaglandin D 2 Glyceryl Ester Catabolism in Monocytes/Macrophages and Enhances Its Anti-inflammatory Effects, Whereas the Pro-inflammatory Effects of Prostaglandin E 2 Glyceryl Ester Are Attenuated. ACS OMEGA 2020; 5:29177-29188. [PMID: 33225149 PMCID: PMC7675540 DOI: 10.1021/acsomega.0c03961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/19/2020] [Indexed: 05/04/2023]
Abstract
Human monocytic cells in blood have important roles in host defense and express the enzyme carboxylesterase 1 (CES1). This metabolic serine hydrolase plays a critical role in the metabolism of many molecules, including lipid mediators called prostaglandin glyceryl esters (PG-Gs), which are formed during cyclooxygenase-mediated oxygenation of the endocannabinoid 2-arachidonoylglycerol. Some PG-Gs have been shown to exhibit anti-inflammatory effects; however, they are unstable compounds, and their hydrolytic breakdown generates pro-inflammatory prostaglandins. We hypothesized that by blocking the ability of CES1 to hydrolyze PG-Gs in monocytes/macrophages, the beneficial effects of anti-inflammatory prostaglandin D2-glyceryl ester (PGD2-G) could be augmented. The goals of this study were to determine whether PGD2-G is catabolized by CES1, evaluate the degree to which this metabolism is blocked by small-molecule inhibitors, and assess the immunomodulatory effects of PGD2-G in macrophages. A human monocytic cell line (THP-1 cells) was pretreated with increasing concentrations of known small-molecule inhibitors that block CES1 activity [chlorpyrifos oxon (CPO), WWL229, or WWL113], followed by incubation with PGD2-G (10 μM). Organic solvent extracts of the treated cells were analyzed by liquid chromatography with tandem mass spectrometry to assess levels of the hydrolysis product PGD2. Further, THP-1 monocytes with normal CES1 expression (control cells) and "knocked-down" CES1 expression (CES1KD cells) were employed to confirm CES1's role in PGD2-G catabolism. We found that CES1 has a prominent role in PGD2-G hydrolysis in this cell line, accounting for about 50% of its hydrolytic metabolism, and that PGD2-G could be stabilized by the inclusion of CES1 inhibitors. The inhibitor potency followed the rank order: CPO > WWL113 > WWL229. THP-1 macrophages co-treated with WWL113 and PGD2-G prior to stimulation with lipopolysaccharide exhibited a more pronounced attenuation of pro-inflammatory cytokine levels (interleukin-6 and TNFα) than by PGD2-G treatment alone. In contrast, prostaglandin E2-glyceryl ester (PGE2-G) had opposite effects compared to those of PGD2-G, which appeared to be dependent on the hydrolysis of PGE2-G to PGE2. These results suggest that the anti-inflammatory effects induced by PGD2-G can be further augmented by inactivating CES1 activity with specific small-molecule inhibitors, while pro-inflammatory effects of PGE2-G are attenuated. Furthermore, PGD2-G (and/or its downstream metabolites) was shown to activate the lipid-sensing receptor PPARγ, resulting in altered "alternative macrophage activation" response to the Th2 cytokine interleukin-4. These findings suggest that inhibition of CES1 and other enzymes that regulate the levels of pro-resolving mediators such as PGD2-G in specific cellular niches might be a novel anti-inflammatory approach.
Collapse
Affiliation(s)
- Hannah
L. Scheaffer
- Department
of Biochemistry, Molecular Biology, Entomology, & Plant Pathology,
College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Abdolsamad Borazjani
- Center
for Environmental Health Sciences, Department of Comparative Biomedical
Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Brittany N. Szafran
- Center
for Environmental Health Sciences, Department of Comparative Biomedical
Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Matthew K. Ross
- Center
for Environmental Health Sciences, Department of Comparative Biomedical
Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
13
|
Szafran BN, Pinkston R, Perveen Z, Ross MK, Morgan T, Paulsen DB, Penn AL, Kaplan BLF, Noël A. Electronic-Cigarette Vehicles and Flavoring Affect Lung Function and Immune Responses in a Murine Model. Int J Mol Sci 2020; 21:E6022. [PMID: 32825651 PMCID: PMC7504509 DOI: 10.3390/ijms21176022] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
The use of electronic nicotine delivery systems (ENDS), also known as electronic-cigarettes (e-cigs), has raised serious public health concerns, especially in light of the 2019 outbreak of e-cig or vaping product use-associated acute lung injury (EVALI). While these cases have mostly been linked to ENDS that contain vitamin E acetate, there is limited research that has focused on the chronic pulmonary effects of the delivery vehicles (i.e., without nicotine and flavoring). Thus, we investigated lung function and immune responses in a mouse model following exposure to the nearly ubiquitous e-cig delivery vehicles, vegetable glycerin (VG) and propylene glycol (PG), used with a specific 70%/30% ratio, with or without vanilla flavoring. We hypothesized that mice exposed sub-acutely to these e-cig aerosols would exhibit lung inflammation and altered lung function. Adult female C57BL/6 mice (n = 11-12 per group) were exposed to filtered air, 70%/30% VG/PG, or 70%/30% VG/PG with a French vanilla flavoring for 2 h a day for 6 weeks. Prior to sacrifice, lung function was assessed. At sacrifice, broncho-alveolar lavage fluid and lung tissue were collected for lipid mediator analysis, flow cytometry, histopathology, and gene expression analyses. Exposures to VG/PG + vanilla e-cig aerosol increased lung tidal and minute volumes and tissue damping. Immunophenotyping of lung immune cells revealed an increased number of dendritic cells, CD4+ T cells, and CD19+ B cells in the VG/PG-exposed group compared to air, irrespective of the presence of vanilla flavoring. Quantification of bioactive lung lipids demonstrated a >3-fold increase of 2-arachidonoylglycerol (2-AG), an anti-inflammatory mediator, and a 2-fold increase of 12-hydroxyeicosatetraenoic acid (12-HETE), another inflammatory mediator, following VG/PG exposure, with or without vanilla flavoring. This suggests that e-cig aerosol vehicles may affect immunoregulatory molecules. We also found that the two e-cig aerosols dysregulated the expression of lung genes. Ingenuity Pathway Analysis revealed that the gene networks that are dysregulated by the VG/PG e-cig aerosol are associated with metabolism of cellular proteins and lipids. Overall, our findings demonstrate that VG and PG, the main constituents of e-liquid formulations, when aerosolized through an e-cig device, are not harmless to the lungs, since they disrupt immune homeostasis.
Collapse
Affiliation(s)
- Brittany N. Szafran
- Center for Environmental Health Sciences, Department of Basic Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS 39762, USA; (B.N.S.); (M.K.R.); (B.L.F.K.)
| | - Rakeysha Pinkston
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (R.P.); (Z.P.); (A.L.P.)
- Department of Environmental Toxicology, Southern University, Baton Rouge, LA 70803, USA
| | - Zakia Perveen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (R.P.); (Z.P.); (A.L.P.)
| | - Matthew K. Ross
- Center for Environmental Health Sciences, Department of Basic Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS 39762, USA; (B.N.S.); (M.K.R.); (B.L.F.K.)
| | - Timothy Morgan
- Department of Pathobiology and Population Medicine, Mississippi State University College of Veterinary Medicine, Mississippi State, MS 39762, USA;
| | - Daniel B. Paulsen
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Arthur L. Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (R.P.); (Z.P.); (A.L.P.)
| | - Barbara L. F. Kaplan
- Center for Environmental Health Sciences, Department of Basic Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS 39762, USA; (B.N.S.); (M.K.R.); (B.L.F.K.)
