1
|
Qiao Z, Liu S, Zhai W, Jiang L, Ma Y, Zhang Z, Wang B, Shao J, Qian H, Zhao F, Yan L. Novel dual-target FAAH and TRPV1 ligands as potential pharmacotherapeutics for pain management. Eur J Med Chem 2024; 267:116208. [PMID: 38325006 DOI: 10.1016/j.ejmech.2024.116208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Dual-acting drugs that simultaneously inhibit fatty acid amide hydrolase (FAAH) and antagonize the transient receptor potential vanilloid 1 (TRPV1) is a promising stronger therapeutic approach for pain management without side effects associated with single-target agents. Here, several series of dual FAAH/TRPV1 blockers were designed and synthesized through rational molecular hybridization between the pharmacophore of classical TRPV1 antagonists and FAAH inhibitors. The studies resulted in compound 2r, which exhibited strong dual FAAH/TRPV1 inhibition/antagonism in vitro, exerted powerful analgesic effects in formalin-induced pain test (phase II, in mice), desirable anti-inflammatory activity in carrageenan-induced paw edema in rats, no TRPV1-related hyperthermia side effect, and favorable pharmacokinetic properties. Meanwhile, the contributions of TRPV1 and FAAH to its antinociceptive effects were verified by target engagement and molecular docking studies. Overall, compound 2r can serve as a new scaffold for developing FAAH/TRPV1 dual-activie ligands to counteract pain.
Collapse
Affiliation(s)
- Zhenrui Qiao
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China
| | - Shuyu Liu
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu, 210009, China
| | - Weibin Zhai
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China
| | - Lei Jiang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China
| | - Yunmeng Ma
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China
| | - Zhikang Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China
| | - Bingxin Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China
| | - Jingwen Shao
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China
| | - Hai Qian
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu, 210009, China
| | - Fenqin Zhao
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China.
| | - Lin Yan
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China.
| |
Collapse
|
2
|
Costa AC, Joaquim HPG, Pedrazzi JFC, Pain ADO, Duque G, Aprahamian I. Cannabinoids in Late Life Parkinson's Disease and Dementia: Biological Pathways and Clinical Challenges. Brain Sci 2022; 12:brainsci12121596. [PMID: 36552056 PMCID: PMC9775654 DOI: 10.3390/brainsci12121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
The use of cannabinoids as therapeutic drugs has increased among aging populations recently. Age-related changes in the endogenous cannabinoid system could influence the effects of therapies that target the cannabinoid system. At the preclinical level, cannabidiol (CBD) induces anti-amyloidogenic, antioxidative, anti-apoptotic, anti-inflammatory, and neuroprotective effects. These findings suggest a potential therapeutic role of cannabinoids to neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer. Emerging evidence suggests that CBD and tetrahydrocannabinol have neuroprotective therapeutic-like effects on dementias. In clinical practice, cannabinoids are being used off-label to relieve symptoms of PD and AD. In fact, patients are using cannabis compounds for the treatment of tremor, non-motor symptoms, anxiety, and sleep assistance in PD, and managing responsive behaviors of dementia such as agitation. However, strong evidence from clinical trials is scarce for most indications. Some clinicians consider cannabinoids an alternative for older adults bearing Parkinson's disease and Alzheimer's dementia with a poor response to first-line treatments. In our concept and experience, cannabinoids should never be considered a first-line treatment but could be regarded as an adjuvant therapy in specific situations commonly seen in clinical practice. To mitigate the risk of adverse events, the traditional dogma of geriatric medicine, starting with a low dose and proceeding with a slow titration regime, should also be employed with cannabinoids. In this review, we aimed to address preclinical evidence of cannabinoids in neurodegenerative disorders such as PD and AD and discuss potential off-label use of cannabinoids in clinical practice of these disorders.
Collapse
Affiliation(s)
- Alana C. Costa
- Laboratory of Neuroscience (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-903, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo 05403-010, Brazil
| | - Helena P. G. Joaquim
- Department of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - João F. C. Pedrazzi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo 05403-903, Brazil
| | - Andreia de O. Pain
- Group of Investigation on Multimorbidity and Mental Health in Aging (GIMMA), Geriatrics Division, Department of Internal Medicine, Jundiaí Medical School, Jundiaí 13202-550, Brazil
| | - Gustavo Duque
- Division of Geriatric Medicine, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Ivan Aprahamian
- Group of Investigation on Multimorbidity and Mental Health in Aging (GIMMA), Geriatrics Division, Department of Internal Medicine, Jundiaí Medical School, Jundiaí 13202-550, Brazil
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands
- Correspondence:
| |
Collapse
|
3
|
Peters KZ, Naneix F. The role of dopamine and endocannabinoid systems in prefrontal cortex development: Adolescence as a critical period. Front Neural Circuits 2022; 16:939235. [PMID: 36389180 PMCID: PMC9663658 DOI: 10.3389/fncir.2022.939235] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/14/2022] [Indexed: 01/07/2023] Open
Abstract
The prefrontal cortex plays a central role in the control of complex cognitive processes including action control and decision making. It also shows a specific pattern of delayed maturation related to unique behavioral changes during adolescence and allows the development of adult cognitive processes. The adolescent brain is extremely plastic and critically vulnerable to external insults. Related to this vulnerability, adolescence is also associated with the emergence of numerous neuropsychiatric disorders involving alterations of prefrontal functions. Within prefrontal microcircuits, the dopamine and the endocannabinoid systems have widespread effects on adolescent-specific ontogenetic processes. In this review, we highlight recent advances in our understanding of the maturation of the dopamine system and the endocannabinoid system in the prefrontal cortex during adolescence. We discuss how they interact with GABA and glutamate neurons to modulate prefrontal circuits and how they can be altered by different environmental events leading to long-term neurobiological and behavioral changes at adulthood. Finally, we aim to identify several future research directions to help highlight gaps in our current knowledge on the maturation of these microcircuits.
Collapse
Affiliation(s)
- Kate Zara Peters
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, United Kingdom
| | - Fabien Naneix
- The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom,*Correspondence: Fabien Naneix
| |
Collapse
|
4
|
Dasram MH, Walker RB, Khamanga SM. Recent Advances in Endocannabinoid System Targeting for Improved Specificity: Strategic Approaches to Targeted Drug Delivery. Int J Mol Sci 2022; 23:13223. [PMID: 36362014 PMCID: PMC9658826 DOI: 10.3390/ijms232113223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022] Open
Abstract
Opportunities for developing innovative and intelligent drug delivery technologies by targeting the endocannabinoid system are becoming more apparent. This review provides an overview of strategies to develop targeted drug delivery using the endocannabinoid system (ECS). Recent advances in endocannabinoid system targeting showcase enhanced pharmaceutical therapy specificity while minimizing undesirable side effects and overcoming formulation challenges associated with cannabinoids. This review identifies advances in targeted drug delivery technologies that may permit access to the full pharmacotherapeutic potential of the ECS. The design of optimized nanocarriers that target specific tissues can be improved by understanding the nature of the signaling pathways, distribution in the mammalian body, receptor structure, and enzymatic degradation of the ECS. A closer look at ligand-receptor complexes, endocannabinoid tone, tissue distribution, and G-protein activity leads to a better understanding of the potential of the ECS toolkit for therapeutics. The signal transduction pathways examine the modulation of downstream effector proteins, desensitization, signaling cascades, and biased signaling. An in-depth and overall view of the targeted system is achieved through homology modeling where mutagenesis and ligand binding examine the binding site and allow sequence analysis and the formation of libraries for molecular docking and molecular dynamic simulations. Internalization routes exploring receptor-mediated endocytosis and lipid rafts are also considered for explicit signaling. Furthermore, the review highlights nanotechnology and surface modification aspects as a possible future approach for specific targeting.
Collapse
Affiliation(s)
| | | | - Sandile M. Khamanga
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
5
|
Greco R, Demartini C, Zanaboni AM, Francavilla M, De Icco R, Ahmad L, Tassorelli C. The endocannabinoid system and related lipids as potential targets for the treatment of migraine-related pain. Headache 2022; 62:227-240. [PMID: 35179780 DOI: 10.1111/head.14267] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Migraine is a complex and highly disabling neurological disease whose treatment remains challenging in many patients, even after the recent advent of the first specific-preventive drugs, namely monoclonal antibodies that target calcitonin gene-related peptide. For this reason, headache researchers are actively searching for new therapeutic targets. Cannabis has been proposed for migraine treatment, but controlled clinical studies are lacking. A major advance in cannabinoid research has been the discovery of the endocannabinoid system (ECS), which consists of receptors CB1 and CB2; their endogenous ligands, such as N-arachidonoylethanolamine; and the enzymes that catalyze endocannabinoid biosynthesis or degradation. Preclinical and clinical findings suggest a possible role for endocannabinoids and related lipids, such as palmitoylethanolamide (PEA), in migraine-related pain treatment. In animal models of migraine-related pain, endocannabinoid tone modulation via inhibition of endocannabinoid-catabolizing enzymes has been a particular focus of research. METHODS To conduct a narrative review of available data on the possible effects of cannabis, endocannabinoids, and other lipids in migraine-related pain, relevant key words were used to search the PubMed/MEDLINE database for basic and clinical studies. RESULTS Endocannabinoids and PEA seem to reduce trigeminal nociception by interacting with many pathways associated with migraine, suggesting a potential synergistic or similar effect. CONCLUSIONS Modulation of the metabolic pathways of the ECS may be a basis for new migraine treatments. The multiplicity of options and the wealth of data already obtained in animal models underscore the importance of further advancing research in this area. Multiple molecules related to the ECS or to allosteric modulation of CB1 receptors have emerged as potential therapeutic targets in migraine-related pain. The complexity of the ECS calls for accurate biochemical and pharmacological characterization of any new compounds undergoing testing and development.
Collapse
Affiliation(s)
- Rosaria Greco
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Demartini
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Maria Zanaboni
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Miriam Francavilla
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto De Icco
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lara Ahmad
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Cristina Tassorelli
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
6
|
Khan RN, Maner-Smith K, A. Owens J, Barbian ME, Jones RM, R. Naudin C. At the heart of microbial conversations: endocannabinoids and the microbiome in cardiometabolic risk. Gut Microbes 2022; 13:1-21. [PMID: 33896380 PMCID: PMC8078674 DOI: 10.1080/19490976.2021.1911572] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiometabolic syndrome encompasses intertwined risk factors such as hypertension, dyslipidemia, elevated triglycerides, abdominal obesity, and other maladaptive metabolic and inflammatory aberrations. As the molecular mechanisms linking cardiovascular disease and metabolic disorders are investigated, endocannabinoids have emerged as molecules of interest. The endocannabinoid system (ECS) of biologically active lipids has been implicated in several conditions, including chronic liver disease, osteoporosis, and more recently in cardiovascular diseases. The gut microbiome is a major regulator of inflammatory and metabolic signaling in the host, and if disrupted, has the potential to drive metabolic and cardiovascular diseases. Extensive studies have unraveled the impact of the gut microbiome on host physiology, with recent reports showing that gut microbes exquisitely control the ECS, with significant influences on host metabolic and cardiac health. In this review, we outline how modulation of the gut microbiome affects host metabolism and cardiovascular health via the ECS, and how these findings could be exploited as novel therapeutic targets for various metabolic and cardiac diseases.
