1
|
Liu R, Qi Y, Zhao S, Han S, Cui Y, Song Y, Wang CK, Li Z, Cai L. Minimizing Efficiency Roll-Off in Organic Emitters via Enhancing Radiative Process and Reducing Binding Energy: A Theory Insight. J Phys Chem A 2024; 128:9721-9729. [PMID: 39480898 DOI: 10.1021/acs.jpca.4c04754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Organic solid-state lasers have received increasing attention due to their great potential for realizing organic continuous-wave or electrically driven lasers. Moreover, they exhibit significant promise for optoelectronic devices due to their chemically tunable optoelectronic properties and cost-effective self-assembly traits. Recently, a great progress has been made in organic solid-state lasers via spatially separated charge injection and lasing. However, making directly electrically driven organic semiconductor lasers is very challenging. It is difficult because of a number of excitonic losses caused by the spin-forbidden nature as well as serious efficiency roll-off at a high current density. Here, a multifunction gain material, functioning both as a thermally activated delayed fluorescence (TADF) emitter with exceptional optical gain and as a source of phosphorescence, was theoretically investigated. The new molecule we designed exhibits a reduction of triplet accumulation through an effective exciton radiative process (5-fold boost in figure of merit) and significantly decreased exciton binding energy (dipole moment from 5.77 to 14.03 D), which benefit amplified spontaneous emission and lasing emission. Our work provides theoretical insights into organic solid-state lasers and may contribute to the development of new and efficient laser-gaining molecules.
Collapse
Affiliation(s)
- Rui Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yaqi Qi
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Shaoqiao Zhao
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Shulin Han
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yachen Cui
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yuzhi Song
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Zongliang Li
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Lei Cai
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
2
|
Wu T, Tan L, Feng Y, Zheng L, Li Y, Sun S, Liu S, Cao J, Yu Z. Toward Ultrathin: Advances in Solution-Processed Organic Semiconductor Transistors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61530-61550. [PMID: 39479971 DOI: 10.1021/acsami.4c11824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
In recent years, organic semiconductor (OSC) ultrathin films and their solution-processed organic field-effect transistors (OFETs) have garnered attention for their high flexibility, light weight, solution processability, and tunable optoelectronic properties. These features make them promising candidates for next-generation optoelectronic applications. An ultrathin film typically refers to a film thickness of less than 10 nm, i.e., several molecular layers, which poses challenges for OSC materials and solution-processed methods. In this paper, first we introduce the carrier-transport regulation mechanism under ultrathin limits. Second, we summarize various solution-processed techniques for OSC ultrathin films and elucidate advances in their OFETs performance, such as enhanced or maintained mobilities, improved switching ratios, reduced threshold voltages, and minimized contact resistance. The relationship between the ultrathin-film thickness, microstructure of various OSCs (small molecules and polymers), and device performance is discussed. Third, we explore the recent application of OSC ultrathin-film-based OFETs, such as gas sensors, biosensors, photodetectors, and ferroelectric OFETs (Fe-OFETs). Finally, the conclusion is drawn, and the challenges and prospects of ultrathin OSC transistors are presented. Nowadays, research on ultrathin films is still in its early stages; further experience in precise film deposition control is crucial to advancing research and broadening the scope of applications for OSC ultrathin devices.
Collapse
Affiliation(s)
- Ti Wu
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Lin Tan
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Yuguang Feng
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Luyao Zheng
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Yongpeng Li
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Shengtao Sun
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Shengzhen Liu
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Jin Cao
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Zhaohui Yu
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| |
Collapse
|
3
|
Vardanyan A, Polkaehn J, Bauder ML, Villinger A, Ehlers P, Langer P. Synthesis and properties of thienonaphtho[ bc]pyridines and thienonaphtho[ bc]quinolines. Org Biomol Chem 2024; 22:8631-8648. [PMID: 39373080 DOI: 10.1039/d4ob01023j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The incorporation of heteroatoms within polycyclic aromatic compounds has gained significant interest due to its potential to effectively alter the inherent physicochemical properties of compounds without the need for profound structural changes. We herein report the development of a modular synthesis of hitherto unknown thienonaphtho[bc]pyridines and thienonaphtho[bc]quinolines in very good yields by Brønsted acid mediated cycloisomerization, permitting selective access to two isomeric products that are isoelectronic to the parent dibenzopyrene. The photophysical and electrochemical properties of the desired compounds were extensively studied and further complemented by DFT calculations.
Collapse
Affiliation(s)
- Arpine Vardanyan
- Universität Rostock, Institut für Chemie, A.-Einstein-Str. 3a, 18059 Rostock, Germany.
| | - Jonas Polkaehn
- Universität Rostock, Institut für Chemie, A.-Einstein-Str. 3a, 18059 Rostock, Germany.
| | - Marie-Louis Bauder
- Universität Rostock, Institut für Chemie, A.-Einstein-Str. 3a, 18059 Rostock, Germany.
| | - Alexander Villinger
- Universität Rostock, Institut für Chemie, A.-Einstein-Str. 3a, 18059 Rostock, Germany.
| | - Peter Ehlers
- Universität Rostock, Institut für Chemie, A.-Einstein-Str. 3a, 18059 Rostock, Germany.
| | - Peter Langer
- Universität Rostock, Institut für Chemie, A.-Einstein-Str. 3a, 18059 Rostock, Germany.
| |
Collapse
|
4
|
Ray S, Gupta N, Singh MS. LiBr-Promoted Reaction of β-Ketodithioesters and Thioamides with Sulfoxonium Ylides to Synthesize Functionalized Thiophenes. Org Lett 2024; 26:9401-9406. [PMID: 39436378 DOI: 10.1021/acs.orglett.4c03680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
An operationally simple and highly efficient synthesis of functionalized thiophenes has been developed by LiBr promoted heteroannulation of β-ketodithioesters and thioamides with bench-stable sulfoxonium ylides in open air for the first time. This one-pot strategy involves formal Csp3-H bond insertion/intramolecular cyclization cascade, featuring readily accessible starting materials, TM and additive-free condition, broad substrate scope, high functional group compatibility, and scalability. Moreover, the carbonyl, thiomethyl, and amino groups in the resulting thiophene provide a good handle on downstream transformations.
Collapse
Affiliation(s)
- Subhasish Ray
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nimisha Gupta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
5
|
Niyas MA, Shoyama K, Würthner F. Ternary π-π Stacking Complexes by Allosteric Regulation in Multilayer Nanographenes. J Am Chem Soc 2024; 146:29728-29734. [PMID: 39423344 DOI: 10.1021/jacs.4c11119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Construction of π-π stacking supramolecular complexes with more than two different components is challenging due to the weak and directionless nature of dispersion interactions. Here, we report ternary complexes of a ditopic nanographene tetraimide (1), α-substituted phthalocyanine (Pc), and polyaromatic hydrocarbons (PAHs) in solution and the crystalline state via allosteric regulation. Binding of one Pc gives rise to significant distortion and conformational changes in 1 that in turn lead to the inhibition of the second binding of Pc. The conformational changes associated with first binding allowed an allosteric binding of a third component (PAHs) to form ternary complexes in solution. 1H NMR titration revealed moderately high thermodynamic stability for the ternary complexes in CDCl3. Competition between allosterically regulated ternary complexes ([Pc·1·PAH]) and 1:2 stoichiometric binary complexes of 1 with PAHs ([PAH·1·PAH]) was elucidated. Further, the selective formation of ternary complexes in solution led to the generation of ternary cocrystals from a 1:1:1 mixture of three components in solution. Our work shows that large π-conjugated nanographenes designed with allosteric recognition sites allow the construction of multilayer ternary complexes in solution and the solid state even with dispersive π-π interactions.
Collapse
Affiliation(s)
- M A Niyas
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
6
|
Jocic A, Wickenhäuser T, Lindenthal S, Zhang WS, Zaumseil J, Schröder R, Klingeler R, Kivala M. Redox-active, photoluminescent porous polymers based on spirofluorene-bridged N-heterotriangulenes and their feasibility as organic cathode materials. Chem Sci 2024:d4sc04276j. [PMID: 39483254 PMCID: PMC11523812 DOI: 10.1039/d4sc04276j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
Novel microporous polymers were synthesized through Yamamoto polymerization of selectively brominated spirofluorene-bridged N-heterotriangulenes. Extensive characterization, including combustion analysis, ToF-SIMS, IR, and Raman spectroscopy, confirmed the elemental composition and integrity of the polymers. The amorphous polymers, observed by scanning electron microscopy as globular particles aggregating into larger structures, exhibited remarkable thermal stability (decomposition temperatures > 400 °C) and BET surface areas up to 690 m2 g-1. Dispersions of the tert-butyl-substituted polymer in different solvents displayed bathochromically shifted emission with remarkable solvatochromism. The polymer is reversibly oxidized at +3.81 V (vs. Li/Li+) in composite electrodes with carbon black and reaches specific capacities up to 26 mA h g-1 and excellent cycling stability when implemented as cathode material in lithium-ion batteries. Our results highlight the potential of spirofluorene-bridged N-heterotriangulenes as versatile building blocks for the development of functional redox-active porous polymers.
Collapse
Affiliation(s)
- Angelina Jocic
- Institute of Organic Chemistry, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Tom Wickenhäuser
- Kirchhoff-Institute for Physics, Heidelberg University Im Neuenheimer Feld 227 69120 Heidelberg Germany
| | - Sebastian Lindenthal
- Institute for Physical Chemistry, Heidelberg University Im Neuenheimer Feld 253 69120 Heidelberg Germany
| | - Wen-Shan Zhang
- Institute of Organic Chemistry, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- BioQuant Im Neuenheimer Feld 267 69120 Heidelberg Germany
| | - Jana Zaumseil
- Institute for Physical Chemistry, Heidelberg University Im Neuenheimer Feld 253 69120 Heidelberg Germany
| | | | - Rüdiger Klingeler
- Kirchhoff-Institute for Physics, Heidelberg University Im Neuenheimer Feld 227 69120 Heidelberg Germany
| | - Milan Kivala
- Institute of Organic Chemistry, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
7
|
Bertuolo M, Zinna F, Aronica LA, Pescitelli G, Di Bari L, Albano G. Strong Non-Reciprocal Chiroptical Properties in Thin Films of Chiral Alkylthio-Decorated 1,4-Phenylene/Thiophene Dyes. Chem Asian J 2024:e202401160. [PMID: 39436970 DOI: 10.1002/asia.202401160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
In the context of chiral π-conjugated materials, the use of enantiopure alkylthio appendages represents a valid alternative to conventional alkoxy groups: sulphur atom is bigger and more electron-rich than oxygen, thus allowing for higher polarizability, greater flexibility, larger bulkiness and lower structural anisotropy. In light of these considerations, here we report two new chiral alkylthio-decorated 1,4-phenylene/thiophene dyes, obtained by simple synthetic strategies involving Pd-catalyzed cross-coupling protocols, looking for strong non-reciprocal chiroptical features in thin films. In particular, for the chiral alkylthio-decorated 1,4-phenylene-bis(thiophenylpropynone) (Thio-PTPO) dye, which proved to be the most promising for our purpose, a detailed investigation in thin films was carried out, involving optical and chiroptical spectroscopies in absorption and emission, as well as optical microscopy techniques.