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (R.P.); (Z.P.); (A.L.P.)
| |
Collapse
|
14
|
An atlas of the catalytically active liver and spleen kinases in chicken identified by chemoproteomics. J Proteomics 2020; 225:103850. [PMID: 32502695 DOI: 10.1016/j.jprot.2020.103850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022]
Abstract
Phosphorylation is a post-translational protein modification regulating most known cellular processes. While protein kinases constitute a large family of highly conserved enzymes, identification of active kinases is challenging due to a low abundance of some of these signaling molecules. Although chicken is the first agricultural animal to have a sequenced genome, annotation of the kinome, i.e., a complement of all protein kinases in the genome is limited. We used chemical probes consisting of ATP and ADP derivatives binding to specific lysine (Lys) residues within the ATP-binding pocket of kinases, combined with proteomics, to identify 267 peptides labeled with the ATP and ADP acyl derivatives and 188 corresponding chicken kinases in chicken spleen and liver. Our description of active chicken kinases and ATP binding sites will support future studies focused on identifying the role of this important class of enzymes in chicken health and disease. SIGNIFICANCE: Advances made in understanding chicken enzymes are critical for the improved knowledge of the regulatory pathways controlling physiological processes in chicken. Since protein phosphorylation controls multiple aspects of cell fate, it is often linked to pathological conditions, and understanding of the kinase expression in chicken is essential for future therapeutic approaches. We coupled proteomics and labeling with active-site probes binding to Lys residues within the ATP-binding pocket of kinases to identify 188 kinases and corresponding 267 peptides labeled with the ATP and ADP acyl derivatives in chicken spleen and liver. Results of the present study describing catalytically active kinases is a starting point for chemoproteomic-based interrogation of kinases in chicken exposed to different conditions. Kinases identified in this study are available through the Chickspress genome browser that has previously published mRNA, miRNA, and shotgun proteomics data.
Collapse
|
15
|
Hesabi N, Ebrahimi A. The electrochemical properties and PIM1 kinase enzyme inhibition of some 2-(hydroxy phenyl amino) naphthalene-1,4-dione derivatives. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Manca C, Boubertakh B, Leblanc N, Deschênes T, Lacroix S, Martin C, Houde A, Veilleux A, Flamand N, Muccioli GG, Raymond F, Cani PD, Di Marzo V, Silvestri C. Germ-free mice exhibit profound gut microbiota-dependent alterations of intestinal endocannabinoidome signaling. J Lipid Res 2020; 61:70-85. [PMID: 31690638 PMCID: PMC6939599 DOI: 10.1194/jlr.ra119000424] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/26/2019] [Indexed: 01/10/2023] Open
Abstract
The gut microbiota is a unique ecosystem of microorganisms interacting with the host through several biochemical mechanisms. The endocannabinoidome (eCBome), a complex signaling system including the endocannabinoid system, approximately 50 receptors and metabolic enzymes, and more than 20 lipid mediators with important physiopathologic functions, modulates gastrointestinal tract function and may mediate host cell-microbe communications there. Germ-free (GF) mice, which lack an intestinal microbiome and so differ drastically from conventionally raised (CR) mice, offer a unique opportunity to explore the eCBome in a microbe-free model and in the presence of a reintroduced functional gut microbiome through fecal microbiota transplant (FMT). We aimed to gain direct evidence for a link between the microbiome and eCBome systems by investigating eCBome alterations in the gut in GF mice before and after FMT. Basal eCBome gene expression and lipid profiles were measured in various segments of the intestine of GF and CR mice at juvenile and adult ages using targeted quantitative PCR transcriptomics and LC-MS/MS lipidomics. GF mice exhibited age-dependent modifications in intestinal eCBome gene expression and lipid mediator levels. FMT from CR donor mice to age-matched GF male mice reversed several of these alterations, particularly in the ileum and jejunum, after only 1 week, demonstrating that the gut microbiome directly impacts the host eCBome and providing a cause-effect relationship between the presence or absence of intestinal microbes and eCBome signaling. These results open the way to new studies investigating the mechanisms through which intestinal microorganisms exploit eCBome signaling to exert some of their physiopathologic functions.
Collapse
Affiliation(s)
- Claudia Manca
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada
| | - Besma Boubertakh
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada
| | - Nadine Leblanc
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada
| | - Thomas Deschênes
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada; École de Nutrition, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, Canada
| | - Sebastien Lacroix
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada
| | - Cyril Martin
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada
| | - Alain Houde
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada
| | - Alain Veilleux
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada; École de Nutrition, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada
| | - Giulio G Muccioli
- Louvain Drug Research Institute (LDRI), Bioanalysis and Pharmacology of Bioactive Lipids Research Group, UCLouvain (Université Catholique de Louvain), Brussels, Belgium
| | - Frédéric Raymond
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada; École de Nutrition, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, Canada
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Bioanalysis and Pharmacology of Bioactive Lipids Research Group, UCLouvain (Université Catholique de Louvain), Brussels, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Metabolism and Nutrition Research Group, UCLouvain (Université Catholique de Louvain), Brussels, Belgium
| | - Vincenzo Di Marzo
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada; École de Nutrition, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, Canada
| | - Cristoforo Silvestri
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada.
| |
Collapse
|
17
|
Bozkurt TE. Endocannabinoid System in the Airways. Molecules 2019; 24:E4626. [PMID: 31861200 PMCID: PMC6943521 DOI: 10.3390/molecules24244626] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 12/12/2022] Open
Abstract
Cannabinoids and the mammalian endocannabinoid system is an important research area of interest and attracted many researchers because of their widespread biological effects. The significant immune-modulatory role of cannabinoids has suggested their therapeutic use in several inflammatory conditions. Airways are prone to environmental irritants and stimulants, and increased inflammation is an important process in most of the respiratory diseases. Therefore, the main strategies for treating airway diseases are suppression of inflammation and producing bronchodilation. The ability of cannabinoids to induce bronchodilation and modify inflammation indicates their importance for airway physiology and pathologies. In this review, the contribution of cannabinoids and the endocannabinoid system in the airways are discussed, and the existing data for their therapeutic use in airway diseases are presented.
Collapse
Affiliation(s)
- Turgut Emrah Bozkurt
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
18
|
Turcotte C, Dumais É, Archambault AS, Martin C, Blanchet MR, Bissonnette É, Boulet LP, Laviolette M, Di Marzo V, Flamand N. Human leukocytes differentially express endocannabinoid-glycerol lipases and hydrolyze 2-arachidonoyl-glycerol and its metabolites from the 15-lipoxygenase and cyclooxygenase pathways. J Leukoc Biol 2019; 106:1337-1347. [PMID: 31556464 DOI: 10.1002/jlb.3a0919-049rrr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 11/08/2022] Open
Abstract
2-Arachidonoyl-glycerol (2-AG) is an endocannabinoid with anti-inflammatory properties. Blocking 2-AG hydrolysis to enhance CB2 signaling has proven effective in mouse models of inflammation. However, the expression of 2-AG lipases has never been thoroughly investigated in human leukocytes. Herein, we investigated the expression of seven 2-AG hydrolases by human blood leukocytes and alveolar macrophages (AMs) and found the following protein expression pattern: monoacylglycerol (MAG lipase; eosinophils, AMs, monocytes), carboxylesterase (CES1; monocytes, AMs), palmitoyl-protein thioesterase (PPT1; AMs), α/β-hydrolase domain (ABHD6; mainly AMs), ABHD12 (all), ABHD16A (all), and LYPLA2 (lysophospholipase 2; monocytes, lymphocytes, AMs). We next found that all leukocytes could hydrolyze 2-AG and its metabolites derived from cyclooxygenase-2 (prostaglandin E2 -glycerol [PGE2 -G]) and the 15-lipoxygenase (15-hydroxy-eicosatetraenoyl-glycerol [15-HETE-G]). Neutrophils and eosinophils were consistently better at hydrolyzing 2-AG and its metabolites than monocytes and lymphocytes. Moreover, the efficacy of leukocytes to hydrolyze 2-AG and its metabolites was 2-AG ≥ 15-HETE-G >> PGE2 -G for each leukocyte. Using the inhibitors methylarachidonoyl-fluorophosphonate (MAFP), 4-nitrophenyl-4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184), Palmostatin B, 4'-carbamoylbiphenyl-4-yl methyl(3-(pyridin-4-yl)benzyl)carbamate, N-methyl-N-[[3-(4-pyridinyl)phenyl]methyl]-4'-(aminocarbonyl)[1,1'-biphenyl]-4-yl ester carbamic acid (WWL70), 4'-[[[methyl[[3-(4-pyridinyl)phenyl]methyl]amino]carbonyl]oxy]-[1,1'-biphenyl]-4-carboxylic acid, ethyl ester (WWL113), tetrahydrolipstatin, and ML349, we could not pinpoint a specific hydrolase responsible for the hydrolysis of 2-AG, PGE2 -G, and 15-HETE-G by these leukocytes. Furthermore, JZL184, a selective MAG lipase inhibitor, blocked the hydrolysis of 2-AG, PGE2 -G, and 15-HETE-G by neutrophils and the hydrolysis of PGE2 -G and 15-HETE-G by lymphocytes, two cell types with limited/no MAG lipase. Using an activity-based protein profiling (ABPP) probe to label hydrolases in leukocytes, we found that they express many MAFP-sensitive hydrolases and an unknown JZL184-sensitive hydrolase of ∼52 kDa. Altogether, our results indicate that human leukocytes are experts at hydrolyzing 2-AG and its metabolites via multiple lipases and probably via a yet-to-be characterized 52 kDa hydrolase. Blocking 2-AG hydrolysis in humans will likely abrogate the ability of human leukocytes to degrade 2-AG and its metabolites and increase their anti-inflammatory effects in vivo.
