1
|
Wong CF, Saif UM, Chow KL, Wong JTF, Chen XW, Liang Y, Cheng Z, Tsang YF, Wong MH, Man YB. Applications of charcoal, activated charcoal, and biochar in aquaculture - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172574. [PMID: 38641094 DOI: 10.1016/j.scitotenv.2024.172574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Environmental pollution and poor feed quality pose potential threats to aquatic organisms and human health, representing challenges for the aquaculture industry. In light of the rising demand for aquatic organisms, there is an urgent need to improve aquacultural production and protect the products from contamination. Char, a carbonaceous material derived through pyrolysis of organic carbon-rich biomass, has proven advantages in soil, air, and water remediation. While char's performance and the associated physicochemical characteristics depend strongly on the pyrolysis temperature, residence time, and feedstock type, char generally shows advantages in pollutant removal from the environment and livestock. This enables it to enhance the health and growth performance of livestock. Given the growing attention to char application in aquaculture in recent years, this review summarises major studies on three applications: aquacultural water treatment, sediment remediation, and char-feed supplement. Most of these studies have demonstrated char's positive effects on pollutant removal from organisms and aquacultural environments. Moreover, adopting char as fish feed can improve fish growth performance and the condition of their intestinal villi. However, due to insufficient literature, further investigation is needed into the mechanistic aspects of pollutants removal in aquatic organisms by char as a feed additive, such as the transportation of char inside aquatic organisms, the positive and negative effects of char on these products, and how char alters the gut microbiota community of these products. This paper presents an overview of the current application of char in aquaculture and highlights the research areas that require further investigation to enrich future studies.
Collapse
Affiliation(s)
- Chun Fung Wong
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Uddin Md Saif
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Ka Lai Chow
- Division of Applied Science, College of International Education, School of Continuing Education, Hong Kong Baptist University, Shek Mun, Hong Kong, China
| | - James Tsz Fung Wong
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xun Wen Chen
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, PR China
| | - Yan Liang
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Zhang Cheng
- College of Environment, Sichuan Agricultural University, Chengdu, PR China
| | - Yiu Fai Tsang
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China.
| |
Collapse
|
2
|
Padhye LP, Srivastava P, Jasemizad T, Bolan S, Hou D, Shaheen SM, Rinklebe J, O'Connor D, Lamb D, Wang H, Siddique KHM, Bolan N. Contaminant containment for sustainable remediation of persistent contaminants in soil and groundwater. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131575. [PMID: 37172380 DOI: 10.1016/j.jhazmat.2023.131575] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/14/2023]
Abstract
Contaminant containment measures are often necessary to prevent or minimize offsite movement of contaminated materials for disposal or other purposes when they can be buried or left in place due to extensive subsurface contamination. These measures can include physical, chemical, and biological technologies such as impermeable and permeable barriers, stabilization and solidification, and phytostabilization. Contaminant containment is advantageous because it can stop contaminant plumes from migrating further and allow for pollutant reduction at sites where the source is inaccessible or cannot be removed. Moreover, unlike other options, contaminant containment measures do not require the excavation of contaminated substrates. However, contaminant containment measures require regular inspections to monitor for contaminant mobilization and migration. This review critically evaluates the sources of persistent contaminants, the different approaches to contaminant remediation, and the various physical-chemical-biological processes of contaminant containment. Additionally, the review provides case studies of contaminant containment operations under real or simulated field conditions. In summary, contaminant containment measures are essential for preventing further contamination and reducing risks to public health and the environment. While periodic monitoring is necessary, the benefits of contaminant containment make it a valuable remediation option when other methods are not feasible.
Collapse
Affiliation(s)
- Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Prashant Srivastava
- CSIRO, The Commonwealth Scientific and Industrial Research Organisation, Environment Business Unit, Waite Campus, Urrbrae, South Australia 5064, Australia
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - David O'Connor
- School of Real Estate and Land Management, Royal Agricultural University, Cirencester, Gloucestershire GL7 6JS, United Kingdom
| | - Dane Lamb
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
3
|
Valizadeh S, Lee SS, Choi YJ, Baek K, Jeon BH, Andrew Lin KY, Park YK. Biochar application strategies for polycyclic aromatic hydrocarbons removal from soils. ENVIRONMENTAL RESEARCH 2022; 213:113599. [PMID: 35679906 DOI: 10.1016/j.envres.2022.113599] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are known as a hazardous group of pollutants in the soil which causes many challenges to the environment. In this study, the potential of biochar (BC), as a carbonaceous material, is evaluated for the immobilization of PAHs in soils. For this purpose, various bonding mechanisms of BC and PAHs, and the strength of bonds are firstly described. Also, the effect of impressive criteria including BC physicochemical properties (such as surface area, porosity, particle size, polarity, aromaticity, functional group, etc., which are mostly the function of pyrolysis temperature), number of rings in PAHs, incubation time, and soil properties, on the extent and rate of PAHs immobilization by BC are explained. Then, the utilization of BC in collaboration with biological tools which simplifies further dissipation of PAHs in the soil is described considering detailed interactions among BC, microbes, and plants in the soil matrix. The co-effect of BC and biological remediation has been authenticated by previous studies. Moreover, recent technologies and challenges related to the application of BC in soil remediation are explained. The implementation of a combined BC-biological remediation method would provide excellent prospects for PAHs-contaminated soils.
Collapse
Affiliation(s)
- Soheil Valizadeh
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Sang Soo Lee
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Yong Jun Choi
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kitae Baek
- Department of Environment & Energy (BK21 FOUR) and Soil Environment Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
4
|
Hu M, Wu W, Lin D, Yang K. Adsorption of fulvic acid on mesopore-rich activated carbon with high surface area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155918. [PMID: 35577089 DOI: 10.1016/j.scitotenv.2022.155918] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The loss of dissolved organic matter (DOM), especially fulvic acid (FA), from soil by rainfall and runoff will reduce soil fertility and result in water pollution of DOM. Carbon materials including biochars (BCs) and activated carbons (ACs) are widely suggested for soil remediation and carbon immobilization. However, these suggested carbon materials are dominated by micropores, and largely limiting the adsorption capacity for FA. Therefore, a mesopore-rich activated carbon (KAC) with high surface area was prepared from bamboo chips to investigate the adsorption of FA. This KAC can adsorb FA more than ACs and BCs investigated in this study and reported in previous studies not only because of the high surface area (3108 m2/g), but also the higher mesopore volume proportion (57%). The negative pH effect on adsorption performance of KAC was weaker than that on AC and BC, because of the less polarity of KAC. Moreover, KAC was favorable to adsorb FA fractions with various molecular weights, higher aromaticity and higher polarity. This study indicated that KAC was a promising adsorbent for FA, and revealed the underlying adsorption mechanism of FA on KAC, which are helpful for the carbon immobilization and pollution control in soil.
Collapse
Affiliation(s)
- Min Hu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Wenhao Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
5
|
Mukherjee S, Sarkar B, Aralappanavar VK, Mukhopadhyay R, Basak BB, Srivastava P, Marchut-Mikołajczyk O, Bhatnagar A, Semple KT, Bolan N. Biochar-microorganism interactions for organic pollutant remediation: Challenges and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119609. [PMID: 35700879 DOI: 10.1016/j.envpol.2022.119609] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Numerous harmful chemicals are introduced every year in the environment through anthropogenic and geological activities raising global concerns of their ecotoxicological effects and decontamination strategies. Biochar technology has been recognized as an important pillar for recycling of biomass, contributing to the carbon capture and bioenergy industries, and remediation of contaminated soil, sediments and water. This paper aims to critically review the application potential of biochar with a special focus on the synergistic and antagonistic effects on contaminant-degrading microorganisms in single and mixed-contaminated systems. Owing to the high specific surface area, porous structure, and compatible surface chemistry, biochar can support the proliferation and activity of contaminant-degrading microorganisms. A combination of biochar and microorganisms to remove a variety of contaminants has gained popularity in recent years alongside traditional chemical and physical remediation technologies. The microbial compatibility of biochar can be improved by optimizing the surface parameters so that toxic pollutant release is minimized, biofilm formation is encouraged, and microbial populations are enhanced. Biocompatible biochar thus shows potential in the bioremediation of organic contaminants by harboring microbial populations, releasing contaminant-degrading enzymes, and protecting beneficial microorganisms from immediate toxicity of surrounding contaminants. This review recommends that biochar-microorganism co-deployment holds a great potential for the removal of contaminants thereby reducing the risk of organic contaminants to human and environmental health.
Collapse
Affiliation(s)
- Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| | | | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal 132001, India
| | - B B Basak
- ICAR-Directorate of Medicinal and Aromatic Plants Research, Anand 387310, India
| | | | - Olga Marchut-Mikołajczyk
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Ul. Stefanowskiego 2/22, 90-537, Łódź, Poland
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli, FI-50130, Finland
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
6
|
Lin Q, Tan X, Almatrafi E, Yang Y, Wang W, Luo H, Qin F, Zhou C, Zeng G, Zhang C. Effects of biochar-based materials on the bioavailability of soil organic pollutants and their biological impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:153956. [PMID: 35189211 DOI: 10.1016/j.scitotenv.2022.153956] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/13/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Motivated by the unique structure and superior properties, biochar-based materials, including pristine biochar and composites of biochar with other functional materials, are considered as new generation materials for diverse multi-functional applications, which may be intentionally or unintentionally released to soil. The influencing mechanism of biochar-based material on soil organisms is a key aspect for quantifying and predicting its benefits and trade-offs. This work focuses on the effects of biochar-based materials on soil organisms within the past ten years. 206 sources are reviewed and available knowledge on biochar-based materials' impacts on soil organisms is summarized from a diverse perspective, including the pollutant bioavailability changes in soil, and potential effects of biochar-based materials on soil organisms. Herein, effects of biochar-based materials on the bioavailability of soil organic pollutants are detailed, from the perspective of plant, microorganism, and soil fauna. Potential biological effects of pristine biochar (PBC), metal/metal compounds-biochar composites (MBC), clay minerals-biochar composites (CMBC), and carbonaceous materials-biochar composites (CBC) on soil organisms are highlighted for the first time. And possible mechanisms are presented based on the different characters of biochar-based materials as well as various environmental interactions. Finally, the bottleneck and challenges of risk assessment of biochar-based materials as well as future prospects are proposed. This work not only promotes the development of risk assessment system of biochar-based materials, but broadens the strategy for the design and optimization of environmental-friendly biochar materials.