Collapse
Affiliation(s)
- Ramsha Nabihah Khan
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Kristal Maner-Smith
- Emory Integrated Metabolomics and Lipidomics Core, Emory University, Atlanta, Georgia, USA
| | - Joshua A. Owens
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Maria Estefania Barbian
- Division of Neonatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Rheinallt M. Jones
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Crystal R. Naudin
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA,CONTACT Crystal R. Naudin Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA30322, United States of America
| |
Collapse
|
7
|
Joaquim HPG, Costa AC, Pereira CAC, Talib LL, Bilt MMV, Loch AA, Gattaz WF. Plasmatic endocannabinoids are decreased in subjects with ultra-high risk of psychosis. Eur J Neurosci 2021; 55:1079-1087. [PMID: 34716624 DOI: 10.1111/ejn.15509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 11/27/2022]
Abstract
The onset of frank psychosis is usually preceded by a prodromal phase characterized by attenuated psychotic symptoms. Currently, research on schizophrenia prodromal phase (ultra-high risk for psychosis [UHR]) has focused on the risk of developing psychosis, on the transition to full blown psychosis and on its prediction. Neurobiological differences between UHR individuals who fully recover (remitters) versus those who show persistent/progressive prodromal symptoms (nonremitters) have been little explored. The endocannabinoid system constitutes a neuromodulatory system that plays a major role in brain development, synaptic plasticity, emotional behaviours and cognition. It comprises two cannabinoid receptors (CB1/CB2), two endocannabinoid ligands, arachidonylethanolamide (AEA) and 2-arachidonoylglycerol (2AG) along with their inactivation enzymes. Despite much evidence that the endocannabinoid system is imbalanced during psychosis, very little is known about it in UHR. Therefore, we aimed to quantify the plasma endocannabinoid levels in UHR and healthy controls (HC) and verify if these metabolites could differentiate between remitters and nonremitters. Circulating concentrations of AEA (p = .003) and 2AG (p < .001) were lower in UHR when compared with HC, with no difference between remitters and nonremitters. Regarding clinical evolution, it was observed that out of 91 UHRs initially considered, 16 had psychiatric complaints (3 years of follow-up). Considering those subjects, there were weak correlations between clinical parameters and plasma concentrations of endocannabinoids. Our results suggest that the endocannabinoids are imbalanced before frank psychosis and that changes can be seen in plasma of UHR individuals. These molecules proved to be potential biomarkers to identify individuals in the prodromal phase of psychosis.
Collapse
Affiliation(s)
- Helena P G Joaquim
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Alana C Costa
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Cícero A C Pereira
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Leda L Talib
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Martinus M V Bilt
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Alexandre A Loch
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Wagner F Gattaz
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| |
Collapse
|
8
|
Suriano F, Manca C, Flamand N, Depommier C, Van Hul M, Delzenne NM, Silvestri C, Cani PD, Di Marzo V. Exploring the endocannabinoidome in genetically obese (ob/ob) and diabetic (db/db) mice: Links with inflammation and gut microbiota. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159056. [PMID: 34606993 DOI: 10.1016/j.bbalip.2021.159056] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/20/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Obesity and type 2 diabetes are two interrelated metabolic disorders characterized by insulin resistance and a mild chronic inflammatory state. We previously observed that leptin (ob/ob) and leptin receptor (db/db) knockout mice display a distinct inflammatory tone in the liver and adipose tissue. The present study aimed at investigating whether alterations in these tissues of the molecules belonging to the endocannabinoidome (eCBome), an extension of the endocannabinoid (eCB) signaling system, whose functions are important in the context of metabolic disorders and inflammation, could reflect their different inflammatory phenotypes. RESULTS The basal eCBome lipid and gene expression profiles, measured by targeted lipidomics and qPCR transcriptomics, respectively, in the liver and subcutaneous or visceral adipose tissues, highlighted a differentially altered eCBome tone, which may explain the impaired hepatic function and more pronounced liver inflammation remarked in the ob/ob mice, as well as the more pronounced inflammatory state observed in the subcutaneous adipose tissue of db/db mice. In particular, the levels of linoleic acid-derived endocannabinoid-like molecules, of one of their 12-lipoxygenase metabolites and of Trpv2 expression, were always altered in tissues exhibiting the highest inflammation. Correlation studies suggested the possible interactions with some gut microbiota bacterial taxa, whose respective absolute abundances were significantly different between ob/ob and the db/db mice. CONCLUSIONS The present findings emphasize the possibility that bioactive lipids and the respective receptors and enzymes belonging to the eCBome may sustain the tissue-dependent inflammatory state that characterizes obesity and diabetes, possibly in relation with gut microbiome alterations.
Collapse
Affiliation(s)
- Francesco Suriano
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Claudia Manca
- Quebec Heart and Lung Institute Research Centre, Université Laval, Quebec City, QC G1V 0A6, Canada; Centre NUTRISS, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Nicolas Flamand
- Quebec Heart and Lung Institute Research Centre, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Clara Depommier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Cristoforo Silvestri
- Quebec Heart and Lung Institute Research Centre, Université Laval, Quebec City, QC G1V 0A6, Canada; Centre NUTRISS, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium.
| | - Vincenzo Di Marzo
- Quebec Heart and Lung Institute Research Centre, Université Laval, Quebec City, QC G1V 0A6, Canada; Centre NUTRISS, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC G1V 0A6, Canada; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy.
| |
Collapse
|
9
|
Winters BL, Vaughan CW. Mechanisms of endocannabinoid control of synaptic plasticity. Neuropharmacology 2021; 197:108736. [PMID: 34343612 DOI: 10.1016/j.neuropharm.2021.108736] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/13/2023]
Abstract
The endogenous cannabinoid transmitter system regulates synaptic transmission throughout the nervous system. Unlike conventional transmitters, specific stimuli induce synthesis of endocannabinoids (eCBs) in the postsynaptic neuron, and these travel backwards to modulate presynaptic inputs. In doing so, eCBs can induce short-term changes in synaptic strength and longer-term plasticity. While this eCB regulation is near ubiquitous, it displays major regional and synapse specific variations with different synapse specific forms of short-versus long-term plasticity throughout the brain. These differences are due to the plethora of pre- and postsynaptic mechanisms which have been implicated in eCB signalling, the intricacies of which are only just being realised. In this review, we shall describe the current understanding and highlight new advances in this area, with a focus on the retrograde action of eCBs at CB1 receptors (CB1Rs).
Collapse
Affiliation(s)
- Bryony Laura Winters
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia.
| | - Christopher Walter Vaughan
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia
| |
Collapse
|
10
|
Rahaman O, Ganguly D. Endocannabinoids in immune regulation and immunopathologies. Immunology 2021; 164:242-252. [PMID: 34053085 DOI: 10.1111/imm.13378] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Endocannabinoids are key bioactive components of the endocannabinoid system, and the profound influence of endocannabinoids on the modulation of the immune system is being increasingly appreciated. The knowledge of endocannabinoid-immune cell crosstalk will pave the way to therapeutic implications of modulators of this pathway in autoimmune and chronic inflammatory disorders. Endocannabinoids seem to exert both anti-inflammatory and pro-inflammatory effects in specific contexts, based on specific receptor engagement and the downstream signalling pathways involved. In this review, we summarized the biosynthesis, signalling and degradation of two well-studied endocannabinoids-anandamide and 2-arachidonylglycerol in immune cells. Then, we discussed the effects of these two endocannabinoids on the functioning of major innate and adaptive immune cells, along with the choice of receptors employed in such interactions. Finally, we outline our current knowledge on the involvement of anandamide and 2-arachidonylglycerol in context of inflammation, allergies, autoimmunity and metabolic disorders.
Collapse
Affiliation(s)
- Oindrila Rahaman
- Dendritic Cell Biology Laboratory, IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Dipyaman Ganguly
- Dendritic Cell Biology Laboratory, IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
11
|
Cannabinoid-based therapy as a future for joint degeneration. Focus on the role of CB 2 receptor in the arthritis progression and pain: an updated review. Pharmacol Rep 2021; 73:681-699. [PMID: 34050525 PMCID: PMC8180479 DOI: 10.1007/s43440-021-00270-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Over the last several decades, the percentage of patients suffering from different forms of arthritis has increased due to the ageing population and the increasing risk of civilization diseases, e.g. obesity, which contributes to arthritis development. Osteoarthritis and rheumatoid arthritis are estimated to affect 50-60% of people over 65 years old and cause serious health and economic problems. Currently, therapeutic strategies are limited and focus mainly on pain attenuation and maintaining joint functionality. First-line therapies are nonsteroidal anti-inflammatory drugs; in more advanced stages, stronger analgesics, such as opioids, are required, and in the most severe cases, joint arthroplasty is the only option to ensure joint mobility. Cannabinoids, both endocannabinoids and synthetic cannabinoid receptor (CB) agonists, are novel therapeutic options for the treatment of arthritis-associated pain. CB1 receptors are mainly located in the nervous system; thus, CB1 agonists induce many side effects, which limit their therapeutic efficacy. On the other hand, CB2 receptors are mainly located in the periphery on immune cells, and CB2 modulators exert analgesic and anti-inflammatory effects in vitro and in vivo. In the current review, novel research on the cannabinoid-mediated analgesic effect on arthritis is presented, with particular emphasis on the role of the CB2 receptor in arthritis-related pain and the suppression of inflammation.
Collapse
|
12
|
Oña G, Bouso JC. Therapeutic Potential of Natural Psychoactive Drugs for Central Nervous System Disorders: A Perspective from Polypharmacology. Curr Med Chem 2021; 28:53-68. [PMID: 31830883 DOI: 10.2174/0929867326666191212103330] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 11/22/2022]
Abstract
In the drug development, the formation of highly selective ligands has been unsuccessful in the treatment of central nervous system disorders. Multi-target ligands, from the polypharmacology paradigm, are being proposed as treatments for these complex disorders, since they offer enhanced efficacy and a strong safety profile. Natural products are the best examples of multi-target compounds, so they are of high interest within this paradigm. Additionally, recent research on psychoactive drugs of natural origin, such as ayahuasca and cannabis, has demonstrated the promising therapeutic potential for the treatment of some psychiatric and neurological disorders. In this text, we describe how research on psychoactive drugs can be effectively combined with the polypharmacology paradigm, providing ayahuasca and cannabis research as examples. The advantages and disadvantages are also discussed.