Collapse
Affiliation(s)
- Caroline Turcotte
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Élizabeth Dumais
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Anne-Sophie Archambault
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Cyril Martin
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Marie-Renée Blanchet
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Élyse Bissonnette
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Louis-Philippe Boulet
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Michel Laviolette
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Vincenzo Di Marzo
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Nicolas Flamand
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| |
Collapse
|
19
|
Szafran BN, Lee JH, Borazjani A, Morrison P, Zimmerman G, Andrzejewski KL, Ross MK, Kaplan BLF. Characterization of Endocannabinoid-Metabolizing Enzymes in Human Peripheral Blood Mononuclear Cells under Inflammatory Conditions. Molecules 2018; 23:molecules23123167. [PMID: 30513753 PMCID: PMC6321211 DOI: 10.3390/molecules23123167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 01/09/2023] Open
Abstract
Endocannabinoid-metabolizing enzymes are downregulated in response to lipopolysaccharide (LPS)-induced inflammation in mice, which may serve as a negative feedback mechanism to increase endocannabinoid levels and reduce inflammation. Increased plasma levels of the pro-inflammatory cytokine interleukin-6 (IL-6) and decreased fatty acid amide hydrolase (FAAH) activity in peripheral lymphocytes from individuals diagnosed with Huntington’s disease (HD) suggests that a similar negative feedback system between inflammation and the endocannabinoid system operates in humans. We investigated whether CpG- (unmethylated bacterial DNA) and LPS-induced IL-6 levels in peripheral blood mononuclear cells (PBMCs) from non-HD and HD individuals modulated the activities of endocannabinoid hydrolases monoacylglycerol lipase (MAGL) and carboxylesterase (CES). Baseline plasma IL-6 levels and 2-arachidonoylglycerol (2-AG) hydrolytic activity in PBMC lysates were not different in HD and non-HD individuals. Inhibition of MAGL and CES1 activity in PBMCs using the inhibitors JZL184 and WWL113, respectively, demonstrated that MAGL was the dominant 2-AG hydrolytic enzyme in PBMCs, regardless of disease state. Correlative analyses of 2-AG hydrolytic activity versus enzyme abundance confirmed this conclusion. Flow cytometric analysis of PBMCs showed that MAGL and CES1 were primarily expressed in monocytes and to a lesser extent in lymphocytes. In conclusion, these data suggest that IL-6 did not influence 2-AG hydrolytic activity in human PBMCs; however, monocytic MAGL was shown to be the predominant 2-AG hydrolytic enzyme.
Collapse
Affiliation(s)
- Brittany N Szafran
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39759, USA.
| | - Jung Hwa Lee
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39759, USA.
| | - Abdolsamad Borazjani
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39759, USA.
| | - Peter Morrison
- Department of Neurology, University of Rochester, Rochester, NY 14627, USA.
| | - Grace Zimmerman
- Department of Neurology, University of Rochester, Rochester, NY 14627, USA.
| | - Kelly L Andrzejewski
- Department of Neurology, University of Rochester, Rochester, NY 14627, USA.
- Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY 14211, USA.
| | - Matthew K Ross
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39759, USA.
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39759, USA.
| |
Collapse
|
20
|
van Rooden EJ, van Esbroeck ACM, Baggelaar MP, Deng H, Florea BI, Marques ARA, Ottenhoff R, Boot RG, Overkleeft HS, Aerts JMFG, van der Stelt M. Chemical Proteomic Analysis of Serine Hydrolase Activity in Niemann-Pick Type C Mouse Brain. Front Neurosci 2018; 12:440. [PMID: 30018533 PMCID: PMC6037894 DOI: 10.3389/fnins.2018.00440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022] Open
Abstract
The endocannabinoid system (ECS) is considered to be an endogenous protective system in various neurodegenerative diseases. Niemann-Pick type C (NPC) is a neurodegenerative disease in which the role of the ECS has not been studied yet. Most of the endocannabinoid enzymes are serine hydrolases, which can be studied using activity-based protein profiling (ABPP). Here, we report the serine hydrolase activity in brain proteomes of a NPC mouse model as measured by ABPP. Two ABPP methods are used: a gel-based method and a chemical proteomics method. The activities of the following endocannabinoid enzymes were quantified: diacylglycerol lipase (DAGL) α, α/β-hydrolase domain-containing protein 4, α/β-hydrolase domain-containing protein 6, α/β-hydrolase domain-containing protein 12, fatty acid amide hydrolase, and monoacylglycerol lipase. Using the gel-based method, two bands were observed for DAGL α. Only the upper band corresponding to this enzyme was significantly decreased in the NPC mouse model. Chemical proteomics showed that three lysosomal serine hydrolase activities (retinoid-inducible serine carboxypeptidase, cathepsin A, and palmitoyl-protein thioesterase 1) were increased in Niemann-Pick C1 protein knockout mouse brain compared to wild-type brain, whereas no difference in endocannabinoid hydrolase activity was observed. We conclude that these targets might be interesting therapeutic targets for future validation studies.
Collapse
Affiliation(s)
- Eva J van Rooden
- Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | | | - Marc P Baggelaar
- Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Hui Deng
- Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Bogdan I Florea
- Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - André R A Marques
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Rolf G Boot
- Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Herman S Overkleeft
- Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Johannes M F G Aerts
- Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Mario van der Stelt
- Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| |
Collapse
|
21
|
Han X, Xie Y, Wu Q, Wu S. A novel protein digestion method with the assistance of alternating current denaturation for high efficient protein digestion and mass spectrometry analysis. Talanta 2018; 184:382-387. [PMID: 29674058 DOI: 10.1016/j.talanta.2018.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 12/24/2022]
Abstract
Protein denaturation has always displayed a huge necessity for mass spectrometry (MS)-based protein identification methods in proteomics. In this research, a novel protein digestion method with the assistance of alternating current (AC) denaturation has been proposed and evaluated. In this method, merely, 200 mM ammonium bicarbonate buffer solution (pH, 8.2) was used to dissolve proteins and act as the electrolyte, and protein denaturation could be achieved in several seconds. For apo-transferrin, ovalbumin and bovine serum albumin that are resistant to digestion in their native states, confident amino acid sequence coverage by matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis were obtained after 200 v AC denaturation. The applicability of this method was further investigated via analyzing a rat liver proteome sample using nano reversed phase liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoRPLC-ESI-MS/MS). As a result, 458 proteins were identified which is comparable to the in-solution digestion via 8 M urea denaturation (375 proteins). All these results demonstrated that AC denaturation could offer an efficient assistance for a clean and high-throughput digestion in the individual level and proteome level.