Collapse
Affiliation(s)
- Qing Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eydhah Almatrafi
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yang Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wenjun Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hanzhuo Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Fanzhi Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
7
|
Rämö R, Bonaglia S, Nybom I, Kreutzer A, Witt G, Sobek A, Gunnarsson JS. Sediment Remediation Using Activated Carbon: Effects of Sorbent Particle Size and Resuspension on Sequestration of Metals and Organic Contaminants. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1096-1110. [PMID: 35040192 PMCID: PMC9306760 DOI: 10.1002/etc.5292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/13/2021] [Accepted: 01/11/2022] [Indexed: 05/31/2023]
Abstract
Thin-layer capping using activated carbon has been described as a cost-effective in situ sediment remediation method for organic contaminants. We compared the capping efficiency of powdered activated carbon (PAC) against granular activated carbon (GAC) using contaminated sediment from Oskarshamn harbor, Sweden. The effects of resuspension on contaminant retention and cap integrity were also studied. Intact sediment cores were collected from the outer harbor and brought to the laboratory. Three thin-layer caps, consisting of PAC or GAC mixed with clay or clay only, were added to the sediment surface. Resuspension was created using a motor-driven paddle to simulate propeller wash from ship traffic. Passive samplers were placed in the sediment and in the water column to measure the sediment-to-water release of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and metals. Our results show that a thin-layer cap with PAC reduced sediment-to-water fluxes of PCBs by 57% under static conditions and 91% under resuspension. Thin-layer capping with GAC was less effective than PAC but reduced fluxes of high-molecular weight PAHs. Thin-layer capping with activated carbon was less effective at retaining metals, except for Cd, the release of which was significantly reduced by PAC. Resuspension generally decreased water concentrations of dissolved cationic metals, perhaps because of sorption to suspended sediment particles. Sediment resuspension in treatments without capping increased fluxes of PCBs with log octanol-water partitioning coefficient (KOW ) > 7 and PAHs with log KOW of 5-6, but resuspension reduced PCB and PAH fluxes through the PAC thin-layer cap. Overall, PAC performed better than GAC, but adverse effects on the benthic community and transport of PAC to nontarget areas are drawbacks that favor the use of GAC. Environ Toxicol Chem 2022;41:1096-1110. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Robert Rämö
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Stefano Bonaglia
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Inna Nybom
- Department of Environmental ScienceStockholm UniversityStockholmSweden
| | - Anne Kreutzer
- Department of Environmental TechnologyHamburg University of Applied SciencesHamburgGermany
| | - Gesine Witt
- Department of Environmental TechnologyHamburg University of Applied SciencesHamburgGermany
| | - Anna Sobek
- Department of Environmental ScienceStockholm UniversityStockholmSweden
| | - Jonas S. Gunnarsson
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| |
Collapse
|
8
|
Jarjour J, Yan B, Munoz G, Desrosiers M, Sauvé S, Liu J. Reduced bioaccumulation of fluorotelomer sulfonates and perfluoroalkyl acids in earthworms (Eisenia fetida) from soils amended with modified clays. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126999. [PMID: 34461538 DOI: 10.1016/j.jhazmat.2021.126999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Soils contaminated by per- and polyfluoroalkyl substances (PFAS) pose long-term sources to adjacent water bodies and soil invertebrates. The study investigated the stabilization using a modified clay adsorbent (FLUORO-SORB100®) in reducing the bioaccumulation of 13 anionic PFAS by earthworms (Eisenia fetida), as compared to coal-based granular activated carbon. The target PFAS included four perfluoroalkyl sulfonates such as perfluorooctane sulfonate (PFOS), six perfluoroalkyl carboxylates (e.g., perfluorooctanoate PFOA), and three (X:2) fluorotelomer sulfonates. Laboratory-spiked surface soil and the soil collected from a site contaminated by aqueous film-forming foams were examined. Both adsorbents resulted in reduced earthworm PFAS body burdens at the end of the 28-day uptake phase. The highest adsorbent amendment concentration (4 w/w%) was most effective, achieving >95% reduction of PFAS body burden. Soil leaching tests indicated better immobilization performance by the clay adsorbent for most analytes; in comparison, the activated carbon performed better at reducing total PFAS body burdens, possibly owing to the avoidance of larger-sized particles by earthworms. Strong positive logarithm relationships were observed between leachate concentrations and earthworm body burdens for most PFAS in the spiked soil. The study demonstrated that stabilization of PFAS using modified clay adsorbents can achieve concurrent benefits of lowering leachability and reducing bioaccumulation.
Collapse
Affiliation(s)
- Julie Jarjour
- Department of Civil Engineering, McGill University, Montréal, QC, Canada
| | - Bei Yan
- Department of Civil Engineering, McGill University, Montréal, QC, Canada
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Mélanie Desrosiers
- Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement et de la Lutte contre les changements climatiques, Québec, QC, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montréal, QC, Canada.
| |
Collapse
|
9
|
Minkina T, Vasilyeva G, Popileshko Y, Bauer T, Sushkova S, Fedorenko A, Antonenko E, Pinskii D, Mazarji M, Ferreira CSS. Sorption of benzo[a]pyrene by Chernozem and carbonaceous sorbents: comparison of kinetics and interaction mechanisms. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:133-148. [PMID: 33909189 DOI: 10.1007/s10653-021-00945-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon, highly persistent and toxic and a widespread environmental pollutant. Although various technologies have been developed to remove BaP from the environment, its sorption through solid matrixes has received increasing attention due to cost-effectiveness. The present research compares the adsorption capacity of Haplic Chernozem, granular activated carbon and biochar in relation to BaP from water solution. Laboratory experiments with different initial BaP concentrations in the liquid phase and different ratios of the solid and liquid phases show that Freundlich model describes well the adsorption isotherms of BaP by the soil and both sorbents. Moreover, the BaP isotherm sorption by the Haplic Chernozem is better illustrated by the Freundlich model than the Langmuir equation. The results reveal that the sorption capacity of the carbonaceous adsorbents at a ratio 1:20 (solid to liquid phases) is orders of magnitude higher (13 368 ng mL-1 of activated carbon and 3 578 ng mL-1 of biochar) compared to the soil (57.8 ng mL-1). At the ratio of 0.5:20, the adsorption capacity of the carbonaceous sorbents was 17-45 times higher than that of the soil. This is due to the higher pore volume and specific surface area of the carbonaceous sorbents than soil particles, assessed through scanning electron microscopy. The sorption kinetic of BaP by Chernozem was compared with the adsorption kinetics by the carbonaceous sorbents. Results indicate that the adsorption dynamic involves two steps. The first one is associated with a fast BaP adsorption on the large available surface and inside macro- and meso-pores of the sorbent particles of the granular activated carbon and biochar. Then, the adsorption is followed by a slower process of BaP penetration into the microporous space and/or redistribution into a hydrophobic fraction. The effectiveness of the sorption process depends on both the sorbent properties and the solvent competition. Overall, the granular activated carbon and biochar are highly effective adsorbents for BaP, whereas the Haplic Chernozem has a rather limited capacity to remove BaP from contaminated solutions.
Collapse
Affiliation(s)
- Tatiana Minkina
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Galina Vasilyeva
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, 142290, Russian Federation
| | - Yana Popileshko
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Tatiana Bauer
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Svetlana Sushkova
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Aleksey Fedorenko
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Elena Antonenko
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - David Pinskii
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, 142290, Russian Federation
| | - Mahmoud Mazarji
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation.
| | | |
Collapse
|
10
|
Mamirova A, Pidlisnyuk V, Amirbekov A, Ševců A, Nurzhanova A. Phytoremediation potential of Miscanthus sinensis And. in organochlorine pesticides contaminated soil amended by Tween 20 and Activated carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16092-16106. [PMID: 33245538 DOI: 10.1007/s11356-020-11609-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
The organochlorine pesticides (OCPs) have raised concerns about being persistent and toxic to the environment. Phytoremediation techniques show promise for the revitalization of polluted soils. The current study focused on optimizing the phytoremediation potential of Miscanthus sinensis And. (M. sinensis), second-generation energy crop, by exploring two soil amendments: Tween 20 and activated carbon (AC). The results showed that when M. sinensis grew in OCP-polluted soil without amendments to it, the wide range of compounds, i.e., α-HCH, β-HCH, γ-HCH, 2.4-DDD, 4.4-DDE, 4.4-DDD, 4.4-DDT, aldrin, dieldrin, and endrin, was accumulated by the plant. The introduction of soil amendments improved the growth parameters of M. sinensis. The adding of Tween 20 enhanced the absorption and transmigration to aboveground biomass for some OCPs; i.e., for γ-HCH, the increase was by 1.2, for 4.4-DDE by 8.7 times; this effect was due to the reduction of the hydrophobicity which made pesticides more bioavailable for the plant. The adding of AC reduced OCPs absorption by plants, consequently, for γ-HCH by 2.1 times, 4.4-DDD by 20.5 times, 4.4-DDE by 1.4 times, 4.4-DDT by 8 times, α-HCH was not adsorbed at all, and decreased the translocation to the aboveground biomass: for 4.4-DDD by 31 times, 4.4-DDE by 2.8 times, and γ-HCH by 2 times; this effect was due to the decrease in the bioavailability of pesticides. Overall, the amendment of OCP-polluted soil by Tween 20 speeds the remediation process, and incorporation of AC permitted to produce the relatively clean biomass for energy.
Collapse
Affiliation(s)
- Aigerim Mamirova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan, 050040.
- Faculty of Environment, Jan Evangelista Purkyně University, Usti nad Labem, Czech Republic.
| | - Valentina Pidlisnyuk
- Faculty of Environment, Jan Evangelista Purkyně University, Usti nad Labem, Czech Republic
| | - Aday Amirbekov
- Faculty of Mechatronics, Technical University of Liberec, Liberec, Czech Republic
| | - Alena Ševců
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Liberec, Czech Republic
| | - Asil Nurzhanova
- Institute of Plant Biology and Biotechnology MES RK, Almaty, Kazakhstan
| |
Collapse
|
11
|
Chen Z, Wang J, Wang Y, Li B, Wang M. Rapid formation of pyrogenic char (biochar) with high and low sorption capacity towards organic chemicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116472. [PMID: 33460877 DOI: 10.1016/j.envpol.2021.116472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/25/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Pyrogenic char (biochar) with a high sorption capacity (B-HSC) can sequester hazardous chemicals (e.g., phenanthrene). However, when sorption inhibits bioavailability of some functional chemicals (e.g., the herbicidal efficacy of diuron in soil), biochar with a low sorption capacity (B-LSC) is required to prevent sorption effects. The pyrolytic B-HSC generation has been reported, but information on B-LSC formation is scarce. How fast B-HSC and B-LSC could be generated is unknown until now. Here, biochars were rapidly prepared (the shortest heating time reached 5 min and the cooling time reached < 30 min) by a direct-pyrolysis method by directly exposing packaged rice straw and pine wood to 350 °C, 500 °C and 700 °C and out-of-furnace cooling at room temperature. The sorption of diuron, phenanthrene, and twelve other chemicals was investigated. B-HSCs were obtained within 30 min of rice straw pyrolysis, and the biochar Kd values quickly increased to 7-730-fold that of the raw biomass as -OH and C-O-C in (hemi)cellulose of rice straw rapidly degraded, increasing hydrophobic interactions between the char and chemicals (solubility ≤ 82.8 g/L). In contrast, B-LSCs were generated within 30 min of PW pyrolysis, and the Kd values of the biochars were 0.2-3.0-fold that of the raw biomass, as the surface area development and hydrophobicity-driven sorption were probably delayed by the late degradation of lignin aromatic C-O and phenolic -OH. Biochar amendment revealed an enhancement effect of B-HSC but not of B-LSC on soil sorption. The fast formation of B-LSC and B-HSC provides a guide to develop time- and cost-effective technique in pyrolytically producing weakly or strongly sorbing biochars for organic chemical management.