Collapse
Affiliation(s)
- Marco Bertuolo
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Laura Antonella Aronica
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
8
|
Bi H, Shen C, Wang SR. Catalytic Dearomative [1,5]-Sigmatropic Carbon Shift of Heterole-Fused Norcaradienes Enabled Concise Helicenation. Angew Chem Int Ed Engl 2024:e202415839. [PMID: 39429218 DOI: 10.1002/anie.202415839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
In contrast to the locked fluxionality of norcaradienes fused by benzene, unexplored less aromatic heterole-fused norcaradienes, creatively generated by intramolecular hydroarylation of heteroaryl alkynylcyclopropanes, reserve a balancing fluxionality that permits a dearomative [1,5]-sigmatropic carbon shift of norcaradienes akin to the reduced aromaticity of heterole. This "walk" shift was confirmed by the isolation of a cycloheptatriene species derived from ring-expansion of a dearomatized alkynylated heterole-fused norcaradiene. A following ester-directed ring-opening rearomatization of these dearomatized heterole-fused norcaradienes gives the products featuring migratory acylmethyls that are competent for helicenation with the neighboring (hetero) arenes via (formal) dehydrative alkenylation. Such balancing reactivity of heterole-fused norcaradienes will open up the opportunity for the development of controllable reactions of fused norcaradienes.
Collapse
Affiliation(s)
- Hongyan Bi
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Chaoren Shen
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Sunewang R Wang
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
9
|
Li Z, Tolba SA, Wang Y, Alesadi A, Xia W. Modeling-driven materials by design for conjugated polymers: insights into optoelectronic, conformational, and thermomechanical properties. Chem Commun (Camb) 2024; 60:11625-11641. [PMID: 39157936 DOI: 10.1039/d4cc03217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Conjugated polymers (CPs) have emerged as pivotal functional materials in the realm of flexible electronics and optoelectronic devices due to their unique blend of mechanical flexibility, solution processability, and tunable optoelectronic properties. This review synthesizes the latest molecular simulation-driven insights obtained from various multiscale modeling techniques, including quantum mechanics (QM), all-atomistic (AA) molecular dynamics (MD), coarse-grained (CG) modeling, and machine learning (ML), to elucidate the optoelectronic, structural, and thermomechanical properties of CPs. By integrating findings from our recent computational work with key experimental studies, we highlight the molecular mechanisms influencing the multifunctional performance of CPs. This comprehensive understanding aims to guide future research directions and applications in the modeling assisted design of high-performance CP-based materials and devices.
Collapse
Affiliation(s)
- Zhaofan Li
- Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, USA.
| | - Sara A Tolba
- Materials and Nanotechnology Program, North Dakota State University, Fargo, ND 58108, USA
| | - Yang Wang
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Amirhadi Alesadi
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58108, USA
| | - Wenjie Xia
- Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
10
|
Gu F, Lin B, Peng Z, Liu S, Wu Y, Luo M, Ding N, Zhan Q, Cao P, Zhou Z, Cao T. Ring Transformation of Cyclopropenes to Benzo-Fused Five-Membered Oxa- and Aza-Heterocycles via a Formal [4+1] Cyclization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407931. [PMID: 39206752 PMCID: PMC11516165 DOI: 10.1002/advs.202407931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Indexed: 09/04/2024]
Abstract
In the context of the growing importance of heterocyclic compounds across various disciplines, numerous strategies for their construction have emerged. Exploiting the distinctive properties of cyclopropenes, this study introduces an innovative approach for the synthesis of benzo-fused five-membered oxa- and aza-heterocycles through a formal [4+1] cyclization and subsequent acid-catalyzed intramolecular O- to N- rearrangement. These transformations exhibit mild reaction conditions and a wide substrate scope. The applications in the late-stage modification of complex molecules and in the synthesis of a potential PD-L1 gene down-regulator, make this method highly appealing in related fields. Combined experimental mechanistic studies and DFT calculations demonstrate Rh(III)-mediated sequential C─H coupling/π-allylation/dynamically favorable O-attack route.
Collapse
Affiliation(s)
- Fengyan Gu
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Binyan Lin
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Zhi‐Huan Peng
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdong511436China
| | - Shijie Liu
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Yuanqing Wu
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Mei Luo
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Ning Ding
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Qichen Zhan
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Peng Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
- Jiangsu Provincial Medicinal Innovation CenterAffiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingJiangsu210028China
- The Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhou People's HospitalQuzhouZhejiang324000China
- Gaoyou Hospital of Traditional Chinese MedicineYangzhouJiangsu225600China
| | - Zhi Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdong511436China
| | - Tao Cao
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
| |
Collapse
|
11
|
Benner F, Demir S. Isolation of Elusive Fluoflavine Radicals in Two Differing Oxidation States. J Am Chem Soc 2024; 146:26008-26023. [PMID: 39265051 PMCID: PMC11440492 DOI: 10.1021/jacs.4c05267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Facile access and switchability between multiple oxidation states are key properties of many catalytic applications and spintronic devices yet poorly understood due to inherent complications arising from isolating a redox system in multiple oxidation states without drastic structural changes. Here, we present the first isolable, free fluoflavine (flv) radical flv(1-•) as a bottleable potassium compound, [K(crypt-222)](flv•), 1, and a new series of organometallic rare earth complexes [(Cp*2Y)2(μ-flvz)]X, (where Cp* = pentamethylcyclopentadienyl, X = [Al(OC{CF3}3)4]- (z = -1), 2; X = 0 (z = -2), 3; [K(crypt-222)]+ (z = -3), 4) comprising the flv ligand in three different oxidation states, two of which are paramagnetic flv1-• and flv3-•. Excitingly, 1, 2, and 4 constitute the first isolable flv1-• and flv3-• radical complexes and, to date, the only isolated flv radicals of any oxidation state. All compounds are accessible in good crystalline yields and were unambiguously characterized via single-crystal X-ray diffraction analysis, cyclic voltammetry, IR-, UV-vis, and variable-temperature EPR spectroscopy. Remarkably, the EPR spectra for 1, 2, and 4 are distinct and a testament to stronger spin delocalization onto the metal centers as a function of higher charge on the flv radical. In-depth analysis of the electron- and spin density via density functional theory (DFT) calculations utilizing NLMO, QTAIM, and spin density topology analysis confirmed the fundamental interplay of metal coordination, ligand oxidation state, aromaticity, covalency, and spin density transfer, which may serve as blueprints for the development of future spintronic devices, single-molecule magnets, and quantum information science at large.
Collapse
Affiliation(s)
- Florian Benner
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Selvan Demir
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
12
|
Ogaki T, Matsui Y, Okamoto H, Nishida N, Sato H, Asada T, Naito H, Ikeda H. Machine Learning-Inspired Molecular Design, Divergent Syntheses, and X-Ray Analyses of Dithienobenzothiazole-Based Semiconductors Controlled by S⋅⋅⋅N and S⋅⋅⋅S Interactions. Chemistry 2024; 30:e202401080. [PMID: 39039606 DOI: 10.1002/chem.202401080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Inspired by the previous machine-learning study that the number of hydrogen-bonding acceptor (NHBA) is important index for the hole mobility of organic semiconductors, seven dithienobenzothiazole (DBT) derivatives 1 a-g (NHBA=5) were designed and synthesized by one-step functionalization from a common precursor. X-ray single-crystal structural analyses confirmed that the molecular arrangements of 1b (the diethyl and ethylthienyl derivative) and 1c (the di(n-propyl) and n-propylthienyl derivative) in the crystal are classified into brickwork structures with multidirectional intermolecular charge-transfer integrals, as a result of incorporation of multiple hydrogen-bond acceptors. The solution-processed top-gate bottom-contact devices of 1b and 1c had hole mobilities of 0.16 and 0.029 cm2 V-1s-1, respectively.
Collapse
Affiliation(s)
- Takuya Ogaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
- The Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Yasunori Matsui
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
- The Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Haruki Okamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Naoyuki Nishida
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Hiroyasu Sato
- Rigaku, 3-9-12 Matsubara-cho, Akishima, Tokyo, 196-8666, Japan
| | - Toshio Asada
- The Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto Sumiyoshi-ku, Osaka-shi, 558-8585, Japan
| | - Hiroyoshi Naito
- The Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Hiroshi Ikeda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
- The Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
13
|
Lan L, Zhang H. Maneuverability and Processability of Molecular Crystals. Angew Chem Int Ed Engl 2024; 63:e202411405. [PMID: 38988192 DOI: 10.1002/anie.202411405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Crystal adaptronics, a burgeoning field at the intersection of materials science and engineering, focuses on harnessing the unique properties of organic molecular crystals to achieve unprecedented levels of maneuverability and processability in various applications. Increasingly, ordered stacks of crystalline materials are being endowed with fascinating mechanical compliance changes in response to external environments. Understanding how these crystals can be manipulated and tailored for specific functions has become paramount in the pursuit of advanced materials with customizable properties. Simultaneously, the processability of organic molecular crystals plays a pivotal role in shaping their utility in real-world applications. From growth methodologies to fabrication techniques, the ability to precisely machine these crystals opens new avenues for engineering materials with enhanced functionality. These processing methods enhance the versatility of organic crystals, allowing their integration into various devices and technologies, and further expanding the potential applications. This review aims to provide a concise overview of the current landscape in the study of dynamic organic molecular crystals, with an emphasis on the interconnected themes of operability and processability.