Collapse
Affiliation(s)
- Genís Oña
- International Center for Ethnobotanical Education, Research and Service (ICEERS), Barcelona, Spain
| | - José Carlos Bouso
- International Center for Ethnobotanical Education, Research and Service (ICEERS), Barcelona, Spain
| |
Collapse
|
13
|
Piscitelli F, Di Marzo V. Cannabinoids: a class of unique natural products with unique pharmacology. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2021. [DOI: 10.1007/s12210-020-00966-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Gao M, Wang Y, Liu L, Qiao Z, Yan L. A patent review of transient receptor potential vanilloid type 1 modulators (2014-present). Expert Opin Ther Pat 2020; 31:169-187. [PMID: 33377418 DOI: 10.1080/13543776.2021.1854225] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel with high permeability to calcium, which is widely expressed in the central nervous system (CNS) and peripheral nervous system. Since the TRPV1 was molecularly cloned more than 20 years ago, a series of research activities have been carried out on the possibility of new drugs. Areas covered: This review summarizes the patents on TRPV1 regulators (including agonists and antagonists) that were published during 2014-present and predicts the development direction in the future. The patent description is organized according to the applicant company and focuses on the representative compounds and their in vitro and in vivo data. Expert opinion: At present, TRPV1 is considered to be a molecular integrator of a broad range of chemical and physical stimuli. The desensitization of nociceptive neurons caused by TRPV1 agonists and the pharmacological blockade of TRPV1 by powerful small molecular antagonists are different treatments, both of which have analgesic effects. Unfortunately, TRPV1 modulators have suffered from adverse effects related to the role of TRPV1 channel in body temperature regulation and noxious heat sensation. What we need to know is whether these adverse effects are on-target (unavoidable), and whether chemical modification can be used to avoid or reduce these adverse reactions in the process of designing drug molecules, so as to develop a TRPV1 regulator with potent analgesic effect and no obvious adverse effects. Despite the difficulties and roadblocks, TRPV1 modulators remain powerful tools in pain research and represent promising therapeutic agents.
Collapse
Affiliation(s)
- Mengkang Gao
- School of Pharmacy, Henan University , Kaifeng, Henan, China
| | - Yusui Wang
- School of Pharmacy, Henan University , Kaifeng, Henan, China
| | - Lanqi Liu
- School of Pharmacy, Henan University , Kaifeng, Henan, China
| | - Zhenrui Qiao
- School of Pharmacy, Henan University , Kaifeng, Henan, China
| | - Lin Yan
- School of Pharmacy, Henan University , Kaifeng, Henan, China
| |
Collapse
|
15
|
Kaur I, Behl T, Bungau S, Zengin G, Kumar A, El-Esawi MA, Khullar G, Venkatachalam T, Arora S. The endocannabinoid signaling pathway as an emerging target in pharmacotherapy, earmarking mitigation of destructive events in rheumatoid arthritis. Life Sci 2020; 257:118109. [PMID: 32698072 DOI: 10.1016/j.lfs.2020.118109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis is an inflammatory autoimmune disease, characterized by synovial proliferation, destruction to articular cartilage and severe pain. The cannabinoids obtained from Cannabis sativa exhibited their actions via cannabinoid-1 and -2 receptors, which also provides a platform for endocannabinoids to act. The endocannabinoid system comprises endocannabinoid molecules involved in signaling processes, along with G-protein coupled receptors and enzymes associated with ligand biosynthesis, activation and degradation. The action of endocannabinoid system in immune system regulation, via primary CB2 activation, followed by inhibition of production of pro-inflammatory cytokines, auto-antibodies and MMPs, FLSs proliferation and T-cell mediated immune response, are elaborated as potential therapeutic regimes in rheumatoid arthritis. The involvement of endocannabinoid system in immune cells like, B cells, T cells and macrophages, as well as regulatory actions on sensory noniceptors to ameliorate pain is significantly highlighted in the review, elaborating the actions of endocannabinoid signaling in mitigating the disease events. The review also focuses on enhancement of endocannabinoid tone, either by inhibiting the degradation enzymes, like FAAH, MAGL, COX, CytP450, LOX, etc. or by retarding cellular uptake processes. Moreover, the review portrays the optimizing role of endocannabinoid system, in abbreviating the symptoms and complications of rheumatoid arthritis in patients and mitigating inflammation, pain and immune mediated effects significantly.
Collapse
Affiliation(s)
- Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10 1 Decembrie Sq., Oradea, Romania
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya, Turkey
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Gaurav Khullar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
16
|
Abstract
Non-steroidal anti-inflammatory drugs produce antinociceptive effects mainly through peripheral cyclooxygenase inhibition. In opposition to the classical non-steroidal anti-inflammatory drugs, paracetamol and dipyrone exert weak anti-inflammatory activity, their antinociceptive effects appearing to be mostly due to mechanisms other than peripheral cyclooxygenase inhibition. In this review, we classify classical non-steroidal anti-inflammatory drugs, paracetamol and dipyrone as “non-opioid analgesics” and discuss the mechanisms mediating participation of the endocannabinoid system in their antinociceptive effects. Non-opioid analgesics and their metabolites may activate cannabinoid receptors, as well as elevate endocannabinoid levels through different mechanisms: reduction of endocannabinoid degradation via fatty acid amide hydrolase and/or cyclooxygenase-2 inhibition, mobilization of arachidonic acid for the biosynthesis of endocannabinoids due to cyclooxygenase inhibition, inhibition of endocannabinoid cellular uptake directly or through the inhibition of nitric oxide synthase production, and induction of endocannabinoid release.
Collapse
Affiliation(s)
- Ruhan Deniz Topuz
- Department of Medical Pharmacology, Trakya University School of Medicine, Edirne, Turkey
| | - Özgur Gündüz
- Department of Medical Pharmacology, Trakya University School of Medicine, Edirne, Turkey
| | - Çetin Hakan Karadağ
- Department of Medical Pharmacology, Trakya University School of Medicine, Edirne, Turkey
| | - Ahmet Ulugöl
- Department of Medical Pharmacology, Trakya University School of Medicine, Edirne, Turkey
| |
Collapse
|
17
|
Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of ASP3652, a Reversible Fatty Acid Amide Hydrolase Inhibitor, in Healthy, Nonelderly, Japanese Men and Elderly, Japanese Men and Women: A Randomized, Double-blind, Placebo-controlled, Single and Multiple Oral Dose, Phase I Study. Clin Ther 2020; 42:906-923. [PMID: 32456804 DOI: 10.1016/j.clinthera.2020.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 11/20/2022]
Abstract
PURPOSE This study aimed to evaluate the safety, tolerability, and pharmacokinetic and pharmacodynamic properties of ASP3652, a peripherally acting inhibitor of peripheral fatty acid amide hydrolase (FAAH) after 30-, 100-, 300-, 600-, and 900-mg single and 100- and 300-mg BID multiple oral dose in Japanese patients. METHODS This was a randomized, double-blind, placebo-controlled, single and multiple oral dose Phase I study in healthy, nonelderly men and elderly men and women. The study consisted of 2 parts: in the single oral dose part, 40 healthy, nonelderly men were randomized to receive placebo or ASP3652; in the multiple oral dose part, 48 enrolled nonelderly men and elderly men and women were randomized to receive placebo or ASP3652. In both parts, the investigator judged whether the individuals were healthy based on the results of physical examinations and screening. The safety profile was assessed by examining adverse events, defined as any untoward medical occurrence in an individual administered the study drug and that did not necessarily have a causal relationship with the study treatment; clinical laboratory evaluations; vital signs; the Profile of Mood States scale; and standard 12-lead ECGs and 12-lead ECGs for QT assessment. Pharmacokinetic parameters were estimated using unchanged ASP3652 concentrations in plasma and urine. Pharmacodynamic parameters were estimated using FAAH activity and plasma anandamide, oleoylethanolamide, and palmitoylethanolamide concentrations. Safety and tolerability profiles were compared with the placebo group. FINDINGS ASP3652 was rapidly absorbed to reach Cmax in a single dose and near steady-state at approximately 3 days after the start of multiple dosing. The Cmax and AUC of ASP3652 were slightly higher than dose proportional after a single dose of ASP3652 at 30-900 mg. There was no apparent accumulation based on Cmax and AUC0-12 after multiple doses. Although no differences were found in Cmax or AUC0-12 by age in men, Cmax and AUC0-12 were slightly higher in elderly women than elderly men. FAAH activity was inhibited in a dose-dependent manner, and plasma levels of anandamide, oleoylethanolamide, and palmitoylethanolamide increased in all dose groups after single and multiple doses of ASP3652. The incidence of adverse events after multiple doses, which ranged from 44.4% to 66.7%, was similar across all treatment groups, including the placebo group. IMPLICATIONS Single and multiple doses of ASP3652 were well tolerated and increased endogenous cannabinoids.
Collapse
|
18
|
Manca C, Boubertakh B, Leblanc N, Deschênes T, Lacroix S, Martin C, Houde A, Veilleux A, Flamand N, Muccioli GG, Raymond F, Cani PD, Di Marzo V, Silvestri C. Germ-free mice exhibit profound gut microbiota-dependent alterations of intestinal endocannabinoidome signaling. J Lipid Res 2020; 61:70-85. [PMID: 31690638 PMCID: PMC6939599 DOI: 10.1194/jlr.ra119000424] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/26/2019] [Indexed: 01/10/2023] Open
Abstract
The gut microbiota is a unique ecosystem of microorganisms interacting with the host through several biochemical mechanisms. The endocannabinoidome (eCBome), a complex signaling system including the endocannabinoid system, approximately 50 receptors and metabolic enzymes, and more than 20 lipid mediators with important physiopathologic functions, modulates gastrointestinal tract function and may mediate host cell-microbe communications there. Germ-free (GF) mice, which lack an intestinal microbiome and so differ drastically from conventionally raised (CR) mice, offer a unique opportunity to explore the eCBome in a microbe-free model and in the presence of a reintroduced functional gut microbiome through fecal microbiota transplant (FMT). We aimed to gain direct evidence for a link between the microbiome and eCBome systems by investigating eCBome alterations in the gut in GF mice before and after FMT. Basal eCBome gene expression and lipid profiles were measured in various segments of the intestine of GF and CR mice at juvenile and adult ages using targeted quantitative PCR transcriptomics and LC-MS/MS lipidomics. GF mice exhibited age-dependent modifications in intestinal eCBome gene expression and lipid mediator levels. FMT from CR donor mice to age-matched GF male mice reversed several of these alterations, particularly in the ileum and jejunum, after only 1 week, demonstrating that the gut microbiome directly impacts the host eCBome and providing a cause-effect relationship between the presence or absence of intestinal microbes and eCBome signaling. These results open the way to new studies investigating the mechanisms through which intestinal microorganisms exploit eCBome signaling to exert some of their physiopathologic functions.