Collapse
Affiliation(s)
- Zaiming Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China
| | - Jianfei Wang
- Department of Environmental Engineering, Ningbo University, Ningbo, 315211, China
| | - Yuefeng Wang
- Department of Environmental Engineering, Ningbo University, Ningbo, 315211, China
| | - Bing Li
- Department of Environmental Engineering, Ningbo University, Ningbo, 315211, China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China.
| |
Collapse
|
12
|
Tu YJ, Premachandra GS, Boyd SA, Sallach JB, Li H, Teppen BJ, Johnston CT. Synthesis and evaluation of Fe 3O 4-impregnated activated carbon for dioxin removal. CHEMOSPHERE 2021; 263:128263. [PMID: 33297207 PMCID: PMC7733032 DOI: 10.1016/j.chemosphere.2020.128263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 06/12/2023]
Abstract
Polychlorinated dibenzo-p-dioxins and -furans (PCDD/PCDFs) are highly toxic organic pollutants in soils and sediments which persist over timescales that extend from decades to centuries. There is a growing need to develop effective technologies for remediating PCDD/Fs-contaminated soils and sediments to protect human and ecosystem health. The use of sorbent amendments to sequester PCDD/Fs has emerged as one promising technology. A synthesis method is described here to create a magnetic activated carbon composite (AC-Fe3O4) for dioxin removal and sampling that could be recovered from soils using magnetic separation. Six AC-Fe3O4 composites were evaluated (five granular ACs (GACs) and one fine-textured powder AC(PAC)) for their magnetization and ability to sequester dibenzo-p-dioxin (DD). Both GAC/PAC and GAC/PAC-Fe3O4 composites effectively removed DD from aqueous solution. The sorption affinity of DD for GAC-Fe3O4 was slightly reduced compared to GAC alone, which is attributed to the blocking of sorption sites. The magnetization of a GAC-Fe3O4 composite reached 5.38 emu/g based on SQUID results, allowing the adsorbent to be easily separated from aqueous solution using an external magnetic field. Similarly, a fine-textured PAC-Fe3O4 composite was synthesized with a magnetization of 9.3 emu/g.
Collapse
Affiliation(s)
- Yao-Jen Tu
- School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai, 200234, China
| | | | - Stephen A Boyd
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - J Brett Sallach
- Department of Environment and Geography, University of York, Heslington, York, YO10 5NG, UK
| | - Hui Li
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Brian J Teppen
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Cliff T Johnston
- Department of Agronomy, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA; Department of Earth, Atmospheric and Planetary Sciences, 550 Stadium Mall, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
13
|
Gujre N, Soni A, Rangan L, Tsang DCW, Mitra S. Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115549. [PMID: 33246313 DOI: 10.1016/j.envpol.2020.115549] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/18/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
Conservation of soil health and crop productivity is the central theme for sustainable agriculture practices. It is unrealistic to expect that the burgeoning crop production demands will be met by a soil ecosystem that is increasingly unhealthy and constrained. Therefore, the present review is focused on soil amendment techniques, using biochar in combination with arbuscular mycorrhizal fungi (AMF), which is an indispensable biotic component that maintains plant-soil continuum. Globally significant progress has been made in elucidating the physical and chemical properties of biochar; along with its role in carbon sequestration. Similarly, research advances on AMF include its evolutionary background, functions, and vital roles in the soil ecosystem. The present review deliberates on the premise that biochar and AMF have the potential to become cardinal to management of agro-ecosystems. The wider perspectives of various agronomical and environmental backgrounds are discussed. The present state of knowledge, different aspects and limitations of combined biochar and AMF applications (BC + AMF), mechanisms of interaction between biochar and AMF, effects on plant growth, challenges and future opportunities of BC + AMF applications are critically reviewed. Given the severely constrained nature of soil health, the roles of BC + AMF in agriculture, bioremediation and ecology have also been examined. In spite of the potential benefits, the functionality and dynamics of BC + AMF in soil are far from being fully elucidated.
Collapse
Affiliation(s)
- Nihal Gujre
- Agro-ecotechnology Laboratory, Centre for Rural Technology, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Ankit Soni
- Agro-ecotechnology Laboratory, Centre for Rural Technology, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Latha Rangan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Sudip Mitra
- Agro-ecotechnology Laboratory, Centre for Rural Technology, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
14
|
A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. ACTA ACUST UNITED AC 2020; 28:e00570. [PMID: 33304842 PMCID: PMC7718465 DOI: 10.1016/j.btre.2020.e00570] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 01/02/2023]
Abstract
Recent research on remediation of toxic pollutants by biochar has been summarized. The production techniques of the biochar have been narrated. Biochar properties, stability and its environmental issues have been analysed. Applications of biochar in soil fertility and removing pollutants have been reported. The major stumbling block in biochar production is cost of production.
There is an upsurge enthusiasm for utilizing biochar produced from waste-biomass in different fields, to address the most important ecological issues. This review is focused on an overview of remediating harmful contaminants utilizing biochar. Production of biochar utilizing various systems has been discussed. Biochar has received the consideration of numerous analysts in building up their proficiency to remediate contaminants. Process parameters are fundamentally answerable for deciding the yield of biomass. Biochar derived from biomass is an exceptionally rich wellspring of carbon produced from biomass utilizing thermal combustion. Activating biochar is another particular region for the growing utilization of biochar for expelling specific contaminations. Closed-loop systems to produce biochar creates more opportunities. Decentralized biochar production techniques serve as an effective way of providing employment opportunities, managing wastes, increasing resource proficiency in circular bioeconomy. This paper also covers knowledge gaps and perspectives in the field of remediation of toxic pollutants using biochar.
Collapse
|
15
|
Ranguin R, Jean-Marius C, Yacou C, Gaspard S, Feidt C, Rychen G, Delannoy M. Reduction of chlordecone environmental availability by soil amendment of biochars and activated carbons from lignocellulosic biomass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41093-41104. [PMID: 31975004 DOI: 10.1007/s11356-019-07366-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Chlordecone (kepone or CLD) was formerly used in French West Indies as an insecticide. Despite its formal ban in 1993, high levels of this pesticide are still found in soils. As such, sequestering matrices like biochars or activated carbons (ACs) may successfully decrease the bioavailability of halogenated compounds like CLD when added to contaminated soils. The present study intends (i) to produce contrasted sequestering matrices in order to (ii) assess their respective efficiency to reduce CLD environmental availability. Hence, the work was designed following two experimental steps. The first one consisted at producing different sequestering media (biochars and ACs) via pyrolysis and distinct activation processes, using two lignocellulosic precursors (raw biomass): oak wood (Quercus ilex) and coconut shell (Cocos nucifera). The chemical activation was carried out with phosphoric acid while physical activation was done with carbon dioxide and steam. In the second step, the CLD environmental availability was assessed either in an OECD artificial soil or in an Antillean contaminated nitisol (i.e., 2.1-1μg CLD per g of soil dry matter, DM), both amended with 5 wt% of biochar or 5 wt% of AC. These both steps aim to determine CLD environmental availability reduction efficiency of these media when added (i) to a standard soil material or (ii) to a soil representative of the Antillean CLD contamination context. Textural characteristics of the derived coconut and oak biochars and ACs were determined by nitrogen adsorption at 77 K. Mixed microporous and mesoporous textures consisting of high pore volume (ranging from 0.38 cm3.g-1 to 2.00 cm3.g-1) and specific (BET) surface areas from 299.9 m2.g-1 to 1285.1 m2.g-1 were obtained. Overall, soil amendment with biochars did not limit CLD environmental availability (environmental availability assay ISO/DIS 16751 Part B). When soil was amended with ACs, a significant reduction of the environmental availability in both artificial and natural soils was observed. AC soil amendment resulted in a reduced CLD transfer by at least 65% (P < 0.001) for all lignocellulosic matrices (excepted for coconut sample activated with steam, which displayed a 47% reduction). These features confirm that both pore structure and extent of porosity are of particular importance in the retention process of CLD in aged soil. Owing to its adsorptive properties, AC amendment of CLD-contaminated soils appears as a promising approach to reduce the pollutant transfer to fauna and biota.
Collapse
Affiliation(s)
- Ronald Ranguin
- Laboratoire COVACHIMM, EA 3592, Université des Antilles et de la Guyane, BP 250, 97157, Pointe-à-Pitre Cedex, Guadeloupe, France
| | - Corine Jean-Marius
- Laboratoire COVACHIMM, EA 3592, Université des Antilles et de la Guyane, BP 250, 97157, Pointe-à-Pitre Cedex, Guadeloupe, France
| | - Christelle Yacou
- Laboratoire COVACHIMM, EA 3592, Université des Antilles et de la Guyane, BP 250, 97157, Pointe-à-Pitre Cedex, Guadeloupe, France
| | - Sarra Gaspard
- Laboratoire COVACHIMM, EA 3592, Université des Antilles et de la Guyane, BP 250, 97157, Pointe-à-Pitre Cedex, Guadeloupe, France.
| | - Cyril Feidt
- Université de Lorraine-INRA (USC340), URAFPA, 54500, Vandœuvre-lès-Nancy, France
| | - Guido Rychen
- Université de Lorraine-INRA (USC340), URAFPA, 54500, Vandœuvre-lès-Nancy, France
| | - Matthieu Delannoy
- Université de Lorraine-INRA (USC340), URAFPA, 54500, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
16
|
Li G, Chen F, Jia S, Wang Z, Zuo Q, He H. Effect of biochar on Cd and pyrene removal and bacteria communities variations in soils with culturing ryegrass (Lolium perenne L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114887. [PMID: 32505933 DOI: 10.1016/j.envpol.2020.114887] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Organic contaminations and heavy metals in soils cause large harm to human and environment, which could be remedied by planting specific plants. The biochars produced by crop straws could provide substantial benefits as a soil amendment. In the present study, biochars based on wheat, corn, soybean, cotton and eggplant straws were produced. The eggplant straws based biochar (ESBC) represented higher Cd and pyrene adsorption capacity than others, which was probably owing to the higher specific surface area and total pore volume, more functional groups and excellent crystallization. And then, ESBC amendment hybrid Ryegrass (Lolium perenne L.) cultivation were investigated to remediate the Cd and pyrene co-contaminated soil. With the leaching amount of 100% (v/w, mL water/g soil) and Cd content of 16.8 mg/kg soil, dosing 3% ESBC (wt%, biochar/soil) could keep 96.2% of the Cd in the 10 cm depth soil layer where the ryegrass root could reach, and it positively help root adsorb contaminations. Compared with the single planting ryegrass, the Cd and pyrene removal efficiencies significantly increased to 22.8% and 76.9% by dosing 3% ESBC, which was mainly related with the increased plant germination of 80% and biomass of 1.29 g after 70 days culture. When the ESBC dosage increased to 5%, more free radicals were injected and the ryegrass germination and biomass decreased to 65% and 0.986 g. Furthermore, when the ESBC was added into the ryegrass culture soil, the proportion of Cd and pyrene degrading bacteria Pseudomonas and Enterobacter significantly increased to 4.46% and 3.85%, which promoted the co-contaminations removal. It is suggested that biochar amendment hybrid ryegrass cultivation would be an effective method to remediate the Cd and pyrene co-contaminated soil.