Collapse
Affiliation(s)
- Linfeng Lan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
14
|
Yadav SK, Jeganmohan M. Ir(III)-Catalyzed Tandem Annulation of Aromatic Amides with 1,6-Diynes via Dual C-H Bond Activation. Org Lett 2024; 26:7809-7816. [PMID: 39255330 DOI: 10.1021/acs.orglett.4c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
An Ir(III)-catalyzed annulation of aryl amides with 1,6-diynes via ortho- as well as meta-dual C-H bond activation reaction is reported. The scope of the annulation reaction was examined with various substituted aryl amides, as well as 1,6-diynes. In this protocol, 1,6-diynes exhibit diverse reactivity compared with internal alkynes. It is important to note that the three C-C bond formation takes place consecutively via ortho followed by meta-dual C-H bond annulation by using a weak chelating group in one pot. A possible catalytic reaction mechanism was proposed to account for the annulation reaction.
Collapse
Affiliation(s)
- Suresh Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
15
|
Morishita S, Hayasaka C, Noguchi K, Nakano K. Synthesis and Properties of Dibenzo-Fused Naphtho[2,3- b:6,7- b']disilole and Naphtho[2,3- b:6,7- b']diphosphole. Molecules 2024; 29:4313. [PMID: 39339308 PMCID: PMC11433746 DOI: 10.3390/molecules29184313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Silole- and phosphole-containing polycyclic aromatic compounds have attracted significant attention in the field of organic functional materials. The structure of the aromatic units has great impact on the photophysical properties of the resulting silole- and phosphole-containing polycyclic aromatic compounds. Here, dibenzo-fused naphtho[2,3-b:6,7-b']disilole (NDS) and naphtho[2,3-b:6,7-b']diphosphole (NDP), where a naphthalene unit is arranged between two silole and phosphole units, respectively, were designed and synthesized. The solid-state structures of them were confirmed by X-ray crystallographic analysis. The photophysical properties were evaluated by UV-vis absorption and photoluminescence spectroscopies and compared with those of their related compounds, such as dibenzo-fused silolo[3,2-b]silole and benzo[1,2-b:4,5-b']disilole, ever reported. The longest wavelength absorption band of a series of silole-fused compounds was found to be red-shifted in the order benzo[1,2-b:4,5-b']disilole < NDS < silolo[3,2-b]silole derivatives. For a series of phosphole-fused compounds, π-extension from phospholo[3,2-b]phosphole to NDP derivatives induces the lower absorption coefficient of the longest wavelength absorption band and the red-shift of the second longest wavelength absorption band. Both NDS and NDP exhibit much lower fluorescence quantum yields than their related compounds.
Collapse
Affiliation(s)
- Suzuho Morishita
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Chikara Hayasaka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Keiichi Noguchi
- Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Koji Nakano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
16
|
Li S, Duan Y, Zhu W, Cheng S, Hu W. Sensing Interfaces Engineering for Organic Thin Film Transistors-Based Biosensors: Opportunities and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412379. [PMID: 39252633 DOI: 10.1002/adma.202412379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Organic thin film transistors (OTFTs) enable rapid and label-free high-sensitivity detection of target analytes due to their low cost, large-area processing, biocompatibility, and inherent signal amplification. At the same time, the freedom of synthesis, tailorability, and functionalization of organic semiconductor materials and their ability to be combined with flexible substrates make them one of the ideal platforms for biosensing. However, OTFTs-based biosensors still face significant challenges, such as unexpected surface adsorption, disordered conformation, inhomogeneous graft density, and flexibility of probe molecules that biological sensing probes would face during immobilization. In this review, efficient immobilization strategies based on OTFTs biological sensing probes developed in the last 5 years are highlighted. First, the biosensors are classified according to their sensing interface. Second, a comprehensive discussion of the types of biological sensing probes is presented. Third, three commonly used methods for immobilizing biological sensing probes and their challenges are briefly described. Finally, the applications of OTFTs-based biosensors for liquid phase detection are summarized. This review provides a comprehensive and timely review of optimization in sensing interface engineering so that efficient immobilization of biological sensing probes with sensing interfaces will contribute to the development of high-performance OTFTs-based biosensors.
Collapse
Affiliation(s)
- Siyu Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yuchen Duan
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Weigang Zhu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Shanshan Cheng
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
17
|
Gao P, Wu X, Zhang D, Sun X, Zhang G, Chen F. Mechanochemical Activation of Aryl Diazonium Salts: Synthesis of Polycyclic (Hetero)Aromatics. J Org Chem 2024; 89:12197-12203. [PMID: 39162099 DOI: 10.1021/acs.joc.4c01107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Although the synthesis of polycyclic (hetero)aromatics via the [4 + 2] benzannulation process has been thoroughly explored, the restricted availability of energy sources (including thermal, light, and electrical energy) mandates the utilization of substantial quantities of organic solvents, inevitably leading to environmental pollution, resource wastage, and low reaction efficiency. Herein, we report a new method for the synthesis of polycyclic (hetero)aromatics from diazonium salts and alkynes under ball-milling conditions. This mechanochemical approach requires only substoichiometric amounts of DMSO as a liquid-assisted grinding additive and furnishes the desired product in a short time.
Collapse
Affiliation(s)
- Pan Gao
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xinyin Wu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Duo Zhang
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, Liuzhou, Guangxi 545006, China
| | - Xiaohuan Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Guodong Zhang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Feng Chen
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
18
|
Fu GE, Yang H, Zhao W, Samorì P, Zhang T. 2D Conjugated Polymer Thin Films for Organic Electronics: Opportunities and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311541. [PMID: 38551322 DOI: 10.1002/adma.202311541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Indexed: 04/06/2024]
Abstract
2D conjugated polymers (2DCPs) possess extended in-plane π-conjugated lattice and out-of-plane π-π stacking, which results in enhanced electronic performance and potentially unique band structures. These properties, along with predesignability, well-defined channels, easy postmodification, and order structure attract extensive attention from material science to organic electronics. In this review, the recent advance in the interfacial synthesis and conductivity tuning strategies of 2DCP thin films, as well as their application in organic electronics is summarized. Furthermore, it is shown that, by combining topology structure design and targeted conductivity adjustment, researchers have fabricated 2DCP thin films with predesigned active groups, highly ordered structures, and enhanced conductivity. These films exhibit great potential for various thin-film organic electronics, such as organic transistors, memristors, electrochromism, chemiresistors, and photodetectors. Finally, the future research directions and perspectives of 2DCPs are discussed in terms of the interfacial synthetic design and structure engineering for the fabrication of fully conjugated 2DCP thin films, as well as the functional manipulation of conductivity to advance their applications in future organic electronics.
Collapse
Affiliation(s)
- Guang-En Fu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wenkai Zhao
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
19
|
Kim HJ, Kim B, Yun S, Yun DJ, Choi T, Lee S, Minami D, Heo CJ, Lim J, Shibuya H, Lim Y, Shin J, Hong H, Park JI, Fang F, Seo H, Yi J, Park S, Lee HH, Park KB. Dual Chalcogen-Bonding Interaction for High-Performance Filterless Narrowband Organic Photodetectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309634. [PMID: 38845070 DOI: 10.1002/smll.202309634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/24/2024] [Indexed: 10/01/2024]
Abstract
A novel green-absorbing organic molecule featuring dual intramolecular chalcogen bonds is synthesized and characterized. This molecule incorporates two such bonds: one between a tellurium atom and the oxygen atom of a carbonyl moiety, and the other between the tellurium atom and the adjacent nitrogen atom within a pyridine moiety. The molecule, featuring dual intramolecular chalcogen bonds exhibits a narrow absorption spectrum and elevated absorption coefficients, closely aligned with a resonance parameter of approximately 0.5. This behavior is due to its cyanine-like characteristics and favorable electrical properties, which are a direct result of its rigid, planar molecular structure. Therefore, this organic molecule forming dual intramolecular chalcogen bonds achieves superior optoelectronic performance in green-selective photodetectors, boasting an external quantum efficiency of over 65% and a full-width at half maximum of less than 95 nm while maintaining the performance after 1000 h of heating aging at 85 °C. Such organic photodetectors are poised to enhance stacked organic photodetector-on-silicon hybrid image sensors, paving the way for the next-generation of high-resolution and high-sensitivity image sensors.
Collapse
Affiliation(s)
- Hyeong-Ju Kim
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Bongsu Kim
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Sungyoung Yun
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Dong-Jin Yun
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Taejin Choi
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Sangjun Lee
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Daiki Minami
- Innovation Center, Samsung Electronics, Co. Ltd., 1 Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do, 18448, Republic of Korea
| | - Chul-Joon Heo
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Juhyung Lim
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Hiromasa Shibuya
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Younhee Lim
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Jisoo Shin
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Hyerim Hong
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Jeong-Il Park
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Feifei Fang
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Hwijoung Seo
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Jeoungin Yi
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Sangho Park
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Hyun Hwi Lee
- Pohang Accelerator Laboratory (PAL), POSTECH, Pohang, 37673, Republic of Korea
| | - Kyung-Bae Park
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| |
Collapse
|
20
|
Alvi S, Ali R. Novel truxene-based dipyrromethanes (DPMs): synthesis, spectroscopic characterization and photophysical properties. Beilstein J Org Chem 2024; 20:2163-2170. [PMID: 39224227 PMCID: PMC11368050 DOI: 10.3762/bjoc.20.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
For the first time, herein, we report the synthetic part of the truxene-centred mono-, di- and tri-substituted dipyromethanes (DPMs) in good yields (60-80%) along with their preliminary photophysical (absorption, emission and time resolved fluorescence lifetime) properties. The condensation reaction for assembling the required DPMs were catalyzed with trifluoroacetic acid (TFA) at 0 °C to room temperature (rt), and the stable dipyrromethanes were purified through silica-gel column chromatography. After successfully synthesizing these easy-to-make yet interesting molecules, they were fully characterized by means of the standard spectroscopic techniques (1H NMR, 13C NMR and HRMS). We are of the opinion that these truxene-based systems will be useful for diverse applications in future studies.