Collapse
Affiliation(s)
- Claudia Manca
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada
| | - Besma Boubertakh
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada
| | - Nadine Leblanc
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada
| | - Thomas Deschênes
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada; École de Nutrition, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, Canada
| | - Sebastien Lacroix
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada
| | - Cyril Martin
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada
| | - Alain Houde
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada
| | - Alain Veilleux
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada; École de Nutrition, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada
| | - Giulio G Muccioli
- Louvain Drug Research Institute (LDRI), Bioanalysis and Pharmacology of Bioactive Lipids Research Group, UCLouvain (Université Catholique de Louvain), Brussels, Belgium
| | - Frédéric Raymond
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada; École de Nutrition, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, Canada
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Bioanalysis and Pharmacology of Bioactive Lipids Research Group, UCLouvain (Université Catholique de Louvain), Brussels, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Metabolism and Nutrition Research Group, UCLouvain (Université Catholique de Louvain), Brussels, Belgium
| | - Vincenzo Di Marzo
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada; École de Nutrition, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, Canada
| | - Cristoforo Silvestri
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada.
| |
Collapse
|
19
|
Oliveira AB, Ribeiro RT, Mello MT, Tufik S, Peres MFP. Anandamide Is Related to Clinical and Cardiorespiratory Benefits of Aerobic Exercise Training in Migraine Patients: A Randomized Controlled Clinical Trial. Cannabis Cannabinoid Res 2019; 4:275-284. [PMID: 31872062 DOI: 10.1089/can.2018.0057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Introduction: Since endocannabinoids have been implicated in migraine pathophysiology, we conducted a randomized, controlled clinical trial to test the effects of a 12-week aerobic exercise intervention on plasma anandamide (AEA) and its relation with clinical, psychological, and cardiorespiratory outcomes. Materials and Methods: Episodic migraine patients taking no preventive drugs and nonheadache individuals were recruited from Hospital São Paulo and a tertiary headache clinic between March 2012 and March 2015. Participants were randomly assigned to receive aerobic exercise or enter the waitlist. Primary outcome was changes in plasma AEA; secondary outcome was number of days with migraine/month; and other clinical variables, mood scores, and cardiorespiratory fitness were chosen as tertiary outcomes. Measurements were taken on headache-free days. Data were analyzed by generalized linear models. Discussion: Fifty participants concluded the study (mean±SD age=36.2±10.9, and BMI=26.5±4.5). The plasma AEA reduced in migraine exercise (p<0.05) and control exercise groups (p<0.01). The number of days with migraine (p<0.01), migraine attacks (p<0.05), and abortive medication used (p<0.05) reduced in the migraine exercise group, whereas cardiorespiratory fitness increased in migraine exercise and control exercise groups (both p<0.05). Anxiety, depression, anger, and fatigue scores improved in the migraine exercise group (p<0.05 for all). Significant correlations between reduction in abortive medication used and cardiorespiratory fitness (r=-0.81 p<0.001), and reduced AEA (r=0.68 p<0.05) were found. Conclusions: This study suggests that peripheral AEA metabolism may be partly linked to the clinical and cardiorespiratory benefits of regular aerobic exercise in migraine patients. Trials registration: #NCT01972607.
Collapse
Affiliation(s)
- Arão Belitardo Oliveira
- Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Marco Tulio Mello
- Departamento de Ciências do Esporte, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mario Fernando Prieto Peres
- Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, Brazil.,Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Ney LJ, Matthews A, Bruno R, Felmingham KL. Cannabinoid interventions for PTSD: Where to next? Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:124-140. [PMID: 30946942 DOI: 10.1016/j.pnpbp.2019.03.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/20/2019] [Accepted: 03/29/2019] [Indexed: 01/18/2023]
Abstract
Cannabinoids are a promising method for pharmacological treatment of post-traumatic stress disorder (PTSD). Despite considerable research devoted to the effect of cannabinoid modulation on PTSD symptomology, there is not a currently agreed way by which the cannabinoid system should be targeted in humans. In this review, we present an overview of recent research identifying neurological pathways by which different cannabinoid-based treatments may exert their effects on PTSD symptomology. We evaluate the strengths and weaknesses of each of these different approaches, including recent challenges presented to favourable options such as fatty acid amide hydrolase (FAAH) inhibitors. This article makes the strengths and challenges of different potential cannabinoid treatments accessible to psychological researchers interested in cannabinoid therapeutics and aims to aid selection of appropriate tools for future clinical trials.
Collapse
Affiliation(s)
- Luke J Ney
- School of Psychology, University of Tasmania, Australia.
| | | | | | - Kim L Felmingham
- School of Psychological Sciences, University of Melbourne, Australia
| |
Collapse
|
21
|
Mlost J, Wąsik A, Michaluk JT, Antkiewicz-Michaluk L, Starowicz K. Changes in Monoaminergic Neurotransmission in an Animal Model of Osteoarthritis: The Role of Endocannabinoid Signaling. Front Mol Neurosci 2018; 11:466. [PMID: 30618615 PMCID: PMC6306412 DOI: 10.3389/fnmol.2018.00466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022] Open
Abstract
Chronic pain is a main symptom of osteoarthritis (OA). Moreover, a high percentage of OA patients suffer from mental health problems. The endocannabinoid (EC) system has attracted attention as an emerging drug target for pain treatment together with its activity on the mesolimbic reward system. Understanding the circuits that govern the reward of pain relief is crucial for the search for effective analgesics. Therefore, we investigated the role of the EC system on dopamine (DA) and noradrenaline (NA) in an animal model of OA-related chronic pain. OA rats exhibited significant decreases in DA metabolism in the nucleus accumbens (NAc), striatum (STR) and hippocampus (HC). NA metabolism was also significantly decreased by chronic pain in OA rats; however, this disruption was limited to the frontal cortex (FCx) and HC. URB597 (an inhibitor of EC metabolism) treatment completely reversed the decreased DA metabolism, especially in the brain reward system and the HC. Furthermore, administration of URB597 normalized the impairment of NA activity in the HC but potentiated the decreased NA levels in the FCx. Our results demonstrated that chronic pain in OA rats was reflected by the inhibition of mesolimbic and mesocortical dopaminergic transmission, and may indicate the pro-pain role of NA in the FCx. The data provide understanding about changes in neurotransmission in chronic pain states and may explain the clinical improvement in perceived life quality following cannabinoid treatment. Additional mechanistic studies in preclinical models examining the intersection between chronic pain and reward circuits may offer new approaches for improving pain therapy.
Collapse
Affiliation(s)
- Jakub Mlost
- Department of Neurochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Agnieszka Wąsik
- Department of Neurochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Jerzy Tadeusz Michaluk
- Department of Neurochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | | - Katarzyna Starowicz
- Department of Neurochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
22
|
Endocannabinoid system, stress and HPA axis. Eur J Pharmacol 2018; 834:230-239. [DOI: 10.1016/j.ejphar.2018.07.039] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/19/2018] [Indexed: 11/19/2022]
|
23
|
Bouquié R, Deslandes G, Mazaré H, Cogné M, Mahé J, Grégoire M, Jolliet P. Cannabis and anticancer drugs: societal usage and expected pharmacological interactions - a review. Fundam Clin Pharmacol 2018; 32:462-484. [DOI: 10.1111/fcp.12373] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Régis Bouquié
- Laboratoire de Biologie Médicale; Centre Hospitalier Léon-Jean Grégory; avenue du Roussillon 66330 Thuir France
- Clinical Pharmacology Department; Nantes University Hospital; institut de biologie; 9 quai Moncousu 44093 Nantes Cedex 1 France
- EA 4275 Biostatistique; Pharmacoépidémiologie et Mesures Subjectives en Santé; Nantes University Hospital; Nantes France
| | - Guillaume Deslandes
- Clinical Pharmacology Department; Nantes University Hospital; institut de biologie; 9 quai Moncousu 44093 Nantes Cedex 1 France
| | - Hélène Mazaré
- Clinical Pharmacology Department; Nantes University Hospital; institut de biologie; 9 quai Moncousu 44093 Nantes Cedex 1 France
| | - Marion Cogné
- Clinical Pharmacology Department; Nantes University Hospital; institut de biologie; 9 quai Moncousu 44093 Nantes Cedex 1 France
| | - Julien Mahé
- Clinical Pharmacology Department; Nantes University Hospital; institut de biologie; 9 quai Moncousu 44093 Nantes Cedex 1 France
| | - Matthieu Grégoire
- Clinical Pharmacology Department; Nantes University Hospital; institut de biologie; 9 quai Moncousu 44093 Nantes Cedex 1 France
- EA 3826 Thérapeutiques Cliniques et Expérimentales des Infections; Nantes University Hospital; Nantes France
| | - Pascale Jolliet
- Clinical Pharmacology Department; Nantes University Hospital; institut de biologie; 9 quai Moncousu 44093 Nantes Cedex 1 France
- EA 4275 Biostatistique; Pharmacoépidémiologie et Mesures Subjectives en Santé; Nantes University Hospital; Nantes France
| |
Collapse
|
24
|
Tóth V, Fehér Á, Németh J, Gyertyán I, Zádori Z, Gyires K. Modulation of central endocannabinoid system results in gastric mucosal protection in the rat. Brain Res Bull 2018; 139:224-234. [DOI: 10.1016/j.brainresbull.2018.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 12/29/2022]
|
25
|
Synthesis and biological evaluation of novel tanshinone IIA derivatives for treating pain. Chin J Nat Med 2018; 16:113-124. [DOI: 10.1016/s1875-5364(18)30037-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Indexed: 12/20/2022]
|
26
|
Molecular Understanding of the Activation of CB1 and Blockade of TRPV1 Receptors: Implications for Novel Treatment Strategies in Osteoarthritis. Int J Mol Sci 2018; 19:ijms19020342. [PMID: 29364174 PMCID: PMC5855564 DOI: 10.3390/ijms19020342] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is a joint disease in which cartilage degenerates as a result of mechanical and biochemical changes. The main OA symptom is chronic pain involving both peripheral and central mechanisms of nociceptive processing. Our previous studies have implicated the benefits of dual- over single-acting compounds interacting with the endocannabinoid system (ECS) in OA treatment. In the present study, we focused on the specific molecular alterations associated with pharmacological treatment. OA was induced in Wistar rats by intra-articular injection of 3 mg of monoiodoacetate (MIA). Single target compounds (URB597, an FAAH inhibitor, and SB366791, a TRPV1 antagonist) and a dual-acting compound OMDM198 (FAAH inhibitor/TRPV1 antagonist) were used in the present study. At day 21 post-MIA injection, rats were sacrificed 1 h after i.p. treatment, and changes in mRNA expression were evaluated in the lumbar spinal cord by RT-qPCR. Following MIA administration, we observed 2-4-fold increase in mRNA expression of targeted receptors (Cnr1, Cnr2, and Trpv1), endocannabinoid degradation enzymes (Faah, Ptgs2, and Alox12), and TRPV1 sensitizing kinases (Mapk3, Mapk14, Prkcg, and Prkaca). OMDM198 treatment reversed some of the MIA effects on the spinal cord towards intact levels (Alox12, Mapk14, and Prkcg). Apparent regulation of ECS and TRPV1 in response to pharmacological intervention is a strong justification for novel ECS-based multi-target drug treatment in OA.