Collapse
Affiliation(s)
- Xiaoxun Han
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road No. 11, Huangshi 435002, China
| | - Yiming Xie
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road No. 11, Huangshi 435002, China
| | - Qin Wu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road No. 11, Huangshi 435002, China
| | - Shuaibin Wu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road No. 11, Huangshi 435002, China.
| |
Collapse
|
22
|
Silencing carboxylesterase 1 in human THP-1 macrophages perturbs genes regulated by PPARγ/RXR and RAR/RXR: down-regulation of CYP27A1-LXRα signaling. Biochem J 2018; 475:621-642. [PMID: 29321244 DOI: 10.1042/bcj20180008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
Macrophage foam cells store excess cholesterol as cholesteryl esters, which need to be hydrolyzed for cholesterol efflux. We recently reported that silencing expression of carboxylesterase 1 (CES1) in human THP-1 macrophages [CES1KD (THP-1 cells with CES1 expression knocked down) macrophages] reduced cholesterol uptake and decreased expression of CD36 and scavenger receptor-A in cells loaded with acetylated low-density lipoprotein (acLDL). Here, we report that CES1KD macrophages exhibit reduced transcription of cytochrome P45027A1 (CYP27A1) in nonloaded and acLDL-loaded cells. Moreover, levels of CYP27A1 protein and its enzymatic product, 27-hydroxycholesterol, were markedly reduced in CES1KD macrophages. Transcription of LXRα (liver X receptor α) and ABCA1 (ATP-binding cassette transporter A1) was also decreased in acLDL-loaded CES1KD macrophages, suggesting reduced signaling through PPARγ-CYP27A1-LXRα. Consistent with this, treatment of CES1KD macrophages with agonists for PPARγ, RAR, and/or RAR/RXR partially restored transcription of CYP27A1 and LXRα, and repaired cholesterol influx. Conversely, treatment of control macrophages with antagonists for PPARγ and/or RXR decreased transcription of CYP27A1 and LXRα Pharmacologic inhibition of CES1 in both wild-type THP-1 cells and primary human macrophages also decreased CYP27A1 transcription. CES1 silencing did not affect transcript levels of PPARγ and RXR in acLDL-loaded macrophages, whereas it did reduce the catabolism of the endocannabinoid 2-arachidonoylglycerol. Finally, the gene expression profile of CES1KD macrophages was similar to that of PPARγ knockdown cells following acLDL exposures, further suggesting a mechanistic link between CES1 and PPARγ. These results are consistent with a model in which abrogation of CES1 function attenuates the CYP27A1-LXRα-ABCA1 signaling axis by depleting endogenous ligands for the nuclear receptors PPARγ, RAR, and/or RXR that regulate cholesterol homeostasis.
Collapse
|
23
|
Lee JH, Hou X, Kummari E, Borazjani A, Edelmann MJ, Ross MK. Endocannabinoid hydrolases in avian HD11 macrophages identified by chemoproteomics: inactivation by small-molecule inhibitors and pathogen-induced downregulation of their activity. Mol Cell Biochem 2017; 444:125-141. [DOI: 10.1007/s11010-017-3237-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/24/2017] [Indexed: 12/31/2022]
|
24
|
Lian J, Nelson R, Lehner R. Carboxylesterases in lipid metabolism: from mouse to human. Protein Cell 2017; 9:178-195. [PMID: 28677105 PMCID: PMC5818367 DOI: 10.1007/s13238-017-0437-z] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/31/2017] [Indexed: 12/12/2022] Open
Abstract
Mammalian carboxylesterases hydrolyze a wide range of xenobiotic and endogenous compounds, including lipid esters. Physiological functions of carboxylesterases in lipid metabolism and energy homeostasis in vivo have been demonstrated by genetic manipulations and chemical inhibition in mice, and in vitro through (over)expression, knockdown of expression, and chemical inhibition in a variety of cells. Recent research advances have revealed the relevance of carboxylesterases to metabolic diseases such as obesity and fatty liver disease, suggesting these enzymes might be potential targets for treatment of metabolic disorders. In order to translate pre-clinical studies in cellular and mouse models to humans, differences and similarities of carboxylesterases between mice and human need to be elucidated. This review presents and discusses the research progress in structure and function of mouse and human carboxylesterases, and the role of these enzymes in lipid metabolism and metabolic disorders.
Collapse
Affiliation(s)
- Jihong Lian
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada. .,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| | - Randal Nelson
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
25
|
Davis LS, Reimold AM. Transcriptional profiling of leukocytes from rheumatoid arthritis patients before and after anti-tumor necrosis factor therapy: A comparison of anti-nuclear antibody positive and negative subsets. Exp Ther Med 2017; 13:2183-2192. [PMID: 28565826 PMCID: PMC5443193 DOI: 10.3892/etm.2017.4265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022] Open
Abstract
Anti-nuclear antibodies (ANAs) may be induced in patients with rheumatoid arthritis (RA) receiving anti-tumor necrosis factor (TNF) therapy with TNF inhibitors (TNFi), etanercept, infliximab or adalimumab. In the present study, 11 patients who were TNFi drug naive were started on TNFi at a time of high disease activity. Of these, all cases were positive for rheumatoid factor and 9 cases tested were positive for anti-citrullinated peptide (anti-CCP) antibodies prior to TNFi treatment. Peripheral blood mononuclear cells (PBMCs) and serum were collected from all patients before and after TNFi therapy. Serum was assayed for ANAs over time. Total cellular RNA was extracted from PBMCs and assessed using Illumina arrays. Gene expression profiles were examined for alterations in key effector pathways. After 3 or more months on TNFi, 6 patients converted to ANA-positivity. Analysis of transcripts from patients with RA who converted to ANA-positivity after 3 months on TNFi identified complex gene expression profiles that reflected a reduction in cell adhesion, cell stress and lipid metabolism transcripts. In summary, unique transcriptional profiles in PBMCs from patients with RA were observed after TNFi therapy. This pilot study suggests that transcriptional profiling is a precise method of measuring the impact of TNFi therapies and reveals novel pathways that likely influence the immune response.
Collapse
Affiliation(s)
- Laurie S Davis
- Rheumatic Diseases Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8884, USA
| | - Andreas M Reimold
- Rheumatic Diseases Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8884, USA.,Rheumatology Section, Dallas VA Medical Center, Dallas, TX 75216, USA
| |
Collapse
|
26
|
Turcotte C, Zarini S, Jean S, Martin C, Murphy RC, Marsolais D, Laviolette M, Blanchet MR, Flamand N. The Endocannabinoid Metabolite Prostaglandin E 2 (PGE 2)-Glycerol Inhibits Human Neutrophil Functions: Involvement of Its Hydrolysis into PGE 2 and EP Receptors. THE JOURNAL OF IMMUNOLOGY 2017; 198:3255-3263. [PMID: 28258202 DOI: 10.4049/jimmunol.1601767] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/01/2017] [Indexed: 01/05/2023]
Abstract
The endocannabinoids 2-arachidonoyl-glycerol and N-arachidonoyl-ethanolamine mediate an array of pro- and anti-inflammatory effects. These effects are related, in part, to their metabolism by eicosanoid biosynthetic enzymes. For example, N-arachidonoyl-ethanolamine and 2-arachidonoyl-glycerol can be metabolized by cyclooxygenase-2 into PG-ethanolamide (PG-EA) and PG-glycerol (PG-G), respectively. Although PGE2 is a recognized suppressor of neutrophil functions, the impact of cyclooxygenase-derived endocannabinoids such as PGE2-EA or PGE2-G on neutrophils is unknown. This study's aim was to define the effects of these mediators on neutrophil functions and the underlying cellular mechanisms involved. We show that PGE2-G, but not PGE2-EA, inhibits leukotriene B4 biosynthesis, superoxide production, migration, and antimicrobial peptide release. The effects of PGE2-G were prevented by EP1/EP2 receptor antagonist AH-6809 but not the EP4 antagonist ONO-AE2-227. The effects of PGE2-G required its hydrolysis into PGE2, were not observed with the non-hydrolyzable PGE2-serinol amide, and were completely prevented by methyl-arachidonoyl-fluorophosphate and palmostatin B, and partially prevented by JZL184 and WWL113. Although we could detect six of the documented PG-G hydrolases in neutrophils by quantitative PCR, only ABHD12 and ABHD16A were detected by immunoblot. Our pharmacological data, combined with our protein expression data, did not allow us to pinpoint one PGE2-G lipase, and rather support the involvement of an uncharacterized lipase and/or of multiple hydrolases. In conclusion, we show that PGE2-G inhibits human neutrophil functions through its hydrolysis into PGE2, and by activating the EP2 receptor. This also indicates that neutrophils could regulate inflammation by altering the balance between PG-G and PG levels in vivo.