Collapse
Affiliation(s)
- Shakeel Alvi
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi-110025, India
| | - Rashid Ali
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi-110025, India
| |
Collapse
|
21
|
Feng L, Hua X, Shang J, Feng Y, Yuan C, Liu Z, Zhang HL, Shao X. Synthesis, Structures, and Properties for P III-Doped Hetero-Buckybowls and Their Phosphonium Salts. Chemistry 2024:e202402977. [PMID: 39177072 DOI: 10.1002/chem.202402977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 08/24/2024]
Abstract
Doping polycyclic aromatic hydrocarbons with heteroatoms enables manipulation of their electronic structures. Herein, the structures and properties of phosphorus (P) doped heterosumanenes (HSEs) are regulated by varying the valence states of P-dopant. The phosphine sulfide (PV) and chalcogens (S, Se, Te) co-doped HSEs (1-3) are reduced to trivalent phosphorus (PIII) doped analogues 4-6. Then, the PIII-dopants on 4-6 are converted to phosphonium salts (R4P+), giving 7-9. The valence states of P-dopant show great influence on molecular geometries and electronic structures. Taking P and S co-doped HSEs as example, bowl-depths increase in the order of 1 (PV)<7 (R4P+)<4 (PIII), and the HOMO energy levels and HOMO-LUMO gaps increase to be 7<1<4. Consistent with the theoretical calculation, the first oxidation potentials decrease and the absorption/emission bands show blue shift from 7 to 1 to 4. The transformation of PV to PIII leads to large variations on the coordination with Ag+, owing to the alteration of coordination site from P=S to PIII. The phosphonium salts show ring-opening of phosphole rings under electrochemical reduction. It is found that chalcogen atoms play pivotal roles on coordination patterns of coordination complexes and the conversion rates of ring-opening reactions.
Collapse
Affiliation(s)
- Lijun Feng
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui, Southern Road 222, Lanzhou, Gansu Province, China
| | - Xinqiang Hua
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui, Southern Road 222, Lanzhou, Gansu Province, China
| | - Jihai Shang
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui, Southern Road 222, Lanzhou, Gansu Province, China
| | - Yawei Feng
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui, Southern Road 222, Lanzhou, Gansu Province, China
| | - Chengshan Yuan
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui, Southern Road 222, Lanzhou, Gansu Province, China
| | - Zitong Liu
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui, Southern Road 222, Lanzhou, Gansu Province, China
| | - Hao-Li Zhang
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui, Southern Road 222, Lanzhou, Gansu Province, China
| | - Xiangfeng Shao
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui, Southern Road 222, Lanzhou, Gansu Province, China
| |
Collapse
|
22
|
Ren P, Chen L, Sun C, Hua X, Luo N, Fan B, Chen P, Shao X, Zhang HL, Liu Z. Linear Non-benzenoid Isomer of Acene Fusing Chrysene with Azulene Units. J Phys Chem Lett 2024; 15:8410-8419. [PMID: 39116005 DOI: 10.1021/acs.jpclett.4c01917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Non-benzenoid polycyclic aromatic hydrocarbons (PAHs) have received considerable attention owing to their distinctive optical and electrical properties. Nevertheless, the synthesis and optoelectronic application of non-benzenoid PAHs remain challenging. Herein, we present a facile synthesis of linear non-benzenoid PAH with an armchair edge, diACh, by fusing chrysene with two azulene units. We systematically investigated the optical and electrical properties, which were also compared to its isomers, including benzenoid and non-benzenoid zigzag edge isomers. diACh exhibits global aromaticity, good planarity, and suitable highest occupied molecular orbital/lowest unoccupied molecular orbital energy levels. The protonation of diACh in solution successively forms a stable tropylium cation and dication. Moreover, the neutral, cationic, and dicationic states of diACh can be transformed with remarkable reversibility during the protonation-deprotonation process, as confirmed by ultraviolet-visible absorptions, fluorescence spectra, 1H nuclear magnetic resonance, and theoretical calculations. Additionally, we fabricate p-type organic field-effect transistor (OFET) devices based on diACh with hole mobility up to 0.026 cm2 V-1 s-1, and we further develop OFET-based acid vapor sensors with good sensitivity, recyclability, and selectivity. These findings underscore the unique properties of linear non-benzenoid PAHs with an armchair edge engendered by the fusion of azulene with the acene backbone, showcasing prospective applications in organic optoelectronics.
Collapse
Affiliation(s)
- Peng Ren
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Liangliang Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Chunlin Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Xinqiang Hua
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Nan Luo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Baojin Fan
- College of Chemistry and Chemical Engineering Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Pinyu Chen
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| |
Collapse
|
23
|
Yao Y, Oberhofer H. Designing building blocks of covalent organic frameworks through on-the-fly batch-based Bayesian optimization. J Chem Phys 2024; 161:074102. [PMID: 39145552 DOI: 10.1063/5.0223540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
In this work, we use a Bayesian optimization (BO) algorithm to sample the space of covalent organic framework (COF) components aimed at the design of COFs with a high hole conductivity. COFs are crystalline, often porous coordination polymers, where organic molecular units-called building blocks (BBs)-are connected by covalent bonds. Even though we limit ourselves here to a space of three-fold symmetric BBs forming two-dimensional COF sheets, their design space is still much too large to be sampled by traditional means through evaluating the properties of each element in this space from first principles. In order to ensure valid BBs, we use a molecular generation algorithm that, by construction, leads to rigid three-fold symmetric molecules. The BO approach then trains two distinct surrogate models for two conductivity properties, level alignment vs a reference electrode and reorganization free energy, which are combined in a fitness function as the objective that evaluates BBs' conductivities. These continuously improving surrogates allow the prediction of a material's properties at a low computational cost. It thus allows us to select promising candidates which, together with candidates that are very different from the molecules already sampled, form the updated training sets of the surrogate models. In the course of 20 such training steps, we find a number of promising candidates, some being only variations on already known motifs and others being completely novel. Finally, we subject the six best such candidates to a computational reverse synthesis analysis to gauge their real-world synthesizability.
Collapse
Affiliation(s)
- Yuxuan Yao
- Department of Chemistry, TUM School of Natural Sciences, Technical University Munich, Lichtenbergstr. 4, 85748 Garching b. München, Germany
- Chair for Theoretical Physics VII and Bavarian Center for Battery Technology, University of Bayreuth, Universitätsstr. 30, D-95447 Bayreuth, Germany
| | - Harald Oberhofer
- Chair for Theoretical Physics VII and Bavarian Center for Battery Technology, University of Bayreuth, Universitätsstr. 30, D-95447 Bayreuth, Germany
| |
Collapse
|
24
|
Yang X, Jiang S, Jin Z, Li T. Application of Asymmetric Catalysis in Chiral Pesticide Active Molecule Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17153-17165. [PMID: 39051451 DOI: 10.1021/acs.jafc.4c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The different configurations of chiral pesticides generally have significant influence on their biological activities. Chiral agrochemicals with high optical purities have become a prominent topic in the research field of new pesticides due to their advantages including lower toxicity, higher efficiency, and reduced residue levels. However, most commercially available pesticides that possess chiral elements are still used in their racemic forms. To date, asymmetric catalysis has emerged as a versatile tool for the enantioselective synthesis of various chiral agrochemicals and novel chiral pesticide active molecules. This perspective provides a comprehensive overview of the applications of diverse asymmetric catalytic approaches in the facile preparation of numerous novel pesticide active molecules, and our own outlook on the future development of this highly active research direction is also presented at the end of this review.
Collapse
Affiliation(s)
- Xiaoqun Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shichun Jiang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tingting Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
25
|
Liu Q, Miller GP. Syntheses, characterizations and reactions of acene-2,3-dicarbaldehydes. RSC Adv 2024; 14:25008-25018. [PMID: 39131503 PMCID: PMC11310926 DOI: 10.1039/d4ra04273e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
Here, we report improved syntheses, detailed characterizations and reactions of a series of acene-2,3-dicarbaldehydes including tetracene-2,3-dicarbaldehyde. DFT calculations corroborate and complement the experimental results. Tetracene-2,3-dicarbaldehyde and the benchmark organic semiconductor pentacene have isoelectronic π-systems and similar HOMO-LUMO gaps. Tetracene-2,3-dicarbaldehyde is soluble in a host of organic solvents (e.g., DMF, toluene, THF, chloroform, dichloromethane) and shows excellent photooxidative resistance in solution phases exposed to light and air. Further, it is readily sublimed from the solid-state without decomposition, and can be functionalized using different chemistries. We have demonstrated the utility of acene-2,3-dicarbaldehydes as reactants in the syntheses of novel α,α'-diaryl-2,3-acenedimethanols and acenotropones via Grignard reactions and double-aldol condensation reactions, respectively. The acenotropones were further reacted with concentrated H2SO4 to generate hydroxyacenotropylium ions that exhibit long wavelength absorption in the visible and near-IR regions. The optical gap measured for hydroxyanthracenotropylium ion is 1.3 eV. The results gained here implicate acene-2,3-dicarbaldehydes as potential high-value organic semiconductors and as precursors to a host of interesting molecules and materials.
Collapse
Affiliation(s)
- Qian Liu
- Department of Chemistry, University of New Hampshire 23 Academic Way Durham New Hampshire 03824 USA
| | - Glen P Miller
- Department of Chemistry, University of New Hampshire 23 Academic Way Durham New Hampshire 03824 USA
| |
Collapse
|
26
|
Zhang Q, Hu Y, Yan J, Zhang H, Xie X, Zhu J, Li H, Niu X, Li L, Sun Y, Hu W. Large-Language-Model-Based AI Agent for Organic Semiconductor Device Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405163. [PMID: 38816034 DOI: 10.1002/adma.202405163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Large language models (LLMs) have attracted widespread attention recently, however, their application in specialized scientific fields still requires deep adaptation. Here, an artificial intelligence (AI) agent for organic field-effect transistors (OFETs) is designed by integrating the generative pre-trained transformer 4 (GPT-4) model with well-trained machine learning (ML) algorithms. It can efficiently extract the experimental parameters of OFETs from scientific literature and reshape them into a structured database, achieving precision and recall rates both exceeding 92%. Combined with well-trained ML models, this AI agent can further provide targeted guidance and suggestions for device design. With prompt engineering and human-in-loop strategies, the agent extracts sufficient information of 709 OFETs from 277 research articles across different publishers and gathers them into a standardized database containing more than 10 000 device parameters. Using this database, a ML model based on Extreme Gradient Boosting is trained for device performance judgment. Combined with the interpretation of the high-precision model, the agent has provided a feasible optimization scheme that has tripled the charge transport properties of 2,6-diphenyldithieno[3,2-b:2',3'-d]thiophene OFETs. This work is an effective practice of LLMs in the field of organic optoelectronic devices and expands the research paradigm of organic optoelectronic materials and devices.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Haihe Lab of ITAI, Tianjin, 300051, China
| | - Yongxu Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Jiaxin Yan
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Haihe Lab of ITAI, Tianjin, 300051, China
| | - Hengyue Zhang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Haihe Lab of ITAI, Tianjin, 300051, China
| | - Xinyi Xie
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Jie Zhu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Haihe Lab of ITAI, Tianjin, 300051, China
| | - Huchao Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Xinxin Niu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Haihe Lab of ITAI, Tianjin, 300051, China
| | - Liqiang Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yajing Sun
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Haihe Lab of ITAI, Tianjin, 300051, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, Fuzhou, Fujian, 350207, China
| |
Collapse
|
27
|
Cunin CE, Meacham RF, Lee ER, Roh H, Samal S, Li W, Matthews JR, Zhao Y, He M, Gumyusenge A. Leveraging Insulator's Tacticity in Semiconducting Polymer Blends. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39717-39727. [PMID: 39036945 DOI: 10.1021/acsami.4c06609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Blending conjugated polymers with insulating matrices is often utilized for engineering extrinsic properties in organic electronics. Semiconductor/insulator blends are typically processed to form a uniformly distributed network of conductive domains within the insulating matrix, marrying electronic and physical properties from individual components. Understanding of polymer-polymer interactions in such systems is thus crucial for property co-optimization. One of the commonly overlooked parameters is the structural configuration of the insulator on the resulting properties, especially the electronic properties. This study investigated how the tacticity of the matrix polymer, among other relevant parameters in play, impacts solid state crystallization in semiconductor/matrix blends and hence the resulting charge transport properties. We found an intricate dependence of the film morphology, aggregation behavior, electronic charge transport, and mixed ionic-electronic coupling properties on the insulator's tacticity. Our experimentally iterative approach shows that for a given application, when selecting semiconductor/insulator combinations, the tacticity of the matrix can be leveraged to optimize performance and vary solid-state structure.