Collapse
|
27
|
Watabiki T, Tsuji N, Kiso T, Ozawa T, Narazaki F, Kakimoto S. In vitro and in vivo pharmacological characterization of ASP8477: A novel highly selective fatty acid amide hydrolase inhibitor. Eur J Pharmacol 2017; 815:42-48. [PMID: 29017758 DOI: 10.1016/j.ejphar.2017.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 09/03/2017] [Accepted: 10/04/2017] [Indexed: 12/20/2022]
Abstract
Although exogenous agonists for cannabinoid (CB) receptors are clinically effective for treating chronic pain, global activation of brain CB receptors causes frequent central nervous system (CNS) side-effects. Fatty acid amide hydrolase (FAAH) is a primary catabolic enzyme for anandamide (AEA), an endogenous CB. Recently, we discovered a novel FAAH inhibitor, 3-pyridyl 4-(phenylcarbamoyl)piperidine-1-carboxylate (ASP8477). In vitro studies demonstrated that ASP8477 inhibited human FAAH-1, FAAH-1 (P129T) and FAAH-2 activity with IC50 values of 3.99, 1.65 and 57.3nM, respectively. ASP8477 at 10µM had no appreciable interactions with 65 different kinds of receptors, ion channels, transporters and enzymes, including CB1 and CB2 receptors and monoacylglycerol lipase. In adolescent rats, orally administered ASP8477 (0.3-10mg/kg) elevated AEA concentrations in both plasma and brain. In a capsaicin-induced secondary hyperalgesia model, a pretreatment with ASP8477 significantly improved mechanical allodynia and thermal hyperalgesia at 0.3-3mg/kg p.o. ASP8477 also significantly improved mechanical allodynia in an L5/L6 spinal nerve ligation neuropathic pain model, with an ED50 value of 0.63mg/kg, and in a streptozotocin-induced diabetic neuropathy model at 3 and 10mg/kg p.o. Furthermore, ASP8477 significantly attenuated the reduction in rearing events at 1 and 3mg/kg p.o. in a monoiodoacetic acid-induced osteoarthritis model. Importantly, ASP8477 had no significant effect on motor coordination up to 30mg/kg p.o. These results indicate that ASP8477 is a potent, selective, and oral active FAAH inhibitor with activity in the CNS, with the potential to be a new analgesic agent with a wide safety margin.
Collapse
Affiliation(s)
- Tomonari Watabiki
- Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan.
| | - Noriko Tsuji
- Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Tetsuo Kiso
- Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Tohru Ozawa
- Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Fumie Narazaki
- Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Shuichiro Kakimoto
- Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| |
Collapse
|
28
|
Pacher P, Steffens S, Haskó G, Schindler TH, Kunos G. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nat Rev Cardiol 2017; 15:151-166. [DOI: 10.1038/nrcardio.2017.130] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Barrie N, Manolios N. The endocannabinoid system in pain and inflammation: Its relevance to rheumatic disease. Eur J Rheumatol 2017; 4:210-218. [PMID: 29164003 DOI: 10.5152/eurjrheum.2017.17025] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/12/2017] [Indexed: 12/29/2022] Open
Abstract
Pain is the most common manifestation of both acute and chronic inflammation that often challenges patients with rheumatic disease. Simply, we attribute this to local joint changes of pH in joints, the formation of radicals, enhanced joint pressure, or cytokine release acting on local nerves to produce pain. However, there is a more complex interplay of interactions between cytokines, mediators of inflammation, and ion channels that influence the final immune response and our perception of pain. Endocannabinoids, a group of less well-known endogenous bioactive lipids, have such manifold immunomodulatory effects able to influence both inflammation and pain. In this review, we overview the endocannabinoid system, its role in pain, inflammation, and immune regulation, and highlight the emerging challenges and therapeutic hopes.
Collapse
Affiliation(s)
- Nicola Barrie
- Department of Rheumatology, University of Sydney, Westmead Hospital, Sydney, Australia
| | - Nicholas Manolios
- Department of Rheumatology, University of Sydney, Westmead Hospital, Sydney, Australia
| |
Collapse
|
30
|
Pascual AC, Gaveglio VL, Giusto NM, Pasquaré SJ. 2-Arachidonoylglycerol metabolism is differently modulated by oligomeric and fibrillar conformations of amyloid beta in synaptic terminals. Neuroscience 2017; 362:168-180. [PMID: 28844762 DOI: 10.1016/j.neuroscience.2017.08.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/19/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent disorder of senile dementia mainly characterized by amyloid-beta peptide (Aβ) deposits in the brain. Cannabinoids are relevant to AD as they exert several beneficial effects in many models of this disease. Still, whether the endocannabinoid system is either up- or down-regulated in AD has not yet been fully elucidated. Thus, the aim of the present paper was to analyze endocannabinoid 2-arachidonoylglycerol (2-AG) metabolism in cerebral cortex synaptosomes incubated with Aβ oligomers or fibrils. These Aβ conformations were obtained by "aging" the 1-40 fragment of the peptide under different agitation and time conditions. A diminished availability of 2-AG resulting from a significant decrease in diacylglycerol lipase (DAGL) activity was observed in the presence of large Aβ1-40 oligomers along with synaptosomal membrane damage, as judged by transmission electron microscopy and LDH release. Conversely, a high availability of 2-AG resulting from an increase in DAGL and lysophosphatidic acid phosphohydrolase activities occurred in the presence of Aβ1-40 fibrils although synaptosomal membrane disruption was also observed. Interestingly, neither synaptosomal mitochondrial viability assayed by MTT reduction nor membrane lipid peroxidation assayed by TBARS formation measurements were altered by Aβ1-40 oligomers or fibrils. These results show a differential effect of Aβ1-40 peptide on 2-AG metabolism depending on its conformation.
Collapse
Affiliation(s)
- Ana C Pascual
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB, UNS-CONICET), Edificio E1, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Virginia L Gaveglio
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB, UNS-CONICET), Edificio E1, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Norma M Giusto
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB, UNS-CONICET), Edificio E1, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Susana J Pasquaré
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB, UNS-CONICET), Edificio E1, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
31
|
Starowicz K, Finn DP. Cannabinoids and Pain: Sites and Mechanisms of Action. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:437-475. [PMID: 28826543 DOI: 10.1016/bs.apha.2017.05.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The endocannabinoid system, consisting of the cannabinoid1 receptor (CB1R) and cannabinoid2 receptor (CB2R), endogenous cannabinoid ligands (endocannabinoids), and metabolizing enzymes, is present throughout the pain pathways. Endocannabinoids, phytocannabinoids, and synthetic cannabinoid receptor agonists have antinociceptive effects in animal models of acute, inflammatory, and neuropathic pain. CB1R and CB2R located at peripheral, spinal, or supraspinal sites are important targets mediating these antinociceptive effects. The mechanisms underlying the analgesic effects of cannabinoids likely include inhibition of presynaptic neurotransmitter and neuropeptide release, modulation of postsynaptic neuronal excitability, activation of the descending inhibitory pain pathway, and reductions in neuroinflammatory signaling. Strategies to dissociate the psychoactive effects of cannabinoids from their analgesic effects have focused on peripherally restricted CB1R agonists, CB2R agonists, inhibitors of endocannabinoid catabolism or uptake, and modulation of other non-CB1R/non-CB2R targets of cannabinoids including TRPV1, GPR55, and PPARs. The large body of preclinical evidence in support of cannabinoids as potential analgesic agents is supported by clinical studies demonstrating their efficacy across a variety of pain disorders.
Collapse
Affiliation(s)
- Katarzyna Starowicz
- Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Pain Pathophysiology, Krakow, Poland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland.
| |
Collapse
|
32
|
Chemical probes to potently and selectively inhibit endocannabinoid cellular reuptake. Proc Natl Acad Sci U S A 2017; 114:E5006-E5015. [PMID: 28584105 DOI: 10.1073/pnas.1704065114] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The extracellular effects of the endocannabinoids anandamide and 2-arachidonoyl glycerol are terminated by enzymatic hydrolysis after crossing cellular membranes by facilitated diffusion. The lack of potent and selective inhibitors for endocannabinoid transport has prevented the molecular characterization of this process, thus hindering its biochemical investigation and pharmacological exploitation. Here, we report the design, chemical synthesis, and biological profiling of natural product-derived N-substituted 2,4-dodecadienamides as a selective endocannabinoid uptake inhibitor. The highly potent (IC50 = 10 nM) inhibitor N-(3,4-dimethoxyphenyl)ethyl amide (WOBE437) exerted pronounced cannabinoid receptor-dependent anxiolytic, antiinflammatory, and analgesic effects in mice by increasing endocannabinoid levels. A tailored WOBE437-derived diazirine-containing photoaffinity probe (RX-055) irreversibly blocked membrane transport of both endocannabinoids, providing mechanistic insights into this complex process. Moreover, RX-055 exerted site-specific anxiolytic effects on in situ photoactivation in the brain. This study describes suitable inhibitors to target endocannabinoid membrane trafficking and uncovers an alternative endocannabinoid pharmacology.