Collapse
Affiliation(s)
- Caroline Turcotte
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| | - Simona Zarini
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045
| | - Stéphanie Jean
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| | - Cyril Martin
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045
| | - David Marsolais
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| | - Michel Laviolette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| | - Marie-Renée Blanchet
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| |
Collapse
|
27
|
Matthews AT, Lee JH, Borazjani A, Mangum LC, Hou X, Ross MK. Oxyradical stress increases the biosynthesis of 2-arachidonoylglycerol: involvement of NADPH oxidase. Am J Physiol Cell Physiol 2016; 311:C960-C974. [PMID: 27784678 DOI: 10.1152/ajpcell.00251.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/18/2016] [Indexed: 01/17/2023]
Abstract
NADPH oxidase (Nox)-derived oxyradicals contribute to atherosclerosis by oxidizing low-density lipoproteins (LDL), leading to their phagocytosis by vascular macrophages. Endocannabinoids, such as 2-arachidonoylglycerol (2-AG), might be an important link between oxidative stress and atherosclerosis. We hypothesized that 2-AG biosynthesis in macrophages is enhanced following ligation of oxidized LDL by scavenger receptors via a signal transduction pathway involving Nox-derived ROS that activates diacylglycerol lipase-β (DAGL-β), the 2-AG biosynthetic enzyme. To test this idea, we challenged macrophage cell lines and murine primary macrophages with a xanthine oxidase system or with nonphysiological and physiological Nox stimulants [phorbol 12-myristate 13-acetate (PMA) and arachidonic acid (AA)]. Each stressor increased cellular superoxide levels and enhanced 2-AG biosynthetic activity in a Nox-dependent manner. Levels of cytosolic phospholipase A2-dependent AA metabolites (eicosanoids) in primary macrophages were also dependent on Nox-mediated ROS. In addition, 2-AG levels in DAGL-β-overexpressing COS7 cells were attenuated by inhibitors of Nox and DAGL-β. Furthermore, ROS induced by menadione (a redox cycling agent) or PMA could be partially attenuated by the cannabinoid 1/2 receptor agonist (WIN 55,212-2). Finally, cells that overexpress Nox2 components (Phox-COS7) synthesized larger amounts of 2-AG compared with the parental COS7 cells. Together, the results suggest a positive correlation between heightened oxygen radical flux and 2-AG biosynthesis in macrophage cell lines and primary macrophages. Because of the antioxidant and anti-inflammatory effects associated with 2-AG, the increased levels of this bioactive lipid might be an adaptive response to oxidative stress. Thus oxyradical stress may be counteracted by the enhanced endocannabinoid tone.
Collapse
Affiliation(s)
- Anberitha T Matthews
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi; and
| | - Jung Hwa Lee
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi; and
| | - Abdolsamad Borazjani
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi; and
| | - Lee C Mangum
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi; and
| | - Xiang Hou
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi; and.,Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Matthew K Ross
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi; and
| |
Collapse
|
28
|
Abstract
In this issue of Chemistry & Biology, Cognetta et al. (2015) describe new pharmacological tools, including N-hydroxyhydantoin-containing carbamate inhibitors and an activity-based probe, for palmitoyl protein thioesterase 1 and alpha, beta-hydrolase domain-4 that expand the toolkit for the serine hydrolases.
Collapse
|
29
|
Relationships of human α/β hydrolase fold proteins and other organophosphate-interacting proteins. Chem Biol Interact 2016; 259:343-351. [PMID: 27109753 DOI: 10.1016/j.cbi.2016.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/29/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
Organophosphates (OPs) are either found in nature or synthetized for use as pesticides, flame retardants, neurotoxic warfare agents or drugs (cholinergic enhancers in Alzheimer's disease and myasthenia gravis, or inhibitors of lipases in metabolic diseases). Because of the central role of acetylcholinesterase cholinergic neurotransmission in humans, one of the main purposes for using OPs is inactivation of the enzyme by phosphorylation of the nucleophilic serine residue in the active center. However, hundreds of serine hydrolases are expressed in the human proteome, and many of them are potential targets for OP adduction. In this review, we first situate the α/β hydrolase fold proteins among the distinctively folded proteins known to interact with OPs, in particular the different lipases, peptidases, and enzymes hydrolyzing OPs. Second, we compile the human α/β hydrolases and review those that have been experimentally shown to interact with OPs. Among the 120 human α/β hydrolase fold proteins, 102 have a serine in the consensus GXSXG pentapeptide compatible with an active site, 6 have an aspartate or a cysteine as the active site nucleophile residue, and 12 evidently lack an active site. 76 of the 120 have been experimentally shown to bind an OP.
Collapse
|
30
|
Alugubelly N, Hercik K, Kibler P, Nanduri B, Edelmann MJ. Analysis of differentially expressed proteins in Yersinia enterocolitica-infected HeLa cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:562-9. [PMID: 26854600 DOI: 10.1016/j.bbapap.2016.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/20/2016] [Accepted: 02/03/2016] [Indexed: 12/22/2022]
Abstract
UNLABELLED Yersinia enterocolitica is a facultative intracellular pathogen and a causative agent of yersiniosis, which can be contracted by ingestion of contaminated food. Yersinia secretes virulence factors to subvert critical pathways in the host cell. In this study we utilized shotgun label-free proteomics to study differential protein expression in epithelial cells infected with Y.enterocolitica. We identified a total of 551 proteins, amongst which 42 were downregulated (including Prostaglandin E Synthase 3, POH-1 and Karyopherin alpha) and 22 were upregulated (including Rab1 and RhoA) in infected cells. We validated some of these results by western blot analysis of proteins extracted from Caco-2 and HeLa cells. The proteomic dataset was used to identify host canonical pathways and molecular functions modulated by this infection in the host cells. This study constitutes a proteome of Yersinia-infected cells and can support new discoveries in the area of host-pathogen interactions. STATEMENT OF SIGNIFICANCE OF THE STUDY We describe a proteome of Yersinia enterocolitica-infected HeLa cells, including a description of specific proteins differentially expressed upon infection, molecular functions as well as pathways altered during infection. This proteomic study can lead to a better understanding of Y. enterocolitica pathogenesis in human epithelial cells.
Collapse
Affiliation(s)
- Navatha Alugubelly
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Kamil Hercik
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Peter Kibler
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Mariola J Edelmann
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
31
|
Abstract
Atherosclerosis is responsible for most cardiovascular disease (CVD) and is caused by several factors including hypertension, hypercholesterolemia, and chronic inflammation. Oxidants and electrophiles have roles in the pathophysiology of atherosclerosis and the concentrations of these reactive molecules are an important factor in disease initiation and progression. Overactive NADPH oxidase (Nox) produces excess superoxide resulting in oxidized macromolecules, which is an important factor in atherogenesis. Although superoxide and reactive oxygen species (ROS) have obvious toxic properties, they also have fundamental roles in signaling pathways that enable cells to adapt to stress. In addition to inflammation and ROS, the endocannabinoid system (eCB) is also important in atherogenesis. Linkages have been postulated between the eCB system, Nox, oxidative stress, and atherosclerosis. For instance, CB2 receptor-evoked signaling has been shown to upregulate anti-inflammatory and anti-oxidative pathways, whereas CB1 signaling appears to induce opposite effects. The second messenger lipid molecule diacylglycerol is implicated in the regulation of Nox activity and diacylglycerol lipase β (DAGLβ) is a key biosynthetic enzyme in the biosynthesis eCB ligand 2-arachidonylglycerol (2-AG). Furthermore, Nrf2 is a vital transcription factor that protects against the cytotoxic effects of both oxidant and electrophile stress. This review will highlight the role of reactive oxygen species (ROS) in intracellular signaling and the impact of deregulated ROS-mediated signaling in atherogenesis. In addition, there is also emerging knowledge that the eCB system has an important role in atherogenesis. We will attempt to integrate oxidative stress and the eCB system into a conceptual framework that provides insights into this pathology.