Collapse
Affiliation(s)
- Camille E Cunin
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Rebecca F Meacham
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Eric R Lee
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Heejung Roh
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sanket Samal
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Wenhao Li
- Laboratory of Molecular Materials and Devices, State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai 200438, China
| | - James R Matthews
- Corning Incorporated, One River Front Plaza, Corning, New York 14831, United States
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai 200438, China
| | - Mingqian He
- Corning Incorporated, One River Front Plaza, Corning, New York 14831, United States
| | - Aristide Gumyusenge
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
28
|
Fan J, Xu J, Ma Q, Yao S, Zhao L, Frenking G, Driess M. Silylene-Stabilized Neutral Dibora-Aromatics with a B═B Bond. J Am Chem Soc 2024; 146:20458-20467. [PMID: 38980827 PMCID: PMC11273343 DOI: 10.1021/jacs.4c06579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
The unprecedented silylene-supported dibenzodiboraoxepin 2 and 9,10-diboraphenanthrene complexes 6 and 8 were synthesized. The (NHSi)2B2(xanthene) [NHSi = PhC(NtBu)2(Me2N)Si:] 2 results from debromination of the bis(NHSi)-stabilized bis(dibromoboryl)xanthene 1 with potassium graphite (KC8); 2 is capable of activating white phosphorus and ammonia to form the B2P4 cage compound 3 and H2N-B-B-H diborane species 4, respectively. The thermal rearrangement of 2 affords the 9,10-dihydro-9,10-diboraphenanthrene 5 through a bis(NHSi)-assisted intramolecular reductive C-O-C deoxygenation process. Notably, the 9,10-diboraphenanthrene derivatives 6 and 8 could be generated by deoxygenation of 2 with KC8 and 1,3,4,5-tetramethylimidazol-2-ylidene, respectively. The aromaticity of 6 and 8 was confirmed by computational studies. Strikingly, the NHSi ligand in 8 engenders the monodeoxygenation of carbon dioxide in toluene at room temperature to form the CO-stabilized 9,10-diboraphenanthrene derivative 9 via the silaoxadiborinanone intermediate 10.
Collapse
Affiliation(s)
- Jun Fan
- Department
of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, Berlin 10623, Germany
| | - Jian Xu
- Department
of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, Berlin 10623, Germany
| | - Qin Ma
- State
Key Laboratory of Materials-Oriented Chemical Engineering, School
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shenglai Yao
- Department
of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, Berlin 10623, Germany
| | - Lili Zhao
- State
Key Laboratory of Materials-Oriented Chemical Engineering, School
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Gernot Frenking
- State
Key Laboratory of Materials-Oriented Chemical Engineering, School
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
- Fachbereich
Chemie, Philipps-Universität Marburg, Marburg 35032, Germany
| | - Matthias Driess
- Department
of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, Berlin 10623, Germany
| |
Collapse
|
29
|
Li Y, Dong J, Wu X, Huo B, Liu P, Li B, Guo CY. Elevating Thermoelectric Performance by Compositing Dibromo-Substituted Thienoacene with SWCNTs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35190-35199. [PMID: 38943571 DOI: 10.1021/acsami.4c07042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Composites of organic small molecules (OSMs) and single-walled carbon nanotubes (SWCNTs) have drawn great attention as flexible thermoelectric (TE) materials in recent years. Here, we synthesized thieno[2',3':4,5]thieno[3,2-b]thieno[2,3-d]thiophene (TTA) and 2,6-dibromothieno[2',3':4,5]thieno[3,2-b]thieno[2,3-d]thiophene (TTA-2Br) and compounded them with SWCNTs, obtaining thermoelectric TTA/SWCNT and TTA-2Br/SWCNT composites. The introduction of the electron-withdrawing Br group was found to decrease the highest molecular orbital energy level and bandgap (Eg) of TTA-2Br. As a result, the Seebeck coefficient (S) and power factor (PF) of the OSM/SWCNT composite films were significantly improved. Moreover, suitable energy barrier between TTA-2Br and SWCNTs facilitates the energy filtering effect, which further enhances thermoelectric properties of the 40 wt % TTA-2Br/SWCNT composite film with optimum thermoelectric properties (PF = 242.59 ± 9.42 μW m-1 K-2 at room temperature), good thermal stability, and mechanical flexibility. In addition, the thermoelectric generator (TEG) prepared using 40 wt % TTA-2Br/SWCNT composite films and n-type SWCNT films can generate an output power of 102.8 ± 7.4 nW at a temperature difference of 20 °C. This work provides new insights into the preparation of OSM/SWCNT composites with significantly enhanced thermoelectric properties.
Collapse
Affiliation(s)
- Yiyang Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| | - Jiaxuan Dong
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| | - Xin Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| | - Bingchen Huo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| | - Peiyao Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| | - Baolin Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| | - Cun-Yue Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| |
Collapse
|
30
|
Konwar M, Hazarika N, Sarmah BK, Das A. Ruthenium(II)-Catalyzed Oxidative Annulation of Imidazo[1,5-a]quinolin-2-iums Salts and Internal Alkynes via C-H Bond Activation. Chemistry 2024; 30:e202401133. [PMID: 38593238 DOI: 10.1002/chem.202401133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Ruthenium(II)-catalyzed synthesis of π-conjugated fused imidazo[1,5-a]quinolin-2-ium derivatives have been achieved via C-H activation of quinoline-functionalized NHC (NHC=N-heterocyclic carbene) and oxidative coupling with internal alkynes. The reaction occurred with high efficiency, broad substrate scope, tolerates a wide range of functional groups and utilized into a gram-scale. Synthetic applications of the coupled product have been exemplified in the late-stage derivatization of various highly functionalized scaffolds. Moreover, most of the annulated products exhibit intense fluorescence and have potential applications in optoelectronic devices. Mechanistic studies have provided insights into the spectroscopic characterization of key five-membered ruthenacycle intermediate and Ru(0) sandwich species. Based on several control experiments, deuterium-kinetic isotope effect, and thermodynamic activation parameters the mechanistic finding demonstrated that fused imidazo-[1,5-a]quinolin-2-ium C(2)-H bond cleavage is the rate-determining step and ruling out the possibility of reductive elimination for controlling the rate of reaction.
Collapse
Affiliation(s)
- Monuranjan Konwar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nitumoni Hazarika
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Bikash Kumar Sarmah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
- Department of Chemistry, Sonari College, Charaideo, 785690, Assam, India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
31
|
Pavalamuthu M, Navamani K. Entropy-ruled nonequilibrium charge transport in thiazolothiazole-based molecular crystals: a quantum chemical study. Phys Chem Chem Phys 2024; 26:16488-16504. [PMID: 38751327 DOI: 10.1039/d3cp05739a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The charge and energy fluctuations in molecular solids are crucial factors for a better understanding of charge transport (CT) in organic semiconductors. The energetic disorder-coupled molecular charge transport is still not well-established. Moreover, the conventional Einstein's diffusion (D)-mobility (μ) relation fails to explain the quantum features of organic semiconductors, including nonequilibrium and degenerate transport systems, where kB is the Boltzmann constant, T is the temperature and q is the electric charge. To overcome this issue, a unified version of the entropy-ruled D/μ relation was proposed by Navamani (J. Phys. Chem. Lett., 2024, 15, 2519-2528) for hopping and band transport systems as where d, η and heff are the dimension (d = 1, 2, 3), chemical potential and effective entropy, respectively. Within this context, we investigate the CT properties of 2,5-bis(4-methoxyphenyl)thiazolo[5,4-d]thiazole (MOP-TZTZ) and 2,5-bis(2,4,5 trifluorophenyl)-thiazolo[5,4-d]thiazole (TFP-TZTZ) molecular solids using electronic structure calculations and the entropy-ruled method. The CT key parameters such as charge transfer integral and site energy are computed by matrix elements of the Kohn-Sham Hamiltonian. Using Marcus theory, the charge transfer rate is numerically calculated for MOP-TZTZ and TFP-TZTZ molecular crystals under different site energy disorder (ΔEij(E⃑)) situations. Using our entropy-ruled method, the exact diffusion-mobility (D/μ) and other transport quantities such as thermodynamic density of states, conductivity, and current density are calculated for these derivatives at different applied electric field values via the site energy disorder. The theoretical results show that the molecule TFP-TZTZ has good hole mobility (∼0.012 cm2 V-1 s-1) at a site energy disorder value of 90 meV. The obtained ideality factor from the Navamani-Shockley diode current density equation categorizes the typical transport as either the Langevin-type or Shockley-Read-Hall mechanism in the studied molecular solids. Our analysis clearly shows that both the electron and hole transport in these MOP-TZTZ and TFP-TZTZ molecules follow the trap-free Langevin mechanism, which is indeed ideal for designing charge-transporting molecular devices.