Collapse
Affiliation(s)
- Guirong Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Fukai Chen
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Shengyong Jia
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China; Yellow River Institute of Hydraulic Research, Zhengzhou, 450003, China.
| | - Zongshuo Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Qiting Zuo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongmou He
- Yellow River Institute of Hydraulic Research, Zhengzhou, 450003, China
| |
Collapse
|
17
|
Zhang P, Shao Y, Xu X, Huang P, Sun H. Phototransformation of biochar-derived dissolved organic matter and the effects on photodegradation of imidacloprid in aqueous solution under ultraviolet light. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:137913. [PMID: 32251880 DOI: 10.1016/j.scitotenv.2020.137913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
Dissolved organic matter (DOM) strongly influences the photodegradation of organic pollutants, varying depending on the structure of DOM. With the wide application of biochar, increasing amounts of DOM is released from biochar to the environment, which has different structural characteristics compared to natural DOM. In this study, DOM was derived from maize straw (MS) and pig manure (PM) and biochars by pyrolyzing MS and PM at 300 °C and 500 °C and the optical characteristics of DOM before and after phototransformation were explored via ultraviolet-visible spectroscopy and excitation-emission matrix fluorescence. Photodegradation of an insecticide, imidacloprid (IMI) in the presence of DOM was examined. The results showed that DOM derived from biochar obtained by pyrolyzing MS and PM mainly contained two identified fluorescent components and high pyrolysis temperature (500 °C) was associated with low molecular weight, small light-screening effects and great aromaticity of the DOM. After exposure to UV light, the aromaticity and molecular weight of the DOM declined due to phototransformation. Significant enhancement was observed in IMI photodegradation in the presence of biochar-derived DOM, and the enhancement was the greatest with DOM derived from pig manure biochar pyrolyzed at 500 °C. In addition to the light shielding effect, the 1O2 generated from DOM played an important role in the phototransformation of IMI and DOM. The loss of the nitro group and oxidation at the imidazolidine ring were the main photodegradation pathways for IMI. This study expands our understanding of the fate of biochar-derived DOM and its effects on the fate of coexisting organic pollutants.
Collapse
Affiliation(s)
- Peng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yifei Shao
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255000, China
| | - Xuejing Xu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peng Huang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
18
|
Gelardi DL, Li C, Parikh SJ. An emerging environmental concern: Biochar-induced dust emissions and their potentially toxic properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:813-820. [PMID: 31085497 DOI: 10.1016/j.scitotenv.2019.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 05/27/2023]
Abstract
Amending soils with biochar is increasingly proposed as a solution to many pressing agricultural and environmental challenges. Biochar, created by thermochemical conversion of biomass in an oxygen-limited environment, has several purported benefits, including remediation of contaminated soils, increased crop yields, reduced fertilizer demands, increased plant available water, and mitigation of climate change. Due to these potential benefits, biochar-related research has flourished in the past decade, though there remains a critically understudied area of research regarding biochar's potential impact on human health. Because biochar characteristically has low bulk density and high porosity, the material is susceptible to atmospheric release via natural or mechanical soil disturbance. The specific risks of biochar inhalation have not been elucidated; however, recent publications have demonstrated that biochar can increase soil dust emissions of particles <10 μm (PM10) or possess elevated levels of toxic chemicals. These data should not be interpreted to suggest that all biochars are problematic, but rather to highlight an important and overlooked field of study, and to stress the need to critically assess parameters for biochar production and management strategies that safeguard human health. Here the literature on biochar-related dust emissions and potentially toxic properties (PTPs) is reviewed in order to summarize what is known, highlight areas for future study, and aggregate solutions to minimize potential harm.
Collapse
Affiliation(s)
- Danielle L Gelardi
- University of California Davis, Land, Air and Water Resources, One Shields Ave., Davis, CA 95616, United States of America.
| | - Chongyang Li
- University of California Davis, Land, Air and Water Resources, One Shields Ave., Davis, CA 95616, United States of America.
| | - Sanjai J Parikh
- University of California Davis, Land, Air and Water Resources, One Shields Ave., Davis, CA 95616, United States of America.
| |
Collapse
|
19
|
Grgić M, Maletić S, Beljin J, Isakovski MK, Rončević S, Tubić A, Agbaba J. Lindane and hexachlorobenzene sequestration and detoxification in contaminated sediment amended with carbon-rich sorbents. CHEMOSPHERE 2019; 220:1033-1040. [PMID: 33395789 DOI: 10.1016/j.chemosphere.2019.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 06/12/2023]
Abstract
Sediment represents a sink for toxic and persistent chemicals such as hexachlorobenzene (HCB) and lindane (γ-HCH). This paper investigates the possibility of reducing the risks associated with the presence of these pollutants in sediments by amending the sediment with carbon-rich materials (activated carbon (AC) and humus (HC)) to sequester the contaminants and render them biologically unavailable. The effects of the dose and contact time between the sediment and the carbon-rich amendments on the effectiveness of the detoxification are estimated. Four doses of carbon-rich amendments (0.5-10%) and four equilibration contact times (14-180 days) were investigated. Results have shown that the bioavailable fraction of γ-HCH and HCB decreased significantly in comparison to the unamended sediment. Regarding the AC amendments, almost 100% for both compounds; and for HC amendments around 95% for γ-HCH, and 75% for HCB. Aging caused further reductions in the bioavailable fraction, compared to the untreated sediment. Phytotoxicity tests showed that Zea mays accumulated significantly higher amount of γ-HCH and HCB from unamended sediment, comparing to Cucurbita pepo and Lactuca sativa. Toxicity of HC and AC amended sediment assessed by Vibrio fischeri luminescence inhibition test and by measuring Zea mays germination and biomass yield was significantly reduced in the amended sediment samples. γ-HCH and HCB accumulation in the Zea mays biomass in the unamended sediment were a significantly higher than in the all HC and AC amended sediment. Both sorbents show potential to be used as remediation agents for organically contaminated sediment, but AC exhibited the better performance.
Collapse
Affiliation(s)
- Marko Grgić
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Snežana Maletić
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia.
| | - Jelena Beljin
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | | | - Srđan Rončević
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Aleksandra Tubić
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Jasmina Agbaba
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| |
Collapse
|
20
|
Yuan P, Wang J, Pan Y, Shen B, Wu C. Review of biochar for the management of contaminated soil: Preparation, application and prospect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:473-490. [PMID: 31096377 DOI: 10.1016/j.scitotenv.2018.12.400] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/13/2018] [Accepted: 12/26/2018] [Indexed: 05/20/2023]
Abstract
As a multi-beneficial amendment, biochar is reasonable and reliable to be employed as an amendment to implement soil remediation. An overview on the manufacture, applications for contaminated soil restoration and revegetation, as well as recommended aspects for future work has been accomplished. One of the objectives of this work presented herein was to determine the effect of feedstock and preparation conditions such as pyrolysis temperature, retention time, gas flow rate, additives on the biochar characteristics and application potentials. Besides, relevant modification or activation technologies have been discussed for the improvement of the biochar functions. The application of biochar could adjust the soil structure (surface area, pore size and distribution etc.), improve the soil physicochemical properties (pH, cation exchange capacity, water retention capacity etc.) and enhance the uptake of soil nutrients for plant growth; In addition, it also can be used to adsorb various contaminants (heavy metals, organic matters), modify the habit and function of microorganism and mitigate climate problem by changing the bioavailability of elements (C, N, K etc.) in soil. These results also provided the possibility to expend the application of biochar to modify the degraded soils in the saline-alkali soil and industrial regions, further increase the usable area of cultivated land. The future research directions could be suggested as long-term field trials, the evaluation of environmental risk and the optimization of biochar production. Moreover, the relevant mechanisms should be adequately considered for maximizing the all-around efficiency of biochar amendments.
Collapse
Affiliation(s)
- Peng Yuan
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Jianqiao Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Yijun Pan
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Boxiong Shen
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Chunfei Wu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Northern Ireland BT7 1NN, United Kingdom
| |
Collapse
|
21
|
Sallach JB, Crawford R, Li H, Johnston CT, Teppen BJ, Kaminski NE, Boyd SA. Activated carbons of varying pore structure eliminate the bioavailability of 2,3,7,8-tetrachlorodibenzo-p-dioxin to a mammalian (mouse) model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2231-2238. [PMID: 30292116 DOI: 10.1016/j.scitotenv.2018.09.270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
The use of activated carbon (AC) as an in situ sorbent amendment to sequester polychlorinated-dibenzo-p-dioxins and furans (PCDD/Fs) present in contaminated soils and sediments has recently gained attention as a novel remedial approach. This remedy could be implemented at much lower cost while minimizing habitat destruction as compared to traditional remediation technologies that rely on dredging/excavation and landfilling. Several prior studies have demonstrated the ability of AC amendments to reduce pore water concentrations and hence bioaccumulation of PCDD/Fs in invertebrate species. However, our recent study was the first to show that AC had the ability to sequester 2,3,7,8‑tetrachlorodibenzo‑p‑dioxin (TCDD) in a form that eliminated bioavailability to a mammalian (mouse) model. Here we show that three commercially available ACs, representing a wide range of pore size distributions, were equally effective in eliminating the bioavailability of TCDD based upon two sensitive bioassays, hepatic induction of cyp1A1 mRNA and immunoglobulin M antibody-forming cell response. These results provide direct evidence that a wide range of structurally diverse commercially available ACs may be suitable for use as in situ sorbent amendments to provide a cost-effective remedy for PCDD/F contaminated soils and sediments. Potentially, adaption of this technology would minimize habitat destruction and be protective of ecosystem and human health.
Collapse
Affiliation(s)
- J Brett Sallach
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.
| | - Robert Crawford
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | - Hui Li
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.
| | - Cliff T Johnston
- Crop, Soil, and Environmental Science, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Brian J Teppen
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.
| | - Norbert E Kaminski
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | - Stephen A Boyd
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
22
|
Ren X, Wang F, Cao F, Guo J, Sun H. Desorption of atrazine in biochar-amended soils: Effects of root exudates and the aging interactions between biochar and soil. CHEMOSPHERE 2018; 212:687-693. [PMID: 30173114 DOI: 10.1016/j.chemosphere.2018.08.124] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/19/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
The effects of wheat root exudates and the aging interactions between biochar and soil on atrazine desorption from biochar-amended soil were carefully examined. Compared with CaCl2 solution, wheat root exudates significantly increase the desorption of atrazine from biochar, mainly by promoting the desorption of atrazine adsorbed on biochar with specific forces. Wheat root exudates were effectively separated into three components with different electrical properties, namely, anionic, neutral, and cationic components. Mainly due to the carboxyl-containing compounds, the anionic component was the main active component in the wheat root exudates that enhances the desorption of atrazine from the biochar. Additionally, wheat root exudates can increase the desorption of atrazine from biochar-amended soil. The promotion of atrazine desorption by root exudates was more obvious in soils with low organic matter contents, where atrazine was mainly adsorbed by biochar. The aging interaction between the biochar and soil increased the total desorption rate and rapid desorbing fraction of the atrazine in the soil, most likely due to the reduction of the biochar sorption capacity in the aged biochar-amended soil.
Collapse
Affiliation(s)
- Xinhao Ren
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Fei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Fengmei Cao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
23
|
Liu Y, Dai Q, Jin X, Dong X, Peng J, Wu M, Liang N, Pan B, Xing B. Negative Impacts of Biochars on Urease Activity: High pH, Heavy Metals, Polycyclic Aromatic Hydrocarbons, or Free Radicals? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12740-12747. [PMID: 30350570 DOI: 10.1021/acs.est.8b00672] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although biochars show promise for soil remediation, their negative impacts have not been systematically assessed. This study investigated the effects of corn cob biochars on urease-mediated urea hydrolysis and attempted to determine the mechanisms underlying those effects. The results showed that biochars inhibited urease activity (indicated by the NH4+ generation). Released heavy metals and polyaromatic hydrocarbons explained the 20% inhibition of urease activity in biochar supernatants (200 °C) but could not explain the 70% inhibition in particle systems (400 °C). The levels of protein carbonyl and nitrotyrosine, common oxidative damagers of urease, were high in particle systems but very low in biochar supernatants. The electron paramagnetic resonance signal intensity reached its highest level in the 400 °C biochar and decreased in the 500 °C biochar, possibly due to the decomposition of organic molecules. The observed inhibition of urease activity may be the result of oxidative reactions with free radicals on the biochar surface or oxidative reactions with reactive oxygen species promoted by free radicals. We suggest that these potential hazards be evaluated further to gauge the relevance of these findings to field conditions and to assist in the development of safe and sustainable application schemes for biochars.