Collapse
Affiliation(s)
| | - Matthew K. Ross
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-662-325-5482; Fax: +1-662-325-1031
| |
Collapse
|
32
|
Szafran B, Borazjani A, Lee JH, Ross MK, Kaplan BLF. Lipopolysaccharide suppresses carboxylesterase 2g activity and 2-arachidonoylglycerol hydrolysis: A possible mechanism to regulate inflammation. Prostaglandins Other Lipid Mediat 2015; 121:199-206. [PMID: 26403860 DOI: 10.1016/j.prostaglandins.2015.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/10/2015] [Accepted: 09/18/2015] [Indexed: 01/02/2023]
Abstract
Inflammation is an important part of the innate immune response and is involved in the healing of many disease processes; however, chronic inflammation is a harmful component of many diseases. The regulatory mechanisms of inflammation are incompletely understood. One possible regulatory mechanism is the endocannabinoid system. Endocannabinoids such as 2-arachidonoylglycerol (2-AG) and anandamide (AEA) are generally anti-inflammatory via engagement of the cannabinoid receptor 2 (CB2) on innate cells; therefore, preventing the degradation of endocannabinoids by specific serine hydrolases such as fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), and carboxylesterases (CES) might decrease inflammation. We hypothesized that the activities of these catabolic enzymes would decrease with a subsequent increase in 2-AG and AEA in a model of inflammation. Mice were injected with lipopolysaccharide (LPS) for 6 or 24h, and inflammation was confirmed by an increase in interleukin-6 (il6) and il17 gene expression. Activity-based protein profiling (ABPP) of serine hydrolases showed no significant difference in various serine hydrolase activities in brain or liver, whereas a modest decrease in Ces activity in spleen after LPS administration was noted. 2-AG hydrolase activity in the spleen was also decreased at 6h post LPS, which was corroborated by LPS treatment of splenocytes ex vivo. ABPP-MudPIT proteomic analysis suggested that the decreased 2-AG hydrolysis in spleen was due to a reduction in Ces2g activity. These studies suggest that the endocannabinoid system could be activated via suppression of a 2-AG catabolic enzyme in response to inflammatory stimuli as one mechanism to limit inflammation.
Collapse
Affiliation(s)
- Brittany Szafran
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Abdolsamad Borazjani
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Jung Hwa Lee
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Matthew K Ross
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States.
| |
Collapse
|
33
|
Activity-Based Proteomic Profiling of Deubiquitinating Enzymes in Salmonella-Infected Macrophages Leads to Identification of Putative Function of UCH-L5 in Inflammasome Regulation. PLoS One 2015; 10:e0135531. [PMID: 26267804 PMCID: PMC4534353 DOI: 10.1371/journal.pone.0135531] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/22/2015] [Indexed: 12/31/2022] Open
Abstract
Although protein ubiquitination has been shown to regulate multiple processes during host response to Salmonella enterica serovar Typhimurium infection, specific functions of host deubiquitinating enzymes remain unknown in this bacterial infection. By using chemical proteomics approach, in which deubiquitinating enzymes were labeled by an active-site probe and analyzed by quantitative proteomics, we identified novel deubiquitinases in chicken macrophages based on their reactivity with the probe. Also, we detected down-regulation of UCH-L3, and USP4 as well as up-regulation of USP5 and UCH-L5 deubiquitinating enzymes in macrophages infected with Salmonella Typhimurium. We showed that decrease in either UCH-L5 activity, or in UCH-L5 protein amount in chicken and human macrophages infected or stimulated with LPS/nigericin, led to decreased IL-1β release. These data point towards a putative role of UCH-L5 in inflammasome regulation during Salmonella infection. Because inflammasome activation is important in innate resistance to these bacteria, one would expect that naturally occurring or therapeutically induced alteration in UCH-L5 activation would influence disease outcome and could represent a target for new therapeutic approaches.
Collapse
|
34
|
Cognetta AB, Niphakis MJ, Lee HC, Martini ML, Hulce JJ, Cravatt BF. Selective N-Hydroxyhydantoin Carbamate Inhibitors of Mammalian Serine Hydrolases. ACTA ACUST UNITED AC 2015; 22:928-37. [PMID: 26120000 DOI: 10.1016/j.chembiol.2015.05.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/18/2015] [Accepted: 05/30/2015] [Indexed: 01/12/2023]
Abstract
Serine hydrolase inhibitors, which facilitate enzyme function assignment and are used to treat a range of human disorders, often act by an irreversible mechanism that involves covalent modification of the serine hydrolase catalytic nucleophile. The portion of mammalian serine hydrolases for which selective inhibitors have been developed, however, remains small. Here, we show that N-hydroxyhydantoin (NHH) carbamates are a versatile class of irreversible serine hydrolase inhibitors that can be modified on both the staying (carbamylating) and leaving (NHH) groups to optimize potency and selectivity. Synthesis of a small library of NHH carbamates and screening by competitive activity-based protein profiling furnished selective, in vivo-active inhibitors and tailored activity-based probes for multiple mammalian serine hydrolases, including palmitoyl protein thioesterase 1, mutations of which cause the human disease infantile neuronal ceroid lipofuscinosis.
Collapse
Affiliation(s)
- Armand B Cognetta
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Micah J Niphakis
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hyeon-Cheol Lee
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael L Martini
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan J Hulce
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Benjamin F Cravatt
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
35
|
Turcotte C, Chouinard F, Lefebvre JS, Flamand N. Regulation of inflammation by cannabinoids, the endocannabinoids 2-arachidonoyl-glycerol and arachidonoyl-ethanolamide, and their metabolites. J Leukoc Biol 2015; 97:1049-70. [PMID: 25877930 DOI: 10.1189/jlb.3ru0115-021r] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/28/2015] [Indexed: 12/26/2022] Open
Abstract
2-Arachidonoyl-glycerol (2-AG) and arachidonyl-ethanolamide (AEA) are endocannabinoids that have been implicated in many physiologic disorders, including obesity, metabolic syndromes, hepatic diseases, pain, neurologic disorders, and inflammation. Their immunomodulatory effects are numerous and are not always mediated by cannabinoid receptors, reflecting the presence of an arachidonic acid (AA) molecule in their structure, the latter being the precursor of numerous bioactive lipids that are pro- or anti-inflammatory. 2-AG and AEA can thus serve as a source of AA but can also be metabolized by most eicosanoid biosynthetic enzymes, yielding additional lipids. In this regard, enhancing endocannabinoid levels by using endocannabinoid hydrolysis inhibitors is likely to augment the levels of these lipids that could regulate inflammatory cell functions. This review summarizes the metabolic pathways involved in the biosynthesis and metabolism of AEA and 2-AG, as well as the biologic effects of the 2-AG and AEA lipidomes in the regulation of inflammation.
Collapse
Affiliation(s)
- Caroline Turcotte
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - François Chouinard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Julie S Lefebvre
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
36
|
Mangum LC, Borazjani A, Stokes JV, Matthews AT, Lee JH, Chambers JE, Ross MK. Organochlorine insecticides induce NADPH oxidase-dependent reactive oxygen species in human monocytic cells via phospholipase A2/arachidonic acid. Chem Res Toxicol 2015; 28:570-84. [PMID: 25633958 DOI: 10.1021/tx500323h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioaccumulative organohalogen chemicals, such as organochlorine (OC) insecticides, have been increasingly associated with disease etiology; however, the mechanistic link between chemical exposure and diseases, such as atherosclerosis, cancer, and diabetes, is complex and poorly defined. Systemic oxidative stress stemming from OC exposure might play a vital role in the development of these pathologies. Monocytes are important surveillance cells of the innate immune system that respond to extracellular signals possessing danger-associated molecular patterns by synthesizing oxyradicals, such as superoxide, for the purpose of combating infectious pathogens. We hypothesized that OC chemicals can be toxic to monocytes because of an inappropriate elevation in superoxide-derived reactive oxygen species (ROS) capable of causing cellular oxidative damage. Reactive oxyradicals are generated in monocytes in large part by NADPH oxidase (Nox). The present study was conducted to examine the ability of two chlorinated cyclodiene compounds, trans-nonachlor and dieldrin, as well as p,p'-DDE, a chlorinated alicyclic metabolite of DDT, to stimulate Nox activity in a human monocytic cell line and to elucidate the mechanisms for this activation. Human THP-1 monocytes treated with either trans-nonachlor or dieldrin (0.1-10 μM in the culture medium) exhibited elevated levels of intracellular ROS, as evidenced by complementary methods, including flow cytometry analysis using the probe DCFH-DA and hydroethidine-based fluorometric and UPLC-MS assays. In addition, the induced reactive oxygen flux caused by trans-nonachlor was also observed in two other cell lines, murine J774 macrophages and human HL-60 cells. The central role of Nox in OC-mediated oxidative stress was demonstrated by the attenuated superoxide production in OC-exposed monocytes treated with the Nox inhibitors diphenyleneiodonium and VAS-2870. Moreover, monocytes challenged with OCs exhibited increased phospho-p47(phox) levels and enhanced p47(phox) membrane localization compared to that in vehicle-treated cells. p47(phox) is a cytosolic regulatory subunit of Nox, and its phosphorylation and translocation to the NOX2 catalytic subunit in membranes is a requisite step for Nox assembly and activation. Dieldrin and trans-nonachlor treatments of monocytes also resulted in marked increases in arachidonic acid (AA) and eicosanoid production, which could be abrogated by the phospholipase A2 (PLA2) inhibitor arachidonoyltrifluoromethyl ketone (ATK) but not by calcium-independent PLA2 inhibitor bromoenol lactone. This suggested that cytosolic PLA2 plays a crucial role in the induction of Nox activity by increasing the intracellular pool of AA that activates protein kinase C, which phosphorylates p47(phox). In addition, ATK also blocked OC-induced p47(phox) serine phosphorylation and attenuated ROS levels, which further supports the notion that the AA pool liberated by cytosolic PLA2 is responsible for Nox activation. Together, the results suggest that trans-nonachlor and dieldrin are capable of increasing intracellular superoxide levels via a Nox-dependent mechanism that relies on elevated intracellular AA levels. These findings are significant because chronic activation of monocytes by environmental toxicants might contribute to pathogenic oxidative stress and inflammation.