Collapse
Affiliation(s)
- M Pavalamuthu
- Department of Physics, Centre for Research and Development (CFRD), KPR Institute of Engineering and Technology, Coimbatore-641407, India.
| | - K Navamani
- Department of Physics, Centre for Research and Development (CFRD), KPR Institute of Engineering and Technology, Coimbatore-641407, India.
| |
Collapse
|
32
|
Ayuso-Carrillo J, Fina F, Galleposo EC, Ferreira RR, Mondal PK, Ward BD, Bonifazi D. One-Step Catalyst-Transfer Macrocyclization: Expanding the Chemical Space of Azaparacyclophanes. J Am Chem Soc 2024; 146:16440-16457. [PMID: 38848549 PMCID: PMC11191698 DOI: 10.1021/jacs.4c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024]
Abstract
In this paper, we report on a one-step catalyst-transfer macrocyclization (CTM) reaction, based on the Pd-catalyzed Buchwald-Hartwig cross-coupling reaction, selectively affording only cyclic structures. This route offers a versatile and efficient approach to synthesize aza[1n]paracyclophanes (APCs) featuring diverse functionalities and lumens. The method operates at mild reaction temperatures (40 °C) and short reaction times (∼2 h), delivering excellent isolated yields (>75% macrocycles) and up to 30% of a 6-membered cyclophane, all under nonhigh-dilution concentrations (35-350 mM). Structural insights into APCs reveal variations in product distribution based on different endocyclic substituents, with steric properties of exocyclic substituents having minimal influence on the macrocyclization. Aryl-type endocyclic substituents predominantly yield 6-membered macrocycles, while polycyclic aromatic units such as fluorene and carbazole favor 4-membered species. Experimental and computational studies support a proposed mechanism of ring-walking catalyst transfer that promotes the macrocycle formation. It has been found that the macrocyclization is driven by the formation of cyclic conformers during the oligomerization step favoring an intramolecular C-N bond formation that, depending on the cycle size, hinges on either preorganization effect or kinetic increase of the reductive elimination step or a combination of the two. The CTM process exhibits a "living" behavior, facilitating sequential synthesis of other macrocycles by introducing relevant monomers, thus providing a practical synthetic platform for chemical libraries. Notably, CTM operates both under diluted and concentrated regimes, offering scalability potential, unlike typical macrocyclization reactions usually operating in the 0.1-1 mM range.
Collapse
Affiliation(s)
- Josue Ayuso-Carrillo
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, Vienna A-1090, Austria
| | - Federica Fina
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, Vienna A-1090, Austria
| | - El Czar Galleposo
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, Vienna A-1090, Austria
| | - Rúben R. Ferreira
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, Vienna A-1090, Austria
| | - Pradip Kumar Mondal
- Elettra
Sincrotrone Trieste S.C.p.A., Strada Statale 14−km 163, 5 in Area Science
Park, Basovizza, Trieste 34149, Italy
| | - Benjamin D. Ward
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Davide Bonifazi
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, Vienna A-1090, Austria
| |
Collapse
|
33
|
Wang CH, Adachi Y, Ohshita J. Synthesis of Unsymmetrically Condensed Benzo- and Thienotriazologermoles. Molecules 2024; 29:2684. [PMID: 38893557 PMCID: PMC11173466 DOI: 10.3390/molecules29112684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Germoles and siloles unsymmetrically condensed with heteroaromatic units are attracting much interest. In this study, compounds containing a triazologermole core unit condensed with a benzene or thiophene ring were prepared. Thienotriazologermole was subjected to bromination to obtain the bromide, which underwent transformation via the palladium-catalyzed Stille coupling reaction to form triphenylamine-substituted thienotriazolegermole, with an effective extension of conjugation. The electronic states and properties of these triazologermole derivatives are discussed on the basis of optical and electrochemical measurements and density functional theory calculations. Triphenylamine-substituted thienotriazolegermole showed clear solvatochromic properties in photoluminescence measurements, suggesting that intramolecular charge transfer occurs at the photo-excited state. This clearly indicates that the triazologermole unit is useful as an acceptor of donor-acceptor compounds. The potential application of triphenylamine-substituted thienotriazolegermole as a sensing material was also explored.
Collapse
Affiliation(s)
- Cong-Huan Wang
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan; (C.-H.W.); (Y.A.)
| | - Yohei Adachi
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan; (C.-H.W.); (Y.A.)
| | - Joji Ohshita
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan; (C.-H.W.); (Y.A.)
- Division of Materials Model-Based Research, Digital Monozukuri (Manufacturing) Education and Research Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan
| |
Collapse
|
34
|
Gao C, Li C, Yang Y, Jiang Z, Xue X, Chenchai K, Liao J, Shangguan Z, Wu C, Zhang X, Jia D, Zhang F, Liu G, Zhang G, Zhang D. Nonhalogenated Solvent Processable and High-Density Photopatternable Polymer Semiconductors Enabled by Incorporating Hydroxyl Groups in the Side Chains. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309256. [PMID: 38479377 DOI: 10.1002/adma.202309256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/11/2024] [Indexed: 03/20/2024]
Abstract
Polymer semiconductors hold tremendous potential for applications in flexible devices, which is however hindered by the fact that they are usually processed by halogenated solvents rather than environmentally more friendly solvents. An effective strategy to boost the solubility of high-performance polymer semiconductors in nonhalogenated solvents such as tetrahydrofuran (THF) by appending hydroxyl groups in the side chains is herein presented. The results show that hydroxyl groups, which can be easily incorporated into the side chains, can significantly improve the solubility of typical p- and n-types as well as ambipolar polymer semiconductors in THF. Meanwhile, the thin films of these polymer semiconductors from the respective THF solutions show high charge mobilities. With THF as the processing and developing solvents these polymer semiconductors with hydroxyl groups in the side chains can be well photopatterned in the presence of the photo-crosslinker, and the charge mobilities of the patterned thin films are mostly maintained by comparing with those of the respective pristine thin films. Notably, THF is successfully utilized as the processing and developing solvent to achieve high-density photopatterning with ≈82 000 device arrays cm-2 for polymer semiconductors in which hydroxyl groups are appended in the side chains.
Collapse
Affiliation(s)
- Chenying Gao
- Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Li
- Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yiming Yang
- Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ziling Jiang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Xue
- Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaiyuan Chenchai
- Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junchao Liao
- Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhichun Shangguan
- Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Changchun Wu
- Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xisha Zhang
- Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Jia
- Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fengjiao Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoming Liu
- Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guanxin Zhang
- Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Deqing Zhang
- Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
35
|
Albano G, Portus L, Martinelli E, Pescitelli G, Di Bari L. Impact of Temperature on the Chiroptical Properties of Thin Films of Chiral Thiophene-based Oligomers. Chempluschem 2024; 89:e202300667. [PMID: 38339881 DOI: 10.1002/cplu.202300667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
According to the theoretical model based on the Mueller matrix approach, the experimental electronic circular dichroism (ECD) for thin films of chiral organic dyes can be expressed as the sum of several contributions, two of which are the most significant: 1) an intrinsic component (CDiso) invariant upon sample orientation, reflecting the molecular and/or supramolecular chirality, due to 3D-chiral nanoscopic structures; 2) a non-reciprocal component (LDLB) which inverts its sign upon sample flipping, which arises from the interaction of linear dichroism and linear birefringence in locally anisotropic domains, expression of 2D-chiral micro/mesoscopic structures. In this work, we followed in parallel through ECD and differential scanning calorimetry (DSC) the temperature evolution of the supramolecular arrangements of thin films of five structurally related chiral thiophene-based oligomers with different LDLB/CDiso ratio. By increasing the temperature, regardless of phase transitions observed by DSC analysis, systems with strong CDiso revealed no changes in the ECD spectrum, while compounds with dominant LDLB contribution underwent a gradual (and reversible) reduction of (apparent) ECD signals. These findings demonstrated that the concomitant occurrence of intrinsic and non-reciprocal components in the ECD spectrum of thin films of chiral organic dyes is strictly correlated with solid-state organizations of different stability.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Portus
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
36
|
Sun Y, Shi X, Yu Y, Zhang Z, Wu M, Rao L, Dong Y, Zhang J, Zou Y, You S, Liu J, Lei M, Liu C, Jiang L. Low Contact Resistance Organic Single-Crystal Transistors with Band-Like Transport Based on 2,6-Bis-Phenylethynyl-Anthracene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400112. [PMID: 38500296 PMCID: PMC11165518 DOI: 10.1002/advs.202400112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/08/2024] [Indexed: 03/20/2024]
Abstract
Contact resistance has become one of the main bottlenecks that hinder further improvement of mobility and integration density of organic field-effect transistors (OFETs). Much progress has been made in reducing contact resistance by modifying the electrode/semiconductor interface and decreasing the crystal thickness, however, the development of new organic semiconductor materials with low contact resistance still faces many challenges. Here, 2,6-bis-phenylethynyl-anthracene (BPEA) is found, which is a material that combines high mobility with low contact resistance. Single-crystal BEPA OFETs with a thickness of ≈20 nm demonstrated high mobility of 4.52 cm2 V-1 s-1, contact resistance as low as 335 Ω cm, and band-like charge transport behavior. The calculated compatibility of the EHOMO of BPEA with the work function of the Au electrode, and the decreased |EHOMO-ΦAu| with the increase of external electric field intensity from source to gate both contributed to the efficient charge injection and small contact resistance. More intriguingly, p-type BPEA as a buffer layer can effectively reduce the contact resistance, improve the mobility, and meanwhile inhibit the double-slope electrical behavior of p-channel 2,6-diphenyl anthracene (DPA) single-crystal OFETs.