Collapse
Affiliation(s)
- Yang Liu
- Faculty of Environmental Science and Engineering , Kunming University of Science and Technology , Kunming 650500 , China
| | - Qunying Dai
- Faculty of Environmental Science and Engineering , Kunming University of Science and Technology , Kunming 650500 , China
| | - Xiuqi Jin
- Faculty of Environmental Science and Engineering , Kunming University of Science and Technology , Kunming 650500 , China
| | - Xudong Dong
- Medical School , Kunming University of Science and Technology , Kunming 650500 , China
| | - Juan Peng
- Medical School , Kunming University of Science and Technology , Kunming 650500 , China
| | - Min Wu
- Faculty of Environmental Science and Engineering , Kunming University of Science and Technology , Kunming 650500 , China
| | - Ni Liang
- Faculty of Environmental Science and Engineering , Kunming University of Science and Technology , Kunming 650500 , China
| | - Bo Pan
- Faculty of Environmental Science and Engineering , Kunming University of Science and Technology , Kunming 650500 , China
| | - Baoshan Xing
- Stockbridge School of Agriculture , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
24
|
Delannoy M, Yehya S, Techer D, Razafitianamaharavo A, Richard A, Caria G, Baroudi M, Montargès-Pelletier E, Rychen G, Feidt C. Amendment of soil by biochars and activated carbons to reduce chlordecone bioavailability in piglets. CHEMOSPHERE 2018; 210:486-494. [PMID: 30025366 DOI: 10.1016/j.chemosphere.2018.05.181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Chlordecone (Kepone or CLD) is a highly persistent pesticide formerly used in French West Indies. Nowadays high levels of this pesticide are still found in soils which represent a subsequent source of contamination for outdoor-reared animals. In that context, sequestering matrices like biochars or activated carbons (ACs) are believed to efficiently decrease the bioavailability of such compounds when added to contaminated soils. The present study intends to test the respective efficiency of soil amendment strategies using commercial ACs or biochars (obtained by a 500 °C or 700 °C pyrolysis of 4 distinct type of wood). This study involved three experimental steps. The first one characterized specific surface areas of biochars and ACs. The second one assessed CLD-availability of contaminated artificial soils (50 μg g-1 of Dry Matter) amended with 5% of biochar or AC (mass basis). The third one assessed CLD bioavailability of those artificial soils through an in vivo assay. To limit ethically the number of animals, selections of the most promising media were performed between each experimental steps. Forty four castrated male 40-day-old piglets were exposed during 10 day by amended artificial soils according to their group (n = 4). Only treatment groups exposed through amended soil with AC presented a significant decrease of concentrations of CLD in liver and adipose tissue in comparison with the control group (p < 0.001). A non-significant decrease was obtained by amending artificial soil with biochars. This decrease was particularly high for a coconut shell activated carbon were relative bioavailability was found lower than 3.2% for both tissues. This study leads to conclude that AC introduced in CLD contaminated soil should strongly reduce CLD bioavailability.
Collapse
Affiliation(s)
- M Delannoy
- Université de Lorraine, Inra, URAFPA, F-54000, Nancy, France.
| | - S Yehya
- Université de Lorraine, Inra, URAFPA, F-54000, Nancy, France; Department of Health and Environment, Lebanese University - Faculty of Public Health Section III, Laboratory of Water and Environmental Sciences, Tripoli, Lebanon
| | - D Techer
- Université de Lorraine, Inra, URAFPA, F-54000, Nancy, France
| | - A Razafitianamaharavo
- Université de Lorraine, CNRS, 15 Avenue du Charmois, F-54500, Vandoeuvre-Les-Nancy, France
| | - A Richard
- Laboratoire Interdisciplinaire des Environnements Continentaux UMR 7360 CNRS - Université de Lorraine, France
| | - G Caria
- Laboratoire Interdisciplinaire des Environnements Continentaux UMR 7360 CNRS - Université de Lorraine, France
| | - M Baroudi
- Department of Health and Environment, Lebanese University - Faculty of Public Health Section III, Laboratory of Water and Environmental Sciences, Tripoli, Lebanon
| | - E Montargès-Pelletier
- Université de Lorraine, CNRS, 15 Avenue du Charmois, F-54500, Vandoeuvre-Les-Nancy, France
| | - G Rychen
- Université de Lorraine, Inra, URAFPA, F-54000, Nancy, France
| | - C Feidt
- Université de Lorraine, Inra, URAFPA, F-54000, Nancy, France
| |
Collapse
|
25
|
Li S, Wang P, Liu X, Wu X, Dong F, Xu J, Zheng Y. Polyoxymethylene passive samplers to assess the effectiveness of biochar by reducing the content of freely dissolved fipronil and ethiprole. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:960-966. [PMID: 29554781 DOI: 10.1016/j.scitotenv.2018.02.221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/13/2018] [Accepted: 02/18/2018] [Indexed: 06/08/2023]
Abstract
An equilibrium passive sampler based on polyoxymethylene (POM) was used to determine the freely dissolved concentrations (Cfree) of fipronil and ethiprole. The sorption equilibrium times of fipronil and ethiprole in POM were 14.2d and 24.0d, respectively. The POM-water partitioning coefficients (logKPOM-water) were 2.6 for fipronil and 1.4 for ethiprole. The method was further used to evaluate the sorption behavior of biochars which produced by pyrolysis of Magnolia wood (Magnolia denudata) at 300°C, 500°C and 700°C. The amounts of target compounds adsorbed increased with increasing pyrolysis temperature of the biochars. Biochars characterized by a low polarity index had better sorption capacity for the target compounds. The additions of biochars to sediment were effective in reducing Cfree, and the enhancement was found to be more pronounced with high biochar content. Cfree in sediment with more organic matter was significantly higher after biochar addition. Increasing the sediment-biochar contact time from 7 to 30d resulted in an increase in sorption of the compounds. We conclude that Magnolia wood biochar effectively reduces the content of freely dissolved fipronil and ethiprole content in sediment.
Collapse
Affiliation(s)
- Shasha Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Environmental and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingping Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
26
|
Kah M, Sigmund G, Manga Chavez PL, Bielská L, Hofmann T. Sorption to soil, biochar and compost: is prediction to multicomponent mixtures possible based on single sorbent measurements? PeerJ 2018; 6:e4996. [PMID: 29910988 PMCID: PMC6001708 DOI: 10.7717/peerj.4996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/28/2018] [Indexed: 11/20/2022] Open
Abstract
Amendment with biochar and/or compost has been proposed as a strategy to remediate soil contaminated with low levels of polycyclic aromatic hydrocarbons. The strong sorption potential of biochar can help sequestering contaminants while the compost may promote their degradation. An improved understanding of how sorption evolves upon soil amendment is an essential step towards the implementation of the approach. The present study reports on the sorption of pyrene to two soils, four biochars and one compost. Detailed isotherm analyzes across a wide range of concentration confirmed that soil amendments can significantly increase the sorption of pyrene. Comparisons of data obtained by a classical batch and a passive sampling method suggest that dissolved organic matter did not play a significant role on the sorption of pyrene. The addition of 10% compost to soil led to a moderate increase in sorption (<2-fold), which could be well predicted based on measurements of sorption to the individual components. Hence, our result suggest that the sorption of pyrene to soil and compost can be relatively well approximated by an additive process. The addition of 5% biochar to soil (with or without compost) led to a major increase in the sorption of pyrene (2.5–4.7-fold), which was, however, much smaller than that suggested based on the sorption measured on the three individual components. Results suggest that the strong sorption to the biochar was attenuated by up to 80% in the presence of soil and compost, much likely due to surface and pore blockage. Results were very similar in the two soils considered, and collectively suggest that combined amendments with compost and biochar may be a useful approach to remediate soils with low levels of contamination. Further studies carried out in more realistic settings and over longer periods of time are the next step to evaluate the long term viability of remediation approaches based on biochar amendments.
Collapse
Affiliation(s)
- Melanie Kah
- Department of Environmental Geosciences, University of Vienna, Vienna, Austria.,Commonwealth Scientific and Industrial Research Organisation, Glen Osmond, SA, Australia
| | - Gabriel Sigmund
- Department of Environmental Geosciences, University of Vienna, Vienna, Austria
| | | | - Lucie Bielská
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Thilo Hofmann
- Department of Environmental Geosciences, University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
Mohanty SK, Valenca R, Berger AW, Yu IKM, Xiong X, Saunders TM, Tsang DCW. Plenty of room for carbon on the ground: Potential applications of biochar for stormwater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:1644-1658. [PMID: 29996460 DOI: 10.1016/j.scitotenv.2018.01.037] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 06/08/2023]
Abstract
Low impact development (LID) systems are increasingly used to manage stormwater, but they have limited capacity to treat stormwater-a resource to supplement existing water supply in water-stressed urban areas. To enhance their pollutant removal capacity, infiltration-based LID systems can be augmented with natural or engineered geomedia that meet the following criteria: they should be economical, readily available, and have capacity to remove a wide range of stormwater pollutants in conditions expected during intermittent infiltration of stormwater. Biochar, a carbonaceous porous co-product of waste biomass pyrolysis/gasification, meets all these criteria. Biochar can adsorb pollutants, improve water-retention capacity of soil, retain and slowly release nutrients for plant uptake, and help sustain microbiota in soil and plants atop; all these attributes could help improve removal of contaminants in stormwater treatment systems. This article discusses contaminant removal mechanisms by biochar, summarizes specific biochar properties that enhance targeted contaminants removal from stormwater, and identifies challenges and opportunities to retrofit biochar in LID to optimize stormwater treatment.
Collapse
Affiliation(s)
- Sanjay K Mohanty
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095-1593, USA.
| | - Renan Valenca
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095-1593, USA
| | - Alexander W Berger
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095-1593, USA
| | - Iris K M Yu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xinni Xiong
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Trenton M Saunders
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095-1593, USA
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
28
|
Li C, Bair DA, Parikh SJ. Estimating potential dust emissions from biochar amended soils under simulated tillage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:1093-1101. [PMID: 29996406 DOI: 10.1016/j.scitotenv.2017.12.249] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 05/27/2023]
Abstract
Although biochars may provide agricultural benefits, the potential risks related to agricultural dust emissions have not been adequately investigated. This study examines the impact of biochar type (WS 900: walnut shell, 900°C; PW 500, PW 700 and PW 900: pine wood, 500, 700, 900°C), biochar application rate (0, 1, 2, 5% wt.) and soil water content (low, medium and high) on dust emissions in two different textured-soils (silt loam, sandy loam). Dust was produced via a dust generator simulating soil disturbance (e.g, tillage) and dust fractions with an aerodynamic diameter under 100μm and 10μm (PM100 and PM10) were collected. The data indicate that the higher application rate of WS 900 led to higher PM100 and PM10 emissions while PW biochar treatments emitted equivalent amounts of dust as controls (non-amended soils). Dust emissions were exponentially reduced as soil water content increased, irrespective of biochar's presence. Specific markers for biochar, benzene polycarboxylic acids (BPCAs), were used to estimate the biochar content within dust. Results indicate that the increased dust emissions from WS 900 treatments mainly derive from soil particles due to the greater dispersion potential of WS 900 biochar. The collected data also reveal that PM10 dust contains less biochar particles than PM100, attributed to biochars originally containing negligible amounts of particles <10μm.