Collapse
Affiliation(s)
- Lee C Mangum
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, Mississippi 39762, United States
| | - Abdolsamad Borazjani
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, Mississippi 39762, United States
| | - John V Stokes
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, Mississippi 39762, United States
| | - Anberitha T Matthews
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, Mississippi 39762, United States
| | - Jung Hwa Lee
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, Mississippi 39762, United States
| | - Janice E Chambers
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, Mississippi 39762, United States
| | - Matthew K Ross
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
37
|
Miller JN, Kovács AD, Pearce DA. The novel Cln1(R151X) mouse model of infantile neuronal ceroid lipofuscinosis (INCL) for testing nonsense suppression therapy. Hum Mol Genet 2015; 24:185-96. [PMID: 25205113 PMCID: PMC4326326 DOI: 10.1093/hmg/ddu428] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/19/2014] [Indexed: 11/13/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), also known as Batten disease, are a group of autosomal recessive neurodegenerative disorders in children characterized by the progressive onset of seizures, blindness, motor and cognitive decline and premature death. Patients with mutations in CLN1 primarily manifest with infantile NCL (INCL or Haltia-Santavuori disease), which is second only to congenital NCL for its age of onset and devastating progression. CLN1 encodes a lysosomal enzyme, palmitoyl-protein thioesterase 1 (PPT1). Nonsense mutations in CLN1 account for 52.3% of all disease causing alleles in infantile NCL, the most common of which worldwide is the p.R151X mutation. Previously, we have shown how nonsense-mediated decay is involved in the degradation of CLN1 mRNA transcripts containing the p.R151X mutation in human lymphoblast cell lines. We have also shown how the read-through drugs gentamicin and ataluren (PTC124) increase CLN1 (PPT1) enzyme activity. Here, we provide the initial characterization of the novel Cln1(R151X) mouse model of infantile neuronal ceroid lipofuscinosis that we have generated. This nonsense mutation model recapitulates the molecular, histological and behavioral phenotypes of the human disease. Cln1(R151X) mice showed a significant decrease in Cln1 mRNA level and PPT1 enzyme activity, accumulation of autofluorescent storage material, astrocytosis and microglial activation in the brain. Behavioral characterization of Cln1(R151X) mice at 3 and 5 months of age revealed significant motor deficits as measured by the vertical pole and rotarod tests. We also show how the read-through compound ataluren (PTC124) increases PPT1 enzyme activity and protein level in Cln1(R151X) mice in a proof-of-principle study.
Collapse
Affiliation(s)
- Jake N Miller
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD, USA and
| | - Attila D Kovács
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD, USA and
| | - David A Pearce
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD, USA and Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
38
|
Manna JD, Wepy JA, Hsu KL, Chang JW, Cravatt BF, Marnett LJ. Identification of the major prostaglandin glycerol ester hydrolase in human cancer cells. J Biol Chem 2014; 289:33741-53. [PMID: 25301951 DOI: 10.1074/jbc.m114.582353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Prostaglandin glycerol esters (PG-Gs) are produced as a result of the oxygenation of the endocannabinoid, 2-arachidonoylglycerol, by cyclooxygenase 2. Understanding the role that PG-Gs play in a biological setting has been difficult because of their sensitivity to enzymatic hydrolysis. By comparing PG-G hydrolysis across human cancer cell lines to serine hydrolase activities determined by activity-based protein profiling, we identified lysophospholipase A2 (LYPLA2) as a major enzyme responsible for PG-G hydrolysis. The principal role played by LYPLA2 in PGE2-G hydrolysis was confirmed by siRNA knockdown. Purified recombinant LYPLA2 hydrolyzed PG-Gs in the following order of activity: PGE2-G > PGF2α-G > PGD2-G; LYPLA2 hydrolyzed 1- but not 2-arachidonoylglycerol or arachidonoylethanolamide. Chemical inhibition of LYPLA2 in the mouse macrophage-like cell line, RAW264.7, elicited an increase in PG-G production. Our data indicate that LYPLA2 serves as a major PG-G hydrolase in human cells. Perturbation of this enzyme should enable selective modulation of PG-Gs without alterations in endocannabinoids, thereby providing a means to decipher the unique functions of PG-Gs in biology and disease.
Collapse
Affiliation(s)
- Joseph D Manna
- From the A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - James A Wepy
- From the A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Ku-Lung Hsu
- the Skaggs Institute for Chemical Biology and the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| | - Jae Won Chang
- the Skaggs Institute for Chemical Biology and the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| | - Benjamin F Cravatt
- the Skaggs Institute for Chemical Biology and the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| | - Lawrence J Marnett
- From the A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| |
Collapse
|
39
|
Ross MK, Borazjani A, Mangum LC, Wang R, Crow JA. Effects of toxicologically relevant xenobiotics and the lipid-derived electrophile 4-hydroxynonenal on macrophage cholesterol efflux: silencing carboxylesterase 1 has paradoxical effects on cholesterol uptake and efflux. Chem Res Toxicol 2014; 27:1743-56. [PMID: 25250848 PMCID: PMC4203386 DOI: 10.1021/tx500221a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
Cholesterol
cycles between free cholesterol (unesterified) found
predominantly in membranes and cholesteryl esters (CEs) stored in
cytoplasmic lipid droplets. Only free cholesterol is effluxed from
macrophages via ATP-binding cassette (ABC) transporters to extracellular
acceptors. Carboxylesterase 1 (CES1), proposed to hydrolyze CEs, is
inactivated by oxon metabolites of organophosphorus pesticides and
by the lipid electrophile 4-hydroxynonenal (HNE). We assessed the
ability of these compounds to reduce cholesterol efflux from foam
cells. Human THP-1 macrophages were loaded with [3H]-cholesterol/acetylated
LDL and then allowed to equilibrate to enable [3H]-cholesterol
to distribute into its various cellular pools. The cholesterol-engorged
cells were then treated with toxicants in the absence of cholesterol
acceptors for 24 h, followed by a 24 h efflux period in the presence
of toxicant. A concentration-dependent reduction in [3H]-cholesterol
efflux via ABCA1 (up to 50%) was found for paraoxon (0.1–10
μM), whereas treatment with HNE had no effect. A modest reduction
in [3H]-cholesterol efflux via ABCG1 (25%) was found after
treatment with either paraoxon or chlorpyrifos oxon (10 μM each)
but not HNE. No difference in efflux rates was found after treatments
with either paraoxon or HNE when the universal cholesterol acceptor
10% (v/v) fetal bovine serum was used. When the re-esterification
arm of the CE cycle was disabled in foam cells, paraoxon treatment
increased CE levels, suggesting the neutral CE hydrolysis arm of the
cycle had been inhibited by the toxicant. However, paraoxon also partially
inhibited lysosomal acid lipase, which generates cholesterol for efflux,
and reduced the expression of ABCA1 protein. Paradoxically, silencing CES1 expression in macrophages did not affect the percent
of [3H]-cholesterol efflux. However, CES1 mRNA knockdown markedly reduced cholesterol uptake by macrophages,
with SR-A and CD36 mRNA reduced
3- and 4-fold, respectively. Immunoblots confirmed SR-A and CD36 protein
downregulation. Together, these results suggest that toxicants, e.g.,
oxons, may interfere with macrophage cholesterol homeostasis/metabolism.