Collapse
Affiliation(s)
- Yanan Sun
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Xiaosong Shi
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Yamin Yu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- State Key Laboratory of Information Photonics and Optical Communications and School of ScienceBeijing University of Posts and TelecommunicationsBeijing100876China
| | - Zhilei Zhang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Miao Wu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Limei Rao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Yicai Dong
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Jing Zhang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Ye Zou
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Shengyong You
- Institute of Applied ChemistryJiangxi Academy of SciencesNanchang330096China
| | - Jie Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Ming Lei
- State Key Laboratory of Information Photonics and Optical Communications and School of ScienceBeijing University of Posts and TelecommunicationsBeijing100876China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Physics and EngineeringSchool of MicroelectronicsSun Yat‐sen UniversityGuangzhou510275China
| | - Lang Jiang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of the Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
37
|
Zhou H, Li T, Xie M, Zhou Y, Sun Q, Zhang ST, Zhang Y, Yang W, Xue S. Improving electron transportation and operational lifetime of full color organic light emitting diodes through a "weak hydrogen bonding cage" structure. Chem Sci 2024; 15:8106-8111. [PMID: 38817588 PMCID: PMC11134344 DOI: 10.1039/d4sc00496e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024] Open
Abstract
Efficient electron-transporting materials (ETMs) are critical to achieving excellent performance of organic light-emitting diodes (OLEDs), yet developing such materials remains a major long-term challenge, particularly ETMs with high electron mobilities (μeles). Herein, we report a short conjugated ETM molecule (PICN) with a dipolar phenanthroimidazole group, which exhibits an electron mobility of up to 1.52 × 10-4 cm2 (V-1 s-1). The origin of this high μele is long-ranged, regulated special cage-like interactions with C-H⋯N radii, which are also favorable for the excellent efficiency stability and operational stability in OLEDs. It is worth noting that the green phosphorescent OLED operation half-lifetimes can reach up to 630 h under unencapsulation, which is 20 times longer than that based on the commonly used commercial ETM TPBi.
Collapse
Affiliation(s)
- Huayi Zhou
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Tengyue Li
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Mingliang Xie
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Yannan Zhou
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Qikun Sun
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yujian Zhang
- Department of Chemistry Zhejiang Normal University, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Yingbin Road No. 688 Jinhua 321004 P. R. China
| | - Wenjun Yang
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Shanfeng Xue
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| |
Collapse
|
38
|
Wahab A, Gershoni-Poranne R. COMPAS-3: a dataset of peri-condensed polybenzenoid hydrocarbons. Phys Chem Chem Phys 2024; 26:15344-15357. [PMID: 38758092 DOI: 10.1039/d4cp01027b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
We introduce the third installment of the COMPAS Project - a COMputational database of Polycyclic Aromatic Systems, focused on peri-condensed polybenzenoid hydrocarbons. In this installment, we develop two datasets containing the optimized ground-state structures and a selection of molecular properties of ∼39k and ∼9k peri-condensed polybenzenoid hydrocarbons (at the GFN2-xTB and CAM-B3LYP-D3BJ/cc-pvdz//CAM-B3LYP-D3BJ/def2-SVP levels, respectively). The manuscript details the enumeration and data generation processes and describes the information available within the datasets. An in-depth comparison between the two types of computation is performed, and it is found that the geometrical disagreement is maximal for slightly-distorted molecules. In addition, a data-driven analysis of the structure-property trends of peri-condensed PBHs is performed, highlighting the effect of the size of peri-condensed islands and linearly annulated rings on the HOMO-LUMO gap. The insights described herein are important for rational design of novel functional aromatic molecules for use in, e.g., organic electronics. The generated datasets provide a basis for additional data-driven machine- and deep-learning studies in chemistry.
Collapse
Affiliation(s)
- Alexandra Wahab
- The Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Renana Gershoni-Poranne
- The Schulich Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
39
|
Dziobek-Garrett R, Kempa TJ. Excitons at the interface of 2D TMDs and molecular semiconductors. J Chem Phys 2024; 160:200902. [PMID: 38804485 DOI: 10.1063/5.0206417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
Van der Waals heterostructures (vdWHs) of vertically stacked two-dimensional (2D) atomic crystals have been used to elicit intriguing phenomena stemming from strong electronic correlations, magnetic textures, and interlayer excitons spawned at the heterointerface. However, vdWHs comprised of heterointerfaces between these 2D atomic crystal lattices and molecular assemblies are emerging as equally intriguing platforms supporting properties to be harnessed for photovoltaic energy conversion, photodetection, spin-selective charge injection, and quantum emission. In this perspective, we summarize recent research examining exciton dynamics in heterostructures between semiconducting 2D transition metal dichalcogenides and molecular organic semiconductors. We discuss methods for assembly of these heterostructures, the nature of interlayer or charge-transfer excitons at transition-metal dichalcogenide (TMD)-molecule interfaces, explicit exciton transfer between organics and TMDs, and other interfacial phenomena driven by the merger of these two material classes. We also suggest key new research directions extending the remit of these 2D atomic-molecular lattice heterointerfaces into the domains of condensed matter physics, quantum sensing, and energy conversion.
Collapse
Affiliation(s)
| | - Thomas J Kempa
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
40
|
Xu X, Jia K, Qi Q, Tian G, Xiang D. Regulation of π-π interactions between single aromatic molecules by bias voltage. Phys Chem Chem Phys 2024; 26:14607-14612. [PMID: 38738917 DOI: 10.1039/d4cp01277a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
π-stacking interaction, as a fundamental type of intermolecular interaction, plays a crucial role in generating new functional molecules, altering the optoelectronic properties of materials, and maintaining protein structural stability. However, regulating intermolecular π-π interactions at the single-molecule level without altering the molecular conformation as well as the chemical properties remains a significant challenge. To this end, via conductance measurement with thousands of single molecular junctions employing a series of aromatic molecules, we demonstrate that the π-π coupling between neighboring aromatic molecules with rigid structures in a circuit can be greatly enhanced by increasing the bias voltage. We further reveal that this universal regulating effect of bias voltage without molecular conformational variation originates from the increases of the molecular dipole upon an applied electric field. These findings not only supply a non-destructive method to regulate the intermolecular interactions offering an approach to modulate the electron transport through a single molecular junction, but also deepen the understanding of the mechanism of π-π interactions.
Collapse
Affiliation(s)
- Xiaona Xu
- Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China.
| | - Keqiang Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China.
| | - Qiang Qi
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, China.
| | - Guangjun Tian
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, China.
| | - Dong Xiang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China.
| |
Collapse
|
41
|
Tabata S, Yoshida S. Bromothiolation of Arynes for the Synthesis of 2-Bromobenzenethiol Equivalents. Org Lett 2024; 26:3816-3821. [PMID: 38688840 DOI: 10.1021/acs.orglett.4c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
A new method to synthesize o-bromobenzenethiol equivalents through aryne intermediates is disclosed. Various o-bromobenzenethiol equivalents are prepared by the bromothiolation of aryne intermediates with potassium xanthates. Aryl xanthates serve in the synthesis of diverse organosulfurs involving phenothiazines and thianthrenes by further transformations.
Collapse
Affiliation(s)
- Shinya Tabata
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Suguru Yoshida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
42
|
Moro S, Spencer SE, Lester DW, Nübling F, Sommer M, Costantini G. Molecular-Scale Imaging Enables Direct Visualization of Molecular Defects and Chain Structure of Conjugated Polymers. ACS NANO 2024; 18:11655-11664. [PMID: 38652866 PMCID: PMC11080458 DOI: 10.1021/acsnano.3c10842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Conjugated polymers have become materials of choice for applications ranging from flexible optoelectronics to neuromorphic computing, but their polydispersity and tendency to aggregate pose severe challenges to their precise characterization. Here, the combination of vacuum electrospray deposition (ESD) with scanning tunneling microscopy (STM) is used to acquire, within the same experiment, assembly patterns, full mass distributions, exact sequencing, and quantification of polymerization defects. In a first step, the ESD-STM results are successfully benchmarked against NMR for low molecular mass polymers, where this technique is still applicable. Then, it is shown that ESD-STM is capable of reaching beyond its limits by characterizing, with the same accuracy, samples that are inaccessible to NMR. Finally, a recalibration procedure is proposed for size exclusion chromatography (SEC) mass distributions, using ESD-STM results as a reference. The distinctiveness of the molecular-scale information obtained by ESD-STM highlights its role as a crucial technique for the characterization of conjugated polymers.
Collapse
Affiliation(s)
- Stefania Moro
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K.
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Daniel W. Lester
- Polymer
Characterisation Research Technology Platform, University of Warwick, Coventry CV4 7AL, U.K.
| | - Fritz Nübling
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg 79104, Germany
| | - Michael Sommer
- Institute
for Chemistry, Chemnitz University of Technology, Chemnitz 09111, Germany
- Center
for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
| | - Giovanni Costantini
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K.
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
43
|
Das KK, Aich D, Dey S, Panda S. One pot conversion of phenols and anilines to aldehydes and ketones exploiting α gem boryl carbanions. Nat Commun 2024; 15:3794. [PMID: 38714666 PMCID: PMC11076505 DOI: 10.1038/s41467-024-47156-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/22/2024] [Indexed: 05/10/2024] Open
Abstract
Functional group interconversion is an important asset in organic synthesis. Phenols/anilines being naturally abundant and the carbonyl being the most common in a wide range of bioactive molecules, an efficient conversion is of prime interest. The reported methods require transition metal catalyzed cross coupling which limits its applicability. Here we have described a method for synthesizing various aldehydes and ketones, starting from phenol and protected anilines via Csp2-O/N bond cleavage in a one-pot/stepwise manner. Our synthetic method is found to be compatible with a diverse range of phenols and anilines carrying sensitive functional groups including halides, esters, ketal, hydroxyl, alkenes, and terminal alkynes as well as the substitution on the aryl cores. A short-step synthesis of bioactive molecules and their functionalization have been executed. Starting from BINOL, a photocatalyst has been designed. Here, we have developed a transition metal-free protocol for the conversion of phenols and anilines to aldehydes and ketones.
Collapse
Affiliation(s)
- Kanak Kanti Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Debasis Aich
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sutapa Dey
- School of Energy Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Santanu Panda
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
44
|
Dong Y, Lan MF, Lin YQ, Chen L, Wu CM, Wang ZF, Shi ZC, Deng GW, He B. Synthesis of Spiro Polycyclic N-Heterocycles and Indolecarbazoles via Merging Oxidative Coupling and Cascade Palladium-Catalyzed Intramolecular Oxidative Cyclization. J Org Chem 2024; 89:6474-6488. [PMID: 38607334 DOI: 10.1021/acs.joc.4c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
We report a step-economic strategy for the direct synthesis of spiro polycyclic N-heterocycles and indolecarbazole-fused naphthoquinones by merging oxidative coupling and cascade palladium-catalyzed intramolecular oxidative cyclization. In the protocol, bi-indolylnaphthoquinones were first synthesized by oxidative coupling of indoles and naphthoquinones. Subsequent cascade palladium-catalyzed intramolecular oxidative cyclization of bi-indolylnaphthoquinones gave spiro polycyclic N-heterocycles and indolecarbazoles. The intramolecular oxidative cyclization approach could also be realized by the presence or absence of iron catalysts under standard conditions. This protocol is featured with moderate to excellent yields, a wide substrate scope, and divergent structures of products.