Collapse
Affiliation(s)
- Chongyang Li
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Daniel A Bair
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Sanjai J Parikh
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA.
| |
Collapse
|
29
|
Zhang P, Sun H, Min L, Ren C. Biochars change the sorption and degradation of thiacloprid in soil: Insights into chemical and biological mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:158-167. [PMID: 29414336 DOI: 10.1016/j.envpol.2018.01.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/04/2018] [Accepted: 01/12/2018] [Indexed: 06/08/2023]
Abstract
One interest of using biochar as soil amendment is to reduce pesticide adverse effects. In this paper, the sorption and degradation of thiacloprid (THI) in a black soil amended by various biochars were systematically investigated, and the mechanisms therein were explored by analyzing the changes in soil physicochemical properties, degrading enzymes and genes and microorganism community. Biochar amendment increased THI sorption in soil, which was associated with an increase in organic carbon and surface area and a decrease in H/C. Amendments of 300-PT (pyrolyzing temperature) biochar promoted the biodegradation of THI by increasing the microbe abundance and improving nitrile hydratase (NHase) activity. In contrast, 500- and 700-PT biochar amendments inhibited biodegradation by reducing THI availability and changing NHase activity and THI-degradative nth gene abundance, and instead promoted chemical degradation mainly through elevated pH, active groups on mineral surface and generation of •OH and other free radicals. Furthermore, THI shifted the soil microbial community, stimulated the NHase activity and elevated nth gene abundance. Biochar amendments also changed soil bacterial community by modulating soil pH, dissolved organic matter and nitrogen and phosphorus levels, which further influenced THI biodegradation. Therefore, the impact of biochars on the fate of a pesticide in soil depends greatly on their type and properties, which should be comprehensively examined when applying biochar to soil.
Collapse
Affiliation(s)
- Peng Zhang
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hongwen Sun
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Lujuan Min
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Chao Ren
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
30
|
Yang K, Jiang Y, Yang J, Lin D. Correlations and adsorption mechanisms of aromatic compounds on biochars produced from various biomass at 700 °C. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:64-70. [PMID: 29053999 DOI: 10.1016/j.envpol.2017.10.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/03/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Knowledge of adsorption behavior of organic contaminants on high heat temperature treated biochars is essential for application of biochars as adsorbents in wastewater treatment and soil remediation. In this study, isotherms of 25 aromatic compounds adsorption on biochars pyrolyzed at 700 °C from biomass including wood chips, rice straw, bamboo chips, cellulose, lignin and chitin were investigated to establish correlations between adsorption behavior and physicochemical properties of biochars. Isotherms were well fitted by Polanyi theory-based Dubinin-Ashtakhov (DA) model with three parameters, i.e., adsorption capacity (Q0) and adsorption affinity (E and b). Besides the negative correlation of Q0 with molecular maximum cross-sectional areas (σ) of organic compounds, positive correlations of Q0 with total pore volume (Vtotal) and average diameter of micropore (D) of biochars were observed, indicating that adsorption by biochars is captured by the pore-filling mechanism with molecular sieving effect in biochar pores. Linear solvation energy relationships (LSERs) of adsorption affinity (E) with solvatochromic parameters of organic compounds (i. e., αm and π∗) were established, suggesting that hydrophobic effect, π-π interaction and hydrogen-bonding interaction are the main forces responsible for adsorption. The regression coefficient (π1) and intercept (C) of obtained LSERs are correlated with biochar H/C and Rmicro, respectively, implying that biochars with higher aromaticity and more micropores have stronger π-π bonding potential and hydrophobic effect potential with aromatic molecule, respectively. However, hydrogen-bonding potential of biochars for organic molecules is not changed significantly with properties of biochars. A negative correlation of b with biochar H/C is also obtained. These correlations could be used to predict the adsorption behavior of organic compounds on high heat temperature treated biochars from various biomass for the application of biochars as sorbents and for the estimating of environmental risks of organic compounds in the present of biochars.
Collapse
Affiliation(s)
- Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Yuan Jiang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jingjing Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| |
Collapse
|
31
|
Cheng G, Sun M, Ge X, Xu X, Lin Q, Lou L. Exploration of biodegradation mechanisms of black carbon-bound nonylphenol in black carbon-amended sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:752-760. [PMID: 28865380 DOI: 10.1016/j.envpol.2017.08.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/22/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
The present study aimed to investigate biodegradation mechanisms of black carbon (BC)-bound contaminants in BC-amended sediment when BC was applied to control organic pollution. The single-point Tenax desorption technique was applied to track the species changes of nonylphenol (NP) during biodegradation process in the rice straw carbon (RC)-amended sediment. And the correlation between the biodegradation and desorption of NP was analyzed. Results showed that microorganisms firstly degraded the rapid-desorbing NP (6 h Tenax desorption) in RC-amended sediment. The biodegradation facilitated the desorption of slow-desorbing NP, which was subsequently degraded as well (192 h Tenax desorption). Notably, the final amount of NP degradation was greater than that of NP desorption, indicating that absorbed NP by RC amendment can be degraded by microorganisms. Finally, the residual NP amount in RC-amended sediment was decided by RC content and its physicochemical property. Moreover, the presence of the biofilm was observed by the confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) so that microorganisms were able to overcome the mass transfer resistance and directly utilized the absorbed NP. Therefore, single-point Tenax desorption alone may not be an adequate basis for the prediction of the bioaccessibility of contaminants to microorganisms or bioremediation potential in BC-amended sediment.
Collapse
Affiliation(s)
- Guanghuan Cheng
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, 210044, People's Republic of China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, People's Republic of China; Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Mingyang Sun
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, 210044, People's Republic of China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, People's Republic of China
| | - Xinlei Ge
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, 210044, People's Republic of China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, People's Republic of China
| | - Xinhua Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Qi Lin
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, People's Republic of China; Key Laboratory of Water Pollution Control and Environmental Safety Technology, Zhejiang University, Hangzhou 310029, People's Republic of China.
| |
Collapse
|
32
|
Boyd SA, Sallach JB, Zhang Y, Crawford R, Li H, Johnston CT, Teppen BJ, Kaminski NE. Sequestration of 2,3,7,8-tetrachlorodibenzo-p-dioxin by activated carbon eliminates bioavailability and the suppression of immune function in mice. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2671-2678. [PMID: 28370362 PMCID: PMC6684209 DOI: 10.1002/etc.3815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/04/2017] [Accepted: 03/30/2017] [Indexed: 05/13/2023]
Abstract
The effectiveness of activated carbon in reducing the bioavailability of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was examined from the context of using in situ sorbent amendments to remediate soils/sediments contaminated with polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs). This technology has gained rapid acceptance based on observations that activated carbon amendments predictably lower PCDD/F concentrations in water and bioaccumulation by simple aquatic organisms and earthworms; it has been assumed that bioavailability to mammals is similarly reduced, although this has been disproven for other sorbent materials. In the present study TCDD was absorbed to a microporous activated carbon (TCDD-AC) using the incipient wetness method. An aqueous suspension of TCDD-AC and an equivalent dosage of TCDD in corn oil were administered by oral gavage to B6C3F1 mice. The relative bioavailability of TCDD-AC was determined by quantifying and comparing the hepatic induction of cyp1A1 (messenger ribonucleic acid) and suppression of the immunoglobulin M antibody-forming cell immune response by the 2 forms of TCDD. A concentration-dependent response was observed for both assays when TCDD in corn oil was administered to mice. However, when equivalent masses of TCDD were administered as TCDD-AC, no induction of cyp1A1 or suppression of the immunoglobulin M antibody-forming cell response was observed. The absence of these 2 sensitive aryl hydrocarbon receptor-mediated responses in mice provides the first direct evidence that activated carbon can sequester TCDD in a form that eliminates its bioavailability to mammals. These results support the premise that activated carbon can be used to reduce the bioeffective dose of TCDD delivered to mammals and that activated carbon amendments may provide a low-cost alternative to traditional remediation technologies. Environ Toxicol Chem 2017;36:2671-2678. © 2017 SETAC.
Collapse
Affiliation(s)
- Stephen A. Boyd
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824
| | - J. Brett Sallach
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824
| | - Yingjie Zhang
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824
| | - Robert Crawford
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, 48824
| | - Hui Li
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824
| | - Cliff T. Johnston
- Crop, Soil, and Environmental Science, Purdue University, West Lafayette, Indiana, 47907
| | - Brian J. Teppen
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824
| | - Norbert E. Kaminski
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, 48824
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
33
|
Wu S, He H, Inthapanya X, Yang C, Lu L, Zeng G, Han Z. Role of biochar on composting of organic wastes and remediation of contaminated soils-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16560-16577. [PMID: 28551738 DOI: 10.1007/s11356-017-9168-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Biochar is produced by pyrolysis of biomass residues under limited oxygen conditions. In recent years, biochar as an amendment has received increasing attention on composting and soil remediation, due to its unique properties such as chemical recalcitrance, high porosity and sorption capacity, and large surface area. This paper provides an overview on the impact of biochar on the chemical characteristics (greenhouse gas emissions, nitrogen loss, decomposition and humification of organic matter) and microbial community structure during composting of organic wastes. This review also discusses the use of biochar for remediation of soils contaminated with organic pollutants and heavy metals as well as related mechanisms. Besides its aging, the effects of biochar on the environment fate and efficacy of pesticides deserve special attention. Moreover, the combined application of biochar and compost affects synergistically on soil remediation and plant growth. Future research needs are identified to ensure a wide application of biochar in composting and soil remediation. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Shaohua Wu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Huijun He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Xayanto Inthapanya
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China.
| | - Li Lu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Zhenfeng Han
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| |
Collapse
|
34
|
Kołtowski M, Charmas B, Skubiszewska-Zięba J, Oleszczuk P. Effect of biochar activation by different methods on toxicity of soil contaminated by industrial activity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 136:119-125. [PMID: 27842277 DOI: 10.1016/j.ecoenv.2016.10.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
The objective of the study was to determine the effect of various methods of biochar activation on the ecotoxicity of soils with various properties and with various content and origin of contaminants. The biochar produced from willow (at 700°C) was activated by 1) microwaves (in a microwave reactor under an atmosphere of water vapour), 2) carbon dioxide (in the quartz fluidized bed reactor) and 3) superheated steam (in the quartz fluidized bed reactor). Three different soils were collected from industrial areas. The soils were mixed with biochar and activated biochars at the dose of 5% and ecotoxicological parameters of mixture was evaluated using two solid phase test - Phytotoxkit F (Lepidium sativum) and Collembolan test (Folsomia candida) and one liquid phase test - Microtox® (Vibrio fischeri). Biochar activation had both positive and negative impacts, depending on the activation method, kind of bioassay and kind of soil. Generally, biochar activated by microwaves increased the effectiveness of ecotoxicity reduction relative to non-activated biochars. Whereas, biochar activated with CO2 most often cause a negative effect manifested by deterioration or as a lack of improvement in relation to non-activated biochar or to non-amended soil. It was also demonstrated that the increase of biochar specific surface area caused a significant reduction of toxicity of water leachates from the studied soils. Effectiveness of the reduction of leachate toxicity was weakened in the presence of dissolved organic carbon in the soil.