Collapse
Affiliation(s)
- Matthew K Ross
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University , P.O. Box 6100, Mississippi State, Mississippi 39762, United States
| | | | | | | | | |
Collapse
|
40
|
Savinainen JR, Patel JZ, Parkkari T, Navia-Paldanius D, Marjamaa JJT, Laitinen T, Nevalainen T, Laitinen JT. Biochemical and pharmacological characterization of the human lymphocyte antigen B-associated transcript 5 (BAT5/ABHD16A). PLoS One 2014; 9:e109869. [PMID: 25290914 PMCID: PMC4188605 DOI: 10.1371/journal.pone.0109869] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/03/2014] [Indexed: 11/19/2022] Open
Abstract
Background Human lymphocyte antigen B-associated transcript 5 (BAT5, also known as ABHD16A) is a poorly characterized 63 kDa protein belonging to the α/β-hydrolase domain (ABHD) containing family of metabolic serine hydrolases. Its natural substrates and biochemical properties are unknown. Methodology/Principal Findings Amino acid sequence comparison between seven mammalian BAT5 orthologs revealed that the overall primary structure was highly (≥95%) conserved. Activity-based protein profiling (ABPP) confirmed successful generation of catalytically active human (h) and mouse (m) BAT5 in HEK293 cells, enabling further biochemical characterization. A sensitive fluorescent glycerol assay reported hBAT5-mediated hydrolysis of medium-chain saturated (C14∶0), long-chain unsaturated (C18∶1, C18∶2, C20∶4) monoacylglycerols (MAGs) and 15-deoxy-Δ12,14-prostaglandin J2-2-glycerol ester (15d-PGJ2-G). In contrast, hBAT5 possessed only marginal diacylglycerol (DAG), triacylglycerol (TAG), or lysophospholipase activity. The best MAG substrates were 1-linoleylglycerol (1-LG) and 15d-PGJ2-G, both exhibiting low-micromolar Km values. BAT5 had a neutral pH optimum and showed preference for the 1(3)- vs. 2-isomers of MAGs C18∶1, C18∶2 and C20∶4. Inhibitor profiling revealed that β-lactone-based lipase inhibitors were nanomolar inhibitors of hBAT5 activity (palmostatin B > tetrahydrolipstatin > ebelactone A). Moreover, the hormone-sensitive lipase inhibitor C7600 (5-methoxy-3-(4-phenoxyphenyl)-3H-[1], [3], [4]oxadiazol-2-one) was identified as a highly potent inhibitor (IC50 8.3 nM). Phenyl and benzyl substituted analogs of C7600 with increased BAT5 selectivity were synthesized and a preliminary SAR analysis was conducted to obtain initial insights into the active site dimensions. Conclusions/Significance This study provides an initial characterization of BAT5 activity, unveiling the biochemical and pharmacological properties with in vitro substrate preferences and inhibitor profiles. Utilization of glycerolipid substrates and sensitivity to lipase inhibitors suggest that BAT5 is a genuine lipase with preference for long-chain unsaturated MAGs and could in this capacity regulate glycerolipid metabolism in vivo as well. This preliminary SAR data should pave the way towards increasingly potent and BAT5-selective inhibitors.
Collapse
Affiliation(s)
- Juha R. Savinainen
- School of Medicine, Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jayendra Z. Patel
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Teija Parkkari
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Dina Navia-Paldanius
- School of Medicine, Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Joona J. T. Marjamaa
- School of Medicine, Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tapio Nevalainen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jarmo T. Laitinen
- School of Medicine, Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- * E-mail:
| |
Collapse
|
41
|
Hermanson DJ, Gamble-George JC, Marnett LJ, Patel S. Substrate-selective COX-2 inhibition as a novel strategy for therapeutic endocannabinoid augmentation. Trends Pharmacol Sci 2014; 35:358-67. [PMID: 24845457 PMCID: PMC4074568 DOI: 10.1016/j.tips.2014.04.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/17/2014] [Accepted: 04/22/2014] [Indexed: 12/20/2022]
Abstract
Pharmacologic augmentation of endogenous cannabinoid (eCB) signaling is an emerging therapeutic approach for the treatment of a broad range of pathophysiological conditions. Thus far, pharmacological approaches have focused on inhibition of the canonical eCB inactivation pathways - fatty acid amide hydrolase (FAAH) for anandamide and monoacylglycerol lipase (MAGL) for 2-arachidonoylglycerol. We review here the experimental evidence that cyclooxygenase-2 (COX-2)-mediated eCB oxygenation represents a third mechanism for terminating eCB action at cannabinoid receptors. We describe the development, molecular mechanisms, and in vivo validation of 'substrate-selective' COX-2 inhibitors (SSCIs) that prevent eCB inactivation by COX-2 without affecting prostaglandin (PG) generation from arachidonic acid (AA). Lastly, we review recent data on the potential therapeutic applications of SSCIs with a focus on neuropsychiatric disorders.
Collapse
Affiliation(s)
- Daniel J Hermanson
- A.B. Hancock Jr Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology Center in Molecular Toxicology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Joyonna C Gamble-George
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lawrence J Marnett
- A.B. Hancock Jr Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology Center in Molecular Toxicology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Sachin Patel
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
42
|
Janero DR. The future of drug discovery: enabling technologies for enhancing lead characterization and profiling therapeutic potential. Expert Opin Drug Discov 2014; 9:847-58. [PMID: 24965547 DOI: 10.1517/17460441.2014.925876] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Technology often serves as a handmaiden and catalyst of invention. The discovery of safe, effective medications depends critically upon experimental approaches capable of providing high-impact information on the biological effects of drug candidates early in the discovery pipeline. This information can enable reliable lead identification, pharmacological compound differentiation and successful translation of research output into clinically useful therapeutics. The shallow preclinical profiling of candidate compounds promulgates a minimalistic understanding of their biological effects and undermines the level of value creation necessary for finding quality leads worth moving forward within the development pipeline with efficiency and prognostic reliability sufficient to help remediate the current pharma-industry productivity drought. Three specific technologies discussed herein, in addition to experimental areas intimately associated with contemporary drug discovery, appear to hold particular promise for strengthening the preclinical valuation of drug candidates by deepening lead characterization. These are: i) hydrogen-deuterium exchange mass spectrometry for characterizing structural and ligand-interaction dynamics of disease-relevant proteins; ii) activity-based chemoproteomics for profiling the functional diversity of mammalian proteomes; and iii) nuclease-mediated precision gene editing for developing more translatable cellular and in vivo models of human diseases. When applied in an informed manner congruent with the clinical understanding of disease processes, technologies such as these that span levels of biological organization can serve as valuable enablers of drug discovery and potentially contribute to reducing the current, unacceptably high rates of compound clinical failure.
Collapse
Affiliation(s)
- David R Janero
- Northeastern University, Bouvé College of Health Sciences, Center for Drug Discovery, Department of Pharmaceutical Sciences, Health Sciences Entrepreneurs , 360 Huntington Avenue, 116 Mugar Life Sciences Hall, Boston, MA 02115-5000 , USA +1 617 373 2208 ; +1 617 373 7493 ;
| |
Collapse
|
43
|
Abstract
Chemical atherogenesis is an emerging field that describes how environmental pollutants and endogenous toxins perturb critical pathways that regulate lipid metabolism and inflammation, thus injuring cells found within the vessel wall. Despite growing awareness of the role of environmental pollutants in the development of cardiovascular disease, the field of chemical atherogenesis can broadly include both exogenous and endogenous poisons and the study of molecular, biochemical, and cellular pathways that become dysregulated during atherosclerosis. This integrated approach is logical because exogenous and endogenous toxins often share the same mechanism of toxicity. Chemical atherogenesis is a truly integrative discipline because it incorporates concepts from several different fields, including biochemistry, chemical biology, pharmacology, and toxicology. This review will provide an overview of this emerging research area, focusing on cellular and animal models of disease.
Collapse
|