Collapse
|
33
|
Gyires K, Zádori ZS. Role of Cannabinoids in Gastrointestinal Mucosal Defense and Inflammation. Curr Neuropharmacol 2017; 14:935-951. [PMID: 26935536 PMCID: PMC5333598 DOI: 10.2174/1570159x14666160303110150] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/14/2015] [Accepted: 02/26/2016] [Indexed: 02/06/2023] Open
Abstract
Modulating the activity of the endocannabinoid system influences various gastrointestinal physiological and pathophysiological processes, and cannabinoid receptors as well as regulatory enzymes responsible for the synthesis or degradation of endocannabinoids representing potential targets to reduce the development of gastrointestinal mucosal lesions, hemorrhage and inflammation. Direct activation of CB1 receptors by plant-derived, endogenous or synthetic cannabinoids effectively reduces both gastric acid secretion and gastric motor activity, and decreases the formation of gastric mucosal lesions induced by stress, pylorus ligation, nonsteroidal anti-inflammatory drugs (NSAIDs) or alcohol, partly by peripheral, partly by central mechanisms. Similarly, indirect activation of cannabinoid receptors through elevation of endocannabinoid levels by globally acting or peripherally restricted inhibitors of their metabolizing enzymes (FAAH, MAGL) or by inhibitors of their cellular uptake reduces the gastric mucosal lesions induced by NSAIDs in a CB1 receptor-dependent fashion. Dual inhibition of FAAH and cyclooxygenase enzymes induces protection against both NSAID-induced gastrointestinal damage and intestinal inflammation. Moreover, in intestinal inflammation direct or indirect activation of CB1 and CB2 receptors exerts also multiple beneficial effects. Namely, activation of both CB receptors was shown to ameliorate intestinal inflammation in various murine colitis models, to decrease visceral hypersensitivity and abdominal pain, as well as to reduce colitis-associated hypermotility and diarrhea. In addition, CB1 receptors suppress secretory processes and also modulate intestinal epithelial barrier functions. Thus, experimental data suggest that the endocannabinoid system represents a promising target in the treatment of inflammatory bowel diseases, and this assumption is also confirmed by preliminary clinical studies.
Collapse
Affiliation(s)
- Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvarad ter 4., 1089, Budapest, Hungary
| | | |
Collapse
|
34
|
Androvicova R, Horacek J, Stark T, Drago F, Micale V. Endocannabinoid system in sexual motivational processes: Is it a novel therapeutic horizon? Pharmacol Res 2016; 115:200-208. [PMID: 27884725 DOI: 10.1016/j.phrs.2016.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/20/2016] [Accepted: 11/20/2016] [Indexed: 12/23/2022]
Abstract
The endocannabinoid system (ECS), which is composed of the cannabinoid receptors types 1 and 2 (CB1 and CB2) for marijuana's psychoactive ingredient Δ9-tetrahydrocannabinol (Δ9-THC), the endogenous ligands (AEA and 2-AG) and the enzymatic systems involved in their biosynthesis and degradation, recently emerged as important modulator of emotional and non-emotional behaviors. For centuries, in addition to its recreational actions, several contradictory claims regarding the effects of Cannabis use in sexual functioning and behavior (e.g. aphrodisiac vs anti-aphrodisiac) of both sexes have been accumulated. The identification of Δ9-THC and later on, the discovery of the ECS have opened a potential therapeutic target for sexual dysfunctions, given the partial efficacy of current pharmacological treatment. In agreement with the bidirectional modulation induced by cannabinoids on several behavioral responses, the endogenous cannabinoid AEA elicited biphasic effects on sexual behavior as well. The present article reviews current available knowledge on herbal, synthetic and endogenous cannabinoids with respect to the modulation of several aspects of sexuality in preclinical and human studies, highlighting their therapeutic potential.
Collapse
Affiliation(s)
- Renata Androvicova
- National Institute of Mental Health, Klecany, Czech Republic; 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiri Horacek
- National Institute of Mental Health, Klecany, Czech Republic; 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
35
|
Ligresti A, De Petrocellis L, Di Marzo V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol Rev 2016; 96:1593-659. [DOI: 10.1152/physrev.00002.2016] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.
Collapse
Affiliation(s)
- Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| |
Collapse
|
36
|
Chen J, Varga A, Selvarajah S, Jenes A, Dienes B, Sousa-Valente J, Kulik A, Veress G, Brain SD, Baker D, Urban L, Mackie K, Nagy I. Spatial Distribution of the Cannabinoid Type 1 and Capsaicin Receptors May Contribute to the Complexity of Their Crosstalk. Sci Rep 2016; 6:33307. [PMID: 27653550 PMCID: PMC5032030 DOI: 10.1038/srep33307] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/24/2016] [Indexed: 01/07/2023] Open
Abstract
The cannabinoid type 1 (CB1) receptor and the capsaicin receptor (TRPV1) exhibit co-expression and complex, but largely unknown, functional interactions in a sub-population of primary sensory neurons (PSN). We report that PSN co-expressing CB1 receptor and TRPV1 form two distinct sub-populations based on their pharmacological properties, which could be due to the distribution pattern of the two receptors. Pharmacologically, neurons respond either only to capsaicin (COR neurons) or to both capsaicin and the endogenous TRPV1 and CB1 receptor ligand anandamide (ACR neurons). Blocking or deleting the CB1 receptor only reduces both anandamide- and capsaicin-evoked responses in ACR neurons. Deleting the CB1 receptor also reduces the proportion of ACR neurons without any effect on the overall number of capsaicin-responding cells. Regarding the distribution pattern of the two receptors, neurons express CB1 and TRPV1 receptors either isolated in low densities or in close proximity with medium/high densities. We suggest that spatial distribution of the CB1 receptor and TRPV1 contributes to the complexity of their functional interaction.
Collapse
Affiliation(s)
- Jie Chen
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK.,Department of Anaesthesiology, Southwest Hospital, Third Military Medical University, Gaotanyan 19 Street, Shapingba, Chongqing 400038, P. R. China
| | - Angelika Varga
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK.,MTA-DE-NAP B-Pain Control Research GroupDepartment of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4012, Hungary
| | - Srikumaran Selvarajah
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK
| | - Agnes Jenes
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK.,MTA-DE-NAP B-Pain Control Research GroupDepartment of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4012, Hungary
| | - Beatrix Dienes
- MTA-DE-NAP B-Pain Control Research GroupDepartment of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4012, Hungary
| | - Joao Sousa-Valente
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK
| | - Akos Kulik
- Institute of Physiology, University of Freiburg, Germany D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104, Germany
| | - Gabor Veress
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Susan D Brain
- BHF Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London SE1 9NH, UK
| | - David Baker
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Laszlo Urban
- Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institutes for Biommedical Research, Cambridge, MA 01932, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, The Gill Center, 702 N. Walnut Grove Avenue, Bloomington, IN 47405, USA
| | - Istvan Nagy
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK
| |
Collapse
|
37
|
Malek N, Starowicz K. Dual-Acting Compounds Targeting Endocannabinoid and Endovanilloid Systems-A Novel Treatment Option for Chronic Pain Management. Front Pharmacol 2016; 7:257. [PMID: 27582708 PMCID: PMC4987369 DOI: 10.3389/fphar.2016.00257] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/02/2016] [Indexed: 12/17/2022] Open
Abstract
Compared with acute pain that arises suddenly in response to a specific injury and is usually treatable, chronic pain persists over time, and is often resistant to medical treatment. Because of the heterogeneity of chronic pain origins, satisfactory therapies for its treatment are lacking, leading to an urgent need for the development of new treatments. The leading approach in drug design is selective compounds, though they are often less effective and require chronic dosing with many side effects. Herein, we review novel approaches to drug design for the treatment of chronic pain represented by dual-acting compounds, which operate at more than one biological target. A number of studies suggest the involvement of the cannabinoid and vanilloid receptors in pain. Interestingly cannabinoid system is in interrelation with other systems that comprise lipid mediators: prostaglandins, produced by COX enzyme. Therefore, in the present review, we summarize the role of dual-acting molecules (FAAH/TRPV1 and FAAH/COX-2 inhibitors) that interact with endocannabinoid and endovanillinoid systems and act as analgesics by elevating the endogenously produced endocannabinoids and dampening the production of pro-inflammatory prostaglandins. The plasticity of the endocannabinoid system (ECS) and the ability of a single chemical entity to exert an activity on two receptor systems has been developed and extensively investigated. Here, we review up-to-date pharmacological studies on compounds interacting with FAAH enzyme together with TRPV1 receptor or COX-2 enzyme respectively. Multi-target pharmacological intervention for treating pain may lead to the development of original and efficient treatments.
Collapse
Affiliation(s)
- Natalia Malek
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences Krakow, Poland
| | - Katarzyna Starowicz
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences Krakow, Poland
| |
Collapse
|
38
|
Scarpelli R, Sasso O, Piomelli D. A Double Whammy: Targeting Both Fatty Acid Amide Hydrolase (FAAH) and Cyclooxygenase (COX) To Treat Pain and Inflammation. ChemMedChem 2016; 11:1242-51. [PMID: 26486424 PMCID: PMC4840092 DOI: 10.1002/cmdc.201500395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Indexed: 11/10/2022]
Abstract
Pain states that arise from non-resolving inflammation, such as inflammatory bowel disease or arthritis, pose an unusually difficult challenge for therapy because of the complexity and heterogeneity of their underlying mechanisms. It has been suggested that key nodes linking interactive pathogenic pathways of non-resolving inflammation might offer novel targets for the treatment of inflammatory pain. Nonsteroidal anti-inflammatory drugs (NSAIDs), which inhibit the cyclooxygenase (COX)-mediated production of pain- and inflammation-inducing prostanoids, are a common first-line treatment for this condition, but their use is limited by mechanism-based side effects. The endogenous levels of anandamide, an endocannabinoid mediator with analgesic and tissue-protective functions, are regulated by fatty acid amide hydrolase (FAAH). This review outlines the pharmacological and chemical rationale for the simultaneous inhibition of COX and FAAH activities with designed multitarget agents. Preclinical studies indicate that such agents may combine superior anti-inflammatory efficacy with reduced toxicity.
Collapse
Affiliation(s)
- Rita Scarpelli
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Oscar Sasso
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Daniele Piomelli
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy.
- Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine, CA, 92697-4625, USA.
| |
Collapse
|
39
|
Malek N, Kostrzewa M, Makuch W, Pajak A, Kucharczyk M, Piscitelli F, Przewlocka B, Di Marzo V, Starowicz K. The multiplicity of spinal AA-5-HT anti-nociceptive action in a rat model of neuropathic pain. Pharmacol Res 2016; 111:251-263. [PMID: 27326920 DOI: 10.1016/j.phrs.2016.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/25/2016] [Accepted: 06/11/2016] [Indexed: 11/27/2022]
Abstract
There is considerable evidence to support the role of anandamide (AEA), an endogenous ligand of cannabinoid receptors, in neuropathic pain modulation. AEA also produces effects mediated by other biological targets, of which the transient receptor potential vanilloid type 1 (TRPV1) has been the most investigated. Both, inhibition of AEA breakdown by fatty acid amide hydrolase (FAAH) and blockage of TRPV1 have been shown to produce anti-nociceptive effects. Recent research suggests the usefulness of dual-action compounds, which may afford greater anti-allodynic efficacy. Therefore, in the present study, we examined the effect of N-arachidonoyl-serotonin (AA-5-HT), a blocker of FAAH and TRPV1, in a rat model of neuropathic pain after intrathecal administration. We found that treatment with AA-5-HT increased the pain threshold to mechanical and thermal stimuli, with highest effect at the dose of 500nM, which was most strongly attenuated by AM-630, CB2 antagonist, administration. The single action blockers PF-3845 (1000nM, for FAAH) and I-RTX (1nM, for TRPV1) showed lower efficacy than AA-5-HT. Moreover AA-5-HT (500nM) elevated AEA and palmitoylethanolamide (PEA) levels. Among the possible targets of these mediators, only the mRNA levels of CB2, GPR18 and GPR55, which are believed to be novel cannabinoid receptors, were upregulated in the spinal cord and/or DRG of CCI rats. It was previously reported that AA-5-HT acts in CB1 and TRPV1-dependent manner after systemic administration, but here for the first time we show that AA-5-HT action at the spinal level involves CB2, with potential contributions from GRP18 and/or GPR55 receptors.