Collapse
Affiliation(s)
- Michał Kołtowski
- Department of Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Barbara Charmas
- Department of Chromatographic Methods, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Jadwiga Skubiszewska-Zięba
- Department of Chromatographic Methods, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Patryk Oleszczuk
- Department of Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland.
| |
Collapse
|
35
|
Liu CH, Chuang YH, Li H, Teppen BJ, Boyd SA, Gonzalez JM, Johnston CT, Lehmann J, Zhang W. Sorption of Lincomycin by Manure-Derived Biochars from Water. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:519-27. [PMID: 27065399 PMCID: PMC5896005 DOI: 10.2134/jeq2015.06.0320] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The presence of antibiotics in agroecosystems raises concerns about the proliferation of antibiotic-resistant bacteria and adverse effects to human health. Soil amendment with biochars pyrolized from manures may be a win-win strategy for novel manure management and antibiotics abatement. In this study, lincomycin sorption by manure-derived biochars was examined using batch sorption experiments. Lincomycin sorption was characterized by two-stage kinetics with fast sorption reaching quasi-equilibrium in the first 2 d, followed by slow sorption over 180 d. The fast sorption was primarily attributed to surface adsorption, whereas the long-term slow sorption was controlled by slow diffusion of lincomycin into biochar pore structures. Two-day sorption experiments were performed to explore effects of biochar particle size, solid/water ratio, solution pH, and ionic strength. Lincomycin sorption to biochars was greater at solution pH 6.0 to 7.5 below the dissociation constant of lincomycin (7.6) than at pH 9.9 to 10.4 above its dissociation constant. The enhanced lincomycin sorption at lower pH likely resulted from electrostatic attraction between the positively charged lincomycin and the negatively charged biochar surfaces. This was corroborated by the observation that lincomycin sorption decreased with increasing ionic strength at lower pH (6.7) but remained constant at higher pH (10). The long-term lincomycin sequestration by biochars was largely due to pore diffusion plausibly independent of solution pH and ionic composition. Therefore, manure-derived biochars had lasting lincomycin sequestration capacity, implying that biochar soil amendment could significantly affect the distribution, transport, and bioavailability of lincomycin in agroecosystems.
Collapse
Affiliation(s)
- Cheng-Hua Liu
- Dep. of Plant, Soil and Microbial Sciences, Michigan State Univ., East Lansing, MI 48824
- Environmental Science and Policy Program, Michigan State Univ., East Lansing, MI 48824
| | - Ya-Hui Chuang
- Dep. of Plant, Soil and Microbial Sciences, Michigan State Univ., East Lansing, MI 48824
| | - Hui Li
- Dep. of Plant, Soil and Microbial Sciences, Michigan State Univ., East Lansing, MI 48824
| | - Brian J. Teppen
- Dep. of Plant, Soil and Microbial Sciences, Michigan State Univ., East Lansing, MI 48824
| | - Stephen A. Boyd
- Dep. of Plant, Soil and Microbial Sciences, Michigan State Univ., East Lansing, MI 48824
| | - Javier M. Gonzalez
- National Soil Erosion Research Lab, Agricultural Research Service, USDA, West Lafayette, IN 47907
| | | | | | | |
Collapse
|
36
|
Ren X, Zhang P, Zhao L, Sun H. Sorption and degradation of carbaryl in soils amended with biochars: influence of biochar type and content. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2724-2734. [PMID: 26438372 DOI: 10.1007/s11356-015-5518-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/28/2015] [Indexed: 06/05/2023]
Abstract
Biochars that were produced from three different biomass materials were amended to a soil to elucidate their influence on the fate of carbaryl. Sorption and degradation of carbaryl in soils amended with the biochars were investigated. The results showed that the amendment of biochars to soil enhanced the sorption of carbaryl. The nonlinearity of sorption isotherm and sorption affinity of carbaryl increased with the content and pyrolytic temperature of the biochars. Both chemical and biological degradation of carbaryl were influenced by biochars. The biochars enhanced the chemical hydrolysis of carbaryl in soil, with biochars produced at 700 °C (BC700) exhibiting greater impact, due to their strong liming effect. In contrast, BC350 (produced at 350 °C) promoted the biodegradation of carbaryl in soil by different extents, while BC700 obviously reduced the biodegradation of carbaryl. The enhanced activities of natural microorganisms in the soil and the lowered bioavailability of carbaryl acted together to determine the biodegradation.
Collapse
Affiliation(s)
- Xinhao Ren
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Peng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Lijie Zhao
- Key Laboratory of original Agro-Environmental Quality, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
37
|
Denyes MJ, Rutter A, Zeeb BA. Bioavailability assessments following biochar and activated carbon amendment in DDT-contaminated soil. CHEMOSPHERE 2016; 144:1428-1434. [PMID: 26495827 DOI: 10.1016/j.chemosphere.2015.10.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/30/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
The effects of 2.8% w/w granulated activated carbon (GAC) and two types of biochar (Burt's and BlueLeaf) on DDT bioavailability in soil (39 μg/g) were investigated using invertebrates (Eisenia fetida), plants (Cucurbita pepo spp. pepo) and a polyoxymethylene (POM) passive sampler method. Biochar significantly reduced DDT accumulation in E. fetida (49%) and showed no detrimental effects to invertebrate health. In contrast, addition of GAC caused significant toxic effects (invertebrate avoidance and decreased weight) and did not significantly reduce the accumulation of DDT into invertebrate tissue. None of the carbon amendments reduced plant uptake of DDT. Bioaccumulation of 4,4'DDT and 4,4'-DDE in plants (C. pepo spp. pepo) and invertebrates (E. fetida) was assessed using bioaccumulation factors (BAFs) and compared to predicted bioavailability using the freely-dissolved porewater obtained from a polyoxymethylene (POM) equilibrium biomimetic method. The bioavailable fraction predicted by the POM samplers correlated well with measured invertebrate uptake (<50% variability), but was different from plant root uptake by 134%. A literature review of C. pepo BAFs across DDT soil contamination levels and the inclusion of field data from a 2.5 μg/g DDT-contaminated site found that these plants exhibit a concentration threshold effect at [DDT](soil) > 10 μg/g. The results of these studies illustrate the importance of including plants in bioavailability studies as the use of carbon materials for in situ contaminant sorption moves from predominantly sediment to soil remediation technologies.
Collapse
Affiliation(s)
- Mackenzie J Denyes
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada.
| | - Allison Rutter
- School of Environmental Studies, Biosciences Complex, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Barbara A Zeeb
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada.
| |
Collapse
|
38
|
Shan J, Ji R, Yu Y, Xie Z, Yan X. Biochar, activated carbon, and carbon nanotubes have different effects on fate of (14)C-catechol and microbial community in soil. Sci Rep 2015; 5:16000. [PMID: 26515132 PMCID: PMC4626844 DOI: 10.1038/srep16000] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 10/07/2015] [Indexed: 12/02/2022] Open
Abstract
This study investigated the effects of biochar, activated carbon (AC)-, and single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) in various concentrations (0, 0.2, 20, and 2,000 mg/kg dry soil) on the fate of 14C-catechol and microbial community in soil. The results showed that biochar had no effect on the mineralization of 14C-catechol, whereas AC at all amendment rates and SWCNTs at 2,000 mg/kg significantly reduced mineralization. Particularly, MWCNTs at 0.2 mg/kg significantly stimulated mineralization compared with the control soil. The inhibitory effects of AC and SWCNTs on the mineralization were attributed to the inhibited soil microbial activities and the shifts in microbial communities, as suggested by the reduced microbial biomass C and the separated phylogenetic distance. In contrast, the stimulatory effects of MWCNTs on the mineralization were attributed to the selective stimulation of specific catechol-degraders by MWCNTs at 0.2 mg/kg. Only MWCNTs amendments and AC at 2,000 mg/kg significantly changed the distribution of 14C residues within the fractions of humic substances. Our findings suggest biochar, AC, SWCNTs and MWCNTs have different effects on the fate of 14C-catechol and microbial community in soil.
Collapse
Affiliation(s)
- Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.,Changshu Agro-ecological Experimental Station, Chinese Academy of Sciences, Changshu 215555, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Yongjie Yu
- College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zubin Xie
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.,Changshu Agro-ecological Experimental Station, Chinese Academy of Sciences, Changshu 215555, China
| |
Collapse
|
39
|
Lou L, Yao L, Cheng G, Wang L, He Y, Hu B. Application of Rice-Straw Biochar and Microorganisms in Nonylphenol Remediation: Adsorption-Biodegradation Coupling Relationship and Mechanism. PLoS One 2015; 10:e0137467. [PMID: 26348485 PMCID: PMC4562627 DOI: 10.1371/journal.pone.0137467] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/17/2015] [Indexed: 11/24/2022] Open
Abstract
Biochar adsorption presents a potential remediation method for the control of hydrophobic organic compounds (HOCs) pollution in the environment. It has been found that HOCs bound on biochar become less bioavailable, so speculations have been proposed that HOCs will persist for longer half-life periods in biochar-amended soil/sediment. To investigate how biochar application affects coupled adsorption-biodegradation, nonylphenol was selected as the target contaminant, and biochar derived from rice straw was applied as the adsorbent. The results showed that there was an optimal dosage of biochar in the presence of both adsorption and biodegradation for a given nonylphenol concentration, thus allowing the transformation of nonylphenol to be optimized. Approximately 47.6% of the nonylphenol was biodegraded in two days when 0.005 g biochar was added to 50 mg/L of nonylphenol, which was 125% higher than the relative quantity biodegraded without biochar, though the resistant desorption component of nonylphenol reached 87.1%. All adsorptive forms of nonylphenol (frap, fslow, fr) decreased gradually during the biodegradation experiment, and the resistant desorption fraction of nonylphenol (fr) on biochar could also be biodegraded. It was concluded that an appropriate amount of biochar could stimulate biodegradation, not only illustrating that the dosage of biochar had an enormous influence on the half-life periods of HOCs but also alleviating concerns that enhanced HOCs binding by biochar may cause secondary pollution in biochar-modified environment.
Collapse
Affiliation(s)
- Liping Lou
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Lingdan Yao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Guanghuan Cheng
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Lixiao Wang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yunfeng He
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Baolan Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
40
|
Oyelami AO, Ogbonnaya U, Muotoh C, Semple KT. Impact of activated carbon on the catabolism of (14)C-phenanthrene in soil. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:1173-1181. [PMID: 25989260 DOI: 10.1039/c5em00133a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Activated carbon amendment to contaminated soil has been proposed as an alternative remediation strategy to the management of persistent organic pollutant in soils and sediments. The impact of varying concentrations (0%, 0.01%, 0.1% and 1.0%) of different types of AC on the development of phenanthrene catabolism in soil was investigated. Mineralisation of (14)C-phenanthrene was measured using respirometric assays. The increase in concentration of CB4, AQ5000 or CP1 in soil led to an increase in the length of the lag phases. Statistical analyses showed that the addition of increasing concentrations of AC to the soil significantly reduced (P < 0.05) the extent of (14)C-phenanthrene mineralisation. For example, for CB4-, AQ5000- and CP1-amended soils, the overall extent of (14)C-phenanthrene mineralisation reduced from 43.1% to 3.28%, 36.9% to 0.81% and 39.6% to 0.96%, respectively, after 120 days incubation. This study shows that the properties of AC, such as surface area, pore volume and particle size, are important factors in controlling the kinetics of (14)C-phenanthrene mineralisation in soil.