Collapse
Affiliation(s)
- Yu Dong
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, P. R. China
| | - Mei-Feng Lan
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, P. R. China
| | - Yue-Qin Lin
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, P. R. China
| | - Lin Chen
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, P. R. China
| | - Chun-Mei Wu
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, P. R. China
| | - Zhi-Fan Wang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, P. R. China
| | - Zhi-Chuan Shi
- Southwest Minzu University, Chengdu 610041, P. R. China
| | - Guo-Wei Deng
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, P. R. China
| | - Bing He
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, P. R. China
| |
Collapse
|
45
|
Guo L, Hu S, Gu X, Zhang R, Wang K, Yan W, Sun X. Emerging Spintronic Materials and Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301854. [PMID: 37309258 DOI: 10.1002/adma.202301854] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/01/2023] [Indexed: 06/14/2023]
Abstract
The explosive growth of the information era has put forward urgent requirements for ultrahigh-speed and extremely efficient computations. In direct contrary to charge-based computations, spintronics aims to use spins as information carriers for data storage, transmission, and decoding, to help fully realize electronic device miniaturization and high integration for next-generation computing technologies. Currently, many novel spintronic materials have been developed with unique properties and multifunctionalities, including organic semiconductors (OSCs), organic-inorganic hybrid perovskites (OIHPs), and 2D materials (2DMs). These materials are useful to fulfill the demand for developing diverse and advanced spintronic devices. Herein, these promising materials are systematically reviewed for advanced spintronic applications. Due to the distinct chemical and physical structures of OSCs, OIHPs, and 2DMs, their spintronic properties (spin transport and spin manipulation) are discussed separately. In addition, some multifunctionalities due to photoelectric and chiral-induced spin selectivity (CISS) are overviewed, including the spin-filter effect, spin-photovoltaics, spin-light emitting devices, and spin-transistor functions. Subsequently, challenges and future perspectives of using these multifunctional materials for the development of advanced spintronics are presented.
Collapse
Affiliation(s)
- Lidan Guo
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Shunhua Hu
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xianrong Gu
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Rui Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Kai Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Wenjing Yan
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG9 2RD, UK
| | - Xiangnan Sun
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
46
|
Wu L, Huang Z, Miao J, Wang S, Li X, Li N, Cao X, Yang C. Orienting Group Directed Cascade Borylation for Efficient One-Shot Synthesis of 1,4-BN-Doped Polycyclic Aromatic Hydrocarbons as Narrowband Organic Emitters. Angew Chem Int Ed Engl 2024; 63:e202402020. [PMID: 38385590 DOI: 10.1002/anie.202402020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
1,4-BN-doped polycyclic aromatic hydrocarbons (PAHs) have emerged as very promising emitters in organic light-emitting diodes (OLEDs) due to their narrowband emission spectra that may find application in high-definition displays. While considerable research has focused on investigating the properties of these materials, less attention has been placed on their synthetic methodology. Here we developed an efficient synthetic method for 1,4-BN-doped PAHs, which enables sustainable production of narrowband organic emitting materials. By strategically introducing substituents, such as methyl, tert-butyl, phenyl, and chloride, at the C5 position of the 1,3-benzenediamine substrates, we achieved remarkable regioselective borylation in the para-position of the substituted moiety. This approach facilitated the synthesis of a diverse range of 1,4-BN-doped PAHs emitters with good yields and exceptional regioselectivity. The synthetic method demonstrated excellent scalability for large-scale production and enabled late-stage transformation of the borylated products. Mechanistic investigations provided valuable insights into the pivotal roles of electron effect and steric hindrance effect in achieving highly efficient regioselective borylation. Moreover, the outstanding device performance of the synthesized compounds 10 b and 6 z, underscores the practicality and significance of the developed method.
Collapse
Affiliation(s)
- Lin Wu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physical and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhongyan Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shuni Wang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xinyao Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P. R. of China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
47
|
Vandeputte E, Antonetti E, Nava P, Dutasta JP, Chatelet B, Moraleda D, Nuel D, Giordano L, Martinez A. Straightforward Access to Chiral Phosphangulene Derivatives. J Org Chem 2024; 89:5314-5319. [PMID: 38568746 DOI: 10.1021/acs.joc.3c02674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Polycyclic aromatic hydrocarbons including heteroatoms have found a wide range of applications, for instance, in supramolecular chemistry or material science. Phosphangulene derivatives are P-containing polycyclic aromatic hydrocarbons presenting a concave aromatic surface suitable for building supramolecular receptors. However, the applications of this convenient building block have been strongly hampered by a difficult and multistep preparation requiring several protection-deprotection sequences along with the use of harmful reagents. Here, we report a straightforward, protecting-group-free, three-step, and hundred-milligram-scale synthesis of a chiral phosphangulene oxide derivative via a triple phospho-Fries rearrangement. This compound was easily resolved by chiral HPLC and further functionalized, giving rise to versatile chiral phosphangulene derivatives. Following this strategy, chiral phosphangulene oxides with low symmetry were synthesized. Molecular crystal structures revealed a variety of molecular organization in the solid. This opens the way to wider use of this compound as a building block for cages or new materials.
Collapse
Affiliation(s)
- Emile Vandeputte
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| | - Elise Antonetti
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| | - Paola Nava
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| | - Jean-Pierre Dutasta
- ENS Lyon, CNRS, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France
| | - Bastien Chatelet
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| | - Delphine Moraleda
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| | - Didier Nuel
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| | - Laurent Giordano
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| | - Alexandre Martinez
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| |
Collapse
|
48
|
Li J, Wang P, Dong J, Xie Z, Tan X, Zhou L, Ai L, Li B, Wang Y, Dong H. A Domino Protocol toward High-performance Unsymmetrical Dibenzo[d,d']thieno[2,3-b;4,5-b']dithiophenes Semiconductors. Angew Chem Int Ed Engl 2024; 63:e202400803. [PMID: 38414106 DOI: 10.1002/anie.202400803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Unsymmetric organic semiconductors have many advantages such as good solubility, rich intermolecular interactions for potential various optoelectronic applications. However, their synthesis is more challenging due to intricate structures thus normally suffering tedious synthesis. Herein, we report a trisulfur radical anion (S3⋅-) triggered domino thienannulation strategy for the synthesis of dibenzo[d,d']thieno[2,3-b;4,5-b']dithiophenes (DBTDTs) using readily available 1-halo-2-ethynylbenzenes as starting materials. This domino protocol features no metal catalyst and the formation of six C-S and one C-C bonds in a one-pot reaction. Mechanistic study revealed a unique domino radical anion pathway. Single crystal structure analysis of unsymmetric DBTDT shows that its unique unsymmetric structure endows rich and multiple weak S⋅⋅⋅S interactions between molecules, which enables the large intermolecular transfer integrals of 86 meV and efficient charge transport performance with a carrier mobility of 1.52 cm2 V-1 s-1. This study provides a facile and highly efficient synthetic strategy for more high-performance unsymmetric organic semiconductors.
Collapse
Affiliation(s)
- Jiahui Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pu Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaxuan Dong
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziyi Xie
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangyu Tan
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Zhou
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liankun Ai
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baolin Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
49
|
Zhang D, Zhang F, Du H, Liu F, Yi X, Chen J, Hu BL. U-shaped stereoscopic design strategy toward N-doped nanographene segment. RSC Adv 2024; 14:11771-11774. [PMID: 38617572 PMCID: PMC11009840 DOI: 10.1039/d4ra00788c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024] Open
Abstract
There have been scarce reports about stereoscopic design of N-heteroacenes (NHAs), especially for the electron-deficient π-building blocks. Herein, we report the design and synthesis of a U-shaped bis(pyrene-quinoxaline) (BPQ). Single crystal X-ray diffraction reveals the herringbone stacking pattern and the presence of regular and incompletely closed pores.
Collapse
Affiliation(s)
- Dongyang Zhang
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology Ganzhou 341000 China
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Fengyuan Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Hanyun Du
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
- School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| | - Fei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Xiaohui Yi
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Jun Chen
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology Ganzhou 341000 China
| | - Ben-Lin Hu
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| |
Collapse
|
50
|
Biswas S, Jang H, Lee Y, Choi H, Kim Y, Kim H, Zhu Y. Recent advancements in implantable neural links based on organic synaptic transistors. EXPLORATION (BEIJING, CHINA) 2024; 4:20220150. [PMID: 38855618 PMCID: PMC11022612 DOI: 10.1002/exp.20220150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/15/2023] [Indexed: 06/11/2024]
Abstract
The progress of brain synaptic devices has witnessed an era of rapid and explosive growth. Because of their integrated storage, excellent plasticity and parallel computing, and system information processing abilities, various field effect transistors have been used to replicate the synapses of a human brain. Organic semiconductors are characterized by simplicity of processing, mechanical flexibility, low cost, biocompatibility, and flexibility, making them the most promising materials for implanted brain synaptic bioelectronics. Despite being used in numerous intelligent integrated circuits and implantable neural linkages with multiple terminals, organic synaptic transistors still face many obstacles that must be overcome to advance their development. A comprehensive review would be an excellent tool in this respect. Therefore, the latest advancements in implantable neural links based on organic synaptic transistors are outlined. First, the distinction between conventional and synaptic transistors are highlighted. Next, the existing implanted organic synaptic transistors and their applicability to the brain as a neural link are summarized. Finally, the potential research directions are discussed.
Collapse
Affiliation(s)
- Swarup Biswas
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4)University of SeoulSeoulRepublic of Korea
| | - Hyo‐won Jang
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4)University of SeoulSeoulRepublic of Korea
| | - Yongju Lee
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4)University of SeoulSeoulRepublic of Korea
- Terasaki Institute for Biomedical InnovationLos AngelesCaliforniaUSA
| | - Hyojeong Choi
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4)University of SeoulSeoulRepublic of Korea
- Terasaki Institute for Biomedical InnovationLos AngelesCaliforniaUSA
| | - Yoon Kim
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4)University of SeoulSeoulRepublic of Korea
| | - Hyeok Kim
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4)University of SeoulSeoulRepublic of Korea
- Terasaki Institute for Biomedical InnovationLos AngelesCaliforniaUSA
- Central Business, SENSOMEDICheongju‐siRepublic of Korea
- Institute of Sensor System, SENSOMEDICheongjuRepublic of Korea
- Energy FlexSeoulRepublic of Korea
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical InnovationLos AngelesCaliforniaUSA
| |
Collapse
|