Collapse
Affiliation(s)
- Natalia Malek
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland; Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Magdalena Kostrzewa
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland; Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Agnieszka Pajak
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland; Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Mateusz Kucharczyk
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland; Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular ChemistryC.N.R., Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli (NA), Italy.
| | - Barbara Przewlocka
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular ChemistryC.N.R., Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli (NA), Italy.
| | - Katarzyna Starowicz
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland; Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| |
Collapse
|
40
|
Brindisi M, Maramai S, Gemma S, Brogi S, Grillo A, Di Cesare Mannelli L, Gabellieri E, Lamponi S, Saponara S, Gorelli B, Tedesco D, Bonfiglio T, Landry C, Jung KM, Armirotti A, Luongo L, Ligresti A, Piscitelli F, Bertucci C, Dehouck MP, Campiani G, Maione S, Ghelardini C, Pittaluga A, Piomelli D, Di Marzo V, Butini S. Development and Pharmacological Characterization of Selective Blockers of 2-Arachidonoyl Glycerol Degradation with Efficacy in Rodent Models of Multiple Sclerosis and Pain. J Med Chem 2016; 59:2612-32. [PMID: 26888301 DOI: 10.1021/acs.jmedchem.5b01812] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the discovery of compound 4a, a potent β-lactam-based monoacylglycerol lipase (MGL) inhibitor characterized by an irreversible and stereoselective mechanism of action, high membrane permeability, high brain penetration evaluated using a human in vitro blood-brain barrier model, high selectivity in binding and affinity-based proteomic profiling assays, and low in vitro toxicity. Mode-of-action studies demonstrate that 4a, by blocking MGL, increases 2-arachidonoylglycerol and behaves as a cannabinoid (CB1/CB2) receptor indirect agonist. Administration of 4a in mice suffering from experimental autoimmune encephalitis ameliorates the severity of the clinical symptoms in a CB1/CB2-dependent manner. Moreover, 4a produced analgesic effects in a rodent model of acute inflammatory pain, which was antagonized by CB1 and CB2 receptor antagonists/inverse agonists. 4a also relieves the neuropathic hypersensitivity induced by oxaliplatin. Given these evidence, 4a, as MGL selective inhibitor, could represent a valuable lead for the future development of therapeutic options for multiple sclerosis and chronic pain.
Collapse
Affiliation(s)
- Margherita Brindisi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena , via Aldo Moro 2, I-53100 Siena, Italy
| | - Samuele Maramai
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena , via Aldo Moro 2, I-53100 Siena, Italy
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena , via Aldo Moro 2, I-53100 Siena, Italy
| | - Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena , via Aldo Moro 2, I-53100 Siena, Italy
| | - Alessandro Grillo
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena , via Aldo Moro 2, I-53100 Siena, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Firenze , V.le G. Pieraccini 6, 50139 Firenze, Italy
| | - Emanuele Gabellieri
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena , via Aldo Moro 2, I-53100 Siena, Italy
| | - Stefania Lamponi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena , via Aldo Moro 2, I-53100 Siena, Italy
| | - Simona Saponara
- Department of Life Sciences, University of Siena , via Aldo Moro 2, I-53100 Siena, Italy
| | - Beatrice Gorelli
- Department of Life Sciences, University of Siena , via Aldo Moro 2, I-53100 Siena, Italy
| | - Daniele Tedesco
- Department of Pharmacy and Biotechnology Alma Mater Studiorum, University of Bologna , Via Belmeloro 6, 40126 Bologna, Italy
| | - Tommaso Bonfiglio
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova , Viale Cembrano 4, Genova, 16148, Italy
| | - Christophe Landry
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University of Artois , EA 2465, F62300 Lens, France
| | - Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California , Irvine, California 92617, United States
| | - Andrea Armirotti
- Drug Discovery and Development, Istituto Italiano di Tecnologia , 16163 Genova, Italy
| | - Livio Luongo
- Endocannabinoid Research Group, Department of Experimental Medicine, Division of Pharmacology "L. Donatelli", Second University of Napoli , 80138 Napoli, Italy
| | - Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR , 80078 Pozzuoli (Napoli), Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR , 80078 Pozzuoli (Napoli), Italy
| | - Carlo Bertucci
- Department of Pharmacy and Biotechnology Alma Mater Studiorum, University of Bologna , Via Belmeloro 6, 40126 Bologna, Italy
| | - Marie-Pierre Dehouck
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University of Artois , EA 2465, F62300 Lens, France
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena , via Aldo Moro 2, I-53100 Siena, Italy
| | - Sabatino Maione
- Endocannabinoid Research Group, Department of Experimental Medicine, Division of Pharmacology "L. Donatelli", Second University of Napoli , 80138 Napoli, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Firenze , V.le G. Pieraccini 6, 50139 Firenze, Italy
| | - Anna Pittaluga
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova , Viale Cembrano 4, Genova, 16148, Italy.,Center of Excellence for Biomedical Research, University of Genova , Viale Benedetto XV, 16132 Genova, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California , Irvine, California 92617, United States
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR , 80078 Pozzuoli (Napoli), Italy
| | - Stefania Butini
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena , via Aldo Moro 2, I-53100 Siena, Italy
| |
Collapse
|
41
|
Brindisi M, Brogi S, Maramai S, Grillo A, Borrelli G, Butini S, Novellino E, Allarà M, Ligresti A, Campiani G, Di Marzo V, Gemma S. Harnessing the pyrroloquinoxaline scaffold for FAAH and MAGL interaction: definition of the structural determinants for enzyme inhibition. RSC Adv 2016. [DOI: 10.1039/c6ra12524g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pharmacogenic pyrroloquinoxaline scaffold has been exploited for developing piperazine and 4-aminopiperidine carboxamides/carbamates as inhibitors of the endocannabinoids’ catabolic enzymes fatty acid amide hydrolase and monoacylglycerol lipase.
Collapse
|
42
|
Migliore M, Habrant D, Sasso O, Albani C, Bertozzi SM, Armirotti A, Piomelli D, Scarpelli R. Potent multitarget FAAH-COX inhibitors: Design and structure-activity relationship studies. Eur J Med Chem 2015; 109:216-37. [PMID: 26774927 DOI: 10.1016/j.ejmech.2015.12.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/09/2015] [Accepted: 12/19/2015] [Indexed: 11/19/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) exert their pharmacological effects by inhibiting cyclooxygenase (COX)-1 and COX-2. Though widely prescribed for pain and inflammation, these agents have limited utility in chronic diseases due to serious mechanism-based adverse events such as gastrointestinal damage. Concomitant blockade of fatty acid amide hydrolase (FAAH) enhances the therapeutic effects of the NSAIDs while attenuating their propensity to cause gastrointestinal injury. This favorable interaction is attributed to the accumulation of protective FAAH substrates, such as the endocannabinoid anandamide, and suggests that agents simultaneously targeting COX and FAAH might provide an innovative strategy to combat pain and inflammation with reduced side effects. Here, we describe the rational design and structure-active relationship (SAR) properties of the first class of potent multitarget FAAH-COX inhibitors. A focused SAR exploration around the prototype 10r (ARN2508) led to the identification of achiral (18b) as well as racemic (29a-c and 29e) analogs. Absolute configurational assignment and pharmacological evaluation of single enantiomers of 10r are also presented. (S)-(+)-10r is the first highly potent and selective chiral inhibitor of FAAH-COX with marked in vivo activity, and represents a promising lead to discover novel analgesics and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Marco Migliore
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Damien Habrant
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Oscar Sasso
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Clara Albani
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Sine Mandrup Bertozzi
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Andrea Armirotti
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Daniele Piomelli
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine 92697-4621, USA.
| | - Rita Scarpelli
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
43
|
Onyango MG, Beebe NW, Gopurenko D, Bellis G, Nicholas A, Ogugo M, Djikeng A, Kemp S, Walker PJ, Duchemin JB. Assessment of population genetic structure in the arbovirus vector midge, Culicoides brevitarsis (Diptera: Ceratopogonidae), using multi-locus DNA microsatellites. Vet Res 2015; 231:39-58. [PMID: 26408175 DOI: 10.1007/978-3-319-20825-1_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Bluetongue virus (BTV) is a major pathogen of ruminants that is transmitted by biting midges (Culicoides spp.). Australian BTV serotypes have origins in Asia and are distributed across the continent into two distinct episystems, one in the north and another in the east. Culicoides brevitarsis is the major vector of BTV in Australia and is distributed across the entire geographic range of the virus. Here, we describe the isolation and use of DNA microsatellites and gauge their ability to determine population genetic connectivity of C. brevitarsis within Australia and with countries to the north. Eleven DNA microsatellite markers were isolated using a novel genomic enrichment method and identified as useful for genetic analyses of sampled populations in Australia, northern Papua New Guinea (PNG) and Timor-Leste. Significant (P < 0.05) population genetic subdivision was observed between all paired regions, though the highest levels of genetic sub-division involved pair-wise tests with PNG (PNG vs. Australia (FST = 0.120) and PNG vs. Timor-Leste (FST = 0.095)). Analysis of multi-locus allelic distributions using STRUCTURE identified a most probable two-cluster population model, which separated PNG specimens from a cluster containing specimens from Timor-Leste and Australia. The source of incursions of this species in Australia is more likely to be Timor-Leste than PNG. Future incursions of BTV positive C. brevitarsis into Australia may be genetically identified to their source populations using these microsatellite loci. The vector's panmictic genetic structure within Australia cannot explain the differential geographic distribution of BTV serotypes.