Collapse
Affiliation(s)
- Ayodeji O Oyelami
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | | | | | | |
Collapse
|
41
|
Song Y, Wang F, Kengara FO, Bian Y, Yang X, Gu C, Ye M, Jiang X. Does powder and granular activated carbon perform equally in immobilizing chlorobenzenes in soil? ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:74-80. [PMID: 25406989 DOI: 10.1039/c4em00486h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The objective of this study is to compare the efficacies of powder activated carbon (PAC) and granular activated carbon (GAC) as amendments for the immobilization of volatile compounds in soil. Soil artificially-spiked with chlorobenzenes (CBs) was amended with either PAC or GAC to obtain an application rate of 1%. The results showed that the dissipation and volatilization of CBs from the amended soil significantly decreased compared to the unamended soil. The bioavailabilities of CBs, which is expressed as butanol extraction and earthworm accumulation, were significantly reduced in PAC and GAC amended soils. The lower chlorinated and hence more volatile CBs experienced higher reductions in both dissipation and bioavailability in the amended soils. The GAC and PAC equally immobilized more volatile CBs in soil. Therefore, it could be concluded that along with environmental implication, applying GAC was the more promising approach for the effective immobilization of volatile compounds in soil.
Collapse
Affiliation(s)
- Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ogbonnaya OU, Adebisi OO, Semple KT. The impact of biochar on the bioaccessibility of (14)C-phenanthrene in aged soil. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:2635-2643. [PMID: 25277257 DOI: 10.1039/c4em00396a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biochar is a carbon rich product from the incomplete combustion of biomass and it has been shown to reduce bioavailability of organic contaminants through adsorption. This study investigated the influence of 0%, 1%, 5% and 10% of two different particle sized wood biochars (≤2 mm and 3-7 mm) on the bioaccessibility of (14)C-phenanthrene (10 mg kg(-1)) in aged soil. The extent of (14)C-phenanthrene mineralisation by phenanthrene-degrading Pseudomonas sp. inoculum was monitored over a 14 day period in respirometric assays and compared to hydroxypropyl-β-cyclodextrin (HPCD) aqueous extraction. Notably, biochar amendments showed significant reduction in extents of mineralisation and HPCD extraction. Linear correlations between HPCD extractability and the total amount mineralised revealed good correlations, with 2 mm biochar showing a best fit (r(2) = 0.97, slope = 1.11, intercept = 1.72). Biochar reduced HPCD extractability and bioaccessibility of (14)C-phenanthrene to microorganisms in a similar manner. Biochar can aid risk reduction to phenanthrene exposure to biota in soil and HPCD can serve as a useful tool to assess the extent of exposure in biochar-amended soils.
Collapse
Affiliation(s)
- O U Ogbonnaya
- EcoSystems Environmental Management Services Ltd, 8 Rasheed Alaba Williams Street, Off Admiralty Way, Lekki Peninsula, Lagos, Nigeria.
| | | | | |
Collapse
|
43
|
Mohanty SK, Boehm AB. Escherichia coli removal in biochar-augmented biofilter: effect of infiltration rate, initial bacterial concentration, biochar particle size, and presence of compost. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11535-11542. [PMID: 25222640 DOI: 10.1021/es5033162] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bioretention systems and biofilters are used in low impact development to passively treat urban stormwater. However, these engineered natural systems are not efficient at removing fecal indicator bacteria, the contaminants responsible for a majority of surface water impairments. The present study investigates the efficacy of biochar-augmented model sand biofilters for Escherichia coli removal under a variety of stormwater bacterial concentrations and infiltration rates. Additionally, we test the role of biochar particle size and "presence of compost on model" biofilter performance. Our results show that E. coli removal in a biochar-augmented sand biofilter is ∼ 96% and is not greatly affected by increases in stormwater infiltration rates and influent bacterial concentrations, particularly within the ranges expected in field. Removal of fine (<125 μm) biochar particles from the biochar-sand biofilter decreased the removal capacity from 95% to 62%, indicating biochar size is important. Addition of compost to biochar-sand biofilters not only lowered E. coli removal capacity but also increased the mobilization of deposited bacteria during intermittent infiltration. This result is attributed to exhaustion of attachment sites on biochar by the dissolved organic carbon leached from compost. Overall, our study indicates that biochar has potential to remove bacteria from stormwater under a wide range of field conditions, but for biochar to be effective, the size should be small and biochar should be applied without compost. Although the results aid in the optimization of biofilter design, further studies are needed to examine biochar potential in the field over an entire rainy season.
Collapse
Affiliation(s)
- Sanjay K Mohanty
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305, United States
| | | |
Collapse
|
44
|
Yu C, Zhou W, Yu JC, Liu H, Wei L. Design and fabrication of heterojunction photocatalysts for energy conversion and pollutant degradation. CHINESE JOURNAL OF CATALYSIS 2014. [DOI: 10.1016/s1872-2067(14)60170-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
45
|
Wang F, Ji R, Jiang Z, Chen W. Species-dependent effects of biochar amendment on bioaccumulation of atrazine in earthworms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 186:241-247. [PMID: 24406324 DOI: 10.1016/j.envpol.2013.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/14/2013] [Accepted: 12/15/2013] [Indexed: 06/03/2023]
Abstract
We observed that at a contamination level of 4.25 mg-atrazine/kg-soil, the biota-soil accumulation factor (BSAF) for the anecic M. guillelmi is approximately 5 times that for the epigeic E. foetida. This is attributable to the fact that bio-uptake by E. foetida is mainly through dermal absorption, whereas bio-uptake by M. guillelmi is largely affected by the gut processes, through which the physical grinding and surfactant-like materials facilitate the desorption of atrazine from soil. Strikingly, biochar amendment resulted in much greater reduction in BSAF for M. guillelmi than for E. foetida. At a biochar dose of 0.5% (wt:wt) the difference in BSAF between the two species became much smaller, and at a dose of 2% no statistical difference was observed. A likely explanation is that gut processes by M. guillelmi were much less effective in extracting atrazine from the biochar (the predominant phase wherein atrazine resided) than from soil particles.
Collapse
Affiliation(s)
- Fang Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300071, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhongwei Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300071, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300071, China.
| |
Collapse
|
46
|
Jia F, Gan J. Comparing black carbon types in sequestering polybrominated diphenyl ethers (PBDEs) in sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 184:131-7. [PMID: 24047549 PMCID: PMC3915297 DOI: 10.1016/j.envpol.2013.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/13/2013] [Accepted: 08/20/2013] [Indexed: 05/09/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely found in sediments, especially congeners from the penta-BDE formula. Due to their strong affinity for black carbon (BC), bioavailability of PBDEs may be decreased in BC-amended sediments. In this study, we used a matrix-SPME method to measure the freely dissolved concentration (Cfree) of PBDEs as a parameter of their potential bioavailability and evaluated the differences among biochar, charcoal, and activated carbon. Activated carbon displayed a substantially greater sequestration capacity than biochar or charcoal. At 1% amendment rate in sediment with low organic carbon (OC) content (0.12%), Cfree of six PBDEs was reduced by 47.5-78.0%, 47.3-77.5%, and 94.1-98.3% with biochar, charcoal, and activated carbon, respectively, while the sequestration was more limited in sediment with high OC content (0.87%). Therefore, it is important to consider the type and properties of the BC and the sediment in BC-based remediation or mitigation.
Collapse
Affiliation(s)
- Fang Jia
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
47
|
Zhao L, Xiao X, Peng L, Gu FL, Zhang RQ. Visible-light photocatalytic mechanism of bisphenol-A on nano-Bi2O3: a combined DFT calculation and experimental study. RSC Adv 2014. [DOI: 10.1039/c3ra46783j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
48
|
Gomez-Eyles JL, Yupanqui C, Beckingham B, Riedel G, Gilmour C, Ghosh U. Evaluation of biochars and activated carbons for in situ remediation of sediments impacted with organics, mercury, and methylmercury. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13721-13729. [PMID: 24168448 DOI: 10.1021/es403712q] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In situ amendment of activated carbon (AC) to sediments can effectively reduce the bioavailability of hydrophobic organic contaminants. While biochars have been suggested as low-cost and sustainable alternatives to ACs, there are few comparative sorption data especially for mercury (Hg) and methylmercury (MeHg) at the low porewater concentrations in sediments. Here we compare the ability of a wide range of commercially available and laboratory synthesized ACs and biochars to sorb PAHs, PCBs, DDTs, inorganic Hg, and MeHg at environmentally relevant concentrations. Compared to natural organic matter, sorption capacity for most organic compounds was at least 1-2 orders of magnitude higher for unactivated biochars and 3-4 orders of magnitude higher for ACs which translated to sediment porewater PCB concentration reductions of 18-80% for unactivated biochars, and >99% for ACs with 5% by weight amendment to sediment. Steam activated carbons were more effective than biochars in Hg sorption and translated to modeled porewater Hg reduction in the range of 94-98% for sediments with low native Kd and 31-73% for sediments with high native Kd values for Hg. Unactivated biochars were as effective as the steam activated carbons for MeHg sorption. Predicted reductions of porewater MeHg were 73-92% for sediments with low native Kd and 57-86% for sediment with high native K(d). ACs with high surface areas therefore are likely to be effective in reducing porewater concentrations of organics, Hg, and MeHg in impacted sediments. Unactivated biochars had limited effectiveness for organics and Hg but can be considered when MeHg exposure is the primary concern.
Collapse
Affiliation(s)
- Jose L Gomez-Eyles
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | | | | | | | | | | |
Collapse
|
49
|
Tang J, Zhu W, Kookana R, Katayama A. Characteristics of biochar and its application in remediation of contaminated soil. J Biosci Bioeng 2013; 116:653-9. [DOI: 10.1016/j.jbiosc.2013.05.035] [Citation(s) in RCA: 360] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/01/2013] [Accepted: 05/27/2013] [Indexed: 11/29/2022]
|
50
|
Parks AN, Chandler GT, Portis LM, Sullivan JC, Perron MM, Cantwell MG, Burgess RM, Ho KT, Ferguson PL. Effects of single-walled carbon nanotubes on the bioavailability of PCBs in field-contaminated sediments. Nanotoxicology 2013; 8 Suppl 1:111-7. [DOI: 10.3109/17435390.2013.858794] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ashley N. Parks
- Nicholas School of the Environment, Duke University, Durham, NC, USA,
| | - G. Thomas Chandler
- Arnold School of Public Health, University of South Carolina, Columbia, SC, USA,
| | - Lisa M. Portis
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory – Atlantic Ecology Division, Narragansett, RI, USA,
| | - Julia C. Sullivan
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory – Atlantic Ecology Division, Narragansett, RI, USA,
| | - Monique M. Perron
- U.S. Environmental Protection Agency, Office of Pesticides Program – Health Effects Division, Arlington, VA, USA,
| | - Mark G. Cantwell
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory – Atlantic Ecology Division, Narragansett, RI, USA,
| | - Robert M. Burgess
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory – Atlantic Ecology Division, Narragansett, RI, USA,
| | - Kay T. Ho
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory – Atlantic Ecology Division, Narragansett, RI, USA,
| | - P. Lee Ferguson
- Nicholas School of the Environment, Duke University, Durham, NC, USA,
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA, and
- Center for Environmental Implications of NanoTechnologies, Duke University, Durham, NC, USA
| |
Collapse
|