Collapse
Affiliation(s)
- Maria G Onyango
- CSIRO Health & Biosecurity Australian Animal Health Laboratory, 5 Portalington Road, Geelong, Victoria, 3220, Australia. .,School of Medicine, Deakin University, 75 Pidgons Road, Waurn Ponds, Victoria, 3216, Australia.
| | - Nigel W Beebe
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia. .,CSIRO Health & Biosecurity Ecosciences Precinct, 41, Boggo Road, Dutton Park, Queensland, 4102, Australia.
| | - David Gopurenko
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, PMB, Wagga Wagga, New South Wales, 2650, Australia. .,Graham Centre for Agricultural Innovation, Locked Bag 588, Wagga Wagga, New South Wales, 2678, Australia.
| | - Glenn Bellis
- Northern Australia Quarantine Strategy, 1 Pederson Road, Marrara, Northern Territory, 0812, Australia.
| | - Adrian Nicholas
- Graham Centre for Agricultural Innovation, Locked Bag 588, Wagga Wagga, New South Wales, 2678, Australia.
| | - Moses Ogugo
- International Livestock Research Institute, P.O. Box 30709, 00100, Nairobi, Kenya.
| | - Appolinaire Djikeng
- International Livestock Research Institute, P.O. Box 30709, 00100, Nairobi, Kenya. .,Biosciences eastern and central Africa - ILRI Hub (BecA-ILRI Hub), ILRI, PO Box 30709, 00100, Nairobi, Kenya.
| | - Steve Kemp
- International Livestock Research Institute, P.O. Box 30709, 00100, Nairobi, Kenya.
| | - Peter J Walker
- CSIRO Health & Biosecurity Australian Animal Health Laboratory, 5 Portalington Road, Geelong, Victoria, 3220, Australia.
| | - Jean-Bernard Duchemin
- CSIRO Health & Biosecurity Australian Animal Health Laboratory, 5 Portalington Road, Geelong, Victoria, 3220, Australia.
| |
Collapse
|
44
|
Malek N, Mrugala M, Makuch W, Kolosowska N, Przewlocka B, Binkowski M, Czaja M, Morera E, Di Marzo V, Starowicz K. A multi-target approach for pain treatment. Pain 2015; 156:890-903. [DOI: 10.1097/j.pain.0000000000000132] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Griebel G, Pichat P, Beeské S, Leroy T, Redon N, Jacquet A, Françon D, Bert L, Even L, Lopez-Grancha M, Tolstykh T, Sun F, Yu Q, Brittain S, Arlt H, He T, Zhang B, Wiederschain D, Bertrand T, Houtmann J, Rak A, Vallée F, Michot N, Augé F, Menet V, Bergis OE, George P, Avenet P, Mikol V, Didier M, Escoubet J. Selective blockade of the hydrolysis of the endocannabinoid 2-arachidonoylglycerol impairs learning and memory performance while producing antinociceptive activity in rodents. Sci Rep 2015; 5:7642. [PMID: 25560837 PMCID: PMC4284516 DOI: 10.1038/srep07642] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/03/2014] [Indexed: 12/27/2022] Open
Abstract
Monoacylglycerol lipase (MAGL) represents a primary degradation enzyme of the endogenous cannabinoid (eCB), 2-arachidonoyglycerol (2-AG). This study reports a potent covalent MAGL inhibitor, SAR127303. The compound behaves as a selective and competitive inhibitor of mouse and human MAGL, which potently elevates hippocampal levels of 2-AG in mice. In vivo, SAR127303 produces antinociceptive effects in assays of inflammatory and visceral pain. In addition, the drug alters learning performance in several assays related to episodic, working and spatial memory. Moreover, long term potentiation (LTP) of CA1 synaptic transmission and acetylcholine release in the hippocampus, two hallmarks of memory function, are both decreased by SAR127303. Although inactive in acute seizure tests, repeated administration of SAR127303 delays the acquisition and decreases kindled seizures in mice, indicating that the drug slows down epileptogenesis, a finding deserving further investigation to evaluate the potential of MAGL inhibitors as antiepileptics. However, the observation that 2-AG hydrolysis blockade alters learning and memory performance, suggests that such drugs may have limited value as therapeutic agents.
Collapse
Affiliation(s)
- Guy Griebel
- Sanofi R&D, Exploratory Unit, Chilly-Mazarin, France
| | | | - Sandra Beeské
- Sanofi R&D, Exploratory Unit, Chilly-Mazarin, France
| | - Thibaud Leroy
- Sanofi R&D, Exploratory Unit, Chilly-Mazarin, France
| | - Nicolas Redon
- Sanofi R&D, Exploratory Unit, Chilly-Mazarin, France
| | - Agnès Jacquet
- Sanofi R&D, Exploratory Unit, Chilly-Mazarin, France
| | | | | | - Luc Even
- Sanofi R&D, Exploratory Unit, Chilly-Mazarin, France
| | | | | | | | - Qunyan Yu
- Global Oncology Division, Cambridge, USA
| | | | - Heike Arlt
- Global Oncology Division, Cambridge, USA
| | - Timothy He
- Global Oncology Division, Cambridge, USA
| | | | | | - Thomas Bertrand
- Lead Generation To Candidate Realization, Vitry-sur-Seine, France
| | - Jacques Houtmann
- Lead Generation To Candidate Realization, Vitry-sur-Seine, France
| | - Alexey Rak
- Lead Generation To Candidate Realization, Vitry-sur-Seine, France
| | - François Vallée
- Lead Generation To Candidate Realization, Vitry-sur-Seine, France
| | - Nadine Michot
- Lead Generation To Candidate Realization, Vitry-sur-Seine, France
| | - Franck Augé
- Sanofi R&D, Exploratory Unit, Chilly-Mazarin, France
| | | | | | - Pascal George
- Therapeutic Strategic Unit Aging, Chilly-Mazarin, France
| | | | - Vincent Mikol
- Lead Generation To Candidate Realization, Vitry-sur-Seine, France
| | | | | |
Collapse
|
46
|
The Potential of Inhibitors of Endocannabinoid Metabolism for Drug Development: A Critical Review. Handb Exp Pharmacol 2015; 231:95-128. [PMID: 26408159 DOI: 10.1007/978-3-319-20825-1_4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The endocannabinoids anandamide and 2-arachidonoylglycerol are metabolised by both hydrolytic enzymes (primarily fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL)) and oxygenating enzymes (e.g. cyclooxygenase-2, COX-2). In the present article, the in vivo data for compounds inhibiting endocannabinoid metabolism have been reviewed, focussing on inflammation and pain. Potential reasons for the failure of an FAAH inhibitor in a clinical trial in patients with osteoarthritic pain are discussed. It is concluded that there is a continued potential for compounds inhibiting endocannabinoid metabolism in terms of drug development, but that it is wise not to be unrealistic in terms of expectations of success.
Collapse
|
47
|
Sousa-Valente J, Andreou AP, Urban L, Nagy I. Transient receptor potential ion channels in primary sensory neurons as targets for novel analgesics. Br J Pharmacol 2014; 171:2508-27. [PMID: 24283624 DOI: 10.1111/bph.12532] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/11/2013] [Accepted: 11/20/2013] [Indexed: 12/12/2022] Open
Abstract
The last decade has witnessed an explosion in novel findings relating to the molecules involved in mediating the sensation of pain in humans. Transient receptor potential (TRP) ion channels emerged as the greatest group of molecules involved in the transduction of various physical stimuli into neuronal signals in primary sensory neurons, as well as, in the development of pain. Here, we review the role of TRP ion channels in primary sensory neurons in the development of pain associated with peripheral pathologies and possible strategies to translate preclinical data into the development of effective new analgesics. Based on available evidence, we argue that nociception-related TRP channels on primary sensory neurons provide highly valuable targets for the development of novel analgesics and that, in order to reduce possible undesirable side effects, novel analgesics should prevent the translocation from the cytoplasm to the cell membrane and the sensitization of the channels rather than blocking the channel pore or binding sites for exogenous or endogenous activators.
Collapse
Affiliation(s)
- J Sousa-Valente
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | | | | | | |
Collapse
|
48
|
Pascual A, Martín-Moreno A, Giusto N, de Ceballos M, Pasquaré S. Normal aging in rats and pathological aging in human Alzheimer’s disease decrease FAAH activity: Modulation by cannabinoid agonists. Exp Gerontol 2014; 60:92-9. [DOI: 10.1016/j.exger.2014.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 12/21/2022]
|
49
|
Inhibition of FAAH, TRPV1, and COX2 by NSAID-serotonin conjugates. Bioorg Med Chem Lett 2014; 24:5695-5698. [PMID: 25467164 DOI: 10.1016/j.bmcl.2014.10.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 11/24/2022]
Abstract
Serotonin was linked by amidation to the carboxylic acid groups of a series of structurally diverse NSAIDs. The resulting NSAID-serotonin conjugates were tested in vitro for their ability to inhibit FAAH, TRPV1, and COX2. Ibuprofen-5-HT and Flurbiprofen-5-HT inhibited all three targets with approximately the same potency as N-arachidonoyl serotonin (AA-5-HT), while Fenoprofen-5-HT and Naproxen-5-HT showed activity as dual inhibitors of TRPV1 and COX2.
Collapse
|
50
|
Fišar Z, Singh N, Hroudová J. Cannabinoid-induced changes in respiration of brain mitochondria. Toxicol Lett 2014; 231:62-71. [PMID: 25195527 DOI: 10.1016/j.toxlet.2014.09.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/31/2014] [Accepted: 09/03/2014] [Indexed: 02/06/2023]
Abstract
Cannabinoids exert various biological effects that are either receptor-mediated or independent of receptor signaling. Mitochondrial effects of cannabinoids were interpreted either as non-receptor-mediated alteration of mitochondrial membranes, or as indirect consequences of activation of plasma membrane type 1 cannabinoid receptors (CB1). Recently, CB1 receptors were confirmed to be localized to the membranes of neuronal mitochondria, where their activation directly regulates respiration and energy production. Here, we performed in-depth analysis of cannabinoid-induced changes of mitochondrial respiration using both an antagonist/inverse agonist of CB1 receptors, AM251 and the cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol (THC), cannabidiol, anandamide, and WIN 55,212-2. Relationships were determined between cannabinoid concentration and respiratory rate driven by substrates of complex I, II or IV in pig brain mitochondria. Either full or partial inhibition of respiratory rate was found for the tested drugs, with an IC50 in the micromolar range, which verified the significant role of non-receptor-mediated mechanism in inhibiting mitochondrial respiration. Effect of stepwise application of THC and AM251 evidenced protective role of AM251 and corroborated the participation of CB1 receptor activation in the inhibition of mitochondrial respiration. We proposed a model, which includes both receptor- and non-receptor-mediated mechanisms of cannabinoid action on mitochondrial respiration. This model explains both the inhibitory effect of cannabinoids and the protective effect of the CB1 receptor inverse agonist.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 11, Prague 2 120 00, Czech Republic.
| | - Namrata Singh
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 11, Prague 2 120 00, Czech Republic.
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 11, Prague 2 120 00, Czech Republic.
| |
Collapse
|